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Foreword for the Proceedings Volume

The very comfortable conference venue in Annweiler am Trifels, Germany, facing
the Trifels Castle, perched on the peak of the Sonnenberg, high above the Queich
valley, provided a beautiful and inspirational setting for IGAA 2014, Isogeometric
Analysis and Applications, April 7–10, 2014. Trifels Castle is where Richard the
Lionheart, King of England, was imprisoned for three weeks in the year 1193.
History was made then and it was made again at IGAA 2014, now one of several
very important, focused conferences that have been held to assess the state-of-
the-art in the emerging field of Isogeometric Analysis. This field began with a
single paper published in the 2005 October 1 issue of the international journal
Computer Methods in Applied Mechanics and Engineering, entitled “Isogeometric
analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.”
Almost immediately, Isogeometric Analysis attracted considerable attention in the
research community, and at the present time it is enjoying explosive growth, as
measured by the number of papers published on the topic and the citations to
them in the literature. Currently, it represents perhaps the hottest topic within
both Computational Mechanics and Computer-Aided Geometrical Modeling, two
historically separate disciplines that have joined forces and embraced the vision of
Isogeometric Analysis, that is, to reconstitute Computational Mechanics within the
framework provided by Computational Geometry, thereby simplifying the analysis
model development process and integrating engineering design and analysis into
a unified framework. As research activity in Isogeometric Analysis has ramped up,
industrial and commercial interest has followed, and we are now seeing considerable
growth in these sectors as well. The promise of Isogeometric Analysis, that is, to
improve the overall efficiency of the engineering product development process, is
the driving force.

An interesting aspect of Isogeometric Analysis is the breadth of activities within
it. One can pursue it from a very mathematical perspective, or a very practical
engineering perspective, or anywhere in between. There seems to be something in
it for everyone! It is a field that suits my broad scientific and engineering interests.
From a mathematician’s point of view, I may be an engineer. From an engineer’s
point of view, I may even be a mathematician. So be it. I would claim I am a
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vi Foreword for the Proceedings Volume

little bit of both, but I can also claim to be a Mechanical Design Engineer, at least
I was 50 years ago! That was my first job at Grumman Aerospace Corporation
(now Northrop Grumman) after obtaining my undergraduate degree in Mechanical
Engineering. I enjoyed it and learned a lot about engineering in the real world, but
it was not long before I gravitated toward engineering analysis. Design and analysis
are the cornerstones of Isogeometric Analysis, and I feel I have practical experience
with both. IGAA 2014, although including a little bit of everything, was somewhat
weighted toward the mathematical side of the spectrum, reflecting the interests of
the majority of the participants. Nevertheless, my invited talk at the conference
was meant to be an overview, and I entitled it “Isogeometric Analysis: Where we
are and where we are going.” In it, I also tried to identify a few subtopics that I
felt were enjoying increased attention, particularly ones that might have substantial
impact on the field going forward. I think some of the thoughts presented therein
are worth recalling in this Foreword to the book of selected papers emanating from
the conference.

Perhaps a main theme that needs to be highlighted is the analysis suitability of
design models. Certainly, T-splines and LR-splines are having significant impact due
to their watertight and unstructured qualities. An additional theme is performing
analysis directly on trimmed NURBS files, which heretofore has been considered
unsuitable for analysis. This is important because trimmed NURBS are ubiquitous
in contemporary engineering design and give no sign of going away, at least anytime
soon. Hierarchically refined NURBS are now reaching maturity and are becoming
a standard tool in the design-through-analysis arsenal.

Another theme that has begun to manifest itself is the surprising efficiency of
Isogeometric Analysis in practical applications. This is facilitated by the significant
gain in accuracy per degree of freedom compared with classical C0-continuous finite
element methods and decreased computational effort engendered by reduced inte-
gration and collocation techniques. Collocation techniques, which utilize the strong,
rather than weak, form of the governing equations, are perhaps the ultimate reduced
integration method. This topic has never had much success in the context of C0-
continuous finite element methods, but is undergoing a renaissance in Isogeometric
Analysis due the smoothness of spline basis functions. Efficient solution algorithms
that take advantage of the structure of Isogeometric Analysis matrix equations have
also contributed to the gains in efficiency, as well as adaptive refinement strategies
driven by a posteriori error estimates.

Other areas in which exciting developments are taking place include “thin” shell
theory, which has also benefitted from smooth basis functions without derivative
degrees of freedom. This has given new life to the classical Kirchhoff-Love shell
theory, which requires C1-continuous basis functions in the classical Galerkin weak
formulation. These are readily available in Isogeometric Analysis, with the added
benefit of the elimination of rotational degrees of freedom. Further developments
have even generalized this approach to the Reissner-Mindlin “thick” shell theory
and at the same time have eliminated shear locking entirely, independent of basis
functions. These indeed are significant developments and are expected to have a
profound effect on structural analysis in the coming years.
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Smooth, higher-order accurate basis functions and precise geometrical modeling
have also created a new beginning in boundary element analysis, whose potential has
never before been attained due to inaccurate, faceted geometrical approximations
and low-order, C0-continuous basis functions. Several complete design-through-
analysis procedures have been described using the Isogeometric Analysis version
of boundary integral formulations. These have included shape optimization directly
in the analysis-suitable CAD file, an enormous advantage in streamlining the design-
through-analysis process. Shape and topology optimization are likewise general
areas of significant Isogeometric Analysis activity.

The breadth of practical applications of Isogeometric Analysis is staggering, and
some of applications to complex nonlinear problems and fluid-structure interaction
are truly impressive. All this is being buttressed by many important mathematical
studies involving complementary functional- and spectral-analysis approaches.

The papers in this volume only represent a small sampling of the many excellent
presentations at IGAA 2014, but give one a glimpse of the significant recent
progress in Isogeometric Analysis, which is rapidly becoming a mainstream analysis
technology and a new paradigm for geometric design.

Austin, USA Thomas J.R. Hughes
June 23, 2015





Preface

This book contains a selection of articles that were presented at the second workshop
on Isogeometric Analysis and Applications – IGAA 2014, held in Annweiler am
Trifels, Germany, from April 7 to 10, 2014. The emerging field of Isogeometric
Analysis lives from the interaction of geometric modeling and numerical analysis,
and the workshop was a great success in stimulating the exchange of ideas between
these two fields. We are glad to see that, over the last years, this interaction has
resulted in a series of groundbreaking scientific results, some of which are covered
by the articles in this volume. The articles can be structured in four groups that cover
the most important branches of recent developments in Isogeometric Analysis.

The first group of four papers deals with various aspects of multi-patch methods
in Isogeometric Analysis.

In their paper entitled “Multipatch Discontinuous Galerkin Isogeometric Analy-
sis,” U. Langer et al. present Galerkin-type methods that allow for discontinuities
across the subdomain boundaries. The required interface conditions are weakly
imposed by the terms associated with the boundary of the subdomains. The
construction and the corresponding discretization error analysis of the resulting
multi-patch schemes are given for heterogeneous diffusion model problems in 2D
and 3D domains as well as on open and closed surfaces. The theoretical results are
confirmed by extensive numerical experiments.

Next, E. Brivadis and her coauthors study the influence of quadrature errors on
isogeometric mortar methods. After reviewing the recent mathematical theory, they
investigate the effect of the errors caused by using numerical quadrature for the
coupling integrals. Two approaches for designing quadrature rules and their impact
on the convergence rate are analyzed.

M. Pauley et al. present a pipeline for the conversion of 3D models into a form
suitable for Isogeometric Analysis. Given a boundary represented 3D model, they
establish a chain of processes that result in a collection of volumetric NURBS
patches. The suitability of the result for Isogeometric Analysis is also exemplified
by performing stress simulations.

The fourth paper, entitled “Domain Decomposition Methods and Kirchhoff-
Love Shell Multipatch Coupling in Isogeometric Analysis” and contributed by

ix
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A. Apostolatos et al., presents and compares several domain decomposition
methods, including penalty and Lagrange multiplier methods. The methods, which
are extended to account for geometrically nonlinear problems, provide highly
accurate results, thus enabling the treatment of Kirchhoff-Love shells on multiple
patches.

The second group of papers comprises three articles which are devoted to shell
analysis and to T-splines. The last paper of the previous group also contributes to
this topic.

C. Adam and coauthors propose a reduced shell element for Reissner-Mindlin
geometric nonlinear analysis within the context of T-spline analysis. More precisely,
the nonuniform Gauss-Legendre and patchwise reduced integrations for quadratic
shape functions are both presented and compared to the standard full Gauss-
Legendre scheme. The authors evaluate the effects of mesh distortion and local
refinement, using both full and reduced numerical quadratures.

In their paper entitled “Multiresolution shape and topology optimisation with
subdivision surfaces,” F. Cirak and K. Bandara review the multiresolution shape
optimisation technique based on subdivision surfaces and present its application
to elastic solids, electrostatic field equations, and thin shells. The geometry of
the domain is described with subdivision surfaces, and different resolutions of the
same surface are used for optimization and analysis. In their paper, the authors
discretize elastic solids with the immersed finite element method, electrostatic field
equations with the boundary element method, and thin shells with the subdivision
finite element technique. In all situations there is no need to generate and to maintain
an analysis-suitable volume discretization.

In the next paper on “Atom Simplification and Quality T-mesh Generation
for Multi-resolution Biomolecular Surfaces” by T. Liao et al., the structure of
biomolecules is first simplified using an error-bounded atom elimination method.
An extended cross field-based parameterization method is then developed to adapt
the parametric line spacings to different surface resolutions. From the parameter-
ization results, adaptive and anisotropic T-meshes for the further T-spline surface
construction are extracted. A gradient flow-based method is finally used to improve
the T-mesh quality, with the anisotropy preserved in the quadrilateral elements.

The two papers in the next group address an important topic that is rarely
discussed in detail in the literature, namely, algorithmic and implementation aspects
in Isogeometric Analysis.

D. Fußeder and B. Simeon concentrate on these aspects in the context of iso-
geometric shape optimization. They present a self-contained treatment of gradient-
based shape optimization with Isogeometric Analysis, focusing on issues such as the
computation of shape gradients in an isogeometric formulation and how to update
B-spline and NURBS geometries.

The other paper in this group, entitled “Effective Integration of Sophisti-
cated Operators in Isogeometric Analysis with igatools,” has been contributed by
N. Cavallini et al. It discusses aspects of igatools, which is a newly released library
for operator assembly in Isogeometric Analysis. It is shown that the design of
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the library makes it an effective tool in assembling isogeometric discretizations of
sophisticated differential operators.

Finally, the two remaining papers address advanced topics from the theory of
finite element methods and their application in Isogeometric Analysis.

S. Kleiss and S. Tomar present two-sided robust and sharp a posteriori error
estimates in the isogeometric discretization of elliptic problems. These estimates,
which are fully computable, provide robust, guaranteed, and sharp two-sided bounds
of the exact error in the energy norm. The numerical realization and the quality of
the computed error distribution are also covered.

The last paper of this volume, entitled “Multilevel Preconditioning for Variational
Problems,” which has been contributed by A. Kunoth, surveys the main ingredients
for multilevel preconditioners in terms of higher-order B-splines for standard
second- and fourth-order elliptic partial differential equations in variational form
possessing smooth solutions. It addresses three types of multilevel preconditioners
for which asymptotic optimality can be shown. Two of them, the so-called additive
preconditioners, are specified for Isogeometric Analysis involving linear elliptic
partial differential operators in terms of variants of the BPX preconditioner and
wavelet preconditioners. The third class is formed by multiplicative preconditioners,
specifically by multigrid methods. The performance of the different preconditioners
is demonstrated by numerical examples.

Last but not least, the editors acknowledge the support from many people and
organizations that has been crucial in organizing the workshop and in compiling
this volume. In particular, we are indebted to the reviewers. Their comments
have helped us greatly to identify the manuscripts suitable for publication in this
book and moreover were useful for improving many of the papers substantially.
We also wish to express our thanks to Springer Verlag for the constructive and
supportive cooperation during the production of this book. Financial support from
the Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, from
the Center for Mathematical and Computational Modeling .CM/2 at Technische
Universität Kaiserslautern, and from the program for equal opportunities at Tech-
nische Universität Kaiserslautern made it possible to attract participants from all
over the world to the workshop. We are now looking forward to the next event in
the workshop series on Isogeometric Analysis and Applications.

Linz, Austria Bert Jüttler
Kaiserslautern, Germany Bernd Simeon
July 2015
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Multipatch Discontinuous Galerkin
Isogeometric Analysis

Ulrich Langer, Angelos Mantzaflaris, Stephen E. Moore,
and Ioannis Toulopoulos

Abstract Isogeometric Analysis (IgA) uses the same class of basis functions for
both representing the geometry of the computational domain and approximating
the solution of the boundary value problem under consideration. In practical appli-
cations, geometrical patches are used in order to get flexibility in the geometrical
representation. This multi-patch representation corresponds to a decomposition of
the computational domain into non-overlapping subdomains also called patches in
the geometrical framework. We will present discontinuous Galerkin (dG) methods
that allow for discontinuities across the subdomain (patch) boundaries. The required
interface conditions are weakly imposed by the dG terms associated with the
boundary of the subdomains. The construction and the corresponding discretization
error analysis of such dG multi-patch IgA schemes is given for heterogeneous
diffusion model problems in volumetric 2d and 3d domains as well as on open
and closed surfaces. The theoretical results are confirmed by numerous numerical
experiments which have been performed in G+++SMO. The concept and the main
features of the IgA library G+++SMO are also described.

1 Introduction

Isogeometric Analysis (IgA), which was introduced by Hughes, Cottrell and
Bazilevs in 2005, is a new discretization technology which uses the same class of
basis functions for both representing the geometry of the computational domain and
approximating the solution of problems modeled by Partial Differential Equations
(PDEs), [23]. IgA uses the exact geometry in the class of Computer Aided Design
(CAD) geometries, and thus geometrical errors introduced by approximation of the
physical domain are eliminated. This feature is especially important in technical
applications where the CAD geometry description is directly used in the production
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2 U. Langer et al.

process. Usually, IgA uses basis functions like B-Splines and Non-Uniform Rational
B-Splines (NURBS), which are standard in CAD, and have several advantages
which make them suitable for efficient and accurate simulation, see [8]. The
mathematical analysis of approximation properties, stability and discretization
error estimates of NURBS spaces have been well studied in [5]. Furthermore,
approximation error estimates due to mesh, polynomial degree and smoothness
refinement have been obtained in [6], and likewise a hybrid method that combines
a globally C1�continuous, piecewise polynomial finite element basis with rational
NURBS-mappings have also been considered in [27].

In practical applications, the computational domain ˝ � R
d (d D 2; 3) is

usually represented by multiple patches leading to non-matching meshes and thus to
patch-wise non-conforming approximation spaces. In order to handle non-matching
meshes and polynomial degrees across the patch interfaces, the discontinuous
Galerkin (dG) technique that is now well established in the Finite Element Analysis
(FEA) of different field problems is employed. Indeed, dG methods have been
developed and analyzed for many applications including elliptic, parabolic and
hyperbolic PDEs. The standard dG finite element methods use approximations that
are discontinuous across the boundaries of every finite element of the triangulation.
To achieve consistent, stable and accurate schemes, some conditions are prescribed
on the inter-element boundaries, see, e.g., Rivière’s monograph [35].

In this paper, we present and analyze multipatch dG IgA methods for solving
elliptic PDEs in volumetric 2d or 3d computational domains as well as on open
and closed surfaces. As model problems, we first consider diffusion problems of the
form

� r � .˛ru/ D f in ˝; and u D uD on @˝; (1)

where ˝ is a bounded Lipschitz domain in R
d; d D 2; 3, with the boundary @˝ , f

is a given source term, and uD are given Dirichlet data. Neumann, Robin and mixed
boundary conditions can easily be treated in the same dG IgA framework which we
are going to analyze in this paper. The same is true for including a reaction term into
the PDE (1). The diffusion coefficient ˛ is assumed to be bounded from above and
below by strictly positive constants. We allow ˛ to be discontinuous across the inter-
patch boundaries with possible large jumps across these interfaces. More precisely,
the computational domain ˝ is subdivided into a collection TH.˝/ WD f˝igNiD1
of non-overlapping subdomains (patches) ˝1; : : : ;˝N , where the patches ˝i are
obtained by some NURBS mapping ˚i from the parameter domain Ő D .0; 1/d �
R

d. In every subdomain, the problem is discretized under the IgA methodology.
The dG IgA method is considered in a general case without imposing any matching
grid conditions and without any continuity requirements for the discrete solution
across the interfaces Fij D @˝i \ @˝j. Thus, on the interfaces, the dG technique
ensures the communication of the solution between the adjacent subdomains. For
simplicity, we assume that the coefficients are piecewise constant with respect to
the decomposition TH.˝i/

N
iD1. It is well known that solutions of elliptic problems

with discontinuous coefficients are generally not smooth [20, 26], Thus, we cannot
expect that the dG IgA provides convergence rates like in the smooth case.
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Here, the reduced regularity of the solution is of primary concern. Following the
techniques developed by Di Pietro and Ern [12, 13] for dG FEA, we present an
error analysis for diffusion problems in 2d and 3d computational domains with
solutions belonging to Wl;p.˝i/; l � 2; p 2 .maxf1; 2d=.dC 2.l� 1//g; 2�; i D
1; : : : ;N. In correspondence with this regularity, we show optimal convergence
rates of the discretization error in the classical “broken” dG – norm. Due to the
peculiarities of the dG IgA, the proofs are quite technical and can be found in the
paper [30] written by two of the co-authors. Solutions of elliptic problems with
low regularity can also appear in other cases. For example, geometric singular
boundary points (re-entrant corners), points with change of the boundary conditions,
and singular source terms can cause low-regularity solutions as well, see, e.g.,
[20]. Especially, in the IgA, we want to use the potential of the approximation
properties of NURBS based on high-order polynomials. In this connection, the error
estimates obtained for the low-regularity case can be very useful. Indeed, via mesh
grading, that has been used in the FEA for a long time [3, 33], we can recover
the full convergence rate corresponding to the underlying polynomial degree. We
mention that in the literature other techniques have been proposed for solving
two dimensional problems with singularities. For example, in [34] and [24], the
original B-Spline finite dimensional space has been enriched by generating singular
functions which resemble the types of the singularities of the problem. Also in
[7], by studying the anisotropic character of the singularities of the problem, the
one dimensional approximation properties of the B-Splines are generalized in order
to produce anisotropic refined meshes in the regions of the singular points. Our
error analysis is accompanied by a series of numerical tests which fully confirm our
convergence rate estimates for the multipatch dG IgA in both the full and the low
regularity cases as well as the recovering of the full rate by means of mesh grading
techniques. We mention that the detailed proofs of the main theoretical results can be
found in [30] and [28], whereas all numerical results are new. It is very clear that our
analysis can easily be generalized to more general classes of elliptic boundary value
problems like plane strain or stress linear elasticity problems or linear elasticity
problems in 3d volumetric computational domains.

We will also consider multipatch dG IgA of diffusion problems of the form
(1) on sufficiently smooth, open and closed surfaces ˝ in R

3, where the gradient
r must now be replaced by the surface gradient r˝ , see, e.g., [18], and the
patches˝i, into which ˝ is decomposed, are now images of the parameter domain
Ő D .0; 1/2 by the mapping ˚i W Ő � R

2 ! ˝i � R
3. The case of

matching meshes was considered and analyzed in [29] by two of the co-authors,
see also [36] for a similar work. It is clear that the results for non-matching
spaces and for mesh grading presented here for the volumetric (2d and 3d) case
can be generalized to diffusion problems on open and closed surfaces. Until now,
the most popular numerical method for solving PDEs on surfaces is the surface
Finite Element Method (FEM). The surface FEM was first applied to compute
approximate solutions of the Laplace-Beltrami problem, where the finite element
solution is constructed from the variational formulation of the surface PDEs in the
finite element space that is living on the triangulated surface approximating the
real surface [15]. This method has been extended to the parabolic equations fixed
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surfaces by Dziuk and Elliot [17]. To treat conservation laws on moving surfaces,
Dziuk and Elliot proposed the evolving surface finite element methods, see [16].
Recently, Dziuk and Elliot have published the survey paper [18] which provides a
comprehensive presentation of different finite element approaches to the solution
of PDEs on surfaces with several applications. The first dG finite element scheme,
which extends Dziuk’s approach, was proposed by Dedner et al. [11] and has very
recently been extended to adaptive dG surface FEM [10] and high-order dG finite
element approximations on surfaces [2]. However, since all these approaches rely
on the triangulated surface, they have an inherent geometrical error which becomes
more complicated when approximating problems with complicated geometries. This
drawback of the surface FEM can be overcome by the IgA technology, at least, in
the class of CAD surfaces which can be represented exactly by splines or NURBS.
Dede and Quateroni have introduced the surface IgA for fixed surfaces which can
be represented by one patch [9]. They presented convincing numerical results for
several PDE problems on open and closed surfaces. However, in many practical
applications, it is not possible to represent the surface˝ with one patch. The surface
multipatch dG IgA that allows us to use patch-wise different approximations spaces
on non-matching meshes is then the natural choice.

The new paradigm of IgA brings challenges regarding the implementation. Even
though the computational domain is partitioned into subdomains (patches) and
elements (parts of the domain delimited by images of knot-lines or knot-planes), the
information that is accessible by the data structure (parametric B-spline patches) is
quite different than that of a classical finite element mesh (collection of triangles or
simplices providing the triangulation of the domain). In this realm, existing finite
element software libraries cannot easily be adapted to the isogeometric setting.
Apart from the data structures used, another issue is the fact that FEA codes
are focused on treating nodal shape function spaces, contrary to isogeometric
function spaces. To provide a unified solution to the above (and many other) issues,
we present the G+++SMO1 C++ library, which provides a unified, object-oriented
development framework suitable to implement advanced isogeometric techniques,
such as dG methods see [25].

The rest of the paper is organized as follows. In Sect. 2, we present and analyze
the multipatch dG IgA for diffusion problems in volumetric 2d and 3d computational
domains including the case of low-regularity solutions. We also study the mesh
grading technology which allows us to recover the full convergence rates defined by
the degree k of the underlying polynomials. The numerical analysis is accompanied
by numerical experiments fully confirming the theoretical results. Section 3 is
devoted to multipatch dG IgA of diffusion problems on open and closed surfaces.
We present and discuss new numerical results including the case of jumping
coefficients and non-matching meshes. The concept and the main features of the
G+++SMO library is presented in Sect. 4. All numerical experiments presented in this
paper have been performed in G+++SMO.

1Geometry plus Simulation Modules, http://www.gs.jku.at/gismo.

http://www.gs.jku.at/gismo.


Multipatch Discontinuous Galerkin Isogeometric Analysis 5

2 Multipatch dG IgA for PDEs in 3d Computational
Domains

2.1 Multipatch dG IgA Discretization

The weak formulation of (1) reads as follows: find a function u from the Sobolev
space W1;2.˝/ such that u D uD on @˝ and satisfies the variational formulation

a.u; v/ D l.v/; 8v 2 W1;2
0 .˝/ WD fv 2 W1;2.˝/ W v D 0 on @˝g; (2)

where the bilinear form a.�; �/ and the linear form l.�/ are defined by the relations

a.u; v/ D
Z
˝

˛ru � rv dx and l.v/ D
Z
˝

fv dx;

respectively. Beside Sobolev’s Hilbert spaces Hl.˝/ D Wl;2.˝/, we later also
need Sobolev’s Banach spaces Wl;p.˝/, p 2 Œ1;1/, see, e.g., [1]. The existence
and uniqueness of the solution u of problem (2) can be derived by Lax-Milgram’s
Lemma [19]. In order to apply the dG IgA methodology to problem (1), the domain
˝ is subdivided into a union of subdomains TH.˝/ WD f˝igNiD1 such that

N̋ D
N[

iD1
N̋ i; with ˝i \˝j D ;; if j ¤ i: (3)

As we mentioned in the introduction, the subdivision of ˝ is assumed to be
compatible with the discontinuities of ˛, i.e. they are constant in the interior of
˝i, that is ˛j˝i WD ˛.i/, and their discontinuities appear only across the interfaces
Fij D @˝i \ @˝j, cf., e.g., [12–14]. Throughout the paper, we will use the notation
a � b meaning that there are positive constants c and C such that ca � b � Ca.

As it is common in IgA, we assume a parametric domain Ő of unit length, e.g.,
Ő D .0; 1/d. For any ˝i, we associate d knot vectors �.i/

n , n D 1; : : : ; d, on Ő ,
which create a mesh T.i/

hi; Ő D f OEmgMi
mD1, where OEm are the micro-elements, see details

in [23]. We refer to T.i/
hi; Ő as the parametric mesh of ˝i. For every OEm 2 T.i/

hi ; Ő , we

denote by h OEm
its diameter and by hi D maxfh OEm

g the mesh size of T.i/
hi ; Ő . We assume

the following properties for every T.i/
hi; Ő :

• quasi-uniformity: for every OEm 2 T.i/
hi; Ő holds hi � h OEm

,

• for the micro-element edges e OEm
� @ OEm holds h OEm

� e OEm
.
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On every T.i/
hi; Ő , we construct the finite dimensional space OB.i/hi

spanned by

B-spline basis functions of degree k, see [23],

OB.i/hi
D spanf OB.i/j .Ox/g

dim. OB.i/hi
/

jD0 ; (4)

where every basis function OB.i/j .Ox/ in (4) is derived by means of tensor products of
one-dimensional B-spline basis functions, e.g.,

OB.i/j .Ox/ D OB.i/j1
.Ox1/ � � � OB.i/jd

.Oxd/: (5)

For simplicity, we assume that the basis functions of every OB.i/hi
; i D 1; : : : ;N, are of

the same degree k.
Every subdomain ˝i 2 TH.˝/, i D 1; : : : ;N, is exactly represented through a

parametrization (one-to-one mapping), cf. [23], having the form

˚i W Ő ! ˝i; ˚i.Ox/ D
X

j

C.i/
j
OB.i/j .Ox/ WD x 2 ˝i; (6)

where C.i/
j are the control points and Ox D �i.x/ WD ˚�1i .x/. Using ˚i, we construct

a mesh T.i/hi;˝i
D fEmgMi

mD1 for every˝i, whose vertices are the images of the vertices

of the corresponding mesh T.i/
hi; Ő through ˚i. If h˝i D maxfhEm W Em 2 T.i/hi;˝i

g
is the subdomain ˝i mesh size, then, based on definition (6) of ˚i, we have the
equivalence relation hi � h˝i :

The mesh of ˝ is considered to be Th.˝/ D SN
iD1 T.i/hi;˝i

, where we note that
there are no matching mesh requirements on the interior interfaces Fij D @˝i \
@˝j; i ¤ j. For the sake of brevity in our notations, the interior faces of the boundary
of the subdomains are denoted by FI and the collection of the faces that belong to
@˝ by FB, e.g. F 2 FB if there is a ˝i such that F D @˝i \ @˝ . We denote the set
of all subdomain faces by F :

Lastly, we define the B-spline space Bh.TH.˝// D B
.1/
h1
� : : :�B.N/hN

on˝ , where

every B
.i/
hi

is defined on T.i/hi ;˝i
as follows

B
.i/
hi
WD fB.i/hi

j˝i W B.i/h .x/ D OB.i/h ı �i.x/; 8OB.i/h 2 OB.i/hi
g: (7)

We assume that the mappings ˚i are regular in the sense that there exist positive
constants cm and cM such that

cm � jdet.Ji.Ox//j � cM; for i D 1; : : : ;N; for all Ox 2 Ő ; (8)

where Ji.Ox/ denotes the Jacobian @˚i.Ox/=@.Ox/ of the mapping ˚i.
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Now, for any Ou 2 Wm;p. Ő /;m � 0; p > 1, we define the function

U .x/ D Ou.�i.x//; x 2 ˝i; (9)

and the following relation holds true, see [30],

CmkOukWm;p. Ő / � kU kWm;p.˝i/ � CMkOukWm;p. Ő /; (10)

where the constants Cm and CM depending on Cm WD Cm.maxm0�m.kDm0˚ik1/;
kdet.�

0

i /k1/ and CM WD CM.maxm0�m.kDm0�ik1/; kdet.˚
0

i /k1/: The usefulness
of inequalities (10) in the analysis is the following: every required relation can
be proved in the parametric domain and then using (10) we can directly have the
expression on the physical subdomain.

We use the B-spline spaces B
.i/
h defined in (7) for approximating the solution

of (2) in every subdomain ˝i. Continuity requirements for Bh.TH.˝// are not
imposed on the interfaces Fij of the subdomains, clearly Bh.TH.˝// � L2.˝/ but
Bh.TH.˝// ª W1;2.˝/. Thus, problem (2) is discretized by discontinuous Galerkin
techniques on Fij, see, e.g., [14]. Using the notation v.i/h WD vhj˝i , we define the
average and the jump of vh on Fij 2 FI , respectively, by

fvhg WD 1

2
.v
.i/
h C v.j/h /; and �vh� WD v.i/h � v.j/h ; (11)

and for Fi 2 FB

fvhg WD v.i/h ; and �vh� WD v.i/h : (12)

The dG-IgA scheme reads as follows: find uh 2 Bh.TH.˝// such that

ah.uh; vh/ Dl.vh/C pD.uD; vh/; 8vh 2 Bh.TH.˝//; (13)

where

ah.uh; vh/ D
NX

iD1
ai.uh; vh/ �

NX
iD1

�1
2

si.uh; vh/� pi.uh; vh/
�
; (14)

with the bilinear forms

ai.uh; vh/ D
Z
˝i

˛ruhrvh dx;
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si.uh; vh/ D
X

Fij�@˝i

Z
Fij

f˛ruhg � nFij�vh�C f˛rvhg � nFij�uh� ds;

pi.uh; vh/ D
8<
:
P

Fij�@˝i

R
Fij
�
�
˛.j/

hj
C ˛.i/

hi

�
�uh��vh� ds; if Fij 2 FIP

Fi�@˝i

R
Fi
�˛.i/

hi
�uh��vh� ds; if Fi 2 FB

pD.uD; vh/ D
X

Fi�@˝i

Z
Fi

�
˛.i/

hi
uDvh ds; Fi 2 FB

where ˛.i/ WD ˛j˝i and the unit normal vector nFij is oriented from ˝i towards the
interior of ˝j and the parameter � > 0 will be specified later in the error analysis,
cf. [14].

For notation convenience in what follows, we will use the following expression

Z
Fij

�
�˛.j/

hj
C ˛.i/

hi

�
�uh��vh� ds;

for both cases, Fij 2 FI and Fi 2 FB. In the latter case, we will assume that
˛.j/ D 0.

2.2 Auxiliary Results

We will use the following auxiliary results which have been shown in [30].

Lemma 1 Let u 2 Wl;p.TH.˝// with l � 2 and p > 1. Then there is a constant
C � 0 determined according to the Cm and CM of (10), such that for Fij � @˝i

holds
Z

Fij

jujp ds � C
�

h�1i

Z
˝i

jujp dxC hp�1
i

Z
˝i

jrujp dx
�
: (15)

Lemma 2 For all vh 2 B
.i/
hi

defined on T.i/hi;˝i
, there is a positive constant C,

depending on the mesh quasi-uniformity parameters and Cm and CM of (10) but
not on hi, such that

krvhkp
Lp.˝i/

� Ch�p
i kvhkp

Lp.˝i/
: (16)

Lemma 3 For all vh 2 B
.i/
hi

defined on T.i/hi;˝i
and for all Fij � @˝i, there is a

positive constant C, which depends on the mesh quasi-uniformity parameters Cm

and CM of (10) but not on hi, such that

kvhkp
Lp.Fij/

� Ch�1i kvhkp
Lp.˝i/

: (17)
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Lemma 4 Let vh 2 B
.i/
hi

such that vh 2 Wl;p.E/ \ Wm;q.E/; E 2 T.i/hi ;˝i
, and 0 �

m � l; 1 � p; q � 1. Then there is a positive constant C, depended on the mesh
quasi-uniformity parameters Cm and CM of (10) but not on hi, such that

jvhjWl;p.E/ � Ch
m�l� d

qC d
p

i jvhjWm;q.E/: (18)

2.3 Analysis of the dG IgA Discretization

Next, we study the convergence estimates of the method (13) under the following
regularity assumption for the weak solution u 2 W1;2.˝/\Wl;p.TH.˝// with l � 2
and p 2 .maxf1; 2d

dC2.l�1/ g; 2�. For simplicity of the presentation, we assume that
l � k C 1. Nevertheless, for the case of highly smooth solutions, the estimates
given below, see Lemma 5, can be expressed in terms of the underlying polynomial
degree k. More precisely, the estimate ı.l; p; d/ D l C .d=2 � d=p � 1/, must be
replaced by ı.l; p; d/ D minfl C .d=2 � d=p � 1/; kg. We use the enlarged space
Wl;p

h WD W1;2.˝/ \ Wl;p.TH.˝// C Bh.TH.˝//, and will show that the dG IgA
method converges in optimal rate with respect to k:kdG norm

kuk2dG D
NX

iD1

�
˛.i/kru.i/k2L2.˝i/

C pi.u
.i/; u.i//

�
; u 2 Wl;2

h : (19)

For the error analysis, it is necessary to show the continuity and coercivity properties
of the bilinear form ah.:; :/ of (14) and interpolation estimates in k:kdG norm. We
start by providing estimates on how well the quasi-interpolant ˘hu approximates
u 2 Wl;p.˝i/, see proof in [30].

Lemma 5 Let u 2 Wl;p.˝i/ with l � 2 and p 2 .maxf1; 2d
dC2.l�1/ g; 2� and let

E D ˚i.E/;E 2 T.i/hi;˝
. Then for 0 � m � l � k C 1, there exist constants Ci WD

Ci
�

maxl0�l.kDl0˚ikL1.˝i//; kukWl;p.˝i/

�
, such that

X
E2T

.i/
hi;˝i

ju�˘hujpWm;p.E/ � Cih
p.l�m/
i : (20)
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Moreover, we have the following estimates for Fij D @˝i \ @˝j:

.i/ hˇi kru.i/ � r˘hu.i/kp
Lp.Fij/

� CiCd;php.l�1/�1Cˇ
i ;

.ii/
�˛.j/

hj
C ˛.i/

hi

�k�u �˘hu�k2L2.Fij/
�

Ci˛
.j/ hi

hj

�
hı.l;p;d/i kukp

Wl;p.˝i/

�2 C Cj˛
.i/ hj

hi

�
hı.l;p;d/j kukWl;p.˝j/

�2C

Cj

�
hı.l;p;d/j kukWl;p.˝j/

�2 C Ci

�
hı.l;p;d/i kukWl;p.˝i/

�2
;

.iii/ ku �˘huk2dG �
NX

iD1
Ci

�
hı.l;p;d/i kukWl;p.˝i/

�2C
NX

iD1

X
Fij�@˝i

Ci˛
.j/ hi

hj

�
hı.l;p;d/i kukWl;p.˝i/

�2
;

where ı.l; p; d/ D lC .d=2� d=p� 1/.
We mention that the proof of estimate .iii/ in Lemma 5 can be derived by using the
estimates .i/, .ii/ and Lemma 1.

Lemma 6 Suppose uh 2 Bh.S .˝//. There exist a positive constant C, independent
of ˛ and hi, such that

ah.uh; uh/ � C kuhk2dG; 8 uh 2 Bh.S .˝//: (21)

Proof By (13), we have that

ah.uh; uh/ D
NX

iD1
ai.uh; uh/ � 1

2

NX
iD1

si.uh; uh/C pi.uh; uh/ D

NX
iD1

˛ikruhk2L2.˝i/
� 2

X
Fij2F

Z
Fij

f˛ruhg � nFij�uh� ds

C
X

Fij2F
�
�˛.i/

hi
C ˛.j/

hj

�
k�uh�k2L2.Fij/

: (22)

For the second term on the right hand side, Lemma 2 and the trace inequality (17)
expressed on Fij 2 F yield the bound
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�
X

Fij2F

Z
Fij

f˛ruhg � nFij�uh� ds �

�C1;"

NX
iD1

˛ikruhk2L2.˝i/
�
X

Fij2F

1

C2;"

�˛.i/
hi
C ˛.j/

hj

�
k�uh�k2L2.Fij/

: (23)

Inserting (23) into (22) and choosing C1;" < 1=2 and � > 2=C2;", we obtain (21).
ut

Note that similar discrete coercivity result has been shown in [30] for numerical
fluxes without symmetrized terms. Due to the assumed regularity of the solution, the
normal interface fluxes .˛ru/j˝i �nFij belongs (in general) to Lp.Fij/. The following
bound for the interface fluxes in k:kLp setting has been shown in [30].

Lemma 7 There is a constant C such that the following inequality for .u; vh/ 2
Wl;p

h � Bh.S .˝// holds true

NX
iD1

X
Fij�@˝i

Z
Fij

f˛rug � nFij�vh� ds � (24)

C
� X

Fij2F
˛.i/h

1C�p;d

i kru.i/kp
Lp.Fij/
C˛.j/h1C�p;d

j kru.j/kp
Lp.Fij/

� 1
p kvhkdG;

where �p;d D d.p� 2/=2:

Proof We use Hölder’s inequality and then the results of Lemmas 3 and 4. ut
Applying similar procedure as this in Lemma 7, we can show for the symmetriz-

ing terms that there is a positive constant independent of grid size such that

NX
iD1

X
Fij�@˝i

Z
Fij

f˛rvhg � nFij�u� ds � C1kvhkdGkukdG: (25)

Using the results (24) and (25), we can show the boundedness of the bilinear form,
see details in [30].

Lemma 8 There is a C independent of hi such that for .u; vh/ 2 Wl;p
h � Bh.S .˝//

ah.u; vh/ � C.kukp
dG C

X
Fij2F

h
1C�p;d

i ˛.i/kru.i/kp
Lp.Fij/
C (26)

h
1C�p;d

j ˛.j/kru.j/kp
Lp.Fij/

� 1
p kvhkdG; where �p;d D d.p � 2/=2:

Next, we give the main error estimate for the dG IgA method.
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Theorem 1 Let u 2 W1;2.˝/\Wl;p.TH.˝//, with l � 2 and p 2 .p.d; l/; 2� be the
solution of (2). Let uh 2 Bh.S .˝// be the dG IgA solution of (13). Then there are

Ci WD Ci

�
maxl0�l

�
kDl0˚ikL1.E/

�
; kukWl;p.˝i/

�
, such that

ku � uhkdG �
NX

iD1

�
Ci

�
hı.l;p;d/i C

X
Fij�@˝i

˛.j/
hi

hj
hı.l;p;d/i

�
kukWl;p.˝i/

�
; (27)

where ı.l; p; d/ D lC .d=2� d=p� 1/ and p.d; l/ D maxf1; 2d
dC2.l�1/g.

Proof First we need to prove the consistency of u, i.e. u satisfies (13). Then, we
use a variation of Cea’s Lemma (expressed in the dG framework), the results of
Lemmas 6 and 8, as well the quasi-interpolation estimates of Lemma 5. A complete
proof can be found in [30]. ut

2.4 Numerical Examples

In this section, we present a series of numerical examples to validate the theoretical
results, which have been presented.

2.4.1 Smooth and Low-Regularity Solutions

We restrict ourselves to a model problem in ˝ D .�1; 1/3, with �D D @˝ . The
domain ˝ is subdivided into four equal subdomains ˝i, i D 1; : : : ; 4, where for
simplicity every ˝i is initially partitioned into a mesh T.i/hi ;˝i

, with h WD hi D
hj; i ¤ j, and i; j D 1; : : : ; 4. Successive uniform refinements are performed on every

T.i/hi;˝i
in order to compute numerically the convergence rates. We set the diffusion

coefficient equal to one.
In the first test, the data uD and f in (1) are determined such that the exact solution

is u.x/ D sin.5�x1/ sin.5�x2/ sin.5�x3/ (smooth test case). The first three columns
of Table 1 display the convergence rates. As it was expected, the convergence rates
are optimal. In the second case, the exact solution is u.x/ D jxj	. The parameter 	
is chosen such that u 2 Wl;pD1:67.˝/. Specifically, for l D 2, we get 	 D 0:2 and,
for l D 3, 	 D 1:2. In the last columns of Table 1, we display the convergence rates
for degree k D 2; k D 3 and k D 4 in case of having l D 2 and l D 3. We observe
that, for each of the two different tests, the error in the dG-norm behaves according
to the main error estimate given by (27).
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Table 1 The numerical convergence rates of the dG IgA method

Highly smooth k D 2 k D 3 k D 4
h
2s k D 2 k D 3 k D 4 l D 2 l D 3 l D 2 l D 3 l D 2 l D 3

Convergence rates

s D 0 � � � � � � � � �
s D 1 0.445 2.916 0.083 0.510 1.425 0.406 1.124 0.369 0.926

s D 2 2.342 2.463 3.576 0.670 1.645 0.615 1.582 0.562 1.465

s D 3 2.100 3.141 4.089 0.699 1.669 0.694 1.692 0.683 1.674

s D 4 2.031 3.041 3.989 0.700 1.680 0.700 1.700 0.700 1.700

Fig. 1 Non-matching meshes: decomposition into 2 patches with underlying grid of ratio R D 2

(left), contours of uh (right)

2.4.2 Non-matching Meshes

We consider the boundary value problem (1) with exact solution u.x; y/ D sin.�x/
sin.�y/. The computational domain consist of two unit square patches, ˝1 D
.�1; 0/ � .0; 1/ and ˝2 D .0; 1/ � .0; 1/, see Fig. 1 (left). The knot vectors
representing the geometry are given by �.1;2/

1 D �
.1;2/
2 D f0; 0; 1; 1g. We refine

the mesh of the patches to a ratio R, i.e., the ratio of the grid sizes is R D h1=h2, see
Fig. 1 (left). We solved the problem using equal B-spline degree k on all patches.
We plot in Fig. 1 (right) the dG IgA solution uh computed with k D 2. In Fig. 2, we
present the decay of the L2 and dG errors for k D 1; 2; 3 and ratios R D 2r with r
from 1 up to 5. In Table 2, we display the convergence rates for large ratio R D 40.
In both cases, we observe that the rates are the expected ones and are not affected
by the different grid sizes of the meshes.
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Fig. 2 Error decay in the L2 (left) and dG (right) norms for polynomial degree k D 1; 2; 3 (top to
bottom) and ratio RD 2r with r running from 1 to 5
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Table 2 Non-matching meshes: error estimates for degrees k D 1; 2; 3 and R D 40

Dofs L2 error Conv. rate DG error Conv. rate

Degree k D 1

1685 0.31667 0 2.1596 0

6570 0.0867936 1.86732 0.97857 1.14202

25,946 0.0249492 1.79859 0.49992 0.968979

103,122 0.00638919 1.96529 0.251392 0.991758

411,170 0.00160452 1.99349 0.125887 0.997804

1.64205�106 0.000401493 1.9987 0.0629683 0.999435

6.56295�106 0.000100393 1.99972 0.0314873 0.999857

Degree k D 2

1773 0.0330803 0 0.117511 0

6740 0.0237587 0.477516 0.278058 �1.2426

26,280 0.00186298 3.67278 0.0555191 2.32433

103,784 0.000205886 3.17769 0.0130802 2.0856

412,488 2.53126�10�5 3.02392 0.00321704 2.02358

1.64468�106 3.17795�10�6 2.99369 0.000800278 2.00716

6.5682�106 3.99389�10�7 2.99223 0.000199727 2.00247

Degree k D 3

1865 0.0196108 0 0.281761 0

6914 0.00216825 3.17704 0.037403 2.91324

26,618 0.00030589 2.82545 0.00706104 2.4052

104,450 1.60210�10�5 4.25498 0.000803958 3.13469

413,810 9.49748�10�7 4.07627 9.7687�10�5 3.04088

1.64731�106 5.85542�10�8 4.0197 1.21191�10�5 3.01089

6.57346�106 3.64710�10�9 4.00495 1.51195�10�6 3.00280

2.5 Graded Mesh Partitions for the dG IgA Methods

We saw in the previous numerical tests that the presence of singular points reduces
the convergence rates. In this section, we will study this subject in a more general
form. We will focus on solving the model problem in domains with re-entrant
corners on the boundary. Due to these singular corner points, the regularity of the
solution (at least in a small vicinity) is reduced in comparison with the solutions in
smooth domains [20]. As a result, the numerical methods applied on quasi uniform
meshes for solving these problems do not yield the optimal convergence rate and
thus a particular treatment must be applied. We will devise the popularly known
graded mesh techniques which have widely been applied so far for finite element
methods [3, 4].
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2.5.1 Regularity Properties of the Solution Around the Boundary
Singular Points

Let us assume a domain˝ � R
2 and let Ps 2 @˝ be a boundary point with internal

angle ! 2 .�; 2�/. We consider the local cylindrical coordinates .r; 
/ with pole
Ps, and define the cone, see Fig. 3 (left),

C D f.x; y/ 2 ˝ W x D r cos.
/; y D r sin.
/; 0 < r < R; 0 < 
 < !g: (28)

Then the solution in C can be written, [20],

u D ur C us; (29)

where ur 2 Wl�2;2.˝/ and

us D �.r/�r	 sin.	
/; (30)

where � is the stress intensity factor (is a real number depending only on f ), and
	 D �=! 2 .0; 1/ is an exponent which determines the strength of the singularity.
Since 	 < 1, by an easy computation, we can show that the singular function us

does not belong to W2;2.˝/ but u 2 W2;p.˝/ with p D 2=2 � 	. The representation
(30) of us helps us to reduce our study to the examination of the behavior of u in the
vicinity of the singular point, since the regularity properties of u are determined by
the regularity of us. The main idea is the following: based on the a priori knowledge
of the analytical form of us in C , we carefully construct a locally adapted mesh in
C by introducing a grading control parameter � WD �.	; k/, such as allows us to
prove that the approximation order of the method applied on this adapted mesh for
us is similar with the order of the method applied on the rest of the mesh (maybe
quasi uniform) for ur.

2.5.2 The Graded Mesh for TH.˝/ and Global Approximation Estimates

The area Us WD fx 2 ˝ W jPs � xj � R;R � NZh; NZ � 2g is further sub-
divided into ring zones Z�; � D 0; ::; �M < NZ , with distance from Ps equal to

D.Z� ;Ps/ WD C.n�h/
1
� , where 1 � n� < NZ and 1

2
� C � 1. The radius of every zone

is defined to be RZ� WD D.Z�C1;Ps/ �D.Z� ;Ps/ D C.n�C1h/
1
� � C.n�h/

1
� .

For convenience, we assume that the initial subdivision TH fulfill the following
conditions, for an illustration see Fig. 3 (right) with �M D 2:

• The subdomains can be grouped into those which belong (entirely) to the area Us

and those that belong (entirely) to ˝ n Us. This means that there is no ˝i; i D
1; : : : ;N such that Us \˝i ¤ ; and .˝ n Us/\˝i ¤ ;.
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ω= 3π
2
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Z0

Ω0

Ω

θ
r R

Ω2 Ω3

Ω1

Z2

Z1 Ω4

Fig. 3 Left: 2d domain with corner singularity. Right: zone partition and the subdomians ˝i of
TH.˝/

• Every ring zone Z� is partitioned into “circular” subdomains ˝i� which have
radius ˝i� equal to the radius of the zone, that is R˝i�

D RZ� . For computational
efficiency reasons, we prefer -if its possible- every zone to be only represented
by one subdomain.

• The zone Z0 is represented by one subdomain, say ˝0, and the mesh T.0/h0
.˝0/

includes all E 2 Th.˝/ such that @E \ Ps ¤ ;.

The graded meshes T
.i� /
hi�
.˝i� / are mainly determined by the grading parameter

�.	; k/ 2 .0; 1� and the mesh sizes hi� are chosen to satisfy the following properties:

for˝i� with distance R˝i�
from Ps, the mesh size hi� is defined to be hi� D O.hR1��˝i�

/

and for T.i0/h0
.˝0/ the mesh size is of order hi0 D O.h

1
� /, more details are given in

[28]. Based on previous properties of the T
.i� /
hi�
.˝i� / meshes, we can conclude the

relations

Cmh
1
� � hi� � CMh

1
� ; if ˝ i� \ Ps ¤ ;; (31)

CmhR1��˝i�
� hi� � CMhD1��

.Z� ;Ps/
; if ˝ i� \ Ps D ;: (32)

Using the local interpolation estimate of Lemma 5 in every ˝i� � Us and the

characteristics of the meshes T
.i� /
hi�
.˝i� /, we can easily obtain the estimate

kus �˘huskdG.Us/ �
X

i�

Ci�h
	
i�
; (33)

since us 2 WlD1C	;2.˝/ (and also u 2 W2;pD 2
2�	 .˝/) and we do not consider non-

matching grid interfaces. Using the mesh properties (31) and (32), estimate (33) and
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Lemma 5, we can prove the following global error estimate of the proposed dG IgA
method applied to problems with boundary singularities, see [28].

Theorem 2 Let Z� be a partition of˝ � R
2 into ring zones and let TH to be a sub-

division to ˝ with the properties as listed in the previous paragraphs. Let T.i/hi
.˝i/

be the meshes of subdomains as described above. Then for the solution u of (2) and
the dG IgA solution uh, we have the approximation result

ku � uhkdG � Chr; with r D min.k; 	=�/; (34)

where the constant C > 0 depends on the characteristics of the mesh and on the
mappings˚i (see (6)) but not on hi.

2.5.3 Numerical Examples

In this section, we present a series of numerical examples in order to validate the
theoretical analysis on the graded mesh in Sect. 2.5. The first example concerns a
two-dimensional problem with a boundary point singularity (L-shape domain). The
second example is the interior point singularity problem of the Sect. 2.4.

1. Boundary Singular Point
One of the classical test cases is the singularity due to a re-entrant corner. The
L-shape domain given by .�1; 1/2 n .�1; 0/2. In Fig. 4 (left), the subdivision of
˝ into two subdomains is presented. The exact solution is u D r

�
! sin.
�=!/;

where ! D 3�=2. We set �D D @˝ and the data f ; uD of (2) are specified by
the given exact solution. The problem has been solved using B-splines of degree
k D 1 and k D 2 and the grading parameter is � D 0:6 and � D 0:3 respectively.
In Fig. 4 (middle), the graded mesh for � D 0:6 is presented and in Fig. 4 (right)
the contours of the numerical solution are plotted. In Table 3, we present the
convergence rates of the method without grading (left columns). As we can see,
the convergence rates are determined by the regularity of the solution around the
singular boundary point. In the right columns, we present the convergence rates
corresponding to the graded meshes. We can see that the rates tend to be optimal
with respect the B-spline degree.

2. Interior Point Singularity
The domain is ˝ D .�1; 1/2. We consider a solution u of (1) with a point
singularity at the origin given by u.x/ D jxj	. We set 	 D 0:6 and is easy to
show that u 2 WlD1:6;2.˝/. We set ˛ D 1 in˝ . In the left columns of Table 3, we
display the convergence rates for degrees k D 1 and k D 2without mesh grading.
The convergence rates are suboptimal and follow the approximation estimate
(27). The problem has been solved again on graded meshes with � D 0:6 for
k D 1 and � D 0:3 for k D 2, see Fig. 5. We display the convergence rates in the
right columns of Table 3. The rates tend to be optimal as it was expected.



Multipatch Discontinuous Galerkin Isogeometric Analysis 19

Fig. 4 L-shape test. Left: subdomains, middle: graded mesh with � D 0:6, right: contours of uh

Table 3 The convergence rates for the L-shape test (left) and for the internal singularity test
(right)

No grading With grading

k D 1 k D 2
h
2s k D 1 k D 2 � D 0:6 � D 0:3

Convergence rates

s D 0 � � � �
s D 1 0.636 0.650 0.915 1.672

s D 2 0.641 0.657 0.933 1.919

s D 3 0.647 0.661 0.946 1.987

s D 4 0.652 0.666 0.957 2.071

No grading With grading

k D 1 k D 2
h
2s k D 1 k D 2 � D 0:6 � D 0:3

Convergence rates

s D 0 � � � �
s D 1 0.508 0.573 0.855 1.661

s D 2 0.547 0.580 0.930 1.828

s D 3 0.570 0.586 0.969 1.928

s D 4 0.583 0.591 0.990 1.951
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Fig. 5 Interior singularity test. Left: the subdomains ˝i; i D 1; : : : ; 4, middle: the graded mesh
with � D 0:3, right: the contours of uh

3 Multipatch dG IgA for PDEs on Surfaces

3.1 Diffusion Problems on Open and Closed Surfaces

Let us now consider a diffusion problem of the form (1) on a sufficiently smooth,
open surface˝ , the weak formulation of which can formally be written in the same
form as (2) in Sect. 2: find a function u 2 W1;2.˝/ such that u D uD on the boundary
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@˝ of the surface˝ and satisfies the variational formulation

a.u; v/ D l.v/; 8v 2 W1;2
0 .˝/; (35)

with the bilinear and linear forms a.�; �/ and l.�/, but now defined by the relations

a.u; v/ D
Z
˝

˛r˝u � r˝v d˝ and l.v/ D
Z
˝

fv d˝;

respectively, where r˝ denotes the surface gradient, see, e.g., Definition 2.3 in
[18] for its precise description. For simplicity of the presentation, we here assume
Dirichlet boundary condition. It is clear that other boundary conditions can be
treated in the same framework as it was done in [29] for mixed boundary conditions.
In the case of open surfaces with pure Neumann boundary condition and closed
surfaces, we look for a solution u 2 W1;2.˝/ satisfying the uniqueness conditionR
˝

u.x/dx D 0 and the variational equation (2) under the solvability condition
l.1/ D 0. In Sect. 3.4, we present and discuss the numerical results obtained for
different diffusion problems on an open (Car) and on two closed (Sphere, Torus)
surfaces.

3.2 Multipatch dG IgA Discretization

Let TH.˝/ D f˝igNiD1 be again a partition of our physical computational domain˝ ,
that is now a surface, into non-overlapping patches (sub-domains) ˝i such that (3)
holds, and let each patch ˝i be the image of the parameter domain Ő D .0; 1/2 �
R
2 by some NURBS mapping ˚i W Ő ! ˝i � R

3; Ox D .Ox1; Ox2/ 7! x D
.x1; x2; x3/ D ˚i.Ox/, which can be represented in the form

˚i.Ox1; Ox2/ D
n1X

k1D1

n2X
k2D1

C.i/
.k1;k2/

OB.i/.k1;k2/.Ox1; Ox2/ (36)

where f OB.i/.k1;k2/g are the bivariate NURBS basis functions, and fC.i/
.k1;k2/
g are the

control points, see [8] for a detailed description. We always assume that the mapping
˚i is regular. Therefore, the inverse mapping Ox D �i.x/ WD ˚�1i .x/ is well defined
for all patches˝i, i D 1; : : : ;N.

Now the dG IgA scheme for solving our surface diffusion problem (35) can
formally be written in the form (13) as in Sect. 2: find uh 2 Bh.TH.˝// such that

ah.uh; vh/ D l.vh/C pD.uD; vh/; 8vh 2 Bh.TH.˝//; (37)

where ah.�; �/ and pD.�; �/ are defined by (14) provided that we replace the gradient
r by the surface gradient r˝ . Since the dG bilinear form ah.�; �/ is positive on
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Bh.TH.˝// n f0g for sufficiently large �, cf. Lemma 6, there exist a unique dG
solution uh 2 Bh.TH.˝//. The dG IgA scheme (37) is equivalent to a system of
algebraic equations of the form

Khuh D f
h
; (38)

the solution uh of which gives us the coefficients (control points) of uh. In order to
generate the entries of the system matrix Kh and the right-hand side f

h
, we map the

patches ˝i composing the physical domain, i.e., our surface ˝ , into the parameter
domain Ő D .0; 1/2. For instance, for the broken part ai.uh; vh/ of the bilinear form
ah.uh; vh/, we obtain

ai.uh; vh/ D
Z
˝i

˛.i/ r˝uh.x/ � r˝uh.x/ d˝

D
Z
Ő i
˛.i/ ŒJi.Ox/F�1i .Ox/ Or Oui.Ox/�>ŒJi.Ox/F�1i .Ox/ Or Ovi.Ox/�gi.Ox/ dOx

D
Z
Ő i
˛.i/ . Or Oui.Ox//> F�1i .Ox/ Or Ovi.Ox/ gi.Ox/dOx ;

where Ji.Ox/ D @˚i.Ox/=@Ox, Fi.Ox/ D .Ji.Ox//>.Ji.Ox// and gi.Ox/ D .det Fi.Ox//1=2
denote the Jacobian, the first fundamental form and the square root of the associated
determinant, respectively. These terms, coming from the parameterization of the
domain, can be exploited for deriving efficient matrix assembly methods, cf.
[31, 32]. Furthermore, we use the notations Oui.Ox/ D uh.˚i.Ox// and Or D . @

@Ox1 ;
@
@Ox2 /
>.

3.3 Discretization Error Estimates

In [29], we derived discretization error estimates of the form

ku � uhk2dG � C
NX

iD1
˛.i/h2t

i kuk2H1Ct.˝i/
; (39)

with t WD minfs; kg, provided that the solution u of our surface diffusion problem
(35) belongs to H1Cs.TH.˝// D W1Cs;2.TH.˝// with some s > 1=2. In the case
t D k, estimate (39) yields the convergence rate O.hk/ with respect to the dG
norm, whereas the Aubin-Nitsche trick provides the faster rate O.hkC1/ in the L2
norm. Here k always denotes the underlying polynomial degree of the NURBS. This
convergence behavior is nicely confirmed by our numerical experiments presented
in [29] and in the next subsection.

In [29], we assumed matching meshes and some regularity of the solution of
(35), namely u 2 H1Cs.TH.˝//. It is clear that the results of Theorem 1, which
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includes no-matching meshes and low-regularity solutions, can easily be carried
over to diffusion problems on open and closed surfaces. The same is true for mesh
grading techniques presented in Sect. 2.5.

