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Abstract Isogeometric Analysis (IgA) uses the same class of basis functions for
both representing the geometry of the computational domain and approximating
the solution of the boundary value problem under consideration. In practical appli-
cations, geometrical patches are used in order to get flexibility in the geometrical
representation. This multi-patch representation corresponds to a decomposition of
the computational domain into non-overlapping subdomains also called patches in
the geometrical framework. We will present discontinuous Galerkin (dG) methods
that allow for discontinuities across the subdomain (patch) boundaries. The required
interface conditions are weakly imposed by the dG terms associated with the
boundary of the subdomains. The construction and the corresponding discretization
error analysis of such dG multi-patch IgA schemes is given for heterogeneous
diffusion model problems in volumetric 2d and 3d domains as well as on open
and closed surfaces. The theoretical results are confirmed by numerous numerical
experiments which have been performed in G+++SMO. The concept and the main
features of the IgA library G+++SMO are also described.

1 Introduction

Isogeometric Analysis (IgA), which was introduced by Hughes, Cottrell and
Bazilevs in 2005, is a new discretization technology which uses the same class of
basis functions for both representing the geometry of the computational domain and
approximating the solution of problems modeled by Partial Differential Equations
(PDEs), [23]. IgA uses the exact geometry in the class of Computer Aided Design
(CAD) geometries, and thus geometrical errors introduced by approximation of the
physical domain are eliminated. This feature is especially important in technical
applications where the CAD geometry description is directly used in the production
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process. Usually, IgA uses basis functions like B-Splines and Non-Uniform Rational
B-Splines (NURBS), which are standard in CAD, and have several advantages
which make them suitable for efficient and accurate simulation, see [8]. The
mathematical analysis of approximation properties, stability and discretization
error estimates of NURBS spaces have been well studied in [5]. Furthermore,
approximation error estimates due to mesh, polynomial degree and smoothness
refinement have been obtained in [6], and likewise a hybrid method that combines
a globally C1�continuous, piecewise polynomial finite element basis with rational
NURBS-mappings have also been considered in [27].

In practical applications, the computational domain ˝ � R
d (d D 2; 3) is

usually represented by multiple patches leading to non-matching meshes and thus to
patch-wise non-conforming approximation spaces. In order to handle non-matching
meshes and polynomial degrees across the patch interfaces, the discontinuous
Galerkin (dG) technique that is now well established in the Finite Element Analysis
(FEA) of different field problems is employed. Indeed, dG methods have been
developed and analyzed for many applications including elliptic, parabolic and
hyperbolic PDEs. The standard dG finite element methods use approximations that
are discontinuous across the boundaries of every finite element of the triangulation.
To achieve consistent, stable and accurate schemes, some conditions are prescribed
on the inter-element boundaries, see, e.g., Rivière’s monograph [35].

In this paper, we present and analyze multipatch dG IgA methods for solving
elliptic PDEs in volumetric 2d or 3d computational domains as well as on open
and closed surfaces. As model problems, we first consider diffusion problems of the
form

� r � .˛ru/ D f in ˝; and u D uD on @˝; (1)

where ˝ is a bounded Lipschitz domain in R
d; d D 2; 3, with the boundary @˝ , f

is a given source term, and uD are given Dirichlet data. Neumann, Robin and mixed
boundary conditions can easily be treated in the same dG IgA framework which we
are going to analyze in this paper. The same is true for including a reaction term into
the PDE (1). The diffusion coefficient ˛ is assumed to be bounded from above and
below by strictly positive constants. We allow ˛ to be discontinuous across the inter-
patch boundaries with possible large jumps across these interfaces. More precisely,
the computational domain ˝ is subdivided into a collection TH.˝/ WD f˝igN

iD1

of non-overlapping subdomains (patches) ˝1; : : : ; ˝N , where the patches ˝i are
obtained by some NURBS mapping ˚i from the parameter domain Ő D .0; 1/d �
R

d. In every subdomain, the problem is discretized under the IgA methodology.
The dG IgA method is considered in a general case without imposing any matching
grid conditions and without any continuity requirements for the discrete solution
across the interfaces Fij D @˝i \ @˝j. Thus, on the interfaces, the dG technique
ensures the communication of the solution between the adjacent subdomains. For
simplicity, we assume that the coefficients are piecewise constant with respect to
the decomposition TH.˝i/

N
iD1. It is well known that solutions of elliptic problems

with discontinuous coefficients are generally not smooth [20, 26], Thus, we cannot
expect that the dG IgA provides convergence rates like in the smooth case.
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Here, the reduced regularity of the solution is of primary concern. Following the
techniques developed by Di Pietro and Ern [12, 13] for dG FEA, we present an
error analysis for diffusion problems in 2d and 3d computational domains with
solutions belonging to Wl;p.˝i/; l � 2; p 2 .maxf1; 2d=.d C 2.l � 1//g; 2�; i D
1; : : : ; N. In correspondence with this regularity, we show optimal convergence
rates of the discretization error in the classical “broken” dG – norm. Due to the
peculiarities of the dG IgA, the proofs are quite technical and can be found in the
paper [30] written by two of the co-authors. Solutions of elliptic problems with
low regularity can also appear in other cases. For example, geometric singular
boundary points (re-entrant corners), points with change of the boundary conditions,
and singular source terms can cause low-regularity solutions as well, see, e.g.,
[20]. Especially, in the IgA, we want to use the potential of the approximation
properties of NURBS based on high-order polynomials. In this connection, the error
estimates obtained for the low-regularity case can be very useful. Indeed, via mesh
grading, that has been used in the FEA for a long time [3, 33], we can recover
the full convergence rate corresponding to the underlying polynomial degree. We
mention that in the literature other techniques have been proposed for solving
two dimensional problems with singularities. For example, in [34] and [24], the
original B-Spline finite dimensional space has been enriched by generating singular
functions which resemble the types of the singularities of the problem. Also in
[7], by studying the anisotropic character of the singularities of the problem, the
one dimensional approximation properties of the B-Splines are generalized in order
to produce anisotropic refined meshes in the regions of the singular points. Our
error analysis is accompanied by a series of numerical tests which fully confirm our
convergence rate estimates for the multipatch dG IgA in both the full and the low
regularity cases as well as the recovering of the full rate by means of mesh grading
techniques. We mention that the detailed proofs of the main theoretical results can be
found in [30] and [28], whereas all numerical results are new. It is very clear that our
analysis can easily be generalized to more general classes of elliptic boundary value
problems like plane strain or stress linear elasticity problems or linear elasticity
problems in 3d volumetric computational domains.

We will also consider multipatch dG IgA of diffusion problems of the form
(1) on sufficiently smooth, open and closed surfaces ˝ in R

3, where the gradient
r must now be replaced by the surface gradient r˝ , see, e.g., [18], and the
patches ˝i, into which ˝ is decomposed, are now images of the parameter domain
Ő D .0; 1/2 by the mapping ˚i W Ő � R

2 ! ˝i � R
3. The case of

matching meshes was considered and analyzed in [29] by two of the co-authors,
see also [36] for a similar work. It is clear that the results for non-matching
spaces and for mesh grading presented here for the volumetric (2d and 3d) case
can be generalized to diffusion problems on open and closed surfaces. Until now,
the most popular numerical method for solving PDEs on surfaces is the surface
Finite Element Method (FEM). The surface FEM was first applied to compute
approximate solutions of the Laplace-Beltrami problem, where the finite element
solution is constructed from the variational formulation of the surface PDEs in the
finite element space that is living on the triangulated surface approximating the
real surface [15]. This method has been extended to the parabolic equations fixed
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surfaces by Dziuk and Elliot [17]. To treat conservation laws on moving surfaces,
Dziuk and Elliot proposed the evolving surface finite element methods, see [16].
Recently, Dziuk and Elliot have published the survey paper [18] which provides a
comprehensive presentation of different finite element approaches to the solution
of PDEs on surfaces with several applications. The first dG finite element scheme,
which extends Dziuk’s approach, was proposed by Dedner et al. [11] and has very
recently been extended to adaptive dG surface FEM [10] and high-order dG finite
element approximations on surfaces [2]. However, since all these approaches rely
on the triangulated surface, they have an inherent geometrical error which becomes
more complicated when approximating problems with complicated geometries. This
drawback of the surface FEM can be overcome by the IgA technology, at least, in
the class of CAD surfaces which can be represented exactly by splines or NURBS.
Dede and Quateroni have introduced the surface IgA for fixed surfaces which can
be represented by one patch [9]. They presented convincing numerical results for
several PDE problems on open and closed surfaces. However, in many practical
applications, it is not possible to represent the surface ˝ with one patch. The surface
multipatch dG IgA that allows us to use patch-wise different approximations spaces
on non-matching meshes is then the natural choice.

