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Abstract For the numerical solution of linear variational problems involving
elliptic partial differential operators in n � 2 space dimensions, iterative solution
schemes are indispensable on account of their problem size. Our guiding principle
is to devise iterative solvers which are optimal in the number of arithmetic
operations, i.e., which are of linear complexity in the total number of unknowns. For
these algorithms, asymptotically optimal preconditioners are required. The class of
preconditioners for which this can be shown are of multilevel type, requiring nested
approximation spaces to approximate the solution of the system on a fine user-
specified grid. For smooth solutions of standard second and fourth order elliptic
PDEs (partial differential equations) in variational form, approximations based on
tensor products of higher-order B-splines yield high accuracy.

For such problem classes, this survey collects the main ingredients for multilevel
preconditioners in terms of higher order B-splines. There are three types of
multilevel preconditioners for which asymptotic optimality can be shown. Two of
them, the so-called additive preconditioners, are specified for isogeometric analysis
involving linear elliptic partial differential operators in terms of variants of the BPX
(Bramble-Pasciak-Xu) preconditioner and wavelet preconditioners. The third class
are the so-called multiplicative preconditioners, specifically, multigrid methods.

An essential ingredient for all these multilevel preconditioners are intergrid
operators which transform vectors or matrices between grids of different grid
spacing. For higher order B-splines, these intergrid operators can be derived from
their refinement relations. In addition to a presentation of the theoretical ingredients,
the performance of the different preconditioners will be demonstrated by some
numerical examples.
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1 Introduction

For variational systems involving linear elliptic partial differential equations (PDEs)
in n � 2 space dimensions, a standard finite element or finite difference discretiza-
tion on a uniform grid with grid spacing 0 < h < 1 leads to the problem to
numerically solve a large ill-conditioned system of linear equations. This is due
to the fact that PDE operators have positive order 2r, i.e., r D 1 for second order
or r D 2 for fourth order operators. Ill-conditioned means that the system matrix
Ah exhibits a spectral condition number �2.Ah/ which is proportional to h�2r, i.e.,
�2.Ah/ � h�2r. Here and in the following, the relation a � b stands for a <� b
and b <� a where the latter inequality means that b can be bounded by some
constant times a uniformly in all parameters on which a and b may depend. Since
the convergence speed of any iterative solution scheme depends on the spectral
condition number, the scheme will therefore become prohibitively slow. This effect
becomes even worse when h is chosen smaller, in order to obtain more accurate
approximations; the number of unknowns N increases like N � h�n and, thus, the
system size also increases accordingly.

On the other hand, solutions of elliptic PDEs typically exhibit a multiscale
behaviour. Enhancing iterative methods by multilevel ingredients, therefore, enables
one to achieve much more efficient solution schemes. Ultimately, one strives for
an ‘optimally efficient scheme’. This means that one can solve the problem with
fine grid accuracy with an amount of arithmetic operations that is proportional to
the number of unknowns on this grid. The first such methods which were proven
to provide an asymptotically optimal iterative scheme were geometric multigrid
algorithms [9]. The basic idea of these schemes is to successively solve smaller
approximations of the linear system on the finest grid. These can often be interpreted
as discretizations with respect to coarser grids. Their iterative solutions can be seen
as approximating the inverses of the system matrices applied to the right hand side
on the different grids, thereby reducing the spectral condition number of the original
system matrix. This idea has, therefore, suggested the term ‘preconditioner’. We call
a linear operator Ch an (asymptotically) optimal preconditioner if its set-up, storage
and application is of optimal linear complexity in the number of unknowns N and if
�2.ChAh/ � 1 independent of h.

The search for such optimal preconditioners was a major topic for numerical
elliptic PDE solvers in the 1980s. The goal was to better understand the ingredients
which made a preconditioner optimal. Specifically, one aimed at finding directly
applicable versions which could be interpreted as a change of basis. With the arrival
of the hierarchical basis preconditioner [54], extending an idea of Babuška from
the univariate case, a simple preconditioner became available. Although it is not
optimal—one still has logarithmic growth in the grid spacing, �2.ChAh/ � log h�2r,
in the bivariate case, and exponential growth for n D 3—its simplicity still makes it
popular up to now [42]. Another multilevel preconditioner was presented in [3, 4].
Within the last years, (tensor product) hierarchical B-spline discretizations were
increasingly employed in the area of isogeometric analysis, mainly in the context
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of deriving discretizations which can be locally adapted to singularities, see, e.g.,
[36, 51], the survey [5] and the references therein.

At the end of the 1980s, another methodology to derive preconditioners via space
decompositions and subspace corrections was developed, see the review [52]. The
BPX (Bramble-Pasciak-Xu) preconditioner proposed first in [10] was numerically
observed to be optimal; it is based on a hierarchical generator system with grid-
dependent weights. With techniques from approximation theory, its optimality was
theoretically established in [21, 45]. Since then, its range of application has been
widened extensively. For second and fourth order elliptic problems on the sphere
a BPX-type preconditioner was developed and its optimality proved for triangular
finite elements in [43]. The survey article [53] records extensions of the BPX and of
multigrid preconditioners to H.grad/, H.curl/, and H.div/ systems on adaptive and
unstructured grids; to name just two extensions.

Multigrid preconditioners for isogeometric analysis were presented in [27],
whereas domain decomposition type preconditioners were proposed in [6]. Within
the class of domain decomposition methods, also tearing and interconnecting
methods (FETI-BETI) are important [34]. Note that not all of these preconditioners
are or have been proven to be asymptotically optimal.

In this survey, we present the main ideas of the BPX preconditioner from [11]
in the context of isogeometric analysis, employing tensor products of higher order
B-splines in Sect. 2. We will see that the main theoretical tool to prove optimality
of the BPX preconditioner are multilevel characterizations of the underlying energy
space, so-called norm equivalences between Sobolev space norms and weighted
sequence norms, describing their subspace contributions. We will also see that the
main computational ingredients are linear intergrid operators which map vectors and
matrices between grids of different grid spacings.

At about the same time, wavelets as a special example of a multiscale orthogonal
basis of L2.R/ with compact support were constructed [25]. While initially mainly
developed and used for signal analysis and image compression, wavelets were soon
discovered to provide optimal preconditioners in the above sense for second order
elliptic boundary value problems [21, 33]. However, the fact that one cannot exploit
L2-orthogonality for elliptic boundary value problems together with the difficulty
that the L2-orthogonal Daubechies wavelets are only given implicitly led to the
search for variants which are more practical for the numerical solution of PDEs.
Soon, it was realized that biorthogonal spline-wavelets as developed in [17] are
better suited since they allow one to work with piecewise polynomials for the
discretization.

The principal and crucial property to prove optimality of a wavelet preconditioner
are norm equivalences between Sobolev norms and sequence norms of weighted
wavelet expansion coefficients. I mentioned before that multilevel characteriza-
tions for energy spaces are the crucial tool for proving optimality of the BPX
preconditioner. Once a wavelet basis is available, one can represent the subspace
contributions appearing there explicitly in terms of weighted wavelet coefficients.
On this basis, optimal conditioning of the resulting linear system of equations
can be achieved by applying the FWT (Fast Wavelet Transform) to a single-scale
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discretization on a uniform grid. While again multilevel characterizations of the
underlying energy space play the crucial theoretical role for proving optimality,
the intergrid operators which perform bases changes between different levels of
resolution are the main practical ingredient for the efficiency of the FWT.

Nowadays, the terminology ‘wavelets’ is used in a more general sense that
originally in [25]; we consider classes of multiscale bases with three main features:
(R) they provide Riesz bases for the underlying function spaces, (L) the basis
functions are local, and (CP) they exhibit cancellation properties. These will be
detailed in Sect. 3.