3.4 Numerical Examples

3.4.1 Sphere

Let us start with a diffusion problem on a closed surface ˝ that is given by the
sphere ˝ D f.x; y; z/ 2 .�1; 1/3 W x2 C y2 C z2 D 1g with unitary radius.
The computational domain ˝ is decomposed into 6 patches, see left-hand side
of Fig. 6. The knot vectors representing the geometry of each patch are given as
�1;2 D .0; 0; 0; 0; 0; 1; 1; 1; 1; 1/ in both directions. Since the surface is closed, we
impose the uniqueness constraint

R
˝

u d˝ D 0 on the solution. The right-hand side
f .r; 
; 
/ D 12u.r; 
; 
/, where the solution u.r; 
; 
/ D 12 sin.3
/ sin3.
/ is an
eigenfunction of the Laplace-Beltrami operator .��˝/ satisfying the compatibility
condition

R
˝

f d˝ D 0: The example can also be found in [21]. The diagrams
displayed in Fig. 7 show the error decay with respect to the L2 (left) and dG (right)
norms for polynomial degrees k D 1; 2; 3; and 4. As expected by our theoretical
results, we observe the full convergence rates O.hkC1/ and O.hk/ for the L2 norm
and the dG norm, respectively. In Table 4, we compare the L2 errors of dG IgA
solutions with those produced by the corresponding continuous (standard) Galerkin
(cG) IgA scheme for the polynomial degree k D 5. In the case of smooth solutions,
the dG IgA is as good as the cG counterpart. The same is true for the errors with
respect to the dG norm.
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Fig. 6 Sphere: geometry and decomposition into 6 patches (left) and solution for the Laplace-
Beltrami problem (right)
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Fig. 7 Sphere: error decay in the L2 (left) and dG (right) norms for polynomial degrees 1 to 4

Table 4 Sphere: comparison of the cG and dG IgA error decay in the L2 norm for k D 5

k D 5 cG-IgA dG-IgA

Dofs L2 error Conv. rate L2 error Conv. rate

216 0.168803 0 0.166582 0

294 0.0602254 1.48689 0.0599854 1.16908

486 0.00900833 2.74104 0.00898498 2.55496

1014 8.90909�10�5 6.65984 8.90774�10�5 6.537

2646 8.64021�10�7 6.68807 8.63906�10�7 6.85905

8214 1.16592�10�8 6.21152 1.16582�10�8 6.27626

28,566 1.75119�10�10 6.05699 1.75127�10�10 6.06894

3.4.2 Torus

We now consider the closed surface

˝ D f.x; y/ 2 .�3; 3/2; z 2 .�1; 1/ W r2 D z2 C .
p

x2 C y2 � R2/g

that is nothing but a torus that is decomposed into 4 patches, see Fig. 8 left. The
knot vectors �1 D f0; 0; 0; 0:25; 0:25; 0:50; 0:50; 0:75; 0:75; 1; 1; 1g and �2 D
f0; 0; 0; 1; 1; 1g describe the NURBS used for the geometrical representation of
the patches. We first consider the surface Poisson equation, also called Laplace-
Beltrami equation, with the right-hand side

f .
; 
/ D r�2 Œ9 sin.3
/ cos.3
 C 
/�
� �.RC r cos.
//�2.�10 sin.3
/ cos.3
 C 
/� 6 cos.3
/ sin.3
 C 
//�
� �.r.RC r cos.
//�1/.3 sin.
/ sin.3
/ sin.3
 C 
//� ;

where 
 D arctan.y=x/, 
 D arctan.z=.
p

x2 C y2 � R// , R D 2, and r D 1.
The exact solution is given by u D sin.3
/ cos.3
 C 
/, cf. also [21]. We mention
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Fig. 8 Torus: geometry and decomposition into 4 patches (left), solution for the Laplace-Beltrami
problem (middle), solution for jumping coefficients (right)
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Fig. 9 Torus: error decay in the L2 (left) and dG (right) norms for polynomial degrees 1 to 4

Table 5 Torus: comparison of the cG and dG IgA error decay in the L2 norm for k D 5

k D 5 cG-IgA dG-IgA

Dofs L2 error Conv. rate L2 error Conv. rate

504 0.0974255 0 0.0973029 0

700 0.0433491 1.1683 0.043271 1.16908

1188 0.00736935 2.55639 0.00736339 2.55496

2548 7.9296�10�5 6.53814 7.92948�10�5 6.537

6804 6.83083�10�7 6.85904 6.83068�10�7 6.85905

21,460 8.8131�10�9 6.27627 8.81294�10�9 6.27626

75,348 1.3131�10�10 6.0686 1.31276�10�10 6.06894

that the functions u and f are chosen such that the zero mean compatibility condition
holds. The IgA approximation to this solution is depicted in middle picture of Fig. 8.
The diagrams displayed in Fig. 9 show the error decay with respect to the L2 (left)
and dG (right) norms for polynomial degrees k D 1; 2; 3; and 4. As expected by
our theoretical results, we observe the full convergence rates O.hkC1/ and O.hk/ for
the L2 norm and the dG norm, respectively. In Table 5, we compare the L2 errors of
dG IgA solutions with those produced by the corresponding cG IgA scheme for the
polynomial degree k D 5. In the case of smooth solutions, the dG IgA is as good as
the cG counterpart. The same is true for the errors with respect to the dG norm.
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Table 6 Torus: L2 and energy norm errors with degree k D 2

Dofs L2 error Conv. rate dG error Conv. rate

108 2.04841�106 0 8.56088�106 0

208 1.03579�106 0.98377 4.89856�106 0.805403

504 128,215 3.0141 1.09244�106 2.1648

1480 15,431.9 3.05458 258,162 2.08121

4968 1808.17 3.09331 64,084.3 2.01023

18,088 213.252 3.0839 173,61.8 1.88406

268,840 Reference Solution Reference Solution

Now we consider the case when the diffusion coefficients ˛ have large jumps
across the boundaries of the patches in which the torus was decomposed. More
precisely, we assume that the diffusion coefficient ˛ D ˛.i/ > 0 in the patch ˝i,
i D 1; 2; 3; 4, where ˛.2/ D ˛.4/ D 1 and ˛.1/ D ˛.3/ D 10�6. The patches are
arranged from blue ˝1 to red ˝4: The right-hand side f is the same as given above
for the case of the Laplace-Beltrami problem, i.e. for ˛ D 1: Now the solution is
not known, but we know that the solution is smooth in the patches˝i and has steep
gradients towards @˝2 and @˝4, see also of Fig. 8 right. Due to our theory, we can
expect full convergence rates since we have an exact representation of the geometry.
Indeed, we realize the full convergence rate by choosing a fine grid as the reference
solution and comparing the solutions at each refinement step against this reference
solution as shown in Table 6.

3.4.3 Car

We now consider the diffusion problem on an open, free-form surface. In order
to demonstrate the fact that our results are general and not limited to academic
examples, we apply our methods to a CAD model representing a car shell.

The surface is composed of eight quadratic B-spline patches, shown in Fig. 10
(left). The model exhibits several small bumps in the interior of the surface and
sharp corners on the boundary. In addition, the patches have varying areas and meet
along curved one-dimensional (quadratic) B-spline interfaces.

We choose a constant diffusion coefficient on the whole domain and we prescribe
homogeneous Dirichlet conditions along the boundary. For the right-hand side, we
used a (globally defined in R

3) linear function which we restricted on the surface,
in order to obtain a smooth solution to our problem.

As suggested by the isogeometric paradigm, we used quadratic B-spline basis
functions, forwarded on the surface, as discretization basis. We started with a coarse
grid, which was h�refined uniformly several times, in both parametric directions.

An analytic formula for the exact solution is not available. Therefore, we have
chosen a fine grid of approximately one million degrees of freedom as the reference
solution. Comparing against this solution (obtained by the corresponding cG IgA
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Fig. 10 Car: control points of the geometry (left), IgA solution of the Dirichlet surface diffusion
problem (right). Black lines indicate patch interfaces

Table 7 Diffusion on a car-shell model. Numerical results for continuous Galerkin IgA with
strong imposition of Dirichlet boundary (cG IgA), weak imposition (Nitsche-type) and finally
patch-discontinuous Galerkin (dG IgA)

k D 2 cG IgA Nitsche-type BCs dG IgA

DoFs L2 error Rate L2 error Rate L2 error Rate

96 1.87598 1.77144 1.77029

192 1.23006 0.608922 1.19201 0.571527 1.19188 0.570749

480 0.633648 0.956971 0.623767 0.934312 0.623764 0.934161

1440 0.241842 1.38962 0.239835 1.37897 0.239835 1.37896

4896 0.0659275 1.87511 0.0655902 1.87049 0.0655902 1.87049

17,952 0.0115491 2.5131 0.011502 2.5116 0.011502 2.5116

68,640 0.00155178 2.89578 0.00154625 2.89504 0.00154624 2.89504

�268 K 0.00017567 3.14298 0.000175096 3.14256 0.000175094 3.14257

�1 M Reference Reference Reference Reference Reference Reference

method), the expected convergence rates have been observed. Table 7 contains the
numeric results for the L2 norm, obtained using either the continuous (with strong
or weak imposition of Dirichlet boundaries) or dG IgA method. Apart from the
observed order of convergence, the magnitude of the error agrees in all cases as well.

4 The G+++SMO C++ Library

Isogeometric analysis requires seamless integration of Finite Element Analysis
(FEA) and Computer-aided design (CAD) software. The existing software libraries,
however, cannot be adapted easily to the rising new challenges since they have
been designed and developed for different purposes. In particular, FEA codes are
traditionally implemented by means of functional programming, and are focused
on treating nodal shape function spaces. In CAD packages, on the other hand, the
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central objects are free-form curves and surfaces, defined by control points, which
are realized in an object-oriented programming environment.

G+++SMO is an object-oriented, template C++ library, that implements a generic
concept for IGA, based on abstract classes for geometry map, discretization basis,
assemblers, solvers and so on [25]. It makes use of object polymorphism and
inheritance techniques in order to support a variety of different discretization bases,
namely B-spline, Bernstein, NURBS bases, hierarchical and truncated hierarchical
B-spline bases of arbitrary polynomial order, and so on.

The library is open-source and is licenced under the Mozilla Public License v2.0.
The source code, together with a reference manual and wiki pages can be reached
at http://www.gs.jku.at/gismo.

Our design allows the treatment of geometric entities such as surfaces or
volumes through dimension independent code, realized by means of template meta-
programming. Available features include simulations using continuous and discon-
tinuous Galerkin approximation of PDEs, over conforming and non-conforming
multi-patch computational domains. PDEs on surfaces as well as integral equa-
tions arising from elliptic boundary value problems. Boundary conditions may
be imposed both strongly and weakly. In addition to advanced discretization
and generation techniques, efficient solvers like multigrid iteration schemes are
available. Methods for solving non-linear problems are under development. Finally,
we aim to employ existing high-end libraries for large-scale parallelization.

In the following paragraphs we shall provide more details on the design and
features of the library.

4.1 Description of the Main Modules

The library is partitioned into smaller entities, called modules. Currently, there are
six (6) modules in G+++SMO namely Core, Matrix, NURBS, Modeling, Input/Output
and Solver modules.

The Core module is the backbone of the library. Here an abstract interface is
defined for a basis, that is, a set of real-valued functions living on a parameter
domain. At this level, we do not specify how these functions (or its derivatives)
should be evaluated. However, a number of virtual member functions define an
interface that should be implemented by derived classes of this type. Another
abstract class is the geometry class. This object consists of a (still abstract) basis
and a coefficient vector, and represents a patch. Note that parameter or physical
dimension are not specified at this point. There are four classes directly derived from
the geometry class; these are curve, surface, volume and bulk. These are parametric
objects with known parameter space dimension 1; 2; 3 and 4 respectively.

Another abstract class is a function class. The interface for this class includes
evaluation, derivations and other related operations. The geometry abstract class is
actually deriving from the function class, demonstrating the fact that parametric
geometries can be simply viewed as (vector) functions. Another interesting object

http://www.gs.jku.at/gismo
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is the multipatch object. CAD models are composed of many patches. Therefore,
a multipatch structure is of great importance. It contains two types of information;
first, geometric information, essentially a list of geometry patches. Second, topo-
logical information between the patches, that is, the adjacency graph between patch
boundaries, degenerate points, and so on. Let us also mention the field class, which
is the object that typically represents the solution of a PDE. A field is a mathematical
scalar or vector field which is defined on a parametric patch, or multipatch object.
It may be evaluated either on the parameter or physical space, as the isogeometric
paradigm suggests.

The Matrix module contains all the linear algebra related infrastructure. It is
based on the third party library Eigen [22]. The main objects are dense and sparse
matrices and vectors. Typical matrix decompositions such as LU, QR, SVD, and
so on, are available. Furthermore, the user has also access to iterative solvers like
conjugate gradient methods with different preconditioners. Finally, one can use
popular high-end linear solver packages like SuperLU2 through a common interface.

The NURBS module consists of B-Splines, NURBS, Bézier of arbitrary degrees
and knot-vectors, tensor-product B-splines of arbitrary spatial dimension.

The Modeling module provides data structures and geometric operations that
are needed in order to prepare CAD data for analysis. It contains trimmed surfaces,
boundary represented (B-rep) solids and triangle meshes. Regarding modeling
operations, B-Spline fitting, smoothing of point clouds, Coon’s patches, and volume
segmentation methods are available.

The Input/Output module is responsible for visualization as well as file reading
and writing. For visualization, we employ Paraview or Axel (http://axel.inria.fr) and
VTK at INRIA, France. An important issue is file formats. Even if NURBS is an
industrial standard, a variety of different formats are used in the CAD industry to
exchange NURBS data. In G+++SMO, we have established I/O with popular CAD
formats, which include the 3DM file format of Rhinoceros 3D modeler, the X_T
format of Siemens’ NX platform as well as an (exported) format used by the LS-
DYNA general-purpose finite element program.

The Assembler module can already treat a number of PDE problems like
convection-diffusion problems, linear elasticity, Stokes equations as well as dif-
fusion problems on surfaces by means of continuous or discontinuous Galerkin
methods, including divergence preserving discretizations for Stokes equations.
Strong or weak imposition Dirichlet boundary conditions and Neumann-type
conditions are provided. Boundary element IgA collocation techniques are also
available.

Apart from the modules described above, there are several more which are under
development. These include a hierarchical bases module, an optimization module
and a triangular Bézier module, see Fig. 11.

2http://acts.nersc.gov/superlu

http://axel.inria.fr
http://acts.nersc.gov/superlu
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Fig. 11 A diagram of the different parts in the library and their interactions

4.2 Development Framework

The library uses a set of standard C++ tools in order to achieve cross-platform
functionality. Some compilers that have been tested includes Microsoft’s Visual
C++, Mingw32, GCC, Clang and the Intel compiler.

The main development tools used are:

• CMake cross-platform build system for configuration of the code. A small set of
options are available in order to enable optional parts of the library that require
external packages. Furthermore, the user is able to enable debug mode build,
that disables code optimization and facilitates development, by attaching debug
information in the code.

• The code is available in an SVN repository. We have chosen the continuous inte-
gration as development policy. That is, all developers commit their contributions
in a mainline repository.

• Trac software management system is used for bug reporting. Additionally, we
use the integrated wiki for documentation and user guidance.

• A CDASH software testing server is employed for regular compilation and
testing of the mainline code. Nightly builds are executed on different platforms,
as well as continuous builds after user commits. This allows to easily correct
errors and ensure the quality of the library. Coverage analysis and memory checks
are also performed regularly.

• The in-source documentation system Doxygen is used heavily in the code.
• A mailing list is available for communication and user support.
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Regarding tools that are employed in the library:

• The C++ Standard Library is employed. This is available by default on C++
modern installations.

• The Eigen C++ Linear Algebra library is used for linear algebra operations. This
library features templated coefficient type, dense and sparse matrices and vectors,
typical matrix decompositions (LU, QR, SVD,. . . ) as well as iterative solvers and
wrappers for high-end packages (SuperLU, PaStiX, SparseSuite,. . . ).

• XML reader/writer for input/output of XML files, and other CAD formats (OFF,
STL, OBJ, GeoPDEs, 3DM, Parasolid).

• Mathematical Expression Toolkit Library (ExprTk). This is an expression-tree
evaluator for mathematical function expressions that allows input of functions
similar to Matlab’s interface.

4.3 Additional Features and Extensions

Apart from the basic set of tools provided in the library, the user has the possibility
to enable features that require third-party software. The following connections to
external tools is provided:

• OpenNurbs library used to support Rhino’s 3DM CAD file format. This allows
file exchange with standard CAD software.

• Connection to Parasolid geometric kernel. Enabling this feature allows input and
output of the x_t file format. Also, the user can employ advanced modeling
operations like intersection, trimming, boolean operations, and so on.

• Connection to LS-DYNA. The user can output simulation data that can be used
by LS-DYNA’s Generalized element module system, for performing for instance
simulations on shells.

• Connection to IPOPT nonlinear optimization library. With this feature one can
use powerful interior point constrained optimization algorithms in order to
perform, for instance, isogeometric shape optimization.

• MPFR library for multi-precision floating point arithmetic. With this feature
critical geometric operations can be performed with arbitrary precision, therefore
guaranteeing a verified result.

• Graphical interface, interaction and display using Axel modeler.

4.4 Plugins for Third-Party Platforms

Finally, there are currently two plugins under development. The plugins allow third-
party software to employ and exchange data with G+++SMO.
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• Axel Modeler is an open-source spline modeling package based on Qt and VTK.
Our plugin allows to use G+++SMO within this graphical interface, and provides
user interaction (e.g. control point editing) and display.

• A Matlab interface is under development. This allows to use operations available
in G+++SMO within Matlab.
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The Influence of Quadrature Errors
on Isogeometric Mortar Methods

Ericka Brivadis, Annalisa Buffa, Barbara Wohlmuth, and Linus Wunderlich

Abstract Mortar methods have recently been shown to be well suited for isoge-
ometric analysis. We review the recent mathematical analysis and then investigate
the variational crime introduced by quadrature formulas for the coupling integrals.
Motivated by finite element observations, we consider on the interface a quadrature
rule purely based on the slave mesh as well as a method using on the interface
quadrature rules based on the slave mesh and on the master mesh, resulting in a
non-symmetric saddle point problem. While in the first case reduced convergence
rates can be observed, in the second case the influence of the variational crime is
less significant.

1 Introduction

Isogeometric analysis, introduced in 2005 by Hughes et al. in [17], is a family of
methods that use B-splines and non-uniform rational B-splines (NURBS) as basis
functions to construct numerical approximations of partial differential equations
(PDEs). With isogeometric methods, the computational domain is generally split
into patches. Within this framework, techniques to couple the numerical solution on
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different patches are required. To retain the flexibility of the meshes at the interfaces,
mortar methods are very attractive.

Mortar methods are a popular tool for the coupling of non-matching meshes,
originally introduced for spectral and finite element methods [4–6]. They were
successfully applied in the context of isogeometric analysis [1, 13, 16]. A mathe-
matical analysis enlightening the use of different dual spaces was recently presented
in [8]. In this paper, starting from these latter results, we focus on one particular
challenge in the realization of a mortar method, namely, the evaluation of the
interface integrals which contain a product of functions, each of which being defined
on a different mesh.

This article is structured as follows. In Sect. 2, we recall the basics of isogeo-
metric mortar methods. In Sect. 3, we consider a review of numerical quadrature
for mortar integrals such as additional aspects in the case of isogeometric analysis,
illustrated by numerical results in Sect. 4.

2 Isogeometric Mortar Methods

In the following, we briefly present isogeometric mortar methods, for more
details we refer to [8]. After stating the problem setting, we review isogeometric
parametrizations, describe the domain decomposition into several NURBS patches
and finally discuss suitable coupling spaces.

Let˝ � R
d, d the dimension being 2 or 3, be a bounded domain, ˛; ˇ 2 L1.˝/,

˛ > ˛0 > 0, and ˇ � 0. We consider the following second order elliptic boundary
value problem with homogeneous Dirichlet conditions

� div.˛ru/C ˇu D f in ˝; (1a)

u D 0 on @˝D D @˝: (1b)

We assume ˛ and ˇ to be piecewise sufficiently smooth.

2.1 Isogeometric Parametrization

Here, we present isogeometric concepts and notations used throughout the paper
and refer to the classical literature [2, 10, 20, 23] for more details.

Let us denote by p the degree of the univariate B-splines and by � an open
univariate knot vector, where the first and last entries are repeated .p C 1/-times,
i.e.,

� D f0 D �1 D : : : D �pC1 < �pC2 � : : : � �n < �nC1 D : : : D �nCpC1 D 1g:
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Let us define Z D f�1; �2; : : : ; �Eg as the knot vector without any repetition, also
called breakpoint vector. For each breakpoint �j of Z, we define its multiplicity mj

as its number of repetitions in � . The Cox-de Boor algorithm, see [10], defines n
univariate B-splines OBp

i .�/, i D 1; : : : ; n, based on the univariate knot vector � and
the degree p. We denote by Sp.�/ D spanf OBp

i .�/; i D 1; : : : ; ng the corresponding
spline space. The smoothness of B-splines is defined by the breakpoint multiplicity.
More precisely, each basis function is Cp�mj at each �j 2 Z.

To define multivariate spline spaces, we introduce the multivariate knot vector
� D .�1 � �2 � : : : � �d/, and for simplicity of notations assume in the
following that the degree is the same in all parametric directions and denote it by p.
Multivariate B-splines OBp

i .�/ are defined by tensor product of univariate B-splines
for each multi-index i 2 I D f.i1; : : : ; id/ W 1 � iı � nıg. We denote by Sp.� / the
corresponding spline space in the parametric domain.

Given a set of positive weights !i, we define NURBS functions ONp
i .�/ as rational

functions of B-splines and the weight function OW D P
i2I !i OBp

i .�/. We set Np.� /

as the multivariate NURBS space in the parametric domain.
For a set of control points Ci 2 R

d, i 2 I, we define a parametrization of a
NURBS surface (d D 2) or solid (d D 3) as a linear combination of NURBS and
control points

F.�/ D
X
i2I

Ci ONp
i .�/;

and assume the regularity stated in [3, Assumption 3.1].
The knot vector � forms a mesh in the parametric space Ő . We define the

physical mesh M as the image of this parametric mesh through F, and denote by O
its elements. The h-refinement procedure, see [3, Section 2.1.3], yields a family of
meshes denoted Mh, each mesh being a refinement of the initial one. We assume
quasi-uniformity for each mesh.

2.2 Description of the Computational Domain

Let the domain˝ be decomposed into K non-overlapping domains˝k, i.e.,

˝ D
K[

kD1
˝k; and˝i \˝j D ;; i ¤ j:

Each subdomain is a NURBS geometry, i.e., there exists a NURBS parametriza-
tion Fk based on a knot vector� k and a degree pk, see Sect. 2.1, such that ˝k is the
image of the parametric space Ő D .0; 1/d by Fk.

For 1 � k1<k2 � K, we define the interface as the interior of the intersection of
the boundaries, i.e., � k1k2 D @˝k1 \ @˝k2 , where �k1k2 is open. Let the non-empty
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Fig. 1 Geometrical conforming case (left) and slave conforming case (right)

interfaces be enumerated by �l, l D 1; : : : ; L, and let us define the skeleton
� D SL

lD1 �l as the union of all interfaces. For each interface, one of the adjacent
subdomains is chosen as the master side and one as the slave side. We denote
the index of the former by m.l/, the index of the latter one by s.l/, and thus
� l D @˝m.l/ \ @˝s.l/. On the interface �l, we define the outward normal nl of the
master side @˝m.l/.

We assume that for each interface the pull-back with respect to the slave domain
is a whole face of the unit d-cube in the parametric space, which we call a slave
conforming situation, see the right setting in Fig. 1. If we also assume that the pull-
back with respect to the master domain is a whole face of the unit d-cube, we are
in a fully geometrically conforming situation, see the left picture of Fig. 1. We note
that in this latter case, the master-slave choice is arbitrary.

For each ˝k, we introduce the space H1�.˝k/ D fvk 2 H1.˝k/; vkj@˝\@˝k
D

0g, where we use standard Sobolev spaces, as defined in [15], endowed with their
usual norms. In order to set a global functional framework on ˝ , we consider the
broken Sobolev space V D QK

kD1 H1�.˝k/, endowed with the broken norm kvk2V DPK
kD1 kvk2H1.˝k/

. For any interface �l � @˝s.l/, we define by H�1=2.�l/ the dual

space of H1=2
00 .�l/, which is the space of all functions that can be trivially extended

on @˝s.l/ n �l by zero to an element of H1=2.@˝s.l//.
The mortar method is based on a weak coupling between different subdomains.

Each subdomain is discretized independently and a weak coupling is performed on
each interface.

2.3 Isogeometric Mortar Discretization

In the following, we set our non-conforming approximation framework. On each
subdomain ˝k, based on the NURBS parametrization, we introduce the approxi-
mation space Vk;h D fvk D Ovk ı F�1k ; Ovk 2 Npk.� k/g. We recall that under the
assumptions on the mesh Mk;h and on the parametrization Fk, this NURBS space
has optimal approximation properties, see, e.g., [2]. On ˝ , we define the discrete
product space Vh D QK

kD1 Vk;h � V , which forms a H1.˝/ non-conforming space
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discontinuous over the interfaces. We denote in the following the maximal mesh
size h D maxk hk as the mesh parameter.

On the skeleton � , we define the discrete Lagrange multiplier product space Mh

as Mh D QL
lD1 Ml;h, where Ml;h has to be selected carefully.

From now on, we assume that jumps of ˛ and ˇ are solely located at the skeleton,
and we define the bilinear and linear forms aWV � V ! R and f WV ! R, such that

a.u; v/ D
KX

kD1

Z
˝k

˛ru � rv C ˇ u v dx; f .v/ D
KX

kD1

Z
˝k

fv dx

as well as

b.	; v/ D
LX

lD1

Z
�l

	Œv�l d�;

where Œ��l denotes the jump from the master to the slave side over �l. The saddle point
formulation of the isogeometric mortar method reads as follows: Find .uh; 	h/ 2
Vh �Mh; such that

a.uh; vh/C b.	h; vh/ D f .vh/; vh 2 Vh; (2a)

b.�h; uh/ D 0; �h 2 Mh: (2b)

We note that the Lagrange multiplier 	h gives an approximation of the normal flux
across the skeleton.

It is well known from the theory of mixed and mortar methods that two abstract
requirements on each interface guarantee the method to be well-posed and of
optimal order, see [4]. Namely, an appropriate approximation order of the dual space
and a uniform inf-sup stability between the primal space and the dual space.

The first choice M0
l;h is a spline space of degree ps.l/, defined on the interface �l

based on the interface knot vector of the slave body˝s.l/. Note that in the presence
of any cross point, a suitable modification, e.g., a local degree reduction as presented
in [8, Section 4.3], has to be applied. The alternative choice M2

l;h is an order .ps.l/�2/
spline space defined on the interface �l based on the interface knot vector of the slave
body ˝s.l/ for which the definition requires the trace space of Vs.l/;h to be a subset
of C1.�l/. We point out that although this combination is uniformly inf-sup stable
with respect to the mesh-size, it results in an order reduction of 1=2. The alternative
candidate, a spline space of degree .ps.l/ � 1/ is not uniformly inf-sup stable, so we
do not consider it any further.

Note that for simplicity of notations, we assume the same type of dual space to
be used for all interfaces. The following theorem is shown in [8] and guarantees
a-priori bounds.

Theorem 1 Let 
 D 0 if Ml;h D M0
l;h and 
 D 1=2 if Ml;h D M2

l;h. For u 2
H�C1.˝/, 1=2 < � � mink.pk � 
/, the weak solution of (1) and .uh; 	h/ the
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non-conforming approximation, see (2), it holds

1

h2
ku � uhk2L2.˝/ C ku � uhk2V � C

KX
kD1

h2�k kuk2H�C1.˝k/

for the primal solution u and

LX
lD1
k ˛ru � nlj˝s.l/

� 	hk2H�1=2.�l/
� C

KX
kD1

h2�k kuk2H�C1.˝k/

for the dual solution 	 D ˛ru � nlj˝s.l/
. With 0 < C <1 a generic constant that is

independent of the mesh sizes but possibly depends on pk.

We highlight that while for both pairings the inf-sup stability is satisfied, the
approximation order of the lower order dual space M2

l;h is sub-optimal. Indeed, in
this case an order of one half is lost in the convergence order.

3 Mortar Integrals

To evaluate the bilinear form b.	; v/ (and analogously b.�; u/), we need to evaluate
for each interface �l the mortar integrals

R
�l
	 vCd� and

R
�l
	 v�d� , where vC

denotes the trace of v from the master domain ˝m.l/, and v� the trace of v from
the slave domain˝s.l/. The Lagrange multiplier 	 is based on the mesh of the slave
domain ˝s.l/. To simplify the notation, let us restrict ourselves to the case of one
single interface and drop the index l in the following.

One particular challenge in the realization of a mortar method is the evaluation
of the first interface integral, referred as the master-slave mortar integral, due to the
product 	 vC of functions each of which being defined on a different mesh, see [7]
for a method to bypass it in a finite element/wavelet context. Any quadrature rule
based on the slave mesh does not respect the mesh lines of the master mesh and vice
versa for a quadrature based on the master mesh.

It is obvious that the use of a suitable quadrature rule based on a merged mesh,
i.e., a mesh which respects the reduced smoothness of the master and slave functions
at their respective mesh lines, leads to an exact evaluation of the integral. However,
the construction of this auxiliary mesh commonly named segmentation process is
challenging, especially in the three dimensional case since the shape of the elements
varies and is difficult to determine, see, e.g., [12, 16, 19, 21, 22]. Note that in an
isogeometric context the merged mesh needs to be constructed in the physical space
and then pulled back to the parametric space for each subdomain. The complexity
of constructing such a mesh becomes even more severe in the case of non-linear
and time-dependent problems, where the relative position of the meshes changes in
every time or load step which implies to recompute the merged mesh at every step.
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Due to this computational complexity, it has been seen very appealing to use a
higher order quadrature rule either based on the slave mesh or on the master mesh to
approximate the master-slave mortar integral, see [11, 14, 24] for some applications
in the finite element and the isogeometric analysis context. However in the finite
element case, early results in [9, 18] showed that this strategy does not necessarily
yield optimal methods. More precisely, in the case that only the master mesh is
chosen, the best approximation error is affected, while for the case only the slave
mesh is chosen it is the consistency error. Numerical results confirmed the lack of
optimality with the master integration approach, while with the slave integration
approach reasonable results were obtained although not optimal in terms of the
Lagrange multiplier norm.

Due to the global smoothness of splines, one could expect the sensitivity with
respect to the quadrature rules for isogeometric methods to be less than for finite
element methods. In the mortar context, according to the finite element results,
it seems interesting to consider a slave integration rule. And, in case of maximal
regularity, i.e., Vk;h � Cpk�1.˝k/ one also might expect the quadrature error on
non-matching meshes to be significantly smaller than in the finite element case.
These preliminary observations motivate us to study the different cases numerically.

Let us denote the quadrature rule based on the boundary mesh of the slave domain
as
P
�, i.e.,

R
�
	 vCd� 	 P

�	 vC: We precise that in the examples a Gaussian
quadrature rule is used, and we vary the number of Gauss nodes. In all cases, we
choose sufficiently many nodes, such that the integration on a merged mesh would
have been exact. The mortar method with pure slave integration is obtained by
evaluating all interface integrals in (2) using this quadrature rule, i.e., the discrete
system reads as follows: Find .Quh; Q	h/ 2 Vh �Mh, such that

a.Quh; vh/C
X
�.v
C
h � v�h / Q	h D f .vh/; vh 2 Vh;

X
�.Qu
C
h � Qu�h / �h D 0; �h 2 Mh:

The notation Q� is used to stress the difference to the discrete solution with exact
integration.

In the next section, we present numerical examples which show severe deviations
even in the isogeometric case. Hence, even though the global smoothness of the
integrated function is increased compared to the finite element case, an integration
approach based only on one mesh reduces the convergence order drastically.

Moreover, we consider an alternative approach which was proposed in [9, 18]
using both integration rules. Additionally denoting

P
C a quadrature rule based on

the boundary mesh of the master domain ˝m, this approach, resulting in a non-
symmetric saddle point problem, reads as follows: Find .Quh; Q	h/ 2 Vh � Mh, such
that

a.Quh; vh/C
X
C v
C
h
Q	h �

X
� v
�
h
Q	h D f .vh/; vh 2 Vh;

X
�.Qu
C
h � Qu�h / �h D 0; �h 2 Mh:
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The non-symmetric saddle point problem, which corresponds to a Petrov–Galerkin
approach in the primal formulation, was motivated by different requirements for
the integration of the primal and dual test functions. Numerical examples showed
error values very close to the case of exact integration, but we note that from the
theoretical side even the well-posedness of the non-symmetric saddle point problem
remains open. In the next section, we present numerical examples which show that
also in an isogeometric context, the results are generally close to those from the
exact integration case.

4 Numerical Results

In this section, we consider two-dimensional and three-dimensional settings in order
to observe the effects of inexact quadrature rules, as presented in Sect. 3, on the
optimality of the mortar method. We first set the problem settings and then give the
results of several studies.

4.1 Two-Dimensional Example

As a first example, let us consider the Poisson problem ��u D f solved on the
domain˝ D .0; 1/�.�1; 1/which is decomposed into two patches by the interface
� D f.x; y/ 2 ˝; y D 0g. The upper domain is set as the slave domain. The internal
load and the boundary conditions are manufactured to have the analytical solution

u.x; y/ D cos .�x/ .cos
��
2

y
�
C sin .2�y//:

The normal derivative on the interface is given by @u=@n.x/ D 2� cos .�x/ ; see
Fig. 2. Neumann conditions are applied on the left and right boundary parts, such
that no cross point modification is necessary.
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Fig. 2 Left: Primal solution on ˝. Right: Lagrange multiplier along the interface
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Fig. 3 Different meshes at mesh refinement level 1. From the left to the right: M1 to M3

Regarding the meshes, we consider three different cases, presented in Fig. 3. In
the first two cases, the initial master mesh is a refinement of the initial slave mesh.
The initial slave mesh consists of just one element. In the case M1, one uniform
refinement step is applied to build the master mesh, in the case M2 two uniform
refinement steps. Case M3 was chosen such that at no refinement level parts of the
slave and master boundary meshes do coincide. The initial interior knots of the slave
domain were chosen as f�=10; 1��=7g in both parametric directions, yielding nine
elements. The initial master mesh consists of four uniform elements.

The cases M1 and M2 serve as a simple test to investigate the influence of the
quadrature error. We note that inverting the role of the master and slave domains
is not interesting in these cases as both integration approaches are able to exactly
evaluate the master-slave mortar integral.

In the following, we provide different numerical error studies. Starting from the
initial mesh, denoted by refinement level 0, we perform uniform refinements for the
slave and the master domains. We note that the inter-element smoothness of the dual
functions can influence the accuracy of the quadrature based on the master mesh, but
not the one based on the slave mesh. Therefore for the slave integration approach,
the equal order pairing with maximal smoothness is considered, i.e., Mh D M0

h �
Cp�1.�/, while for the non-symmetric approach we vary the dual degree. In all
cases, the primal L2.˝/ and the dual L2.�/ errors are computed by a comparison
with the analytical solution stated above.

4.1.1 Slave Integration Approach

Firstly, we consider the case M3, see Fig. 3, to measure the impact of the integration
error in a general situation. A numerical error study is provided in Fig. 4 for a
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Fig. 4 2D results – L2 primal (left) and dual (right) error curves for the case M3: equal order
pairings with p D 1; 3; 5 (from top to bottom) for the slave integration approach and a different
number of additional quadrature points

different number of additional Gauss points and different spline degrees. For a
spline of degree p, we start with p C 1 Gauss points and investigate the effect of
using a higher number of Gauss nodes. It can clearly be seen that the primal and
dual solutions are both affected by the inexact quadrature, leading to non-optimal
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Table 1 2D results – Last
estimated order of
convergence of the primal and
dual L2 errors for the cases
M1 and M2: pairing P5� P5
for the slave integration
approach and a different
number of additional
quadrature points

Add. Primal error Dual error

q.p. Case M1 Case M2 Case M1 Case M2

0 1:63 1:74 0:50 0:50

1 1:63 1:54 0:50 0:50

2 1:63 1:55 0:50 0:50

3 1:63 1:58 0:50 0:50

4 1:63 1:56 0:50 0:50

5 1:63 1:50 0:50 0:50

methods. In all cases, the same characteristic behavior can be seen. Up to a certain
refinement level, the results with inexact quadrature rules coincide with the ones
with no quadrature error. Then, at a certain refinement level, the convergence order
is reduced and the error is significantly larger than the exact integration one. The
level, where this effect starts depends on the considered error norm, the order p and
the number of additional Gauss nodes. Moreover, in this situation the higher order
splines are more sensitive to the numerical quadrature approximation than the lower
order splines.

In almost all cases of Fig. 4, we observe poor approximation results and a
reduced convergence order which is numerically independent of the spline degree.
Especially, the rate of the L2.�/ dual error is very low and in some cases no
convergence can be observed anymore.

Secondly, we consider a simpler situation to show that even then the impact of the
slave integration is noticeable. Let us focus on the cases M1 and M2, see Fig. 3, for
which the master mesh is a refinement of the slave mesh. See Fig. 5 for a comparison
of results between the cases M1 and M2 for a spline degree p D 3. We note that the
low convergence orders of the primal and dual solutions, as remarked above, already
appear in this simple context. Moreover, for a fixed number of slave elements, the
error is increasing with the number of master elements. This is expected as there
are more points of reduced smoothness which are not taken into account by the
quadrature rule. Let us now consider the final numerical convergence rate in more
details. In Table 1, estimated convergence orders for degree p D 5 are given. We
notice that the dual L2.�/ rate breaks down to an order of 1=2, while the L2.˝/
primal rate lies about 3=2.

Thirdly, we have additionally compared the case M3 with a similar situation
in which the master and slave roles are reverted. The results also show that the
integration error is increasing with the increase of the master element number. Thus,
in accordance to the practical applications, in a slave integration context it seems
worthwhile to choose the slave domain as the finest one.

Moreover, it can be observed that on coarse meshes using the slave integration
method it is possible to recover the accuracy of the optimal mortar method simply
by increasing the number of quadrature points, see Fig. 6. However, it has also been
shown that the number of necessary quadrature points is drastically increasing with
the refinement level. It can easily be seen that the number of Gauss points gets soon
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Fig. 5 2D results – L2 primal (top) and dual (bottom) error curves for the cases M1 (left) and M2
(right): pairing P3 � P3 for the slave integration approach and a different number of additional
quadrature points

additional slave quadrature points
0 1 2 3 4 5 6 7 8 Exact 0 1 2 3 4 5 6 7 8 Exact

10 -11

10 -10

10 -9

additional slave quadrature points

10-9

10-8

10-7

10-6

10-5

10-4

Fig. 6 2D results – L2 primal (left) and dual (right) errors at refinement level number 6 as a
function of the number of additional quadrature points for the case M3: pairing P3 � P3 for the
slave integration approach

impracticably large, see the right picture of Fig. 6. Furthermore, in several cases, the
deviation to the mortar method has been observed to be more severe for higher order
functions.
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Fig. 7 2D results – L2 primal (left) and dual (right) error curves for the case M3: equal order
pairing p D 1 for the non-symmetric approach and a different number of additional quadrature
points

4.1.2 Non-symmetric Approach

The non-symmetric saddle point problem based on the two different quadrature
rules, see Sect. 3, was introduced to overcome the non-optimality of the pure slave
integration approach in a finite element context. Due to the suboptimal results seen
in the previous section, it is also interesting to consider it in an isogeometric context.

Firstly, we consider same degree pairings. In almost all tested cases, the results
of the non-symmetric approach are comparable to the results of the exact integration
case. However, we note that differences could still be seen in some cases. For
example, for a degree p D 1 in the case M3, we obtained a non-optimal method,
see in Fig. 7 the corresponding primal and dual error curves. Note that we do not
show any curves in the cases where no disturbance is observed. For example for
degree p D 5, we observed convergence almost up to machine precision without
any remarkable difference compared to the exact integration case.

Secondly, we consider dual spaces with lower degrees than the primal ones. Note
that in [8] stability for these pairings was only observed if the primal and the dual
degrees have the same parity. Similar to the previously considered equal order case,
the dual error did not show a significant deviation by the non-symmetric approach.
In Fig. 8, primal error curves are shown for all stable different degree pairings up
to a primal degree p D 4. We note that theoretically, we expect sub-optimal primal
error rates even in the exact integration case, although often improved convergence
rates were observed. For a dual degree p � 2k; k 2 N, we can expect a convergence
of order O.hp�2kC5=2/ in the L2.˝/ norm, see the dashed lines in Fig. 8. For the
P4� P2 and P3 � P1 pairings, we observe small differences compared to the exact
integration results, but note that the convergence rate is not significantly different
than the theoretical expectation. The situation is different for the P4 � P0 and
P2�P0 pairings, for which the rate is more disturbed and even below the theoretical
expectation. This can be explained by the discontinuity of the dual basis functions
which introduces large errors in the integration approximation done with a rule
based on the master mesh, which does not respect these discontinuities.
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Fig. 8 2D results – L2 primal error curves for the case M3: different order pairings for the non-
symmetric approach and a different number of additional quadrature points. Top left: P2�P0. Top
right: P3� P1. Bottom left: P4� P2. Bottom right: P4� P0

4.2 Three-Dimensional Example

As a second example, we consider a three-dimensional problem with a curved
interface. Precisely, we consider the Poisson problem��u D f on the domain˝ D
.0; 1/3, which is divided into two patches by the interface � D f.x; y; �.x//; .x; y/ 2
.0; 1/2g, with �.x; y/ D 1=8 .1C x/.1C y2/C 1=5, see Fig. 9. The bottom domain
is set as the slave domain. The internal load and the boundary conditions are
manufactured to have the analytical solution

u.x; y; z/ D cos.2�x/ cos.2�y/ sin.2�z/:

Note that due to the curved interface, the normal derivative has a complex
form, but is still explicitly computable. Neumann conditions are applied such that
no cross point modification is necessary. The initial master mesh has 8 uniform
elements, while the initial slave mesh has 8 elements given by the breakpoint vector
f0; �=5; 1g in each direction. In the following, we provide some numerical error
studies, considering the slave integration approach as well as the non-symmetric
approach.
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Fig. 9 Meshes at refinement level 1 (left) and the slave domain (right) illustrating the curved
interface
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Fig. 10 3D results – L2 primal (left) and dual (right) error curves for the pairing P4 � P4, for
the slave integration approach (top) and the non-symmetric approach (bottom). Each of the curves
being obtained with a different number of additional quadrature points

The obtained results are in accordance with the two-dimensional case results for
both approaches. In Fig. 10, the deviation for the slave integration approach is shown
for the P4 � P4 pairing. Although not shown here, we note that the results for the
P2�P2 and P3�P3 pairing have a similar behavior. The non-symmetric approach
does not lead to reduced rates considering equal order pairings, i.e., Mh D M0

h , on
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Fig. 11 3D results – L2 primal error curves for the pairings P3 � P1 (left) and P4 � P2 (right),
for the non-symmetric approach and a different number of additional quadrature points

the refinement levels we considered. As previously, using a lower order dual space,
a difference to the exact integration case can be seen. See Fig. 11 for the disturbance
in the primal variable of the P3 � P1 and P4 � P2 pairings.

5 Conclusion

After briefly reviewing optimal isogeometric mortar methods, a study on the
possibility to approximate the mortar integrals by efficient numerical quadrature
rules was performed.

The precise evaluation of mortar integrals is of a high computational complexity,
since it requires the construction of a merged mesh, combining the non-matching
meshes at the interface. While it would be desirable to use a quadrature rule based
on the slave mesh, numerical examples show that this induces large deviations to
the mortar method. Especially the convergence rate of the Lagrange multiplier is
reduced to at most 1=2, independently of the spline degree. While the method
improves by increasing the number of quadrature points, the amount of points
necessary to obtain nearly optimal results is not predictable.

To overcome these difficulties, we have considered a non-symmetric saddle point
problem based on both master and slave integration rules, which was previously
introduced in the finite element context. Numerical examples demonstrate that for
most cases the reached accuracy is close to the optimal one.
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The Isogeometric Segmentation Pipeline

Michael Pauley, Dang-Manh Nguyen, David Mayer, Jaka Špeh,
Oliver Weeger, and Bert Jüttler

Abstract We present a pipeline for the conversion of 3D models into a form
suitable for isogeometric analysis (IGA). The input into our pipeline is a boundary
represented 3D model, either as a triangulation or as a collection of trimmed
non-uniform rational B-spline (NURBS) surfaces. The pipeline consists of three
stages: computer aided design (CAD) model reconstruction from a triangulation
(if necessary); segmentation of the boundary-represented solid into topological
hexahedra; and volume parameterization. The result is a collection of volumetric
NURBS patches. In this paper we discuss our methods for the three stages, and
demonstrate the suitability of the result for IGA by performing stress simulations
with examples of the output.

1 Introduction

In isogeometric analysis (IGA), the space of functions used to approximate the
solution of a differential equation is the same space of functions used to represent
the geometry. As such, IGA methods work directly with geometry represented by
splines and have begun to close the gap between the geometry representations used
for analysis and those used for design [1]. An additional benefit of IGA is that it can
achieve the same accuracy as the finite element method (FEM) with fewer degrees
of freedom (see [4]).

In order to realize the benefits of IGA when dealing with complex geometries,
it is necessary to segment them into IGA-suitable pieces. A rich theory of FEM-
suitable mesh generation exists (see e.g., [5, 8, 14, 15, 17, 21, 24]) but these methods
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aim at a segmentation of a solid into a large number of (approximately uniform)
small tetrahedra and hexahedra. The goal of the isogeometric segmentation pipeline
is to convert a boundary represented model (e.g. something designed in computer
aided design (CAD) software) into an IGA-suitable volumetric model. For us this
means segmenting the geometry into a small number of topological hexahedra, that
is, deformed cubes.

Methods for parameterization of solids by a single B-spline or T-spline cube are
developed in [11, 19, 25, 26]. A method for multiple patches is given in [22] which
requires a predefined segmentation as input. Several papers [9, 10, 20, 23] provide
methods for segmentation and parameterization of a solid by B-spline or T-spline
cubes, allowing for singularities in the output.

The input into the pipeline can be either a triangulated boundary representation,
or a trimmed non-uniform rational B-spline (NURBS) surface boundary represen-
tation. A trimmed surface consists of a master spline mapping a square into R

3,
together with a collection of trimming curves defining a domain of the surface as
a subset of the square. The boundary representation for the pipeline consists of a
collection of trimmed surfaces, together with adjacency information. The output of
the pipeline is a representation of the solid as a collection of volumetric NURBS.
The pipeline consists of the three following stages.

CAD model reconstruction. A triangulated model is converted into a trimmed
NURBS surface boundary representation, for input into the remaining stages. This
step is not necessary for models that are already represented with trimmed surfaces.
It is necessary when only a triangulated solid is available, or when CAD data is
available but uses features not supported by the remainder of the pipeline. In the
latter case, the CAD model can be triangulated and then reconstructed to produce a
solid in a format compatible with the pipeline.

Isogeometric segmentation. A trimmed NURBS surface boundary represented
solid is segmented into a collection of boundary represented topological hexahedra.
Our segmentation approach, which began development in [6, 12], is based on the
edge graph of the solid – the graph defined by the vertices and edges between the
trimmed surfaces.

In its present state, our isogeometric segmentation method requires manual
interaction in two scenarios. Firstly, it is applicable to the class of contractible solids
with 3-vertex-connected edge graphs. This means that a manual preprocessing step
is required to ensure that the input satisfies these assumptions. In our ongoing work
we are developing methods to automatically ensure these assumptions. Secondly, a
post-processing step may be necessary if the segmentation is required to be free of
T-joints. So far, we only have a way to eliminate them in special cases. Our belief
is that T-joints will not be a barrier to IGA, as contemporary research is developing
methods for handling non-matching interfaces [7].

Volume parameterization. A collection of boundary represented topological
hexahedra is converted to a collection of volumetric splines.

Sections 2, 3,and 4 of the paper provide details and examples for the above
stages of the pipeline. In Sect. 5, a segmentation produced by our pipeline is
used to conduct mechanical simulations, showing the suitability of our results for
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isogeometric analysis. Section 6 summarizes the state of the pipeline and outlines
our ongoing and future work.

2 Segmentation of Triangulated Surfaces and CAD Model
Reconstruction

Consider a complex model for which IGA-based simulation is required. If a
collection of trimmed NURBS surfaces is provided describing its boundary, we can
segment it into topological hexahedra using the methods in Sects. 3 and 4. However,
often we only have access to a triangular mesh describing the boundary. This would
happen, for example, if a triangulation of a model is available but the original model
is not. Furthermore, if a CAD model is of low quality or uses features that are not
supported by the segmentation software, it is useful to convert it into a triangle
mesh from which a more suitable trimmed surface model can be created. Finally, a
more complex CAD model is often obtained by combining several models produced
by several users, possibly with different CAD systems. In this situation, using a
triangulated CAD model is often the only feasible option.

Sophisticated methods exist for the reverse engineering of CAD data (see [18]
and its references). The method we use can afford to be relatively straightforward
because (i) we are primarily interested in engineering objects, which tend to have
simple faces and sharp edges, compared to general, more free-form designs; (ii) we
assume a high quality triangulation is provided as input, not noisy point cloud data;
(iii) while more sophisticated methods can reproduce blend surfaces, we do not want
them as the later stages of our pipeline are not prepared to deal with them.

• The triangulated boundary is segmented into regions using a region growing
algorithm. Two triangles are part of the same region if there exists a path between
them which passes only between triangles that meet at an angle close to � . Post-
processing can be applied to further segment the large regions with a more strict
angle tolerance, or to merge small regions with a less strict angle tolerance. An
example is shown in Fig. 1.

• For each region, a triangulated domain is constructed whose triangles are in
correspondence with the triangles of the region. The points in the interior of the

Fig. 1 The region growing
algorithm segments the
triangulation of the
TERRIFIC demonstrator part
into nine regions. Different
regions are shaded different
colors
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Fig. 2 Example of a NURBS trimmed surface fit to triangulated data

Fig. 3 (a) The triangulated car part. (b) The model is separated into regions. We highlight one
here. (c) The CAD model reconstruction (translucent)

domain, and the positions of holes in the domain, are chosen by a method based
on [2, 3].

• A tensor product NURBS master surface is constructed, by fitting the triangula-
tion data using a least-squares approach. Finally, sharp corners in the domains
are smoothed out where appropriate. An example of a surface fit to a detected
region is shown in Fig. 2.

2.1 Examples

We demonstrate the procedure with the following examples.

Car part example. The procedure is applied to a car part consisting of 1,220
triangles. Angle tolerance is set to 40ı and a secondary region growing phase
is applied, with a tolerance of 20ı, to those regions with area more than 20 % of
the average. The result is shown in Fig. 3a–c.
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Fig. 4 The TERRIFIC
Demonstrator: reconstructed
CAD model

TERRIFIC Demonstrator. The TERRIFIC demonstrator model was created as
part of the TERRIFIC European Commission project for testing and demon-
strating the project’s research and development. The demonstrator in its original
format is a boundary represented CAD model. However, feeding a triangulated
version of the model through the CAD model reconstruction step allows us to
clean the model up, eliminating the blends which the later steps of our pipeline
do not support.
The model has 3,672 triangles. The region growing algorithm is used with a
cutoff of 12ı and regions are merged together if they have area less than 200 %
of the average. The result is shown in Fig. 4.

3 Isogeometric Segmentation of Boundary Represented
Solids

Here we describe our approach to the problem of segmenting a boundary-
represented solid into topological hexahedra. The solid has sharp features, and
its faces are described by NURBS-based trimmed surfaces.

The faces, edges and vertices of the solid form a structure called the edge graph
of the solid (see Fig. 5). A graph is 3-vertex-connected if it is connected, it has at
least four vertices and any two vertices can be deleted without disconnecting the
graph. We make the following assumptions about the solid:

• the solid is contractible;
• the edge graph is simple and 3-vertex-connected.

Once these assumptions are satisfied, we have an automatic process to obtain a
segmentation into topological hexahedra. The process is as follows.

1. Ensure that the solid satisfies the assumptions.
2. For each existing non-convex edge, segment the solid using a cutting loop

(Sects. 3.1 and 3.2) or an extending loop (Sect. 3.4) containing the edge.
3. If the solid has no non-convex edges, segment it further using cutting loops until

we arrive at pre-defined base solids.
4. Segment the base solids in a predefined way into topological hexahedra.
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Fig. 5 An example of a contractible solid and a planar representation of its edge graph

Fig. 6 (a) The TERRIFIC Demonstrator, preprocessed to cut it into contractible pieces with 3-
vertex-connected edge graphs. (b) Segmentation into topological hexahedra. (c) The solid is further
segmented to eliminate T-joints

Item 1 above is ongoing work: methods based on the concept of a Reeb graph from
Morse theory, which has previously been used to good effect in flow volume decom-
position [16], show promise for dealing with non-contractible solids. Items 2–4 are
explained below in Sects. 3.1, 3.2, 3.3 and 3.4.

Figure 6 shows an example: this stage of the pipeline is applied to the TERRIFIC
demonstrator. The demonstrator is first preprocessed to cut it into contractible
pieces and artificial edges are added to make its graph 3-vertex-connected. Then
these pieces are segmented into hexahedra using the methods of cutting loops and
extending loops described in the following sections.
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3.1 Theory for Contractible Solids with Only Convex Edges

An edge e of the solid is convex at a point p if the two incident faces at e meet
at a convex interior angle at p. The edge e is called convex if it is convex at every
point, and non-convex otherwise. Non-convex edges have a significant impact on
the options for segmentation. In this section we restrict to solids with no non-convex
edges; we extend our approach to the more general case in Sect. 3.2.

Our approach is based on the concept of a cutting loop; a cycle in the edge graph
consisting of existing edges as well as auxiliary edges which can be created between
any two vertices on the same face. A cutting loop is valid if it can be used as the
boundary of a surface with the following properties:

• the surface is contained in the solid;
• the surface cuts the solid into exactly two pieces;
• both pieces satisfy our original assumptions, i.e., they are contractible and the

edge graphs are simple and 3-vertex-connected.

For solids with only convex edges, validity is essentially a combinatorial condition,
i.e., the structure of the graph matters but the geometry of the trimmed surfaces does
not. This allows us to guarantee the existence of a valid cutting loop.

Theorem 1 ([6]) Assume that all edges are convex. If the edge graph of the solid is
not that of a tetrahedron, then a valid cutting loop exists.

3.2 Theory for Contractible Solids with Non-convex Edges

Non-convex edges create additional complications. They must be eliminated during
the segmentation process, because they prevent smooth parameterization (see
Fig. 7). Furthermore, they create new validity criteria for cutting loops, which can
sometimes require auxiliary vertices (new vertices created along the existing edges
of the edge graph) to guarantee the existence (See [12, Section 3]) (Fig. 8).

Theorem 2 ([12]) Given a non-convex edge of the solid, there exists a valid cutting
loop containing that edge and possibly containing auxiliary vertices, such that
cutting the solid with this loop eliminates the non-convex edge.

This enables an extension of the algorithm outlined in Sect. 3.1. Cutting loops are
used to cut the solid to remove all the non-convex edges. Once the solid has been
segmented into pieces with only convex edges, the method of Sect. 3.1 can be
applied.
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Fig. 7 A solid with a
non-convex edge. The edge
graph is isomorphic to that of
a cube. However, the
non-convex edge prevents C1

volume parameterization by a
cube. The segmentation
algorithm eliminates
non-convex edges as its first
priority so that the resulting
topological hexahedra have
only convex edges

Fig. 8 Left: a solid with a
non-convex edge CF. Without
using auxiliary vertices, there
is no valid cutting loop to cut
CF, but it becomes possible
with the addition of the
vertices G and H

3.3 Description of the Algorithm

Theorems 1 and 2 mean that the following algorithm successfully segments the solid
into topological hexahedra, given its edge graph structure:

• search for a valid cutting loop;
• use the cutting loop to construct a surface which cuts the solid into two pieces.

The geometric aspects of this step are difficult. Firstly, any auxiliary edges of
the loop must be turned into real edges by constructing a curve cutting the face.
This problem is dealt with in the paper [13]. Secondly, a trimmed surface must
be constructed having the cutting loop as its boundary;
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• repeat the procedure for the two pieces until we arrive at base solids: a class of
solids which have predefined segmentations into topological hexahedra. Our base
solids include tetrahedra, hexahedra and prisms.

Each of the base solids is further split into topological hexahedra using pre-defined
templates. More details of the algorithm are provided in [6, 12].

Typically, many valid cutting loops exist so a decision procedure is needed to pick
one. We decide based on a cost which is a combination of the following components:

Combinatorial component. Aiming for a small number of hexes, our cost includes
a component based on the graph theoretic structure:

• the number of edges of the cutting loop (e.g. preferring loops of length 4 since
they more quickly lead to topological hexahedra).

• the number of edges of the newly created faces when a face is split by an
auxiliary edge (e.g. preferring to split a 6-sided face into two 4-sided faces vs.
a 5- and a 3-sided face).

Geometric component. Aiming for hexes with good shape, we include measure-
ments of the planarity of the cutting loop.

A more detailed discussion, with examples, is provided in [12, Sections 5–6].

3.4 Surface Extension

The cutting loop approach can sometimes miss elegant segmentations that could
be created by extending existing surfaces. For example, [12] provided an example
where using the cutting loop method alone results in a segmentation with 31
topological hexahedra. Furthermore, they do not have ideal shape. Extending
existing faces would allow a segmentation with only four hexes and higher quality
shape (see Fig. 9). Surface extension can be done by modifying cutting loops into
extending loops (see Fig. 10). In contrast to cutting loops, extending loops result in
the construction of two different faces for the two new solids.

Extending loops can be defined as cutting loops with additional structure: each
edge of the loop carries data of whether it extends one of the two incident faces, and
if so, which one. The validity of an extending loop can be determined from the way
faces meet at vertices and edges. Specifically,

• it is only possible to extend a surface through a given edge e if e is everywhere
concave. This is because, if e is convex at any point, then the surface would be
extended to outside the solid;

• at a vertex v, consider the set of unit tangent vectors pointing into the solid.
This set is a region of the unit sphere, whose boundary is a spherical polygon.
See Fig. 11 for an example. Three faces A;B;C of a solid meet at a vertex v;
the resulting spherical polygon has three corresponding great arcs QA; QB; QC. The
geometry of this polygon determines the options available for extending a surface
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Fig. 9 Half-chair example. The solid in (a) was segmented into 31 topological hexahedra in [6].
However, a segmentation into just four topological hexahedra can be produced by extending the
faces marked in (b) and merging them together as the first step. This motivates our ongoing work
on automatic surface extension as a step in the segmentation procedure

Fig. 10 Example of a solid with some surfaces that can be extended. Loop A-B-C-E-F is an
extending loop which can be used to extend the highlighted face and cut the solid. An extending
loop cannot contain the path A-B-C-D due to the geometry at vertex C

through v. In the example of Fig. 11, face B can be extended through v, resulting
in face A being cut. This is because extending arc QB into the interior of the
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Fig. 11 In the solid (left), three faces A;B;C are incident to a vertex v. The unit vectors at v
pointing into the solid define a filled spherical polygon with arcs QA; QB; QC containing the tangent
vectors pointing along the faces A;B;C. The geometry of the spherical polygon determines the
available options for extending these faces through v

Fig. 12 Two possible results of cutting the solid of Fig. 11 (left) by extending surfaces

spherical polygon, it eventually intersects arc QA. A similar situation arises when
extending face C.