The new paradigm of IgA brings challenges regarding the implementation. Even
though the computational domain is partitioned into subdomains (patches) and
elements (parts of the domain delimited by images of knot-lines or knot-planes), the
information that is accessible by the data structure (parametric B-spline patches) is
quite different than that of a classical finite element mesh (collection of triangles or
simplices providing the triangulation of the domain). In this realm, existing finite
element software libraries cannot easily be adapted to the isogeometric setting.
Apart from the data structures used, another issue is the fact that FEA codes
are focused on treating nodal shape function spaces, contrary to isogeometric
function spaces. To provide a unified solution to the above (and many other) issues,
we present the G+++SMO1 C++ library, which provides a unified, object-oriented
development framework suitable to implement advanced isogeometric techniques,
such as dG methods see [25].

The rest of the paper is organized as follows. In Sect. 2, we present and analyze
the multipatch dG IgA for diffusion problems in volumetric 2d and 3d computational
domains including the case of low-regularity solutions. We also study the mesh
grading technology which allows us to recover the full convergence rates defined by
the degree k of the underlying polynomials. The numerical analysis is accompanied
by numerical experiments fully confirming the theoretical results. Section 3 is
devoted to multipatch dG IgA of diffusion problems on open and closed surfaces.
We present and discuss new numerical results including the case of jumping
coefficients and non-matching meshes. The concept and the main features of the
G+++SMO library is presented in Sect. 4. All numerical experiments presented in this
paper have been performed in G+++SMO.

1Geometry plus Simulation Modules, http://www.gs.jku.at/gismo.

http://www.gs.jku.at/gismo.
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2 Multipatch dG IgA for PDEs in 3d Computational
Domains

2.1 Multipatch dG IgA Discretization

The weak formulation of (1) reads as follows: find a function u from the Sobolev
space W1;2.˝/ such that u D uD on @˝ and satisfies the variational formulation

a.u; v/ D l.v/; 8v 2 W1;2
0 .˝/ WD fv 2 W1;2.˝/ W v D 0 on @˝g; (2)

where the bilinear form a.�; �/ and the linear form l.�/ are defined by the relations

a.u; v/ D
Z

˝

˛ru � rv dx and l.v/ D
Z

˝

f v dx;

respectively. Beside Sobolev’s Hilbert spaces Hl.˝/ D Wl;2.˝/, we later also
need Sobolev’s Banach spaces Wl;p.˝/, p 2 Œ1; 1/, see, e.g., [1]. The existence
and uniqueness of the solution u of problem (2) can be derived by Lax-Milgram’s
Lemma [19]. In order to apply the dG IgA methodology to problem (1), the domain
˝ is subdivided into a union of subdomains TH.˝/ WD f˝igN

iD1 such that

N̋ D
N[

iD1

N̋ i; with ˝i \ ˝j D ;; if j ¤ i: (3)

As we mentioned in the introduction, the subdivision of ˝ is assumed to be
compatible with the discontinuities of ˛, i.e. they are constant in the interior of
˝i, that is ˛j˝i WD ˛.i/, and their discontinuities appear only across the interfaces
Fij D @˝i \ @˝j, cf., e.g., [12–14]. Throughout the paper, we will use the notation
a � b meaning that there are positive constants c and C such that ca � b � Ca.

As it is common in IgA, we assume a parametric domain Ő of unit length, e.g.,
Ő D .0; 1/d. For any ˝i, we associate d knot vectors �

.i/
n , n D 1; : : : ; d, on Ő ,

which create a mesh T.i/

hi; Ő D f OEmgMi
mD1, where OEm are the micro-elements, see details

in [23]. We refer to T.i/

hi; Ő as the parametric mesh of ˝i. For every OEm 2 T.i/

hi ; Ő , we

denote by h OEm
its diameter and by hi D maxfh OEm

g the mesh size of T.i/

hi ; Ő . We assume

the following properties for every T.i/

hi; Ő :

• quasi-uniformity: for every OEm 2 T.i/

hi; Ő holds hi � h OEm
,

• for the micro-element edges e OEm
� @ OEm holds h OEm

� e OEm
.
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On every T.i/

hi; Ő , we construct the finite dimensional space OB.i/
hi

spanned by

B-spline basis functions of degree k, see [23],

OB.i/
hi

D spanf OB.i/
j .Ox/gdim. OB.i/

hi
/

jD0 ; (4)

where every basis function OB.i/
j .Ox/ in (4) is derived by means of tensor products of

one-dimensional B-spline basis functions, e.g.,

OB.i/
j .Ox/ D OB.i/

j1
.Ox1/ � � � OB.i/

jd
.Oxd/: (5)

For simplicity, we assume that the basis functions of every OB.i/
hi

; i D 1; : : : ; N, are of
the same degree k.

Every subdomain ˝i 2 TH.˝/, i D 1; : : : ; N, is exactly represented through a
parametrization (one-to-one mapping), cf. [23], having the form

˚i W Ő ! ˝i; ˚i.Ox/ D
X

j

C.i/
j

OB.i/
j .Ox/ WD x 2 ˝i; (6)

where C.i/
j are the control points and Ox D �i.x/ WD ˚�1

i .x/. Using ˚i, we construct

a mesh T.i/
hi;˝i

D fEmgMi
mD1 for every ˝i, whose vertices are the images of the vertices

of the corresponding mesh T.i/

hi; Ő through ˚i. If h˝i D maxfhEm W Em 2 T.i/
hi;˝i

g
is the subdomain ˝i mesh size, then, based on definition (6) of ˚i, we have the
equivalence relation hi � h˝i :

The mesh of ˝ is considered to be Th.˝/ D SN
iD1 T.i/

hi;˝i
, where we note that

there are no matching mesh requirements on the interior interfaces Fij D @˝i \
@˝j; i ¤ j. For the sake of brevity in our notations, the interior faces of the boundary
of the subdomains are denoted by FI and the collection of the faces that belong to
@˝ by FB, e.g. F 2 FB if there is a ˝i such that F D @˝i \ @˝ . We denote the set
of all subdomain faces by F :

Lastly, we define the B-spline space Bh.TH.˝// D B
.1/
h1

� : : :�B
.N/
hN

on ˝ , where

every B
.i/
hi

is defined on T.i/
hi ;˝i

as follows

B
.i/
hi

WD fB.i/
hi

j˝i W B.i/
h .x/ D OB.i/

h ı �i.x/; 8 OB.i/
h 2 OB.i/

hi
g: (7)

We assume that the mappings ˚i are regular in the sense that there exist positive
constants cm and cM such that

cm � jdet.Ji.Ox//j � cM; for i D 1; : : : ; N; for all Ox 2 Ő ; (8)

where Ji.Ox/ denotes the Jacobian @˚i.Ox/=@.Ox/ of the mapping ˚i.
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Now, for any Ou 2 Wm;p. Ő /; m � 0; p > 1, we define the function

U .x/ D Ou.�i.x//; x 2 ˝i; (9)

and the following relation holds true, see [30],

CmkOukWm;p. Ő / � kU kWm;p.˝i/ � CMkOukWm;p. Ő /; (10)

where the constants Cm and CM depending on Cm WD Cm.maxm0�m.kDm0˚ik1/;

kdet.�
0

i /k1/ and CM WD CM.maxm0�m.kDm0�ik1/; kdet.˚
0

i /k1/: The usefulness
of inequalities (10) in the analysis is the following: every required relation can
be proved in the parametric domain and then using (10) we can directly have the
expression on the physical subdomain.