After the initial results concerning optimal preconditioning with wavelets of local
support in [21], research on employing wavelets for numerically solving elliptic
PDEs went into different directions. One problem was that the original constructions
in [17, 25] and many others were based on using the Fourier transform so that these
constructions provide bases only for function spaces on all of R, on the torus or,
by tensorization, on R

n. In contrast, PDEs naturally live on a bounded domain
˝ � R

n. In order for wavelets to be employed for numerical PDEs, there arose the
need for constructions of wavelets on bounded intervals and domains without, of
course, loosing the crucial properties (R), (L) and (CP). The first such systematic
construction of biorthogonal spline-wavelets on Œ0; 1� of arbitrary order and, by
tensor products, on Œ0; 1�n, was provided in [22]. Different domain decomposition
approaches yield constructions of biorthogonal wavelets on domains which can
be represented as unions of parametric mappings of Œ0; 1�n [13, 23, 24, 40], see
also [50] for details. Once such bases are available, the absolute value of the
condition numbers of (systems of) elliptic PDEs can be ameliorated significantly by
further inexpensive linear transformations taking into account a setup of the system
matrices on the coarsest grid, a so-called operator-based preconditioning [12, 46]. A
more recent survey on the results of wavelet-based preconditioning with extensions
to PDE-constrained control problems can be found in [39].

Aside from optimal preconditioning, the built-in potential of local adaptivity for
wavelets plays a prominent role when solving elliptic or parabolic PDEs with non-
smooth solutions, on account of the fact that wavelets provide a locally supported
Riesz basis for a whole function space. This issue is extensively addressed in the
more recent survey paper [48]. In addition to the material in [26], there are at least
four extensive surveys on wavelet and multiscale methods for more general PDEs
addressing, among other things, the connection between adaptivity and nonlinear
approximation and the evaluation of nonlinearities [15, 18–20].

In this article, I want to remain focused on multilevel preconditioning with
higher-order discretizations for smooth solutions for which uniform grids provide
a user-specified accuracy.

Isogeometric analysis is an the increasingly popular field in which higher order
B-Splines are employed to reach this accuracy. Another such area is mathematical
finance; specifically, option prizing problems. The fair pricing of an American
option can in a standard model be formulated as a parabolic boundary value problem
involving Black–Scholes’ equation with a free boundary. The aim is to compute the
free boundary, the optimal exercise price of the option, together with the solution of
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the PDE, the value of the option. For American put options, one generally does not
have closed form solutions so that one has to resort to numerical schemes. In the
simplest Black–Scholes’ model, the volatility is assumed to be constant.

Numerical schemes for American option pricing are typically based on finite
difference approaches, see, e.g., [1] and the references therein. In [14] and [44],
corresponding multigrid methods are developed. However, here one is not only
interested in the solution of the PDE, the option prize. For developing hedging
strategies with options, it is of even more importance to accurately compute first
and second derivatives of the solution, the so-called Greek letters. The availability
of a smooth approximation enables to compute pointwise derivatives and, there-
fore, avoids additional numerical approximations of derivatives. Therefore, the
idea in [30, 31] was to employ higher order B-splines for the solution of the
variational inequality derived from Black-Scholes equation for American options.
This approach enabled us to pointwise differentiate the option prize and, therefore,
achieve a high accuracy approximation for the Greek letters. For the numerical
solution, we extended the ideas about monotone multigrid methods with linear finite
elements to solve variational inequalities from [35] to higher order B-splines. Here
the intergrid operators mentioned before which stem from the refinement relations
for B-splines had to be adapted in order not to violate the variational inequality;
a task which is for higher order B-splines much more difficult than for linear
finite elements since they are not interpolatory any more. Specific care has to be
taken when deriving these intergrid operators in order not to violate the inequality
constraints. The key feature was to replace function values by B-spline expansion
coefficients which remain of the same sign because of the positivity of B-splines.
Naturally, these ideas can be extended to obstacle problems which lead to variational
inequalities and for which higher order approximations are sought.

While these results were very satisfying from a numerical point of view, the
underlying Black-Scholes model has a severe deficiency in assuming that the
volatility is constant. Particularly, an effect called volatility smile was observed in
[32]. There are several approaches to estimate the volatility from observed stock
data. Therefore, we adopted Heston’s approach [28] to model the volatility to satisfy
a stochastic differential equation. For Heston’s model and one asset, the standard
Itō approach yields a variational inequality in two space variables with a ‘mildly’
nonsymmetric parabolic differential operator. The ideas presented in [41] was as
follows. A variational inequality for the American option pricing problem with
Heston’s model was discretized in terms of linear finite elements with respect to
space. The resulting linear inequality system was solved in each time step with
optimal linear computational complexity using a projective Gauss-Seidel scheme
together with a monotone multigrid method. For this, again appropriate intergrid
operators were constructed. Unfortunately, due to page limitations, I am not able to
present these approaches here and have to refer to [30, 31, 41].

Once optimal preconditioners are available, for any of the problems described
above, one can construct for a standard elliptic PDE optimal iterative schemes
to achieve discretization error accuracy on the finest level with optimal linear
complexity as follows. The idea, the so-called nested iteration, has been employed
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together with multigrid methods for a long time: starting on a coarse grid, one
iteratively solves the preconditioned linear system of equations up to discretization
error accuracy on this level. The resulting solution is transformed to the next finer
grid, employing again the linear intergrid operator from the coarse to the finer grid.
In this way, only a fixed number of iterations are necessary on each grid, independent
of that grid spacing, see, e.g., [39]. One should note that, in contrast, iterating only
on the finest grid introduces an additional log N factor, where N denotes the amount
of unknowns on the finest grid.

The structure of this survey paper is as follows. Section 2 is devoted to the
description of the BPX preconditioner for isogeometric analysis together with the
proof of its optimality and corresponding numerical results. Section 3 is concerned
with wavelet approximations of solutions of PDEs, and the derivation of Fast
Wavelet Transforms for optimal preconditioning. We conclude in Sect. 4 with a short
summary and some outlook.

2 BPX Preconditioning for Isogeometric Analysis

In this section, we consider linear elliptic PDEs in the framework of isogeometric
analysis, combining modern techniques from computer aided design with higher
order approximations of the solution. We treat the physical domain by means of
a regular B-spline mapping from the parametric domain Ő D .0; 1/n, n � 2,
to the physical domain ˝ . The numerical solution of the PDE is computed by
means of tensor product B-splines mapped onto the physical domain. We will
construct additive BPX-type multilevel preconditioners and show that they are
asymptotically optimal. This means that the spectral condition number of the
resulting preconditioned stiffness matrix is independent of the grid spacing h.
Together with a nested iteration scheme, this enables an iterative solution scheme of
optimal linear complexity. The theoretical results are substantiated by numerical
examples in two and three space dimensions. The results of this section are
essentially contained in [11].

We consider linear elliptic partial differential operators of order 2r D 2; 4 on the
domain˝ in variational form: for given f 2 H�r.˝/, find u 2 Hr

0.˝/ such that

a.u; v/ D hf ; vi for all v 2 Hr
0.˝/ (1)

holds. Here the energy space is Hr
0.˝/, a subset of the Sobolev space Hr.˝/, the

space of square integrable functions with square integrable derivatives up to order r,
containing homogeneous Dirichlet boundary conditions for r D 1 and homogeneous
Dirichlet and Neumann derivatives for r D 2. The bilinear form a.�; �/ is derived
from the linear elliptic PDE operator in a standard fashion, see, e.g., [8]. For
example, the Laplacian is represented as a.v;w/ D R

˝
rv � rw dx. In order for the

problem to be well-posed, we require the bilinear form a.�; �/ W Hr
0.˝/ � Hr

0.˝/ !
R to be symmetric, continuous and coercive on Hr

0.˝/. With h�; �i, we denote
on the right hand side of (1) the dual form between H�r.˝/ and Hr

0.˝/. Our
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model problem (1) covers the second order Laplacian with homogeneous boundary
conditions

��u D f on ˝; uj@˝ D 0; (2)

as well as fourth order problems with corresponding homogeneous Dirichlet
boundary conditions,

�2u D f on ˝; uj@˝ D n � ruj@˝ D 0 (3)

where @˝ denotes the boundary of ˝ and n the outward normal derivative at @˝ .
These PDEs serve as prototypes for more involved PDEs like Maxwell’s equation
or PDEs for linear and nonlinear elasticity. The reason we formulate these model
problems of order 2r involving the parameter r is that this exhibits more clearly the
order of the operator and the scaling in the subsequently used characterization of
Sobolev spaces Hr.˝/. Thus, for the remainder of this section, the parameter 2r
denoting the order of the PDE operator is fixed.