A slightly different situation occurs for extending face A through v. If arc QA is
extended into the interior of the polygon, it does not intersect the interior of any
of the other arcs, but instead closes up into a great circle. As a consequence, face
A can be extended through v in such a way that the vertex v can be deleted from
one of the two solids resulting from the cut. The question of whether two faces,
meeting at a vertex, can be extended simultaneously into a single face, can also
be answered using the geometry of the spherical polygon.

Compare these facts with [12, Proposition 2], where it is shown that the
spherical visibility problem for the spherical polygon constructed above plays
an important role in determining the validity of a cutting loop.

Two possible results of cutting the solid of Fig. 11 (left) are shown in Fig. 12.
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The selection of an extending loop is similar to one for a cutting loop. A cost
is assigned based on combinatorial and geometric properties. Minor complications
arise from the fact that vertices can be deleted, and the new faces in the two resulting
solids can have a different number of vertices.

There remains the question of the geometric realization of the extended surface,
i.e., how do we construct the NURBS-based trimmed surface structure for a face
which includes the existing face(s) and the newly constructed part? This question
is still open; our current attitude is that it is better to only construct the new
part, represent the extended face as a union of trimmed surfaces, and merge them
together only at the time of volume fitting. This avoids creating an extra source of
approximation.

Examples

We demonstrate the segmentation process for several models. For these models, a
preprocessing step is applied to ensure that the model is contractible and the edge
graph is simple and 3-vertex connected. This pre-processing step is ad-hoc as we
have not developed a general method.

Chair stand piece. The chair stand piece (Fig. 13) was created to test various
preprocessing strategies and demonstrate the algorithm for solids with convex
edges. The result for one preprocessing strategy is shown in Fig. 14. A second

Fig. 13 The chair stand example. This solid has a 5-way symmetry, so one-fifth of it is extracted
for isogeometric segmentation (see Fig. 14)
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Fig. 14 Left: the chair stand piece, preprocessed to cut it into contractible pieces. Right: the result
of the segmentation algorithm

Fig. 15 (a) The chair stand piece, preprocessed to cut it into contractible pieces, using a different
strategy from Fig. 14. (b) Representation of the chair stand as a watertight collection of tensor-
product NURBS volumes

preprocessing strategy is shown in Fig. 15 where the resulting topological
hexahedra are volume parameterized using the techniques in Sect. 4.

TERRIFIC Demonstrator The preprocessed TERRIFIC Demonstrator is shown
in Fig. 6a. The solid is segmented into topological hexahedra using the surface
extension and cutting loop methods described in the previous sections. The result
is shown in Fig. 6b. The result of the removal of T-joints is shown in Fig. 6c.

Car part The segmentation procedure is applied to the CAD model reconstruction
of the car part (See Sect. 2 and Fig. 3a–c). The preprocessed solid (Fig. 16,
left) has a plane of symmetry. For one half, the resulting contractible pieces
are segmented into topological hexahedra (Fig. 16, right). Data courtesy of
Engineering Center Steyr.
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Fig. 16 Left: the car part, divided into two along its plane of symmetry and preprocessed to cut
it into contractible pieces. Right: segmentation of one half of the Demonstrator into topological
hexahedra

3.5 T-Joint Removal

For some simulation methods, it may be necessary to post-process the model to
eliminate T-joints. We do not have a general method for this. A special-purpose
method was developed which suffices for our segmentation of the TERRIFIC
demonstrator. During the segmentation process, we keep track of adjacency infor-
mation for the solids. When the segmentation of a solid results in the creation of a
T-joint, new edges must be added to the adjacent solid(s) which must themselves be
segmented. This segmentation may create new T-joints, resulting in a propagation
of segmentations through the solid. The result for the TERRIFIC Demonstrator is
shown in Fig. 6c. Ongoing research on advanced IGA techniques aim to handle
meshes with T-joints directly (see Sect. 1).

4 Hexahedron Parameterization

The aim is to convert a boundary represented topological hexahedron into a volume
parameterization. Besides the possibility of quite distorted hexes, difficulty arises
from the fact that the boundary faces are trimmed surfaces, since the domain of
such a surface is not a rectangle in general.

A single topological hexahedron is parameterized by the following procedure.
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1. Sample each of the four edges of a boundary face at parameters such that the
distance between consecutive points is approximately constant. This is necessary
because the curves from adjacent boundaries do not generally have the same
parameterization;

2. Apply 2-dimensional Coon’s patches to the sampled points, to produce a grid of
points in the domain;

3. Evaluate the grid points, to produce a grid on the 3D surface;
4. Applying the above steps for each of the six faces of the topological hexahedron,

we now have a grid of sampled boundary points. Grid points agree along the
edges because of the way the edges are sampled in Step 1. Apply 3D Coon’s
patches to the boundary points to produce a grid of interior points. (It may
be possible to skip this step if the topological hexahedron is not too heavily
distorted);

5. Fit a tensor product B-spline to the sampled points using a least squares method.

The fitting method could be easily modified to include more complex quality
measures.

Applying the procedure to a collection of topological hexahedra produces a
multi-patch domain (i.e., a domain composed of multiple volume-parameterized
topological hexahedra) suitable for isogeometric analysis (see Sect. 5). If a seg-
mentation of a solid into topological hexahedra has no T-joints, then we can also
ensure watertightness of the collection of patches by the following procedure. (The
collection is not automatically watertight because the construction of cutting faces
during the segmentation, as well as the fitting of the volume patch, can cause errors
in the corresponding control points of incident patches.)

(i) Find all the incident faces between patches (the easiest way to do this is to hold
on to the adjacency information from the segmentation procedure);

(ii) Wherever two or more patches meet (more than two patches can meet at vertices
or edges), the corresponding control points of all such patches are moved to the
average.

This simple adjustment is made possible by the following fact: If two topological
hexahedra meet face-to-face in a quadrilateral patch, then this patch is represented
by identical trimmed NURBS surfaces for both hexahedra. This is guaranteed by our
construction of the splitting surface, cf. Sect. 3.3. The steps 1–3 of our parameteriza-
tion procedure therefore give identical parameterization of the matching boundary
faces in both patches. Thus, the only possible deviations between the control points
are due to the approximation of the inner points in step 5. They can safely be
expected to be relatively minor and can be dealt with by the averaging step (ii).
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5 Simulation

As applications of the segmentation presented in previous sections, we use the
TERRIFIC Demonstrator and the chair stand in mechanical simulations, solving
the linear elasticity partial differential equation using an isogeometric finite element
discretization. In Sect. 5.1 we briefly present the linear elasticity problem. In
Sect. 5.2 we describe the method for solution on a multi-patch domain. Results are
presented in Sects. 5.3 and 5.4.

5.1 The Linear Elasticity Problem

The linear elasticity problem on a domain ˝ � R
3 means finding a solution u W

˝ ! R
3 of the following boundary value problem:

�div � .u/ D b in ˝;

u D g on �u;

� .u/ � n D t on �n;

(1)

where �u � ı˝ is the Dirichlet boundary, �n � ı˝ the Neumann boundary of
the domain, the Cauchy stress � is expressed by the linear St. Venant-Kirchhoff
constitutive law,

� .u/ D 2� ".u/C 	 trace".u/ I

using Lamé constants �; 	 > 0 and the linear strain tensor

".u/ D 1

2

�ruT Cru
�
:

For a finite element discretization the weak form of (1) is required, i.e. seeking
u 2 H1.˝/, uj�u D g:

Z
˝

".v/ W � .u/ dx D
Z
˝

vTb dxC
Z
�n

vT t d� 8v 2 H1
0.˝/:

Using the 4th-order elasticity tensor C,

Cijkl D 	 ıijıkl C �
�
ıikıjl C ıilıkj

�
; i; j; k; l D 1; 2; 3;
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the equation can be rewritten as:

Z
˝

rv W C W ru dx D
Z
˝

vTb dxC
Z
�n

vT t d� 8v 2 H1
0.˝/: (2)

5.2 Isogeometric Treatment with Multi-patch Domain

The basis of an isogeometric method is a spline representation of the domain ˝
and also the numerical solution field uh [1]. This means that there exists a global
mapping

g W ˝0 ! ˝; x D g.�/ D
nX

iD1
Np

i .�/ ci; (3)

which parameterizes the whole domain as a B-Spline or NURBS volume, using
tensor product basis functions Np

i of degree p, which are defined on the parameter
domain ˝0 using knot vectors � 2 R

nCpC1, and control points ci 2 R
3. Then uh is

discretized as the push-forward of these spline functions onto the physical domain
˝ and a set of displacement control points di 2 R

3:

uh.x/ D
nX

iD1
Np

i

�
g�1.x/

�
di: (4)

Finally substitution of (4) into (2) and numerical evaluation of the integrals leads
to the well-known matrix-vector form of the finite element discretization of the
elasticity problem:

Kd D f; (5)

where N D 3n is the dimension of the system, d is the vector of unknown control
point displacements, K the stiffness matrix and f the external force vector.

We have to deal with multi-patch partitionings of the initial domain ˝ into b
subdomains (patches):

˝ D
b[

iD1
˝ i; ˝ i \˝ j D ;:

If two patches˝i and˝j are adjacent, i.e.

˝ i \˝ j D � ij ¤ ;;
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we call � ij the interface between ˝ i and ˝ j. Thus we can discretize the solutions
ui WD uj˝ i independently, but we have to enforce the conditions ui D u j on � ij.
As we deal with conforming parameterizations, i.e. gij�ij 
 gjj�ij 8 �ij, this
continuity constraint simply means corresponding displacement control points have
to be equal, i.e.

di
k D d j

l 8 di
k 2 uhij�ij ; d j

l 2 uh jj�ij with ci
k D c j

l: (6)

For the enforcement of these constraints basically two possibilities exist, either
adding each constraint as additional equations in a Lagrangian multiplier approach,
or eliminating degrees of freedom from the system.

5.3 TERRIFIC Demonstrator

The isogeometric volume parameterization consists of 70 patches of cubic B-Spline
volumes, with a total of 24,010 control points and 72,030 degrees of freedom
(DOFs). Coupling of displacement control points on 132 interfaces has to be
enforced. When Lagrangian multipliers are used for coupling, the isogeometric
finite element discretization of the model has 90,048 DOFs, otherwise when
elimination is used, it has only 53,925 DOFs.

As material parameters of linear elasticity we chose

	 D 54:0 GPa; � D 27:8 GPa:

As boundary conditions we take a clamping of the right bore hole (see Fig. 17) by
a zero Dirichlet condition at �u and a surface traction on the left bore hole as a
Neumann boundary condition on �n:

u D 0 m on �u;

t D .60:0; �42:0; 0:0/T MPa on �n:

Running the simulation, we get a maximal norm of displacement of 7.06 mm and
internal energy of 70.1 J. The displaced object can be seen in Fig. 17. Comparison
with a commercial finite element software shows a very good correspondence of
results. Using ANSYS R	 with a mesh of 20,855 quadratic tetrahedral elements
(type SOLID187) and 36,181 nodes resp. 108,543 DOFs, we have a maximum
displacement of 7.00 mm and energy 70.2 J. It is also worth remarking that the stress
distribution obtained from IGA in Fig. 17b looks very smooth.
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Fig. 17 Linear elasticity simulation of TERRIFIC Demonstrator. Displaced part, colored by (a)
norm of displacement in [m] and (b) von Mises stress in [Pa]

5.4 Chair Stand

The chair stand model consists of 12 cubic B-Spline volumes with a total of 3,969
control points and 11,907 DOFs. Using coupling of patches with the Lagrangian
multiplier approach we have a total of 14,231 DOFs.

For a realistic simulation of the chair stand we have added an inner cylinder
connecting the stand with the seating and a small cylinder connecting to the wheels
made from aluminum, and assumed the main parts of the stand are made from plastic
(Polyamid P6). Thus the material parameters are:

	Al D 54:0 GPa; �Al D 27:8 GPa;

	P6 D 3:19 GPa; �P6 D 0:899 GPa:
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Assuming a person weighing 81.5 kg sitting on the chair, this would result in a
vertical force of 0.10 MPa acting as Neumann boundary condition on the inner
aluminum cylinder. Furthermore symmetry boundary conditions are applied on
displacements, since we only model one fifth of the total chair stand. As the smaller
cylinder connects to the wheel, which we assume as a frictionless link to the ground,
no vertical displacement is possible there.

Running the simulation, we get a small vertical displacement of the inner cylinder
of 0.82 mm and a maximal von Mises stress of 1.6 MPa. The total internal energy is
64.2 mJ. The deformed stand is visualized in Fig. 18. We also validate our results by
a comparison to commercial finite element software ANSYS R	. Automated mesh
generation provides a discretization using a mix of 13,437 quadratic hexahedral
and tetrahedral elements (types SOLID186 and SOLID187) with 22,518 nodes and
57,554 DOFs. The simulation results in an evaluated z-displacement of 0.81 mm, a
von Mises stress of 1.6 MPa and a total energy of 62.8 mJ.

Fig. 18 Linear elasticity simulation of chair stand. Different views of displaced part, colored by
von Mises stress in [Pa]
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6 Conclusions and Further Work

We created a pipeline, including algorithms and software together with a rigorous
mathematical treatment, for the the conversion of 3D models into an IGA-suitable
form. The first step of the pipeline is the reconstruction, if necessary, of a CAD-
like boundary representation from triangulated data. Then the boundary represented
solid is segmented into a collection of topological hexahedra. Finally, volumetric
NURBS patches are constructed for the hexahedra.

We used outputs of the pipeline to conduct simulations based on the linear
elasticity problem. Results had good agreement with commercial finite element
software, demonstrating the suitability of the segmentation and parameterization
for simulation.

While the theory and software developed forms the core of the pipeline, there are
several improvements already under development:

• improved geometric construction of the cutting curves and surfaces, with theo-
retical guarantees;

• addressing solids which are non-contractible or do not have 3-vertex-connected
edge graphs without human interaction;

• improving the quality of isogeometric segmentation, in terms of the number and
shape of the resulting topological hexahedra, using the surface extension methods
described in Sect. 3.4.

Potential future developments include the use of splines allowing local refinement,
such as LR- or THB-splines, and improving the reconstruction of cylindrical
surfaces using periodic splines.
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Domain Decomposition Methods
and Kirchhoff-Love Shell Multipatch
Coupling in Isogeometric Analysis

Andreas Apostolatos, Michael Breitenberger, Roland Wüchner,
and Kai-Uwe Bletzinger

Abstract The necessity for solving the isogeometric Kirchhoff-Love shell problem
into multiple domains has been exemplified especially in cases where the geometry
comprises multipatches. In fact, geometries taken from Computer Aided Geometric
Design involve in principle trimmed multipatches. Herein, the application and com-
parison of the most common Domain Decomposition Methods for the coupling of
Kirchhoff-Love shell multipatches in isogeometric analysis is presented. The inves-
tigated methods comprise Penalty and Lagrange Multipliers methods. All methods
are extended to account for geometrically nonlinear problems. The aforementioned
methods provided highly accurate results, thus extending the Kirchhoff-Love shell
analysis from a single to multiple patches which is a prerequisite for solving
practical engineering problems using isogeometric analysis.

1 Introduction

In the past decades light-weight shell structures have been playing an ever-
increasing role in various engineering applications as the cost can be significantly
reduced by keeping vital mechanical properties such as the load carrying capacity.
The Kirchhoff-Love or the Reissner-Mindlin shell models [1] were used among
plenty of studies.

Isogeometric Analysis [2] (IGA) is a generalization of the well-established
classical Finite Element Analysis (FEA) [3, 4] using a geometric basis, as used
in Computer-Aided Geometric Design (CAGD), within the analysis process. The
Non-Uniform Rational B-Splines (NURBS) basis functions [5] form the most
common geometric basis and therefore are also used within this study, see [6].
The successful application of isogeometric analysis for Kirchhoff-Love shell prob-
lems was demonstrated in [7], which was initially confined into single-patch
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geometries. However, geometries taken from CAGD comprise typically trimmed
multipatches [8]. Another issue is the tensor product structure that multidimensional
NURBS basis has, making local refinement over the NURBS basis in its original
form impossible. However, studies on local refinement and adaptivity over a
modified NURBS basis can be found among other studies in [9, 10]. It is worth
mentioning that since the variational index of the Kirchhoff-Love shell problem
is equal to two, the basis functions must be at least one time continuously
differentiable and therefore geometries involving kinks are ab initio excluded in
standard NURBS-based IGA. Finally it is demonstrated in [11] that isogeometric
analysis for shell structures can be extended to account for trimmed multipatch
geometries which are not necessarily watertight, can join with an arbitrary angle
along their common interfaces and which can have an independent from each other
discretization level.

Within this study, three different Domain Decomposition Methods (DDMs) are
introduced and compared for the multipatch coupling of the Kirchhoff-Love shell
problem in both linear and nonlinear isogeometric analysis: a Penalty, a Lagrange
Multipliers and an augmented Lagrange Multipliers method.

The Penalty method, firstly introduced in [12], aimed at enlarging the test
and the solution spaces by not restricting the corresponding functions to comply
with the Dirichlet boundary conditions. Since then it has been widely employed
for the coupling of non-conforming finite element meshes, see for example [13–
15]. Variationally consistent extensions of the Penalty method for boundary value
problems have been proposed among other studies in [16, 17] and specifically
for the coupling of linear multipatch thin and blended shell structures in [18]
within IGA. The Bending Strip Method [19] (BSM) utilized a penalization over
the bending stiffness of Kirchhoff-Love shell multipatches along their common
interfaces, thus extending isogeometric shell analysis to multipatches. However,
this method is restricted into matching interface parametrizations. In the present
contribution, a Penalty method involving two penalty terms, for the interface
displacement and rotations Dirichlet compatibility conditions, is presented, which
releases this substantial restriction of matching parametrizations along the patch
interfaces. As common for the Penalty methods, the underlying formulation is
positive definite [12] but the accuracy of the numerical scheme depends on the
choice of the penalty parameters. A rule for the choice of the penalty parameters
involving scaling with the material matrices norms and the element size is herein
proposed. The method is applicable for multipatches which join arbitrarily along
their common interfaces.

The Lagrange Multipliers method is one of the most common methods for
enforcing constraints within a finite element equation system, see for instance [14,
20, 21]. Having at hand two interface Dirichlet conditions, one for the dis-
placement and one for the rotation field, two independent Lagrange Multipliers
fields are chosen which act as the interface traction force and traction moment
fields from a physical viewpoint, respectively. As being typical for the Lagrange
Multipliers methods, the resulting linear equation system belongs to the category
of saddle point problems, which necessitates that the discrete spaces satisfy
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the Ladyzenskaja-Babuska-Brezzi [22] condition so that a unique solution to the
problem can be guaranteed. The numerical investigations showed satisfactory
results for the decomposed Kirchhoff-Love shell problem, provided that a suitable
discretization for the Lagrange Multipliers fields is found.

At last, the augmented Lagrange Multipliers method for the Kirchhoff-Love
shell problem is elaborated and discussed. This method is a combination of the
Lagrange Multipliers and the Penalty method [15, 23]. This method belongs also
to the class of saddle point problems and hence, the same restrictions as for the
Lagrange Multipliers method apply in this case.

The application and comparison of the aforementioned methods is demonstrated
using two linear and two nonlinear problems. Thus, isogeometric Kirchhoff-Love
shell analysis is extended into multiple domains, towards the integration of CAGD
and FEA into a large scale computational environment as in [11].

2 Theory

2.1 The Strong Form of the Problem

The model problem is an elastic body represented by a surface embedded in 3D
space ˝ � R

3, where ˝ stands for the closure of ˝ in the Euclidean space. The
surface is described using a convective covariant space ˝0 � R

2 through the map
S W ˝0 ! ˝ . The mechanical behaviour of the elastic body is described by the
Kirchhoff-Love shell theory. The process is assumed to be static, i.e. no inertia forces
are to be considered. For each material particle X 2 ˝, the unknown displacement
field d D d .X/ is defined in a Lagrangian description of the motion, that is, the
current configuration is defined by the collection of material particles x D XCd. In
this way, the displacement field can have a representation in both the physical and
the covariant space, that is [1],

d D d0i ei D dk C d3A3 D d˛A˛ C d3A3 8X 2 ˝ ; (1)

where d0i , dk and d3 stands for the components of the displacement field on
the Cartesian space, the displacement field on the tangent space of the shell’s
surface and the displacement component normal to the shell’s surface, respectively.
According to standard notations, Greek and Latin indices range from 1 to 2 and
from 1 to 3, respectively, if not stated otherwise. Moreover, ei and fA˛;A3g stand
for the base vectors of the global Cartesian and the covariant space in the reference
configuration, respectively. In particular, the covariant base vectors are given by [1],

A˛ WD X;˛ ; (2a)

A3 WD j
�1

A1 � A2 ; (2b)
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in ˝ with j D kA1 �A2k2 and the commas standing for the partial derivatives
with respect to the convective coordinates

�

1; 
2

� 2 ˝0. The latter implies that
A3 D A3 in what concerns the contravariant basis, meaning that the contravariant
and the covariant components of any first order tensor defined over the convective
space lateral to the shell’s surface are equal. Hence notation d3 is employed for
both the covariant and the contravariant component of the displacement field in A3

direction, see [1]. In addition, the map S is assumed to be regular almost everywhere
in ˝0 meaning that j is non zero almost everywhere in ˝0, see [24]. The boundary
of the surface � D @˝ is assumed to be a piecewise C1-continuous curve, so that
the tangent, the normal and the binormal vectors can be uniquely defined almost
everywhere in ˝. Let also Sm be the space of all m-th order symmetric tensors.
Then, the curvature tensor B 2 S2 is given by [24],

B D B˛ˇ A˛˝Aˇ WD �A˛ �A3;ˇ A˛˝Aˇ D A˛;ˇ �A3 A˛˝Aˇ 8X 2 ˝ ; (3)

where fA˛;A3g stands for the contravariant base vectors in the reference configura-
tion. The small rotations assumption results in a linear relation between the rotations
and the displacements. In this way, the total rotation field ! 2 S1 can be defined at
each point X 2 ˝ by [1],

! .d/ D �� � �rd3 C B � dk
� D �˛ˇ �d3;ˇ C Bˇ� d�

�
A˛ ; (4)

where � D �˛ˇ A˛ ˝ Aˇ stands for the permutation second order tensor with [1],

�˛ˇ D 1

j

8<
:

1; if .˛; ˇ/ D .1; 2/ ;
�1; if .˛; ˇ/ D .2; 1/ ;
0; if ˛ D ˇ :

(5)

In addition, r stands for the gradient operator over the convective space. The linear
Hooke’s law is employed for the description of the constitutive behaviour of the
elastic material. Thus, the force and moment tensors corresponding to the second
Piola-Kirchhoff stress measure n, m 2 S2 are linearly dependent on the membrane
and bending strain tensors ";� 2 S2 through [25],

n .d/ D Eh

1 � �2C W " .d/ D Cm W " .d/ ; (6a)

m .d/ D Eh3

12 .1 � �2/C W � .d/ D Cb W � .d/ ; (6b)

in ˝, where C 2 S4, E, � and h is the elasticity tensor, the Young’s modulus,
the Poisson’s ratio and the shell’s thickness, respectively. Tensors Cm;Cb 2 S4

stand for the particular elasticity tensors for the membrane and the bending
action of the Kirchhoff-Love shell, respectively. In what concerns the kinematics
of the Kirchhoff-Love shell, the nonlinear membrane and bending strain tensors
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corresponding to the Green-Lagrange strain measure are respectively defined by [7],

" D "˛ˇ A˛ ˝ Aˇ D 1

2

�
a˛ � aˇ �A˛ �Aˇ

�
A˛ ˝ Aˇ ; (7a)

� D �˛ˇ A˛ ˝ Aˇ D �B˛ˇ � b˛ˇ
�

A˛ ˝Aˇ ; (7b)

where a˛ and b˛ˇ stand for the base vectors of the covariant space and covariant
components of the curvature tensor (3) over the current configuration. The linearised
version of the strain components (7a) and (7b) writes [25],

"˛ˇ WD 1

2

�
Aˇ � d;˛ CA˛ � d;ˇ

�
; (8a)

�˛ˇ WD �A3 � d;˛ˇ C A˛;ˇ � A3

1

j
..A2 �A3/ � d;1 � .A1 � A3/ � d;2/

C1
j

��
A˛;ˇ � A2

� � d;1 � �A˛;ˇ �A1

� � d;2� :
(8b)

Displacement and/or rotation Dirichlet boundary conditions are prescribed along a
portion of the body’s boundary �d � � , confining ourselves into the homogeneous
Dirichlet boundary conditions without loss of generality. Forces p and/or moments
r are applied over another portion of the shell’s boundary �n � � forming the
so-called Neumann boundary conditions. Finally, it is also assumed that the elastic
body is subject to body forces designated by b D b˛A˛ C b3A3. Subsequently,
domain˝ is decomposed into a finite set of subdomains˝.i/, i D 1; : : : ; n 2 N for
which the following relations hold,

n[
iD1
˝.i/ D ˝ ; (9a)

˝.i/ \˝.j/ D � .i;j/
c 8 .i; j/ 2 I ; (9b)

[
.i;j/2I

�
.i;j/

c D �c ; (9c)

I being the set of all nI 2 N intersections between the subdomains excluding pairs
.i; i/ and � .i;j/

c being a set of piecewise C1-continuous curves on the Euclidean
space in the context of the non-overlapping DDMs. The Dirichlet and the Neumann
boundaries, �d and �n respectively, are decomposed in the same fashion as ˝ in
(9a)–(9b). The aforementioned problem is depicted in Fig. 1. Subsequently, it is
also assumed that the displacement, the rotation, the force and the moment fields are
defined piecewisely in ˝ at each subdomain ˝.i/. Whenever the displacement, the
rotation, the force or the moment field is restricted into one subdomain, a superscript
i D 1; : : : ; n is used to indicate the domain of restriction, that is, dj

˝.i/
D d.i/,
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Fig. 1 Problem placement: multipatch Kirchhoff-Love shell structure

!
�
d.i/
� D !.i/, n

�
d.i/
� D n.i/ and m

�
d.i/
� D m.i/, respectively. Then, the

Kirchhoff-Love of n-domain decomposed Boundary Value Problem (BVP) writes:

n˛ˇ
ˇ̌
˛
� q˛B ˇ

˛ C bˇ D 0 ; in ˝0 n �c ; (10a)

n˛ˇB˛ˇ C q˛j˛ C b3 D 0 ; in ˝0 n �c ; (10b)

m˛ˇ
ˇ̌
˛
� qˇ D 0 ; in ˝0 n �c ; (10c)

d D 0 ; on � �d ; (10d)

! D 0 ; on � �d ; (10e)

n˛u˛ D p ; on � �n ; (10f)

m˛u˛ D r ; on � �n ; (10g)

d.i/ � d.j/ D 0 ; on � .i;j/
c 8i; j D 1; : : : ; n ; (10h)

!.i/ C!.j/ D 0 ; on � .i;j/
c 8i; j D 1; : : : ; n ; (10i)

where u, n˛ D n˛ˇAˇ C q˛A3 and m˛ D m˛ˇAˇ stand for the normal to
the Neumann boundary �n, the traction force and the traction moment vector,
respectively. The force and moment tensor components n˛ˇ and m˛ˇ , respectively,
that appear in the above mentioned BVP correspond to the first Piola-Kirchhoff
stress measure for the geometrically nonlinear case. Those are connected to the
second Piola-Kirchhoff stress measure through the deformation gradient tensor.
However, in the geometrically linear case both stress measures coincide, for more
details see [1]. Additionally, q˛ stand for the contravariant components of the shear
force vector. The compatibility of the displacement and the rotation field across
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the interface �c of the subdomains is ensured through the interface continuity
conditions (10h)–(10i).

It is important to note that rotation continuity equation (10i) implies that the
interface tangent to surfaces ˝.i/ and ˝.j/ vectors around which rotation vectors
!.i/ and !.j/ are defined, have opposite direction. In case those interface vectors
have the same direction, continuity condition (10i) should be reformulated such that
the rotation vectors from each neighbouring patch pair ˝.i/ and ˝.j/ are equal and
not opposite.

2.2 The Weak Form of the Decoupled Problem

The variational formulation of the BVP (10a), (10b), (10c), (10d), (10e), (10f)
and (10g) without the consideration of the interface conditions writes: Find d 2 V
such that:

a .h;d/ D L .h/ 8h 2 V ; (11)

where V � �H2 .˝ n �c/
�3

is defined by,

V D
n

h 2 �H2 .˝ n �c/
�3ˇ̌ˇ h D 0 on � �d and ! .h/ D 0 on � �d

o
: (12)

On the other hand, form a W V � V ! R and linear functional L W V ! R in (11)
are defined as follows,

a .h;d/ W D
Z
˝n�c

" .h/ W n .d/ d˝ C
Z
˝n�c

� .h/ W m .d/ d˝ ; (13a)

L .h/ W D
Z
˝n�c

h � b d˝ C
Z
�n

h � pC! .h/ � r d� : (13b)

Space V is naturally equipped with the energy norm [26],

khkV D
p

a .h;h/ 8h 2 V ; (14)

In [26] it was shown that for the linear kinematics case, see Eqs. (8a)
and (8b), the bilinear form (13a) is bounded and elliptic in V under the
energy norm (14), meaning that variational problem (11) has a unique solution
in V . However, in the present case this solution is discontinuous across the
subdomains, i.e. it does not represent the solution to boundary value problem
(10a), (10b), (10c), (10d), (10e), (10f), (10g), (10h) and (10i), as it does not account
for the interface continuity conditions (10h) and (10i).
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2.3 The Weak Form of the Penalty Approach

Let us introduce space L � V ,

L WD
�

h 2 V
ˇ̌
ˇ̌9 c.e. h.i/;h.j/ on � .i;j/

c : h.i/ � h.j/ 2
�

L2
�
� .i;j/

c

��3

and !
�

h.i/
�
C!

�
h.j/
�
2
�

L2
�
� .i;j/

c

��3	
;

(15)

which becomes an inner product space when equipped with the inner product
h�; �iL W L � L! R,

hh;diL D a .h;d/C h�d .h/ ;�d .d/i0;�c
C h�¨ .h/ ;�¨ .d/i0;�c

; (16)

for all h;d 2 L, where �d and �¨ stand for the jump operators for the displacement
and the rotation fields across the interface�c, respectively. Notation h�; �i0;�c

stands
for the inner product in the L2 .�c/ space, meaning that the second term in (16)
writes,

h�d .h/ ;�d .d/i0;�c
D
Z
�c

�d .h/ � �d .d/ d� : (17)

Moreover, space L is equipped naturally with the norm k�kL W L ! R induced by
the inner product (16),

khkL D
phh;hiL 8h 2 L : (18)

Following [15] the variational formulation of the coupled problem using the Penalty
approach writes: Find d 2 L with d.i/�d.j/ D �.i;j/d .d/ D �d .d/ j

�
.i;j/
c

and!
�
d.i/
�C

!
�
d.j/
� D �.i;j/¨ .d/ D �¨ .d/ j

�
.i;j/
c

on � .i;j/
c , i; j D 1; : : : ; n such that,

a .h;d/C h�d .h/ ; ˛d�d .d/i0;�c
C h�¨ .h/ ; ˛¨�¨ .d/i0;�c

D L .h/ ; (19)

for all h 2 L with h.i/ � h.j/ D �.i;j/d .h/ D �d .h/ j
�
.i;j/
c

and !
�
h.i/
� C ! �h.j/� D

�
.i;j/
¨ .h/ D �¨ .h/ j

�
.i;j/
c

on � .i;j/
c , i; j D 1; : : : ; n. Additionally, parameters ˛d and

˛¨ which appear in Eq. (19) stand for the penalty factors for the displacement and
the rotation field over the interface �c, respectively, and they are strictly positive.
Their distribution depends on the interface discretizations and a rule for their choice
is proposed in Sect. 4. The penalty form ap W L � L ! R governing variational
formulation (19) is given by,

ap .h;d/ WD a .h;d/C h�d .h/ ; ˛d�d .d/i0;�c
C h�¨ .h/ ; ˛¨�¨ .d/i0;�c

; (20)
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for all functions h;d 2 L. For the linear kinematics case, see Eqs. (8a) and (8b),
form (20) is bilinear, by construction symmetric, bounded and coercive in L which
renders the formulation in general stable, meaning that one unique solution to
problem (19) exists. However, this solution is not the same as for the strong form
of the problem (10a), (10b), (10c), (10d), (10e), (10f), (10g), (10h) and (10i) for
finite penalty parameters ˛d and ˛¨, see [12]. This is the reason why the Penalty
method is often called variationally inconsistent. The symmetry of the bilinear form
(20) is obvious. Boundedness of ap is easy to be shown using the Cauchy-Schwarz
inequality in L2 .�c/ space for the interface inner products. Coercivity of ap follows
from the positivity of the penalty parameters along the interface �c. Numerical
issues occurring due to the size of the penalty factors are discussed in Sect. 3.

2.4 The Weak Form of the Lagrange Multipliers Approach

The establishment of a weak formulation for the coupled system using the Lagrange
Multipliers method demands two independent Lagrange Multipliers fields 	 and �,
i.e. one for each interface condition (10h) and (10i) respectively. In this way, the
weak form of the coupled system using the Lagrange Multipliers writes [15]: Find
d 2 L with d.i/ � d.j/ D �.i;j/d .d/ D �d .d/ j

�
.i;j/
c

, !
�
d.i/
�C ! �d.j/� D �.i;j/¨ .d/ D

�¨ .d/ j
�
.i;j/
c

on � .i;j/
c , i; j D 1; : : : ; n and 	, � 2 �L2 .�c/

�3
such that,

a .h;d/C h�d .h/ ;	i0;�c
C h�¨ .h/ ; �i0;�c

C h
;�d .d/i0;�c
C

h�;�¨ .d/i0;�c
D L .h/ ;

(21)

for all h 2 L with h.i/ � h.j/ D �.i;j/d .h/ D �d .h/ j
�
.i;j/
c

and !
�
h.i/
� C ! �h.j/� D

�
.i;j/
¨ .h/ D �¨ .h/ j

�
.i;j/
c

on � .i;j/
c , i; j D 1; : : : ; n, for all
 and for all � in

�
L2 .�c/

�3
,


 and � being the Lagrange Multipliers test functions. From a physical viewpoint,
the Lagrange Multipliers fields 	 and � represent the independent force traction and
moment traction fields on the interface �c which are necessary for the satisfaction of
the interface force and moment equilibrium, respectively. Variational problem (21)
is a saddle point problem since its weak solution is defined in VL D V��L2 .�c/

�3��
L2 .�c/

�3
, thus having not to be necessarily existent or unique.

2.5 The Weak Form of the Augmented Lagrange Multipliers
Approach

As already discussed in [15], the augmented Lagrange Multipliers method is a
combination of the Lagrange Multipliers with the Penalty method, namely: Find
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d 2 L with d.i/�d.j/ D �.i;j/d .d/ D �d .d/ j
�
.i;j/
c

and!
�
d.i/
�C! �d.j/� D �.i;j/¨ .d/ D

�¨ .d/ j
�
.i;j/
c

on � .i;j/
c , i; j D 1; : : : ; n and 	, � 2 �L2 .�c/

�3
such that,

a .h;d/C h�d .h/ ;	i0;�c
C h�d .h/ ; ˛d�d .d/i0;�c

C h�¨ .h/ ; �i0;�c
C

h�¨ .h/ ; ˛¨�¨ .d/i0;�c
C h
;�d .d/i0;�c

C h�;�¨ .d/i0;�c
D L .h/ ;

(22)

for all h 2 L with h.i/ � h.j/ D �.i;j/d .h/ D �d .h/ j
�
.i;j/
c

and !
�
h.i/
� C ! �h.j/� D

�
.i;j/
¨ .h/ D �¨ .h/ j

�
.i;j/
c

on � .i;j/
c , i; j D 1; : : : ; n, for all
 and for all � in

�
L2 .�c/

�3
.

The weak solution of (22) is also defined in VL, thus the augmented Lagrange
Multipliers formulation belongs also to the family of saddle point problems.
However, the penalty factors in this case do not have to be as large as in the Penalty
method to achieve the same accuracy level in the interface conditions.

3 Discretization

3.1 Discrete Spaces

The numerical method used for the approximation of the given weak forms is IGA,
as mentioned in Sect. 1. Within IGA the discrete spaces for the field approximation
are taken from the geometry parametrization which is herein assumed to be the
NURBS basis functions since they are dominant in CAGD. The convective coordi-
nates

�

1; 
2

�
introduced in Sect. 1 are thereafter designated by .�; �/, complying

with standard NURBS notations, see [2]. For each subdomain ˝.i/, i D 1; : : : ; n
and each interface � .k;l/

c , .k; l/ 2 I, subdivisions T .i/
h and T

.k;l/
h are respectively

chosen, which subdivide each˝.i/ and � .k;l/
c into isogeometric finite elements T .i/

j ,

j D 1; : : : ;m.i/ 2 N and T
.k;l/
j , j D 1; : : : ;m.k;l/

œ 2 N, respectively, for which the
following relations hold,

T .i/
j \ T .i/

k D ; 8T .i/
j ; T .i/

k 2 T .i/
h with j ¤ k ; (23a)

T
.k;l/
j \ T.k;l/r D ; 8T.k;l/j ;T.k;l/r 2 T

.k;l/
h with j ¤ r ; (23b)

m.i/[
jD1

T .i/
j D ˝.i/ ; (23c)

m
.k;l/
œ[

jD1
T
.k;l/
j D � .k;l/

c ; (23d)
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In the context of IGA the finite dimensional subspaces Lh � L and Lh �
�
L2 .�c/

�3
are chosen as,

Lh D
�

hh 2 L

ˇ̌
ˇ̌hh 2

�
Rp;q

�
T .i/

j

��3 8T .i/
j 2 T .i/

h

	
; (24a)

Lh D
�
	h 2

�
L2 .�c/

�3 ˇ̌ˇ̌	h 2
�
P0
�
T
.k;l/
j

��3 8T.k;l/j 2 T
.k;l/
h

	
; (24b)

Rp;q
�
T .i/

j

�
being the space of all rational polynomials of polynomial orders p

and q in the parametric image of T .i/
j . This parametric image is a rectangular

domain .�; �/ 2 �.i/ � H.i/ D ˝
.i/
0 , where ˝.i/

0 is the image of ˝.i/ under
the inverse map S�1, within classical NURBS based isogeometric analysis, and
�.i/;H.i/ stand for the underlying knot vectors of patch˝.i/, see [2] for more details.
Additionally, the aforementioned rational polynomials are Cp�mk -continuous across
the elements within each patch ˝.i/, where p stands for the polynomial order
of the basis crossing the element boundary and mk the repetition of the knot at

the element boundary, see [27] for more details. Equivalently, P0
�
T
.k;l/
j

�
stands

for the space of all constant functions in the parametric image of T
.k;l/
j . Assume

that ˚.i/ D
�
�
.i/
j

�
j
, j D 1; : : : ; dim

�Sm.i/

kD1Rp;q
�
T .i/

k

��3
and �.k;l/ D

�
 
.k;l/
j

�
j
,

j D 1; : : : ; dim


Sm
.k;l/
œ

rD1 P0
�
T.k;l/r

��3 D 3m.k;l/
œ are the set of basis functions at each

subdomain ˝.i/ and each interface � .k;l/
c , respectively. Notation

Sm.i/

kD1Rp;q
�
T .i/

k

�
is herein abused for the space that the NURBS basis functions of arbitrary inter-
element continuity span at each patch ˝.i/. In this way, a basis can be formed for
the discrete spaces Lh and Lh as ˚ D Sn

iD1 ˚.i/ D �
�j

�
j
, j D 1; : : : ; dim˚ and

� DS.k;l/2I �.k;l/ D � j

�
j
, j D 1; : : : ; dim� , respectively. These bases are in turn

discontinuous across each patch @˝.i/ and interface @� .k;l/
c boundary. Then, for any

hh 2 Lh and any 	h 2 Lh there exist reals Ohi and O	i such that,

hh D
dimX̊
iD1
Ohi�i and 	h D

dim�X
iD1
O	i i : (25)

Important is to note that since Lh represents the discrete admissible space for the
displacement field, the multiplicity of the knots within each patch ˝.i/ must be
chosen smaller than the corresponding polynomial order of the basis such that
the basis functions are at least one time continuously differentiable and hence
the bending strain is well defined, see Eqs. (7b) and (8b). The same restriction
does not apply for the discrete admissible space Lh corresponding to the Lagrange
Multipliers fields, and therefore discontinuous across the elements T

.k;l/
j functions

are chosen for the Lagrange Multipliers discretization. For all the forthcoming
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numerical examples in Sect. 4, the multiplicity of the interior to the patches knots is
chosen equal to one.

3.2 Discrete Equation System of the Decoupled Problem

Subsequently, the Bubnov-Galerkin approximation is employed, that is both the test
and the trial spaces are projected onto the same finite dimensional subspace, as those
are defined in (24a) and (24b). Then, projection of the weak form corresponding to
the decoupled system (11) ontoLh�Lh yields the following discrete equation system
for the geometrically linear setting,

2
64

K.1/ � � � 0
:::
: : :

:::

0 � � � K.n/

3
75
2
64
Od.1/
:::
Od.n/

3
75 D

2
64
OF.1/
:::
OF.n/

3
75 ; (26)

where K.i/, OF.i/ and Od.i/ stand for the stiffness matrix with entries K.i/
jk D

a
�
�
.i/
j ;�

.i/
k

�
, the load vector with entries F.i/j D L

�
�
.i/
j

�
and the discrete

Control Point solution vector at each patch ˝.i/, respectively. For the geometrically
nonlinear setting, the Oi-th Newton-Rapshon iteration consists in the solution of the
following linear system,

2
6664

K.1/
T

� Od.1/Oi
�
� � � 0

:::
: : :

:::

0 � � � K.n/
T

� Od.n/Oi
�

3
7775

2
664
• Od.1/Oi
:::

• Od.n/Oi

3
775 D �

2
6664

R.1/
� Od.1/Oi

�
:::

R.n/
� Od.i/Oi

�

3
7775 ; (27)

where K.i/
T , • Od.i/Oi D Od

.i/
OiC1 � Od

.i/
Oi and R.i/

� Od.i/Oi
�
D K

� Od.i/Oi
� Od.i/Oi � OF.i/ denote the

tangent stiffness matrix, the Control Point displacement increment and the residual
in patch ˝.i/, respectively.

3.3 Discrete Equation System of the Penalty Approach

Projection of the weak form corresponding to the Penalty approach (19) ontoLh�Lh

results into the following discrete equation system for the linear setting,

2
64

K.1/ CK.1/
p � � � C.1;n/

p
:::

: : :
:::

C.n;1/
p � � � K.n/ CK.n/

p

3
75
2
64
Od.1/
:::
Od.n/

3
75 D

2
64
OF.1/
:::
OF.n/

3
75 ; (28)



Multipatch Isogeometric Kirchhoff-Love Shell Analysis 85

where the entries of the additional stiffness and Penalty coupling matrices K.i/
p and

C.i;j/
p are respectively defined as,

K.i/
p;k;l W D

D
�
.i/
k ; ˛d�

.i/
l

E
0;�c

C
D
!
�
�
.i/
k

�
; ˛¨!

�
�
.i/
l

�E
0;�c

; (29a)

C.i;j/
p;k;l W D �

D
�
.i/
k ; ˛d�

.j/
l

E
0;�c

C
D
!
�
�
.i/
k

�
; ˛¨!

�
�
.j/
l

�E
0;�c

: (29b)

For the geometrically nonlinear problem, the Newton-Raphson subproblem at the
Oi-th iteration, defined in (27), is written as,

2
6664

K.1/
T

� Od.1/Oi
�
CK.1/

p � � � C.1;n/
p

:::
: : :

:::

C.n;1/
p � � � K.n/

T

� Od.n/Oi
�
CK.n/

p

3
7775

2
664
• Od.1/Oi
:::

• Od.n/Oi

3
775 D

�

2
6664

R.1/
� Od.1/Oi

�
:::

R.n/
� Od.n/Oi

�

3
7775 �

2
64

K.1/
p � � � C.1;n/

p
:::

:::
: : :

:::

C.n;1/
p � � � K.n/

p

3
75
2
664
Od.1/Oi
:::
Od.n/Oi

3
775 :

(30)

Note also that the additional interface terms which show up in the Penalty
formulation (19) are linear with respect to the displacement field, thus making
the extension from the geometrically linear to the geometrically nonlinear problem
straightforward. It must be emphasized that the resulting system is positive definite
given that the penalty parameters do not destroy its conditioning, and therefore must
be carefully chosen. A rule for their choice is given in Sect. 4.1 where an assessment
of this choice with respect to the domain and interface errors in the L2-norm is in
addition provided.

3.4 Discrete Equation System of the Lagrange Multipliers
Approach

As discussed in Sect. 2.4 two independent Lagrange Multipliers fields are used for
the corresponding variational form (21). Therefore, also two independent discrete
Lagrange Multipliers spaces, one for the Lagrange Multipliers field representing the
interface traction forces and one for the Lagrange Multipliers field representing the
interface traction moments are chosen as Lœh and L—h, respectively, following (24b).

Let also the set of basis functions for each space Lœh and L—h be �œ D �
 œ

j

�
j
, j D

1; : : : ; dim�œ and �— D
�
 
—
j

�
j
, j D 1; : : : ; dim�—, respectively. Then, projection

of the Lagrange Multipliers weak form (21) onto
�
Lh � Lœh � L—h

�
�
�
Lh � Lœh � L—h

�
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provides us with the following equation system for the geometrically linear setting,

2
666666664

K.1/ � � � 0 �.1/ Z.1/

:::
: : :

:::
:::

:::

0 � � � K.n/ �.n/ Z.n/�
�.1/

�T � � �
�
�.n/

�T
0 0�

Z.1/
�T � � �

�
Z.n/

�T
0 0

3
777777775

2
6666664

Od.1/
:::
Od.n/
O	
O�

3
7777775
D

2
6666664

OF.1/
:::
OF.n/
0
0

3
7777775
; (31)

where the entries of matrices�.i/ and Z.i/ are given by,

�
.i/
k;l W D

nX
jD1

.�1/˛.i;j/
D
�
.i/
k ; 

œ
l

E
0;�

.i;j/
c

; (32a)

Z.i/k;l W D
nX

jD1

D
!
�
�
.i/
k

�
; 

—
l

E
0;�

.i;j/
c

; (32b)

with ˛.i;j/ D 0 if i < j or ˛.i;j/ D 1 if j < i. Additionally, O	 and O� denote the
discrete solution vectors for both Lagrange Multiplier fields. Due to the linearity
of the weak form on the Lagrange Multipliers fields, the extension to the nonlinear
setting is also in this case straightforward. Thus, the Oi-th Newton-Raphson iteration
in this case writes,

2
6666666664

K.1/
T

� Od.1/Oi
�
� � � 0 �.1/ Z.1/

:::
: : :

:::
:::

:::

0 � � � K.n/
T

� Od.n/Oi
�
�.n/ Z.n/�

�.1/
�T � � �

�
�.n/

�T
0 0�

Z.1/
�T � � �

�
Z.n/

�T
0 0

3
7777777775

2
6666664

• Od.1/Oi
:::

• Od.n/Oi
• O	Oi
• O�Oi

3
7777775
D

�

2
66666664

R.1/
� Od.1/Oi

�
:::

R.n/
� Od.n/Oi

�
0
0

3
77777775
�

2
666666664

0 � � � 0 �.1/ Z.1/

:::
: : :

:::
:::

:::

0 � � � 0 �.n/ Z.n/�
�.1/

�T � � �
�
�.n/

�T
0 0�

Z.1/
�T � � �

�
Z.n/

�T
0 0

3
777777775

2
66666664

Od.1/Oi
:::
Od.n/Oi
O	OiO�Oi

3
77777775
:

(33)

It must be remarked that the discrete spaces chosen for the displacement and the
Lagrange Multipliers fields must fulfil the so-called Ladyzenskaja-Babuska-Brezzi
condition, alternatively known as inf -sup condition, so that one unique solution to
the finite dimensional problem can be guaranteed. This is not a trivial problem and
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an improper choice of the discrete spaces renders the discrete equation system ill-
conditioned or even indefinite. The numerical investigations suggest the following
way of choosing the discretization for the Lagrange Multipliers fields: As mentioned
in Sect. 3.1 both Lagrange Multipliers fields are discretized with constant, discon-
tinuous across the elements functions. In addition, field 	j

�
.k;l/

c
is discretized using

as many elements n.k;l/œ as the coarsest of the subdomains˝.k/ and˝.l/ has and field

�j
�
.k;l/
c

is discretized with n.k;l/— D
�

n
.k;l/
œ

2



. These rules have only numerically proven

to produce in most of the cases stable and not ill-conditioned discrete equation
systems, thus further mathematical investigations are urged for this case.

3.5 Discrete Equation System of the Augmented Lagrange
Multipliers Approach

As mentioned in Sect. 2.5, the augmented Lagrange Multipliers method is a combi-
nation of the Penalty and the Lagrange Multipliers method. Therefore, the discrete
equation systems for both the geometrically linear and geometrically nonlinear
problems write,

2
666666664

K.1/ CK.1/
p � � � C.1;n/

p �.1/ Z.1/

:::
: : :

:::
:::

:::

C.n;1/
p � � � K.n/ CK.n/

p �.n/ Z.n/�
�.1/

�T � � �
�
�.n/

�T
0 0�

Z.1/
�T � � �

�
Z.n/

�T
0 0

3
777777775

2
6666664

Od.1/
:::
Od.n/
O	
O�

3
7777775
D

2
6666664

OF.1/
:::
OF.n/
0
0

3
7777775
; (34)

2
6666666664

K.1/
T

� Od.1/Oi
�
CK.1/

p � � � C.1;n/
p �.1/ Z.1/

:::
: : :

:::
:::

:::

C.n;1/
p � � � K.n/

T

� Od.n/Oi
�
CK.n/

p �.n/ Z.n/�
�.1/

�T � � �
�
�.n/

�T
0 0�

Z.1/
�T � � �

�
Z.n/

�T
0 0

3
7777777775

2
6666664

• Od.1/Oi
:::

• Od.n/Oi
• O	Oi
• O�Oi

3
7777775
D

�

2
66666664

R.1/
� Od.1/Oi

�
:::

R.n/
� Od.n/Oi

�
0
0

3
77777775
�

2
666666664

K.1/
p � � � C.1;n/

p �.1/ Z.1/

:::
: : :

:::
:::

:::

C.n;1/
p � � � K.n/

p �.n/ Z.n/�
�.1/

�T � � �
�
�.n/

�T
0 0�

Z.1/
�T � � �

�
Z.n/

�T
0 0

3
777777775

2
6666664

Od.1/Oi
:::
Od.n/OiO	OiO�Oi

3
7777775
:

(35)
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As in the case of the Lagrange Multipliers method, the linear equation system in
this case might also be indefinite, depending on whether the chosen discrete spaces
fulfil the inf-sup condition or not. For the discretization of the Lagrange Multipliers
fields, the same empirical rules as in Sect. 3.4 are employed.

4 Numerical Results

In this section, the DDMs are compared and systematically evaluated over two
linear and two nonlinear problems. For the linear problems convergence studies over
domain and interface L2-norms are performed. The L2-norm of a tensor 
 2 Sm over
a set ˝ is given by,

k
k0;˝ WD
0
@
Z
˝

mX
i1D1
� � �

mX
imD1

�i1:::im�i1:::im d˝

1
A

1
2

: (36)

On the other hand in what concerns the nonlinear problems, the corresponding
load-displacement curves are given and compared against the corresponding results
in [28]. The various quantities depicted in the following graphs are measured in
Systéme International d’Unités (SI), if not otherwise stated.

4.1 Circular Plate Subject to Uniform Pressure Load

The first geometrically linear problem over which a convergence study for all
the DDMs is performed is that of a circular plate with radius R D 50 cm
subject to uniform distributed load p D 0:01KN=m2 at its surface. The problem
is decomposed into five patches, see Fig. 2. An analytical solution in terms of

Fig. 2 Circular plate subject to uniform pressure load: problem placement
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displacements for this problem exists [29],

d
�
X1;X2

� D �3p
�

R
2 � r2

� �
1 � �2�

16Eh3



5C �
1C �R

2 � r2
�

e3 ; (37)

where r2 D �
X1
�2 C �

X2
�2 � R

2
. The Young’s modulus, Poisson’s ratio and

plate’s thickness are chosen as E D 1.8 � 103 KN=m2, � D 0.3 and h D 1 cm,
respectively. A convergence study is performed by refining patches ˝.1/, ˝.2/,

˝.3/, ˝.4/ and ˝.5/ with
˙
5
9
i
�2

,
˙
6
9
i
�2

,
˙
4
9
i
�2

,
˙
7
9
i
�2

and i2 biquadratic and bicubic
elements, respectively, where i D 4; : : : ; 40 stands for the refinement level index.
The isogeometric discretization of each patch is chosen equal in both surface
parametric directions � and �. The resulting scaled deformation and the 2-norm of
the displacement field kdk2 using the Penalty method, corresponding to refinement
level i D 8 for the bicubic elements are shown in the set of Fig. 3. Within this
study, the penalty parameters ˛d and ˛¨ are chosen constant throughout the whole
interface �c, as a scaling of the matrix norms kDmkF and kDbkF corresponding to
the material matrices for the membrane and the bending stiffness of the Kirchhoff-
Love shell, respectively. In addition, this scaling is chosen as the inverse of
the minimum element area size within the multipatch geometry, that is h�1 D�

minTj2S5
iD1 T

.i/
h

ˇ̌
Tj

ˇ̌��1
. For the case depicted in Fig. 3, h�1 D 6:1169 � 102 m�2

resulting in choosing the penalty parameters as ˛d D 1:5729 � 104 KN=m3 and
˛¨ D 0:1310KN=m. This choice is found to be optimal with respect to the domain
error and interface displacement jump, for both the Penalty and the augmented
Lagrange Multipliers methods, see Fig. 4. Then, in what concerns the refinement
studies, the scaling related to the penalty parameters is chosen as 104 and 102

for the Penalty and the augmented Lagrange Multipliers method, respectively. The
refinement studies consist in biquadratic as well as bicubic elements, see set of
Fig. 5. The Penalty method is reaching its threshold in the order of 10�4 and 10�8
for the relative domain error and the interface jump in the L2-norm, respectively.

Fig. 3 Circular plate subject to uniform pressure load: postprocessing (Penalty). Setting corre-
sponding to refinement level iD8. Patches ˝.1/, ˝.2/, ˝.3/, ˝.4/ and ˝.5/ modelled using 25,
36, 16, 49 and 64 bicubic elements, respectively. (a) Plate’s deformation scaled by 3

2
. (b) The

displacement field in 2-norm kdk2
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Fig. 4 Circular plate subject to uniform pressure load: penalty parameters. Relative domain error
and interface displacement jump in the L2-norm against the penalty parameters corresponding to
refinement level iD8, see Fig. 3. (a) Error depending on ˛d maintaining ˛¨ D 0:1310KN=m. (b)
Error depending on ˛¨ maintaining ˛d D 1:5729 � 104 KN=m3

Fig. 5 Circular plate subject to uniform pressure load: convergence study. Relative domain error
and interface displacement jump in the L2-norm against the sum of the minimum element areas in
the multipatch geometry. (a) Biquadratic basis. (b) Bicubic basis

Both Lagrange Multipliers methods are demonstrating uniform convergence with
the augmented Lagrange Multipliers showing a slightly improved convergence
compared to the Lagrange Multipliers method. That is due to the penalty factors
whose magnitude is controlling the level of satisfaction to the interface constraints
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(10h) and (10i). Important for the augmented Lagrange Multipliers method is not
to use penalization parameters much larger than for the Penalty method, cause
in this case the method would be dominated by the penalty terms destroying the
uniform convergence expected from a Lagrange Multipliers method. The latter can
be observed in Fig. 4 where although for small penalty parameters the error levels
obtained by the Lagrange Multipliers are lower than the corresponding Penalty ones,
when the penalization parameters are increased both methods yield essentially the
same results, meaning that the Lagrange Multipliers play no more role.

4.2 Scordelis-Lo Roof

The second geometrically linear example which is employed for the comparison of
the DDMs is the Scordelis-Lo roof shell [30]. Its Young’s modulus, Poisson’s ratio
and thickness are chosen equal to E D 4.32 � 105 KN=m2, � D 0 and h D 25 cm,
respectively. Its curvature in the X1-direction is zero with length equal to L D 50m,
whereas in the X2-X3 plane it is representing a part of a cylinder with radius and arc
length size equal to R D 25m and 
0 D 4�

9
, respectively. At X1 D � L

2
and X2 D L

2

the shell is supported with diaphragms. The latter means that along the Dirichlet
boundary�d the motion of the shell in X1 and X2 directions is confined. The problem
is confronted in its original geometric setting without reducing it into one quarter
by apply the necessary symmetry conditions. Therefore, the corner

�
X1;X2;X3

� 
�
� L
2
;�R sin 
0

2
;R cos 
0

2

�
has to be fixed so that the indeterminacy of the problem is

eliminated. In addition, a uniform constant distributed load p D 9� 10�2 KN=m2 is
applied on the shell’s surface in the X3-direction. Then, the problem is decomposed
symmetrically into four patches, see Fig. 6.