We use the B-spline spaces B
.i/
h defined in (7) for approximating the solution

of (2) in every subdomain ˝i. Continuity requirements for Bh.TH.˝// are not
imposed on the interfaces Fij of the subdomains, clearly Bh.TH.˝// � L2.˝/ but
Bh.TH.˝// ª W1;2.˝/. Thus, problem (2) is discretized by discontinuous Galerkin
techniques on Fij, see, e.g., [14]. Using the notation v

.i/
h WD vhj˝i , we define the

average and the jump of vh on Fij 2 FI , respectively, by

fvhg WD 1

2
.v

.i/
h C v

.j/
h /; and �vh� WD v

.i/
h � v

.j/
h ; (11)

and for Fi 2 FB

fvhg WD v
.i/
h ; and �vh� WD v

.i/
h : (12)

The dG-IgA scheme reads as follows: find uh 2 Bh.TH.˝// such that

ah.uh; vh/ Dl.vh/ C pD.uD; vh/; 8vh 2 Bh.TH.˝//; (13)

where

ah.uh; vh/ D
NX

iD1

ai.uh; vh/ �
NX

iD1

�1

2
si.uh; vh/ � pi.uh; vh/

�
; (14)

with the bilinear forms

ai.uh; vh/ D
Z

˝i

˛ruhrvh dx;
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si.uh; vh/ D
X

Fij�@˝i

Z
Fij

f˛ruhg � nFij�vh� C f˛rvhg � nFij�uh� ds;

pi.uh; vh/ D
8<
:

P
Fij�@˝i

R
Fij

�
�

˛.j/

hj
C ˛.i/

hi

�
�uh��vh� ds; if Fij 2 FIP

Fi�@˝i

R
Fi

�˛.i/

hi
�uh��vh� ds; if Fi 2 FB

pD.uD; vh/ D
X

Fi�@˝i

Z
Fi

�
˛.i/

hi
uDvh ds; Fi 2 FB

where ˛.i/ WD ˛j˝i and the unit normal vector nFij is oriented from ˝i towards the
interior of ˝j and the parameter � > 0 will be specified later in the error analysis,
cf. [14].

For notation convenience in what follows, we will use the following expression

Z
Fij

�
�˛.j/

hj
C ˛.i/

hi

�
�uh��vh� ds;

for both cases, Fij 2 FI and Fi 2 FB. In the latter case, we will assume that
˛.j/ D 0.

2.2 Auxiliary Results

We will use the following auxiliary results which have been shown in [30].

Lemma 1 Let u 2 Wl;p.TH.˝// with l � 2 and p > 1. Then there is a constant
C � 0 determined according to the Cm and CM of (10), such that for Fij � @˝i

holds
Z

Fij

jujp ds � C
�

h�1
i

Z
˝i

jujp dx C hp�1
i

Z
˝i

jrujp dx
�
: (15)

Lemma 2 For all vh 2 B
.i/
hi

defined on T.i/
hi;˝i

, there is a positive constant C,
depending on the mesh quasi-uniformity parameters and Cm and CM of (10) but
not on hi, such that

krvhkp
Lp.˝i/

� Ch�p
i kvhkp

Lp.˝i/
: (16)

Lemma 3 For all vh 2 B
.i/
hi

defined on T.i/
hi;˝i

and for all Fij � @˝i, there is a
positive constant C, which depends on the mesh quasi-uniformity parameters Cm

and CM of (10) but not on hi, such that

kvhkp
Lp.Fij/

� Ch�1
i kvhkp

Lp.˝i/
: (17)
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Lemma 4 Let vh 2 B
.i/
hi

such that vh 2 Wl;p.E/ \ Wm;q.E/; E 2 T.i/
hi ;˝i

, and 0 �
m � l; 1 � p; q � 1. Then there is a positive constant C, depended on the mesh
quasi-uniformity parameters Cm and CM of (10) but not on hi, such that

jvhjWl;p.E/ � Ch
m�l� d

q C d
p

i jvhjWm;q.E/: (18)

2.3 Analysis of the dG IgA Discretization

Next, we study the convergence estimates of the method (13) under the following
regularity assumption for the weak solution u 2 W1;2.˝/\Wl;p.TH.˝// with l � 2

and p 2 .maxf1; 2d
dC2.l�1/

g; 2�. For simplicity of the presentation, we assume that
l � k C 1. Nevertheless, for the case of highly smooth solutions, the estimates
given below, see Lemma 5, can be expressed in terms of the underlying polynomial
degree k. More precisely, the estimate ı.l; p; d/ D l C .d=2 � d=p � 1/, must be
replaced by ı.l; p; d/ D minfl C .d=2 � d=p � 1/; kg. We use the enlarged space
Wl;p

h WD W1;2.˝/ \ Wl;p.TH.˝// C Bh.TH.˝//, and will show that the dG IgA
method converges in optimal rate with respect to k:kdG norm

kuk2
dG D

NX
iD1

�
˛.i/kru.i/k2

L2.˝i/
C pi.u

.i/; u.i//
�
; u 2 Wl;2

h : (19)

For the error analysis, it is necessary to show the continuity and coercivity properties
of the bilinear form ah.:; :/ of (14) and interpolation estimates in k:kdG norm. We
start by providing estimates on how well the quasi-interpolant ˘hu approximates
u 2 Wl;p.˝i/, see proof in [30].

Lemma 5 Let u 2 Wl;p.˝i/ with l � 2 and p 2 .maxf1; 2d
dC2.l�1/

g; 2� and let

E D ˚i.E/; E 2 T.i/
hi;˝

. Then for 0 � m � l � k C 1, there exist constants Ci WD
Ci

�
maxl0�l.kDl0 ˚ikL1.˝i//; kukWl;p.˝i/

�
, such that

X
E2T

.i/
hi;˝i

ju � ˘hujp
Wm;p.E/ � Cih

p.l�m/
i : (20)
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Moreover, we have the following estimates for Fij D @˝i \ @˝j:

.i/ hˇ
i kru.i/ � r˘hu.i/kp

Lp.Fij/
� CiCd;php.l�1/�1Cˇ

i ;

.ii/
�˛.j/

hj
C ˛.i/

hi

�k�u � ˘hu�k2
L2.Fij/

�

Ci˛
.j/ hi

hj

�
hı.l;p;d/

i kukp
Wl;p.˝i/

�2 C Cj˛
.i/ hj

hi

�
hı.l;p;d/

j kukWl;p.˝j/

�2C

Cj

�
hı.l;p;d/

j kukWl;p.˝j/

�2 C Ci

�
hı.l;p;d/

i kukWl;p.˝i/

�2

;

.iii/ ku � ˘huk2
dG �

NX
iD1

Ci

�
hı.l;p;d/

i kukWl;p.˝i/

�2C

NX
iD1

X
Fij�@˝i

Ci˛
.j/ hi

hj

�
hı.l;p;d/

i kukWl;p.˝i/

�2

;

where ı.l; p; d/ D l C .d=2 � d=p � 1/.

We mention that the proof of estimate .iii/ in Lemma 5 can be derived by using the
estimates .i/, .ii/ and Lemma 1.

Lemma 6 Suppose uh 2 Bh.S .˝//. There exist a positive constant C, independent
of ˛ and hi, such that

ah.uh; uh/ � C kuhk2
dG; 8 uh 2 Bh.S .˝//: (21)

Proof By (13), we have that

ah.uh; uh/ D
NX

iD1

ai.uh; uh/ � 1

2

NX
iD1

si.uh; uh/ C pi.uh; uh/ D

NX
iD1

˛ikruhk2
L2.˝i/

� 2
X

Fij2F

Z
Fij

f˛ruhg � nFij�uh� ds

C
X

Fij2F
�

�˛.i/

hi
C ˛.j/

hj

�
k�uh�k2

L2.Fij/
: (22)

For the second term on the right hand side, Lemma 2 and the trace inequality (17)
expressed on Fij 2 F yield the bound



Multipatch Discontinuous Galerkin Isogeometric Analysis 11

�
X

Fij2F

Z
Fij

f˛ruhg � nFij�uh� ds �

�C1;"

NX
iD1

˛ikruhk2
L2.˝i/

�
X

Fij2F

1

C2;"

�˛.i/

hi
C ˛.j/

hj

�
k�uh�k2

L2.Fij/
: (23)

Inserting (23) into (22) and choosing C1;" < 1=2 and � > 2=C2;", we obtain (21).
ut

Note that similar discrete coercivity result has been shown in [30] for numerical
fluxes without symmetrized terms. Due to the assumed regularity of the solution, the
normal interface fluxes .˛ru/j˝i � nFij belongs (in general) to Lp.Fij/. The following
bound for the interface fluxes in k:kLp setting has been shown in [30].