The assumptions on the bilinear form a.�; �/ entail that there exist constants 0 <
cA � CA < 1 such that the induced self-adjoint operator hAv;wi WD a.v;w/
satisfies the isomorphism relation

cAkvkHr.˝/ � kAvkH�r.˝/ � CAkvkHr.˝/; v 2 Hr
0.˝/: (4)

If the precise format of the constants in (4) does not matter, we abbreviate this
relation as kvkHr.˝/ <� kAvkH�r.˝/ <� kvkHr.˝/, or shortly as

kAvkH�r.˝/ � kvkHr.˝/: (5)

Under these conditions, Lax-Milgram’s theorem guarantees that, for any given f 2
H�r.˝/, the operator equation derived from (1)

Au D f in H�r.˝/ (6)

has a unique solution u 2 Hr
0.˝/, see, e.g., [8].

In order to approximate the solution of (1) or (6), we choose a finite-dimensional
subspace Vh � Hr

0.˝/. We will construct these approximation spaces by using
tensor products of B-splines as specified next.

2.1 B-Spline Discretizations

Our construction of optimal multilevel preconditioners will rely on tensor products
so that principally any space dimension n 2 N is permissible as long as storage
permits; the examples cover the cases n D 2; 3. As discretization space, we choose
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in each spatial direction B-splines of the same degree p on uniform grids and with
maximal smoothness. We begin with the univariate case and define B-splines on the
interval Œ0; 1� recursively with respect to their degree p. Given this positive integer p
and some m 2 N, we call � WD f�1; : : : ; �mCpC1g a p-open knot vector if the knots
are chosen such that

0 D �1 D : : : D �pC1 < �pC2 < : : : < �m < �mC1 D : : : D �mCpC1 D 1; (7)

i.e., the boundary knots 0 and 1 have multiplicity p C 1 and the interior knots are
single. For � , B-spline functions of degree p are defined following the well-known
Cox-de Boor recursive formula, see [7]. Starting point are the piecewise constants
for p D 0 (or characteristic functions)

Ni;0.�/ D
(
1; if 0 � �i � � < �iC1 < 1;
0; otherwise;

(8)

with the modification that the last B-spline Nm;0 is defined also for � D 1. For p � 1

the B-splines are defined as

Ni;p.�/ D � � �i

�iCp � �i
Ni;p�1.�/C �iCpC1 � �

�iCpC1 � �iC1
NiC1;p�1.�/; � 2 Œ0; 1�; (9)

with the same modification for Nm;p. Alternatively, one can define the B-splines
explicitly by applying divided differences to truncated powers [7]. This gives a set of
m B-splines that form a basis for the space of splines, that is, piecewise polynomials
of degree p with p � 1 continuous derivatives at the internal knots �` for ` D p C
2; : : : ;m. (Of course, one can also define B-splines on a knot sequence with multiple
internal knots which entails that the spline space is not of maximal smoothness.) For
p D 1, the B-splines are at least C0.Œ0; 1�/ which suffices for the discretization of
elliptic PDEs of order 2, and for p D 2 they are C1.Œ0; 1�/ which suffices for r D 2.
By construction, the B-spline Ni;p is supported in the interval Œ�i; �iCpC1�.

These definitions are valid for an arbitrary spacing of knots in � (7). Recall that
smooth solutions of elliptic PDEs can be approximated best with discretizations on
a uniform grid. Therefore, we assume from now on that the grid is uniform, i.e.,
�`C1 � �` D h for all ` D p C 1; : : : ;m.

For n space dimensions, we employ tensor products of the one-dimensional B-
splines. We take in each space dimension a p-open knot vector � and define on
the closure of the parametric domain Ő D .0; 1/n (which we also denote by Ő for
simplicity of presentation) the spline space

Sh. Ő / WD span

(

Bi.x/ WD
nY

`D1
Ni`;p.x`/; i D 1; : : : ;N WD mn; x 2 Ő

)

DW span
n
Bi.x/; i 2 I; x 2 Ő o : (10)
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In the spirit of isogeometric analysis, we suppose that the computational domain
˝ can also described in terms of B-splines. We assume that the computational
domain ˝ is the image of a mapping F W Ő ! ˝ with F WD .F1; : : : ;Fn/

T where
each component Fi of F belongs to S Nh. Ő / for some given Nh. In many applications,
the geometry can be described in terms of a very coarse mesh, namely, Nh 	 h.
Moreover, we suppose that F is invertible and satisfies

kD˛FkL
1

. Ő / � 1 for j˛j � r: (11)

This assumption on the geometry can be weakened in that the mapping F can be
a piecewise C1 function on the mesh with respect to Nh, independent of h, or the
domain ˝ may have a multi-patch representation. This means that one can allow
˝ also to be the union of domains ˝k where each one parametrized by a spline
mapping of the parametric domain Ő .

We now define the approximation space for (6) as

Vr
h WD fvh 2 Hr

0.˝/ W vh ı F 2 Sh. Ő /g: (12)

We will formulate three important properties of this approximation space which
will play a crucial role later for the construction of the BPX-type preconditioners.
The first one is that we suppose from now on that the B-spline basis is normalized
with respect to L2, i.e.,

kBikL2. Ő / � 1; and, thus, also kBi ı F�1kL2.˝/ � 1 for all i 2 I: (13)

Then one can derive the following facts [11].

Theorem 1 Let fBigi2I be the B-spline basis defined in (10) and normalized as
in (13), N D #I and Vr

h as in (12). Then we have

(S) Uniform stability with respect to L2.˝/
For any c 2 `2.I/,
�
�
�
�
�

NX

iD1
ci Bi ı F�1

�
�
�
�
�

2

L2.˝/

�
NX

iD1
jcij2 DW kck2`2 ; c WD .ci/iD1;:::;N I (14)

(J) Direct or Jackson estimates

inf
vh2Vr

h

kv � vhkL2.˝/
<� hs jvjHs.˝/ for any v 2 Hs.˝/; 0 � s � r; (15)

where j � jHs.˝/ denotes the Sobolev seminorm of highest weak derivatives s;
(B) Inverse or Bernstein estimates

kvhkHs.˝/ <� h�skvhkL2.˝/ for any vh 2 Vr
h and 0 � s � r: (16)
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In all these estimates, the constants are independent of h but may depend on F, i.e.,
˝ , the polynomial degree p and the spatial dimension n.

In the next section, we construct BPX-type preconditioners for (6) in terms of
approximations with (12) and show their optimality.

2.2 Additive Multilevel Preconditioners

The construction of optimal preconditioners are based on a multiresolution analysis
of the underlying energy function space Hr

0.˝/. As before, 2r 2 f2; 4g stands for
the order of the PDEs we are solving, and is always kept fixed.

We first describe the necessary ingredients within an abstract basis-free frame-
work, see, e.g., [18]. Afterwards, we specify the realization for the parametrized
tensor product spaces in (12).

Let V be a sequence of strictly nested spaces Vj, starting with some fixed coarsest
index j0 > 0, determined by the polynomial degree p which determines the support
of the basis functions (which also depends on ˝), and terminating with a highest
resolution level J,

Vj0 � Vj0C1 � � � � � Vj � � � � � VJ � Hr
0.˝/: (17)

The index j denotes the level of resolution defining approximations on a grid with
dyadic grid spacing h D 2�j, i.e., we use from now on the notation Vj instead of Vh

to indicate different grid spacings. Then, VJ will be the space relative to the finest
grid 2�J . We associate with V a sequence of linear projectors P WD fPjgj�j0 with the
following properties.

Properties 2 We assume that

(P1) Pj maps Hr
0.˝/ onto Vj,

(P2) PjP` D Pj for j � `,
(P3) P is uniformly bounded on L2.˝/, i.e., kPjkL2.˝/

<� 1 for any j � j0
with a constant independent of j.