Fig. 6 Scordelis-Lo roof: problem placement
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A convergence study is performed for low and high polynomial bases of the
patches. As reference solution for the displacement vector d, force n .d/ and
moment m .d/ tensors fields, it is considered the solution of the same problem
modelled with a single patch attaining a bidecic basis, sixty and forty elements in
the X1 and X2 sin 
 C X3 cos
 direction, respectively. The low polynomial order
case consists in patch pairs ˝.1/, ˝.3/ and ˝.2/, ˝.4/ being modelled with bicubic
and biquadratic basis, respectively. On the other hand, the high polynomial order
case represents the patch pair ˝.1/, ˝.3/ and ˝.2/, ˝.4/ modelling with biquartic
and bicubic basis respectively. The refinement study is performed by refining
patches ˝.1/, ˝.2/, ˝.3/ and ˝.4/ with

˙
4
3
i
� � ˙ 4

3
i
�
,
�˙

7
4
i
�C 2� � �˙ 7

4
i
�C 3�,˙

6
4
i
� � �˙ 6

4
i
� � 2� and

�˙
8
5
i
�C 4� � �˙ 8

5
i
�C 1� elements in � and � parametric

directions, respectively, with i D 1; : : : ; 26. The parametric coordinates � and �,
are chosen for all the patches to coincide with the longitudinal X1 2 �� L

2
; L
2

�
and

�
X2 sin 
;X3 cos


�
with 
 2

h
�
0

2
;

0
2

i
circumferential direction, respectively.

Moreover, the refinement is chosen such that the resulting elements have a good
aspect ratio as well as the interface parametrizations are kept highly non-conforming
at each refinement level. The scaling of the penalty factors for the displacement and
rotation penalization corresponding to the Penalty method are chosen as 103 m�2
and 0.25 � 103 m�2, respectively. Accordingly, the scaling of the penalty factors
for the displacement and rotation penalization corresponding to the augmented
Lagrange Multipliers method are chosen as 1 and 0:25m�2, respectively. Then, the
seven times scaled deformation and the 2-norm of the rotation field obtained using
the Lagrange Multipliers method and corresponding to refinement level i D 5 for
the high polynomial order case can be seen in set of Fig. 7.

The convergence of the displacement field at each subdomain using the relative
L2-norm for the low and high polynomial order of the underlying bases can be
seen in set of Fig. 8. More specifically, the Penalty method is clearly reaching its
threshold at the relative displacement error order of 10�3 and 10�4 for patch pair
˝.1/, ˝.3/ and ˝.2/, ˝.4/, respectively.

In what concerns the Lagrange Multipliers methods, the resulting numerical
displacement fields converge uniformly as the element area size goes to zero with

Fig. 7 Scordelis-Lo roof: postprocessing (Lagrange multipliers). Setting corresponding to refine-
ment level iD5. Patches ˝.1/, ˝.2/, ˝.3/, ˝.4/ modelled using 49, 132, 48 and 108 elements,
respectively, whereas pairs˝.1/,˝.3/ and˝.2/,˝.4/ have biquartic and bicubic bases, respectively.
(a) Plate’s deformation scaled by 7. (b) The rotation field in 2-norm k!k2
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Fig. 8 Scordelis-Lo roof: convergence study. Relative displacement error in the L2-norm at each
subdomain against the sum of the minimum element areas for the multipatch geometry. (a) ˝.1/,
˝.3/ bicubic and ˝.2/, ˝.4/ biquadratic bases. (b) ˝.1/, ˝.3/ biquartic and ˝.2/, ˝.4/ bicubic
bases

the augmented Lagrange Multipliers method demonstrating lower error levels in
the coarse region of the isogeometric field discretization. On the other hand, both
Lagrange Multipliers methods produce numerical fields whose relative errors are
almost identical in the fine discretization region. This is explained by the fact that
the penalty factors are kept constant with the refinement level while the Lagrange
multipliers fields are successively refined and therefore becoming dominant as the
element area size goes to zero.

As last, the convergence of the force and moment tensors, which are computed
using Eqs. (6a) and (6b), is demonstrated for both polynomial order cases in the
set of Figs. 9 and 10, respectively. Uniform convergence is observed for all but
the Penalty method, which is reaching its threshold in the force tensor at the
relative error of order 10�3 and 10�4 for the patch pairs ˝.2/, ˝.3/ and ˝.1/, ˝.4/,
respectively, see Fig. 9b. Equivalently, the aforementioned method is reaching its
threshold in the moment tensor at the relative error of order 10�2, 10�3 and 10�4
for patches ˝.2/, ˝.4/ and pair ˝.1/, ˝.3/, respectively, see Fig. 10b. Important
is to note that although the Penalty method is converging slower for the low
order polynomial case in the displacement field before reaching its threshold, see
Fig. 8a, the same does not necessarily hold for the resultant fields, that is the
force and the moment tensors, see Fig. 9a and 10a, respectively. The Lagrange
Multipliers methods in contrast to the Penalty method belong to the family of mixed
formulations which result into saddle point problems. As mentioned in Sect. 2,
a unique solution to the formulations resulting by using those methods is not
guaranteed to exist or to be unique, a fact which is closely linked to the choice
of the discrete Lagrange Multipliers fields. Moreover, it has been observed [14]
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Fig. 9 Scordelis-Lo roof: convergence study. Relative force tensor error in the L2-norm at each
subdomain against the sum of the minimum element areas for the multipatch geometry. (a) ˝.1/,
˝.3/ bicubic and ˝.2/, ˝.4/ biquadratic bases. (b) ˝.1/, ˝.3/ biquartic and ˝.2/, ˝.4/ bicubic
bases

Fig. 10 Scordelis-Lo roof: convergence study. Relative moment tensor error in the L2-norm at
each subdomain against the sum of the minimum element areas for the multipatch geometry. (a)
˝.1/,˝.3/ bicubic and˝.2/,˝.4/ biquadratic bases. (b)˝.1/,˝.3/ biquartic and˝.2/,˝.4/ bicubic
bases

that mixed formulations may perform well for the approximation of the primary
variables of a problem, in this case the displacement field, but not necessarily for
the their derivatives, which in this case are the force and the moment traction fields.
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Fig. 11 Slit annular plate subject to tip lifting line force: problem placement

4.3 Slit Annular Plate Subject to Tip Lifting Line Force

The first nonlinear problem to be studied is that of a slit annular plate subject to tip
lifting load. As reference, the results provided in [28] are used. The inner radius,
the outer radius, the thickness of the plate and the load magnitude are Rmin D 6m,
Rmax D 10m, t D 3 cm and p D p e3 with p D 8 � 10�4 KN=m, respectively. The
Young’s modulus and the Poisson’s ratio are E D 21 � 103 KN=m2 and � D 0,
respectively. The problem is decomposed into four subdomains, see Fig. 11. Two
settings for solving the aforementioned problem are used; the coarse setting for
which patch˝.1/, patch˝.2/, patch˝.3/ and patch˝.4/ are discretized with thirty-
six, eighteen, twenty-eight and ten elements, respectively, all having C1-continuous
biquadratic bases. On the other hand, the fine setting consists in discretizing patch
˝.1/, patch ˝.2/, patch ˝.3/ and patch ˝.4/ with two hundred nine, one hundred
five, two hundred seventy-three and one hundred fifty-three elements, respectively,
where patches˝.1/, ˝.3/ have a C1-continuous biquadratic basis and patches ˝.2/,
˝.4/ a C2-continuous bicubic basis. The scaling of the penalty factors for the
displacement and rotation penalization corresponding to the Penalty method are
chosen as 102 and 103 m�2, respectively. In what concerns the augmented Lagrange
multipliers method, those factors are chosen as 10�1 and 100 m�2, respectively.

For the solution of the nonlinear problem, sixty-one load steps are used with
Newton-Raphson tolerance equal to 10�6. In the set of Fig. 12, it is shown the
ultimate deformation of the plate and the distribution of the physical moment
component m22 along the plate for the fine setting corresponding to the solution
provided by the Penalty method. The smoothness of the results across the patches
which have strongly non-conforming bases exemplifies the applicability of the
DDMs for the solution of the nonlinear Kirchhoff-Love shell problem in multiple
domains. As last, the load-displacement curves corresponding to the d03 component
of the displacement field at points XA and XB, with displaced coordinates xA D
XA C d .XA/ and xB D XB C d .XB/, see Fig. 12a, for both the coarse and the
fine settings and subsequently are given in Fig. 13 and compared to the results
provided in [28]. Note that for both settings the DDMs deliver results very close
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Fig. 12 Slit annular plate subject to tip lifting line force: postprocessing (Penalty). Results
corresponding to the fine setting. (a) Ultimate deformation. (b) Ultimate moment field m22

Fig. 13 Slit annular plate subject to tip lifting line force: load-displacement curves

to each other, and they are almost identical in the fine setting. The latter shows that
all variational methods produce almost identical results as the mesh size goes to
zero, given that the coupling parameters and Lagrange Multipliers discretizations
are carefully chosen. It is worth mentioning that the reference results correspond to
a Reissner-Mindlin shell formulation and therefore the reference load-displacement
curves cannot be identical with the ones provided by the DDMs for a Kirchhoff-
Love shell. However the problem considers a relatively thin structure and thus the
results from both theories are very close to each other, as expected.
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Fig. 14 Cantilever subjected to end moment: problem placement

4.4 Cantilever Subjected to End Moment

The second nonlinear problem to be studied is that of a cantilever subject to end
moment. The material characteristics of the plate, that is, Young’s modulus and
Poisson’s ratio are equal to E D 1:2 � 103 KN=m2 and � D 0, respectively. On the
other hand, the geometrical characteristics of the plate, that is, its length, its width
and its thickness are equal to L D 12m, b D 1m and h D 10 cm, respectively.
The cantilever is subject to end bending moment r, with amplitude krk2 D 2� EI

L D
52:3333Nm, where I D bh3

12
D 8:3333m4 stands for the plate’s moment of inertia.

It is known that under this loading, the plate must bend into a circle of radius
R D EI

krk2 D 1:9099m, see [28]. The computational domain ˝ is decomposed
into three subdomains, see Fig. 14. Those subdomains are neighbouring through

three interface boundaries which are chosen curved. Interface boundary �
.1;2/

c

is represented by a quadratic Bézier curve between the control points OX.1;2/
1 


.0;�0:5; 0/, OX.1;2/
2 
 .0:15;�0:3; 0/ and OX.1;2/

3 
 .0:2; 0; 0/. Similarly, interface

boundary � .1;3/
c is also represented by a quadratic Bézier curve between the control

points OX.1;3/
1 
 .0; 0:5; 0/, OX.1;3/

2 
 .0:15; 0:3; 0/ and OX.1;3/
3 
 .0:2; 0; 0/. Finally,

interface boundary � .2;3/
c is represented by a cubic Bézier curve between the control

points OX.2;3/
1 
 .0:2; 0; 0/, OX.2;3/

2 
 .0:4667; 0:5; 0/, OX.2;3/
3 
 .0:7333;�0:5; 0/

and OX.2;3/
4 
 .1; 0; 0/. Note that within this decomposition, patch ˝.1/ attains a

parametric singularity on its boundary point� .1;2/
c \� .1;3/

c as its rectangular NURBS
parametric space is degenerated into a triangle in the Cartesian space.

The tolerance for the Newton-Rapshon iterations is chosen 10�5 for twenty
load steps in relation to the employed nonlinear scheme. In addition, the scaling
of the both the displacement and the rotation penalty factors is chosen as 102 and
10�2 for the Penalty and the augmented Lagrange Multipliers method, respectively.
Two settings, one coarse and one fine, are chosen for the current problem as in
Sect. 4.3. The coarse setting consists in parametrizing patch ˝.1/, ˝.2/ and ˝.3/



98 A. Apostolatos et al.

Fig. 15 Cantilever subjected to end moment: postprocessing (augmented Lagrange multipliers).
Results corresponding to the fine setting. (a) Ultimate plate’s deformation. (b) The ultimate
displacement field in kdk2

with four, ten and twenty-one elements, respectively, all attaining C2-continuous
bicubic polynomial bases. In what concerns the fine setting, patches ˝.1/, ˝.2/

and˝.3/ are parametrized with sixteen, twenty-four and fifty-five elements, respec-
tively, all attaining C3-continuous biquartic polynomial bases. The ultimate plate’s
deformation and the ultimate displacement field in the 2-norm using the augmented
Lagrange Multipliers method and corresponding to the fine configuration is shown
in set of Fig. 15. As expected, the plate is bent into a circle of the expected radius and
the DDMs were proven to handle pointwise singularities even when those appear on
the interface �c. It must be however noted that the deformed configuration does not
represent an exact circle if the control point weights of the NURBS parametrization
are not chosen appropriately, see [7]. However, the finer the geometry space is
chosen the better the approximation of the circle becomes.

Subsequently, load-displacement curves for the d03 and d01 components of the
displacement field at point XM are given in Fig. 16, which is lying in the middle
of the plate’s tip, see Fig. 15a. The DDMs delivered highly accurate results in the
fine setting and for the given choice of parameters as it can be verified by the
almost overlapping curves with the analytical ones provided in [28]. On the other
hand, for the coarse setting the results are as expected poor, as the discretization of
the displacement field is not rich enough, with the Lagrange Multipliers methods
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Fig. 16 Cantilever subjected to end moment: load-displacement curves

demonstrating better behaviour than the Penalty method. Additionally, it can be
observed that the produced by the augmented Lagrange Multipliers method results
are lying between those of the Penalty and the Lagrange Multipliers methods.
The latter verifies that the augmented Lagrange Multipliers method is essentially
a compensation between the other two methods, with the magnitude of the penalty
parameters being decisive on its behaviour. The larger the penalty parameters are
chosen, the better the interface continuity conditions (10h) and (10i) are satisfied
but on the same time the overall error is increased and vice versa, see set of Fig. 4.

5 Conclusions and Outlook

In this study, three different DDMs are presented and compared for the decomposed
Kirchhoff-Love shell problem in both linear and nonlinear isogeometric analysis.
Investigated are a Penalty, the Lagrange Multipliers and the augmented Lagrange
Multipliers method.

The Penalty method results in a positive definite discrete equation system given
that the penalty parameters do not affect the conditioning of the equation system.
The method performs robustly and its implementation is relatively simple. One
drawback of the method is that its accuracy depends on the size of the penalty
parameters which is typical for the Penalty methods. However, a discretization-
dependent rule is proposed and numerically tested.
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The Lagrange Multipliers method results in a saddle point discrete equa-
tion system. The latter means that the finite dimensional spaces must fulfil the
Ladyzenskaja-Babuska-Brezzi condition so that one unique solution to the problem
can be guaranteed. This is closely linked to the choice of the discretization of the
Lagrange Multipliers fields, which is in general a difficult problem. Nevertheless,
the method provided highly satisfactory results for the proposed choice of the
Lagrange Multipliers fields discretization.

The augmented Lagrange Multipliers method inherits the properties from both
the Lagrange Multipliers and the Penalty method. Therefore, the method results also
in a saddle point problem for which the penalty parameters can be used to adjust the
accuracy of the results without the necessity of being too large.

Extension of the given DDMs into a parameter-free variational formulation is by
this study highly motivated, so that the parameters which are driving the coupled
system are kept to minimum and thus minimizing the negative consequences of a
possible improper choice.

Acknowledgements The support of the Deutsche Forschungsgemeinschaft (DFG) with grant
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A Reduced Integration for Reissner-Mindlin
Non-linear Shell Analysis Using T-Splines

C. Adam, S. Bouabdallah, M. Zarroug, and H. Maitournam

Abstract We propose a reduced shell element for Reissner-Mindlin geometric non-
linear analysis within the context of T-spline analysis. The shell formulation is
based on the displacements and a first order kinematic in the thickness is used
for the transverse shear strains. A total Lagrangian formulation is considered for
the finite transformations. The update of the incremental rotations is made using
the quaternion algebra. The standard two-dimensional reduced quadrature rules for
structured B-spline and NURBS basis functions are extended to the more flexible
T-meshes. The non-uniform Gauss-Legendre and patchwise reduced integrations
for quadratic shape functions are both presented and compared to the standard full
Gauss-Legendre scheme. The performance of the element is assessed with linear and
geometric non-linear two-dimensional problems in structural analysis. The effects
of mesh distortion and local refinement, using both full and reduced numerical
quadratures, are evaluated.

1 Introduction

Isogeometric analysis (IGA) [1] is a recent concept introduced by T.J.R Hughes in
2004 that aims to bridge engineering design to analysis. B-spline and NURBS [2]
shape functions, initially used as standard tools in industrial computer aided design
(CAD) software, also provide promising properties for analysis. The geometric
description in CAD systems needs to be translated in a representation suitable for
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finite element analysis (FEA) or isogeometric analysis. This process is far from
trivial when dealing with complex designs in industrial applications and represents
a large amount of the overall process time.

Using different geometries results in several difficulties since both representa-
tions need to be updated in the same time, efficient shape optimizations of the
CAD geometry require a tight integration between the solver and the optimizer with
an automatic CAD geometry to mesh conversion and vice versa. These tasks are
complex since meshes are disconnected from CAD geometries. Ideally, having a
unique analysis suitable geometric model, which can be used directly from design
to simulation, is essential to automatize the overall process.

Engineering designs present some drawbacks for analysis since there are less
restrictions when manipulating the CAD geometry than when performing a numeri-
cal simulation. Some properties such NURBS trimming or patch merging represent
bottlenecks to achieve an automatic process which would join both domains. The
structured B-spline and NURBS shape functions are not enough flexible to represent
general industrial designs in an analysis suitable fashion.

The notion of T-spline [3] extends the concepts of B-splines and NURBS. They
benefit from the flexibility of the point-based splines [3] and the Cartesian structure
of B-splines. Many complex geometries can be represented with a single T-spline.
As hierarchical B-splines [4], they provide local refinement which is essential from
an analysis point of view.

As a generalisation of B-splines, T-splines suffer from numerical locking
pathologies and computational efficiency using a full Gauss-Legendre quadrature.
Efficient quadrature rule is an essential ingredient to obtain efficient numerical
simulations, regardless of the type of basis functions chosen. Full Gauss-Legendre
quadrature is optimal for C0 discretization methods such as standard Lagrange
elements. However, it has been shown in [5] that optimal quadrature rules for
spline-based analysis are patchwise rules with fewer quadrature points and different
locations and weights.

Reduced integration is a controversial subject in computational mechanics which
has significantly improved the efficiency of numerical simulations reducing the
number of quadrature points and the locking phenomena occurring in thin structures
modelled by thick shell elements. Some work on this topic has been initiated in e.g.
[6–9] within the context of B-spline and NURBS analysis.

In this paper, we extend the reduced quadrature schemes presented in [10–13] to
the more general T-spline analysis for two-dimensional problems. We limit our work
to quadratic shape functions. The strengths of T-splines, reduced integration and
geometric non-linear Reissner-Mindlin shell formulation are combined to obtain
efficient isogeometric elements needed for complex and time consuming industrial
simulations.

The paper is outlined as follows. In Sect. 2 we give a brief overview of the
T-spline technology introducing the point-based splines and the concept of local
knot vectors and refinement. In Sect. 3 we propose a Reissner-Mindlin shell element
for geometric non-linear analysis of structures focusing on the update of the normals
with arbitrary large rotations. The extension of non-uniform Gauss-Legendre and
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patchwise reduced quadrature rules is presented in Sect. 4. Both integrations are
performed in Bézier elements. The performance of the resulting reduced shell
elements is assessed in Sect. 5 using standard linear and non-linear benchmark
problems. We draw conclusions in Sect. 6.

2 T-Splines

T-splines generalize the concepts of B-splines and NURBS. Before describing
T-splines, we introduce the notion of function subdivision which is a process that
enlightens the concept of T-splines.

2.1 Blending Function Subdivision

Let us consider two quadratic B-spline basis N and QN generated by the
two open and global knot vectors � D f0; 0; 0; 1; 2; 3; 4; 4; 4g and Q� D
f0; 0; 0; 1; 1:5; 2; 3; 4; 4; 4g. We have the relation � � Q� in the sense that the
space of all curves that can be built from � is included in the space of all curves
that can be built from Q� . In other words, each basis function provided by the knot
vector � can be expressed as a linear combination of the basis functions given by
Q� [3]. These relations can be written in the following compact form

N D P QN; (1)

where P is the operator of knot insertion. In order to describe the same curve C.�/ D
NTB D QNT QB, a similar relation is obtained for both sets of control points B and QB

QB D PTB: (2)

Figure 1 represents the two quadratic B-spline basis. On the left, blue curves
are provided by the coarse knot vector � while, on the right, red curves represent
the new functions obtained from the refinement of the coarse shape functions. The
three polynomials represented by dotted blue lines can be expressed as a linear
combination of the four new functions denoted by red lines. Further details on the
algorithm of the blending function refinement for cubic polynomials are presented
in [3].

This example illustrates the notion of function subdivision and local refinement.
In fact, knot insertion with B-splines or NURBS is a global process with multi-
dimensional problems since it modifies the global knot vectors which generate the
basis functions. However, instead of considering refinement of global knot vectors,
we can consider the refinement of the basis functions, namely the refinement of the
local knot vectors. The Cox-de-Boor formula [2] exhibits a local process to construct
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Fig. 1 Univariate B-spline basis functions of order two with both open knot vectors � andQ� . (a) Coarse knot vector � D f0; 0; 0; 1; 2; 3; 4; 4; 4g. (b) Refined knot vector Q� D
f0; 0; 0; 1; 1:5; 2; 3; 4; 4; 4g

Table 1 Relations between the two basis N and QN
Coarse basis Local knot � loc

i Refined basis Local knot Q� loc
i Linear combination

N1 [0 0 0 1] QN1 [0 0 0 1] N1 = QN1
N2 [0 0 1 2] QN2 [0 0 1 1.5] N2 = QN2 C 1

4
QN3

N3 [0 1 2 3] QN3 [0 1 1.5 2] N3 = 3
4
QN3 C 3

4
QN4

N4 [1 2 3 4] QN4 [1 1.5 2 3] N4 = 1
4
QN4 C QN5

N5 [2 3 4 4] QN5 [1.5 2 3 4] N5 = QN6
N6 [3 4 4 4] QN6 [2 3 4 4] N6 = QN7

QN7 [3 4 4 4]

the spline polynomials of order p from the piecewise constant functions defined
by the knot vectors. In that sense, to each basis function Ni;p can be associated a
local knot vector � loc

i of size pC 2, necessary and sufficient to construct the spline
function.

Table 1 describes the local knot vectors � loc
i and Q� loc

i as well as the existing
relations between the two basis N and QN. The knot insertion � D 1:5 only impacts
pC 2 D 4 basis functions.

Finally, knot insertion as subdivision function is a more general concept than
the standard refinement for B-splines and NURBS. This notion is more general
and exhibits interesting properties such as the local refinement which is a major
drawback of B-splines and NURBS. T-splines are constructed from local knot
vectors associated with the subdivision function process. Therefore, they permit
meshes with the so called T-junctions and they contain the special cases of B-splines
and NURBS. Another strength of T-splines is their capability to achieve a high
continuity across patch boundaries without introducing new knots which propagate
in each direction when merging two patches.
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2.2 B-Splines, PB-Splines and T-Splines

The concept of point-based splines [3] has been introduced to benefit from the
local construction and refinement of the splines. There is no notion of global knot
vector, but only local and independent knot vectors. In that sense, the associated
polynomials are called blending functions rather than basis functions since the
properties of linear independence and partition of unity are no longer guaranteed.
PB-splines are even more flexible than T-splines and have some nice properties
for modelling geometries but the lack of structure in the knot vectors is a major
deficiency which prevents them from being used in analysis.

T-splines represent a good compromise between the Cartesian structure of
B-splines and the flexible PB-splines. They benefit from the strengths of both types
of functions. Initially they were defined for bi-cubic surfaces but more recently, they
were extended to three-dimensional problems and arbitrary degree p [14].

In this paper, we do not give an in-depth description of the T-spline theory which
is very rich and complex. The interested reader can refer to e.g. [15] to have a more
detailed study of this theory. We restrict our work to bi-quadratic basis functions
which give the possibility of constructing a large part of complex geometries.

2.3 The T-Mesh

Figure 2 represents, on the left, a T-mesh constructed from two NURBS-patches
denoted by blue and red lines respectively. It also includes a local refinement
strategy represented by a green line. Several T-junctions are thus obtained. On the

T−mesh from multi−patches with local refinement

(a)
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5
6
7
8
9

10
Anchor locations and lines with quadratics

(b)

Fig. 2 T-mesh obtained from multi-patches merging (blue and red lines) with local refinement
(green line). T-mesh with anchor locations (red and green points), local knot vectors (green
squares) and supports of the blending functions (grey areas). (a) T-mesh with local refinement.
(b) T-mesh with anchor locations and lines
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right, Fig. 2 illustrates the construction of local knot vectors in each parametric
direction. Let consider two bi-quadratic functions N1 and N2. They are represented
in the T-mesh by two anchors (green dots) and their respective support is defined by
the two darkened areas. Each anchor (red dots) is associated with one polynomial
function and is located at the maximum of the blending function. They are equiva-
lent to the Greville abscissae for B-splines and NURBS meshes. The construction of
the anchor locations and lines, namely the local knot vectors defining the supports
of the polynomials, is not detailed here but the interested reader can refer to [14].
The corresponding knots vectors are

� loc
1 D Œ0 0 1 2� and Hloc

1 D Œ1 2 4 6�; (3)

� loc
2 D Œ3 5 6 8� and Hloc

2 D Œ4 6 7 8�: (4)

The T-mesh contains all the essential information for defining the local knot vectors
and thus the shape functions. Moreover, the structure of the T-mesh defines the
properties of linear independence and partition of unity. A T-mesh that guarantees
these required properties for the analysis is called an analysis suitable T-mesh.
Analysis suitable T-splines are a subset of general T-splines which satisfy several
rules described in [16]. We introduce T-junction extensions which correspond to
closed line segments that extend from the T-junctions in the opposite direction and
cross b.p C 1/=2c perpendicular edges or vertices. One may note that T-junction
extensions are lines of reduced continuity. In practical terms, a T-mesh is well-
characterized and suitable for analysis if no vertical T-junction extension intersects
a horizontal T-junction extension. Both T-meshes represented in Fig. 2 are thus
suitable for analysis.

The structure of an analysis suitable T-mesh is also flexible enough to describe
complex geometries with locally different continuities and holes. Figure 3
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ξi

η 
j

(a) Index space (b)

Fig. 3 T-mesh and associated geometry with a hole and local C0 continuity. Grey elements have
zero measure while blue elements have a positive measure. (a) Index space. (b) Physical space
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represents, on the right, a complex bi-quadratic and three-dimensional surface
containing a hole and a C0 sharp edge which do not propagate within the domain.
On the left, the T-mesh corresponding to the geometry is given in the index space
so that multiple knots are visible. Grey elements have zero measure, there are thus
non-physical, while blue elements have a positive measure. This T-mesh is suitable
for analysis.

3 Large Deformations in Thick Shells

This section aims to develop the shell model presented in [10] for large deformations
and moderate strains in Reissner-Mindlin shells. Both thick and thin shell structures
are generally subjected to arbitrary large deformations and rotations but strains are
moderate due to their particular shape ratio between the lengths of the in-plane
directions and the thickness.

3.1 Green-Lagrange Strain Tensor

When dealing with moderate strains, the Green-Lagrange strain measure E [17] is a
good candidate to generalize the standard infinitesimal strain tensor � used for small
transformations. The Green-Lagrange tensor is well adapted to the Total Lagrangian
Formulation (TLF), in which the discrete equations are formulated with respect to
the reference configuration.

To compute E, the current configuration x is expressed in the initial configuration
X as follows

x D XC u: (5)

The Green-Lagrange strain measure is defined by the relation

dx2 � dX2 D 2dXTŒE�dX; (6)

with

dx D @x
@X

dX D @.XC u/
@X

dX D FdX; (7)

where the deformation gradient tensor F is related to both reference and current
configurations as follows

F D I3 C D and D D @u
@X
D u;X: (8)
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The Green-Lagrange tensor is thus

ŒE� D 1

2
.FTF � I3/ D 1

2
.DC DT C DTD/: (9)

Different measures exist when dealing with finite deformations. The Green-
Lagrange strain tensor is a special case of more general strain measures, the
Seth-Hill family of strain measures:

ŒEm� D 1

2m
.U2m � I3/ D 1

2m
..FTF/m � I3/: (10)

For several values of m we obtain the standard Green-Lagrange measure (m D 1),
the Biot tensor (m D 1=2), the Euler-Almansi strain tensor (m D �1) or the
logarithmic strains (m D 0). In the case of small strains, all the measures are similar.
The logarithmic strain is a standard measure when dealing with arbitrary finite
deformations. However, in structural mechanics, we recall that the displacements
and rotations can be large but the strains generally remains moderate so that the
Green-Lagrange measure is sufficient. The interested reader can find more details
on the strain measures and the different formulations in [17].

3.2 Constitutive Law

We consider an elastic behaviour along with a plane stress hypothesis. The
constitutive law relates the second Piola-Kirchhoff stresses S to the local Green-
Lagrange strains E so that, in Voigt notation, we have

S D CE; (11)

where C is the standard constitutive matrix of the isotropic material for elastic shells
under plane stress conditions in the case of Reissner-Mindlin’s theory. In terms of
iterative variation we thus obtain

�S D C�E: (12)

3.3 Virtual Work

The virtual work of internal forces can be written on the reference geometry V0 as
follows

ıW int D
Z

V0

ıETS dV0: (13)
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The iterative variation of the virtual work is

�.ıW int/ D
Z

V0

ıET�SC�.ıE/TS dV0: (14)

The strain-displacement matrix can be rewritten in the following condensed form

E D



HC 1

2
A .u;X/

�
GU (15)

where U is the vector containing the approximate displacements and rotations. The
expression of the operators H, A and G is detailed in [17].

Noting that ıA .u;X/GU D A .u;X/GıU, we obtain the following virtual
variation for the Green-Lagrange tensor

ıE D .HC A .u;X//GıU D Bnl.u/ıU: (16)

Finally, the virtual iterative variation of E is

�.ıE/ D A .�u;X/GıUC .HCA .u;X//G�.ıU/: (17)

The first term�Bnl.u/ıU is standard in solid element formulations while the second
term only appears when large rotations are considered.

3.4 Tangent Stiffness Matrix

The tangent stiffness matrix Kt is defined using the virtual iterative variation of the
work of internal forces such that

�.ıW int/ D ıUTKt�U (18)

In this section, we only consider the first part of the virtual iterative variation of E,
neglecting the effects of large rotations.

Using Eqs. (16) and (18) and noting that ST�Bnl.u/ D STA .�u;X/G D
�UTGT OSG we obtain the following stiffness matrix

Kt D Kt1 CKtff D
Z

V0

Bnl.u/TCt.S/Bnl.u/ dV0 C
Z

V0

GT OSG dV0 (19)

where OS is defined by

OS D
2
4 ŒS� 0 0

0 ŒS� 0
0 0 ŒS�

3
5 (20)
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The first term Kt1 corresponds to the “material” part of the tangent stiffness matrix
while the second term Ktff corresponds to the “initial stress” part.

3.5 Finite Rotations

Large displacements and rotations are common in structural analysis. In this section,
we extend the displacement-based formulation given in [11] to arbitrary large
rotations.

3.5.1 Displacement-Based Formulation

We briefly review the shell formulation given in small transformations. The
interpolated displacements and the exact geometry of the shell are described by
the same shape functions, that is

u.�/ D
nmX

AD1
RA



UA C h

2
�.nA � n0A/

�
D

nmX
AD1

RA



UA C h

2
��A � n0A

�
; (21)

where �A is the rotation vector at the control point XA. It can be highlighted that
these displacements are only valid for small rotations if we use a TLF. In this
particular case, the simple relation

nA � n0A D .R.�A/� I3/n0A ' �A � n0A (22)

remains true. However, in the general theory of finite transformations, we use the
following relation

u.�/ D
nmX

AD1
RA



UA C h

2
�.R.�A/� I3/n0A

�
: (23)

Due to the Reissner-Mindlin’s hypothesis, the current director vector nA is not
normal to the mid-surface of the shell and thus need to be correctly rotated to keep
accurate results.

3.5.2 Parametrization of the Rotations

Finite rotations can be described by an orthogonal operator R or using a pseudo-
vector of rotation. Different parametrizations are possible but we focus on the axis-
angle representation .e; 
/ where e is a unit vector.
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The orthogonal operator R has the three following eigenvalues f1; exp.i
/;
exp.�i
/g. The tensor can be represented using the compact form

R.e; 
/ D cos.
/IC .1 � cos.
//e˝ eC sin.
/Œe��; (24)

with jjejj D 1 and where the skew-symmetric tensor Œe�� is

8b 2 R
3 W Œe��b D e � b: (25)

Noting that, in the Euclidean space, e˝ e � Œe��Œe�� D I, we obtain

R.e; 
/ D IC .1 � cos.
//Œe��Œe��C sin.
/Œe��: (26)

The pseudo-vector of rotation �, of norm 
 and direction e, is introduced using the
relation

� D 
e D jj�jje: (27)

In the Euclidean space, we have � D .
1; 
2; 
3/T with 
 D
q

21 C 
22 C 
23 . The

pseudo-vector of rotation is not a vector since it does not satisfy the property of
additivity. In fact, finite rotations of the three-dimensional space are not additive in
general. The rotation operator can be rewritten as follows

R D cos.
/IC 1 � cos.
/


2
�˝ �C sin.
/



Œ���; (28)

or recalling that, in the Euclidean space, � ˝ � � Œ���Œ��� D 
2I, we obtain the
standard Rodrigues’ rotation formula

R D IC 1 � cos.
/


2
Œ���Œ���C sin.
/



Œ���; (29)

which has no singularity in Œ0; 2�Œ.
Using the Taylor series expansions of the functions sine and cosine, the

Rodrigues’ formula provides a simple algorithm to compute the exponential map

R D exp.Œ���/ D
1X

kD0

Œ���k
kŠ

(30)

so that the variation of the rotation operator is ıR D Œı���R. Moreover, the
trigonometric relations

1 � cos.
/ D 2 sin2





2

�
and sin.
/ D 2 sin






2

�
cos






2

�
; (31)
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allows us to define new dependent parameters such that

r0 D cos






2

�
and r D sin






2

�
�

jj�jj ; (32)

with the following relation r20 C r � r D 1.
The Euler parameters, or the unit quaternion r D .r0; r/, give a simple

representation of the orthogonal operator R as follows

R D exp.Œ���/ D .2r20 � 1/IC 2r0Œr��C 2r˝ r: (33)

3.5.3 Variation of the Displacements

We recall that for all points Q in the shell we have

uQ D uP C z.R � I3/n0 (34)

where P is obtained by an orthogonal projection of Q onto the mid-surface of the
shell and n0 is the initial normal. Noting that ın0 D 0, the virtual displacement ıuQ

is expressed as

ıuQ D ıuP C zıRn0 D ıuP C zŒı���Rn0 D ıuP C zı� � n: (35)

A similar expression is obtained for the iterative displacement �uQ, knowing that
�n0 D 0

�uQ D �uP C z�� � n: (36)

Moreover, since we have �.ıuP/ D 0, the variation for the iterative displacement
�.ıuQ/ is

�.ıuQ/ D zı� � .�� � n/: (37)

This term is not standard and does not exist in the classical theory of continuum
shell elements. It implies a new contribution in the stiffness matrix which is non-
symmetric. Further details about this additional term can be found in [17].

3.5.4 Update of the Rotations and Normals

The quaternion algebra gives simple formulas to update the pseudo-vector of
rotation ˚ and the current normal to the shell n.

Given the two rotations R1 and R2, respectively represented by the quaternions
r1 and r2, the resulting composition of the two rotations, namely R D R2R1, is
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parametrized by the quaternion r as follows

r D r1 ı r2 D .r10r20 � r1 � r2; r10r2 C r20r
1 C r1 � r2/; (38)

where r1ır2 denotes the product of the two quaternions r1 and r2. One may note that
due to the presence of the tensor product r1 � r2, the composition of two rotations
in a three-dimensional space is not, in general, commutative.

Suppose it is known, at the increment i, the total rotation Ri�1, that is its
representation by the quaternion ri�1, the field .ui�1;�i�1/, its iterative variation
.�ui; ��i/ and the normal ni�1. The displacement u is straightforward updated by
the additive formula

ui D ui�1 C�ui: (39)

However, a similar update can not be applied to the rotation � since the property of
additivity is only valid for small rotations.

To update the rotation� using the computed iterative value��i, we first compute
the quaternion�ri which parametrizes the iterative rotation

�ri D .�ri
0;�ri/ D



cos


 jj��ijj
2

�
; sin


 jj��ijj
2

�
��i

jj��ijj
�
: (40)

The rotation field is thus updated using the product ri D �ri ı ri�1

ri D .ri
0; r

i/ D .�ri
0r

i�1
0 C�ri � ri�1;�ri

0r
i�1 C ri�1

0 �ri C�ri � ri�1/: (41)

Recalling that r D .cos. 

2
/; sin. 


2
/e/, the pseudo-vector of rotation � can be

defined in Œ0; 2�Œ using the relations


 i D 2 tan�1

 jjrijj

ri
0

�
and �i D 
 i jjrijj

ri
: (42)

The director vector ni D exp.Œ��i��/ni�1 is easily updated as follows

ni D .2.�ri
0/
2 � 1/ni�1 C 2�ri

0�ri � ni�1 C 2.�ri � ni�1/�ri: (43)

4 Reduced Integration

The reduced quadrature rules for NURBS-based analysis of structural mechanics
given in [10, 11] are extended, in this section, to analysis suitable T-meshes.

We recall that due to the high order of the isogeometric method, a full Gaussian
integration with d.pC 1/=2e quadrature points in each direction is computationally
expensive. Moreover, due to the high continuity of the spline functions, the full
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integration provides to many quadrature points in the element [5]. The reduced
integration presents the double advantage to significantly reduce the computational
cost of the method and to alleviate the numerical locking occurring when modelling
thin structures [11].

4.1 Bézier Elements and Full Gauss Quadrature

As for B-splines and NURBS, the continuity of T-splines in the physical space
is determined by the local knot vectors, defining the blending functions in the
parameter space. For polynomials of order p, a multiplicity m of a knot value in
the local knot vector implies a regularity Cp�m of the blending functions across this
knot value. Unlike Cartesian structure of B-splines and NURBS, in which the lines
of reduced continuity are global and unambiguous, the lines of reduced continuity in
a T-mesh are local to the basis functions and do not generally propagate throughout
the domain. Therefore, T-splines may have locally several degrees of continuity
within the domain as previously illustrated in Fig. 3.

We have introduced the concept of T-junction extension which, in practical, is a
simple and efficient tool to verify whether the T-mesh is suitable for analysis or not.
We recall that these T-junction extensions are lines of reduced continuity. Therefore,
an extended T-mesh can be constructed adding all continuity reduction lines to the
initial T-mesh. The union off all edges and T-junction extensions represents the
lines across which the continuity of the blending functions is less than C1. The
extended T-mesh splits the parameter and physical spaces into several regions which
define the Bézier elements. This notion of element is essential to perform a correct
numerical quadrature.

The numerical integration is thus performed in the regions delimited by the edges
of the extended T-mesh which correspond to the Bézier elements. Figure 4 illustrates
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Fig. 4 T-mesh (a) and Bézier elements (b) with full Gauss quadrature for bi-quadratic blending
functions
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the full Gauss quadrature for analysis suitable T-splines. The numerical quadrature
is performed in each Bézier elements, represented on the right, which are defined
adding the lines or reduced continuity (dotted blue lines) to the edges of the T-mesh
(solid blue lines).

4.2 Reduced Gauss Quadrature

The non-uniform reduced Gauss quadrature presented in [10] in the context
of B-spline meshes, is extended in this work to unstructured analysis suitable
T-meshes. The reduced number of quadrature points used in B-spline/NURBS
analysis has shown to alleviate numerical locking as well as to improve the
computational efficiency, especially as the degree of continuity is high. As with
a full Gauss quadrature, the reduced rule is applied in each Bézier element in which
the continuity of the blending function is C1. In practical terms, the local continuity
of each Bézier element edge is given by the local knot vectors of the blending
functions that are positive on this element.

Figure 5 represents the same analysis suitable T-mesh as previously and the non-
uniform reduced Gauss quadrature rule which is constructed locally, namely in a
standard element-by-element fashion. Using the concepts introduced in [12] for
quadratic polynomials, the target space is S2p

q�1 D S40 , achieved with a full Gauss
or patchwise quadrature, and the approximation space corresponding to this given
scheme is Sr

s D S1�1.

Fig. 5 Extended T-mesh and
reduced Gauss quadrature
rule
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4.3 Reduced Patchwise Quadrature

The reduced patchwise rules given in [12] are applied in the context of T-spline
analysis. We recall that, in this work, it is shown that the reduced Gauss rule is not
optimal in term of accuracy since it exactly integrates the approximation space S1�1
which is not included in the target space S40 . For C1 quadratic shape functions, the
over-integrated approximation space S20 appears to be optimal when performing a
reduced integration in the sense that it significantly reduces the numerical locking
and computational effort without introducing Hourglass modes. Moreover, it is the
smallest space that guarantees these properties for C1 quadratics.

The reduced patchwise rules are constructed by tensor products of several one-
dimensional rules. We look through all the Bézier elements of the extended T-mesh
in both parametric directions since the patchwise rules are not constructed locally,
that is from the continuity given by the local knot vectors associated with the positive
functions in the element. The complexity of the T-mesh, namely the number of
holes or T-junctions, the different degrees of continuity, defines the number of one-
dimensional rules to compute in order to construct the two-dimensional quadrature
scheme. However, each construction of a one-dimensional rule is independent, that
is it can be straightforward performed in parallel. A patchwise one-dimensional
rule is defined in a given parametric direction and between two local knots of C�1
continuity, namely between two borders of the domain.

Figure 6 represents the two one-dimensional rules that have to be constructed in
order to compute the two-dimensional scheme. Again, we use the same T-mesh
as with the other presented integrations. We observe that the same number of
quadrature points is used as with the non-uniform reduced Gauss quadrature.
However, the locations of these points are not standard since the integration rule
is not defined locally, it depends on the element in the patch.

Due to the flexible structure of the T-splines, in particular the possibility to
perform a local refinement, blending functions of generally distinct supports lie in

One−dimensional rules used(a)

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

Extended T−mesh and Gauss points for quadratics(b)

Fig. 6 Extended T-mesh and reduced patchwise quadrature rule. (a) One-dimensional patchwise
reduced rules used. (b) Reduced patchwise quadrature scheme
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the element. Therefore, the patchwise rule can not, in principle, exactly integrate
all functions within the element. However, we have seen that the refined blending
functions can be expressed as a linear combination of the coarse functions when
performing a blending function subdivision. Considering the Bézier elements for
the construction of the quadrature rules guarantees that all the blending functions in
the element, even with a coarse support, are exactly integrated. We note that some
shape functions are thus over-integrated near a T-junction, which may imply a slight
numerical locking since there are locally more quadrature points than control points.
This observation can be made for both quadrature rules presented in this work. For
instance, the one-dimensional rule with six quadrature points, presented in Fig. 6,
also exactly integrates the blending functions which are exactly integrated by the
other one-dimensional rule with only five quadrature points.

5 Numerical Results

In this section, we perform some classical benchmarks for structural analysis.
We present numerical solutions for linear elastic shells and geometric non-linear
structures. All the calculations are done for the thick shell formulation presented
in the previous section. A standard Galerkin formulation is employed. Full Gauss,
non-uniform reduced Gauss and reduced patchwise quadratures are used for the
numerical integration and compared in several examples. The first example is a
bending plate which exhibits strong numerical locking under mesh distortion with
full Gauss-Legendre quadrature. The two following examples come from the so-
called shell obstacle course: the pinched cylinder and the pinched hemisphere. The
relevance of these problems to the assessment of shell analysis have been discussed
extensively in the literature [18]. The pinched hemisphere is also considered within
the context of geometric non-linear analysis to assess the performance of the shell
formulation and the numerical quadrature with large transformations. A set of
popular benchmark problems for geometric non-linear analysis of shells is given
in [19].

5.1 Bending Plate

The first example, represented in Fig. 7, is a simply supported thin square plate,
of length L, with a vertical concentrated loading applied at its center. The case of
a uniform pressure loading is not presented in this paper but similar results are
obtained. Due to the symmetry of the problem, only a quarter of the plate (blue
area in Fig. 7) is simulated. The geometric property L=h D 103 results in a thin
shell structure which is expected to suffer from locking pathologies, in particular
transverse shear locking. In this example, no T-junction is considered. We first assess
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Fig. 7 Central deflection of the bending plate for different numerical quadratures. (a) Problem
description and geometric data. (b) Distorted mesh 3�3. (c) Distorted mesh 12�12. (d) Full Gauss-
Legendre quadrature. (e) Reduced Gauss-Legendre quadrature. (f) Reduced patchwise quadrature

the performance of both presented reduced rules with respect to mesh quality and
numerical locking.

For each integration, namely full, reduced Gauss-Legendre and reduced patch-
wise, two meshes are compared: a regular mesh and a distorted mesh. The numerical
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results are compared with the reference central deflection wref
C D 6:3341 � 10�6 m

[11]. An initial mesh distortion is applied on the coarsest mesh with three elements
in each direction. A strategy of k-refinement is then applied to generate the refined
meshes without modifying the initial mesh distortion.

Figure 7 illustrates that full quadrature is sensitive to mesh distortion in the
sense that it strengthens the locking pathologies and decreases the accuracy of
the numerical solution. However, in this example, both reduced quadratures are
not sensitive to numerical locking neither to mesh distortion. The accuracy of the
solution is significantly improved with respect to the full quadrature. Moreover, we
have the following relation for the ratio of the number of quadrature points

lim
nelem!C1

nfull
GP=nreduced

GP D 4; (44)

which means that the computational effort is also significantly reduced.

5.2 Pinched Cylinder

The second example is the so called pinched cylinder subjected to equal and
opposite radial forces at the top and bottom mid-spans. The two ends are supported
by rigid diaphragms (Fig. 8). The geometry of the cylindrical shell exhibits the shape
ratio as in the previous problem. This is a severe test case evaluate the capacity of
the shell element to describe the membrane and bending deformations, especially
near the application points of the concentrated forces. This problem is characterized
by a bending dominant behaviour and results have revealed a tendency towards
membrane and shear locking. A severe membrane locking is expected as bending
is inextensible. Again, due to the symmetry of the problem, only a quarter of the
shell (blue area in Fig. 8a) is modelled. To evaluate the convergence, the vertical
displacement wh

C at the loading points is compared with the reference solution
wref

C D 1:8248 � 10�7 m [11].
Several NURBS meshes are generated using the standard k-refinement proce-

dure. The T-meshes are represented in Fig. 8. We assess the performance of both
full and reduced Gauss-Legendre quadratures for NURBS and T-spline meshes. We
observe that combining the reduced integration with the locally refined T-meshes
significantly improves the accuracy of the numerical solution using less degrees
of freedom and integration points. It thus appears as a promising technique to
perform complex simulations, involving localized deformations, with a reasonable
computational effort.
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Fig. 8 Vertical displacement at the center of the pinched cylinder for different numerical
quadratures and types of meshes. (a) Problem description and geometric data. (b) ndof D 258.
(c) ndof D 1206. (d) ndof D 4326. (e) NURBS meshes. (f) T-spline meshes
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5.3 Pinched Hemisphere

The last example considered in this work is the pinched hemisphere, with an
18ı hole at its pole, which comes from a set of popular benchmark problems
for geometric non-linear analysis of shells [19]. The pinched hemispherical shell,
represented in Fig. 9, is subjected to equal and opposite concentrated forces Pmax

applied at the four cardinal points of its equator. The two ends are stress free. The
rigid body motion is eliminated fixing the vertical displacement at an application
point of the forces. The slenderness ratio is R=h D 250. This doubly curved
shell problem is characterized by inextensible bending modes and large rigid body
rotations. Membrane energy is almost zero. This test ensures that the element does
not suffer from membrane and shear locking. Due to symmetry, only one quadrant
is meshed (blue area in Fig. 9). To assess the accuracy of the shell formulation, the
horizontal displacement uh

A at the loading points is compared with the reference
solution using ABAQUS S4R, a four-node reduced shell element, given in [19].

In the non-linear solution procedure, the full Newton-Raphson method is used
in a TLF. The convergence criterion employed is the 0.1 % force tolerance. The
maximum load Pmax is subdivided into several load increments which are not
necessarily uniform. At the end of each load increment, a converged intermediate
solution is obtained. This procedure reduces the degree of non-linearity from an
intermediate solution state to another and enhances the chance of obtaining the
desired solution corresponding to the maximum load. If the increments are correctly
chosen or computed, each step converges in a few iterations.

A standard NURBS mesh with twelve C1 quadratic elements in each direction is
used. Figure 9 illustrates that, as with linear analysis, the reduced Gauss scheme
provide a better accuracy than the full Gauss-Legendre quadrature within the
context of non-linear analysis. The shell formulation with finite transformations also
exhibits a good accuracy. The resulting reduced isogeometric shell element shows
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Fig. 9 Horizontal displacement at the center of the pinched cylinder for different numerical
quadratures and types of meshes. (a) Problem description and geometric data. (b) Numerical
solution for a 12� 12 mesh
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satisfying performance. If a local refinement, using T-junctions, is added, accuracy
and computational efficiency are even more improved, as shown in the previous
examples.

6 Conclusions

The concept of T-splines extends the NURBS technology and permits local
refinement, holes, which is a solution to the trimmed surface problem, merging
of patches without introducing new knots which propagate. These properties are
essential in a design context and T-splines represent a promising integrated approach
to engineering design and analysis. This technology is attractive for both design and
analysis and has recently become available in industrial design software.

In this paper, we explore various integration schemes and adapt the B-
spline/NURBS tensor-product rules to T-splines. The uni-dimensional reduced
quadrature rules for quadratic shape functions, with non-uniform Gauss-Legendre or
patchwise integration, have been extended to bi-dimensional shell problems within
the context of unstructured T-splines. A geometric non-linear Reissner-Mindlin
shell formulation, based on the displacements, has been proposed. The update of
the finite rotations in a TLF is handled using the quaternion algebra.

The non-uniform reduced Gauss-Legendre integration can be straightforward
extended to more complex T-meshes. The local continuity of each Bézier element
edge, required to construct the reduced element rule, is given by the local knot
vectors of the blending functions that are positive on this element. However, we
look through all the Bézier elements of the extended T-mesh in both parametric
directions to construct the one-dimensional patchwise rules essential for the final
two-dimensional tensor-product rule. The latter require a higher computational
effort than Gauss rules, e.g. one calculation during the pre-processing phase, but
they also offer a better accuracy.

The performance of the resulting reduced shell element is assessed on several
linear and geometric non-linear problems. We have observed that, C1 quadratic
blending functions are sensitive to mesh distortion and numerical locking when
performing a full integration with a thin structure. They both decrease the accu-
racy of the numerical solution. However, the reduced integrations alleviate these
pathologies and exhibit good performance in terms of accuracy and computational
efficiency.
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Multiresolution Shape Optimisation
with Subdivision Surfaces

Fehmi Cirak and Kosala Bandara

Abstract We review our recent work on multiresolution shape optimisation and
present its application to elastic solids, electrostatic field equations and thin-shells.
In the spirit of isogeometric analysis the geometry of the domain is described
with subdivision surfaces and different resolutions of the same surface are used
for optimisation and analysis. The analysis is performed using a sufficiently fine
control mesh with a fixed resolution. During shape optimisation the geometry is
updated starting with the coarsest control mesh and then moving on to increasingly
finer control meshes. The transfer of data between the geometry and analysis rep-
resentations is accomplished with subdivision refinement and coarsening operators.
Moreover, we discretise elastic solids with the immersed finite element method,
electrostatic field equations with the boundary element method and thin-shells with
the subdivision finite element technique. In all three discretisation techniques there
is no need to generate and maintain an analysis-suitable volume discretisation.

1 Introduction

As widely discussed in isogeometric analysis literature, the geometry representa-
tions used in today’s computer aided design (CAD) and computational analysis
software are inherently incompatible [19]. This is particularly limiting in shape
optimisation in which a geometry model is iteratively updated based on the results
of a computational analysis [6, 8, 17]. It is tedious and often impossible to repeatedly
map the results from an analysis mesh back to the CAD model. To remedy this, the
shape optimisation of shells and solids by directly optimising the CAD geometry
model using isogeometric analysis has been recently explored [12, 16, 21, 37].

In the present paper we review the multiresolution shape optimisation technique
and present its application to linear elastic solids, electrostatic field equations and
thin-shell structures [2–4]. We discretise elastostatic boundary value problems using
immersed, or embedded, finite elements, see, e.g., [28, 29, 31, 32], which have clear

F. Cirak (�) • K. Bandara
Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
e-mail: fc286@cam.ac.uk; kkmb2@cam.ac.uk

© Springer International Publishing Switzerland 2015
B. Jüttler, B. Simeon (eds.), Isogeometric Analysis and Applications 2014,
Lecture Notes in Computational Science and Engineering 107,
DOI 10.1007/978-3-319-23315-4_6

127

mailto:fc286@cam.ac.uk
mailto:kkmb2@cam.ac.uk


128 F. Cirak and K. Bandara

advantages when applied to structural shape optimisation [1, 18]. In order to cope
with unbounded domains we discretise electrostatic problems with the boundary
element method. Crucially, in immersed finite elements and boundary elements the
geometry of the domain boundary can be updated without needing to generate
or maintain domain meshes. Shell structures are modelled as a surface and are
discretised with subdivision finite elements, which use the subdivision surfaces as
basis functions [11, 12].

The domain boundaries and the shell mid-surface are represented with sub-
division surfaces. Although historically subdivision and related techniques have
originated in computer graphics, they recently became available in several CAD
software packages, including Autodesk Fusion 360, PTC Creo and CATIA. As will
be demonstrated in this paper, subdivision surfaces provide an elegant isogeometric
analysis-suitable, bidirectional mapping between the geometry and analysis models.
In subdivision a geometry is described using a control mesh and a limiting process
of repeated refinement [27, 40]. The refinement rules are usually adapted from
knot refinement rules for splines [9, 14, 22]. We consider the Catmull-Clark [9]
scheme based on quadrilateral meshes and the Loop [25] scheme based on triangular
meshes. The Catmull-Clark scheme is the generalisation of cubic tensor-product
b-splines to unstructured meshes and the Loop scheme is the generalisation of
quartic box-splines. Both subdivision schemes lead to smooth surfaces even in
case of unstructured meshes with extraordinary vertices. The hierarchy of control
meshes underlying subdivision surfaces lends itself naturally to multiresolution
decomposition of geometries [26, 41]. The size of the geometric region influenced
by each vertex depends on the resolution of the control mesh, editing coarser levels
leads to large-scale changes while editing finer levels lead to small-scale changes.

The introduced multiresolution optimisation approach relies on subdivision
curves/surfaces for the description of boundaries. The multiresolution paradigm
allows us to describe the same geometry with control meshes of different resolution
for analysis and optimisation purposes. For finite element and boundary element
analysis a relatively fine control mesh is used in order to minimise the discretisation
errors. In contrast, the degrees of freedom in optimisation (i.e., design variables)
are chosen as the vertex coordinates of a coarser control mesh. Perhaps counterintu-
itively, the use of the same fine control mesh for optimisation and analysis leads to
suboptimal optimisation results with possible non-physical geometry oscillations.
This behaviour is also known from earlier work on structural optimisation in which
the finite element nodes were used as optimisation design variables [8, 17]. This
paper will demonstrate that the best optimisation results are achieved when starting
with a coarse control mesh increasingly finer control meshes are optimised. During
the optimisation iterations the refinement level of the control mesh is increased each
time a minimum is reached.
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2 Multiresolution Subdivision Surfaces

2.1 Subdivision Refinement of Spline Curves

The refinability property of cubic b-splines can be utilised to derive a corresponding
subdivision scheme. To illustrate this, we consider the coarse knot sequence �0i D
0; 1; 2; 3; : : : and the fine knot sequence �1i D 0; 0:5; 1; 1:5; 2; 2:5; 3; : : :. We
denote the b-splines on the coarse knot sequence with B0i .�/ and the ones on the fine
knot sequence with B1i .�/, see Fig. 1. According to the b-spline refinability equation,
see, e.g., [7, 40], it is possible to represent the coarse b-splines (in the interior) as a
linear combination of the fine b-splines

B0i .�/ D
4X

jD0
SijB

1
2iCj�2.�/ with Sij D 1

8

 
4

i

!
; (1)

where Sij is the subdivision matrix with its entries given in terms of the usual
binomial coefficients. In order to keep the derivations simple we exclude from our
discussion the b-splines close to the boundaries. For subsequent derivations (1) is
best expressed in matrix notation

B0 D SB1 : (2)

Next, we consider a spline curve defined in terms of the coarse b-splines and the
corresponding control vertices, i.e.,

xh.�/ D B0 � x0 (3)

with matrix x0 containing the coordinates of control vertices. The number of
columns of x0 is equal to space dimension and the number of rows is equal to the
number of all control vertices.

Fig. 1 Refinement relation for cubic b-splines



130 F. Cirak and K. Bandara

Introducing the refinement relation (2) into (3) the spline curve can be expressed
with

xh.�/ D
�
SB1

� � x0 D B1 � �STx0
�
: (4)

This implies that the control vertex coordinates on the finer level can be computed
with the subdivision relation

x1 D STx0 : (5)

In subdivision schemes the described refinement approach is applied recursively,
i.e.,

x`C1 D STx` ; (6)

where x`C1 and x` are two matrices containing the coordinates of all the vertices
at levels ` C 1 and ` with ` � 0. Although the dimensions of S increase with `
we denote all subdivision matrices with S since each row has the same non-zero
components only shifted relative to adjacent rows [3]. The successive refinement of
a given control polygon using (6) is illustrated in Fig. 2.

For computer implementation and generalisation to bivariate splines, it is
instructive to think that the refinement of a control polygon according to (6) consists
of a refinement and an averaging step. In the refinement step each segment of
the polygon is subdivided into two segments, see Fig. 3a. Subsequently, the vertex

Fig. 2 Subdivision refinement of a given control polygon (shown left)

(a) (b)

Fig. 3 Subdivision refinement for cubic spline curves. (a) Refinement by bisectioning and vertex
renumbering. (b) Stencils for even (top) and odd (bottom) vertices
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coordinates of the refined polygon are determined by averaging the coarse vertex
coordinates with the two stencils shown in Fig. 3b. The even vertex stencil applies
to vertices that are already present in the coarse polygon and the odd vertex stencil
applies to vertices that are only present in the refined polygon. The naming odd and
even is motivated by the consecutive numbering of vertices where newly inserted
vertices receive odd numbers. According to Fig. 3b, for a given coarse polygon
of level ` with vertex coordinates x`i a refined polygon of level ` C 1 with vertex
coordinates x`C1i is computed with

x`C12i D
1

8
x`i�1 C

3

4
x`i C

1

8
x`iC1 ; x`C12iC1 D

1

2
x`i C

1

2
x`iC1 : (7)

2.2 Subdivision Refinement of Bivariate Surfaces

Similar to tensor-product b-splines the tensor products of one-dimensional subdi-
vision stencils yield the corresponding subdivision stencils for surfaces. The tensor
product construction works only for quadrilateral meshes and in the refinement step
each quadrilateral is subdivided into four quadrilaterals, see Fig. 4a. It is evident
that the tensor-product stencils only apply to meshes in which each vertex within
the domain is connected to four faces. The number of faces connected to a vertex is
referred to as the valence of that vertex. The domain vertices with a valence other
than four are known as extraordinary vertices or star-vertices.