Lemma 7 There is a constant C such that the following inequality for .u; vh/ 2
Wl;p

h � Bh.S .˝// holds true

NX
iD1

X
Fij�@˝i

Z
Fij

f˛rug � nFij�vh� ds � (24)

C
� X

Fij2F
˛.i/h

1C�p;d

i kru.i/kp
Lp.Fij/

C˛.j/h
1C�p;d

j kru.j/kp
Lp.Fij/

� 1
p kvhkdG;

where �p;d D d.p � 2/=2:

Proof We use Hölder’s inequality and then the results of Lemmas 3 and 4. ut
Applying similar procedure as this in Lemma 7, we can show for the symmetriz-

ing terms that there is a positive constant independent of grid size such that

NX
iD1

X
Fij�@˝i

Z
Fij

f˛rvhg � nFij�u� ds � C1kvhkdGkukdG: (25)

Using the results (24) and (25), we can show the boundedness of the bilinear form,
see details in [30].

Lemma 8 There is a C independent of hi such that for .u; vh/ 2 Wl;p
h � Bh.S .˝//

ah.u; vh/ � C.kukp
dG C

X
Fij2F

h
1C�p;d

i ˛.i/kru.i/kp
Lp.Fij/

C (26)

h
1C�p;d

j ˛.j/kru.j/kp
Lp.Fij/

� 1
p kvhkdG; where �p;d D d.p � 2/=2:

Next, we give the main error estimate for the dG IgA method.
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Theorem 1 Let u 2 W1;2.˝/ \ Wl;p.TH.˝//, with l � 2 and p 2 .p.d; l/; 2� be the
solution of (2). Let uh 2 Bh.S .˝// be the dG IgA solution of (13). Then there are

Ci WD Ci

�
maxl0�l

�
kDl0˚ikL1.E/

�
; kukWl;p.˝i/

�
, such that

ku � uhkdG �
NX

iD1

�
Ci

�
hı.l;p;d/

i C
X

Fij�@˝i

˛.j/ hi

hj
hı.l;p;d/

i

�
kukWl;p.˝i/

�
; (27)

where ı.l; p; d/ D l C .d=2 � d=p � 1/ and p.d; l/ D maxf1; 2d
dC2.l�1/

g.

Proof First we need to prove the consistency of u, i.e. u satisfies (13). Then, we
use a variation of Cea’s Lemma (expressed in the dG framework), the results of
Lemmas 6 and 8, as well the quasi-interpolation estimates of Lemma 5. A complete
proof can be found in [30]. ut

2.4 Numerical Examples

In this section, we present a series of numerical examples to validate the theoretical
results, which have been presented.

2.4.1 Smooth and Low-Regularity Solutions

We restrict ourselves to a model problem in ˝ D .�1; 1/3, with �D D @˝ . The
domain ˝ is subdivided into four equal subdomains ˝i, i D 1; : : : ; 4, where for
simplicity every ˝i is initially partitioned into a mesh T.i/

hi ;˝i
, with h WD hi D

hj; i ¤ j, and i; j D 1; : : : ; 4. Successive uniform refinements are performed on every

T.i/
hi;˝i

in order to compute numerically the convergence rates. We set the diffusion
coefficient equal to one.

In the first test, the data uD and f in (1) are determined such that the exact solution
is u.x/ D sin.5�x1/ sin.5�x2/ sin.5�x3/ (smooth test case). The first three columns
of Table 1 display the convergence rates. As it was expected, the convergence rates
are optimal. In the second case, the exact solution is u.x/ D jxj	. The parameter 	

is chosen such that u 2 Wl;pD1:67.˝/. Specifically, for l D 2, we get 	 D 0:2 and,
for l D 3, 	 D 1:2. In the last columns of Table 1, we display the convergence rates
for degree k D 2; k D 3 and k D 4 in case of having l D 2 and l D 3. We observe
that, for each of the two different tests, the error in the dG-norm behaves according
to the main error estimate given by (27).
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Table 1 The numerical convergence rates of the dG IgA method

Highly smooth k D 2 k D 3 k D 4
h
2s k D 2 k D 3 k D 4 l D 2 l D 3 l D 2 l D 3 l D 2 l D 3

Convergence rates

s D 0 � � � � � � � � �
s D 1 0.445 2.916 0.083 0.510 1.425 0.406 1.124 0.369 0.926

s D 2 2.342 2.463 3.576 0.670 1.645 0.615 1.582 0.562 1.465

s D 3 2.100 3.141 4.089 0.699 1.669 0.694 1.692 0.683 1.674

s D 4 2.031 3.041 3.989 0.700 1.680 0.700 1.700 0.700 1.700

Fig. 1 Non-matching meshes: decomposition into 2 patches with underlying grid of ratio R D 2

(left), contours of uh (right)

2.4.2 Non-matching Meshes

We consider the boundary value problem (1) with exact solution u.x; y/ D sin.�x/

sin.�y/. The computational domain consist of two unit square patches, ˝1 D
.�1; 0/ � .0; 1/ and ˝2 D .0; 1/ � .0; 1/, see Fig. 1 (left). The knot vectors
representing the geometry are given by �

.1;2/
1 D �

.1;2/
2 D f0; 0; 1; 1g. We refine

the mesh of the patches to a ratio R, i.e., the ratio of the grid sizes is R D h1=h2, see
Fig. 1 (left). We solved the problem using equal B-spline degree k on all patches.
We plot in Fig. 1 (right) the dG IgA solution uh computed with k D 2. In Fig. 2, we
present the decay of the L2 and dG errors for k D 1; 2; 3 and ratios R D 2r with r
from 1 up to 5. In Table 2, we display the convergence rates for large ratio R D 40.
In both cases, we observe that the rates are the expected ones and are not affected
by the different grid sizes of the meshes.



14 U. Langer et al.

101

101 102 103 104 105 106 107

101 102 103 104 105 106 107

101 102 103 104 105 106 107

101 102 103 104 105 106 107

101 102 103 104 105 106 107

100

101

102

100

10–1

R = 2

R = 4

R = 8

R = 16

R = 32

R = 2

R = 4
R = 8
R = 16
R = 32

R = 2
R = 4
R = 8
R = 16
R = 32

R = 2

R = 4

R = 8

R = 16

R = 32

R = 2

R = 4

R = 8

R = 16

R = 32

10–1

10–2

10–3

100

10–1

10–2

10–3

10–4

10–1

10–2

10–3

10–4

10–5

10–6

10–1

100

10–2

10–3

10–4

10–5

10–6

10–7

10–1

10–2

10–3

10–4

10–5

10–6

10–9

10–8

10–7

R = 2

R = 4

R = 8

R = 16

R = 32

R = 2

R = 4

R = 8

R = 16

R = 32

101 102 103 104 105 106 107

L2−error decay vs DoFs (k=1) dG−error decay vs DoFs (k=1)

L2−error decay vs DoFs (k=2) dG−error decay vs DoFs (k=2)

L2−error decay vs DoFs (k=3) dG−error decay vs DoFs (k=3)

Fig. 2 Error decay in the L2 (left) and dG (right) norms for polynomial degree k D 1; 2; 3 (top to
bottom) and ratio R D 2r with r running from 1 to 5
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Table 2 Non-matching meshes: error estimates for degrees k D 1; 2; 3 and R D 40