These conditions are satisfied, for example, for L2.˝/-orthogonal projectors, or,
in the case of splines, for the quasi-interpolant proposed and analyzed in [47,
Chapter 4]. The second condition (P2) ensures that the differences Pj �Pj�1 are also
projectors for any j > j0. We define next a sequence W WD fWjgj�j0 of complement
spaces

Wj WD .PjC1 � Pj/VjC1 (18)

which then yields the direct (but not necessarily orthogonal) decomposition

VjC1 D Vj ˚ Wj: (19)
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Thus, for the finest level J, we can express VJ in its multilevel decomposition

VJ D
J�1M

jDj0�1
Wj (20)

upon setting Wj0�1 WD Vj0 . Setting also Pj0�1 WD 0, the corresponding multilevel
representation of any v 2 VJ is then

v D
JX

jDj0

.Pj � Pj�1/v: (21)

We now have the following result which will be used later for the proof of the
optimality of the multilevel preconditioners.

Theorem 3 Let P ;V be as above where, in addition, we require that for each Vj,
j0 � j � J, a Jackson and Bernstein estimate as in Theorem 1 (J) and (B) hold with
h D 2�j. Then one has the function space characterization

kvkHr.˝/ �
0

@
JX

jDj0

22rjk.Pj � Pj�1/vk2L2.˝/

1

A

1=2

for any v 2 VJ: (22)

Such a result holds for much larger classes of function spaces, Sobolev or even
Besov spaces which are subsets of Lq.˝/ for general q, possibly different from 2
and for any function v 2 Hr.˝/, then with an infinite sum on the right hand side,
see, e.g., [18]. The proof of Theorem 3 for such cases heavily relies on tools from
approximation theory and can be found in [21, 45].

Next we demonstrate how to exploit the norm equivalence (22) in the construc-
tion of an optimal multilevel preconditioner. Define for any v;w 2 VJ the linear
self-adjoint positive-definite operator CJ W VJ ! VJ given by

.C�1
J v;w/L2.˝/ WD

JX

jDj0

22rj
�
.Pj � Pj�1/v; .Pj � Pj�1/w

�
L2.˝/

; (23)

which we call a multilevel BPX-type preconditioner. Let AJ W VJ ! VJ be the finite-
dimensional operator defined by .AJv;w/L2.˝/ WD a.v;w/ for all v;w 2 VJ, the
approximation of A in (6) with respect to VJ.

Theorem 4 With the same prerequisites as in Theorem 3, CJ is an asymptotically
optimal symmetric preconditioner for AJ, i.e., �2.C

1=2
J AJC1=2

J / � 1 with constants
independent of J.

Proof For the parametric domain Ő , the result was proved independently in [21, 45]
and is based on the combination of (22) together with the well-posedness of the
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continuous problem (6). The result on the physical domain follows then together
with (11). �

Concrete realizations of the preconditioner defined in (23) based on B-splines
lead to representations of the complement spaces Wj whose bases are called
wavelets. For these, efficient implementations of optimal linear complexity involv-
ing the Fast Wavelet Transform can be derived explicitly, see Sect. 3.

However, since the order of the PDE operator r is positive, one can use here the
argumentation from [10] which will allow to work with the same basis functions as
for the spaces Vj. The first part of the argument relies on the assumption that the Pj

are L2-orthogonal projectors. For a clear distinction, we shall use the notation Oj for
L2-orthogonal projectors and reserve the notation Pj for the linear projectors with
Properties 2. Then, the BPX-type preconditioner (23) (using the same symbol CJ

for simplicity) reads as

C�1
J WD

JX

jDj0

22jr.Oj � Oj�1/; (24)

which is by Theorem 4 a BPX-type preconditioner for the self-adjoint positive
definite operator AJ . By the orthogonality of the projectors Oj, we can immediately
derive from (24) that

CJ D
JX

jDj0

2�2jr.Oj � Oj�1/: (25)

Since r > 0, by rearranging the sum, the exponentially decaying scaling factors
allow one to replace CJ by the spectrally equivalent operator

CJ D
JX

jDj0

2�2jrOj: (26)

Recall that two linear operators A W VJ ! VJ and B W VJ ! VJ are spectrally
equivalent if they satisfy

.Av; v/L2.˝/ � .Bv; v/L2.˝/; v 2 VJ ; (27)

with constants independent of J. Thus, the realization of the preconditioner is
reduced to a computation in terms of the bases of the spaces Vj instead of Wj. The
orthogonal projector Oj can, in turn, be replaced by a simpler local operator which
is spectrally equivalent to Oj, see [37] and the derivation below.

Up to this point, the introduction to multilevel preconditioners has been
basis-free. We now show how this framework can be used to construct a BPX-
preconditioner for the linear system (6). Based on the definition (12), we construct
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a sequence of spaces satisfying (17) such that VJ D Vr
h. In fact, we suppose that for

each space dimension we have a sequence of p-open knot vectors �j0;`; : : : ; �J;`,
` D 1; : : : ; n, which provide a uniform partition of the interval Œ0; 1� such that
�j;` � �jC1;` for j D j0; j0 C 1; : : : ; J. In particular, we assume that �jC1;` is
obtained from�j;` by dyadic refinement, i.e., the grid spacing for�j;` is proportional
to 2�j for each ` D 1; : : : ; n. In view of the assumptions on the parametric mapping
F, we assume that Nh D 2�j0 , i.e., F can be represented in terms of B-splines on the
coarsest level j0. By construction, we have now achieved that

Sj0 .
Ő / � Sj0C1. Ő / � : : : � SJ. Ő /:

Setting Vr
j WD fv 2 Hr

0.˝/ W v ı F 2 Sj. Ő /g, we arrive at a sequence of nested
spaces

Vr
j0

� Vr
j0C1 � : : : � Vr

J :

Setting Ij WD f1; : : : ; dim Sj. Ő /g, we denote by Bj
i, i 2 Ij, the set of L2-normalized

B-spline basis functions for the space Sj. Ő /. Define now the positive definite
operator Pj W L2.˝/ ! Vr

j as

Pj WD
X

i2Ij

. � ;Bj
i ı F�1/L2.˝/ Bj

i ı F�1: (28)

Corollary 5 For the basis fBj
i ı F�1; i 2 Ijg, the operators Pj and the L2-projectors

Oj are spectrally equivalent for any j.

Proof The assertion follows by combining (11), (14), with Remark 3.7.1 from [37],
see [10] for the main ingredients. �

Finally, we obtain an explicit representation of the preconditioner CJ in terms of
the mapped spline bases for Vr

j , j D j0; : : : ; J,

CJ D
JX

jDj0

2�2jr
X

i2Ij

. � ;Bj
i ı F�1/L2.˝/ Bj

i ı F�1: (29)

Note that this preconditioner involves all B-splines from all levels j with an
appropriate scaling, i.e., in fact a properly scaled generating system for Vr

J .

Remark 6 The hierarchical basis (HB) preconditioner introduced for n D 2 in
[54] for piecewise linear B-splines fits into this framework by choosing Lagrangian
interpolants in place of the projectors Pj in (23). However, since these operators
do not satisfy (P3) in Properties 2, they do not yield an asymptotically optimal
preconditioner for n � 2. Specifically, for n D 3, this preconditioner does not
have an effect at all.
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So far we have not explicitly addressed the dependence of the preconditioned
system on p. Since all estimates in Theorem 1 which enter the proof of optimality
depend on p, it is to be expected that the absolute values of the condition numbers,
i.e., the values of the constants, depend on and increase with p. Indeed, in the
next section, we show some numerical results which also aim at studying this
dependence.

2.3 Realization of the BPX Preconditioner and Numerical
Results

Now we are in the position to describe the concrete implementation of the BPX
preconditioner. Its main ingredient are linear intergrid operators which map vectors
and matrices between different grids. Specifically, we need to define prolongation
and restriction operators.

Since Vr
j � Vr

jC1, each B-spline Bj
i on level j can be represented by a linear

combination of B-splines BjC1
k on level j C 1. Arranging the B-splines in the set

fBj
i; i 2 Ijg into a vector Bj in a fixed order, this relation denoted as refinement

relation can be written as

Bj D IjC1
j BjC1 (30)

with prolongation operator IjC1
j from the trial space Vr

j to the trial space Vr
jC1. The

restriction Ij
jC1 is then simply defined as the transposed operator, i.e., Ij

jC1 D .IjC1
j /T .