For subdivision surfaces using quadrilateral meshes, the original stencils pro-
posed by Catmull and Clark [9], shown in Fig. 5, are used. Note, the vertex stencil
in Fig. 5c depends on the valence v of the vertex and reduces to a standard tensor
product stencil for structured meshes with valence v D 4. There is mathematical
theory which shows that the resulting surface is C2 continuous almost everywhere
except at the extraordinary vertices where it is only C1 continuous [27]. In addition,
there are also extended subdivision stencils for vertices on edges, creases and
corners, see, e.g., [5, 10, 39]. In this context, a crease is a line on the surface
across which the surface is only C0 continuous. As an illustrative example, Fig. 6

Fig. 4 Refinement by
quadrisectioning. (a)
Quadrilaterals. (b) Triangles

(a) (b)
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Fig. 5 Subdivision stencils for the Catmull-Clark scheme. Each of the stencils are used for
computing the coordinates of vertices of the type indicated by the red dot. The weights for the
vertex stencil are ˇ D 3

2v
and � D 1

4v
, where v is the valence of the vertex. (a) Edge stencil. (b)

Face stencil. (c) Vertex stencil

Fig. 6 Refinement of a given quadrilateral control mesh (shown left) with Catmull-Clark subdivi-
sion. In the vicinity of the edges in red modified subdivision stencils are applied in order preserve
the sharp edge. The once subdivided mesh is shown in the middle and the limit surface on the right
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shows the subdivision refinement of a control mesh for a T-junction geometry with
extraordinary vertices and prescribed crease edges.

In case of triangular control meshes the subdivision scheme introduced by
Loop [25] can be used. On three-directional triangular meshes (with each vertex
having valence six) the Loop scheme yields quartic box-splines. In this context a
vertex is regular when it is inside the domain and incident to six edges, or is on the
boundary of the domain and incident to four edges. In the refinement step of the
Loop scheme, each triangle of the control mesh is subdivided into four triangles by
introducing new vertices at the edge midpoints, as shown in Fig. 4b. Subsequently,
the vertex coordinates of the refined mesh are computed with the subdivision stencils
given in Fig. 7 [38]. Figure 8 shows a mechanical connector geometry containing
extraordinary vertices and sharp features described with the extended subdivision
surfaces.

(a) (b)

Fig. 7 Subdivision stencils for the Loop scheme. Each of the stencils are used for computing the
coordinates of vertices of the type indicated by the red dot. (a) Edge stencil. (b) Face stencil

Fig. 8 Subdivision refinement of a given triangular control mesh (shown left) with Loop subdivi-
sion. In the vicinity of the edges in red modified subdivision stencils are applied in order preserve
the sharp edge. The once subdivided mesh is shown in the middle and the limit surface on the right
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2.3 Multiresolution Editing

Subdivision surfaces represent a limit surface with a nested hierarchy of control
meshes of increasing resolution. As known in computer graphics, this property
lends itself to efficient multiresolution editing of surfaces [26, 41]. The basic idea in
multiresolution editing is to modify the coarse mesh vertex coordinates to apply
large-scale changes (to the limit surface) and to modify the fine mesh vertex
coordinates to add localised changes. By way of example, this is illustrated in Fig. 9
for the connector geometry previously introduced in Fig. 8. First the control mesh
vertex coordinates x0 at level ` D 0 are modified with x0 C d0, where d0 can be
thought of as a user given perturbation vector. In the considered example, d0 applies
displacements only to the vertices placed on one of the hole edges. Subsequent
computation of the limit surface (by repeated subdivision) leads to a geometry with
rather large scale changes. Alternatively, the edge of the hole can be displaced on
level ` D 1, i.e., x1C d1 D Sx0C d1. This results in a more localised change on the
limit surface. It can be shown that the area of influence for each vertex extends over
two rings of adjacent triangles.

The multiresolution editing algorithms available in computer graphics allow us
to simultaneously edit coarse and fine resolutions, see, e.g., [3, 41]. This is achieved
by a wavelet-like decomposition of the geometry into a low resolution part and a
collection of wavelet coefficients expressing perturbations from the low resolution
part [26, 41]. To compute such a decomposition it is necessary to define, in addition
to the subdivision refinement, a coarsening operation

x` D Rx`C1 : (8)

Fig. 9 Multiresolution editing of the connector geometry introduced in Fig. 8. The geometry is
modified by moving the edge of one of the holes in the vertical direction. On the first row the
modification is performed on level ` D 0 and on the second row it is performed on level ` D 1.
Notice the effect of the modification level on the limit surface (last column)
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The coarsening matrix R enables the computation of the coarse control mesh x`

corresponding to a given edited fine control mesh x`C1. In contrast, recall that the
subdivision matrix S enables the computation of a refined mesh from a given coarse
mesh, cf. (6). Different choices for the matrix R are possible. For instance, it can be
determined with discrete least squares fitting

x` D argmin
y`
kx`C1 � Sy`k2 ; (9)

which leads to

STSx` D STx`C1 : (10)

By comparison with (8) we observe that the coarsening matrix has to be R D
.STS/�1ST. For more details we refer to [3, 4].

Instead of using least squares fitting the coarsening matrix R can also be defined
based on quasi-interpolation [23] or smoothing [41]. On the other hand coarsening
by simply subsampling of the fine control mesh usually leads to artefacts in form
of oscillations in the coarse control mesh. The proposed least squares fit approach
is not very common in computer graphics because of the need for interactivity and
fast processing times. Although the least squares matrix in (10) is sparse its solution
cannot be found at interactive rates.

Subdivision surfaces do not by themselves provide the possibility of simulta-
neously editing coarse and fine control meshes. For instance, after a fine control
mesh is edited it is not possible to further edit a coarser level in order to apply
larger scale changes to the geometry. Simultaneous editing of different levels can be
achieved with a wavelet-like multiresolution decomposition of the control meshes,
as discussed in [3, 41].

3 Governing Equations of Shape Optimisation

In this section, we revisit the governing equations for shape optimisation of linear
elastic solids, electrostatic field equations and thin-shells. The considered cost func-
tions are the structural compliance for elastic solids and thin-shells and the normal
flux over the domain boundaries for electrostatic problems. For computing the
derivatives of the cost function with respect to the domain boundary perturbations
we consider both the continuous and the discrete adjoint formulations. Specifically,
for elastic and electrostatic field equations we use the continuous formulation
and for thin-shells we use the discrete formulation. In the continuous formulation
the differentiation is first performed analytically and subsequently the resulting
boundary value problems are discretised with a method of choice. In contrast, in the
discrete formulation first the governing equations are discretised and subsequently
the resulting algebraic equations differentiated.
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3.1 Continuous Shape Sensitivity Formulation

In continuous shape sensitivity analysis it is necessary to differentiate functionals
that are defined on varying domains. To this end, borrowing terminology from
continuum mechanics, we consider a reference configuration with domain ˝ and
boundary � and a perturbed configuration with domain ˝t and boundary �t, see
Fig. 10. The corresponding deformation 't.x/ which maps material points x 2 ˝
onto xt 2 ˝t is assumed to be of the form

xt D 't.x/ D xC tV ; (11)

where V is a prescribed constant vector field and t is a scalar parameter. It is
convenient to interpret V as a velocity field and t as the time parameter.

In the sequel the derivatives of domain and boundary integrals with respect to
boundary perturbations are needed. First, we consider the generic domain integral

I1.˝t/ D
Z
˝t

 .xt/ d˝t (12)

with a scalar integrand  .xt/. At the reference configuration x, the derivative of the
domain integral in the direction of V is defined with

@I1
@˝

V D d

dt
I1.xC tV/

ˇ̌
ˇ
tD0 D

d

dt

Z
˝t

 .xt/ d˝t

ˇ̌
ˇ
tD0 : (13)

By applying standard techniques from continuum mechanics and shape calculus,
see [3, 13, 33], we obtain

@I1
@˝

V D
Z
˝

.r .x/ � V C  .x/r � V/ d˝ D
Z
�

 .x/.V � n/ d� ; (14)

xt

Fig. 10 Reference and the perturbed configurations (left and right, respectively)
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where n is the unit normal to the boundary. As to be expected, this integral is
zero when the perturbation direction V is orthogonal to the boundary normal n.
Perturbations tangential to the boundary do not lead to a change in I1.

Next, we consider the generic boundary integral

I2.�t/ D
Z
�t

 .xt/ d�t (15)

with a scalar integrand  .xt/. The differentiation of this integral at the reference
configuration x in the direction of V is more involved and can be found in standard
texts on shape calculus, see [13, 33],

@I2
@�

V D
Z
�

.r .x/ � nC H.x/ .x// .V � n/ d� ; (16)

where H.x/ is the mean curvature on � .

3.1.1 Compliance Optimisation in Elasticity

As the first specific optimisation problem we consider linear elasticity. The equilib-
rium equation for a solid body with the domain˝ is given by

r � � .u/C f D 0 in ˝ ; (17a)

u D 0 on �D ; (17b)

� .u/n D t on �N ; (17c)

where � is the stress tensor, u is the displacement vector, f is the external load vector
and t is the prescribed traction on the Neumann boundary �N with the outward
normal n. On �D, for simplicity, only homogenous Dirichlet boundary conditions
are assumed.

We assume a homogenous linear elastic material model

� .u/ D C W �.u/ (18)

with the linear elastic strain tensor

�.u/ D 1

2
.ruCrTu/ : (19)

The aim of shape optimisation is to find a shape ˝ that minimises a cost
functional J.˝;u/ such that

min
˝

J.˝;u/ (20)
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where the displacement vector u has to satisfy (17). In practice there are usually
additional constraints, e.g., pertaining to the volume of the domain ˝ , which are
neglected here for brevity. In case of structural compliance, the cost functional
J.˝;u/ reads

J.˝;u/ D
Z
˝

� .u/ W �.u/ d˝ D
Z
˝

f � u d˝ C
Z
�N

t � u d� : (21)

In adjoint shape sensitivity analysis the minimisation problem (20) with the
equilibrium equation (17) as a constraint is expressed with the functional

L.˝;u;	/ D J.˝;u/C
Z
˝

r	 W � .u/ d˝ �
Z
˝

	 � f d˝

�
Z
�D

u � .C W r	/nC 	 � � .u/n d� �
Z
�N

	 � t d� ;

(22)

where 	 is a vector-valued Lagrange parameter field. The stationarity condition for
the functional L.˝;u;	/, i.e.,

ıL.˝;u;	/ D 0 (23)

provides the complete set of equations for shape optimisation. The variation of
L.˝;u;	/ with respect to the Lagrange parameter 	 yields the original boundary
value problem (17). The variation of L.˝;u;	/ with respect to the displacement
vector u yields the adjoint boundary value problem

r � � .	/ � f D 0 in ˝ ; (24a)

	 D 0 on �D ; (24b)

� .	/n D �t on �N : (24c)

By comparing the adjoint problem with the original boundary value problem (17)
we deduce that 	 D �u. This holds only when the structural compliance (21) is the
cost functional.

Next, we consider the variation of L.˝;u;	/ with respect to the domain ˝ . In
deriving it we make use of the domain deformation xt D 't.x/ D xC tV introduced
in (11). In shape optimisation of linear elasticity problems usually only the parts of
the Neumann boundary with zero tractions are allowed to move, i.e.,

V D 0 on �D ;

V D 0 on �N with �n D t ;

V ¤ 0 on �N with �n D 0 :
(25)
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The variation of the Lagrangian (22) with respect to the domain perturbations yields
the shape gradient. For structural compliance (21) as the cost functional (i.e., 	 D
�u) and with the result (14) at hand we obtain for the shape gradient

@L

@˝
V D

Z
�N

.2u � f � ru W � .u// .V � n/ d� D
Z
�N

g.u/.V � n/ d� ; (26)

where g.u/ is the shape kernel function. It is worth emphasising that without
restricting V as stated in (25) the shape derivate would contain several more terms.

In iterative shape optimisation the shape kernel function g.u/ is used as gradient
information. In order to achieve a decrease in the cost functional the boundary
perturbation is chosen proportional to

V D �g.u/n (27)

such that

@L

@˝
V D �

Z
�N

g.u/2 d� : (28)

During the shape optimisation the boundary value problem (17) has to be
repeatedly solved on a continuously changing domain. In a conventional finite
element setting this would require frequent mesh smoothing or updating. Therefore,
immersed, or embedded, finite element approaches that do not require remeshing
have clear advantages in shape optimisation. In the present work, we use an
immersed finite element technique previously developed in the context of incom-
pressible fluid-structure interaction [28–30]. For more details see [3].

3.1.2 Boundary Flux Optimisation in Electrostatics

The motivation for our second optimisation problem comes from the design of high-
voltage electrical devices. Avoidance of electrical breakdown is one of the key
design considerations for such devices. In a first approximation, electrical break-
down can be avoided by reducing the electrical field strength on critical components.
The aim of shape optimisation is to modify the geometry of components so that the
maximum electric field strength on surfaces, i.e., the normal flux, is reduced.

The electrostatic field equation in absence of space charges is given by a Dirichlet
boundary value problem for the Laplace equation

��u D 0 in ˝;

u D 0 on �D0 ;

u D u on �Df ;

(29)
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where u is the scalar electric potential or voltage,˝ is a multiply connected domain
with a Dirichlet boundary consisting of a (to be optimised) free part �Df and a fixed
part �D0 . It is assumed that the potentials on �Df and �D0 are constant. The geometry
of the free Dirichlet boundary�Df with the prescribed potential u is to be determined
with shape optimisation. Notice that the electric potential u is denoted non-bold
because it is a scalar field quantity.

In order to pointwise minimise the maximum of the normal flux on the free part
of the boundary �Df we chose to minimise the cost functional

J.˝; u/ D 1

2

Z
�Df



@u

@n
� Q

�2
d� ; (30)

where Q � 0 is a user prescribed constant expected value.
The adjoint sensitivity analysis, as discussed in Sect. 3.1.1 for elasticity, is used

for obtaining the adjoint boundary value problem and the shape gradient. The adjoint
boundary value problem corresponding to the cost functional (30) reads

��	 D 0 in ˝;

	 D 0 on �D0 ;

	 D @u

@n
� Q on �Df :

(31)

Importantly, the adjoint solution 	 is different from the solution u of the original
problem so that in applications both problems (29) and (31) have to be solved.

Moreover, the shape gradient corresponding to the cost functional (30) reads

@L

@˝
V D

Z
�Df



�@	
@n
@u

@n
� H

2

�
.V � n/ d� D

Z
�Df

g.	; u/.V � n/ d� ; (32)

where the shape kernel function g.	; u/ now depends on the electric potential u and
adjoint solution 	. In deriving the shape gradient we made use of (16) and H is the
mean curvature of the boundary.

As discussed for elasticity, during the iterative shape optimisation the shape
kernel function g.u/ is used as gradient information. In order to achieve a decrease
in the cost functional the boundary perturbation is chosen proportional to V D
�g.	;u/n.

For solving the original and the adjoint boundary value problems (29) and (31),
respectively, we use the boundary element method, see e.g. [36], which does not
require a domain discretisation and is ideal for solving problems with unbounded
domains that occur in electrostatic field analysis. For more details see [3].
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3.2 Discrete Shape Sensitivity Formulation

3.2.1 Compliance Optimisation of Thin-Shells

We use the Kirchhoff-Love energy functional for modelling the mechanical
response of thin shells. Since the related equations are classically formulated in
curvilinear coordinates, it is usually easier to compute the shape sensitivities using
a discrete approach. To this end, we first discretise the governing equations with
finite elements and subsequently differentiate the cost function and the discrete
equilibrium equations with respect to control vertex coordinates.

The Kirchhoff-Love energy functional depends on mid-surface displacements
and their first and second derivatives. Therefore, the basis functions have to
be smooth and their second order derivatives square-integrable. As originally
introduced by Cirak et al. [10, 11] Kirchhoff-Love shells can be elegantly discretised
with subdivision basis functions. In the resulting discrete equilibrium equations the
control vertex displacements are the only degrees of freedom.

To begin with, we consider a shell with the undeformed mid-surface ˝ , the
position vector x.�1; �2/ and the displacement vector u.�1; �2/. It is assumed that
the mid-surface is parameterised in terms of the curvilinear coordinates .�1; �2/.
The two corresponding (covariant) surface basis vectors follow from

a˛ D x;˛ : (33)

From here onwards Greek indices take the values 1 and 2 and a comma denotes
partial differentiation with respect to curvilinear coordinates.

According to [11] the linearised membrane and bending strains ˛˛ˇ and ˇ˛ˇ ,
respectively, are given by

˛˛ˇ D 1

2
.a˛ � u;ˇ C u;˛ � aˇ/ ; (34)

ˇ˛ˇ D �u;˛ˇ � a3 C 1p
a
Œu;1 �.a˛;ˇ � a2/C u;2 �.a1 � a˛;ˇ/�

C a3 � a˛;ˇp
a

Œu;1 �.a2 � a3/C u;2 �.a3 � a1/� :
(35)

With the above strain expressions at hand, the potential energy of a linear-elastic
Kirchhoff-Love shell reads

˘.u/ D
Z
˝

�
Wm.˛˛ˇ/CWb.ˇ˛ˇ/

�
� d˝ C˘ ext.u/ ; (36)

where ˝ is the shell mid-surface, Wm is the membrane energy density, Wb is the
bending energy density, � is the jacobian associated with the integration over the
thickness and ˘ ext.u/ is the potential of the external forces. For a linear elastic
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material the two energy densities are defined with

Wm.˛˛ˇ/ D 1

2

Et

1 � �2H˛ˇ�ı˛˛ˇ˛�ı ; (37a)

Wb.ˇ˛ˇ/ D 1

2

Et3

12.1� �2/H˛ˇ�ıˇ˛ˇˇ�ı ; (37b)

where t is the shell thickness, E is the Young’s modulus, � is the Poisson’s ratio and
H˛ˇ�ı is an auxiliary fourth order tensor

H˛ˇ�ı D � a˛ˇa�ı C 1

2
.1 � �/ .a˛�aˇı C a˛ıaˇ� / : (38)

The contravariant metric tensor components a˛ˇ D a˛ � aˇ are computed from
the contravariant basis vectors defined according to a˛ � aˇ D ı˛ˇ , where ı˛ˇ is the
Kronecker delta.

Next, the mid-surface position and displacement vector are discretised with
subdivision basis functions

xh.�1; �2/ D
X

i

Ni.�1; �2/xi ; uh.�1; �2/ D
X

i

Ni.�1; �2/ui ; (39)

where Ni.�1; �2/ is the basis function, xi is the position vector and ui is the
displacement of a control vertex with the index i. Recall that on structured meshes
the subdivision basis functions are equivalent to quartic box-splines in case of
the Loop scheme and equivalent to tensor-product cubic b-splines in case of the
Catmull-Clark scheme. As shown by Stam [34, 35] in the vicinity of extraordinary
vertices the subdivision surfaces can be evaluated in the same way as regular patches
after only few steps of refinement. For implementation details see [10, 11].

In order to obtain the discrete equilibrium equations, first the interpolation (39)
is introduced into the energy functional (36) and subsequently the integrals are
evaluated with Gauss quadrature. Computing the stationary points of the discretised
energy functional yields the discrete equilibrium equations

Ku D f ; (40)

where K is the stiffness matrix, f is the array of vertex forces and, with a slight abuse
of notation, u is the array of vertex displacements.

In discrete shape sensitivity formulation we aim to minimise a discretised cost
function

min
x

J.x;u/ (41)
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which depends on the array of vertex coordinates x and displacements u. It is
clear that the displacements have to satisfy (40). The compliance cost function
corresponding to the discrete equilibrium equation reads

J.x;u/ D f Tu D uTKu : (42)

In order to compute the derivatives of the cost function with respect to the vertex
coordinates we consider the adjoint formulation

L.x;u;	/ D J.x;u/C 	TŒ f � Ku�; (43)

where 	 is a Lagrange parameter vector. The stationarity condition for L.x;u;	/
with respect to the vertex displacements leads to the adjoint problem

K	 D @J.x;u/
@u

: (44)

Here, we made use of the symmetry of the stiffness matrix K. The stationarity
condition for L.x;u;	/ with respect to the vertex coordinates leads to the discrete
shape gradients

@L.x;u;	/
@x

D @J.x;u/
@x

C 	T
�
@f
@x
� @K
@x

u
�
: (45)

By introducing the cost function (42) and the adjoint solution with 	 D u we obtain

@L.x;u;	/
@x

D 2uT @f
@x
� uT @K

@x
u : (46)

The derivatives of the stiffness matrix with respect to the vertex coordinates can be
determined by consecutively differentiating the discretised Kirchhoff-Love energy
functional (36) first with respect to vertex displacements and then with respect to the
vertex positions. In gradient-based optimisation, in order achieve a decrease in the
cost function the perturbation of the control vertex positions is chosen proportional
to

V D �2uT @f
@x
C uT @K

@x
u : (47)

Note that, with a slight abuse of notation, the perturbation vectors for the continuous
and discrete shape sensitivity formulations are denoted with the same symbol V. For
more details we refer to [2].
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4 Multiresolution Shape Optimisation

The introduced subdivision multiresolution editing technique enables to use two
different resolutions of the same geometry for optimisation and analysis. A sim-
plified two-level version of the proposed optimisation algorithm is shown Fig. 11.
The optimisation and analysis meshes correspond to different refinement levels in a
multiresolution hierarchy. The optimisation level is `o D 0 and the analysis level
is `c D n. In our actual implementation the optimisation level is successively
increased until `o D `c and the analysis level `c is fixed. Crucially, in the spirit
of isogeometric analysis the control meshes for analysis and optimisation represent
the same geometry.

In shape optimisation it is usually necessary to use a coarse control mesh for
geometry updating and a relatively fine control mesh for analysis. As is known,
unwanted geometry oscillations may appear when the analysis and geometry
representations have similar resolutions [8]. These geometry oscillations are usually
a numerical artefact or a result of the ill-posedness of the considered optimisation
problem. Moreover, in practical applications it might be desirable to optimise only
a very coarse representation out of aesthetic or manufacturability reasons.

A more detailed description of the employed multiresolution technique is given
in Algorithm 1. In the presented computations, different from Algorithm 1 we
use instead of the steepest descent update on line 9 the method of moving
asymptotes (MMA) as implemented in the NLopt library [20]. In addition, in
practical computations there are usually constraints, such as bounds on vertex
positions or area/volume constraints, which are not mentioned in Algorithm 1. For
more details we refer to [3, 4].

Fig. 11 Flowchart of the simplified multiresolution optimisation algorithm
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Algorithm 1 Multiresolution shape optimisation
// choose computational level `c

// read coarse input control mesh x0

// Initialise optimisation level
1: `o D 0

// Initialise cost functional
2: J D1

// iterate over optimisation levels
3: while `o � `c do

// update vertex coordinates x`o while the cost functional decreases
4: repeat

// subdivide optimisation level `o up to analysis level `c

5: for ` `o to `c do
6: x` Sx`

// compute cost functional J D J.x`c ; u.x`c// and the descent direction V`c

// project the descent direction V`c to the optimisation level
7: for ` `c to `o do
8: V` RV`

// update vertex coordinates of the optimisation level
9: x`o  .x`o C ˛V`o / with ˛ > 0

10: until J < Jprevious

// increment optimisation level
11: `o  .`o C 1/

5 Examples

5.1 Immersed Finite Element Discretised Elasticity Problems

5.1.1 Simply Supported Plate with a Hole

This example highlights the advantages of multiresolution optimisation over classi-
cal approaches that use only one or two representation levels. The problem consists
of a square plate with an edge length L D 2 and a circular hole with diameter
D D 1, see Fig. 12. The plate is loaded with a line load of length 1. The Young’s
modulus and Poisson’s ratio of the plate are E D 100 and � D 0:4, respectively.
During optimisation the shape of the hole is to be modified so that the structural
compliance of the plate is minimised.

Initially, at level ` D 0 the hole is represented with a cubic spline with 8 control
points. The immersed finite element grid has 100� 100 cells of uniform size. Three
cases referred to as C1, C2 and C3 with different geometry and analysis resolutions
are studied:

– In C1 only one level with `o D `c D 0 is used for analysis and optimisation.
– In C2 a four times subdivided control mesh at refinement level `o D `c D 4 is

used for analysis and optimisation.
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Fig. 12 Simply supported plate with a hole. Problem description

Fig. 13 Simply supported plate with a hole. Optimised hole shapes for cases C1, C2 and C3

– In C3 the optimisation level starts with `o D 0 and increases until `o D `c D 4

is reached. Throughout the computations the analysis level is fixed to `c D 4.

In case C1 the control mesh that is visible by the immersed finite element grid
contains 8 elements and in cases C2 and C3 it contains 128 elements. It is clear that
in case C1 the hole geometry is poorly resolved on the immersed finite element grid.

In Fig. 13 the optimised final hole shapes for the three cases are shown. In
particular, the difference in optimal shapes for cases C2 and C3 which use the same
analysis level `c D 4 is striking. The case C1 is different from the other two cases
because of the mentioned inadequately coarse analysis control mesh with `c D 0.
During optimisation the optimisation level `o is successively increased only for case
C3. The optimisation level is always incremented when a minimum is reached, cf.
Algorithm 1. For the three cases the reduction of the relative cost function over
the number of iterations is shown in Fig. 14. The case C2 with fixed fine resolution
achieves the smallest cost reduction while the case C3 with multiresolution achieves
the largest cost reduction. The strong dependence of the optimisation results on
geometry parameterisation is well known in structural optimisation and is often
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Fig. 14 Simply supported plate with a hole. Reduction of the normalised cost over the number of
optimisation iterations. The initial cost for case C1 is 0:073 and for cases C2 and C3 is 0:065

Fig. 15 Three-dimensional stool. Problem description. Roller supports are applied to all finite
element nodes inside the regions of size 0:2 � 0:2 marked by dashed squares

associated with the non-convexity of the considered optimisation problem. We
conjecture that by initially using a coarse control mesh for optimisation the possible
number of local minima is significantly reduced which reduces the possibility of
landing in a non-optimal local minimum. It appears that in case C2 the optimisation
problem is caught in a local minimum which is significantly higher than the global
minimum.

5.1.2 Three-Dimensional Stool

In this example we present the combined topology and shape optimisation of a three-
dimensional solid, see Fig. 15. Our algorithm for combined topology and shape
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(a) (b)

Fig. 16 Three-dimensional stool. First topology and subsequent shape optimisation step. (a)
Topology optimised. (b) Shape optimised

(a) (b)

Fig. 17 Three-dimensional stool. Second topology and subsequent shape optimisation step. (a)
Topology optimised. (b) Shape optimised

optimisation is described in [3]. The initial domain is a truncated pyramid and
is at its top loaded with a uniform distributed load tz D 10. At its bottom it is
supported by four distributed roller supports each of size 0:2 � 0:2. The Young’s
modulus and Poisson’s ratio are chosen with E D 100 and � D 0:4, respectively.
In the optimisation study only one quarter of the domain is considered and
appropriate bounds and geometry tags are applied at the two planes of symmetry.
The corresponding immersed finite element grid is of size 0:7� 0:7� 1 and consists
of 30 � 30 � 30 cells.

The sequence of the performed topology and shape optimisation steps are
shown in Figs. 16 and 17. In total two topology and two shape optimisation
steps are performed. During each topology optimisation step we remove in one
go a relatively large amount of material by deleting computational cells with the
topology derivative below a given threshold. Figure 16a shows the result of the first
topology optimisation step and the semi-manually generated coarse control mesh
for representing the new topology. In the following shape optimisation step, see
Fig. 16b, the generated control mesh serves as the optimisation level `o D 0 and
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the computation level is chosen with `c D 2. During the shape optimisation the
volume of the domain is constraint to remain constant. The result of the second
topology optimisation step and the generated control mesh are shown in Fig. 17a.
This is followed by the final shape optimisation step shown Fig. 17b.

5.2 Boundary Element Discretised Electrostatic Problems

5.2.1 Box in a Sphere

We optimise the shape of a box placed inside a sphere, see Fig. 18, with the expected
normal flux density Q in (30) set to 20. It can be shown that the optimal shape for
the inner box is a sphere with half the diameter of the outer sphere [15]. The box,
representing the to be optimised boundary �Df , is of size 0:16 � 0:2 � 0:24 and
the outer sphere, representing the fixed boundary �D0 , has radius 0:2. The coarse
mesh for the box contains 48 elements which increases to 768 elements in the twice
subdivided fine mesh at level `c D 2. During the subdivision refinement, the creases
in the coarse mesh are maintained as creases using the extended subdivision stencils
mentioned in Sect. 2.2, see also [5, 10]. With the extended subdivision stencils the
limit surface corresponding to the coarse box mesh is a box of the same geometry.
Note that on the limit surface the creases are only C0-continuous and not at least C1-
continuous. The resolution of the outer sphere remains fixed with 3840 elements.
Hence, the meshes for the boundary element analysis of the cube and sphere consist
of 768 and 3840 elements, respectively.

Figure 18a shows the initial coarse geometry yielding a cost functional value
of J.˝`c ; u`c/ D 15:38. First we select this coarse geometry as optimisation level,
i.e., `o D 0. After consecutively selecting `o D 1 and `o D 2 and optimising
we obtain the final optimised geometry shown in Fig. 18b. The final shape of the
initial box is nearly a sphere of diameter 0:215 and the cost functional value is
J.˝`c ; u`c/ D 8:46 � 10�3, which represents a reduction of 99:95%. As to be

(a) (b)

Fig. 18 Box in a sphere. Initial and optimised geometries with isocontours of the normal flux. The
meshes indicate the optimisation level `o. The isocontours belong to the fine computational mesh
at level `c D 2. (a) Initial geometry at `o D 0. (b) Final optimised geometry at `o D 2
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expected, the optimisation leads to a geometry with nearly uniform distribution of
normal flux as seen in Fig. 18b. Since the extended subdivision scheme was used in
this case, the marked creases were not smoothed out by the subdivision itself, but
rather by the shape optimisation procedure.

5.2.2 Gas Insulated Switchgear

In this example we apply the proposed shape optimisation approach to the design
of an electrode in a gas insulated switchgear, see Fig. 19a. Such devices are
widely used as circuit-breakers in high-voltage power transmission. The objective
of shape optimisation is to reduce the propensity for electrical breakdown with the
ultimate aim of enabling more compact device geometries. This can be achieved by
modifying the electrode geometries such that the cost functional J.˝`c ; u`c/ in (30)
is minimised.

In Fig. 19a the gas insulated switchgear is shown with the electrode in the form of
a primitive cylinder. The cylinder represents the electrode geometry to be optimised.
The initial coarse mesh of the cylinder contains 264 elements. The creases on the
cylinder are not tagged. Therefore, the geometry becomes smoother while it is
refined by subdivision, see Fig. 19b. As a design constraint, the inner surface of the
cylinder is required to have a constant radius for a bolt passing through it. Geometric
constraints on the positions of vertices lying on the inner surface are applied to
prevent any movement that would violate this design requirement.

In this example, a once subdivided electrode mesh with 1056 elements is
chosen as the computational level (`c D 1) and the geometry at level `o D 0 is
used for optimisation. In the initial design, Fig. 19b, the maximum normal flux is
81:63 before optimisation and reduces to 66:99 in the optimised shape shown in
Fig. 20, corresponding to a reduction of 17:94%. However, the reduction in the
cost function J.˝`c ; u`c/ is much higher with 38:24%. In Fig. 20b two electrode

 Device with coarse electrode mesh.  Device with refined electrode mesh.

(a) (b)

Fig. 19 Gas insulated switchgear with coarse and refined electrode meshes. The considered
electrode is shown in dark blue in (a). The isocontours in (b) represent the normal flux
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(a) (b)

Fig. 20 Gas insulated switchgear with the optimised electrode geometry. The isocontours repre-
sent the normal flux. (a) Isometric view. (b) Top view

geometries are visible. The one in blue is an electrode geometry that has been
obtained over the years by combining engineering intuition with simple calculations
and testing. The similarities between the systematically shape optimised and the
electrode geometry in production are striking. Notice in particular the saddle shapes
at the two ends of the both electrodes, which help to reduce the large normal fluxes
that are present at the sharp edges of the inner hole.

5.3 Subdivision Finite Element Discretised Thin-Shell
Problems

5.3.1 Inverted Catenary Arch

In this verification example we optimise a thin strip pinned at both ends and
subjected to a vertical distributed load. The optimal shape for such a strip is (in
the limit of zero thickness) a catenary because for shells it is energetically more
favourable to carry loads through membrane action instead of bending action.
The catenary is the shape assumed by a loose string hung freely from two fixed
points [24], its equation reads

y D ˛ cosh



xC ˇ
˛

�
C � ; (48)

where the y-axis is parallel to the applied load vector and the three constants˛, ˇ and
� are determined based on the location of the supports and the string length l. Two
cases are studied, one where the supports are at equal height and the other where
one support is higher than the other. In both cases the horizontal distance between
the supports is 1. The vertical offset between the supports in the second case is 0:2.
Initially, the strip is a narrow flat plate connecting the supports with length equal to
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the distance between the supports. Width and thickness are constant with 0:05 and
0:02, respectively. The magnitude of the vertical uniformly distributed load is 1000,
the Young’s modulus and Poisson’s ratio are E D 2�108 and � D 0:3, respectively.
The length l of the optimised strip is chosen with 1:1 and 1:3.

The Catmull-Clark subdivision scheme is used for geometry representation
and for discretising the thin-shell equations. The initial coarse mesh used for
optimisation contains only 3 elements along the length and 1 element across the
width of the strip. This increases to 48 in the twice subdivided fine mesh used for
analysis. During optimisation the mesh resolution is increased starting `o D 0

up to `o D 2. Only the y coordinates of the control points are optimised. The
comparison of the optimisation results with the corresponding catenary curve for
different curve lengths and support positions is shown in Fig. 21. The reduction of
the objective function is more than 99:9% for all cases and the results show good
visual agreement with catenary curves. The slight deviations from the catenary are
possibly due to the finite width of the strip, which leads during optimisation to some
curvature generation across the width of the shell (not visible in Fig. 21).

(a) (b) 

Fig. 21 Inverted catenary arch. The dashed and solid blue lines show the centre lines of the
strip before and after optimisation, respectively. The dotted black line is the catenary curve
corresponding to length l. The ˛, ˇ and � values are the parameters in (48). In the chosen coordinate
system the left support has the coordinates .�0:5; 0:0/. (a) Supports at same height. (b) Supports
at different heights
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5.3.2 Architectural Roof

We consider the optimisation of an initial roof design shown in Fig. 22 with
approximate dimensions of 2:31 � 6:27 � 0:75. This design was created by an
architect using the Autodesk Maya software. A vertical uniformly distributed load
of 1000 is chosen as the design load and the shell thickness is t D 0:02. The Young’s
modulus and the Poisson’s ratio are E D 1 � 1010 and � D 0:2, respectively.

During the shape optimisation only the vertical coordinates of control points are
chosen as design variables. Moreover, an area constraint is applied in order to restrict
the size of the optimised shape. An important architectural feature of the roof is the
ridge profile, which is preserved by applying special extended subdivision stencils
at the corner vertices and crease edges, see Figs. 22 and 23.

The coarse mesh at optimisation level `o D 0 contains 26 nodes which is twice
subdivided to obtain the computation mesh at level `c D 2 with 272 nodes. The
second optimisation stage is done at level `o D 1 but no optimisation is done at
level `o D 2 as this results in oscillatory surface features. The optimised roof design
is shown in Fig. 24. The initial value of the compliance cost function is 31:36 and is
reduced by 79:13% through optimisation.

Fig. 22 Limit surface of the
initial architectural roof
design. The model has three
supports, a central opening
and a roof ridge. The
corresponding coarse control
mesh and selected vertex and
edge tags are shown in Fig. 23

Fig. 23 Top view of the
initial control mesh of the
architectural roof. The nodes
indicated by black squares
are tagged as corner and the
edges highlighted by the
black solid line as crease
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Fig. 24 Limit surface of the
optimised architectural roof
design

6 Summary and Conclusions

We reviewed the multiresolution optimisation technique based on subdivision
surfaces and presented its application to elasticity, electrostatics and thin-shell
problems. For discretising the governing partial differential equations we employed
three different discretisation techniques, namely immersed finite elements for
elasticity, boundary elements for electrostatics and subdivision finite elements for
thin-shells. The inherent hierarchy of the subdivision surfaces allows us to consider
the same surface at different resolutions and to take advantage of multiresolution
editing techniques. Starting from the coarsest control mesh increasingly finer
meshes are used for geometry updating and always a fine mesh is used for
analysis. As demonstrated with the computed examples, this effectively inhibits
the appearance of non-physical geometry oscillations that may occur in shape
optimisation. Moreover, any pathological element distortions on the computational
mesh are practically avoided. As a result, there is no need to regenerate or smooth the
boundary mesh during the optimisation. Finally, it is evident that the multiresolution
editing semantics is particularly appealing for isogeometric analysis because it
enables the decoupling of geometry and analysis representations.

Acknowledgements The partial support of the EPSRC through grant # EP/G008531/1 and EC
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Atom Simplification and Quality T-mesh
Generation for Multi-resolution Biomolecular
Surfaces

Tao Liao, Guoliang Xu, and Yongjie Jessica Zhang

Abstract In this paper, we present an algorithm to simplify low-contributing
atoms and generate quality T-meshes for multi-resolution biomolecular surfaces.
The structure of biomolecules is first simplified using an error-bounded atom
elimination method. An extended cross field-based parameterization method is then
developed to adapt the parametric line spacings to different surface resolutions.
Moreover, an anisotropy defined from an input scalar field can also be achieved.
From the parameterization results, we extract adaptive and anisotropic T-meshes
for the further T-spline surface construction. Finally, a gradient flow-based method
is developed to improve the T-mesh quality, with the anisotropy preserved in
the quadrilateral elements. The effectiveness of the presented algorithm has been
verified using several large biomolecular complexes.

1 Introduction

Geometric modeling of biomolecules plays an important role in various applica-
tions [10, 22, 36, 37, 45]. New challenges arise in simulations involving extremely
large biomolecular complexes. The computational cost for biomolecular surface
construction increases as the atom number becomes progressively larger. Generally,
biomolecular complexes are formed by a binding of several biomolecules, and
a specific biomolecule can be contained in different complexes. For example in
human cardiac muscle, there are many different types of filament lattice complexes,
and they all contain the same biomolecule called filament protein. Simplifying the
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structure of filament protein can significantly improve the modeling efficiency in
building different types of filament lattice complexes.

Various methods have been developed for biomolecular surface generation [11,
12]. Some of them construct biomolecular surface in an explicit way, such as alpha-
shapes [1, 16], MSMS [35], advancing front and generalized Delaunay approaches
[24], NURBS approximation [3], and PDE-based methods [19, 42, 49]. Other
methods implicitly represent biomolecular geometry using a Gaussian density map,
and then extract surface or volumetric meshes from it [44, 48]. Techniques were
developed to improve the computational efficiency, such as PDE transform based
on Fast Fourier Transform (FFT) [19, 49], Non-uniform Fast Fourier Transform
(NFFT) [4], coarse-grained modeling technique [2], as well as CPU and GPU
parallel computation based on neighboring search, KD-tree and Bounding Volume
Hierarchy (BVH) [26].

In the context of isogeometric analysis [20, 38, 39], the T-spline surface provides
a powerful basis for computation in different applications, which can also greatly
benefit the analysis of biomolecules. Due to the high efficiency of the T-spline con-
trol mesh, namely T-mesh, the multi-resolution feature on the biomolecular surface
can be represented efficiently. Various methods have been developed for T-mesh
generation [28, 40, 41]. In recent years, the cross field-based global parameterization
methods were introduced in surface quadrangulation [6], which capture surface
features based on the principal curvature directions [7, 21, 23] or eigenfunctions
of the Laplace-Beltrami operator [25]. Various methods were introduced to reduce
distortion in the parameterization. For example, the distortion in the cross field was
minimized in [30, 31], the mapping of the input triangle meshes was optimized
in [27], and the local bijectivity was achieved in [29]. More contributions have been
made in different aspects such as controlling the scale of captured features [15]
and achieving the anisotropy in parametric lines, which has been fulfilled based
on the metric tensor [23], adapted cross field [25] or surface deformation [32].
The integer-grid map [5] was introduced to achieve quadrangulation in the surface
parameterization, and a robust method was developed to extract quadrilateral
meshes [14]. Other than the cross field, a novel parameterization method was
introduced based on the N-poly vector field [13], which can avoid the mixed-
integer problem. These techniques provide a nice basis for us to build T-meshes
for biomolecules with multi-resolution features preserved efficiently.

During Gaussian density map construction, faraway atoms have little contri-
bution to the bimolecular surface due to the decay of Gaussian kernel function.
In this paper, an atom simplification method is developed to eliminate these
atoms from the biomolecular structure. Based on the simplified structure, a multi-
resolution biomolecular surface can be built for quality T-mesh generation.The main
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contributions in this paper include:

1. An error-bounded atom simplification algorithm is introduced for biomolecular
complexes to improve the computational efficiency of density map construction;

2. An extended cross field-based method is developed for adaptive and anisotropic
parameterization, which adapts the parametric line spacings to multi-resolution
surface features; and

3. A new gradient flow-based method is introduced for T-mesh quality improve-
ment, preserving the anisotropy in quadrilateral elements robustly.

The remainder of this paper is organized as follows. Section 2 describes our atom
simplification method for biomolecular complexes. Section 3 explains the extended
parameterization algorithm together with the new quality improvement method.
Section 4 shows the results. Finally, Sect. 5 draws conclusions and points out the
future work.

2 Algorithm Overview and Atom Simplification

Figure 1 shows the main steps of our algorithm. Biomolecular structures from
the Protein Data Bank (PDB) are simplified to improve the modeling efficiency,
which are used for multi-resolution triangular surface generation. Then T-meshes
are generated based on surface parameterization. The two main components of our
work (atom simplification and T-mesh construction) are marked in orange and green,
respectively.

Fig. 1 The main steps of T-mesh generation for multi-resolution biomolecular surfaces. Note that
the simplification process in the orange area is not required if the simplified structure is already
prepared
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In this paper, we simplify the structure of biomolecular complexes by elimi-
nating low-contributing atoms. The efficiency of density map construction can be
improved since the atom number is reduced. There are two main steps in our atom
simplification: (1) eliminating the low-contributing atoms; and (2) optimizing the
center location, the radius and the decay rate of the remaining atoms to minimize
the error in the density map around the biomolecular surface.

2.1 Atom Elimination

Biomolecules, especially proteins, have hierarchical structures. They consist of
several chains, each chain is formed by a set of residues, and each residue contains
a group of atoms. The Gaussian density can be computed using a multi-level
summation of Gaussian kernel functions [26, 48],
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where UC is the set of chains in the biomoleucle, Uk
R is the set of residues in Chain k,

Uj
A is the set of atoms in Residue j,

�
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�
are coefficients controlling the surface

resolution, and .xi; ri; �i/ are the atom center, the radius and the decay rate of Atom
i. The biomolecular surface is represented by a Gaussian density map implicitly,
which can be extracted as an isosurface fM W G .x/ D 1g in a rectilinear grid. In
this paper, the grid spacings in x, y and z directions are set to be 0:3Å. Generally,
smaller values for PR and PC result in lower resolution, while larger values of PR

and PC result in higher resolution on the biomolecular surface. We choose various
PR and PC values for different residues and chains, resulting in a multi-resolution
surface [26].

Let SA be the set of all the atoms, SR be the set of remaining atoms after
eliminating the low-contributing atoms, and G�R .x; i/ be the Gaussian density from
all the atoms in SR except Atom i. During the atom elimination, the change in
Gaussian density around the biomolecular surface should be sufficiently small. In
a rectilinear grid, a region ˝S around the surface consists of a set of grid points x
with Gaussian density gl < G .x/ < gu, here we choose .gl; gu/ D .0:9; 1:1/. Due
to the decay of Gaussian kernel functions, eliminating Atom i only influences the
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Gaussian density map in its neighboring region˝i, where all its grid points x satisfy

kx � xik2 � � ln �r

�i
C r2i ; (2)

and �r is a pre-defined threshold (e.g. �r D 10�6). The Gaussian density error ei
G of

ignoring Atom i can be defined as

ei
G D max

x2˝i\˝S

ˇ̌
ˇ̌G .x/�G�R .x; i/
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ˇ̌
ˇ̌ : (3)

In a rectilinear grid, the overall contribution Ci of Atom i to the surface is
defined as
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where G.x/ and G�.x; i/ are the Gaussian density with and without considering
Atom i, respectively. We sort all the atoms based on their overall contributions,
and keep eliminating the one with the lowest contribution until we find an atom
with the Gaussian density error defined in Eq. (3) greater than �G, where �G is an
input threshold. After atom elimination, we build the Gaussian density map with the
remaining atoms and extract a triangle mesh to represent the simplified surface. Let
M be the triangle mesh. The surface error in M can be measured as

eM
G D max

x2M

ˇ̌
ˇ̌G .x/� 1

G .x/

ˇ̌
ˇ̌ ; (5)

where x is a vertex in the mesh. See Algorithm 1 for the details.
During Gaussian density map construction, a neighboring search and BVH-based

GPU parallel method is employed for efficient computation [26]. In this paper
biomolecules are represented by their PDB IDs. Figure 2 shows the simplification
results of 2O53 with different �G values and coefficients .PR;PC/. As �G increases,
the Gaussian density error on the surface eM

G tends to increase faster in concave
and valley areas than the rest of the surface. As shown in Table 1, as the surface
resolution is improved with larger PR, less atoms can be eliminated. This is because
more atoms are exposed on the high resolution surface than the low resolution one.
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Algorithm 1 Atom elimination
SR WD SA;
for each grid point x do

Compute Gaussian density value G.x/;
end for
Identify the region ˝S around the biomolecular surface, where gl < G.x/ < gu;
for each atom i 2 SA do

Identify its neighboring region ˝i using Eq. (2);
Compute the overall contribution Ci to the surface in ˝i \˝S;

end for
Sort all the atoms in SA based on Ci;
for the atom with the lowest contribution in SR do

Set this atom to be Atom i;
Compute the Gaussian density error ei

G using Eq. (3);
if ei

G > �G then
STOP;

else
SR WD SR n fig;
Continue;

end if
end for
Output the surface error eM

G according to Eq. (5).

Fig. 2 Biomolecular surfaces for the simplified protein 2O53 with PC D 1:0 and � D 0:3. Top
row: PR D 0:25; Bottom row: PR D 0:5. The color represents the distribution of eM

G
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2.2 Optimization of Remaining Atoms

To reduce the surface error of the simplified biomolecule, the parameters of the
remaining atoms can be optimized. Let NR be the number of remaining atoms. The
atoms in SR are sorted, and their parameters are optimized using a gradient flow
method. The objective function is defined as

F .f/ D
Z

R3

.G.x/� GR.f; x//
2dx; (6)

and in a rectilinear grid we have

F .f/ D
NGX
lD1

.G.xl/ �GR.f; xl//
2; (7)

where NG is the number of grid points, and f D .x1; y1; z1; r1; �1; : : : ; xNR ; yNR ; zNR ;

rNR ; �NR/
T . The initial value f0 is given by the original centers, radii and decay rates

of the remaining atoms. For the kth iteration of the gradient flow-based optimization,
we have

fkC1 D fk � �rF; (8)

where � is the step length, and

rF D


@F
@x1

;
@F
@y1

;
@F
@z1

;
@F
@r1

;
@F
@�1

; : : : ;
@F
@xNR

;
@F
@yNR

;
@F
@zNR

;
@F
@rNR

;
@F
@�NR

�T

:

As F is minimized step by step, the error in the Gaussian density map is minimized.
In each step, the parameters of the remaining atoms are updated until the change in
the parameters is less than a threshold �f ,

��fkC1 � fk
��1 < �f : (9)

During the iteration in Eq. (8), the variation in f should be bounded. Let x0i , r0i and
�0i be the original location, radius and decay rate of Atom i. If

��xk
i � x0i

�� > �x (e.g.,
� D 0:5), then

xk
i D x0i C �x

xk
i � x0i��xk
i � x0i

�� ;

where �x defines a sphere around x0i and the updated atom center should be inside
the sphere. Similarly, the modifications in the radius jrk

i � r0i j and the decay rate
j�k

i � �0i j are bounded to �r and �� (e.g., �r D 0:5 and �� D 0:2), respectively. As
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shown in Table 1, the surface error eM
G can be improved after the optimization of

remaining atoms.

3 Multi-resolution T-mesh Construction

For the analysis of large biomolecular complexes, usually only a specific component
is essential for accuracy. A multi-resolution surface can be used to represent the
biomolecular surface, maintaining high resolution details on the surface for the
emphasized components while providing low resolution for the rest. In this paper,
the emphasized components are defined as specific chains in the biomolecular
complexes based on their biological functions. For example in Fig. 3a, the chains
belonging to actin (blue and orange) in the human Thin Filament protein should
be emphasized because they are receptors for some inhibitors. For the emphasized
chains, we keep all the atoms and also use larger coefficients .PR;PC/ in Eq. (1) to
obtain higher resolution; while for the rest of the biomolecule, we simplify atoms
and choose smaller .PR;PC/. Sometimes, sharp noises may happen in the Gaussian
density map around the connection region of the lower and higher resolution surface,
which can be removed by applying a low-pass filter based on the fast Fourier
transform [17]. Then, the multi-resolution surface is extracted from the constructed
Gaussian density map using the dual contouring method [47, 48], and adaptive
triangular meshes are obtained. In the following, we will talk about how to construct
surface parameterization and quality T-meshes using these triangular meshes.

3.1 Surface Parameterization and T-mesh Construction

In this paper, we extend the cross field-based parameterization method [7, 21, 23,
25, 33, 34] to T-mesh generation for biomolecular surfaces. Firstly, a cross field
is built on the triangle mesh guided by the principal curvature directions. Then an
adaptive parameterization is computed based on the cross field. Anisotropy can also
be achieved during surface parameterization. Finally, T-meshes are constructed by
connecting the nodes with integer parametric coordinates.

Review of Cross Field-based Parameterization Here we briefly review the cross
field generation and parametric coordinate computation, more details can be found
in [7]. A cross field is defined in each triangle Ti with four perpendicular vectors,
which can be represented as an angle 
i referring to an edge ei of the triangle, namely
the reference edge. These vectors can be initialized using different inputs, such as
the principal curvature directions. Then the cross field is smoothed by minimizing
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the smoothness energy [7]

� S D
X
eij2E

.
i C 'ij C �

2
pij � 
j/

2; (10)

where eij is the edge shared by triangles Ti and Tj, ET is the set of edges in the mesh,
'ij is the angle between the reference edges of triangle Ti and Tj, and pij is the integer
valued period jump of the cross field across eij. The principal curvature directions in
a set of sparsely distributed triangles are chosen as the guidance for the cross field.
By minimizing the smoothness energy, 
i and pij are updated in each triangle Ti with
the constraints from the guidance, and a smooth cross field is obtained, see Fig. 3b.
Singularities of the cross field (red dots) can be located with the optimized 
i and
pij in each triangle [7]. Then, the surface is cut into a disk-like planar region with all
the singularities on its boundary (black lines). The parametric coordinates .u; v/ of

Fig. 3 Adaptive parameterization for the multi-resolution surface of 2W4U. (a) The multi-
resolution triangle surface; (b) the cross field; (c) the adaptive T-mesh; (d) the parametric lines;
and (e, f) the T-meshes corresponding to (d) before and after the removal of redundant vertices
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each vertex behave as two piece-wise linear scalar fields, which can be obtained by
minimizing an orientation energy [7, 25, 33],

� O D
NTX
iD1

Ai

���hu
irTi u � ui

��2 C ��hvi rTiv � vi

��2�; (11)

where NT is the number of triangles, Ai is the area of triangle Ti,
�
hu

i ; h
v
i

�
are parameters controlling the spacings of the parametric lines, .rTi u;rTiv/ are
gradients of .u; v/ in Ti, and .ui; vi/ are two perpendicular vectors chosen from
the cross field (red and blue arrows in Fig. 3b). Details about the cutting process and
the choice of .ui; vi/ directions can be found in [7]. The parametric line spacings
in u and v directions equal to 1=hu

i and 1=hvi , respectively. Integer constraints are
set on the planar region boundary to ensure consistent parametric lines, enabling a
valid quadrangulation of the surface. Minimizing the smoothness energy in Eq. (10)
and the orientation energy in Eq. (11) are two mixed-integer problems, which can
be solved using the greedy mixed-integer optimizer introduced in [8].

Adaptive T-mesh Generation For the multi-resolution surface in Fig. 3a, we need
to generate denser elements in the high resolution patches (blue and orange) to
capture the detailed features. This can be achieved by adapting the line spacings
in the orientation energy in Eq. (11): smaller .hu

i ; h
v
i / values are set for the higher

resolution regions, while larger values are set for others. Different from [7], the
multi-resolution surface is first cut along the patch boundaries. Note that different
patches are not completely independent, and each patch is connected with one of its
neighbors on the boundary. Similar to [7], each patch is cut into a disk-like region
based on a Dijkstra tree, and all the singularities are on the boundary of the disk-like
region. Then the .ui; vi/ directions are rotated to keep consistent inside each patch.
As shown in Fig. 4 when a higher resolution patch i (blue) is connected with a lower
resolution patch j (yellow), we restrict hj D 2mhi, where m is a positive integer. In

Fig. 4 Two triangles across the patch boundary (orange)
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addition, the parametric coordinates at the patch boundaries should satisfy

(
.uA;i; vA;i/

T D 2mRAB
�
uA;j; vA;j

�T C 2m.Iu; Iv/
T ;

.uB;i; vB;i/
T D 2mRAB

�
uB;j; vB;j

�T C 2m.Iu; Iv/
T ;

(12)

where RAB is the rotation matrix across edge AB, .Iu; Iv/ are integer-valued shift
in the parametric coordinates, and m controls the difference of the parametric
line spacing across the patch boundary. The parametric coordinates are computed
by minimizing the orientation energy � O with the constraints in Eq. (12). By
connecting vertices with integer-valued parametric coordinates, a quadrilateral mesh
can be built with T-junctions on the edges. To ensure the strongly-balanced structure
in the T-mesh (m � 1 for any two neighboring elements), some quadrilateral
elements in the transition region need to be subdivided.

Figure 3d, e shows the adaptive parameterization result for the multi-resolution
surface (a local region) of Thin filament (2W4U). High resolution is set for two
emphasized chains (Chains 18 and 20) with denser elements. To have a smooth
transition from a higher resolution to a lower one, some T-mesh elements need to
be modified. Figure 5 shows four different connections across the patch boundary
(orange curve). Here m D 2, so some quadrilateral elements are subdivided to
ensure a strongly-balanced structure. The obtained T-meshes may be too fine in
some regions, therefore we identify redundant vertices based on their surface error
and remove them from the T-meshes. Figure 3e, f shows a comparison between the
T-meshes before and after removing redundant vertices.

Anisotropic T-mesh Generation Similar with [25], an anisotropy can be defined
from an input scalar field f . Instead of using the principal curvatures, here we
choose eigenfunction based cross-field guidance for anisotropic T-mesh generation.

Fig. 5 Various parametric lines across the patch boundary and their resulting T-meshes. (a–d) The
parametric lines; and (e–h) the corresponding T-meshes



Atom Simplification and Quality T-mesh Generation for Biomolecules 169

In anisotropic T-meshes, quadrilateral elements are stretched in certain directions.
The principal curvature directions usually vary intensively on the surface especially
for regions with many detailed features, yielding a lot of singularities in the cross
field, which makes it difficult to define the directions for stretching elements. On
the contrary, low-mode eigenfunctions are very smooth and yield much fewer
singularities. Their gradient directions in a set of sparsely distributed triangles are
taken as the constraint for minimizing the smoothness energy in Eq. (10). After the
cross field is built, singularities can be located using the same method in [7]. For the
parametric lines following the gradient direction rf , hi is set to be an uniform value
h0. For the perpendicular direction to rf , the line spacing h?i is determined by the
gradient magnitude,

1

h?i
D ˛ �max .krfk/

h0 krfik ; (13)

where ˛ controls the minimum line spacing. If krfik < ˛ � max .krfk/, the line
spacing is set to be h?i D h0. As such, the quadrilateral elements are stretched
along the direction perpendicular to the gradient, and dense elements are generated
in the gradient direction. In Fig. 6, Mode 2 eigenfunction of the Laplace-Beltrami
operator is used as the input scalar field. Similar with the isotropic parameterization
in Fig. 3d, we adapt the parametric line spacings to the surface resolution by
quadrupling the line spacings across the patch boundary.

3.2 T-mesh Quality Improvement

As shown in Fig. 7a, for each T-junction we extend it to make the surrounding
elements form a local unstructured quadrilateral mesh. For a Vertex xi in Element j,
the other vertices in the element can be represented as x j

iC1, xj
iC2 and xj

iC3 in the
counter-clockwise order, see Fig. 7b. The normal direction at Vertex xi is computed
as

ni D
X
j2Qi

�
xj

iC1 � xi

�
�
�

xj
iC3 � xi

�
;

where Qi is the set of neighboring elements of Vertex xi and “�” is the cross product
of vectors. ni is then normalized as ni= knik. In this way, ni is estimated as the
weighted average of normal directions in the neighboring elements, and the areas
of these elements are taken as the weights. The scaled Jacobian [18, 46] at xi in
Element j equals to kv1 � v2k � s, where

v1 D xj
iC1 � xi���xj
iC1 � xi

��� ; v2 D xj
iC3 � xi���xj
iC3 � xi

��� ; and s D sign ..v1 � v2/ � ni/ :
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Fig. 6 Anisotropic T-mesh generation from the Mode 2 eigenfunction of LBO (˛ D 0:1).
(a) The gradient and gradient magnitude of the input field; (b) the adaptive and anisotropic
parameterization; and (c) the corresponding T-mesh

The quality of Element j can be measured by the minimum Jacobian at its four
vertices. Generally, the overall quality of the T-mesh from surface parameterizaion
is good in term of Jacobian, except a few elements. To improve the Jacobian of



Atom Simplification and Quality T-mesh Generation for Biomolecules 171

Fig. 7 (a) Extending the T-junction (orange) to form a local unstructured mesh; and
(b) A neighboring element j surrounding Vertex xi

the T-mesh elements, we apply a new gradient flow-based quality improvement
method, which considers both the original shape of elements and the orthogonality
of edges. Contrast to other existing approaches [9, 43], our method can preserve the
anisotropy of the T-mesh.