Dofs L2 error Conv. rate DG error Conv. rate

Degree k D 1

1685 0.31667 0 2.1596 0

6570 0.0867936 1.86732 0.97857 1.14202

25,946 0.0249492 1.79859 0.49992 0.968979

103,122 0.00638919 1.96529 0.251392 0.991758

411,170 0.00160452 1.99349 0.125887 0.997804

1.64205�106 0.000401493 1.9987 0.0629683 0.999435

6.56295�106 0.000100393 1.99972 0.0314873 0.999857

Degree k D 2

1773 0.0330803 0 0.117511 0

6740 0.0237587 0.477516 0.278058 �1.2426

26,280 0.00186298 3.67278 0.0555191 2.32433

103,784 0.000205886 3.17769 0.0130802 2.0856

412,488 2.53126�10�5 3.02392 0.00321704 2.02358

1.64468�106 3.17795�10�6 2.99369 0.000800278 2.00716

6.5682�106 3.99389�10�7 2.99223 0.000199727 2.00247

Degree k D 3

1865 0.0196108 0 0.281761 0

6914 0.00216825 3.17704 0.037403 2.91324

26,618 0.00030589 2.82545 0.00706104 2.4052

104,450 1.60210�10�5 4.25498 0.000803958 3.13469

413,810 9.49748�10�7 4.07627 9.7687�10�5 3.04088

1.64731�106 5.85542�10�8 4.0197 1.21191�10�5 3.01089

6.57346�106 3.64710�10�9 4.00495 1.51195�10�6 3.00280

2.5 Graded Mesh Partitions for the dG IgA Methods

We saw in the previous numerical tests that the presence of singular points reduces
the convergence rates. In this section, we will study this subject in a more general
form. We will focus on solving the model problem in domains with re-entrant
corners on the boundary. Due to these singular corner points, the regularity of the
solution (at least in a small vicinity) is reduced in comparison with the solutions in
smooth domains [20]. As a result, the numerical methods applied on quasi uniform
meshes for solving these problems do not yield the optimal convergence rate and
thus a particular treatment must be applied. We will devise the popularly known
graded mesh techniques which have widely been applied so far for finite element
methods [3, 4].
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2.5.1 Regularity Properties of the Solution Around the Boundary
Singular Points

Let us assume a domain ˝ � R
2 and let Ps 2 @˝ be a boundary point with internal

angle ! 2 .�; 2�/. We consider the local cylindrical coordinates .r; 
/ with pole
Ps, and define the cone, see Fig. 3 (left),

C D f.x; y/ 2 ˝ W x D r cos.
/; y D r sin.
/; 0 < r < R; 0 < 
 < !g: (28)

Then the solution in C can be written, [20],

u D ur C us; (29)

where ur 2 Wl�2;2.˝/ and

us D �.r/�r	 sin.	
/; (30)

where � is the stress intensity factor (is a real number depending only on f ), and
	 D �=! 2 .0; 1/ is an exponent which determines the strength of the singularity.
Since 	 < 1, by an easy computation, we can show that the singular function us

does not belong to W2;2.˝/ but u 2 W2;p.˝/ with p D 2=2 � 	. The representation
(30) of us helps us to reduce our study to the examination of the behavior of u in the
vicinity of the singular point, since the regularity properties of u are determined by
the regularity of us. The main idea is the following: based on the a priori knowledge
of the analytical form of us in C , we carefully construct a locally adapted mesh in
C by introducing a grading control parameter � WD �.	; k/, such as allows us to
prove that the approximation order of the method applied on this adapted mesh for
us is similar with the order of the method applied on the rest of the mesh (maybe
quasi uniform) for ur.

2.5.2 The Graded Mesh for TH.˝/ and Global Approximation Estimates

The area Us WD fx 2 ˝ W jPs � xj � R; R � NZh; NZ � 2g is further sub-
divided into ring zones Z�; � D 0; ::; �M < NZ , with distance from Ps equal to

D.Z� ;Ps/ WD C.n�h/
1
� , where 1 � n� < NZ and 1

2
� C � 1. The radius of every zone

is defined to be RZ�
WD D.Z�C1;Ps/ � D.Z� ;Ps/ D C.n�C1h/

1
� � C.n�h/

1
� .

For convenience, we assume that the initial subdivision TH fulfill the following
conditions, for an illustration see Fig. 3 (right) with �M D 2:

• The subdomains can be grouped into those which belong (entirely) to the area Us

and those that belong (entirely) to ˝ n Us. This means that there is no ˝i; i D
1; : : : ; N such that Us \ ˝i ¤ ; and .˝ n Us/ \ ˝i ¤ ;.
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ω= 3π
2

Ps
Z0

Ω0

Ω

θ
r R

Ω2 Ω3

Ω1

Z2

Z1 Ω4

Fig. 3 Left: 2d domain with corner singularity. Right: zone partition and the subdomians ˝i of
TH.˝/

• Every ring zone Z� is partitioned into “circular” subdomains ˝i� which have
radius ˝i� equal to the radius of the zone, that is R˝i�

D RZ�
. For computational

efficiency reasons, we prefer -if its possible- every zone to be only represented
by one subdomain.

• The zone Z0 is represented by one subdomain, say ˝0, and the mesh T.0/
h0

.˝0/

includes all E 2 Th.˝/ such that @E \ Ps ¤ ;.

The graded meshes T
.i� /

hi�
.˝i� / are mainly determined by the grading parameter

�.	; k/ 2 .0; 1� and the mesh sizes hi� are chosen to satisfy the following properties:

for ˝i� with distance R˝i�
from Ps, the mesh size hi� is defined to be hi� D O.hR1��

˝i�
/

and for T.i0/
h0

.˝0/ the mesh size is of order hi0 D O.h
1
� /, more details are given in

[28]. Based on previous properties of the T
.i� /

hi�
.˝i� / meshes, we can conclude the

relations

Cmh
1
� � hi� � CMh

1
� ; if ˝ i� \ Ps ¤ ;; (31)

CmhR1��
˝i�

� hi� � CMhD1��

.Z� ;Ps/
; if ˝ i� \ Ps D ;: (32)

Using the local interpolation estimate of Lemma 5 in every ˝i� � Us and the

characteristics of the meshes T
.i� /

hi�
.˝i� /, we can easily obtain the estimate

kus � ˘huskdG.Us/ �
X

i�

Ci� h	
i�
; (33)

since us 2 WlD1C	;2.˝/ (and also u 2 W2;pD 2
2�	 .˝/) and we do not consider non-

matching grid interfaces. Using the mesh properties (31) and (32), estimate (33) and
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Lemma 5, we can prove the following global error estimate of the proposed dG IgA
method applied to problems with boundary singularities, see [28].

Theorem 2 Let Z� be a partition of ˝ � R
2 into ring zones and let TH to be a sub-

division to ˝ with the properties as listed in the previous paragraphs. Let T.i/
hi

.˝i/

be the meshes of subdomains as described above. Then for the solution u of (2) and
the dG IgA solution uh, we have the approximation result

ku � uhkdG � Chr; with r D min.k; 	=�/; (34)

where the constant C > 0 depends on the characteristics of the mesh and on the
mappings ˚i (see (6)) but not on hi.

2.5.3 Numerical Examples

In this section, we present a series of numerical examples in order to validate the
theoretical analysis on the graded mesh in Sect. 2.5. The first example concerns a
two-dimensional problem with a boundary point singularity (L-shape domain). The
second example is the interior point singularity problem of the Sect. 2.4.

1. Boundary Singular Point
One of the classical test cases is the singularity due to a re-entrant corner. The
L-shape domain given by .�1; 1/2 n .�1; 0/2. In Fig. 4 (left), the subdivision of
˝ into two subdomains is presented. The exact solution is u D r

�
! sin.
�=!/;

where ! D 3�=2. We set �D D @˝ and the data f ; uD of (2) are specified by
the given exact solution. The problem has been solved using B-splines of degree
k D 1 and k D 2 and the grading parameter is � D 0:6 and � D 0:3 respectively.
In Fig. 4 (middle), the graded mesh for � D 0:6 is presented and in Fig. 4 (right)
the contours of the numerical solution are plotted. In Table 3, we present the
convergence rates of the method without grading (left columns). As we can see,
the convergence rates are determined by the regularity of the solution around the
singular boundary point. In the right columns, we present the convergence rates
corresponding to the graded meshes. We can see that the rates tend to be optimal
with respect the B-spline degree.

2. Interior Point Singularity
The domain is ˝ D .�1; 1/2. We consider a solution u of (1) with a point
singularity at the origin given by u.x/ D jxj	. We set 	 D 0:6 and is easy to
show that u 2 WlD1:6;2.˝/. We set ˛ D 1 in ˝ . In the left columns of Table 3, we
display the convergence rates for degrees k D 1 and k D 2 without mesh grading.
The convergence rates are suboptimal and follow the approximation estimate
(27). The problem has been solved again on graded meshes with � D 0:6 for
k D 1 and � D 0:3 for k D 2, see Fig. 5. We display the convergence rates in the
right columns of Table 3. The rates tend to be optimal as it was expected.