In case of piecewise linear B-splines, this definition coincides with the well known
prolongation and restriction operators from finite element textbooks obtained by
interpolation, see, e.g., [8].

We will exemplify the construction in case of quadratic and cubic B-splines on
the interval, see, e.g., [7], as follows. We equidistantly subdivide the interval Œ0; 1�
into 2j subintervals and obtain 2j and 2j C 1, respectively, B-splines for p D 2; 3

and the corresponding quadratic and cubic spline space Vr
j which is given on this

partition, respectively, see Fig. 1 for an illustration. Note that the two boundary
functions which do not vanish at the boundary were removed in order to guarantee
that Vr

j � Hr
0.˝/. Moreover, recall that the B-splines are L2 normalized according

to (13) which means that Bj
i is of the form Bj

i.�/ D 2j=2B.2j� � i/ if Bj
i is an interior

function, and correspondingly for the boundary functions.
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Fig. 1 Quadratic (p D 2) (left) and cubic (p D 3) (right) L2-normalized B-splines (see (13)) on
level j D 3 on the interval Œ0; 1�, yielding basis functions for Vr

j � Hr
0.˝/

In case of quadratic B-splines (p D 2), the restriction operator Ij
jC1 reads

Ij
jC1 D 2�1=2
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:

For cubic B-splines (p D 3), it has the form

Ij
jC1 D 2�1=2
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2 R
.2jC1/�.2jC1C1/:

The normalization factor 2�1=2 stems from the L2-normalization (13). The matrix
entries are scaled in the usual fashion such that their rows sum to two. From
these restriction operators for one dimensions, one obtains the related restriction
operators on arbitrary unit cubes Œ0; 1�n via tensor products. Finally, we set IJ

j WD
IJ

J�1IJ�1
J�2 � � � IjC1

j and Ij
J WD IjC1

j IjC2
jC1 � � � IJ

J�1 to define prolongations and restrictions
between arbitrary levels j and J.
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In order to derive the explicit form of the discretized BPX-preconditioner, for
given functions uJ; vJ 2 VJ with expansion coefficients uJ;k and vJ;`, respectively,
we conclude from (29) that

.CJuJ; vJ/L2.˝/ D
X

k;`2IJ

uJ;kvJ;`.CJ.B
J
k ı F�1/;BJ

` ı F�1/L2.˝/

D
X

k;`2IJ

uJ;kvJ;`

JX

jDj0

2�2jr
X

i2Ij

.BJ
k ı F�1;Bj

i ı F�1/L2.˝/

� .Bj
i ı F�1;BJ

` ı F�1/L2.˝/:

Next, one can introduce the mass matrix MJ D Œ.BJ
k ı F�1;BJ

` ı F�1/L2.˝/�k;` and
obtains by the use of restrictions and prolongations

.CJuJ ; vJ/L2.˝/ D
JX

jDj0

2�2jruT
J MJIJ

j Ij
JMJvJ :

The mass matrices which appear in this expression can be further suppressed since
MJ is spectrally equivalent to the identity matrix. Finally, the discretized BPX-
preconditioner to be implemented is of the simple form

CJ D
JX

jDj0

2�2jrIJ
j Ij

J ; (31)

involving only restrictions and prolongations. A further simple improvement can
be obtained by replacing the scaling factor 2�2jr by diag.Aj/

�1, where diag.Aj/

denotes the diagonal matrix built from the diagonal entries of the stiffness matrix
Aj. This diagonal scaling has the same effect as the levelwise scaling by 2�2jr but
improves the condition numbers considerably, particularly if parametric mappings
are involved. Thus, the discretized BPX-preconditioner takes on the form

CJ D
JX

jDj0

IJ
j diag.Aj/

�1Ij
J (32)

which we will use in the subsequent computations presented in Tables 1 and 2. If the
condition number �.Aj0 / is already high in absolute numbers on the coarsest level
j0, it is worth to use its exact inverse on the coarse grid, i.e., to apply instead of (32)
the operator

CJ D IJ
j0A

�1
j0 Ij0

J C
JX

jDj0C1
IJ

j diag.Aj/
�1Ij

J ;
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see [12, 46]. Another substantial improvement of the BPX-preconditioner can
be achieved by replacing the diagonal scaling on each level by, e.g., a SSOR
preconditioning as follows. We decompose the system matrix as Aj D Lj C
Dj C LT

j with the diagonal matrix Dj, the lower triangular part Lj, and the upper
triangular part LT

j . Then we replace the diagonal scaling on each level of the BPX-
preconditioner (32) by the SSOR preconditioner, i.e., instead of (32) we apply the
preconditioner

CJ D
JX

jDj0

IJ
j .Dj C Lj/

�TDj.Dj C Lj/
�1Ij

J : (33)

In doing so, the condition numbers can be improved impressively. In Table 3, we list
the `2-condition numbers for the BPX-preconditioned Laplacian in case of cubic B-
splines in two spatial dimensions. By comparing the numbers with those found in
Tables 1 and 2 one can infer that the related condition numbers are all reduced by a
factor about five. Note that the setup, storage and application of the operator defined
in (33) is still of optimal linear complexity.

Finally, we provide numerical results in order to demonstrate the preconditioning
and to specify the dependence on the spatial dimension n and the spline degree p. We
consider an approximation of the homogeneous Dirichlet problem for the Poisson
equation on the n-dimensional unit cube Ő D .0; 1/n for n D 1; 2; 3. The mesh on
level j is obtained by subdividing the cube j-times dyadically into 2n subcubes of
mesh size hj D 2�j. On this subdivision, we consider the B-splines of degree p D
1; 2; 3; 4 as defined in Sect. 2.1. The `2-condition numbers of the related stiffness
matrices, preconditioned by the BPX-preconditioner (32), are shown in Table 1.
The condition numbers seem to be independent of the level j, but they depend on
the spline degree p and the space dimension n for n > 1. For fourth order problems
on the sphere, corresponding results for the bi-Laplacian with and without BPX
preconditioning were presented in [43].

We study next the dependence of the condition numbers on the parametric
mapping F. We consider the case n D 2 in case of a smooth mapping (see the
plot on the right hand side of Table 2 for an illustration of the mapping). As one can
see from Table 2, the condition numbers are at most about a factor of five higher
than the related values in Table 1. Nearly the same observation holds if we replace
the parametric mapping by a C0-parametrization which maps the unit square onto
an L-shaped domain, see [11].

If we consider a singular map F, that is, a mapping that does not satisfy (11), the
condition numbers grow considerably as expected, see [11]. But even in this case,
the BPX-preconditioner with SSOR acceleration (33) is able to drastically reduce
the condition numbers of the system matrix in all examples, see Table 3.
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Table 3 Condition numbers
of the BPX-preconditioned
Laplacian for cubic B-splines
on different geometries in
case of using a BPX-SSOR
preconditioning on each level

C0-map Singular C1-map

Level Square of the L-shape of the L-shape

3 3:61 3:65 3:67 3.80

4 6:58 6:97 7:01 7.05

5 8:47 10:2 10:2 14.8

6 9:73 13:1 13:2 32.2

7 10:5 14:9 15:2 77.7

8 11:0 15:9 16:3 180

9 11:2 16:5 17:0 411

10 11:4 16:9 17:7 933

3 Wavelets and the FWT (Fast Wavelet Transform)

Returning to the abstract setting at the beginning of Sect. 2.2, it will now be specified
how to construct and realize the FWT (fast wavelet transform) for preconditioning.
I would like to emphasize at this point that wavelets are, more importantly than for
preconditioning, an appropriate theoretical tool to derive adaptive discretizations
in case of singularities in the domain or data. In fact, they enable one to not only
prove convergence of a corresponding adaptive scheme but also optimal complexity
of these schemes, see [16] and several subsequent papers or [48] for a more recent
survey.