Suppose Element j in Fig. 7b is a neighboring element surrounding Vertex xi, the
cross distortion at xi is defined as

� C .xi/ D
X
j2Qi

���� xj
iC1
�xi

aj

����
2

C
���� xj

iC3
�xi

bj

����
2

�2ij C
q
�2ij C 4ı2

; (14)

where �ij D ni �



xj
iC1�xi

aj
� xj

iC3�xi

bj

�
, ı is an arbitrary small value (e.g. ı D 0:1),

and

�
aj; bj

� D
0
@
���xj

iC1 � xi

���C
���xj

iC2 � xj
iC3
���

2
;

���xj
iC3 � xi

���C
���xj

iC2 � xj
iC1
���

2

1
A

are the feature lengths of Element j. The total cross distortion energy of the T-mesh
is defined as

� C
M D

NX
iD1

� C .xi/; (15)

where N is the number of vertices. Minimizing � C
M not only makes the corners

of each quadrilateral element close to 90ı, but also makes the edge length adapt
to the local surface feature, which improves the element quality and preserves its
stretched shape. The minimization can be fulfilled via a gradient flow method.Let
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g D .x1; y1; z1; : : : ; xN ; yN ; zN/
T be the vector containing the coordinates of all the

vertices in the T-mesh.For the kth step of the gradient flow, we have

gkC1 D gk � �r� C
M ; (16)

where

r� C
M D



@� C

M

@x1
;
@� C

M

@y1
;
@� C

M

@z1
; : : : ;

@� C
M

@xN
;
@� C

M

@yN
;
@� C

M

@zN

�T

:

Note that in each step, vertices can only move on the tangent plane. Therefore, we
update xk

i with xkC1
i � �ni � pk

i

�
ni, where ni is the surface normal and pk

i D xkC1
i �

xk
i . Our quality improvement method can also handle flat and concave elements

although so far they were not observed in our T-mesh results.
We also implemented an isotropic T-mesh quality improvement method based

on the triangle optimization [9, 43] and compared our method with it. For an
isotropic T-mesh, the ideal shapes of the elements are squares or rectangles, as
shown in Fig. 8, which can be decomposed into several ideal triangles. For a
general quadrilateral element, we decompose it into several real triangles following
the same splitting format. An affine mapping between a real triangle j and its
corresponding ideal triangle jI can be defined as

fK W jI ! j;

Qx 7! x D Kj QxC v;
(17)

where x is a vertex in the real triangle, Qx is the corresponding vertex in the ideal
triangle, and v is a constant term. The distortion of the T-mesh is defined as

� T
M D

NQX
iD1

X
j2Ri

��Kj

��2
F

det
�
Kj
�C

q�
det
�
Kj
��2 C 4ı2

; (18)

Fig. 8 Ideal triangles from a square (a–b) or rectangle (c–d). (a, c) No T-junction; and (b, d) with
a T-junction. The orange dots are T-junctions
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Fig. 9 Quality improvement results for the T-mesh in Fig. 6c using two different methods. (a)
The original T-mesh; (b–c) the improved T-meshes using the triangle optimization method and our
method, respectively; and (d–f) the Jacobian distribution corresponding to (a–c)

where NQ is the number of quadrilateral elements, Ri is the set of real triangles

generated from Element i, and
��Kj

��
F
D
q

tr
�
Kj

TKj
�

is the Frobenius norm of Kj.

Similar with Eq. (16), a gradient flow method can be applied to minimize � T
M .

Figure 9 shows a comparison between our method and the triangle optimization
method. We can observe that both methods can improve the mesh quality. As
shown in (b–c), for the isotropic elements in Region B, both methods yield similar
results. But for the anisotropic elements in Region A, only our method preserves the
anisotropic rectangle shape of the elements.

4 Results and Discussion

In this section, the biomolecule simplification and multi-resolution T-mesh genera-
tion algorithms are applied to various biomolecular complexes. All the results are
generated from a computer with an Intel Xeon E5-1620 CPU, a Nvidia GeForce
GTX680 graphic card, and 16GB of memory.
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Table 2 Simplification results for biomolecules

Atom simplification Atom simplification

No simplification (no emphasized chains) (with emphasized chains)
PDB ID NA TG NR TG eM

G NR TG eM
G

2O53 4,912 0:92 3,316 (67:5%) 0:55 0.019 4,114 (83:8%) 0:87 0.018

4KYT 7,908 1:35 5,377 (68:0%) 0:97 0.018 5,501 (69:6%) 0:99 0.018

4N78 22,843 3:26 14,436 (63:2%) 2:13 0.023 15,107 (66:1%) 2:33 0.021

4A7F 33,500 3:88 20,134 (60:1%) 2:42 0.026 20,465 (62:7%) 2:47 0.026

2W4U 0.14M 16:21 74,962 (54:4%) 10:13 0.032 78,853 (57:2%) 10:98 0.031

2KU2 1.23M 33:21 0.51M (39:3%) 15:81 0.055 0.64M (49:3%) 17:48 0.051

Note: NA – the number of all the atoms; NR – the number of remaining atoms; and TG – time
for Gaussian density map computation (unit: second). �G D 0:01 for the atom elimination. The
percentage of remaining atoms is shown in the parentheses

Table 2 shows the results of atom simplification for proteins with various sizes.
Among them, 2O53 is a protein in human brain, and one of its two identical
components is emphasized. 4KYT, 4N78, 4A7F and 2W4U are involved in the heart
contractile process. Components with important biological functions are chosen
to be emphasized. 2KU2 is one of the largest proteins in the PDB with 1:23M
atoms. One of its seven symmetric components is chosen to be emphasized. As
shown in Table 2, the percentage of remaining atoms varies from 39:3% to 69:6%,
and tends to decrease as the protein size increases because most atoms are buried
inside the biomolecular surface. The number of remaining atoms also depends on
the size of emphasized components. For example in 2O53, when the emphasized
components are considered, the percentage of remaining atoms increases by 16:3%.
Contrast to the other proteins, the emphasized components in 4A7F are exposed
to the surface, and most of their atoms are kept during simplification. Therefore
the number of remaining atoms does not change much when considering these
emphasized components.

Figures 3, 10 and 11 show adaptive T-mesh generation results for the five proteins
in Table 2, which can be used directly as the control mesh to build rational T-
spline surfaces [41]. The principal curvatures are used to guide the parametric
line directions, therefore the obtained T-meshes follow the local surface features.
On the contrary in Fig. 12, eigenfunctions are used to define the input vector
field. Therefore, the obtained anisotropic T-mesh follows the gradient direction
of those eigenmodes. The variation of different modes is reflected by both the
element orientations and the stretched shapes. We can also set various resolutions
for different emphasized components. In Fig. 13, the parametric line spacings are
1 W 2 W 4 for Chain 20 (orange), Chain 18 (blue) and the rest of the surface. Table 3
shows statistics of all the T-mesh generation results. We can observe that the number
of T-junctions and the number of singularities vary for different proteins due to their
complex surface features. In addition, the generated T-meshes are in good quality
with Jmin � 0:37.
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Fig. 10 Multi-resolution surfaces for 2O53 and 4KYT. (a–c) 2O53; and (d–f) 4KYT. Left column:
adaptive parameterization; Middle column: T-mesh; Right column: T-spline surface

5 Conclusion and Future Work

In this paper, we have introduced a new approach to simplify low-contributing
atoms and generate quality T-meshes for multi-resolution biomolecular surfaces. An
error-bounded atom elimination algorithm is designed to reduce the atom number
and preserve multi-resolution surface feature at the same time. An extended cross
field-based parameterization is introduced to generate adaptive and anisotropic T-
meshes, which can be used further for T-spline surface construction. In addition,
a new gradient flow-based method is introduced for T-mesh quality improvement,
preserving the anisotropy in the input T-mesh.

Isogeometric analysis has been applied in a lot of engineering fields, it also has
a great potential for applications in computational biology to study biomolecular
complexes or proteins. In the future we intend to explore along this direction.
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Fig. 11 Multi-resolution surfaces for 4N78, 4A7F and 2KU2. (a–c) 4KYT; (d–f) 4N78; and (g–i)
2KU2. Left column: adaptive parameterization; Middle column: T-mesh; Right column: T-spline
surface
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Fig. 12 Adaptive and anisotropic T-mesh construction of 4KYT from three different eigenmodes.
(a–c) The gradient direction and magnitude of the eigenfunctions; (d–f) surface parameterization;
and (g–i) adaptive and anisotropic T-meshes. Left column: results from Mode 2; Middle column:
results from Mode 3; and Right column: results from Mode 6
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Fig. 13 Biomolecular surfaces for 2W4U emphasizing Chains 18 and 20 with different resolu-
tions. (a) Adaptive parameterization; (b–c) the corresponding T-mesh and T-spline surface
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Algorithmic Aspects of Isogeometric Shape
Optimization

Daniela Fußeder and Bernd Simeon

Abstract Shape optimization is concerned about finding optimal designs under the
aspect of some cost criteria often involving the solution of a partial differential
equation (PDE) over the afore said unknown shape.

In general, industrial cases involve a geometric model from Computer Aided
Design (CAD). However, solving PDEs requires an analysis suitable working
model, typically a Finite Element (FEM) triangulation. Hence, some of the geomet-
ric properties known from the CAD model may be lost during this format change.
Therefore, we employ isogeometric analysis (IGA) instead, which has a tighter
connection between geometry, simulation and shape optimization.

In this paper, we present a self-contained treatment of gradient based shape
optimization method with isogeometric analysis, focusing on algorithmic and
practical aspects like computation of shape gradients in an IGA formulation and
updating B-spline and NURBS geometries.

1 Introduction

Isogeometric analysis was invoked in the seminal paper [8] to serve as a bridge
between Computer Aided Design (CAD) and the Finite Element Method (FEM).
With IGA, so the hope, a seamless work flow from designing CAD models to
simulation is possible, saving man power from (manually) adapting FEM meshes
to CAD models. Moreover, in IGA there is no information loss as is for such mesh
adaptations of classical FEM. Shape optimization was targeted as an application
which might benefit from IGA already in that first introduction to IGA. The reasons
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are the same as above, namely that

– there is no loss of information between optimization and analysis model, and
– B-splines and NURBS practically are the toolbox of designing because of their

nice approximation properties, so why not use them also for finding optimal
designs numerically.

A general formulation of shape optimization problems, see for instance [22], reads

min J.u;˝/ s.t. E.u;˝/ D 0 and g.˝/ � 0; h.˝/ D 0 (1)

where J is a real valued objective or cost function depending on a domain˝ and the
solution u of a PDE, which is given by the term E.u;˝/ D 0. In g and h we collect
additional inequality and equality constraints on the shape, but, in this work, not on
the state u.

A gradient-based optimization method is employed to solve the discretized
version of the minimization problem (1). Typical gradient-based optimization, as
in [16], are for instance a sequential quadratic programming method (SQP), method
of moving asymptotes (MMA), or an interior point method. Using such a black box
gradient-based optimization routine, e.g. in the form of MATLAB solver fmincon,
we illustrate the steps towards an optimal shape in Algorithm 1.

Algorithm 1 Basic Black Box Shape Optimization Algorithm
Require: Initial geometry ˝
Require: PDE(˝) F PDE solver on ˝ which yields solution uh

Require: OBJECTIVE(˝; u) F evaluate objective function J.˝; u/ for domains ˝
Require: CONSTRAINTS(˝) F evaluate constraint functions g.˝/, h.˝/ for domains ˝
Require: SHAPE GRAD(˝; u) F shape gradient computation rJ, rC D .rg;rh/T

Require: UPDATE(˝; s) F geometry update routine ˝new D "˝ C s" with a descent direction s

Black Box Optimization, for instance with fmincon

1: repeat
2: uh  PDE(˝)
3: J OBJECTIVE(˝; uh)
4: C CONSTRAINTS(˝)
5: .rJ;rC/ SHAPE GRAD(˝; uh)
6: if ˝ is not optimal, i.e. does not satisfy a stopping criteria then
7: compute a descent direction s involving rJ, rg, rh
8: ˝  UPDATE(˝; s)
9: end if

10: until ˝ is optimal

Of course, in this work we use a B-spline or NURBS representation of ˝ � R
2

and solve the state equation PDE(˝) in Line 2 with IGA. Here, E.u;˝/ D
0 describes a linear elasticity or Poisson equation. One focus will be on the
practical computation of shape gradients rJ, rg and rh in SHAPE GRAD(˝; u)
in Line 5 which are formulated in an isogeometric way using classical methods
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from [13, 22]. For that, we take an optimize first–then discretized view as opposed to
discretize first–optimize then, see [7] for the first and [22] for the second approach.
However, we delegate finding a descent direction in Line 7 to a black box nonlinear
optimization routine, MATLAB fmincon, [10] or [26], which vitally depends on
the quality of said shape gradients. Although checking the stopping criteria in Line 6
is part of the black-box optimizer we need to address it also for possible pitfalls. Last
but not least updating the geometry in UPDATE(˝) Line 8 falls again to our lot and
consequently needs our attention to avoid infeasible representations.

A basic reference for IGA is [8]; B-splines and NURBS are treated in [17].
Isogeometric analysis has been applied to several fields of shape optimization
problems already, for instance [14, 15] with application to electromagnetism and
[2, 3, 20, 27] with application to solid mechanics and also shells [11]. As one of
the basic references in the classical shape optimization field, we refer to [18], and
a rigorous mathematical treatment is provided by [22]. Especially the definition
of shape gradients is mainly attributed to [13, 18, 22]. Among many others, the
introduction to optimization methods [16] treats SQP and interior-point methods. A
popular optimizer in structural shape optimization is MMA by [23]. For our model
problems, we use the packages [10] which includes for instance SQP and MMA, and
[26], an interior-point solver. Also, SQP and interior-point method both are options
for fmincon in [12].

Algorithm 1 provides the structure for this work: we introduce the core of
isogeometric shape optimization – NURBS and B-splines – in Sect. 2 and apply
it subsequently to obtain representations of domains in Sect. 2.2, find solutions of
PDEs with IGA in Sect. 3, and formulate derivatives w.r.t. geometries in Sect. 4. For
that, the space of admissible domains is provided with a vector space structure which
allows us to define “summation of domains”, i.e. updating shapes in Sect. 5. Finally
in Sect. 6, we apply the theory from the previous sections to obtain the required
procedures in Algorithm 1 for the abstract shape optimization problem, and realize
them for some model examples. We conclude this work with the numerical solutions
of these model problems in Sect. 7, a short summary, and an outlook.

2 Introduction to B-Splines, NURBS and Geometries in IGA

Isogeometric analysis starts and ends with B-splines and NURBS as basis functions
for geometric modeling, as basis functions for the Galerkin projection in simulation
and as design variables for shape optimization.

Therefore, we present the basic definitions subsequently in the first part, Sect. 2.1,
but refer to various sources like [4, 21] for B-splines and for instance to the
monograph [17] for a more elaborate treatment of NURBS than we can provide
here. Equipped with the notation from this introduction we apply it to geometry
representation in IGA in the following in Sect. 2.2.
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2.1 Introduction to B-Splines and NURBS

From a given knot vector � D .�1; : : : ; �nCpC1/ we form n B-spline basis functions
of degree p recursively

for p D 0W Ni;0. Ox/ D
(
1; if �i � Ox < �iC1
0; otherwise

(2)

for p > 0W Ni;p. Ox/ D Ox � �i

�iCp � �i
Ni;p�1. Ox/C �iCpC1 � Ox

�iCpC1 � �iC1
Ni;p�1. Ox/ : (3)

Here, we always assume an open knot vector where the first and last knots are
repeated pC1 times, i.e. �i D a for i D 1; : : : ; pC1 and �i D b for i D n; : : : ; pC1.
This way, N1;p and Nn;p are interpolative. We obtain non-uniform rational B-spline
basis functions, in short NURBS, by weighting the B-spline basis

Ri;p;W D !iNi;p. Ox/Pn
jD1 !jNj;p. Ox/ (4)

with positive weights !i > 0 collected in a weight vector W D .!1; : : : ; !n/.
A set of B-spline basis functions spans a spline space S.�; p/ of degree p which

is determined uniquely by the underlying knot vector,

S.�; p/ D spanfNi. Ox/ WD Ni;p. Ox/; i D 1; : : : ; n; Ox 2 Œ0; 1�g: (5)

We reach higher space dimensions by forming tensor products: given two knot
vectors �1, �2 and corresponding sets of basis functions Ni1;p1 . Ox1/ and Ni2;p2 . Ox2/
a tensor product space

S.�1; p1/˝ S.�2; p2/ D spanfNi. Ox/W i D 1; : : : ; n1n2; Ox 2 Œ0; 1�2g (6)

is obtained with n D n1n2 basis functions Ni D Ni1;p1 . Ox1/Ni2;p2 . Ox2/ for i1 D
1; : : : ; n1, i2 D 1; : : : ; n2.

Taking a NURBS basis by exchanging Ni1;p1 with Ri1;p1;W1 and Ni2;p2 with Ri2;p2;W2

leads to a NURBS space

S.�; p;W/ D spanfNi. Ox/ WD Ri;p;W. Ox/; i D 1; : : : ; n; Ox 2 Œ0; 1�g (7)

and analogously to (6) we have S.�1; p1;W1/˝S.�2; p2;W2/ with basis functions
Ni WD Ri1;p1;W1Ri2;p2;W2 .

Of course, the tensor product can be extended to arbitrary space dimensions,
however, for our examples two dimensions are sufficient. Since B-splines are a
special case of NURBS with all weights equal to one, we from now on use the same
symbols Ni for uni- and bivariate NURBS and B-splines, also dropping the product
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notation and the indices for fixed degrees p and weight vectors W. When we speak of
NURBS, we mean both NURBS and B-splines, except where we distinguish them
explicitly.

With such B-splines and NURBS we are equipped for designing geometric
forms, performing simulation and shape optimization in the following sections.

2.2 Geometries in Isogeometric Analysis

One key ingredient of isogeometric analysis is the representation G of geometries
by linear combinations of NURBS with fixed weights. Moreover, in isogeometric
shape optimization we search for designs also in such NURBS spaces, i.e. the linear
coefficients of G are the optimization variables. In addition, one could also look for
shapes where the weights are variable as well. However, for the definition of shape
gradients we need a linear space which we can provide for NURBS with variable
weights in homogeneous coordinates only.

In the following, we first introduce geometries from the easier case of B-spline
and NURBS spaces with fixed weights, and then geometries built from NURBS
with variable weights.

2.2.1 B-Splines and NURBS with Fixed Weights

A NURBS geometry in R
d is a linear combination of NURBS basis functions

G. Ox/ D
nX

iD1
XiNi. Ox/ 2 Sd with control points Xi 2 R

d ; (8)

typically d D 1; 2; 3. In our examples, G is defined over a parameter space Ő D
Œ0; 1�d :

For NURBS curves, d D 1, we have univariate NURBS Ni 2 S D S.�; p;W/
and Ox 2 Œ0; 1� : For surfaces, d D 2 and the parameter domain is Œ0; 1�2 I we use
bivariate NURBS Ni 2 S D S.�1; p1;W1/˝ S.�2; p2;W2/ :

In Algorithm 1 we assume that the geometries˝ are surfaces given by a NURBS
representation as in (8), ˝ D G. Ő / :

2.2.2 NURBS Space with Variable Weights

For the shape gradient derivation in the variational setting we have to restore linear-
ity of the NURBS space with variable weights. For that, we resort to homogeneous
coordinates and a perspective map, see [17]. A homogeneous coordinate vector QX in
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R
dC1 with QX WD .Xw;XdC1/ and Xw 2 R

d is projected to R
d by

H. QX/ D
(

Xw=XdC1; XdC1 ¤ 0
Xw=jXwj; else:

A d C 1 dimensional B-spline geometry .Gw;w/ 2 SdC1 with Gw 2 Sd and 0 <
w 2 S is mapped to a rational representation in R

d by

HW .Gw;w/ 7! G WD Gw=w : (9)

Finally, Sd ˚ S has a basis fNiekWNi 2 S; i D 1; : : : ; n; k D 1; : : : ; d C 1g and is a
linear space which is isomorphic to R

.nC1/d :
The global geometry representations with fixed weights are a key ingredient of

isogeometric analysis in Sect. 3. The case of variable weights is only important for
shape optimization in Sect. 4.

3 Simulation in Isogeometric Analysis

Solving PDEs with isogeometric analysis works with the variational form and
Galerkin projection the same way as in FEM. However, the PDE is transformed with
a geometry function G such that it is posed over the parameter domain Ő D Œ0; 1�d :

Given a PDE in its strong form

Lu D f (10)

with a linear elliptic partial differential operator L, its relation to the weak form
a.u; v/ D l.v/ is given by the dual pairing a.u; v/ D hLu; vi and by l.v/ D . f ; v/.
As in FEM, we use the variational form of (10) to find its numerical solution.
In general, we say that u solves the state equation E.u;˝/ D 0 if it solves the
variational form of (10) over the domain˝ � R

d

u 2 H1
0.˝/

mW a.u; v/ D l.v/ 8v 2 H1
0.˝/

m : (11)

We now first introduce the Galerkin projection according to the isogeometric
paradigm and then state the PDE solver for Algorithm 1.
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3.1 Galerkin Projection in IGA

The approximation space for the state equations in the form of (11) is in isogeomet-
ric analysis

Vh WD fvh 2 H1
0.˝/

mW vh ı G 2Mmg (12)

where m is the dimension of uW˝ ! R
m and M is a NURBS space of space

dimension d. Typically in IGA, it is the same NURBS space as for the geometric
representation in (8), i.e. M D S, but that is not mandatory.

The important point also for shape optimization later is, that we move the
dependency on the domain from the Sobolev space to the bilinear and linear form:

aG. Ov; Ow/ WD
Z
Ő

LG Ov Owj det JGj d Ő ; LG WD L ı G (13)

lG. Ov/ WD
Z
Ő

f ı G � Ovj det JGj d Ő : (14)

The variational form which we solve in IGA then is

Ouh 2Mm
0 W aG. Ouh; Ovh/ D lG. Ovh/ 8 Ovh 2Mm

0 ; (15)

which is equivalent to (11) for Ouh D uh ı G : The NURBS space Mm
0 WD Mm \

H1
0.
Ő /m contains only those NURBS Ovh 2Mm which respect (possible) Dirichlet

boundary conditions. Note, that through the transformed differential operator LG we
also introduce J�T

G into the forms aG and lG besides det JG :

All in all, the solution of (15) has the form

Ouh D
nX

iD1
QiMi. Ox/ with solution coefficients Qi 2 R

m and Mi 2M : (16)

The Poisson equation is an example for such a transformed notation. In that case,
the dimension of the solution is m D 1 and

aG. Ov; Ow/ D
Z
Ő
r OvTJ�1G J�T

G r Owj det JGjd Ox :

A vector field example with m D 2 is linear elasticity for which a weak IGA form
is found in (52) in Sect. 6 about model problems.
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3.2 PDE Solver

Going back to the Basic Shape Optimization Algorithm 1, line 2 corresponds to
assembling and solving equation (15). This leads to the linear system

KQ D F; Kiljk WD aG.Miel;Mjek/; Fil WD lG.Miel/ (17)

for the model problems with stiffness matrix K, right hand side F and coefficients
of the solution Ou DPn

iD1
Pm

lD1 QilMiel. Ox/ :We silently assume that the coefficients
Qil 2 R can be ordered lexicographical in a solution vector Q, for instance like

Q D �Q11 Q12 : : : Qn1 : : : Qnm

�T

and in the same breath we write

Qi D
�
Qi1 : : : Qim

�T
:

Hence, for any admissible domain ˝ given by a NURBS parameterization G DPnN
iD1 XiNi 2 Sd and a test function space of NURBS Mm the procedure PDE.˝/ is

given by Algorithm 2.

Algorithm 2 PDE(˝)
1: for all basis functions Miel do
2: for all basis functions Mjek do
3: Kiljk  aG.Miel;Mjek/

4: end for
5: Fil lG.Miel/

6: end for
7: Apply boundary conditions of state to K and F
8: Solve KQ D F
9: uh  Pm

iD1 QiMi.

4 Shape Gradients in Isogeometric Analysis

Gradient based optimization routines use gradients of the objective function and
of the constraints to find a descent direction towards a (local) minimum and also
as first order optimality condition. In case of shape optimization, the objective and
constraints depend on a domain from the space of admissible domains and mostly
also on a state u defined on that domain. Hence, a gradient would be w.r.t. a shape.
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In classical shape optimization such gradients are obtained by defining perturba-
tions of identity

Ft.x/ D id.x/C th.x/ (18)

where a perturbed domain results from˝t WD fxt D Ft.x/W x 2 ˝g. The vector fields
h must be chosen in a way that respects certain regularity conditions, see for instance
[22]. Then, for a function 
.˝/ the derivative in direction of h is understood as


0.˝I h/ WD lim
t!0C

1

t

�

.˝t/� 
.˝/

� D dt
.˝t/jtD0 : (19)

Next, we derive the corresponding formulas in IGA for NURBS with fixed weights
in Sect. 4.1 and then extend them to variable weights in 4.2.

4.1 Isogeometric Shape Sensitivities

In isogeometric analysis we have for x 2 ˝ that x D G. Ox/ for some Ox 2 Ő :
Applying this transformation to the perturbation of identity (18) yields

Gt. Ox/ WD Ft ı G. Ox/ D G. Ox/C th ı G. Ox/ : (20)

Choosing h true to the isogeometric paradigm 
 WD h ıG 2 Sd ; as shown in Fig. 1,
this results in the isogeometric perturbation of identity

Gt. Ox/ D G. Ox/C t
. Ox/ and ˝t D Gt. Ő / : (21)

Therefore it makes sense to notate 
.G/ and the derivative in direction of 
 as


0.GI 
/ D lim
t!0C

1

t

�

.Gt/� 
.G/

� D dt
.Gt/jtD0 : (22)

The perturbations in isogeometric analysis fulfill the regularity conditions such that
the directional derivatives constitute the shape gradient. As we have shown in [6]

Fig. 1 Perturbation of
identity with IGA Ω̂ Ω

Ωt

G

G + tq id + th
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the directional derivatives of integrals in isogeometric analysis of the form


.G/ WD
Z
˝

j1.x/dxC
Z
@˝

j2.s/ds (23)

have the expression


0.GI 
/ D
Z
Ő
�rj1 ı G � 
 C j1 ı G trace.J�1G D
/

�j det JGjd Ox (24)

C
Z
@ Ő

�
rj2 ı G � 
 jJ�T

G Onj C j2 ı G trace.J�1G D
/ (25)

�j2 ı G
OnTJ�1G J�T

G D
TJ�T
G On

jJ�T
G Onj

�
j det JGjd Os : (26)

The isogeometric shape sensitivities in Eqs. (24), (25), and (26) can be obtained by
using existing classical results and the transformation rule, or can be developed by
solving at t D 0

dt
.Gt/ D dt

Z
Ő

j1 ı Gtj det JGt jd OxC dt

Z
@ Ő

j2 ı GtkdsGtk2d Os : (27)

Also in [6], we proved for linear elliptic PDEs of second order that the directional
derivative from solving (24), (25), and (26) for 
 D Niek for a B-spline Niek 2 Sd is
equal to the standard derivative dXik
, i.e. taking the derivative of 
 w.r.t. a control
point component k of Xi

dXik
.G/ D dXik

Z
Ő

j1 ı Gj det JGjd OxC dXik

Z
@Œ0;1�2

j2 ı Gj det JGjd Os : (28)

Reversing the order of differentiation and integration shows that in (28) we, too,
need dXik G and dXik j det JGj : An explicit, efficient term has been derived in [20]
and [27].

The two notions of derivatives stem from two ways of approaching optimal
control problems: in the first case, the optimality conditions are derived for the
continuous problem in an infinite dimensional function space setting, then all
occurring function spaces and operators are approximated by finite dimensional
ones, leading to the directional derivatives in (23). In the second case, the continuous
problem is discretized by substituting all infinite dimensional function spaces with
finite approximations, and then the optimality criteria are derived. It so happens, that
the spline spaces are isomorphic to real vector spaces and therefore the directional
derivatives are the standard derivatives in isogeometric shape optimization.

The above derivative (24) is a domain representation. In literature, one can also
find a boundary representation by using the so called Hadamard structure theorem
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[5, Theorem 3.6]. Basically, it says that a shape derivative in direction h of the form

Z
˝

div.j1.x/h.x//dx D
Z
@˝

j1.x/h.x/ds (29)

with Stokes’ divergence theorem. In this work, we only consider domain represen-
tations, but all steps can be applied to Hadamard sensitivities as well. In [2], such
Hadamard representations have been used together with IGA in linear elasticity
compliance minimization. In both cases, the directions 
 of the derivatives are
chosen such that 
 is a basis function living on the moving boundary. This is,
of course, natural for a boundary representation, but it also reduces the degrees
of freedom for the domain representation significantly. By doing so, we speak of
such basis functions 
 D Niek ¤ 0 on the moving boundary as well as their
corresponding control points Xik as design variables and denote their number by
ndes.

4.2 Weight Optimization

For the following argument, we explicitly denote the NURBS representation of G
with NURBS from Eq. (7) as

G. Ox/ D
nX

iD1
Xi

!iNi. Ox/Pn
jD1 !jNj. Ox/ : (30)

In the light of taking the derivative w.r.t. a control point in Eq. (28), it is not far
fetched to get the derivative w.r.t. a weight !i for rational geometries G as in (30),
which implies the need for d!i G and d!i j det JGj, an explicit derivation can again be
found in [20]. In [6] the authors have shown how to embed weight optimization in
the function space setting using homogeneous coordinates. We emphasize here, that
in the case of variable weights, the formulas for the two approaches of directional
derivatives are not the same. One could say, that in the function space setting a term
is missing. This is compensated by a different update rule, though. See also Sect. 5
for that.

We use this in the following sensitivity formula. For a shape functional 
 like
(23), we obtain the isogeometric shape sensitivities in direction Q
 2 SdC1 for G D
H ı QG and 
 D H ı Q
 as


0.GI 
/

D
Z
Ő
�rj1 ı G � DH ı QG Q
 C j1 ı G trace.J�1G

PD/�j det JGjd Ox (31)
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C
Z
O�

 
rj2 ı G � DH ı QG Q
 jJ�T

G Onj C j2 ı GjJ�T
G Onj trace.J�1G

PD/C (32)

�j2 ı G
OnTJ�1G J�T

G
PDTJ�T

G On
jJ�T

G Onj

!
j det JGjd Ox (33)

with PD WD dtD.H ı QGt/jtD0 D D2H ı QGˇ Q
D QGC DH ı QGD Q
 , where

D2H ı QGˇ Q
 D 1

w2
�
.0d;�e1/ Q
; : : : ; .0d;�ed/ Q
; .�Id; 2G/ Q
� (34)

D
8<
:

1
w2

�
0d; �
w

�
, if Q
dC1 D 0

�Q
dC1

w2

�
Id;

1
Q
dC1


w � 2G
�

, if Q
dC1 ¤ 0 :
(35)

DH ı QG D 1

w

�
Id; �G

�
: (36)

In this formulation Q
 D Niek for ek a unit vector of R
dC1 and k D 1; : : : ; d

corresponds to varying control point components Xik and k D d C 1 varies weights
!i. However note, that 
0.GI 
/ ¤ dX
.G/ anymore, where X D Xik or !i.

4.3 Regularization

Though both interpretations of directional derivatives, (27) and (28), lead to the
same system for the directional derivative, in the functional space setting the
gradient is a member of a Hilbert space H and thus depending on the underlying
scalar product .�; �/. For a Fréchet-differentiable real valued function 
, the gradient
denoted by r
 2 H is defined as the solution to

.r
; 
/ D 
0.GI 
/ 8
 2 H : (37)

This leaves some freedom in choosing the scalar product .�; �/ and hence the regular-
ity of r
. According to [19] such a regularization has the effect of preconditioning
the optimization process.

As yet we have not used regularization in any of the model problems, however,
in [2] an example can be found that combines regularization with extending the
gradient to the inside, or what we call mesh movement and treat later in Sect. 5.1.
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4.4 With State Equation

Typically, the cost functional J depends on the domain˝ but also on the solution u
of a PDE over the domain, u D u.˝/. So formally, a shape derivative of J employs
the chain rule and yields

d˝J D @˝J C @uJd˝u : (38)

This sloppy notation can be justified by both approaches, discretize first–optimize
then and vice versa, and realized with the adjoint state. All in all, we have the
following necessary optimality system for an optimal shape ˝ D G. Ő / in IGA.

1. State equation (PDE): u 2 VhW u DPQiMiW

aG.u; v/ D lG.v/ 8v 2 Vh , KQ D F (39)

2. Adjoint state (chain rule): z 2 VhW z DPPiMiW

aG.v; z/ D duJ.˝; v/ 8v 2 Vh , KTP D �duJ.˝;Mk/
�

k
(40)

3. Stationary point (shape gradient): For all design variables Nkel and Xk;l respec-
tively

J0.˝; OuINkel/C l0G. OzINkel/ � a0G. Ou; OzINkel/ D 0 ,
@Xk;lJ C pT.@Xk;l F � @Xk;l KQ/ D 0

(41)

with l0G. OvI 
/ D dtlGCt
 . Ov/jtD0 and a0G. Oy; OvI 
/ D dtaGCt
 . Oy; Ov/jtD0 :
An example of such shape derivatives in IGA notation can be found in Sect. 6.

4.5 Shape Gradient Computation

In this section we summarize in Algorithm 3 the previous points in one procedure for
Algorithm 1. Moreover, we make a practical consideration on the relation between
the (possible) two discretizations, simulation and optimization mesh. When using
two meshes, we have shape sensitivities like a0G.u; zINkel/ which involve integrals
over basis functions Nkel from geometry and Miej from simulation. Therefore, the
domain of integration will be the mutual support supp.Nk/\ supp.Mj/. For an easy
implementation, it is favorable when the meshes match, i.e. if one mesh is the h-
refinement of the other. We then can assemble over the finer mesh and the mutual
support is found straight forward.
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Algorithm 3 SHAPE GRAD(˝; u)

Shape gradient of objective function F compute terms in (41) for objective function

1: for all basis functions Miel do F assemble right hand side of adjoint equation
2: Bi;l duJ.˝;Miel/

3: end for
4: Solve KT P D B: adjoint state z DPm

iD1 PiMi F solve adjoint
5: for all design variables Nkel do F directional derivatives of objective function
6: rJk;l  J0.˝; uINkel/C l0G.zINkel/� a0

G.u; zINkel/

7: end for

Shape gradient of constraint functions

8: for all design variables Nkel do F directional derivatives of constraints
9: rCk;l .g0.GINkel/; h0.GINkel// derived from Eqs. (24), (25), and (26)

10: end for

Regularization F if needed

11: for all design variables Nkel do F assemble system matrix
12: for all design variables Nres do
13: Rklrs  .Nkel;Nres/ with scalar product .
; 
/ of Hilbert space H of wanted regularity
14: end for
15: end for
16: Solve Ry D rJ, rJ y
17: Solve Ry D rC, rC y

5 Geometry Update

In Algorithm 1 we need a means how to update shapes. This is also given by the
perturbation of identity (18)˝t D Ft.˝/ D .id C th/.˝/ or in IGA by (21)

˝t D Gt. Ő / D G. Ő /C t
. Ő / : (42)

Since in IGA 
 is from the same NURBS space as the geometry function G, the
update rule in IGA consists of adding control points.

A special case is updating geometries from NURBS spaces with variable weights.
There we have

˝t D H. QGC t Q
/. Ő / (43)

where QG and Q
 are NURBS geometries in homogeneous coordinates.
Before we cast the update rule into a procedure, we have to consider another

issue. Often, large steps result in infeasible parameterizations. However, it can partly
be avoided with the right mesh movement algorithm.
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5.1 Mesh Movement

In case of large deformation at the boundary of a geometry due to updates by shape
gradients it frequently leads to infeasible parameterizations, for instance, when the
control polygon overlaps with inner control lines, as in Fig. 2. Such tangled meshes
are no phenomenon of IGA nor of shape optimization alone. Several techniques
have been successfully applied in IGA:

– minimizing the Winslow functional in electromagnetic shape optimization,
which aims for a positive determinant of the Jacobian of G [15],

– solving a linear elasticity problem with the displacement of control points on the
boundary as Neumann boundary condition [2],

– Analysis-aware IGA meshes [28], which also optimize the magnitude of the
determinant of the Jacobian of G.

We write here very generally that a mesh movement function ˚ WRndes ! R
nd

propagates a descent direction s to all control points, where s results from the
sensitivity analysis and has the size ndes corresponding to the number ob design
variables as in Sect. 4.1 The focus is here on an algorithmic framework for shape
optimization, therefore we assume that ˚ is given by a mesh movement method,
for instance from above or the one we used in [6]. In the end, the update in IGA is
carried out by changing the control points, with ˚ respecting fixed boundaries and
the movement on the optimization boundary, i.e.

(
y` D s`; if Ni`ek` is design variable,

y` D 0; if Ni`ek` is on fixed boundary :
(44)

Γ̂ Γ̂t

Fig. 2 Moving a boundary which results in non-convex domains can cause irregular parameteri-
zations by overlapping control polygons, hence a suitable method to also move inner control points
must be applied
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5.2 Computation of New Geometry

Here, we give the procedure for updating a geometry in Algorithm 1. The descent
direction s depends on what the optimization routine returns on the basis of rJ
and rC but it is up to the user how to update the geometry with it and possibly to
move the mesh. We summarize the whole procedure in Algorithm 4. As mentioned
above, the update rules differ for NURBS with variable weights in the discretize
first and optimize first ansatz. For a comparison with line 6, we state the update rule
of discretize first in the following code snippet

Xi  Xi C .si;1; : : : ; si;d/
T

!i  !i C si;dC1 :
Hence, for Si WD .si;1; : : : ; si;d/

T and Wi WD si;dC1 an update rule with homogeneous
coordinates results in a geometry

Gnew D
nX

iD1
.Xi!i C Si/

NiPn
jD1.!j CWj/Nj

(45)

as opposed to the new geometry from the discretize first approach

Gnew D
nX

iD1
.Xi C Si/.!i CWi/

NiPn
jD1.!j CWj/Nj

: (46)

Algorithm 4 UPDATE(˝; s)
Require: stiffness matrix A of mesh moving problem
Require: geometry function G of initial domain ˝0

Require: descent direction s from black-box gradient descent optimizer
1: apply mesh movement function y D ˚.s/ to propagate the change also to the inside control

points, s y
2: if G is a B-spline geometry or a NURBS geometry with fixed weights then
3: for all geometry basis functions Ni do
4: Xi Xi C .si;1; : : : ; si;d/

T

5: end for
6: else G is a NURBS geometry with variable weights
7: for all geometry basis functions Ni do
8: Xi Xi C .si;1; : : : ; si;d/

T=si;dC1

9: !i  !i C si;dC1

10: end for
11: end if
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6 Model Problems

In this section we apply the complete Algorithm 1 with the procedures 2–8 to two
model problems. These examples, though simple, illustrate the isogeometric shape
optimization process and moreover, expose possible weaknesses, which have to be
considered. Both examples were also treated by the authors in [6].

We treat two optimization problems: maximizing an area and increasing stiffness.
The first one involves no PDE, but demonstrates the influence of quadrature errors
in optimizing weights and control points simultaneously. We review it here under
this aspect which sheds new light on using weights as optimization variables.

The second problem is well known in shape optimization and has been treated
already with isogeometric analysis, also by others. We include it here, for two
reasons. Firstly, it is posed in the discretize first setting in IGA literature, so here
we view it also in the optimize first picture. Secondly, in this example we show
practically the use of two meshes.

6.1 Area Maximization

Since NURBS are able to represent conics exactly, we treat first a simple example
without PDE to show the use and also pitfalls of isogeometric shape optimization
with variable weights.

Example 1 (Area maximization)

min J.˝/ D �
Z
˝

1dx subject to

h.˝/ D
Z
@˝

1ds� P0 D 0 with a constant P0 :

(47)

Shape gradients for J and h without variable weights are given by Eqs. (24), (25),
and (26), where j1 D 1 covers the volume and j2 D 1 the perimeter functionals.

J0.˝I 
/ D �
Z
Ő

trace.J�1G D
/j det JGjd Ox (48)

h0.˝I 
/ D
Z
@ Ő

�
trace.J�1G D
/� On

TJ�1G J�T
G D
T J�T

G On
jJ�T

G Onj
�
j det JGjd Os : (49)
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Considering also variable weights, the shape derivative equations (31), (32), and
(33) yield

J0.˝I 
/ D �
Z
Ő
�
trace.J�1G

PD/�j det JGjd Ox (50)

h0.˝I 
/ D
Z
O�

 
jJ�T

G Onj trace.J�1G
PD/C

� .J
�T
G On/TJ�T

G
PDTJ�T

G On
jJ�T

G Onj

!
j det JGjd Ox : (51)

6.1.1 Results

We start the optimization process with a square Œ�1; 1�2 given by B-splines with
degree p D 1 to 4 over knot vectors .0; : : : ; 0; 1; : : : ; 1/ in both space dimensions.
The first and last knot are repeated p C 1 times and V0 D 4 and P0 D 8. A
convergence study of Fig. 3 reveals, two things. First, we see that non-rational
B-splines behave as one expects. Namely, since higher degree B-splines can
approximate conics better, they should perform better, i.e. giving smaller errors
than lower degree approximations. Second, one anticipates h-convergence for a
fixed degree on the same grounds. Both is indicated in the plot. For p D 4 the
flat behaviour after two refinements is due to reaching machine precision. A first

100 101 102
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Fig. 3 Convergence study of Example 1 with non-rational B-splines of different degrees p
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guess would assign the same behaviour to rational B-splines, even expect a much
lower error for p D 2 already, because the disk has a representation in this space.
We use again the knot vectors .0; 0; 0; 1; 1; 1/ in both space direction with 3 � 3
rational B-spline functions and 9 weights, all equal to 1; control points are such
that we have the same initial square as above. Since rational B-splines are rational
polynomials we have to take quadrature errors into account. We pursue this in the
following before starting optimization with NURBS.

6.1.2 Influence of Quadrature Errors

When picking efficient quadrature rules for the assembly of aG and lG in IGA,
transformation terms det JG and J�T are neglected in this search by [9] on the basis
that these terms change slowly in comparison to other factors. This is in general
valid since the geometry is fixed at a coarse level with degree p0 and mesh size
parameter h0; for analysis a (several times) p- and h-refined version is used. Hence,
G is a polynomial with degree p0 � p and almost constant on elements of sizes
h � h0. This carries over to the transformation terms. However, this assumption
does not hold anymore when the geometry G has the same refinement level or
worse, for cost functionals or for constraints on ˝ without state, as for instance
a volume constraint in the form of h.˝/ D R

˝
1dx � const. In IGA, this yields

h.G/ D R Ő j det JGjd Ox :
Using rational B-splines, this simple constraint already exhibits a need for higher

order quadrature rules. That is, if we enforce the volume constraint by a tolerance
smaller than 10�6 in the optimization routine, Table 1 shows that we need at least
more than 5 quadrature points in each direction to get rid of integration errors.

6.1.3 Optimization with NURBS

For Example 1 with NURBS of degree p D 2 and variable weights the exact disk
˝� is in this NURBS space, so we expect an error J.˝�/ � J.G�. Ő // dominated
by quadrature errors and optimization parameters. In Fig. 4 a visually good result is
obtained for the following setting. A Gauß quadrature with 10 quadrature points in
each space direction is used. The perimeter constraint is enforce within a tolerance
of 10�8 and as stopping criteria for the SQP optimizer in the package NLOPT [10]
the same tolerance is chosen. In Fig. 4 no difference between exact and numerical

Table 1 Quadrature errors in area and perimeter of a circle with radius 1 given by exact
representation with NURBS of degree pD 2

#quad. points 5 9 15

Area �8 
 10�06 �3 
 10�11 �1 
 10�15

Perimeter �9 
 10�07 �2 
 10�12 �9 
 10�16
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Fig. 4 Result for Example 1 with initial domain (square): The optimal numerical shape (plotted
as IGA mesh on half disk) is a NURBS approximation of a disk (exact disk plotted as boundary
circle). On the right, the history of (feasible) SQP optimization steps is shown

optimum can be detected. In fact, the true error in the cost functional is jJ.˝�/ �
J.G�. Ő //j 	 2:1 � 10�10 after 34 function calls, i.e. iterations. For an even smaller
error we increase the quadrature rule to 15 points in each direction and require
that the perimeter may not deviate more than 10�12 from P0 D 8 and as stopping
tolerance we give 10�9. Then, the error jJ.˝�/� J.G�. Ő //j drops to	 8:9 � 10�15
after 34 function calls. It is unreasonable to expect anything less since from Table 1
we learn that the error in the objective is then dominated by quadrature errors.

Comparison with Non-rational B-Splines

We compare the results from rational and non-rational B-spline optimization and
how many design variables we need in both cases for an error in the cost functional
of order 10�15. In case of NURBS with weight optimization we have 9 control
points with 8 of them corresponding to basis functions with support on the boundary.
Since they have two components, we end up with 16 optimization variables plus
the 8 weights for each basis, amounting to 24 design variables in total. In case of
B-splines without weights Fig. 3 shows that for the desired error we need B-splines
of degree p D 4 which have been h-refined twice. This leaves us with 64 degrees
of freedom of which 32 are nonzero at the boundary. Although we have less design
variables using NURBS we pay for it by using higher quadrature rules. Together
with a PDE constraint it might therefore be computationally more efficient to use
B-splines of higher degrees if the optimal shape is expected to be conic.



Algorithmic Aspects of Isogeometric Shape Optimization 203

6.2 Compliance Minimization

This prominent example has been treated already in [2, 6, 20, 27] with IGA. Our
linear elasticity problem for plane stress has dimension m D 2 and the strong form

8̂
<̂
ˆ̂:

� div�.u/ D 0 in ˝;
u D 0 on �D;

�.u/ � n D g on �N ;

�.u/ � n D 0 on �;

(52)

with strain ".u/ D 1
2
.ruC ruT/ and stress �.u/ D 2�".u/C 	.r � u/I2: We use

a constant vector field g in the Neumann boundary conditions on �N , the domain is
fixed on the boundary part �D and allowed to move on � , where @˝ is the union of
all closed boundaries N�D [ N�N [ N� . For this problem E.u;˝/ D 0 is equivalent to

u 2 H1
0.˝/

2W
Z
˝

".u/TC".v/d˝ D
Z
�N

g � vd�N 8v 2 H1
0.˝/

2; (53)

where ".u/ D �
"11; "22;

1
2
."12 C "21/

�T
and elasticity tensor C characterized by the

linearized stress-strain relation. Isogeometric Galerkin projection of the plane stress
problem in Eq. (52) yields

aG.Miel;Mjek/ D
Z
Ő
"G.Miel/

TC"G.Mjek/j det JGjd Ox : (54)

with "G obtained from the modified gradient ru ı G D J�T
G r Ou : The linear form is

transformed to lG.Miel/ D
R
O� N

g ı G � Mielkd OsGkd Os where O� N is the preimage of
Neumann boundary �N under G.

Example 2 (Compliance minimization) The shape optimization problem takes the
form

min J.˝; u/ D
Z
�N

g � udx (55)

s.t. h.˝/ D
Z
˝

1dx� V0 D 0 : (56)

In this example we have a volume constraint on the domain with V0 a constant, such
as initial volume. Moreover, our domain of interest is a square plate with a hole,
where the form of the hole is to be optimized. In [24] it is argued that a circular hole
has maximal stiffness, i.e. minimal compliance. Since the problem is symmetric we
consider only a quarter of the plate which is depicted in Fig. 5 together with its
boundary conditions.
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initial domain
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Γ
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ΓN

ΓS

Γ

g = 2.5(0, 1)

g 
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 2
.5

(−
1,

 0
)

Γ
S

Fig. 5 Configuration of Example 2 where the quarter plate ˝ is connected at boundary �S to
congruent plates symmetrically to give a closed hole, the moving boundary is given by �

Fig. 6 Left: optimization mesh, right: simulation mesh, both degree 2, simulation mesh is 3 times
h-refined, both depicted as control mesh

From Eq. (41) we deduce the directional shape derivative for the objective function
in case of fixed weights using either a domain J.˝; u/ D a.u; u/ or boundary
representation J.˝; u/ D l.u/ of the cost functional. This problem is self-adjoint,
hence we have for the domain representation of the shape derivative of J

J0.˝; uI 
/ D dt

Z
Ő
"GCt
 .Miel/

TC"GCt
 .Mjek/j det JGCt
 jd Ox
ˇ̌
ˇ̌
tD0

: (57)

The shape derivative of the volume constraint h is given by Eq. (48). For this
example, we assume two separate levels of h-refinement in the simulation and
optimization mesh, the parameterizations are shown in Fig. 6. As predicted, the
optimization process leads to a circular hole in Fig. 7 and stress peaks are much
alleviated.
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Fig. 7 Left: stress on initial physical domain with stress peaks at arrow tips, middle: stress on
numerical optimal physical domain, right: control polygon and physical boundary of optimization
mesh after end of optimization

7 Conclusion

In this work, we have treated shape optimization in isogeometric analysis in an
algorithmic way. In particular, we formulated its pieces on a discretized level.
Model examples verified the implementation. We relied on third party libraries for
optimization like [10]. Of course, stopping tolerances of such optimization routines
only make sense if we can provide reasonably good approximations of all occurring
terms. Usually, quadrature errors go without saying in this discussion as they are
easily diminished. Instead of neglecting them here, in the first problem we show
that optimization with NURBS requires more carefully chosen quadrature rules
than with B-splines. However, in future we mostly are interested in the less obvious
influence of interpolation errors for state and controls, which we want to address
separately. For that, the second example showcased the use of two different meshes
originated from one initial parameterization. From a priori error estimates, also valid
for IGA [1], interpolation power of state ansatz spaces are known. With such a
detached simulation grid, the error in the state equation can be controlled by finer
grids and, together with a posteriori error estimates, locally adaptive refinement
[25] for simulation is possible. Lacking at the moment is a means to determine
the refinement level of the optimization grid and the influence of its approximation
error in the cost term. Our next steps involve first hierarchical B-splines for locally
refined state solutions on a static optimization mesh. Next, a successive refinement
at the boundary of interest of the optimization mesh is intended.
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Effective Integration of Sophisticated Operators
in Isogeometric Analysis with igatools

Nicola Cavallini, Oliver Weeger, M. Sebastian Pauletti,
Massimiliano Martinelli, and Pablo Antolín

Abstract igatools is a newly released library for operators assembly in
isogeometric analysis. The library, which is object oriented designed and written in
C++11, is general purpose, therefore it is not devoted to any specific application.
In this paper we show that such a design makes igatools an effective tool in
assembling isogeometric discretizations of sophisticated differential operators. This
effectiveness will be demonstrated showing code snippets relating one-to-one with
the operators written on paper. To embrace a wide audience, applications from
nonlinear incompressible solid and fluid mechanics will be addressed. In both cases
we are going to deal with mixed isogeometric formulations. The applicative nature
of this paper will be stressed solving industrially relevant tests cases.

1 Introduction

Scientific computing is an area where expertise from several backgrounds such as
computer science, engineering, mathematics, and physics come together. Contribu-
tions to this scientific field range from most theoretical to the most applied ones.

N. Cavallini (�)
Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, Trieste, Italy
e-mail: nicola.cavalli@sissa.it

O. Weeger
Faculty of Mathematics, TU Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
e-mail: weeger@rhrk.uni-kl.de

M.S. Pauletti
Instituto de Matemática Aplicada del Litoral (IMAL), Consejo Nacional de Investigaciones
científicas y técnicas (CONICET), Santa Fe, Argentinia

M. Martinelli
Istituto di Matematica Applicata e Tecnologie Informatiche (IMATI), Consiglio Nazionale delle
Ricerche (CNR), Pavia, Italy

P. Antolín
Dipartimento di Ingegneria Civile ed Architettura, Università degli Studi di Pavia, Via Ferrata 3,
27100 Pavia, Italy

© Springer International Publishing Switzerland 2015
B. Jüttler, B. Simeon (eds.), Isogeometric Analysis and Applications 2014,
Lecture Notes in Computational Science and Engineering 107,
DOI 10.1007/978-3-319-23315-4_9

209

mailto:nicola.cavalli@sissa.it
mailto:weeger@rhrk.uni-kl.de


210 N. Cavallini et al.

With this work we address the numerical solution of nonlinear partial differential
equations arising from industrial applications in solid and fluid mechanics. The aim
of the paper is to demonstrate that the newly released software library igatools
allows an effective implementation of isogeometric finite element discretizations
of rather complex differential operators, here in particular mixed formulations
of nonlinear incompressible elasticity and Navier-Stokes equations, defined on
complex domains.

As the software prefix iga suggests, we are dealing with isogeometric type of
spaces. Isogeometric analysis has been introduced in [24] with the aim of bridging
scientific computing and computational geometry. The basic idea here, is to use the
shape functions that describe the geometry, as basis functions for a Galerkin method.
Several aspects in computational modeling benefit from this linking. In particular,
an appealing aspect of this approach is the higher inter element continuity that
characterizes the shape functions describing the geometry and numerical solution.
Among other contributions we would mention [13] for structural vibration, [27]
for shell structures and [35] in non-linear vibration analysis. In fluid dynamics
we would like to mention [6] for a variational multi scale modeling approach to
turbulent flows and [19] for divergence conforming B-splines.
igatools is an object oriented library for discretization of partial differential

equations, using isogeometric type of spaces. It has been first presented in [29] and
it is available under GPL conditions at www.igatools.org. The idea that underlays
the software design is encapsulating mathematical concepts used in isogeometric
method into objects, namely classes. Mapping the interaction between classes we
get methods used in the actual integration. The software is implemented in C++11
[7, 26] and it makes an extensive use of generic programming, templates in C++.
In this context, generic programming is particularly useful to obtain dimension
independent code, a very interesting feature of the software.

This paper is devoted to the community of scientists curious about numerical
solution implementation of partial differential equations. In this respect we thought
at two model readers. Those who might be skeptic about object oriented program-
ming in scientific computing, and to those who already have an acquaintance with
this programming style. We aim at involving the first class of readers showing that a
carefully designed software can help in implementing non elementary operators. In
the second case we would like to capture their attention in a collaborative way. To
pursue this twofold objective, we think there is no better way rather than presenting a
simple way of implementing sophisticated operators. The implementation ease will
be demonstrated providing code snippets, that prove a one-to-one correspondence
between the way we write the operators on paper and the way these operators are
coded in assembly loops.

Validation of the software will be provided with respect to literature test cases
and, industrial applications will be presented to prove feasibility of the software in
applicative contexts. In order to embrace the widest possible audience, we present
two systems of partial differential equations, one arising from solid mechanics and
one from fluid dynamics. In both cases the problems are nonlinear. Though this
paper is not focused on numerical treatment of nonlinear systems, we would like to

www.igatools.org
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remark that the nonlinearities treatment is a matter of linear algebra strategies, that
do not interfere with operators assembly.

One of the goals of this paper is to show that igatools can be an effective tool
in industrially relevant applications. igatools development has been supported
by several institutions and projects. In the context of this paper, a special mention
goes to the TERRIFIC project, as the presented applications are partial fulfillment
of the project itself. TERRIFIC (Towards Enhanced Integration of Design and
Production in the Factory of the Future through Isogeometric Technologies) is a
project within the seventh framework program of the European Union, that lasted
from 1st of September 2011 to the 31st of August 2014. The aim of the project was
to inject isogeometric analysis in an industrial context. The geometries presented
are courtesy of ALENIA aeronautica, in particular the authors are grateful to
L. Morrone and G. Mirra. The other supporting institutions and projects will be
listed in the acknowledgments.

In Sect. 2 we continue with a brief summary of igatools design. As the
applications we are going to deal with require mixed formulations, we recall
the isogeometric formulation of Taylor-Hood elements in Sect. 3. In Sect. 4 we
detail our computational mechanics applications and in Sect. 5 our fluid dynamics
applications are addressed. Finally, in Sect. 6 we conclude the paper.

2 igatools Design Description

The software prefix iga restricts the discussion to isogeometric methods. Isogeo-
metric methods commonly address Galerkin approximations, characterized by high
inter element continuity of basis functions. Originally, in historical sense, basis
functions for isogeometric methods are B-Splines and NURBS, the interested reader
can refer to [30, 31] for a precise definition, and to [29] for igatools related
notation. Other than these, new reference spaces have been introduced lately. The
reader can refer to [5, 11, 15, 32] for T-splines, to [14] for locally refined splines, and
to [20, 22, 34] for hierarchical splines. In this paper, we are going to use B-splines.
B-splines of degree d and regularity r (0 � r < d) will be addressed as Splines Sd

r .
In this section we briefly review the objects, or classes, that build the backbone
of the software. As extensively explained in [29], these objects are designed to
resemble the key mathematical concepts in isogeometric methods. A visual sketch
of the major players is outlined in Fig. 1.

2.1 Reference Space (BSplineSpace and NURBSSpace)

The classes BSPlineSpace and NURBSSpace represent the shape functions
defined on the parametric domain (usually the unit square in two dimensions and
the unit cube in three dimensions). These spaces can be non-homogeneous, in the
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igatools Classes

PhysicalSpace
Ω ⊂ Rdim

PushForward
ReferenceSpace
Ω̂ ⊂ Rdim−codim

Mapping:
M : Ω̂ → Ω

TransformationType:
H(grad, Ω), H(div, Ω),

H(curl, Ω), L2(Ω).

Fig. 1 In this sketch we picture the major object we isolated in isogeometric analysis, together
with their mathematical symbols. We outlined that in general the dimension of the reference space
can differ from the physical space, this difference is addressed as codimension codim

sense that they can be characterized by different degrees and regularities in each
dimension.

2.2 Mapping (Mapping)

The mathematical mapping is the object that maps the parametric domain into the
physical one. Notice that, in principle, there is no reason why this mapping should
be restricted to isogeometric type of maps. Moreover, in the desired case of an
isogeometric type of map, Mapping is not supposed to be refined together with
the reference space to achieve convergence.