Multipatch Discontinuous Galerkin Isogeometric Analysis 19

Fig. 4 L-shape test. Left: subdomains, middle: graded mesh with � D 0:6, right: contours of uh

Table 3 The convergence rates for the L-shape test (left) and for the internal singularity test
(right)

No grading With grading

k D 1 k D 2
h
2s k D 1 k D 2 � D 0:6 � D 0:3

Convergence rates

s D 0 � � � �
s D 1 0.636 0.650 0.915 1.672

s D 2 0.641 0.657 0.933 1.919

s D 3 0.647 0.661 0.946 1.987

s D 4 0.652 0.666 0.957 2.071

No grading With grading

k D 1 k D 2
h
2s k D 1 k D 2 � D 0:6 � D 0:3

Convergence rates

s D 0 � � � �
s D 1 0.508 0.573 0.855 1.661

s D 2 0.547 0.580 0.930 1.828

s D 3 0.570 0.586 0.969 1.928

s D 4 0.583 0.591 0.990 1.951
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Fig. 5 Interior singularity test. Left: the subdomains ˝i; i D 1; : : : ; 4, middle: the graded mesh
with � D 0:3, right: the contours of uh

3 Multipatch dG IgA for PDEs on Surfaces

3.1 Diffusion Problems on Open and Closed Surfaces

Let us now consider a diffusion problem of the form (1) on a sufficiently smooth,
open surface ˝ , the weak formulation of which can formally be written in the same
form as (2) in Sect. 2: find a function u 2 W1;2.˝/ such that u D uD on the boundary



20 U. Langer et al.

@˝ of the surface ˝ and satisfies the variational formulation

a.u; v/ D l.v/; 8v 2 W1;2
0 .˝/; (35)

with the bilinear and linear forms a.�; �/ and l.�/, but now defined by the relations

a.u; v/ D
Z

˝

˛ r˝u � r˝v d˝ and l.v/ D
Z

˝

f v d˝;

respectively, where r˝ denotes the surface gradient, see, e.g., Definition 2.3 in
[18] for its precise description. For simplicity of the presentation, we here assume
Dirichlet boundary condition. It is clear that other boundary conditions can be
treated in the same framework as it was done in [29] for mixed boundary conditions.
In the case of open surfaces with pure Neumann boundary condition and closed
surfaces, we look for a solution u 2 W1;2.˝/ satisfying the uniqueness conditionR

˝
u.x/dx D 0 and the variational equation (2) under the solvability condition

l.1/ D 0. In Sect. 3.4, we present and discuss the numerical results obtained for
different diffusion problems on an open (Car) and on two closed (Sphere, Torus)
surfaces.

3.2 Multipatch dG IgA Discretization

Let TH.˝/ D f˝igN
iD1 be again a partition of our physical computational domain ˝ ,

that is now a surface, into non-overlapping patches (sub-domains) ˝i such that (3)
holds, and let each patch ˝i be the image of the parameter domain Ő D .0; 1/2 �
R

2 by some NURBS mapping ˚i W Ő ! ˝i � R
3; Ox D .Ox1; Ox2/ 7! x D

.x1; x2; x3/ D ˚i.Ox/, which can be represented in the form

˚i.Ox1; Ox2/ D
n1X

k1D1

n2X
k2D1

C.i/
.k1;k2/

OB.i/
.k1;k2/.Ox1; Ox2/ (36)

where f OB.i/
.k1;k2/g are the bivariate NURBS basis functions, and fC.i/

.k1;k2/g are the
control points, see [8] for a detailed description. We always assume that the mapping
˚i is regular. Therefore, the inverse mapping Ox D �i.x/ WD ˚�1

i .x/ is well defined
for all patches ˝i, i D 1; : : : ; N.

Now the dG IgA scheme for solving our surface diffusion problem (35) can
formally be written in the form (13) as in Sect. 2: find uh 2 Bh.TH.˝// such that

ah.uh; vh/ D l.vh/ C pD.uD; vh/; 8vh 2 Bh.TH.˝//; (37)

where ah.�; �/ and pD.�; �/ are defined by (14) provided that we replace the gradient
r by the surface gradient r˝ . Since the dG bilinear form ah.�; �/ is positive on
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Bh.TH.˝// n f0g for sufficiently large �, cf. Lemma 6, there exist a unique dG
solution uh 2 Bh.TH.˝//. The dG IgA scheme (37) is equivalent to a system of
algebraic equations of the form

Khuh D f
h
; (38)

the solution uh of which gives us the coefficients (control points) of uh. In order to
generate the entries of the system matrix Kh and the right-hand side f

h
, we map the

patches ˝i composing the physical domain, i.e., our surface ˝ , into the parameter
domain Ő D .0; 1/2. For instance, for the broken part ai.uh; vh/ of the bilinear form
ah.uh; vh/, we obtain

ai.uh; vh/ D
Z

˝i

˛.i/ r˝uh.x/ � r˝uh.x/ d˝

D
Z

Ő i

˛.i/ ŒJi.Ox/F�1
i .Ox/ Or Oui.Ox/�>ŒJi.Ox/F�1

i .Ox/ Or Ovi.Ox/�gi.Ox/ dOx

D
Z

Ő i

˛.i/ . Or Oui.Ox//> F�1
i .Ox/ Or Ovi.Ox/ gi.Ox/dOx ;

where Ji.Ox/ D @˚i.Ox/=@Ox, Fi.Ox/ D .Ji.Ox//>.Ji.Ox// and gi.Ox/ D .det Fi.Ox//1=2

denote the Jacobian, the first fundamental form and the square root of the associated
determinant, respectively. These terms, coming from the parameterization of the
domain, can be exploited for deriving efficient matrix assembly methods, cf.
[31, 32]. Furthermore, we use the notations Oui.Ox/ D uh.˚i.Ox// and Or D . @

@Ox1
; @

@Ox2
/>.

3.3 Discretization Error Estimates

In [29], we derived discretization error estimates of the form

ku � uhk2
dG � C

NX
iD1

˛.i/h2t
i kuk2

H1Ct.˝i/
; (39)

with t WD minfs; kg, provided that the solution u of our surface diffusion problem
(35) belongs to H1Cs.TH.˝// D W1Cs;2.TH.˝// with some s > 1=2. In the case
t D k, estimate (39) yields the convergence rate O.hk/ with respect to the dG
norm, whereas the Aubin-Nitsche trick provides the faster rate O.hkC1/ in the L2

norm. Here k always denotes the underlying polynomial degree of the NURBS. This
convergence behavior is nicely confirmed by our numerical experiments presented
in [29] and in the next subsection.

In [29], we assumed matching meshes and some regularity of the solution of
(35), namely u 2 H1Cs.TH.˝//. It is clear that the results of Theorem 1, which
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includes no-matching meshes and low-regularity solutions, can easily be carried
over to diffusion problems on open and closed surfaces. The same is true for mesh
grading techniques presented in Sect. 2.5.

3.4 Numerical Examples

3.4.1 Sphere

Let us start with a diffusion problem on a closed surface ˝ that is given by the
sphere ˝ D f.x; y; z/ 2 .�1; 1/3 W x2 C y2 C z2 D 1g with unitary radius.
The computational domain ˝ is decomposed into 6 patches, see left-hand side
of Fig. 6. The knot vectors representing the geometry of each patch are given as
�1;2 D .0; 0; 0; 0; 0; 1; 1; 1; 1; 1/ in both directions. Since the surface is closed, we
impose the uniqueness constraint

R
˝

u d˝ D 0 on the solution. The right-hand side
f .r; ; 
/ D 12u.r; ; 
/, where the solution u.r; ; 
/ D 12 sin.3/ sin3.
/ is an
eigenfunction of the Laplace-Beltrami operator .��˝/ satisfying the compatibility
condition

R
˝

f d˝ D 0: The example can also be found in [21]. The diagrams
displayed in Fig. 7 show the error decay with respect to the L2 (left) and dG (right)
norms for polynomial degrees k D 1; 2; 3; and 4. As expected by our theoretical
results, we observe the full convergence rates O.hkC1/ and O.hk/ for the L2 norm
and the dG norm, respectively. In Table 4, we compare the L2 errors of dG IgA
solutions with those produced by the corresponding continuous (standard) Galerkin
(cG) IgA scheme for the polynomial degree k D 5. In the case of smooth solutions,
the dG IgA is as good as the cG counterpart. The same is true for the errors with
respect to the dG norm.
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Fig. 6 Sphere: geometry and decomposition into 6 patches (left) and solution for the Laplace-
Beltrami problem (right)
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Fig. 7 Sphere: error decay in the L2 (left) and dG (right) norms for polynomial degrees 1 to 4