3.1 Some Basic Notions

In view of the problem formulation (6), we need to have a wavelet basis for the space
Hr
0.˝/ and its dual. We formulate these basic properties for a general Hilbert space

H, following [18] or [38]. A wavelet basis for H, shortly wavelets, is understood
here as a collection of functions

�H WD f H;	 W 	 2 IHg � H (34)

which are indexed by elements 	 from an infinite index set IH . Each of the indices
	 comprises different information 	 D .j;k; e/ such as the refinement scale or
level of resolution j and a spatial location k D k.	/ 2 Z

n. In more than one
space dimension, the basis functions are built from taking tensor products of certain
univariate functions, and in this case the third index e contains information on the
type of wavelet. We will frequently use the symbol j	j WD j to access the resolution
level j. In the univariate case on all of R,  H;	 is typically generated by means of
shifts and dilates of a single function  , i.e.,  	 D  j;k D 2j=2 .2j � �k/, j; k 2 Z,
normalized with respect to k �kL2.R/. On bounded domains which can be represented
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as unions of mappings of tensor product domains, the structure of the functions is
essentially the same up to modifications near the boundary.

We assume that the wavelets satisfy the following crucial properties.

Riesz basis property (R): Every v 2 H has a unique expansion in terms of �H,

v D
X

	2IH

v	  H;	 DW vT �H ; v WD .v	/	2IH ; (35)

and its expansion coefficients satisfy the norm equivalence

kvk � kvT�HkH ; v 2 `2.IH/; (36)

where k � k WD k � k`2.IH/.

Locality (L): The functions  H;	 have compact support which decreases with
increasing level j D j	j, i.e.,

diam .supp H;	/ � 2�j	j: (37)

Cancellation property (CP): There exists an integer Qd D QdH such that

hv;  H;	i <� 2�j	j.n=2�n=pC Qd/jvjW Qd
p .supp  H;	/

: (38)

This means that integrating against a wavelet has the effect of taking an Qmth order
difference which annihilates the smooth part of v. This property is for wavelets
defined on Euclidean domains typically realized by constructing �H in such a way
that it possesses a dual or biorthogonal basis Q�H � H0 such that the multiresolution
spaces QSj WD spanf Q H;	 W j	j < jg contain all polynomials of order Qm. Here dual
basis means that h H;	; Q H;
i D ı	;
 , 	; 
 2 IH .

A few remarks on these properties should be made. In (R), the norm equiva-
lence (36) is crucial since it means control over a function measured in k � kH from
above and below by its expansion coefficients: small changes in the coefficients only
cause small changes in the function. Together with the locality (L), this also means
that local changes stay local. This stability is an important feature which is used for
deriving optimal preconditioners. Finally, the cancellation property (CP) entails that
smooth functions have small wavelet coefficients which, on account of (36) may be
neglected in a controllable way. Moreover, (CP) can be used to derive quasi-sparse
representations of a wide class of operators which is important for compression
purposes, see, e.g., [48].

By duality arguments one can show that (36) is equivalent to the existence of a
biorthogonal collection which is dual or biorthogonal to �H ,

Q�H WD f Q H;	 W 	 2 IHg � H0; h H;	; Q H;�i D ı	;�; 	; � 2 IH ; (39)
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which is a Riesz basis for H0, that is, for any Qv D QvT Q�H 2 H0 one has

k Qvk � k QvT Q�HkH0 (40)

see [19]. Here the tilde expresses that the collection Q�H is a dual basis to a primal
one for the space identified by the subscript, so that Q�H D �H0 . Here and in the
following, we will view �H both as in (34) as a collection of functions as well as
a (possibly infinite) column vector containing all functions always assembled in
some fixed unspecified order. For a countable collection of functions � and some
single function  , the term h�; i is then the column vector with entries h�; i,
� 2 �, and correspondingly h;�i the row vector. For two collections �;˙ , the
quantity h�;˙i is then a (possibly infinite) matrix with entries .h�; i/�2�; 2˙ for
which h�;˙i D h˙;�iT . This also implies for a (possibly infinite) matrix C that
hC�;˙i D Ch�;˙i and h�;C˙i D h�;˙iCT .

In this notation, the biorthogonality or duality conditions (39) can be expressed
shortly as

h�; Q�i D I (41)

with the infinite identity matrix I.
Wavelets with the above properties can be obtained in the following way. We start

from an anchor basis � D f 	 W 	 2 I D IHg which is a Riesz basis for L2.˝/,
meaning that � is scaled such that k 	kL2.˝/ � 1. Moreover, its dual basis Q� is
also a Riesz basis for L2.˝/. � and Q� are constructed in such a way that rescaled
versions of both bases�; Q� form Riesz bases for a whole range of (closed subspaces
of) Sobolev spaces Hs WD Hs.˝/, for 0 < s < �; Q� , respectively, or subspaces of
these. Consequently, one can derive that for each s 2 .� Q�; �/ the collection

�s WD f2�sj	j 	 W 	 2 Ig DW D�s� (42)

is a Riesz basis for Hs [18], i.e., it holds

kvk � kvT�skHs ; v 2 `2.I/; (43)

for each s 2 .� Q�; �/. Such a scaling represented by a diagonal matrix Ds introduced
in (42) will play an important role later on. Concrete constructions of wavelet bases
with the above properties for parameters �; Q� � 5=2 can be found in [22] which
cover the situation in (6) for r D 1; 2.
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3.2 Multiscale Decomposition of Function Spaces

In this section, the basic construction principles of the biorthogonal wavelets with
properties (R), (L) and (CP) are summarized, see, e.g., [18]. Their cornerstones are
multiresolution analyses of the function spaces under consideration as in Sect. 2.2
and the concept of stable completions. These concepts are free of Fourier techniques
and can therefore be applied to derive constructions of wavelets on domains or
manifolds which are subsets of Rn.

Multiresolution of L2 (univariate case). Practical constructions of wavelets
typically start out with multiresolution analyses of function spaces. Consider a
multiresolution S of L2 which consists of closed subspaces Sj of L2, called trial
spaces, such that they are nested and their union is dense in L2,

Sj0 � Sj0C1 � : : : � Sj � SjC1 � : : : L2; closL2

� 1[

jDj0

Sj

�
D L2: (44)

The index j is the refinement level which appeared already in the elements of the
index set I in (34), starting with some coarsest level j0 2 N0. We abbreviate for a
finite subset � � L2 the linear span of � as

S.�/ D spanf�g:

Typically the multiresolution spaces Sj have the form

Sj D S.˚j/; ˚j D f�j;k W k 2 �jg; (45)

for some finite index set �j, where the set f˚jg1
jDj0

is uniformly stable in the sense
that

kck`2.�j/ � kcT˚jkL2 ; c D fckgk2�j 2 `2.�j/; (46)

holds uniformly in j. Here we have used again the shorthand notation

cT˚j D
X

k2�j

ck�j;k

and ˚j denotes both the (column) vector containing the functions �j;k as well as the
set of functions (45).

The collection ˚j is called single scale basis since all its elements live only on
one scale j. In the present context of multiresolution analysis, ˚j is also called
generator basis or shortly generators of the multiresolution. We assume that the
�j;k are compactly supported with

diam.supp�j;k/ � 2�j: (47)
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It follows from (46) that they are scaled such that

k�j;kkL2 � 1 (48)

holds. It is known that nestedness (44) together with stability (46) implies the
existence of matrices Mj;0 such that the two-scale relation

˚j D MT
j;0˚jC1 (49)

holds. Any set of functions satisfying an equation of this form, the refinement or
two-scale relation, will be called refinable. The matrices Mj;0 are up to boundary
modifications exactly the intergrid operators occurring in (30).