2.3 Push Forward (PushForward)

The PushForward object combines the Mapping together with the
TransformationType. The transformation type defines how to transform
functions. Depending on the different transformations, different operators can
be preserved throughout the transformation itself. Example transformations are
H.grad;˝/, H.div;˝/, H.curl;˝/ and L2.˝/.
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2.4 Physical Space (PhysicalSpace)

The combination of the ReferenceSpace with the PushForward gives the
PhysicalSpace. This class contains all the information necessary to recover
point values of functions and derivatives on the physical domain. This point values
are the ones used to assemble the desired operators.

Element Iterator (ElementIterator) One of the similarities between stan-
dard finite elements and the isogeometric method, is the decomposition of the
domain in a collection of elements where a small number of functions have support.
The global matrix, is built iterating through all the elements in the grid. In object
oriented programming the mechanism that points to an element, and modifies itself
to point to the next element is called iterator. In [29] we pointed out that we consider
the previously mentioned classes as grid-li ke containers, this why the element level
information is accessed via the ElementIterator class.

For an immediate flavor on how a simple
R rurv operator is assembled, we

sketch a sort of “Hello World” program, in Listing 1. In the first four lines we define
the presented classes. We start with a CartesianGrid, namely the knots without
repetitions. This class is used to build the corresponding BSplineSpace. The
transformation type (h_grad, in this case) couples with a Mapping to build the
PushForward. Finally it only remains to instantiate the PhysicalSpace as
the combination of BSplineSpace and PushForward. The mechanism that
implies the initialization of the cache elem->init_values() and its filling is
detailed in [29]. In this paragraph we limit ourselves to emphasize that we access

1 auto grid = CartesianGrid<dim>::create(box, n_knots);
2 auto ref_space = BSplineSpace<dim>::create(grid, deg);
3 map = BallMapping<dim>::create(grid);
4 space = PhysicalSpace<BSplineSpace<dim>,
5 PushForward<h_grad, dim>>::create(ref_space,
6 PushForward<h_grad, dim>::create(map));
7
8 auto elem = space->begin();
9 const auto elem_end = space->end();

10 ValueFlags fill_flags = ...
11 elem->init_values(fill_flags, elem_quad);
12
13 for (; elem != elem_end; ++elem){
14 elem->fill_values();
15 for (int i = 0; i < n_basis; ++i){
16 for (int j = 0; j < n_basis; ++j){
17 for (int qp = 0; qp < n_qp; ++qp){
18 loc_mat(i,j) += scalar_product(
19 elem->get_basis_gradient(i,qp),
20 elem->get_basis_gradient(j,qp))*
21 w_meas[qp];}}}

Listing 1 A first “Hello World” like code. Intended to assemble a simple
R rurv operator
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the shape function values, using PhysicalSpace as a grid-like container, to
assemble the local matrix.

3 Mixed Methods with Isogeometric Finite Elements

The mathematical description of physical phenomena involves several mechanisms
interplaying at the same time. It often happens that different independent variables
are necessary to describe a given mechanism. When such independent variables are
discretized using different solution spaces we have a mixed method.

A typical case is an equation of motion coupled with an incompressibility
constrain. In the applications we are going to address, namely incompressible
elasticity (Sect. 4) and incompressible Navier-Stokes (Sect. 5), the independent
variables are two. The first one will be referred to as u and will be used to
describe velocities or displacements. The second one is going to be p that represents
the Lagrangian multiplier of the incompressibility condition. In both mechanical
and fluid dynamical contexts the discretization and linearization of the continuous
operators will lead to a block linear system of the form:



A BT

B 0

�

u
p

�
D



f
0

�
:

If we consider the two discrete spaces Vh and Qh for u and p respectively, it is
well known that these two spaces have to satisfy the inf-sup condition, see [1, 8, 9].
In standard finite elements, an established choice is the Taylor-Hood element. Here
the discrete spaces for u and p share the same triangulation and the inf-sup condition
is fulfilled when the degree of the shape functions for u is d C 1, being d the shape
functions degree for p.

The isogeometric counterpart of standard Taylor-Hood elements is constructed
choosing Vh D .SdC1

d�1 /dim and Qh D Sd
d�1, being dim the dimension. This type of

element has been first used in [4] and a stability proof can be found in [10]. For
sake of clearness we represent in one dimension the shape functions corresponding
to S31=S21 pair in Fig. 2.

As mentioned in Sect. 2, the software design should resemble the mathematical
concepts needed to integrate the boundary value problem we are interested in, in a
one-to-one correspondence. As different spaces are required to solve for u and p,
the same situation will be reproduced in the code.

Listing 2 reports the code necessary to define Qh and Vh. We first focus on
the solution space for p, namely BSplineSpace<dim>. As previously men-
tioned, one of the most appealing features of igatools is its code dimension
independence. In the present case of a scalar space, we only need to define the
first template parameter as dim, the other template parameters are default defined
to give a scalar space. A bit different is the situation for the vector space Vh. In
this case mathematics is elegantly resembled by specifying the second template
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Fig. 2 In this figure we sketch one dimensional shape functions for the Taylor-Hood type of
spaces. In particular we represent S31 splines for the velocity, and S21 splines for the pressure. The
corresponding knot vectors are: �u D f0; 0; 0; 0; 0:25; 0:25; 0:5; 0:5; 0:75; 0:75; 1; 1; 1; 1g for the
velocity and �p D f0; 0; 0; 0:25; 0:5; 0:75; 1; 1; 1g for the pressure. (a) Space Qh D S21 for the
Lagrangian multiplier p. (b) Space Vh D S31 of primal variable u

parameter, the equations range is the same as the problem dimension, this is why
we get BSplineSpace<dim,dim>.

In code snippet in Listing 2 the reader can also notice how two different vectors,
mult_u and mult_p, are defined to assign the right multiplicity to each knot.
Following the Taylor-Hood element definition, the two spaces must have the same
regularity and different degree, and we need to set the knots multiplicity to obtain
compatible spaces.

4 Computational Mechanics: Nonlinear Incompressible
Elasticity

As a first application for the igatools implementation of a mixed method, we
present the isogeometric discretization of nonlinear elasticity, i.e. large deformation
kinematics and a hyperelastic constitutive law, subject to an incompressibility
constraint.
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1 using PreSpace = BSplineSpace<dim>;
2 using VelSpcae = BSplineSpace<dim, dim>;
3
4 deg_u = deg_p + 1;
5
6 shared_ptr<BSplineSpace<dim>> pre_space;
7 shared_ptr<BSplineSpace<dim, dim>> vel_space;
8
9 vector<int> mult_p(n_knots, deg_p - reg);

10 vector<int> mult_u(n_knots, deg_u - reg);
11 mult_p[0] = mult_p[n_knots-1] = deg_p + 1;
12 mult_u[0] = mult_u[n_knots-1] = deg_u + 1;
13
14 pre_mult.fill(mult_p);
15 vel_mult.fill(mult_u);
16
17 pre_deg.fill(deg_p);
18 vel_deg.fill(deg_u);
19
20 auto grid = CartesianGrid<dim>::create(n_knots);
21 pre_space = PreSpace::create(grid, pre_mult, pre_deg);
22 vel_space = VelSpace::create(grid, vel_mult, vel_deg);

Listing 2 Definition of to different spaces for the variables u and p. In this listing we detail the
construction of spaces with different degrees and multiplicites

Incompressible elasticity has been studied already by a few researchers in the
context of isogeometric formulations. Elguedj et al. investigated the use of NB-
and NF-projection methods for linear and nonlinear incompressible elasticity. Taylor
[33] and Mathisen et al. [28] employed a three-field mixed approach for nonlinear
incompressible elasticity with independent approximation of u, p and 
 . Here we
use a classical mixed method with independent variables u and p, as presented in the
previous section, and outline its implementation using igatools. The developed
solver is validated using a well-known benchmark example and then applied to an
industrial test case.

In this paper we employ the Langrangian or material description of the large
deformation elasticity problem in dim D 2; 3 dimensions, as for instance intro-
duced in [1, 36]. Thus, a body in its undeformed, Lagrangian configuration is
given by its reference or material domain ˝ 2 R

dim and its deformed, current
configuration is expressed with the mapping O' W ˝ ! R

dim:

O'.X/ D XC Ou.X/: (1)
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Following the notation of [1] from the displacement field Ou we can derive the
kinematic quantities such as the deformation gradient

OF D F. Ou/ D ICr Ou; (2)

and the right Cauchy-Green strain tensor

OC D C. Ou/ D OFT OF: (3)

OJ D det OF is the determinant of the deformation gradient and for a purely
incompressible material it must hold OJ D 1.

Using Lamé parameter � and a pressure-like variable Op we can introduce the
elastic energy functional for a purely incompressible Neo-Hookean material:

˘elast. Ou; Op/ D
Z
˝

�
1

2
�
h
I W OC � d

i
� � ln OJ C Op ln.OJ/

	
d˝ � F. Ou; �/: (4)

Here F. Ou; �/ denotes the external energy functional and has the form

F. Ou; �/ D �

Z

˝

f � Oud˝ C
Z
�N

p � Oud˝

�
; (5)

where f is a body load, p a traction force acting on the Neumann boundary of the
domain �N � ı˝ and � 2 R a load parameter.

For the minimization of the energy functional (4) it follows from the calculus of
variations that the total differential of ˘elast must be zero,

d˘elast. Ou; Op/Œv; q� D 0;

for all generic virtual displacement fields v and pressure fields q. Explicitly this
reads:

8̂
<̂
ˆ̂:
�

Z
˝

Œ OF � OF�T � W rvC
Z
˝

Op OF�T W rv � F.vI �/ D 0 8v;

Z
˝

ln. OJ/q D 0 8q:

(6)

The nonlinear system of equations (6) is then discretized using isogeometric
Taylor-Hood elements in order to obtain displacements Ou 2 Vh and pressures
Op 2 Qh. We also need to evaluate the second derivative of the energy functional
(4), in order to setup a Newton’s method for our solver:

d2˘elast. Ou; Op/Œ.u; p/; .v; q/� D a�.u; v/C b� .v; p/C b� .u; q/; (7)
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where

8̂
<̂
ˆ̂:

a� .u; v/ WD�
Z
˝

ru W rvC
Z
˝

Œ�� Op� . OF�1ru/T W OF�1rv;

b�.v; q/ WD
Z
˝

q OF�T W rv:

(8)

This formulation is a good example of what the authors intend as “sophisticated
formulation”. If we were to give a precise definition of “sophisticated” in this
context, we would define it as an open scale, where grade zero is the classicalR
˝ ru �rv arising from a Poisson’s problem. Of course we do not aim grading every

possible operator, but we think that a good measure of complexity is the number of
manipulations beyond the classical grad� grad. It is in such cases that igatools
can help.

In particular we focus on the term

Z
˝

q OF�T W rv

from (7), which serves as a good example for the difficulties in this formulation.
Its implementation is sketched in Listing 3. We first start by noticing that this is
a mixed element. As we have two different spaces for u and p we need to iterate
trough both of them and therefor we need two different iterators: the fist one is
defo_elem, which iterates over the elements of the deformation space, and the
second one is prex_elem, which iterates over the elements of the pressure like
space. The single terms such as OF, rv, or q are defined as tensors, and we refer to
igatools documentation of the Tensor class for details [25]. Two classical for
loops are used to evaluate ru and p at quadrature points. Then OF�T can be easily
evaluated combing the inverse and the transpose functions. Once all the variables
have been evaluated, they can be combined to obtain the local contribution to the
tangent matrix evaluation. The remaining terms of the residual and tangent matrix
are assembled in an analogous way. Once all the operators are in place, the setup of
a Newton’s method is a matter of linear algebra.

For validation of the implementation we chose the well-known Cook’s membrane
problem as benchmark [12]. This is a well established test in the context of
finite element and also isogeometric methods [16, 28]. It is used by a number
of researchers to validate solvers and benchmark performance of discretizations.
Cook’s membrane is a 2D panel, clamped on its side and subject to a shear load
on the right side, causing combined bending and shear deformation. Geometry,
dimensions and values of parameters can be found in Fig. 3. The quantity of interest
is the horizontal deformation of the top right corner of the panel uy, which is used
to study p=k- and h-convergence and locking-free behavior of mixed elements.

In Fig. 4 convergence behavior of uy with respect to the total number of degrees
of freedom is shown. We compare the isogeometric Taylor-Hood elements with
pure displacement isogeometric formulations. The Poisson’s ratio � is set to 0:4998
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1 for (; defo_elem != defo_end ; ++defo_elem, ++prex_elem)
2 {
3 ...
4 for (Index q = 0; q < n_qp; ++q)
5 {
6 for(Index i = 0; i < defo_loc_ndofs; ++i)
7 defo_grad_q += defo_vec(dof) * grad_phi_q[i];
8
9 for(Index i = 0; i < prex_loc_ndofs; ++i)

10 prex_q += prex_vec(dof) * prex_phi_q[i];
11
12 defgrad_q = unit_defgrad + defo_grad_q;
13
14 inverse (defgrad_q,defgrad_inv_q);
15 defgrad_invT_q = transpose(defgrad_inv_q);
16
17 for (Index i = 0; i < defo_loc_ndofs; ++i)
18 defo_loc_res(i) += mat_mu * prex_q[0] *
19 scalar_product(defgrad_invT_q,
20 grad_phi_q[i]) *w_meas[q];
21 }
22 }

Listing 3 Assembly of the mixed term in the second variation of the energy functional

Fig. 3 Cook’s membrane
problem. A 2D panel clamped
on the left side, subject to
shear load on right side

x

y

48 mm

44 mm

16 mm F

uy

E = 240.565 MPa

ν = 0.4998

F = 100 kN

that correspond to nearly incompressible material. The displacement-based show a
rather slow convergence gradient due to locking. On the other hand, as expected, the
Taylor-Hood elements converge quickly for p=k- and h-refinement. These results
also match very well with the ones obtained by [16], where an isogeometric NF-
method was used instead of a mixed formulation.

Even though the purely displacement formulation also converges towards the
correct value of uy for higher polynomial degree and number of degrees of freedom,
the approximation of stresses exhibits spurious oscillations, which are typical for
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Fig. 4 Convergence test for the Cook’s membrane. The reader can notice the fast convergence
the Taylor Hood elements and a slower convergence for pure displacements formulation. In the
following, the plots of the stresses, will demonstrate that volumetric locking is preventing from a
fast convergence

locking phenomena. In Fig. 5 we plot the stress component �xx. The non mixed
elements show a highly oscillatory behavior of volumetric stress components – a
typical sign of volumetric locking – while the stress distributions for mixed elements
are smooth.

The geometry of a pneumatic pipe, used in aircraft manufacturing, is one of the
industrial applications within the TERRIFIC project. Using symmetry boundary
conditions we can parametrize only half of the pipe as a B-Spline volume with
degrees d D .1; 2; 2/ and n D .2; 34; 3/ control points, i.e. 204 control points of
the volume. The first parameter direction is the thickness of the pipe, the second the
circumferential direction and the third its length. For numerical computations we
degree-elevate to d D .2; 2; 2/ and perform four steps of uniform h-refinement in
the length-direction. Thus we have the following Taylor-Hood spaces for pressure
and displacements:

dp D .2; 2; 2/; np D .3; 34; 18/; Np D 1836;
du D .3; 3; 3/; nu D .4; 66; 34/; Nu D 8976:

(9)

here n stands for degrees of freedom per direction, while N indicates the total
number of degrees of freedom. The material parameters of the pipe are:

E D 240:565MPa; � D 0:5; � D 1:0 � 103 kg/m3: (10)
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Fig. 5 Stress �xx for purely displacement-based and mixed formulations. The reader can notice
how purely displacement based formulations are affected from volumetric locking, while, as
expected, mixed methods are not. (a) S32 with 4 elements per side. (b) S31=S21 with 4 elements
per side. (c) S32 with 16 elements per side. (d) S31=S21 with 16 elements per side

Boundary conditions are symmetry, zero displacement at long ends and an
outwarded-directed Neumann load. We run 10 load steps increasing the magnitude
of the surface load from 1.0 to 10.0 kN.

Figure 6 shows the deformed pipe after 10 load steps. Large displacements
occur and no volume change is visible in the figure. In Fig. 7 the evolution of
displacements ux, uy and pressure-like Lagrangian multiplier p, evaluated at the
center point where maximum x-displacement and pressure occur, is plotted over
the 10 load steps. The nonlinear behaviour can be noticed in the values of the
displacements and pressure.
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Fig. 6 Displacement and pressure of the pneumatic pipe after 10 load steps. Deformed pipe is
colored by displacement resp. pressure, initial un-deformed configuration is shown in translucent
grey
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Fig. 7 Evaluation of point values over load steps for pneumatic pipe provided by ALENIA.
(a) Displacements ux, uy. (b) Pressure-like Langrangian multiplier p

5 Computational Fluid Dynamics

The laminar motion of an incompressible fluid is modeled by the well known
Navier-Stokes equations. We first write the momentum conservation equation:

@tuC .ru/ u D �rpC �r2uC f;

then the mass preservation one:

r � u D 0:
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Here u is the fluid velocity, p is the fluid pressure and � is the kinematic viscosity.
The external forces are denoted by f. As a matter of clearness, since it is going to
be useful for the method implementation, we explicitly write the component wise
formulation of the momentum equation:

@t



ux

uy

�
C


@xux @yux

@xuy @yuy

�

ux

uy

�
D �



@xp
@yp

�
C �



@xxux C @yyux

@xxuy C @yyuy

�
C



fx
fy

�
:

In the following, we focus on the stationary version of the problem:

.ru/u � �r2uCrp D f; (11)

The spatial integration of equation (11) is again performed using the Galerkin
approach. Given the computational domain ˝ � R

dim, we consider Vh �
.H1.˝//dim the solution space for the velocity, and Qh � L2.˝/ the solution space
for the pressure. We consider all the vh 2 Vh the test functions for the velocity, then
the assembled viscous term r2u correspond to the matrix A such that:

Aij D
Z
˝

�ruj
� W .rvi/ D

Z
˝



@xux @yux

@xuy @yuy

�
j

W


@xvx @yvx

@xvy @yvy

�
i

:

The convective term is a nonlinear one. For a given value of the velocity field we
obtain the matrix N:

Nij D
Z
˝

�ruj
�

u � vi D
Z
˝



@xux @yux

@xuy @yuy

�
j



ux

uy

�
�


vx

vy

�
i

: (12)

The operator that couples the momentum equation and the preservation of mass
is BT :

BT
ij D

Z
˝

pjr � vi D
Z
˝

pj.@xvx C @yvy/i:

These operators when combined together result in the following block nonlinear
system:



AC N.u/ BT

B 0

�

u
p

�
D



f
0

�
:

The nonlinearity is treated with a classical, residual-tangent strategy. Given an initial
guess for the velocity u0 we first obtain the tentative solution xk D .u; p/k by
solving:



AC N.u0/ BT

B 0

�

u
p

�
k

D



f
0

�
:
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For k > 0 we need to form the residual F.xk/:

F.xk/ D



AC N.uk/ BT

B 0

�

u
p

�
k

�



f
0

�
;

and correct the tentative solution with an approximation of the tangent. The
correction at the k-th step will be denoted as .ıu; ıp/k. The most popular strategies
to approximate the tangent are the fixed point and the Newton approximation. In the
first case we approximate the tangent with the function itself:



AC N.uk/ BT

B 0

�

ıu
ıp

�
k

D �F.xk/:

In the second case we consider a first order expansion of the operator:



AC N.uk/C D.uk/ BT

B 0

�

ıu
ıp

�
k

D �F.xk/:

In this case we need to assemble the function Jacobian as well:

Dij D
Z
˝

.ru/ uj � vi D
Z
˝



@xux @yux

@xuy @yuy

�

ux

uy

�
j

�


vx

vy

�
i

: (13)

Finally, the solution is updated with its correction:



u
p

�
kC1
D



u
p

�
k

C


ıu
ıp

�
k

;

the procedure stops when the residual satisfies a given tolerance.
Now we intend to focus on the two terms involved in the nonlinearity treatment.

Looking at the convective term, we have the velocity gradient applied to the fluid
velocity. This mathematical formulation has a pretty simple implementation in
igatools. In Listing 4 we have the gradient of the trial function that acts, through
the functionaction, on a point evaluation of the velocityvel_q. The result of this
action is scalar multiplied with the test functions, by using a scalar_product
function. In this way we obtain the local contribution to the global matrix. Almost
the same procedure applies to the evaluation of the operator (13). In this case the
quantity that has to be evaluated is the velocity gradient grad_vel_q. We evaluate
the action of the velocity gradient on the trial functions, and then we perform
the scalar_product with the test functions to get the local contribution to the
global matrix, see Listing 5. Both vel_q and grad_vel_q are considered as
tensors. We refer to the Tensor’s class documentation for further details.
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1 for (dof_index q = 0; q < quad.get_num_points(); q++)
2 {
3 for (dof_index i = 0; i <local_ndofs; i ++){
4 auto phi = element->get_value(i,q);
5 vel_q = vel_q+vel[local_dofs[i]]*phi;}
6
7 for (dof_index i = 0; i <local_ndofs; i ++){
8 for (dof_index j = 0; j <local_ndofs; j ++){
9 adv_ij = scalar_product(action(

10 element->get_gradient(j,q),
11 vel_q),
12 element->get_value(i,q) )*
13 element->get_w_measures()[q];]}}
14 }

Listing 4 Code snippet for the advection operator assembly. In this case the reader can notice the
point evaluation of the velocity, the action of the velocity gradient on the velocity value, and the
scalar product with the velocity test functions

1 for (dof_index q = 0; q < quad.get_num_points(); q++)
2 {
3
4 for (dof_index i = 0; i <local_ndofs; i++){
5 auto grad_phi = element->get_gradient(i,q);
6 grad_vel_q = grad_vel_q + vel[local_dofs[i]] * grad_phi;}
7
8 for (dof_index i = 0; i <local_ndofs; i++){
9 for (dof_index j = 0; j <local_ndofs; j++){

10 jac_ij = scalar_product(action(grad_vel_q,
11 element->get_value(j,q)),
12 element->get_value(i,q) )*
13 element->get_w_measures()[q];}}
14 }

Listing 5 Code snippet for the Jacobian assembly. In this case we have the point evaluation of
the velocity gradient. Then the velocity gradient acts on the trial functions. The result of this
multiplication is scalar multiplied with the test functions, to get the local contribution to the global
matrix

The solver is tested using the cavity flow test case. This is a typical test case for
stationary Navier-Stokes equations [21, 23]. The horizontal velocity ux is imposed
at the top of a square domain. Its value is:

ux.x/ D
8<
:

sin.�x=2a/ if 0 � x � a
1 if a � x � 1 � a

sin.�.1 � x/=2a/ if 1 � a � x � 1

with a D 1=32. No-slip boundary conditions are imposed elsewhere. It is known that
isogeometric shape functions are not interpolatory to the degrees of freedom. It is
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1 class CavityVel : public Function
2 {
3 public:
4 CavityVel () : Function() {}
5
6 void evaluate(const ValueVector & points,
7 ValueVector & values) const;
8 }
9 ...

10 CavityVel cv;
11 project_boundary_values(cv,velocity_space,face_q,
12 direchelet_id,dof_values);
13 apply_boundary_values(dof_values,matrix,rhs,solution)

Listing 6 In this code snippet we present how to impose non constant boundary conditions for
our problem. The user needs to create a derived class that represents the function to be evaluated.
Implementation for the evaluate virtual function has to be provided. igatools will take care
of L2 projecting the function on the velocity boundary trace space. The resulting values will be
applied to the global matrix, right hand side and solution

Fig. 8 Correction and residual for the cavity flow test case with Re D 100. (a) Solution correction.
(b) Residual

then necessary to define values for the imposed degrees of freedom. In igatools,
Listing 6, this is done defining a CavityVel class that inherits form the base
class Function and providing implementation for the virtual function function
evaluate. At this point the user is let to define an instance of his own class
CavityVel and igatools will take care of evaluating an L2 projection of the
boundary function on the velocity trace space. The resulting dof_values will be
applied to global matrix, right hand side and solution.

Once the solver is implemented we start with the experiments. In Fig. 8 we
represent the residual and the correction for Reynolds’s number Re D 100 for
each iteration of the nonlinear solver. As expected, the residual and correction drop
linearly with the fixed point type of iterations, and quadratically with the Newton’s
solver.
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Fig. 9 Cavity flow test case for the Navier-Stokes solver. Colormap represents the velocity
magnitude in a scale the ranges from zero to one. (a) Re D 400. (b) Re D 1000. (c) Re D 3200.
(d) Re D 5000

In the present case of the cavity flow experiment we used S31 splines for the
velocity and S21 splines for the pressure with mesh size h D 1=32. Efficient linear
algebra solvers for this system is still an active research area, the reader can refer to
[17, 18] as example references. In this experiment and in the ones that follow case
we set for a standard direct solver.

In a second set of experiments we consider increasing Re numbers. The solution
space is still S13=S12, but the mesh size is 64 � 64 elements. In Fig. 9 we present
the velocity streamlines. The colormap pictures the velocity magnitude that ranges
from zero to one. The agreement with results from [21] is good and the solver can
be considered as validated.
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Fig. 10 Pressure map and velocity quiver for the aircraft cabin ventilation outlet. In this simulation
Re D 10;000, shape functions are S31=S21 , the number of knots, without repetitions, is 17� 33� 9.
Inlet velocity is imposed, stress free on the outlet, and no slip at the boundary. (a) Pressure map.
(b) Velocity quiver

The industrial test case we are considering is a ventilation outlet of an aircraft
cabin, see Fig. 10a for the geometry. Dirichlet inlet boundary conditions and
Neumann boundary conditions at the outlet are applied with Re D 10; 000. Shape
functions spaces are S31 for the velocity and S21 for the pressure. The mesh is
16� 32� 8 resulting in approximately 200,000 degrees of freedom for the velocity.
The final results are visualized in Fig. 10, where Fig. 10a shows the pressure map
and the velocity is represented in Fig. 10b. At this Reynolds number the fluid
velocity does not diffuse uniformly along the outlet section and higher velocities
are concentrated in the middle of the section.

6 Conclusions

In this paper we showed how igatools is an effective tool for assembling iso-
geometric discretizations of sophisticated operators. igatools has been recently
released and its design has been presented in [29]. Only time will say if its design
will be capable to attract new users and developers. We intended to demonstrate
that we are on a good track in this direction. We picked sophisticated operators
arising from industrial applications, and showed that a one to one relationship exists
between how we write operators on paper, and how we implement them using
igatools. We believe this attempt has been successful both in computational
mechanics and computational fluid dynamics. In order to demonstrate a realistic
effectiveness of the software we solved industrially relevant applications.
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Two-Sided Robust and Sharp a Posteriori Error
Estimates in Isogeometric Discretization
of Elliptic Problems

Stefan K. Kleiss and Satyendra K. Tomar

Abstract We present two-sided a posteriori error estimates for isogeometric
discretization of elliptic problems. These estimates, derived on functional grounds,
provide robust, guaranteed and sharp two-sided bounds of the exact error in the
energy norm. Moreover, since these estimates do not contain any unknown/generic
constants, they are fully computable, and thus provide quantitative information
on the error. The numerical realization and the quality of the computed error
distribution are addressed. The potential of the proposed estimates are illustrated
using several computational examples.

1 Introduction

Interchange of geometry information between the engineering design process, e.g.,
computer aided design (CAD), and simulation/analysis, e.g., using finite element
methods (FEM), is generally not only costly, but also prone to approximation errors,
and may also require manual input. Isogeometric analysis (IGA), introduced by
Hughes et al. [22], see also [13] and the references therein, aims at facilitating
the transformation of geometry data between these two rather separately evolved
directions. In IGA, instead of transforming the geometry data to a conventional FEM
representation, the original geometry description is used directly, and the functions
representing the geometry (typically non-uniform rational B-splines, abbreviated
hereinafter as NURBS) are also used as basis for the discrete solution. This way, the
geometry obtained from CAD is not changed, and the need for data transformation
is eliminated. Furthermore, the exact representation from the coarsest mesh is
preserved throughout the refinement process. IGA has been thoroughly studied and
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its potential has been shown by successful applications to a wide range of problems,
see, e.g., [3–5, 7, 9, 12, 18, 23, 30].

Since naive mesh refinement in a tensor-product setting (which is the hallmark of
NURBS meshes) has global effects, the development of local refinement strategies
for isogeometric analysis is a subject of current active research. Such local
refinement techniques include, e.g., T-splines [6, 29, 36–38], truncated hierarchical
B-splines (THB-splines) [20, 21], polynomial splines over hierarchical T-meshes
(PHT-splines) [15, 40], and locally-refinable splines (LR-splines) [16, 25]. These
approaches are mainly guided by the a-priori knowledge of the solution behavior
or geometry and does not take in to account any information from the computed
solution. To the best of the authors’ knowledge, the issue of a-posteriori error
estimation in isogeometric analysis is still in an infancy stage, and the only
published results are [14, 17, 24, 27, 39–43].

The first (and often only) practical application of a posteriori error estimation
is the issue of adaptive local refinement (see, e.g., [1, 35] for a general overview
on error estimators). A good a posteriori error estimation method can accurately
identify local area(s) where further refinement is needed due to the local error being
significantly larger than in the rest of the domain. Thereby, computing resources can
be more efficiently used than uniform global distribution.

A posteriori error estimates based on hierarchical bases, proposed by Bank and
Smith [2], have been used in [17, 39]. The reliability and efficiency of this approach
is subjected to the saturation assumption on the (enlarged) underlying space and
the constants in the strengthened Cauchy inequality. As the authors remarked, the
first assumption is critical and its validity depends on the considered example.
Moreover, an accurate estimation of constants in the strengthened Cauchy inequality
requires the solution of generalized minimum eigenvalue problem. As noted in [24,
Page 41], this approach delivers less than satisfactory results. Residual-based a
posteriori error estimates have been used in [24, 40–42]. This approach requires the
computation of constants in Clement-type interpolation operators. Such constants
are mesh (element) dependent, often generic/unknown or incomputable for general
element shape; and the global constant often over-estimates the local constants,
and thus the exact error. This fact has been explicitly stated by the authors in
[24, Pages 42–43] and in [40, Remark 1]. Goal-oriented error estimation approach
has been studied in [14, 27, 43]. The results presented in these studies show that
neither the estimates of this approach are guaranteed to be an upper bound, nor the
efficiency indices of the estimates are sharp. Moreover, this approach also requires
the solution of an adjoint problem, the cost of which can not be entirely neglected.
The approach of Zienkiewicz-Zhu type a posteriori error estimates is based on
post-processing of approximate solutions, and depends on the superconvergence
properties of the underlying basis. The superconvergence properties for B-splines
(NURBS) functions are not yet well-known. Summarily, in general situations, the
reliability and efficiency of these methods often depend on undetermined constants,
which is not suitable for quality assurance purposes.
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A posteriori error estimates have another important application, namely the issue
of quality assurance, i.e., to quantify the error in the computed solution with certain
degree of guarantee. IGA has shown great potential in many real life engineering
applications. Therefore, even if in a niche domain of applications where one can
obtain excellent a posteriori error estimates, authors believe that the issue of quality
assurance of the computed solution deserves more attention than it is given today.
In [26], authors addressed the issue of guaranteed, fully computable and sharp a
posteriori error estimates for the isogeometric discretizations of elliptic problems.
The estimates presented in [26] are for the upper bound of the error in the energy
norm. In this paper we extend this study to cover the lower bound of the error in
the energy norm. These functional-type a posteriori error estimates, which were
introduced in [32, 33], and have been studied for various fields (see [35] and
the references therein), provide guaranteed, sharp and fully computable bounds
without any generic undetermined constants. These estimates are derived on purely
functional grounds (based on integral identities or functional analysis) and are thus
applicable to any conforming approximation in the respective space.

For elliptic problems considered in this paper and in [26], the weak solution of
the problem lies in H1

0.˝/. For such problems, the proposed upper bound of the
error involve computing an auxiliary function y 2 H.˝; div/, and the proposed
lower bound of the error involve computing an auxiliary function w 2 H1

0.˝/. To
get sharp two-sided estimates, the functions y and w are computed by solving global
problems. As briefly explained above, we reiterate that our interest in a posteriori
error estimates is not only for adaptivity, but also on quantifying the error in the
computed solution (and thus guaranteeing the quality of the computed solution).
To the best of authors’ knowledge, there is no other, particularly cheaper, method
available which can fulfill these objectives in general situations.

Two aspects motivate the application of functional-type error estimates in IGA.
Firstly, unlike the standard Lagrange basis functions, NURBS basis functions of
degree p are, in general, globally Cp�1-continuous. Hence, NURBS basis functions
of degree p � 2 are, in general, at least C1-continuous, and therefore, their gradients
are automatically in H.˝; div/. Thereby, a sharp upper error bound can be computed
without the need of constructing complicated functions in H.˝; div/, in particular
for higher degrees (see, e.g., [8, 10, 11, 19]). Secondly, since the considered
problems are solved in an isogeometric setting, an efficient implementation of
NURBS basis functions is readily available, which can be used to construct the
above mentioned functions y and w. Hence, applying the technique of functional-
type a posteriori error estimation in a setting that relies only on the use of already
available NURBS basis functions is greatly appealing.

The remainder of this paper is organized as follows. In Sect. 2, we define the
model problem, and recall the definition of B-spline and NURBS basis functions. In
Sect. 3, we recall functional-type two-sided a posteriori error estimates. Numerical
examples are presented in Sect. 4, and some conclusions are drawn in Sect. 5.
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2 Notation and Problem Setting

Let ˝ � R
2 be an open, bounded and connected Lipschitz domain with boundary

@˝ . We shall consider the following model problem:
Find the scalar function u W ˝ ! R such that

�div.Aru/ D f in ˝;
u D uD on �D D @˝; (1)

where A, f and uD are given data. We assume that A is a symmetric positive definite
matrix and has a positive inverse A�1, and that there exist constants c1; c2 > 0 such
that

c1j�j2 � A� � � � c2j�j2; 8� 2 R
2: (2)

Then, the norms

kvk2A D
Z
˝

Av � v dx; kvk2NA D
Z
˝

A�1v � v dx; (3)

are equivalent to the L2-norm kvk2 D R
˝
v � v dx. The weak form of problem (1)

can be written as follows:
Find u 2 Vg, such that

a.u; v/ D f .v/; 8v 2 V0; (4)

where V0 � H1.˝/ contains the functions which vanish on �D, and Vg � H1.˝/

contains the functions satisfying the Dirichlet boundary conditions u D uD on
�D. We assume that the problem data A, f and uD are given such that the bilinear
form a.�; �/ is bounded, symmetric and positive definite, and that f .�/ is a bounded
linear functional. The energy norm of a function v is given by krvkA D

p
a.v; v/.

Note that we have considered the Dirichlet problem only for the sake of simplicity.
Functional-type error estimates can be easily generalized to problems with mixed
boundary conditions, see, e.g., [28, 35].

The problem (4) is discretized by choosing a finite-dimensional manifold Vh �
Vg and looking for an approximate solution uh 2 Vh. This leads to a linear system
of equations of the form

Khuh D f
h
; (5)

where Kh is the stiffness matrix induced by the bilinear form a.�; �/, f
h

is the load
vector, and uh is the coefficient vector of the discrete solution uh.

For brevity reasons, we recall only the IGA related notations which are used in
this paper. For detailed discussions of NURBS basis functions, geometry mappings
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and their properties, we refer to, e.g., [13, 22, 31] and the references therein. Let p
be a non-negative degree and let s D .s1; : : : ; sm/ be a knot vector with si � siC1 for
all i. We consider only open knot vectors, i.e., knot vectors s where the multiplicity
of a knot is at most p, except for the first and last knot which have multiplicity pC1.
For simplicity, we assume that s1 D 0 and sm D 1, which can be easily achieved by
a suitable scaling. For i D 1; : : : ; n, and n D m � p � 1, we denote the univariate
B-spline basis functions by Bs

i;p W .0; 1/ ! R. For open knot vectors, the first and
the last basis functions are interpolatory at the first and the last knot, respectively.
B-spline basis functions of degree p are, in general, globally Cp�1-continuous. In
the presence of repeated knots, the continuity reduces according to the multiplicity,
i.e., if a knot appears k times, the continuity of a B-spline basis function of degree
p at that knot is Cp�k. Let fBs

i;pgn1iD1 and fBt
j;qgn2jD1 be two families of B-spline basis

functions defined by the degrees p and q, and the open knot vectors

s D .s1; : : : ; sn1CpC1/; t D .t1; : : : ; tn2CqC1/;

respectively. We denote the set of all double-indices .i; j/ by

IR D f.i; j/ W i 2 f1; : : : ; n1g; j 2 f1; : : : ; n2gg:

By R.i;j/.�1; �2/, .i; j/ 2 IR we denote the bivariate NURBS basis functions
constructed from the above-mentioned families of B-spline basis functions and
positive weights w.i;j/, .i; j/ 2 IR (see, e.g., [13, 22] for details). The continuity
of the B-spline basis functions is inherited by the NURBS basis functions. Note that
B-splines can be seen as a special case of NURBS with all weights being equal to
one. Hence, we will not distinguish between these two and we will only use the term
NURBS in the remainder of the paper.

Associated with the parameter domain Ő D .0; 1/2, the set of functions

OVh D spanfR.i;j/; .i; j/ 2 IRg;

is uniquely determined by the degrees p and q, the knot vectors s and t, and
the weights w. Given the set of functions OVh and a control net of control points
P.i;j/ 2 R

2, where .i; j/ 2 IR, the two-dimensional NURBS-surface G W Ő ! ˝ is
defined by

G.�1; �2/ D
X

.i;j/2IR

R.i;j/.�1; �2/ P.i;j/: (6)

We refer to ˝ D G. Ő / as the physical domain. We assume that the geometry
mapping is continuous and bijective (i.e., not self-penetrating), which are natural
assumptions for CAD-applications.

In IGA, the isoparametric principle is applied by using the same basis functions
for the discrete solution uh which are used for representing the geometry. For
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detailed discussion, we refer the reader to, e.g., [13, 22]. The discrete solution uh

on the physical domain˝ is represented as follows:

uh.x/ D
X

.i;j/2IR

u.i;j/
�
R.i;j/ ı G�1

�
.x/; (7)

where u.i;j/ 2 R are real-valued coefficients which form the coefficient vector uh.
The discrete function space is thus defined by

Vh D spanfR.i;j/ ı G�1; .i; j/ 2 IRg:

The initial mesh, and thereby the basis functions on this initial mesh, are assumed
to be given via the geometry representation of the computational domain, i.e.,
the initial discretization is already determined by the problem domain. The exact
representation of the geometry on the initial (coarsest) level is preserved in the
process of mesh refinement.

As mentioned in the introduction, the straightforward definition of NURBS basis
functions leads to a tensor-product structure of the discretization, which is the focus
of this paper. Nevertheless, since the presented error estimators do not exploit any
information from the underlying discretization method, the beauty of them is that
they are also applicable to local refinement techniques (e.g., T-splines, THB-splines,
PHT-splines, LR-splines, see Sect. 1) without any additional work.

3 Guaranteed Two-Sided Bounds of the Error

In this section, we recall the well-known theoretical bounds for the error in the
energy norm (see, e.g., [32–35]). For a detailed theoretical exposition the reader is
referred to [35].

For an upper bound of the error in the energy norm we have the following
estimate.

Theorem 1 Let C˝ be the constant in the inequality kvk � C˝krvkA (Friedrich’s
type), for all v 2 V0, where k � k denotes the standard L2-norm. Let u be the exact
solution of the problem (4), and let uh 2 Vh be an approximate solution. Then, the
following estimate holds:

kru � ruhkA � kAruh � yk NA C C˝kdiv yC fk; (8)

where y is an arbitrary vector-valued function in H.˝; div/, and the norms are as
defined in (3).

The constant C˝ depends only on the domain ˝ and the coefficient matrix A (but
not on the underlying mesh), see, e.g., [26, 28, 35]. Note that C˝ can be computed
either numerically or, if one can find a domain ˝� 
 ˝ , where ˝� is a square



Two-Sided a Posteriori Error Estimates in IGA 237

domain with side-length `, then C˝ � c2 `

�
p

d
, where d is the dimension and c2 is

the constant in (2). Therefore, the estimate given in Theorem 1 is fully computable
upper bound for any conforming approximation uh 2 Vg. Note that, if we choose y
via the (unknown) exact solution y D Aru, both sides of (8) coincide. Hence, the
estimate is sharp in the sense that, for any fixed uh, we can find a function y such
that the upper bound is as close to the exact error as desired.

To obtain a sharp estimate (and not just an indicator), one can find a function
y which minimizes the right-hand-side of (8). To achieve this, we first rewrite the
estimate in the following form

kru�ruhk2A � .1Cˇ/kAruh�yk2NAC.1C 1
ˇ
/C2

˝kdiv yCfk2 DW M2˚.y; ˇ/; (9)

where ˇ > 0 is a free parameter, see e.g. [26, 28, 35]. Note that the upper bound
in (9) holds true for any fixed y 2 H.˝; div/ and ˇ > 0. Hereinafter, for simplicity,
we will refer to M2˚.y; ˇ/ as the majorant. Introducing

a1 D 1C ˇ; a2 D .1C 1
ˇ
/C2

˝;

B1 D kAruh � yk2NA; B2 D kdiv yC fk2; (10)

we can briefly write the majorant as

M2˚.y; ˇ/ D a1B1 C a2B2: (11)

Therefore, a sharp estimate can be obtained by finding y 2 H.˝; div/ and ˇ > 0 as
solutions to the global minimization problem

min
y2H.˝;div/; ˇ>0

M2˚.y; ˇ/: (12)

As explained in detail in [26], to find the minimizing parameter y, we set M2˚.y/0 D
0, and solve

a1

Z
˝

A�1y � Qy dxCa2

Z
˝

div y div Qy dx D a1

Z
˝

ruh � Qy dx�a2

Z
˝

f div Qy dx (13)

for a solution yh 2 Yh � H.˝; div/. Note that the solution of the linear system of
equations (13) incurs non-negligible cost as we need to assemble the matrix on the
left hand side and the vector on the right hand side, and then solve the linear system.

Minimization with respect to ˇ results in ˇ D C˝
q

B2
B1

, which requires only the

evaluation of the integrals, and thus involves negligible cost.
For a lower bound of the error in the energy norm we have the following estimate,

which can be found in [35].
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Theorem 2 Let u be the exact solution of the problem (4). Then, the following
estimate holds.

M2�.w/ � kru � ruhk2A; (14)

where the minorant M2�.w/ is defined as

M2�.w/ WD
Z
˝

.2fw � 2Aruh � rw/dx � krwk2A; (15)

and where w is an arbitrary function in V0.

Note that, in contrast to the upper bound M2˚.y; ˇ/, we have only one free parameter
in the lower bound, namely the scalar-valued function w. To maximize M2�.w/
with respect to w, we proceed as follows (see, e.g., [28]). Let M2�.w/0 denote the
derivative of M2�.w/ with respect to w. Setting M2�.w/0 D 0, we obtain

Z
˝

Arw � r Qwdx D
Z
˝

.f Qw � Aruh � r Qw/dx: (16)

To solve (16), we choose a finite-dimensional subspace Wh of V0 and search for a
solution wh 2 Wh.

Together with the minorant M2� and the majorant M2˚, we have a two-sided
estimate of the true error in the form

M2� � kru � ruhk2A � M2˚: (17)

Thereby, it is possible to provide a guaranteed, fully computable, and as sharp as
desired interval containing the true error. To measure the efficiency of the computed
lower bound and upper bound, the efficiency indices are defined by

I� D M�.w/
kru � ruhkA

; I˚ D M˚.y; ˇ/
kru � ruhkA

: (18)

Clearly, the closer I� or I˚ is to 1, the better the estimate is.

Remark 1 To obtain sharp bounds it is necessary to choose the spaces Yh and Wh

sufficiently rich such that they have better approximation properties than Vh.

4 Numerical Results

In this section, we present numerical results of several examples with varying
complexity. These examples include simple Poisson problem with solution as a
sinusoidal function on a unit square domain, also with varying continuity of basis



Two-Sided a Posteriori Error Estimates in IGA 239

functions, a problem with non-identity coefficient matrix where the PDE operator
coefficients are of exponential form, a problem with curved boundary domain, and
a problem with solution having two sharp peaks.

To reflect the associated polynomial degrees in respective dimensions, we will
use the notation Sp;q

h for OVh, which denotes the NURBS function of degrees p and
q in the first and second coordinate, respectively, and where the parameter h is
the characteristic cell size (non-vanishing knot-span) of the mesh for OVh. Unless
indicated otherwise, we assume that the NURBS functions in Sp;q

h are of Cp�1-
continuity in the first coordinate, and Cq�1-continuity in the second coordinate.
Since for p � 2, we have .Cp�2/d � H.˝; div/, we choose the following choice
for OYh (which is the Case 1 studied in detail in [26])

OYh D SpC1;pC1
h ˝ SpC1;pC1

h : (19)

Thereby, we choose a function space OYh on the parameter domain and, analogously
to the relation of OVh and Vh, we define the function space Yh by the push-forward

Yh D OYh ı G�1:

Cost efficient computation of the majorant are discussed in [26]. We shall not discuss
a cost-efficient computation of the minorant in detail, and only present first results
as a proof-of-concept. We consider a straightforward approach where Wh is obtained
from V0 by applying one step of p-refinement (degree elevation while keeping the
continuity at the knots). In this setting, the size of the discretized problem for
computing wh is larger than the original problem for uh. Since this set-up is costlier,
the presented results are not computed on very fine meshes.

Example 1 (Sinus function in a unit square) In this numerical example, the com-
putational domain is the unit square ˝ D .0; 1/2 and uh 2 S2;2h , i.e., a piecewise
quadratic function in both directions. The coefficient matrix is the identity matrix,
i.e., A D I, and the exact solution is given by

u D sin.6�x/ sin.3�y/:

The right-hand-side f and the (homogeneous) boundary conditions uD are deter-
mined by the prescribed exact solution u.

The computed efficiency indices for this example are presented in Table 1. We
see that with successively refined meshes the efficiency indices approaches the
academic value of 1, which means that the obtained upper and lower bounds are
practically same as the true error. Note that the lack of sharpness of the bounds on
coarser meshes is due to the oscillations in the solution of the problem (with 3 full
wavelengths in the x direction and 1:5 wavelengths in the y direction).

Example 2 (Reduced continuity of basis functions) We consider the same exact
solution and the same physical domain as in Example 1. However, we now use
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Table 1 Efficiency indices
for Example 1, OVh D S2;2h

1=h I� I˚

16� 16 0.9918 1.7887

32� 32 0.9966 1.3762

64� 64 0.9990 1.1883

128� 128 0.9997 1.0947

256� 256 0.9999 1.0476

Table 2 Efficiency indices
for Example 2, OVh D S4;4h ,
with only C1-continuity at
x D 0:5 and yD 0:5

1=h I� I˚

16� 16 0.9984 2.3040

32� 32 0.9974 1.5029

64� 64 0.9987 1.2399

128� 128 0.9996 1.1188

256� 256 0.9999 1.0595

B-splines of degree p D q D 4 to represent ˝ , and we add a triple knot at the
coordinates x D 0:5 and y D 0:5. The initial knot vectors are thus given by

s D t D .0; 0; 0; 0; 0; 0:5; 0:5; 0:5; 1; 1; 1; 1; 1/;

and the geometry mapping is only C1-continuous at the coordinate 0:5. This is to
mimic a multi-patch situation where the solution has full continuity everywhere
except along certain lines with reduced continuity. Note that, in this case, we also
reduced the continuity of OYh at x D 0:5 and y D 0:5 by one order.

The computed efficiency indices for this example are presented in Table 2. We
see that the results are qualitatively same as the results of Example 1, and with
successively refined meshes the obtained upper and lower bounds are practically
same as the true error.

Example 3 (Varying coefficients of PDE operator) Let the matrix A be of the
form of



eb11xCb12y 0

0 eb21xCb22y

�
;

which is positive definite for bij 2 R
C, i; j D f1; 2g. This will result in the PDE

operator to be of the form of

eb11xCb12y
@2

@x2
C eb21xCb22y

@2

@y2
C b11e

b11xCb12y
@

@x
C b22e

b21xCb22y @

@y
:

To have this PDE operator with full generality, we take b11 D 0:1; b12 D 0:8; b21 D
0:4; b22 D 0:7. With this generality, to have a good comparison of the efficiency
indices with the examples considered so far, we again choose the exact solution to



Two-Sided a Posteriori Error Estimates in IGA 241

Table 3 Efficiency indices
for Example 3, OVh D S2;2h

1=h I� I˚

16� 16 0.9918 5.9954

32� 32 0.9966 2.4968

64� 64 0.9990 1.7377

128� 128 0.9997 1.3699

256� 256 0.9999 1.1856

be u D sin.6�x/ sin.3�y/. The domain and the polynomial space for this example
are the same as of Example 1. The right hand side function is accordingly calculated
and the solution has homogeneous Dirichlet boundary values.

Note that in this case the constant C˝ has to be accordingly modified. For the unit

square domain, and the matrix A given above, its value is taken as
c2

�
p
2

, where

c2 D maxfeb11xCb12y; eb21xCb22yg:

The computed efficiency indices for this example are presented in Table 3. We see
that the proposed estimator is robust with respect to the non-trivial PDE coefficient
matrix A, and its performance is asymptotically similar to the case with the matrix
A being identity. Note that some deviation could be attributed to the fact that we
used same number of quadrature points for the evaluation of the matrices in both
the cases, which is not sufficient when the PDE coefficients are of exponential form.

Example 4 (Domain with curved boundary) Consider the domain of a quarter
annulus. In polar coordinates,˝ is defined by .r; 
/ 2 .1; 2/ � .0; �

2
/. The circular

parts of the domain boundary are represented exactly by the NURBS geometry
mapping of degree 2, i.e., we have p D q D 2. We set A D I, and we prescribe
the exact solution

u D .r � 1/.r � 2/
.
 � �
2
/e�˛.r cos
�1/2 :

We test our method with two values of ˛, namely,

Example 4.a: ˛ D 20; Example 4.b: ˛ D 50:

In both examples, this function has zero Dirichlet boundary values and a peak at
x D 1, the sharpness of which is determined by the value of ˛. The exact solutions
are depicted in Fig. 1.

The computed efficiency indices for this example are presented in Table 4. We again
observe a similar pattern as in earlier examples with the unit square domain, with
sharper peak demanding more resolution. This confirms the robustness of the two-
sided bounds with respect to the boundary shape. From Figs. 2 and 3, we see that the
marking based on the majorant (9) shows an excellent agreement with the marking
based on the true error.
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Fig. 1 Exact solutions u on ˝, Example 4. (a) Example 4.a (˛ D 20). (b) Example 4.b (˛ D 50)

Table 4 Efficiency indices
for Example 4, OVh D S2;2h

˛ D 20 ˛ D 50

1=h I� I˚ I� I˚

16� 8 0.9922 1.8614 0.9928 3.0624

32� 16 0.9953 1.3357 0.9926 1.9711

64� 32 0.9985 1.1596 0.9967 1.3923

128� 64 0.9996 1.0792 0.9990 1.1891

256� 128 0.9999 1.0396 0.9997 1.0930

Fig. 2 Marked cells with  D 20% in Example 4.a (˛ D 20), OVh D S2;2h . See [26] for details
and the definition of Cases. (a) Exact, mesh 32 � 16. (b) Exact, mesh 64 � 32. (c) Exact, mesh
128� 64. (d) Case 1, 32� 16. (e) Case 2, 64� 32. (f) Case 3, 128� 64
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Fig. 3 Marked cells with  D 20% in Example 4.b (˛ D 50), OVh D S2;2h . See [26] for details
and the definition of Cases. (a) Exact, mesh 64 � 32. (b) Exact, mesh 128 � 64. (c) Exact, mesh
256� 128. (d) Case 1, 64� 32. (e) Case 2, 128 � 64. (f) Case 3, 256 � 128

1
1

0 0

Fig. 4 Exact solution, Example 5

The next example is to test a basic adaptive refinement scheme based on the
proposed upper bound.

Example 5 (Adaptive Refinement) The exact solution for this example is given by

u D .x2 � x/.y2 � y/e�100j.x;y/�.0:8;0:05/j2�100j.x;y/�.0:8;0:95/j2 :

The computational domain is again the unit square ˝ D .0; 1/2, and is represented
by B-splines of degree p D q D 2. The function u, which is illustrated in Fig. 4, has
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Table 5 Efficiency indices
for Example 5, OVh D S2;2h

1=h I� I˚

16 � 16 0.9911 3.9972

25 � 26 0.9947 2.2161

38 � 44 0.9971 1.7824

64 � 74 0.9983 1.5383

92 � 136 0.9989 1.4599

184 � 256 0.9991 1.4058

zero Dirichlet boundary values and has two peaks at the coordinates .0:8; 0:05/ and
.0:8; 0:95/.

The computed efficiency indices for this example are presented in Table 5. We
see that the estimator is able to nicely direct the refinement process.

5 Conclusions

We have presented two-sided fully computable, guaranteed and sharp a posteriori
error estimates in IGA. The computation of the presented estimates relies only on the
use of NURBS basis functions, without the need for constructing complicated basis
functions in H.˝; div/. For the computation of these estimates within the context
of IGA, two properties of NURBS basis functions are useful. Firstly, the basis
functions are, in general, automatically in H.˝; div/ due to their high continuity.
Secondly, increasing the polynomial degree of NURBS basis functions adds only
few DOFs. It is important to note that none of these properties are possible in FEM
discretizations based on C0 basis functions. Apart from the topical interest of quality
assurance and adaptivity, the presented estimates can also be used in other topics
in IGA, such as parametrization of computational domain, e.g., to optimize the
placement of inner control points, the proposed estimator can be used to accurately
detect the regions with large error and then use the optimization algorithm to
reposition the control points. Finally, though in this paper we have only considered
tensor-product NURBS discretizations, these estimates can be easily adapted to
other type of basis functions as they are valid for any conforming approximation.

Acknowledgements The support from the Austrian Science Fund (FWF) through the project
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Multilevel Preconditioning for Variational
Problems

Angela Kunoth

Abstract For the numerical solution of linear variational problems involving
elliptic partial differential operators in n � 2 space dimensions, iterative solution
schemes are indispensable on account of their problem size. Our guiding principle
is to devise iterative solvers which are optimal in the number of arithmetic
operations, i.e., which are of linear complexity in the total number of unknowns. For
these algorithms, asymptotically optimal preconditioners are required. The class of
preconditioners for which this can be shown are of multilevel type, requiring nested
approximation spaces to approximate the solution of the system on a fine user-
specified grid. For smooth solutions of standard second and fourth order elliptic
PDEs (partial differential equations) in variational form, approximations based on
tensor products of higher-order B-splines yield high accuracy.

For such problem classes, this survey collects the main ingredients for multilevel
preconditioners in terms of higher order B-splines. There are three types of
multilevel preconditioners for which asymptotic optimality can be shown. Two of
them, the so-called additive preconditioners, are specified for isogeometric analysis
involving linear elliptic partial differential operators in terms of variants of the BPX
(Bramble-Pasciak-Xu) preconditioner and wavelet preconditioners. The third class
are the so-called multiplicative preconditioners, specifically, multigrid methods.

An essential ingredient for all these multilevel preconditioners are intergrid
operators which transform vectors or matrices between grids of different grid
spacing. For higher order B-splines, these intergrid operators can be derived from
their refinement relations. In addition to a presentation of the theoretical ingredients,
the performance of the different preconditioners will be demonstrated by some
numerical examples.
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1 Introduction

For variational systems involving linear elliptic partial differential equations (PDEs)
in n � 2 space dimensions, a standard finite element or finite difference discretiza-
tion on a uniform grid with grid spacing 0 < h < 1 leads to the problem to
numerically solve a large ill-conditioned system of linear equations. This is due
to the fact that PDE operators have positive order 2r, i.e., r D 1 for second order
or r D 2 for fourth order operators. Ill-conditioned means that the system matrix
Ah exhibits a spectral condition number �2.Ah/ which is proportional to h�2r, i.e.,
�2.Ah/ � h�2r. Here and in the following, the relation a � b stands for a <� b
and b <� a where the latter inequality means that b can be bounded by some
constant times a uniformly in all parameters on which a and b may depend. Since
the convergence speed of any iterative solution scheme depends on the spectral
condition number, the scheme will therefore become prohibitively slow. This effect
becomes even worse when h is chosen smaller, in order to obtain more accurate
approximations; the number of unknowns N increases like N � h�n and, thus, the
system size also increases accordingly.

On the other hand, solutions of elliptic PDEs typically exhibit a multiscale
behaviour. Enhancing iterative methods by multilevel ingredients, therefore, enables
one to achieve much more efficient solution schemes. Ultimately, one strives for
an ‘optimally efficient scheme’. This means that one can solve the problem with
fine grid accuracy with an amount of arithmetic operations that is proportional to
the number of unknowns on this grid. The first such methods which were proven
to provide an asymptotically optimal iterative scheme were geometric multigrid
algorithms [9]. The basic idea of these schemes is to successively solve smaller
approximations of the linear system on the finest grid. These can often be interpreted
as discretizations with respect to coarser grids. Their iterative solutions can be seen
as approximating the inverses of the system matrices applied to the right hand side
on the different grids, thereby reducing the spectral condition number of the original
system matrix. This idea has, therefore, suggested the term ‘preconditioner’. We call
a linear operator Ch an (asymptotically) optimal preconditioner if its set-up, storage
and application is of optimal linear complexity in the number of unknowns N and if
�2.ChAh/ � 1 independent of h.

The search for such optimal preconditioners was a major topic for numerical
elliptic PDE solvers in the 1980s. The goal was to better understand the ingredients
which made a preconditioner optimal. Specifically, one aimed at finding directly
applicable versions which could be interpreted as a change of basis. With the arrival
of the hierarchical basis preconditioner [54], extending an idea of Babuška from
the univariate case, a simple preconditioner became available. Although it is not
optimal—one still has logarithmic growth in the grid spacing, �2.ChAh/ � log h�2r,
in the bivariate case, and exponential growth for n D 3—its simplicity still makes it
popular up to now [42]. Another multilevel preconditioner was presented in [3, 4].
Within the last years, (tensor product) hierarchical B-spline discretizations were
increasingly employed in the area of isogeometric analysis, mainly in the context
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of deriving discretizations which can be locally adapted to singularities, see, e.g.,
[36, 51], the survey [5] and the references therein.