Table 4 Sphere: comparison of the cG and dG IgA error decay in the L2 norm for k D 5

k D 5 cG-IgA dG-IgA

Dofs L2 error Conv. rate L2 error Conv. rate

216 0.168803 0 0.166582 0

294 0.0602254 1.48689 0.0599854 1.16908

486 0.00900833 2.74104 0.00898498 2.55496

1014 8.90909�10�5 6.65984 8.90774�10�5 6.537

2646 8.64021�10�7 6.68807 8.63906�10�7 6.85905

8214 1.16592�10�8 6.21152 1.16582�10�8 6.27626

28,566 1.75119�10�10 6.05699 1.75127�10�10 6.06894

3.4.2 Torus

We now consider the closed surface

˝ D f.x; y/ 2 .�3; 3/2; z 2 .�1; 1/ W r2 D z2 C .
p

x2 C y2 � R2/g

that is nothing but a torus that is decomposed into 4 patches, see Fig. 8 left. The
knot vectors �1 D f0; 0; 0; 0:25; 0:25; 0:50; 0:50; 0:75; 0:75; 1; 1; 1g and �2 D
f0; 0; 0; 1; 1; 1g describe the NURBS used for the geometrical representation of
the patches. We first consider the surface Poisson equation, also called Laplace-
Beltrami equation, with the right-hand side

f .; 
/ D r�2 Œ9 sin.3/ cos.3
 C /�

� �
.R C r cos.
//�2.�10 sin.3/ cos.3
 C / � 6 cos.3/ sin.3
 C //

�
� �

.r.R C r cos.
//�1/.3 sin.
/ sin.3/ sin.3
 C //
�

;

where  D arctan.y=x/, 
 D arctan.z=.
p

x2 C y2 � R// , R D 2, and r D 1.
The exact solution is given by u D sin.3/ cos.3
 C /, cf. also [21]. We mention
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Fig. 8 Torus: geometry and decomposition into 4 patches (left), solution for the Laplace-Beltrami
problem (middle), solution for jumping coefficients (right)
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Fig. 9 Torus: error decay in the L2 (left) and dG (right) norms for polynomial degrees 1 to 4

Table 5 Torus: comparison of the cG and dG IgA error decay in the L2 norm for k D 5

k D 5 cG-IgA dG-IgA

Dofs L2 error Conv. rate L2 error Conv. rate

504 0.0974255 0 0.0973029 0

700 0.0433491 1.1683 0.043271 1.16908

1188 0.00736935 2.55639 0.00736339 2.55496

2548 7.9296�10�5 6.53814 7.92948�10�5 6.537

6804 6.83083�10�7 6.85904 6.83068�10�7 6.85905

21,460 8.8131�10�9 6.27627 8.81294�10�9 6.27626

75,348 1.3131�10�10 6.0686 1.31276�10�10 6.06894

that the functions u and f are chosen such that the zero mean compatibility condition
holds. The IgA approximation to this solution is depicted in middle picture of Fig. 8.
The diagrams displayed in Fig. 9 show the error decay with respect to the L2 (left)
and dG (right) norms for polynomial degrees k D 1; 2; 3; and 4. As expected by
our theoretical results, we observe the full convergence rates O.hkC1/ and O.hk/ for
the L2 norm and the dG norm, respectively. In Table 5, we compare the L2 errors of
dG IgA solutions with those produced by the corresponding cG IgA scheme for the
polynomial degree k D 5. In the case of smooth solutions, the dG IgA is as good as
the cG counterpart. The same is true for the errors with respect to the dG norm.
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Table 6 Torus: L2 and energy norm errors with degree k D 2

Dofs L2 error Conv. rate dG error Conv. rate

108 2.04841�106 0 8.56088�106 0

208 1.03579�106 0.98377 4.89856�106 0.805403

504 128,215 3.0141 1.09244�106 2.1648

1480 15,431.9 3.05458 258,162 2.08121

4968 1808.17 3.09331 64,084.3 2.01023

18,088 213.252 3.0839 173,61.8 1.88406

268,840 Reference Solution Reference Solution

Now we consider the case when the diffusion coefficients ˛ have large jumps
across the boundaries of the patches in which the torus was decomposed. More
precisely, we assume that the diffusion coefficient ˛ D ˛.i/ > 0 in the patch ˝i,
i D 1; 2; 3; 4, where ˛.2/ D ˛.4/ D 1 and ˛.1/ D ˛.3/ D 10�6. The patches are
arranged from blue ˝1 to red ˝4: The right-hand side f is the same as given above
for the case of the Laplace-Beltrami problem, i.e. for ˛ D 1: Now the solution is
not known, but we know that the solution is smooth in the patches ˝i and has steep
gradients towards @˝2 and @˝4, see also of Fig. 8 right. Due to our theory, we can
expect full convergence rates since we have an exact representation of the geometry.
Indeed, we realize the full convergence rate by choosing a fine grid as the reference
solution and comparing the solutions at each refinement step against this reference
solution as shown in Table 6.

3.4.3 Car

We now consider the diffusion problem on an open, free-form surface. In order
to demonstrate the fact that our results are general and not limited to academic
examples, we apply our methods to a CAD model representing a car shell.

The surface is composed of eight quadratic B-spline patches, shown in Fig. 10
(left). The model exhibits several small bumps in the interior of the surface and
sharp corners on the boundary. In addition, the patches have varying areas and meet
along curved one-dimensional (quadratic) B-spline interfaces.

We choose a constant diffusion coefficient on the whole domain and we prescribe
homogeneous Dirichlet conditions along the boundary. For the right-hand side, we
used a (globally defined in R

3) linear function which we restricted on the surface,
in order to obtain a smooth solution to our problem.

As suggested by the isogeometric paradigm, we used quadratic B-spline basis
functions, forwarded on the surface, as discretization basis. We started with a coarse
grid, which was h�refined uniformly several times, in both parametric directions.

An analytic formula for the exact solution is not available. Therefore, we have
chosen a fine grid of approximately one million degrees of freedom as the reference
solution. Comparing against this solution (obtained by the corresponding cG IgA
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Fig. 10 Car: control points of the geometry (left), IgA solution of the Dirichlet surface diffusion
problem (right). Black lines indicate patch interfaces

Table 7 Diffusion on a car-shell model. Numerical results for continuous Galerkin IgA with
strong imposition of Dirichlet boundary (cG IgA), weak imposition (Nitsche-type) and finally
patch-discontinuous Galerkin (dG IgA)

k D 2 cG IgA Nitsche-type BCs dG IgA

DoFs L2 error Rate L2 error Rate L2 error Rate

96 1.87598 1.77144 1.77029

192 1.23006 0.608922 1.19201 0.571527 1.19188 0.570749

480 0.633648 0.956971 0.623767 0.934312 0.623764 0.934161

1440 0.241842 1.38962 0.239835 1.37897 0.239835 1.37896

4896 0.0659275 1.87511 0.0655902 1.87049 0.0655902 1.87049

17,952 0.0115491 2.5131 0.011502 2.5116 0.011502 2.5116

68,640 0.00155178 2.89578 0.00154625 2.89504 0.00154624 2.89504

�268 K 0.00017567 3.14298 0.000175096 3.14256 0.000175094 3.14257

�1 M Reference Reference Reference Reference Reference Reference

method), the expected convergence rates have been observed. Table 7 contains the
numeric results for the L2 norm, obtained using either the continuous (with strong
or weak imposition of Dirichlet boundaries) or dG IgA method. Apart from the
observed order of convergence, the magnitude of the error agrees in all cases as well.

4 The G+++SMO C++ Library

Isogeometric analysis requires seamless integration of Finite Element Analysis
(FEA) and Computer-aided design (CAD) software. The existing software libraries,
however, cannot be adapted easily to the rising new challenges since they have
been designed and developed for different purposes. In particular, FEA codes are
traditionally implemented by means of functional programming, and are focused
on treating nodal shape function spaces. In CAD packages, on the other hand, the
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central objects are free-form curves and surfaces, defined by control points, which
are realized in an object-oriented programming environment.