Denoting by ŒX;Y� the space of bounded linear operators from a normed linear
space X into the normed linear space Y, one has that

Mj;0 2 Œ`2.�j/; `2.�jC1/�

is uniformly sparse which means that the number of entries in each row or column
is uniformly bounded. Furthermore, one infers from (46) that

kMj;0k D O.1/; j � j0; (50)

where the corresponding operator norm is defined as

kMj;0k WD sup
c2`2.�j/; kck`2.�j/D1

kMj;0ck`2.�jC1/:

Since the union of S is dense in L2, a basis for L2 can be assembled from
functions which span any complement between two successive spaces Sj and SjC1,
i.e.,

S.˚jC1/ D S.˚j/˚ S.�j/ (51)

where

�j D f j;k W k 2 rjg; rj WD �jC1 n�j: (52)

The functions �j are called wavelet functions or shortly wavelets if, among other
conditions detailed below, the union f˚j [ �jg is still uniformly stable in the sense
of (46). Since (51) implies S.�j/ � S.˚jC1/, the functions in �j must also satisfy a
matrix-vector relation of the form

�j D MT
j;1˚jC1 (53)
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with a matrix Mj;1 of size .#�jC1/ � .#rj/. Furthermore, (51) is equivalent to the
fact that the linear operator composed of Mj;0 and Mj;1,

Mj D .Mj;0;Mj;1/; (54)

is invertible as a mapping from `2.�j [ rj/ onto `2.�jC1/. One can also show that
the set f˚j [ �jg is uniformly stable if and only if

kMjk; kM�1
j k D O.1/; j ! 1: (55)

The particular cases that will be important for practical purposes are when not only
Mj;0 and Mj;1 are uniformly sparse but also the inverse of Mj. We denote this inverse
by Gj and assume that it is split into

Gj D M�1
j D

 
Gj;0

Gj;1

!

: (56)

A special situation occurs when Mj is an orthogonal matrix,

Gj D M�1
j D MT

j

which corresponds to the case of L2 orthogonal wavelets [25]. A systematic
construction of more general Mj, Gj for spline-wavelets can be found in [22], see
also [18] for more examples, including the hierarchical basis.

Thus, the identification of the functions �j which span the complement of
S.˚j/ in S.˚jC1/ is equivalent to completing a given refinement matrix Mj;0 to an
invertible matrix Mj in such a way that (55) is satisfied. Any such completion Mj;1

is called stable completion of Mj;0. In other words, the problem of the construction
of compactly supported wavelets can equivalently be formulated as an algebraic
problem of finding the (uniformly) sparse completion of a (uniformly) sparse matrix
Mj;0 in such a way that its inverse is also (uniformly) sparse. The fact that inverses
of sparse matrices are usually dense elucidates the difficulties in the constructions.
Constructions that yield compactly supported wavelets are particularly suited for
computations in numerical analysis.

Combining the two-scale relations (49) and (53), one can see that Mj performs a
change of bases in the space SjC1,

 
˚j

�j

!

D
 

MT
j;0

MT
j;1

!

˚jC1 D MT
j ˚jC1: (57)
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Fig. 2 Nonzero pattern of matrices Mj (left) and Gj (right) for boundary-adapted B-splines of
order d D 2 (degree p D 1) as generators and duals of order Qd D 4

Conversely, applying the inverse of Mj to both sides of (57) results in the
reconstruction identity

˚jC1 D GT
j

 
˚j

�j

!

D GT
j;0˚j C GT

j;1�j: (58)

An example of the structure of the matrices Mj and Gj is given in Fig. 2.
Fixing a finest resolution level J, one can repeat the decomposition (51) so that

SJ D S.˚J/ can be written in terms of the functions from the coarsest space supplied
with the complement functions from all intermediate levels,

S.˚J/ D S.˚j0 /˚
J�1M

jDj0

S.�j/: (59)

Thus, every function v 2 S.˚J/ can be written in its single-scale representation

v D .cJ/
T˚J D

X

k2�J

cJ;k�J;k (60)

as well as in its multi-scale form

v D .cj0 /
T˚j0 C .dj0 /

T�j0 C � � � C .dJ�1/T�J�1 (61)
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with respect to the multiscale or wavelet basis

� J WD ˚j0 [
J�1[

jDj0

�j DW
J�1[

jDj0�1
�j (62)

Often the single-scale representation of a function may be easier to compute and
evaluate while the multi-scale representation allows one to separate features of
the underlying function characterized by different length scales. Since therefore
both representations are advantageous, it is useful to determine the transformation
between the two representations, commonly referred to as the Wavelet Transform,

TJ W `2.�j/ ! `2.�j/; dJ 7! cJ ; (63)

where

dJ WD .cj0 ;dj0 ; : : : ;dJ�1/T :

The previous relations (57) and (58) indicate that this will involve the matrices Mj

and Gj. In fact, TJ has the representation

TJ D TJ;J�1 � � � TJ;j0 ; (64)

where each factor has the form

TJ;j WD
�

Mj 0
0 I.#�J�#�jC1/

�

2 R
.#�J /�.#�J/: (65)

Schematically TJ can be visualized as a pyramid scheme

Mj0;0 Mj0C1;0 MJ�1;0

cj0 �! cj0C1 �! cj0C2 �! � � � cJ�1 �! cJ

Mj0;1 Mj0C1;1 MJ�1;1

% % % � � � %
dj0 dj0C1 dj0C2 dJ�1

(66)

Accordingly, the inverse transform T�1
J can be written also in product structure (64)

in reverse order involving the matrices Gj as follows:

T�1
J D T�1

J;j0 � � � T�1
J;J�1; (67)
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where each factor has the form

T�1
J;j WD

�
Gj 0
0 I.#�J�#�jC1/

�

2 R
.#�J /�.#�J/: (68)

The corresponding pyramid scheme is then

GJ�1;0 GJ�2;0 Gj0;0

cJ �! cJ�1 �! cJ�2 �! � � � �! cj0

GJ�1;1 GJ�2;1 Gj0;1

& & & � � � &
dJ�1 dJ�2 dJ�1 dj0

(69)

Property (55) and the fact that Mj and Gj can be applied in .#�jC1/ operations
uniformly in j entails that the complexity of applying TJ or T�1

J using the pyramid
scheme is of order O.#�J/ D O.dim SJ/ uniformly in J. For this reason, TJ

is called the Fast Wavelet Transform (FWT). Note that one should not explicitly
assemble TJ or T�1

J . In fact, due to the particular band structure of Mj and Gj, this
would result in matrices with O.J #�J/ entries. In Table 4 at the end of this section,
spectral condition numbers for the FWT for different constructions of biorthogonal
wavelets on the interval computed in [46] are displayed.

Since [j�j0Sj is dense in L2, a basis for the whole space L2 is obtained when
letting J ! 1 in (62),

� WD
1[

jDj0�1
�j D f j;k W .j; k/ 2 Ig; �j0�1 WD ˚j0

I WD ˚fj0g ��j0

	[
1[

jDj0

˚fjg � rj
	
:

(70)

Theorem 7 ([18]) The multiscale transformations TJ are well-conditioned in the
sense

kTJk; kT�1
J k D O.1/; J � j0; (71)

if and only if the collection � defined by (70) is a Riesz basis for L2.

A detailed construction of the dual wavelets Q� , can be found in [18, 39].

Multiresolution of Sobolev spaces. Let now S be a multiresolution sequence
consisting of closed subspaces of Hs with the property (44) whose union is
dense in Hs. The following result from [18] ensures under which conditions norm
equivalences hold for the Hs-norm.
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Theorem 8 Let f˚jg1
jDj0

and f Q̊ jg1
jDj0

be uniformly stable, refinable, biorthogonal
collections. If the Jackson-type estimate

inf
vj2Sj

kv � vjkL2
<� 2�sjkvkHs ; v 2 Hs; 0 < s � Nd; (72)

and the Bernstein inequality

kvjkHs <� 2sjkvjkL2 ; vj 2 Sj; s < Nt; (73)

hold for

Sj D



S.˚j/

S. Q̊ j/

�

with order Nd D



d
Qd
�

and Nt D



t
Qt
�

; (74)

then for

0 <  WD minfd; tg; 0 < Q WD minf Qd; Qtg; (75)

we have the norm equivalence

kvk2Hs �
1X

jDj0�1
22sjkh Q�j; vik2`2.rj/

; s 2 .� Q; /: (76)

For many applications it suffices to have established (76) only for certain s > 0

for which one only needs to require (72) and (73) for f˚jg1
jDj0

. The Jackson

estimates (72) of order Qd for S. Q̊ j/ imply the cancellation properties (CP) (38), see,
e.g., [20].