At the end of the 1980s, another methodology to derive preconditioners via space
decompositions and subspace corrections was developed, see the review [52]. The
BPX (Bramble-Pasciak-Xu) preconditioner proposed first in [10] was numerically
observed to be optimal; it is based on a hierarchical generator system with grid-
dependent weights. With techniques from approximation theory, its optimality was
theoretically established in [21, 45]. Since then, its range of application has been
widened extensively. For second and fourth order elliptic problems on the sphere
a BPX-type preconditioner was developed and its optimality proved for triangular
finite elements in [43]. The survey article [53] records extensions of the BPX and of
multigrid preconditioners to H.grad/, H.curl/, and H.div/ systems on adaptive and
unstructured grids; to name just two extensions.

Multigrid preconditioners for isogeometric analysis were presented in [27],
whereas domain decomposition type preconditioners were proposed in [6]. Within
the class of domain decomposition methods, also tearing and interconnecting
methods (FETI-BETI) are important [34]. Note that not all of these preconditioners
are or have been proven to be asymptotically optimal.

In this survey, we present the main ideas of the BPX preconditioner from [11]
in the context of isogeometric analysis, employing tensor products of higher order
B-splines in Sect. 2. We will see that the main theoretical tool to prove optimality
of the BPX preconditioner are multilevel characterizations of the underlying energy
space, so-called norm equivalences between Sobolev space norms and weighted
sequence norms, describing their subspace contributions. We will also see that the
main computational ingredients are linear intergrid operators which map vectors and
matrices between grids of different grid spacings.

At about the same time, wavelets as a special example of a multiscale orthogonal
basis of L2.R/ with compact support were constructed [25]. While initially mainly
developed and used for signal analysis and image compression, wavelets were soon
discovered to provide optimal preconditioners in the above sense for second order
elliptic boundary value problems [21, 33]. However, the fact that one cannot exploit
L2-orthogonality for elliptic boundary value problems together with the difficulty
that the L2-orthogonal Daubechies wavelets are only given implicitly led to the
search for variants which are more practical for the numerical solution of PDEs.
Soon, it was realized that biorthogonal spline-wavelets as developed in [17] are
better suited since they allow one to work with piecewise polynomials for the
discretization.

The principal and crucial property to prove optimality of a wavelet preconditioner
are norm equivalences between Sobolev norms and sequence norms of weighted
wavelet expansion coefficients. I mentioned before that multilevel characteriza-
tions for energy spaces are the crucial tool for proving optimality of the BPX
preconditioner. Once a wavelet basis is available, one can represent the subspace
contributions appearing there explicitly in terms of weighted wavelet coefficients.
On this basis, optimal conditioning of the resulting linear system of equations
can be achieved by applying the FWT (Fast Wavelet Transform) to a single-scale
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discretization on a uniform grid. While again multilevel characterizations of the
underlying energy space play the crucial theoretical role for proving optimality,
the intergrid operators which perform bases changes between different levels of
resolution are the main practical ingredient for the efficiency of the FWT.

Nowadays, the terminology ‘wavelets’ is used in a more general sense that
originally in [25]; we consider classes of multiscale bases with three main features:
(R) they provide Riesz bases for the underlying function spaces, (L) the basis
functions are local, and (CP) they exhibit cancellation properties. These will be
detailed in Sect. 3.

After the initial results concerning optimal preconditioning with wavelets of local
support in [21], research on employing wavelets for numerically solving elliptic
PDEs went into different directions. One problem was that the original constructions
in [17, 25] and many others were based on using the Fourier transform so that these
constructions provide bases only for function spaces on all of R, on the torus or,
by tensorization, on R

n. In contrast, PDEs naturally live on a bounded domain
˝ � R

n. In order for wavelets to be employed for numerical PDEs, there arose the
need for constructions of wavelets on bounded intervals and domains without, of
course, loosing the crucial properties (R), (L) and (CP). The first such systematic
construction of biorthogonal spline-wavelets on Œ0; 1� of arbitrary order and, by
tensor products, on Œ0; 1�n, was provided in [22]. Different domain decomposition
approaches yield constructions of biorthogonal wavelets on domains which can
be represented as unions of parametric mappings of Œ0; 1�n [13, 23, 24, 40], see
also [50] for details. Once such bases are available, the absolute value of the
condition numbers of (systems of) elliptic PDEs can be ameliorated significantly by
further inexpensive linear transformations taking into account a setup of the system
matrices on the coarsest grid, a so-called operator-based preconditioning [12, 46]. A
more recent survey on the results of wavelet-based preconditioning with extensions
to PDE-constrained control problems can be found in [39].

Aside from optimal preconditioning, the built-in potential of local adaptivity for
wavelets plays a prominent role when solving elliptic or parabolic PDEs with non-
smooth solutions, on account of the fact that wavelets provide a locally supported
Riesz basis for a whole function space. This issue is extensively addressed in the
more recent survey paper [48]. In addition to the material in [26], there are at least
four extensive surveys on wavelet and multiscale methods for more general PDEs
addressing, among other things, the connection between adaptivity and nonlinear
approximation and the evaluation of nonlinearities [15, 18–20].

In this article, I want to remain focused on multilevel preconditioning with
higher-order discretizations for smooth solutions for which uniform grids provide
a user-specified accuracy.

Isogeometric analysis is an the increasingly popular field in which higher order
B-Splines are employed to reach this accuracy. Another such area is mathematical
finance; specifically, option prizing problems. The fair pricing of an American
option can in a standard model be formulated as a parabolic boundary value problem
involving Black–Scholes’ equation with a free boundary. The aim is to compute the
free boundary, the optimal exercise price of the option, together with the solution of
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the PDE, the value of the option. For American put options, one generally does not
have closed form solutions so that one has to resort to numerical schemes. In the
simplest Black–Scholes’ model, the volatility is assumed to be constant.

Numerical schemes for American option pricing are typically based on finite
difference approaches, see, e.g., [1] and the references therein. In [14] and [44],
corresponding multigrid methods are developed. However, here one is not only
interested in the solution of the PDE, the option prize. For developing hedging
strategies with options, it is of even more importance to accurately compute first
and second derivatives of the solution, the so-called Greek letters. The availability
of a smooth approximation enables to compute pointwise derivatives and, there-
fore, avoids additional numerical approximations of derivatives. Therefore, the
idea in [30, 31] was to employ higher order B-splines for the solution of the
variational inequality derived from Black-Scholes equation for American options.
This approach enabled us to pointwise differentiate the option prize and, therefore,
achieve a high accuracy approximation for the Greek letters. For the numerical
solution, we extended the ideas about monotone multigrid methods with linear finite
elements to solve variational inequalities from [35] to higher order B-splines. Here
the intergrid operators mentioned before which stem from the refinement relations
for B-splines had to be adapted in order not to violate the variational inequality;
a task which is for higher order B-splines much more difficult than for linear
finite elements since they are not interpolatory any more. Specific care has to be
taken when deriving these intergrid operators in order not to violate the inequality
constraints. The key feature was to replace function values by B-spline expansion
coefficients which remain of the same sign because of the positivity of B-splines.
Naturally, these ideas can be extended to obstacle problems which lead to variational
inequalities and for which higher order approximations are sought.

While these results were very satisfying from a numerical point of view, the
underlying Black-Scholes model has a severe deficiency in assuming that the
volatility is constant. Particularly, an effect called volatility smile was observed in
[32]. There are several approaches to estimate the volatility from observed stock
data. Therefore, we adopted Heston’s approach [28] to model the volatility to satisfy
a stochastic differential equation. For Heston’s model and one asset, the standard
Itō approach yields a variational inequality in two space variables with a ‘mildly’
nonsymmetric parabolic differential operator. The ideas presented in [41] was as
follows. A variational inequality for the American option pricing problem with
Heston’s model was discretized in terms of linear finite elements with respect to
space. The resulting linear inequality system was solved in each time step with
optimal linear computational complexity using a projective Gauss-Seidel scheme
together with a monotone multigrid method. For this, again appropriate intergrid
operators were constructed. Unfortunately, due to page limitations, I am not able to
present these approaches here and have to refer to [30, 31, 41].

Once optimal preconditioners are available, for any of the problems described
above, one can construct for a standard elliptic PDE optimal iterative schemes
to achieve discretization error accuracy on the finest level with optimal linear
complexity as follows. The idea, the so-called nested iteration, has been employed
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together with multigrid methods for a long time: starting on a coarse grid, one
iteratively solves the preconditioned linear system of equations up to discretization
error accuracy on this level. The resulting solution is transformed to the next finer
grid, employing again the linear intergrid operator from the coarse to the finer grid.
In this way, only a fixed number of iterations are necessary on each grid, independent
of that grid spacing, see, e.g., [39]. One should note that, in contrast, iterating only
on the finest grid introduces an additional log N factor, where N denotes the amount
of unknowns on the finest grid.

The structure of this survey paper is as follows. Section 2 is devoted to the
description of the BPX preconditioner for isogeometric analysis together with the
proof of its optimality and corresponding numerical results. Section 3 is concerned
with wavelet approximations of solutions of PDEs, and the derivation of Fast
Wavelet Transforms for optimal preconditioning. We conclude in Sect. 4 with a short
summary and some outlook.

2 BPX Preconditioning for Isogeometric Analysis

In this section, we consider linear elliptic PDEs in the framework of isogeometric
analysis, combining modern techniques from computer aided design with higher
order approximations of the solution. We treat the physical domain by means of
a regular B-spline mapping from the parametric domain Ő D .0; 1/n, n � 2,
to the physical domain ˝ . The numerical solution of the PDE is computed by
means of tensor product B-splines mapped onto the physical domain. We will
construct additive BPX-type multilevel preconditioners and show that they are
asymptotically optimal. This means that the spectral condition number of the
resulting preconditioned stiffness matrix is independent of the grid spacing h.
Together with a nested iteration scheme, this enables an iterative solution scheme of
optimal linear complexity. The theoretical results are substantiated by numerical
examples in two and three space dimensions. The results of this section are
essentially contained in [11].

We consider linear elliptic partial differential operators of order 2r D 2; 4 on the
domain˝ in variational form: for given f 2 H�r.˝/, find u 2 Hr

0.˝/ such that

a.u; v/ D hf ; vi for all v 2 Hr
0.˝/ (1)

holds. Here the energy space is Hr
0.˝/, a subset of the Sobolev space Hr.˝/, the

space of square integrable functions with square integrable derivatives up to order r,
containing homogeneous Dirichlet boundary conditions for r D 1 and homogeneous
Dirichlet and Neumann derivatives for r D 2. The bilinear form a.�; �/ is derived
from the linear elliptic PDE operator in a standard fashion, see, e.g., [8]. For
example, the Laplacian is represented as a.v;w/ D R

˝
rv � rw dx. In order for the

problem to be well-posed, we require the bilinear form a.�; �/ W Hr
0.˝/ � Hr

0.˝/!
R to be symmetric, continuous and coercive on Hr

0.˝/. With h�; �i, we denote
on the right hand side of (1) the dual form between H�r.˝/ and Hr

0.˝/. Our
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model problem (1) covers the second order Laplacian with homogeneous boundary
conditions

��u D f on ˝; uj@˝ D 0; (2)

as well as fourth order problems with corresponding homogeneous Dirichlet
boundary conditions,

�2u D f on ˝; uj@˝ D n � ruj@˝ D 0 (3)

where @˝ denotes the boundary of ˝ and n the outward normal derivative at @˝ .
These PDEs serve as prototypes for more involved PDEs like Maxwell’s equation
or PDEs for linear and nonlinear elasticity. The reason we formulate these model
problems of order 2r involving the parameter r is that this exhibits more clearly the
order of the operator and the scaling in the subsequently used characterization of
Sobolev spaces Hr.˝/. Thus, for the remainder of this section, the parameter 2r
denoting the order of the PDE operator is fixed.

The assumptions on the bilinear form a.�; �/ entail that there exist constants 0 <
cA � CA < 1 such that the induced self-adjoint operator hAv;wi WD a.v;w/
satisfies the isomorphism relation

cAkvkHr.˝/ � kAvkH�r.˝/ � CAkvkHr.˝/; v 2 Hr
0.˝/: (4)

If the precise format of the constants in (4) does not matter, we abbreviate this
relation as kvkHr.˝/ <� kAvkH�r.˝/ <� kvkHr.˝/, or shortly as

kAvkH�r.˝/ � kvkHr.˝/: (5)

Under these conditions, Lax-Milgram’s theorem guarantees that, for any given f 2
H�r.˝/, the operator equation derived from (1)

Au D f in H�r.˝/ (6)

has a unique solution u 2 Hr
0.˝/, see, e.g., [8].

In order to approximate the solution of (1) or (6), we choose a finite-dimensional
subspace Vh � Hr

0.˝/. We will construct these approximation spaces by using
tensor products of B-splines as specified next.

2.1 B-Spline Discretizations

Our construction of optimal multilevel preconditioners will rely on tensor products
so that principally any space dimension n 2 N is permissible as long as storage
permits; the examples cover the cases n D 2; 3. As discretization space, we choose



254 A. Kunoth

in each spatial direction B-splines of the same degree p on uniform grids and with
maximal smoothness. We begin with the univariate case and define B-splines on the
interval Œ0; 1� recursively with respect to their degree p. Given this positive integer p
and some m 2 N, we call � WD f�1; : : : ; �mCpC1g a p-open knot vector if the knots
are chosen such that

0 D �1 D : : : D �pC1 < �pC2 < : : : < �m < �mC1 D : : : D �mCpC1 D 1; (7)

i.e., the boundary knots 0 and 1 have multiplicity p C 1 and the interior knots are
single. For � , B-spline functions of degree p are defined following the well-known
Cox-de Boor recursive formula, see [7]. Starting point are the piecewise constants
for p D 0 (or characteristic functions)

Ni;0.�/ D
(
1; if 0 � �i � � < �iC1 < 1;
0; otherwise;

(8)

with the modification that the last B-spline Nm;0 is defined also for � D 1. For p � 1
the B-splines are defined as

Ni;p.�/ D � � �i

�iCp � �i
Ni;p�1.�/C �iCpC1 � �

�iCpC1 � �iC1
NiC1;p�1.�/; � 2 Œ0; 1�; (9)

with the same modification for Nm;p. Alternatively, one can define the B-splines
explicitly by applying divided differences to truncated powers [7]. This gives a set of
m B-splines that form a basis for the space of splines, that is, piecewise polynomials
of degree p with p � 1 continuous derivatives at the internal knots �` for ` D p C
2; : : : ;m. (Of course, one can also define B-splines on a knot sequence with multiple
internal knots which entails that the spline space is not of maximal smoothness.) For
p D 1, the B-splines are at least C0.Œ0; 1�/ which suffices for the discretization of
elliptic PDEs of order 2, and for p D 2 they are C1.Œ0; 1�/ which suffices for r D 2.
By construction, the B-spline Ni;p is supported in the interval Œ�i; �iCpC1�.

These definitions are valid for an arbitrary spacing of knots in � (7). Recall that
smooth solutions of elliptic PDEs can be approximated best with discretizations on
a uniform grid. Therefore, we assume from now on that the grid is uniform, i.e.,
�`C1 � �` D h for all ` D pC 1; : : : ;m.

For n space dimensions, we employ tensor products of the one-dimensional B-
splines. We take in each space dimension a p-open knot vector � and define on
the closure of the parametric domain Ő D .0; 1/n (which we also denote by Ő for
simplicity of presentation) the spline space

Sh. Ő / WD span

(
Bi.x/ WD

nY
`D1

Ni`;p.x`/; i D 1; : : : ;N WD mn; x 2 Ő
)

DW span
n
Bi.x/; i 2 I; x 2 Ő

o
: (10)
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In the spirit of isogeometric analysis, we suppose that the computational domain
˝ can also described in terms of B-splines. We assume that the computational
domain ˝ is the image of a mapping F W Ő ! ˝ with F WD .F1; : : : ;Fn/

T where
each component Fi of F belongs to S Nh. Ő / for some given Nh. In many applications,
the geometry can be described in terms of a very coarse mesh, namely, Nh � h.
Moreover, we suppose that F is invertible and satisfies

kD˛FkL1. Ő / � 1 for j˛j � r: (11)

This assumption on the geometry can be weakened in that the mapping F can be
a piecewise C1 function on the mesh with respect to Nh, independent of h, or the
domain ˝ may have a multi-patch representation. This means that one can allow
˝ also to be the union of domains ˝k where each one parametrized by a spline
mapping of the parametric domain Ő .

We now define the approximation space for (6) as

Vr
h WD fvh 2 Hr

0.˝/ W vh ı F 2 Sh. Ő /g: (12)

We will formulate three important properties of this approximation space which
will play a crucial role later for the construction of the BPX-type preconditioners.
The first one is that we suppose from now on that the B-spline basis is normalized
with respect to L2, i.e.,

kBikL2. Ő / � 1; and, thus, also kBi ı F�1kL2.˝/ � 1 for all i 2 I: (13)

Then one can derive the following facts [11].

Theorem 1 Let fBigi2I be the B-spline basis defined in (10) and normalized as
in (13), N D #I and Vr

h as in (12). Then we have

(S) Uniform stability with respect to L2.˝/
For any c 2 `2.I/,
�����

NX
iD1

ci Bi ı F�1
�����
2

L2.˝/

�
NX

iD1
jcij2 DW kck2`2 ; c WD .ci/iD1;:::;N I (14)

(J) Direct or Jackson estimates

inf
vh2Vr

h

kv � vhkL2.˝/
<� hs jvjHs.˝/ for any v 2 Hs.˝/; 0 � s � r; (15)

where j � jHs.˝/ denotes the Sobolev seminorm of highest weak derivatives s;
(B) Inverse or Bernstein estimates

kvhkHs.˝/ <� h�skvhkL2.˝/ for any vh 2 Vr
h and 0 � s � r: (16)
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In all these estimates, the constants are independent of h but may depend on F, i.e.,
˝ , the polynomial degree p and the spatial dimension n.

In the next section, we construct BPX-type preconditioners for (6) in terms of
approximations with (12) and show their optimality.

2.2 Additive Multilevel Preconditioners

The construction of optimal preconditioners are based on a multiresolution analysis
of the underlying energy function space Hr

0.˝/. As before, 2r 2 f2; 4g stands for
the order of the PDEs we are solving, and is always kept fixed.

We first describe the necessary ingredients within an abstract basis-free frame-
work, see, e.g., [18]. Afterwards, we specify the realization for the parametrized
tensor product spaces in (12).

Let V be a sequence of strictly nested spaces Vj, starting with some fixed coarsest
index j0 > 0, determined by the polynomial degree p which determines the support
of the basis functions (which also depends on ˝), and terminating with a highest
resolution level J,

Vj0 � Vj0C1 � � � � � Vj � � � � � VJ � Hr
0.˝/: (17)

The index j denotes the level of resolution defining approximations on a grid with
dyadic grid spacing h D 2�j, i.e., we use from now on the notation Vj instead of Vh

to indicate different grid spacings. Then, VJ will be the space relative to the finest
grid 2�J . We associate with V a sequence of linear projectors P WD fPjgj�j0 with the
following properties.

Properties 2 We assume that

(P1) Pj maps Hr
0.˝/ onto Vj,

(P2) PjP` D Pj for j � `,
(P3) P is uniformly bounded on L2.˝/, i.e., kPjkL2.˝/

<� 1 for any j � j0
with a constant independent of j.

These conditions are satisfied, for example, for L2.˝/-orthogonal projectors, or,
in the case of splines, for the quasi-interpolant proposed and analyzed in [47,
Chapter 4]. The second condition (P2) ensures that the differences Pj�Pj�1 are also
projectors for any j > j0. We define next a sequence W WD fWjgj�j0 of complement
spaces

Wj WD .PjC1 � Pj/VjC1 (18)

which then yields the direct (but not necessarily orthogonal) decomposition

VjC1 D Vj ˚Wj: (19)
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Thus, for the finest level J, we can express VJ in its multilevel decomposition

VJ D
J�1M

jDj0�1
Wj (20)

upon setting Wj0�1 WD Vj0 . Setting also Pj0�1 WD 0, the corresponding multilevel
representation of any v 2 VJ is then

v D
JX

jDj0

.Pj � Pj�1/v: (21)

We now have the following result which will be used later for the proof of the
optimality of the multilevel preconditioners.

Theorem 3 Let P ;V be as above where, in addition, we require that for each Vj,
j0 � j � J, a Jackson and Bernstein estimate as in Theorem 1 (J) and (B) hold with
h D 2�j. Then one has the function space characterization

kvkHr.˝/ �
0
@ JX

jDj0

22rjk.Pj � Pj�1/vk2L2.˝/

1
A
1=2

for any v 2 VJ: (22)

Such a result holds for much larger classes of function spaces, Sobolev or even
Besov spaces which are subsets of Lq.˝/ for general q, possibly different from 2
and for any function v 2 Hr.˝/, then with an infinite sum on the right hand side,
see, e.g., [18]. The proof of Theorem 3 for such cases heavily relies on tools from
approximation theory and can be found in [21, 45].

Next we demonstrate how to exploit the norm equivalence (22) in the construc-
tion of an optimal multilevel preconditioner. Define for any v;w 2 VJ the linear
self-adjoint positive-definite operator CJ W VJ ! VJ given by

.C�1J v;w/L2.˝/ WD
JX

jDj0

22rj
�
.Pj � Pj�1/v; .Pj � Pj�1/w

�
L2.˝/

; (23)

which we call a multilevel BPX-type preconditioner. Let AJ W VJ ! VJ be the finite-
dimensional operator defined by .AJv;w/L2.˝/ WD a.v;w/ for all v;w 2 VJ, the
approximation of A in (6) with respect to VJ.

Theorem 4 With the same prerequisites as in Theorem 3, CJ is an asymptotically
optimal symmetric preconditioner for AJ, i.e., �2.C

1=2
J AJC1=2

J / � 1 with constants
independent of J.

Proof For the parametric domain Ő , the result was proved independently in [21, 45]
and is based on the combination of (22) together with the well-posedness of the
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continuous problem (6). The result on the physical domain follows then together
with (11). �

Concrete realizations of the preconditioner defined in (23) based on B-splines
lead to representations of the complement spaces Wj whose bases are called
wavelets. For these, efficient implementations of optimal linear complexity involv-
ing the Fast Wavelet Transform can be derived explicitly, see Sect. 3.

However, since the order of the PDE operator r is positive, one can use here the
argumentation from [10] which will allow to work with the same basis functions as
for the spaces Vj. The first part of the argument relies on the assumption that the Pj

are L2-orthogonal projectors. For a clear distinction, we shall use the notation Oj for
L2-orthogonal projectors and reserve the notation Pj for the linear projectors with
Properties 2. Then, the BPX-type preconditioner (23) (using the same symbol CJ

for simplicity) reads as

C�1J WD
JX

jDj0

22jr.Oj �Oj�1/; (24)

which is by Theorem 4 a BPX-type preconditioner for the self-adjoint positive
definite operator AJ . By the orthogonality of the projectors Oj, we can immediately
derive from (24) that

CJ D
JX

jDj0

2�2jr.Oj �Oj�1/: (25)

Since r > 0, by rearranging the sum, the exponentially decaying scaling factors
allow one to replace CJ by the spectrally equivalent operator

CJ D
JX

jDj0

2�2jrOj: (26)

Recall that two linear operators A W VJ ! VJ and B W VJ ! VJ are spectrally
equivalent if they satisfy

.Av; v/L2.˝/ � .Bv; v/L2.˝/; v 2 VJ ; (27)

with constants independent of J. Thus, the realization of the preconditioner is
reduced to a computation in terms of the bases of the spaces Vj instead of Wj. The
orthogonal projector Oj can, in turn, be replaced by a simpler local operator which
is spectrally equivalent to Oj, see [37] and the derivation below.

Up to this point, the introduction to multilevel preconditioners has been
basis-free. We now show how this framework can be used to construct a BPX-
preconditioner for the linear system (6). Based on the definition (12), we construct



Multilevel Preconditioning for Variational Problems 259

a sequence of spaces satisfying (17) such that VJ D Vr
h. In fact, we suppose that for

each space dimension we have a sequence of p-open knot vectors �j0;`; : : : ; �J;`,
` D 1; : : : ; n, which provide a uniform partition of the interval Œ0; 1� such that
�j;` � �jC1;` for j D j0; j0 C 1; : : : ; J. In particular, we assume that �jC1;` is
obtained from�j;` by dyadic refinement, i.e., the grid spacing for�j;` is proportional
to 2�j for each ` D 1; : : : ; n. In view of the assumptions on the parametric mapping
F, we assume that Nh D 2�j0 , i.e., F can be represented in terms of B-splines on the
coarsest level j0. By construction, we have now achieved that

Sj0 .
Ő / � Sj0C1. Ő / � : : : � SJ. Ő /:

Setting Vr
j WD fv 2 Hr

0.˝/ W v ı F 2 Sj. Ő /g, we arrive at a sequence of nested
spaces

Vr
j0
� Vr

j0C1 � : : : � Vr
J :

Setting Ij WD f1; : : : ; dim Sj. Ő /g, we denote by Bj
i, i 2 Ij, the set of L2-normalized

B-spline basis functions for the space Sj. Ő /. Define now the positive definite
operator Pj W L2.˝/! Vr

j as

Pj WD
X
i2Ij

. � ;Bj
i ı F�1/L2.˝/ Bj

i ı F�1: (28)

Corollary 5 For the basis fBj
i ıF�1; i 2 Ijg, the operators Pj and the L2-projectors

Oj are spectrally equivalent for any j.

Proof The assertion follows by combining (11), (14), with Remark 3.7.1 from [37],
see [10] for the main ingredients. �

Finally, we obtain an explicit representation of the preconditioner CJ in terms of
the mapped spline bases for Vr

j , j D j0; : : : ; J,

CJ D
JX

jDj0

2�2jr
X
i2Ij

. � ;Bj
i ı F�1/L2.˝/ Bj

i ı F�1: (29)

Note that this preconditioner involves all B-splines from all levels j with an
appropriate scaling, i.e., in fact a properly scaled generating system for Vr

J .

Remark 6 The hierarchical basis (HB) preconditioner introduced for n D 2 in
[54] for piecewise linear B-splines fits into this framework by choosing Lagrangian
interpolants in place of the projectors Pj in (23). However, since these operators
do not satisfy (P3) in Properties 2, they do not yield an asymptotically optimal
preconditioner for n � 2. Specifically, for n D 3, this preconditioner does not
have an effect at all.
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So far we have not explicitly addressed the dependence of the preconditioned
system on p. Since all estimates in Theorem 1 which enter the proof of optimality
depend on p, it is to be expected that the absolute values of the condition numbers,
i.e., the values of the constants, depend on and increase with p. Indeed, in the
next section, we show some numerical results which also aim at studying this
dependence.

2.3 Realization of the BPX Preconditioner and Numerical
Results

Now we are in the position to describe the concrete implementation of the BPX
preconditioner. Its main ingredient are linear intergrid operators which map vectors
and matrices between different grids. Specifically, we need to define prolongation
and restriction operators.

Since Vr
j � Vr

jC1, each B-spline Bj
i on level j can be represented by a linear

combination of B-splines BjC1
k on level j C 1. Arranging the B-splines in the set

fBj
i; i 2 Ijg into a vector Bj in a fixed order, this relation denoted as refinement

relation can be written as

Bj D IjC1
j BjC1 (30)

with prolongation operator IjC1
j from the trial space Vr

j to the trial space Vr
jC1. The

restriction Ij
jC1 is then simply defined as the transposed operator, i.e., Ij

jC1 D .IjC1
j /T .

In case of piecewise linear B-splines, this definition coincides with the well known
prolongation and restriction operators from finite element textbooks obtained by
interpolation, see, e.g., [8].

We will exemplify the construction in case of quadratic and cubic B-splines on
the interval, see, e.g., [7], as follows. We equidistantly subdivide the interval Œ0; 1�
into 2j subintervals and obtain 2j and 2j C 1, respectively, B-splines for p D 2; 3

and the corresponding quadratic and cubic spline space Vr
j which is given on this

partition, respectively, see Fig. 1 for an illustration. Note that the two boundary
functions which do not vanish at the boundary were removed in order to guarantee
that Vr

j � Hr
0.˝/. Moreover, recall that the B-splines are L2 normalized according

to (13) which means that Bj
i is of the form Bj

i.�/ D 2j=2B.2j� � i/ if Bj
i is an interior

function, and correspondingly for the boundary functions.
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Fig. 1 Quadratic (p D 2) (left) and cubic (p D 3) (right) L2-normalized B-splines (see (13)) on
level j D 3 on the interval Œ0; 1�, yielding basis functions for Vr

j � Hr
0.˝/

In case of quadratic B-splines (p D 2), the restriction operator Ij
jC1 reads

Ij
jC1 D 2�1=2

2
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2 R
2j�2jC1

:

For cubic B-splines (p D 3), it has the form

Ij
jC1 D 2�1=2

2
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2 R
.2jC1/�.2jC1C1/:

The normalization factor 2�1=2 stems from the L2-normalization (13). The matrix
entries are scaled in the usual fashion such that their rows sum to two. From
these restriction operators for one dimensions, one obtains the related restriction
operators on arbitrary unit cubes Œ0; 1�n via tensor products. Finally, we set IJ

j WD
IJ

J�1IJ�1
J�2 � � � IjC1

j and Ij
J WD IjC1

j IjC2
jC1 � � � IJ

J�1 to define prolongations and restrictions
between arbitrary levels j and J.
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In order to derive the explicit form of the discretized BPX-preconditioner, for
given functions uJ; vJ 2 VJ with expansion coefficients uJ;k and vJ;`, respectively,
we conclude from (29) that

.CJuJ; vJ/L2.˝/ D
X

k;`2IJ

uJ;kvJ;`.CJ.B
J
k ı F�1/;BJ

` ı F�1/L2.˝/

D
X

k;`2IJ

uJ;kvJ;`

JX
jDj0

2�2jr
X
i2Ij

.BJ
k ı F�1;Bj

i ı F�1/L2.˝/

� .Bj
i ı F�1;BJ

` ı F�1/L2.˝/:

Next, one can introduce the mass matrix MJ D Œ.BJ
k ı F�1;BJ

` ı F�1/L2.˝/�k;` and
obtains by the use of restrictions and prolongations

.CJuJ ; vJ/L2.˝/ D
JX

jDj0

2�2jruT
J MJIJ

j Ij
JMJvJ :

The mass matrices which appear in this expression can be further suppressed since
MJ is spectrally equivalent to the identity matrix. Finally, the discretized BPX-
preconditioner to be implemented is of the simple form

CJ D
JX

jDj0

2�2jrIJ
j Ij

J ; (31)

involving only restrictions and prolongations. A further simple improvement can
be obtained by replacing the scaling factor 2�2jr by diag.Aj/

�1, where diag.Aj/

denotes the diagonal matrix built from the diagonal entries of the stiffness matrix
Aj. This diagonal scaling has the same effect as the levelwise scaling by 2�2jr but
improves the condition numbers considerably, particularly if parametric mappings
are involved. Thus, the discretized BPX-preconditioner takes on the form

CJ D
JX

jDj0

IJ
j diag.Aj/

�1Ij
J (32)

which we will use in the subsequent computations presented in Tables 1 and 2. If the
condition number �.Aj0 / is already high in absolute numbers on the coarsest level
j0, it is worth to use its exact inverse on the coarse grid, i.e., to apply instead of (32)
the operator

CJ D IJ
j0A
�1
j0 Ij0

J C
JX

jDj0C1
IJ

j diag.Aj/
�1Ij

J ;
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see [12, 46]. Another substantial improvement of the BPX-preconditioner can
be achieved by replacing the diagonal scaling on each level by, e.g., a SSOR
preconditioning as follows. We decompose the system matrix as Aj D Lj C
Dj C LT

j with the diagonal matrix Dj, the lower triangular part Lj, and the upper
triangular part LT

j . Then we replace the diagonal scaling on each level of the BPX-
preconditioner (32) by the SSOR preconditioner, i.e., instead of (32) we apply the
preconditioner

CJ D
JX

jDj0

IJ
j .Dj C Lj/

�TDj.Dj C Lj/
�1Ij

J : (33)

In doing so, the condition numbers can be improved impressively. In Table 3, we list
the `2-condition numbers for the BPX-preconditioned Laplacian in case of cubic B-
splines in two spatial dimensions. By comparing the numbers with those found in
Tables 1 and 2 one can infer that the related condition numbers are all reduced by a
factor about five. Note that the setup, storage and application of the operator defined
in (33) is still of optimal linear complexity.

Finally, we provide numerical results in order to demonstrate the preconditioning
and to specify the dependence on the spatial dimension n and the spline degree p. We
consider an approximation of the homogeneous Dirichlet problem for the Poisson
equation on the n-dimensional unit cube Ő D .0; 1/n for n D 1; 2; 3. The mesh on
level j is obtained by subdividing the cube j-times dyadically into 2n subcubes of
mesh size hj D 2�j. On this subdivision, we consider the B-splines of degree p D
1; 2; 3; 4 as defined in Sect. 2.1. The `2-condition numbers of the related stiffness
matrices, preconditioned by the BPX-preconditioner (32), are shown in Table 1.
The condition numbers seem to be independent of the level j, but they depend on
the spline degree p and the space dimension n for n > 1. For fourth order problems
on the sphere, corresponding results for the bi-Laplacian with and without BPX
preconditioning were presented in [43].

We study next the dependence of the condition numbers on the parametric
mapping F. We consider the case n D 2 in case of a smooth mapping (see the
plot on the right hand side of Table 2 for an illustration of the mapping). As one can
see from Table 2, the condition numbers are at most about a factor of five higher
than the related values in Table 1. Nearly the same observation holds if we replace
the parametric mapping by a C0-parametrization which maps the unit square onto
an L-shaped domain, see [11].

If we consider a singular map F, that is, a mapping that does not satisfy (11), the
condition numbers grow considerably as expected, see [11]. But even in this case,
the BPX-preconditioner with SSOR acceleration (33) is able to drastically reduce
the condition numbers of the system matrix in all examples, see Table 3.
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Table 3 Condition numbers
of the BPX-preconditioned
Laplacian for cubic B-splines
on different geometries in
case of using a BPX-SSOR
preconditioning on each level

C0-map Singular C1-map

Level Square of the L-shape of the L-shape

3 3:61 3:65 3:67 3.80

4 6:58 6:97 7:01 7.05

5 8:47 10:2 10:2 14.8

6 9:73 13:1 13:2 32.2

7 10:5 14:9 15:2 77.7

8 11:0 15:9 16:3 180

9 11:2 16:5 17:0 411

10 11:4 16:9 17:7 933

3 Wavelets and the FWT (Fast Wavelet Transform)

Returning to the abstract setting at the beginning of Sect. 2.2, it will now be specified
how to construct and realize the FWT (fast wavelet transform) for preconditioning.
I would like to emphasize at this point that wavelets are, more importantly than for
preconditioning, an appropriate theoretical tool to derive adaptive discretizations
in case of singularities in the domain or data. In fact, they enable one to not only
prove convergence of a corresponding adaptive scheme but also optimal complexity
of these schemes, see [16] and several subsequent papers or [48] for a more recent
survey.

3.1 Some Basic Notions

In view of the problem formulation (6), we need to have a wavelet basis for the space
Hr
0.˝/ and its dual. We formulate these basic properties for a general Hilbert space

H, following [18] or [38]. A wavelet basis for H, shortly wavelets, is understood
here as a collection of functions

�H WD f H;	 W 	 2 IHg � H (34)

which are indexed by elements 	 from an infinite index set IH . Each of the indices
	 comprises different information 	 D .j;k; e/ such as the refinement scale or
level of resolution j and a spatial location k D k.	/ 2 Z

n. In more than one
space dimension, the basis functions are built from taking tensor products of certain
univariate functions, and in this case the third index e contains information on the
type of wavelet. We will frequently use the symbol j	j WD j to access the resolution
level j. In the univariate case on all of R,  H;	 is typically generated by means of
shifts and dilates of a single function  , i.e.,  	 D  j;k D 2j=2 .2j � �k/, j; k 2 Z,
normalized with respect to k �kL2.R/. On bounded domains which can be represented
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as unions of mappings of tensor product domains, the structure of the functions is
essentially the same up to modifications near the boundary.

We assume that the wavelets satisfy the following crucial properties.

Riesz basis property (R): Every v 2 H has a unique expansion in terms of �H,

v D
X
	2IH

v	  H;	 DW vT �H ; v WD .v	/	2IH ; (35)

and its expansion coefficients satisfy the norm equivalence

kvk � kvT�HkH ; v 2 `2.IH/; (36)

where k � k WD k � k`2.IH/.

Locality (L): The functions  H;	 have compact support which decreases with
increasing level j D j	j, i.e.,

diam .supp H;	/ � 2�j	j: (37)

Cancellation property (CP): There exists an integer Qd D QdH such that

hv;  H;	i <� 2�j	j.n=2�n=pCQd/jvjW Qd
p .supp  H;	/

: (38)

This means that integrating against a wavelet has the effect of taking an Qmth order
difference which annihilates the smooth part of v. This property is for wavelets
defined on Euclidean domains typically realized by constructing �H in such a way
that it possesses a dual or biorthogonal basis Q�H � H0 such that the multiresolution
spaces QSj WD spanf Q H;	 W j	j < jg contain all polynomials of order Qm. Here dual
basis means that h H;	; Q H;�i D ı	;� , 	; � 2 IH .

A few remarks on these properties should be made. In (R), the norm equiva-
lence (36) is crucial since it means control over a function measured in k � kH from
above and below by its expansion coefficients: small changes in the coefficients only
cause small changes in the function. Together with the locality (L), this also means
that local changes stay local. This stability is an important feature which is used for
deriving optimal preconditioners. Finally, the cancellation property (CP) entails that
smooth functions have small wavelet coefficients which, on account of (36) may be
neglected in a controllable way. Moreover, (CP) can be used to derive quasi-sparse
representations of a wide class of operators which is important for compression
purposes, see, e.g., [48].

By duality arguments one can show that (36) is equivalent to the existence of a
biorthogonal collection which is dual or biorthogonal to �H ,

Q�H WD f Q H;	 W 	 2 IHg � H0; h H;	; Q H;�i D ı	;�; 	; � 2 IH ; (39)
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which is a Riesz basis for H0, that is, for any Qv D QvT Q�H 2 H0 one has

k Qvk � k QvT Q�HkH0 (40)

see [19]. Here the tilde expresses that the collection Q�H is a dual basis to a primal
one for the space identified by the subscript, so that Q�H D �H0 . Here and in the
following, we will view �H both as in (34) as a collection of functions as well as
a (possibly infinite) column vector containing all functions always assembled in
some fixed unspecified order. For a countable collection of functions � and some
single function � , the term h�; �i is then the column vector with entries h
; �i,

 2 �, and correspondingly h�;�i the row vector. For two collections �;˙ , the
quantity h�;˙i is then a (possibly infinite) matrix with entries .h
; �i/
2�; �2˙ for
which h�;˙i D h˙;�iT . This also implies for a (possibly infinite) matrix C that
hC�;˙i D Ch�;˙i and h�;C˙i D h�;˙iCT .

In this notation, the biorthogonality or duality conditions (39) can be expressed
shortly as

h�; Q�i D I (41)

with the infinite identity matrix I.
Wavelets with the above properties can be obtained in the following way. We start

from an anchor basis � D f 	 W 	 2 I D IHg which is a Riesz basis for L2.˝/,
meaning that � is scaled such that k 	kL2.˝/ � 1. Moreover, its dual basis Q� is
also a Riesz basis for L2.˝/. � and Q� are constructed in such a way that rescaled
versions of both bases�; Q� form Riesz bases for a whole range of (closed subspaces
of) Sobolev spaces Hs WD Hs.˝/, for 0 < s < �; Q� , respectively, or subspaces of
these. Consequently, one can derive that for each s 2 .� Q�; �/ the collection

�s WD f2�sj	j 	 W 	 2 Ig DW D�s� (42)

is a Riesz basis for Hs [18], i.e., it holds

kvk � kvT�skHs ; v 2 `2.I/; (43)

for each s 2 .� Q�; �/. Such a scaling represented by a diagonal matrix Ds introduced
in (42) will play an important role later on. Concrete constructions of wavelet bases
with the above properties for parameters �; Q� � 5=2 can be found in [22] which
cover the situation in (6) for r D 1; 2.
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3.2 Multiscale Decomposition of Function Spaces

In this section, the basic construction principles of the biorthogonal wavelets with
properties (R), (L) and (CP) are summarized, see, e.g., [18]. Their cornerstones are
multiresolution analyses of the function spaces under consideration as in Sect. 2.2
and the concept of stable completions. These concepts are free of Fourier techniques
and can therefore be applied to derive constructions of wavelets on domains or
manifolds which are subsets of Rn.

Multiresolution of L2 (univariate case). Practical constructions of wavelets
typically start out with multiresolution analyses of function spaces. Consider a
multiresolution S of L2 which consists of closed subspaces Sj of L2, called trial
spaces, such that they are nested and their union is dense in L2,

Sj0 � Sj0C1 � : : : � Sj � SjC1 � : : : L2; closL2

� 1[
jDj0

Sj

�
D L2: (44)

The index j is the refinement level which appeared already in the elements of the
index set I in (34), starting with some coarsest level j0 2 N0. We abbreviate for a
finite subset � � L2 the linear span of � as

S.�/ D spanf�g:

Typically the multiresolution spaces Sj have the form

Sj D S.˚j/; ˚j D f
j;k W k 2 �jg; (45)

for some finite index set �j, where the set f˚jg1jDj0
is uniformly stable in the sense

that

kck`2.�j/ � kcT˚jkL2 ; c D fckgk2�j 2 `2.�j/; (46)

holds uniformly in j. Here we have used again the shorthand notation

cT˚j D
X
k2�j

ck
j;k

and ˚j denotes both the (column) vector containing the functions 
j;k as well as the
set of functions (45).

The collection ˚j is called single scale basis since all its elements live only on
one scale j. In the present context of multiresolution analysis, ˚j is also called
generator basis or shortly generators of the multiresolution. We assume that the

j;k are compactly supported with

diam.supp
j;k/ � 2�j: (47)



270 A. Kunoth

It follows from (46) that they are scaled such that

k
j;kkL2 � 1 (48)

holds. It is known that nestedness (44) together with stability (46) implies the
existence of matrices Mj;0 such that the two-scale relation

˚j D MT
j;0˚jC1 (49)

holds. Any set of functions satisfying an equation of this form, the refinement or
two-scale relation, will be called refinable. The matrices Mj;0 are up to boundary
modifications exactly the intergrid operators occurring in (30).

Denoting by ŒX;Y� the space of bounded linear operators from a normed linear
space X into the normed linear space Y, one has that

Mj;0 2 Œ`2.�j/; `2.�jC1/�

is uniformly sparse which means that the number of entries in each row or column
is uniformly bounded. Furthermore, one infers from (46) that

kMj;0k D O.1/; j � j0; (50)

where the corresponding operator norm is defined as

kMj;0k WD sup
c2`2.�j/; kck`2.�j/D1

kMj;0ck`2.�jC1/:

Since the union of S is dense in L2, a basis for L2 can be assembled from
functions which span any complement between two successive spaces Sj and SjC1,
i.e.,

S.˚jC1/ D S.˚j/˚ S.�j/ (51)

where

�j D f j;k W k 2 rjg; rj WD �jC1 n�j: (52)

The functions �j are called wavelet functions or shortly wavelets if, among other
conditions detailed below, the union f˚j [ �jg is still uniformly stable in the sense
of (46). Since (51) implies S.�j/ � S.˚jC1/, the functions in �j must also satisfy a
matrix-vector relation of the form

�j DMT
j;1˚jC1 (53)
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with a matrix Mj;1 of size .#�jC1/ � .#rj/. Furthermore, (51) is equivalent to the
fact that the linear operator composed of Mj;0 and Mj;1,

Mj D .Mj;0;Mj;1/; (54)

is invertible as a mapping from `2.�j [ rj/ onto `2.�jC1/. One can also show that
the set f˚j [ �jg is uniformly stable if and only if

kMjk; kM�1j k D O.1/; j!1: (55)

The particular cases that will be important for practical purposes are when not only
Mj;0 and Mj;1 are uniformly sparse but also the inverse of Mj. We denote this inverse
by Gj and assume that it is split into

Gj DM�1j D
 

Gj;0

Gj;1

!
: (56)

A special situation occurs when Mj is an orthogonal matrix,

Gj D M�1j D MT
j

which corresponds to the case of L2 orthogonal wavelets [25]. A systematic
construction of more general Mj, Gj for spline-wavelets can be found in [22], see
also [18] for more examples, including the hierarchical basis.

Thus, the identification of the functions �j which span the complement of
S.˚j/ in S.˚jC1/ is equivalent to completing a given refinement matrix Mj;0 to an
invertible matrix Mj in such a way that (55) is satisfied. Any such completion Mj;1

is called stable completion of Mj;0. In other words, the problem of the construction
of compactly supported wavelets can equivalently be formulated as an algebraic
problem of finding the (uniformly) sparse completion of a (uniformly) sparse matrix
Mj;0 in such a way that its inverse is also (uniformly) sparse. The fact that inverses
of sparse matrices are usually dense elucidates the difficulties in the constructions.
Constructions that yield compactly supported wavelets are particularly suited for
computations in numerical analysis.

Combining the two-scale relations (49) and (53), one can see that Mj performs a
change of bases in the space SjC1,

 
˚j

�j

!
D
 

MT
j;0

MT
j;1

!
˚jC1 D MT

j ˚jC1: (57)
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Fig. 2 Nonzero pattern of matrices Mj (left) and Gj (right) for boundary-adapted B-splines of
order d D 2 (degree p D 1) as generators and duals of order Qd D 4

Conversely, applying the inverse of Mj to both sides of (57) results in the
reconstruction identity

˚jC1 D GT
j

 
˚j

�j

!
D GT

j;0˚j CGT
j;1�j: (58)

An example of the structure of the matrices Mj and Gj is given in Fig. 2.
Fixing a finest resolution level J, one can repeat the decomposition (51) so that

SJ D S.˚J/ can be written in terms of the functions from the coarsest space supplied
with the complement functions from all intermediate levels,

S.˚J/ D S.˚j0 /˚
J�1M
jDj0

S.�j/: (59)

Thus, every function v 2 S.˚J/ can be written in its single-scale representation

v D .cJ/
T˚J D

X
k2�J

cJ;k
J;k (60)

as well as in its multi-scale form

v D .cj0 /
T˚j0 C .dj0 /

T�j0 C � � � C .dJ�1/T�J�1 (61)



Multilevel Preconditioning for Variational Problems 273

with respect to the multiscale or wavelet basis

� J WD ˚j0 [
J�1[
jDj0

�j DW
J�1[

jDj0�1
�j (62)

Often the single-scale representation of a function may be easier to compute and
evaluate while the multi-scale representation allows one to separate features of
the underlying function characterized by different length scales. Since therefore
both representations are advantageous, it is useful to determine the transformation
between the two representations, commonly referred to as the Wavelet Transform,

TJ W `2.�j/! `2.�j/; dJ 7! cJ ; (63)

where

dJ WD .cj0 ;dj0 ; : : : ;dJ�1/T :

The previous relations (57) and (58) indicate that this will involve the matrices Mj

and Gj. In fact, TJ has the representation

TJ D TJ;J�1 � � �TJ;j0 ; (64)

where each factor has the form

TJ;j WD



Mj 0
0 I.#�J�#�jC1/

�
2 R

.#�J /�.#�J/: (65)

Schematically TJ can be visualized as a pyramid scheme

Mj0;0 Mj0C1;0 MJ�1;0

cj0 �! cj0C1 �! cj0C2 �! � � � cJ�1 �! cJ

Mj0;1 Mj0C1;1 MJ�1;1

% % % � � � %
dj0 dj0C1 dj0C2 dJ�1

(66)

Accordingly, the inverse transform T�1J can be written also in product structure (64)
in reverse order involving the matrices Gj as follows:

T�1J D T�1J;j0 � � �T�1J;J�1; (67)



274 A. Kunoth

where each factor has the form

T�1J;j WD



Gj 0
0 I.#�J�#�jC1/

�
2 R

.#�J /�.#�J/: (68)

The corresponding pyramid scheme is then

GJ�1;0 GJ�2;0 Gj0;0

cJ �! cJ�1 �! cJ�2 �! � � � �! cj0

GJ�1;1 GJ�2;1 Gj0;1

& & & � � � &
dJ�1 dJ�2 dJ�1 dj0

(69)

Property (55) and the fact that Mj and Gj can be applied in .#�jC1/ operations
uniformly in j entails that the complexity of applying TJ or T�1J using the pyramid
scheme is of order O.#�J/ D O.dim SJ/ uniformly in J. For this reason, TJ

is called the Fast Wavelet Transform (FWT). Note that one should not explicitly
assemble TJ or T�1J . In fact, due to the particular band structure of Mj and Gj, this
would result in matrices with O.J #�J/ entries. In Table 4 at the end of this section,
spectral condition numbers for the FWT for different constructions of biorthogonal
wavelets on the interval computed in [46] are displayed.

Since [j�j0Sj is dense in L2, a basis for the whole space L2 is obtained when
letting J !1 in (62),

� WD
1[

jDj0�1
�j D f j;k W .j; k/ 2 Ig; �j0�1 WD ˚j0

I WD ˚fj0g ��j0

�[
1[

jDj0

˚fjg � rj
�
:

(70)

Theorem 7 ([18]) The multiscale transformations TJ are well-conditioned in the
sense

kTJk; kT�1J k D O.1/; J � j0; (71)

if and only if the collection � defined by (70) is a Riesz basis for L2.

A detailed construction of the dual wavelets Q� , can be found in [18, 39].

Multiresolution of Sobolev spaces. Let now S be a multiresolution sequence
consisting of closed subspaces of Hs with the property (44) whose union is
dense in Hs. The following result from [18] ensures under which conditions norm
equivalences hold for the Hs-norm.



Multilevel Preconditioning for Variational Problems 275

Theorem 8 Let f˚jg1jDj0
and f Q̊ jg1jDj0

be uniformly stable, refinable, biorthogonal
collections. If the Jackson-type estimate

inf
vj2Sj
kv � vjkL2

<� 2�sjkvkHs ; v 2 Hs; 0 < s � Nd; (72)

and the Bernstein inequality

kvjkHs <� 2sjkvjkL2 ; vj 2 Sj; s < Nt; (73)

hold for

Sj D
�

S.˚j/

S. Q̊ j/
	

with order Nd D
�

d
Qd
	

and Nt D
�

t
Qt
	
; (74)

then for

0 < � WD minfd; tg; 0 < Q� WD minf Qd; Qtg; (75)

we have the norm equivalence

kvk2Hs �
1X

jDj0�1
22sjkh Q�j; vik2`2.rj/

; s 2 .� Q�; �/: (76)

For many applications it suffices to have established (76) only for certain s > 0

for which one only needs to require (72) and (73) for f˚jg1jDj0
. The Jackson

estimates (72) of order Qd for S. Q̊ j/ imply the cancellation properties (CP) (38), see,
e.g., [20].

Remark 9 When the wavelets live on ˝ � R
n, (72) means that all polynomials

up to order Qd are contained in S. Q̊ j/. One also says that S. Q̊ j/ is exact of order Qd.
Because of the biorthogonality conditions, this implies that the wavelets  j;k are
orthogonal to polynomials up to order Qd or have Qdth order vanishing moments. By
Taylor expansion, this in turn yields (38).

For a summary of different constructions of biorthogonal wavelets on R and
bounded domains in R

n, see, e.g., [39]. We display spectral condition numbers for
the FWT for two different constructions of biorthogonal wavelets on the interval in
Table 4. The first column denotes the finest level on which the spectral condition
numbers of the FWT are computed. The next column contains the numbers for the
construction of biorthogonal spline-wavelets on the interval from [22] for the case
d D 2; Qd D 4 while the last column displays the condition numbers for a scaled
version derived in [12]. We observe that the absolute numbers stay constant and low
even for high levels j. We will see later in Sect. 3.3 how the transformation TJ is
used for preconditioning.
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Table 4 Computed spectral condition numbers for the FWT on Œ0; 1� for different constructions of
biorthogonal wavelets on the interval [46]

j �2.TDKU/ �2.TB/

4 4.743e+00 4.640e+00

5 6.221e+00 6.024e+00

6 8.154e+00 6.860e+00

7 9.473e+00 7.396e+00

8 1.023e+01 7.707e+00

9 1.064e+01 7.876e+00

10 1.086e+01 7.965e+00

j �2.TDKU/ �2.TB/

11 1.097e+01 8.011e+00

12 1.103e+01 8.034e+00

13 1.106e+01 8.046e+00

14 1.107e+01 8.051e+00

15 1.108e+01 8.054e+00

16 1.108e+01 8.056e+00
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Fig. 3 Primal wavelets for d D 2 on Œ0; 1� (left) and on a sphere as constructed in [40] (right)

We see in Fig. 3 some primal biorthogonal wavelets of order d D 2 which consist
of piecewise linear B-splines. These can be employed in the construction in wavelets
on manifolds [24] which were optimized and implemented to construct biorthogonal
wavelet bases on the sphere in [40], see the right graphic in Fig. 3.

3.3 Elliptic Boundary Value Problems in Wavelet Coordinates

We now derive a representation of the elliptic boundary value problem (6) in terms
of (initially infinite) wavelet coordinates.

Let for H D Hr
0.˝/ the collection�H be a wavelet basis with corresponding dual

Q�H which satisfies the properties (R), (L) and (CP) from Sect. 3.1. Expanding the
solution u D uT�H , the right hand side f D fT Q�H and recalling the definition of A
in (6), the wavelet representation of the elliptic boundary value problem (6) is given
by

Au D f (77)
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where

A WD a.�H; �H/; f WD h�H; f i: (78)

Then the mapping property (5) and the Riesz basis property (R) yield the following
fact.

Proposition 10 The infinite matrix A is a boundedly invertible mapping from `2 D
`2.IH/ into itself, and one has

kvk � kAvk; v 2 `2: (79)

The proof follows by combining the isomorphism relation (5) for the elliptic
operator with the Riesz basis property (43). This entails the following consequence
with respect to preconditioning. Let for I D IH the symbol � denote any finite
subset of the index set I. For the corresponding set of wavelets�� WD f 	 W 	 2 �g,
denote by S� WD span�� the respective finite-dimensional subspace of H. For the
wavelet representation of A in terms of ��, A� WD a.��; ��/, we then have that
�2.A�/ � 1 independent of �, on account of the ellipticity of the operator. In other
words, representations of A with respect to properly scaled wavelet bases for H
entail well-conditioned system matrices A� independent of�.

Fast wavelet transform. We briefly explain now in the situation of uniform
refinements, i.e., when S.˚J/ D S.� J/, how the FWT TJ from (64) can be used for
preconditioning linear elliptic operators, together with a diagonal scaling induced
by the norm equivalence (76) [21]. We recall the notation from Sect. 3.2 where
the wavelet basis is in fact the (unscaled) anchor basis from Sect. 3.1. Thus, the
norm equivalence (36) using the scaled wavelet basis �H is the same as (76) in the
anchor basis. Recall that the norm equivalence (76) implies that every v 2 Hs can
be expanded uniquely in terms of the � and its expansion coefficients v satisfy

kvkHs � kDsvk`2
where Ds is a diagonal matrix with entries Ds

.j;k/;.j0;k0/
D 2sjıj;j0ık;k0 . Depending on

the order of the elliptic operator, we have H � Hr.˝/ for r D 1 or r D 2. We have,
therefore, already identified the diagonal (scaling) matrix DJ consisting of the finite
portion of the matrix D D D1 for which j0 � 1 � j � J � 1. The representation of
A with respect to the (unscaled) wavelet basis � J can be expressed in terms of the
FWT TJ , that is,

h� J;A� Ji D TT
J h˚J;A˚JiTJ ; (80)
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Table 5 Optimized spectral
condition numbers of the
operator A using tensor
products of biorthogonal
wavelets on the interval for
space dimensions n D 1; 2; 3

[12]

j n D 1 nD 2 n D 3

3 22:3 9:6 18:3

4 23:9 11:8 37:1

5 25:0 14:3 39:8

6 25:7 16:0 40:9

8 26:6 18:4

10 27:1

12 27:3

where ˚J is the single-scale basis for S.� J/. Thus, we first set up the operator
equation as in finite element settings in terms of the single-scale basis ˚J . Applying
the FWT TJ together with DJ yields that the operator

AJ WD D�1J TT
J h˚J;A˚JiTJ D�1J (81)

has uniformly bounded condition numbers independent of J. This can be seen by
combining the properties of A according to (5) with the norm equivalences (36)
and (40).

It is known that the boundary adaptations of the generators and wavelets aggra-
vate the absolute values of the condition numbers. Nevertheless, these constants
can be substantially reduced by an operator-adapted transformation which takes
into account only the coarsest discretization level and, thus, is inexpensive [12].
Numerical tests confirm that the absolute constants can further be improved by
taking instead of D�1J the inverse of the diagonal of h� J;A� Ji for the scaling in (81)
[12, 46].

In Table 5 we display the condition numbers for discretizations using the weak
form of the elliptic operator �� C I on .0; 1/n in up to three dimensions using
boundary adapted biorthogonal spline-wavelets in the case d D 2; Qd D 4 with
such a scaling and additional shifts of small eigenvalues which is an inexpensive
operation [12].

4 Conclusion and Outlook

The central theme of this paper was to present optimal multilevel preconditioners
which enable us to reduce the spectral condition number of the system matrix to
be independent of the grid spacing h. Specifically in the context of isogeometric
analysis in Sect. 2, the issue arises how the spectral condition numbers depend on
the polynomial degree p; we have seen a corresponding behaviour already in Table 1.
From a theoretical point of view, it is not clear yet how to estimate the dependence
on p and how to remedy its influence.
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Some recent results in this directions may be promising. In [29], a full geometric
multigrid method was proposed for problems in isogeometric analysis with an
increased number of smoothing steps to account for the dependence of the spectral
condition number on the polynomial degree p. A different approach is presented
with different multigrid approaches involving high-and low-order variants in [49].

I expect that the intergrid operators used in Sect. 2 will also be efficient for
isogeometric collocation methods as presented in [2] although it is not clear how
to prove optimality of the corresponding preconditioner.

This paper dealt with preconditioners for discretizations on uniform grids which
provide best approximations for PDEs with smooth solutions. In case when the
solution is not smooth, adaptivity may capture the optimal degrees of freedom when
compared to a best N-term approximation. Also in an adaptive method one has to
iteratively solve linear systems of equations which again requires a preconditioner.
For a BPX-type or FWT preconditioner, the same principles can immediately be
applied as long as the spaces generated in the adaptive process are nested as in (17).
Of course, then the intergrid operators in Sect. 2.3 have to be adapted accordingly.
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