G+++SMO is an object-oriented, template C++ library, that implements a generic
concept for IGA, based on abstract classes for geometry map, discretization basis,
assemblers, solvers and so on [25]. It makes use of object polymorphism and
inheritance techniques in order to support a variety of different discretization bases,
namely B-spline, Bernstein, NURBS bases, hierarchical and truncated hierarchical
B-spline bases of arbitrary polynomial order, and so on.

The library is open-source and is licenced under the Mozilla Public License v2.0.
The source code, together with a reference manual and wiki pages can be reached
at http://www.gs.jku.at/gismo.

Our design allows the treatment of geometric entities such as surfaces or
volumes through dimension independent code, realized by means of template meta-
programming. Available features include simulations using continuous and discon-
tinuous Galerkin approximation of PDEs, over conforming and non-conforming
multi-patch computational domains. PDEs on surfaces as well as integral equa-
tions arising from elliptic boundary value problems. Boundary conditions may
be imposed both strongly and weakly. In addition to advanced discretization
and generation techniques, efficient solvers like multigrid iteration schemes are
available. Methods for solving non-linear problems are under development. Finally,
we aim to employ existing high-end libraries for large-scale parallelization.

In the following paragraphs we shall provide more details on the design and
features of the library.

4.1 Description of the Main Modules

The library is partitioned into smaller entities, called modules. Currently, there are
six (6) modules in G+++SMO namely Core, Matrix, NURBS, Modeling, Input/Output
and Solver modules.

The Core module is the backbone of the library. Here an abstract interface is
defined for a basis, that is, a set of real-valued functions living on a parameter
domain. At this level, we do not specify how these functions (or its derivatives)
should be evaluated. However, a number of virtual member functions define an
interface that should be implemented by derived classes of this type. Another
abstract class is the geometry class. This object consists of a (still abstract) basis
and a coefficient vector, and represents a patch. Note that parameter or physical
dimension are not specified at this point. There are four classes directly derived from
the geometry class; these are curve, surface, volume and bulk. These are parametric
objects with known parameter space dimension 1; 2; 3 and 4 respectively.

Another abstract class is a function class. The interface for this class includes
evaluation, derivations and other related operations. The geometry abstract class is
actually deriving from the function class, demonstrating the fact that parametric
geometries can be simply viewed as (vector) functions. Another interesting object

http://www.gs.jku.at/gismo
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is the multipatch object. CAD models are composed of many patches. Therefore,
a multipatch structure is of great importance. It contains two types of information;
first, geometric information, essentially a list of geometry patches. Second, topo-
logical information between the patches, that is, the adjacency graph between patch
boundaries, degenerate points, and so on. Let us also mention the field class, which
is the object that typically represents the solution of a PDE. A field is a mathematical
scalar or vector field which is defined on a parametric patch, or multipatch object.
It may be evaluated either on the parameter or physical space, as the isogeometric
paradigm suggests.

The Matrix module contains all the linear algebra related infrastructure. It is
based on the third party library Eigen [22]. The main objects are dense and sparse
matrices and vectors. Typical matrix decompositions such as LU, QR, SVD, and
so on, are available. Furthermore, the user has also access to iterative solvers like
conjugate gradient methods with different preconditioners. Finally, one can use
popular high-end linear solver packages like SuperLU2 through a common interface.

The NURBS module consists of B-Splines, NURBS, Bézier of arbitrary degrees
and knot-vectors, tensor-product B-splines of arbitrary spatial dimension.

The Modeling module provides data structures and geometric operations that
are needed in order to prepare CAD data for analysis. It contains trimmed surfaces,
boundary represented (B-rep) solids and triangle meshes. Regarding modeling
operations, B-Spline fitting, smoothing of point clouds, Coon’s patches, and volume
segmentation methods are available.

The Input/Output module is responsible for visualization as well as file reading
and writing. For visualization, we employ Paraview or Axel (http://axel.inria.fr) and
VTK at INRIA, France. An important issue is file formats. Even if NURBS is an
industrial standard, a variety of different formats are used in the CAD industry to
exchange NURBS data. In G+++SMO, we have established I/O with popular CAD
formats, which include the 3DM file format of Rhinoceros 3D modeler, the X_T
format of Siemens’ NX platform as well as an (exported) format used by the LS-
DYNA general-purpose finite element program.

The Assembler module can already treat a number of PDE problems like
convection-diffusion problems, linear elasticity, Stokes equations as well as dif-
fusion problems on surfaces by means of continuous or discontinuous Galerkin
methods, including divergence preserving discretizations for Stokes equations.
Strong or weak imposition Dirichlet boundary conditions and Neumann-type
conditions are provided. Boundary element IgA collocation techniques are also
available.

Apart from the modules described above, there are several more which are under
development. These include a hierarchical bases module, an optimization module
and a triangular Bézier module, see Fig. 11.

2http://acts.nersc.gov/superlu

http://axel.inria.fr
http://acts.nersc.gov/superlu
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Fig. 11 A diagram of the different parts in the library and their interactions

4.2 Development Framework

The library uses a set of standard C++ tools in order to achieve cross-platform
functionality. Some compilers that have been tested includes Microsoft’s Visual
C++, Mingw32, GCC, Clang and the Intel compiler.

The main development tools used are:

• CMake cross-platform build system for configuration of the code. A small set of
options are available in order to enable optional parts of the library that require
external packages. Furthermore, the user is able to enable debug mode build,
that disables code optimization and facilitates development, by attaching debug
information in the code.

• The code is available in an SVN repository. We have chosen the continuous inte-
gration as development policy. That is, all developers commit their contributions
in a mainline repository.

• Trac software management system is used for bug reporting. Additionally, we
use the integrated wiki for documentation and user guidance.

• A CDASH software testing server is employed for regular compilation and
testing of the mainline code. Nightly builds are executed on different platforms,
as well as continuous builds after user commits. This allows to easily correct
errors and ensure the quality of the library. Coverage analysis and memory checks
are also performed regularly.

• The in-source documentation system Doxygen is used heavily in the code.
• A mailing list is available for communication and user support.
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Regarding tools that are employed in the library:

• The C++ Standard Library is employed. This is available by default on C++
modern installations.

• The Eigen C++ Linear Algebra library is used for linear algebra operations. This
library features templated coefficient type, dense and sparse matrices and vectors,
typical matrix decompositions (LU, QR, SVD,. . . ) as well as iterative solvers and
wrappers for high-end packages (SuperLU, PaStiX, SparseSuite,. . . ).

• XML reader/writer for input/output of XML files, and other CAD formats (OFF,
STL, OBJ, GeoPDEs, 3DM, Parasolid).

• Mathematical Expression Toolkit Library (ExprTk). This is an expression-tree
evaluator for mathematical function expressions that allows input of functions
similar to Matlab’s interface.

4.3 Additional Features and Extensions

Apart from the basic set of tools provided in the library, the user has the possibility
to enable features that require third-party software. The following connections to
external tools is provided:

• OpenNurbs library used to support Rhino’s 3DM CAD file format. This allows
file exchange with standard CAD software.

• Connection to Parasolid geometric kernel. Enabling this feature allows input and
output of the x_t file format. Also, the user can employ advanced modeling
operations like intersection, trimming, boolean operations, and so on.

• Connection to LS-DYNA. The user can output simulation data that can be used
by LS-DYNA’s Generalized element module system, for performing for instance
simulations on shells.

• Connection to IPOPT nonlinear optimization library. With this feature one can
use powerful interior point constrained optimization algorithms in order to
perform, for instance, isogeometric shape optimization.

• MPFR library for multi-precision floating point arithmetic. With this feature
critical geometric operations can be performed with arbitrary precision, therefore
guaranteeing a verified result.

• Graphical interface, interaction and display using Axel modeler.

4.4 Plugins for Third-Party Platforms

Finally, there are currently two plugins under development. The plugins allow third-
party software to employ and exchange data with G+++SMO.
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• Axel Modeler is an open-source spline modeling package based on Qt and VTK.
Our plugin allows to use G+++SMO within this graphical interface, and provides
user interaction (e.g. control point editing) and display.

• A Matlab interface is under development. This allows to use operations available
in G+++SMO within Matlab.
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