Remark 9 When the wavelets live on ˝ � R
n, (72) means that all polynomials

up to order Qd are contained in S. Q̊ j/. One also says that S. Q̊ j/ is exact of order Qd.
Because of the biorthogonality conditions, this implies that the wavelets  j;k are
orthogonal to polynomials up to order Qd or have Qdth order vanishing moments. By
Taylor expansion, this in turn yields (38).

For a summary of different constructions of biorthogonal wavelets on R and
bounded domains in R

n, see, e.g., [39]. We display spectral condition numbers for
the FWT for two different constructions of biorthogonal wavelets on the interval in
Table 4. The first column denotes the finest level on which the spectral condition
numbers of the FWT are computed. The next column contains the numbers for the
construction of biorthogonal spline-wavelets on the interval from [22] for the case
d D 2; Qd D 4 while the last column displays the condition numbers for a scaled
version derived in [12]. We observe that the absolute numbers stay constant and low
even for high levels j. We will see later in Sect. 3.3 how the transformation TJ is
used for preconditioning.
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Table 4 Computed spectral condition numbers for the FWT on Œ0; 1� for different constructions of
biorthogonal wavelets on the interval [46]

j �2.TDKU/ �2.TB/

4 4.743e+00 4.640e+00

5 6.221e+00 6.024e+00

6 8.154e+00 6.860e+00

7 9.473e+00 7.396e+00

8 1.023e+01 7.707e+00

9 1.064e+01 7.876e+00

10 1.086e+01 7.965e+00

j �2.TDKU/ �2.TB/

11 1.097e+01 8.011e+00

12 1.103e+01 8.034e+00

13 1.106e+01 8.046e+00

14 1.107e+01 8.051e+00

15 1.108e+01 8.054e+00

16 1.108e+01 8.056e+00
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Fig. 3 Primal wavelets for d D 2 on Œ0; 1� (left) and on a sphere as constructed in [40] (right)

We see in Fig. 3 some primal biorthogonal wavelets of order d D 2 which consist
of piecewise linear B-splines. These can be employed in the construction in wavelets
on manifolds [24] which were optimized and implemented to construct biorthogonal
wavelet bases on the sphere in [40], see the right graphic in Fig. 3.

3.3 Elliptic Boundary Value Problems in Wavelet Coordinates

We now derive a representation of the elliptic boundary value problem (6) in terms
of (initially infinite) wavelet coordinates.

Let for H D Hr
0.˝/ the collection�H be a wavelet basis with corresponding dual

Q�H which satisfies the properties (R), (L) and (CP) from Sect. 3.1. Expanding the
solution u D uT�H , the right hand side f D fT Q�H and recalling the definition of A
in (6), the wavelet representation of the elliptic boundary value problem (6) is given
by

Au D f (77)
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where

A WD a.�H; �H/; f WD h�H; f i: (78)

Then the mapping property (5) and the Riesz basis property (R) yield the following
fact.

Proposition 10 The infinite matrix A is a boundedly invertible mapping from `2 D
`2.IH/ into itself, and one has

kvk � kAvk; v 2 `2: (79)

The proof follows by combining the isomorphism relation (5) for the elliptic
operator with the Riesz basis property (43). This entails the following consequence
with respect to preconditioning. Let for I D IH the symbol � denote any finite
subset of the index set I. For the corresponding set of wavelets�� WD f 	 W 	 2 �g,
denote by S� WD span�� the respective finite-dimensional subspace of H. For the
wavelet representation of A in terms of ��, A� WD a.��; ��/, we then have that
�2.A�/ � 1 independent of �, on account of the ellipticity of the operator. In other
words, representations of A with respect to properly scaled wavelet bases for H
entail well-conditioned system matrices A� independent of�.

Fast wavelet transform. We briefly explain now in the situation of uniform
refinements, i.e., when S.˚J/ D S.� J/, how the FWT TJ from (64) can be used for
preconditioning linear elliptic operators, together with a diagonal scaling induced
by the norm equivalence (76) [21]. We recall the notation from Sect. 3.2 where
the wavelet basis is in fact the (unscaled) anchor basis from Sect. 3.1. Thus, the
norm equivalence (36) using the scaled wavelet basis �H is the same as (76) in the
anchor basis. Recall that the norm equivalence (76) implies that every v 2 Hs can
be expanded uniquely in terms of the � and its expansion coefficients v satisfy

kvkHs � kDsvk`2
where Ds is a diagonal matrix with entries Ds

.j;k/;.j0;k0/
D 2sjıj;j0ık;k0 . Depending on

the order of the elliptic operator, we have H � Hr.˝/ for r D 1 or r D 2. We have,
therefore, already identified the diagonal (scaling) matrix DJ consisting of the finite
portion of the matrix D D D1 for which j0 � 1 � j � J � 1. The representation of
A with respect to the (unscaled) wavelet basis � J can be expressed in terms of the
FWT TJ , that is,

h� J;A� Ji D TT
J h˚J;A˚Ji TJ ; (80)
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Table 5 Optimized spectral
condition numbers of the
operator A using tensor
products of biorthogonal
wavelets on the interval for
space dimensions n D 1; 2; 3

[12]

j n D 1 n D 2 n D 3

3 22:3 9:6 18:3

4 23:9 11:8 37:1

5 25:0 14:3 39:8

6 25:7 16:0 40:9

8 26:6 18:4

10 27:1

12 27:3

where ˚J is the single-scale basis for S.� J/. Thus, we first set up the operator
equation as in finite element settings in terms of the single-scale basis ˚J . Applying
the FWT TJ together with DJ yields that the operator

AJ WD D�1
J TT

J h˚J;A˚Ji TJ D�1
J (81)

has uniformly bounded condition numbers independent of J. This can be seen by
combining the properties of A according to (5) with the norm equivalences (36)
and (40).

It is known that the boundary adaptations of the generators and wavelets aggra-
vate the absolute values of the condition numbers. Nevertheless, these constants
can be substantially reduced by an operator-adapted transformation which takes
into account only the coarsest discretization level and, thus, is inexpensive [12].
Numerical tests confirm that the absolute constants can further be improved by
taking instead of D�1

J the inverse of the diagonal of h� J;A� Ji for the scaling in (81)
[12, 46].

In Table 5 we display the condition numbers for discretizations using the weak
form of the elliptic operator �� C I on .0; 1/n in up to three dimensions using
boundary adapted biorthogonal spline-wavelets in the case d D 2; Qd D 4 with
such a scaling and additional shifts of small eigenvalues which is an inexpensive
operation [12].

4 Conclusion and Outlook

The central theme of this paper was to present optimal multilevel preconditioners
which enable us to reduce the spectral condition number of the system matrix to
be independent of the grid spacing h. Specifically in the context of isogeometric
analysis in Sect. 2, the issue arises how the spectral condition numbers depend on
the polynomial degree p; we have seen a corresponding behaviour already in Table 1.
From a theoretical point of view, it is not clear yet how to estimate the dependence
on p and how to remedy its influence.
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Some recent results in this directions may be promising. In [29], a full geometric
multigrid method was proposed for problems in isogeometric analysis with an
increased number of smoothing steps to account for the dependence of the spectral
condition number on the polynomial degree p. A different approach is presented
with different multigrid approaches involving high-and low-order variants in [49].

I expect that the intergrid operators used in Sect. 2 will also be efficient for
isogeometric collocation methods as presented in [2] although it is not clear how
to prove optimality of the corresponding preconditioner.

This paper dealt with preconditioners for discretizations on uniform grids which
provide best approximations for PDEs with smooth solutions. In case when the
solution is not smooth, adaptivity may capture the optimal degrees of freedom when
compared to a best N-term approximation. Also in an adaptive method one has to
iteratively solve linear systems of equations which again requires a preconditioner.
For a BPX-type or FWT preconditioner, the same principles can immediately be
applied as long as the spaces generated in the adaptive process are nested as in (17).
Of course, then the intergrid operators in Sect. 2.3 have to be adapted accordingly.
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