
Automated Security Testing Framework
for Detecting SQL Injection Vulnerability

in Web Application

Nor Fatimah Awang1(&) and Azizah Abd Manaf2

1 Faculty of Defence Science and Technology,
National Defence University of Malaysia, Kuala Lumpur, Malaysia

norfatimah@upnm.edu.my
2 Advanced Informatics School (UTM AIS), UTM International Campus,

Kuala Lumpur, Malaysia
azizaham.kl@utm.my

Abstract. Today almost all organizations have changed their traditional sys-
tems and have improved their performance using web-based applications. This
process will make more profit and at the same time will increase the efficiency of
their activities through customer support services and data transactions. Usually,
web application take inputs from users through web form and send this input to
get the response from database. Modern web-based application use web data-
base to store all critical information such as user credentials, financial and
payment information, company statistics etc. However error in validation of user
input can cause database vulnerable to Structured Query Language Injection
(SQLI) attack. By using SQLI attack, the attackers might insert malicious code
in the user input and trying to gain access to the confidential and sensitive data
from database. Security tester need to identify the appropriate test cases before
starting exploiting SQL vulnerability in web-based application during testing
phase. Identifying the test cases of a web application and analyzing the test
results of an attack are important parts and consider as critical issues that affects
the effectiveness of security testing. Thus, this research focused on the devel-
oping a framework for testing and detecting SQL injection vulnerability in web
application. In this research, test cases will be generated automatically based on
SQLI attack pattern and then the results will be executed automatically based on
generated test cases. The primary focus in this paper is to develop a framework
to automate security testing based on input injection attack pattern. To test our
framework, we install a vulnerable web application and test result shows that the
proposed framework can detect SQLI vulnerability successfully.

Keywords: Security testing � Penetration testing � Test case generation

1 Introduction

Web application systems are one of the most ubiquitous software systems in use today.
Since they appeared they have grown quickly and have evolved faster than other
software systems. More than one billion people worldwide using the Internet and web

© Springer International Publishing Switzerland 2015
H. Jahankhani et al. (Eds.): ICGS3 2015, CCIS 534, pp. 160–171, 2015.
DOI: 10.1007/978-3-319-23276-8_14

applications as their daily routine activities for a variety of reasons, such as commu-
nicating with others, conduct research, shopping, banking and electronic commerce [1].
The web application is consider both, as a communication and a source of information
[2]. It offers a collection of various services and resources such as customer support
services, online banking and data transactions [2]. Most of the organizations use the
web applications to make more profit and at the same time to increase the efficiency of
their activities. The growth of these applications gave a high impact and business
opportunity to the organization. As web applications become adopted by more and
more organizations, they have become more complex and sophisticated. In many cases
their success is crucial for the success of the organizations. Thus ensuring security of
the Web application systems is a big concern for organizations.

Web application vulnerabilities represent huge problems for companies and orga-
nizations. These vulnerabilities leave organizations’ web applications exposed to attack
and majority of all security problems in web application is caused by string based
injection through web form such as SQL injection and cross site scripting. SQL
injection vulnerabilities have been described as one of the most serious attacks for Web
applications [3, 4]. SQL injection vulnerabilities are based on injection strings input
into database to construct SQL queries and may allow an attacker to extract data from
database. A web application is consider vulnerable to an SQL injection attack if an
attacker is able to insert SQL statements into an existing SQL query of the application
and extract sensitive and confidential data from database. This SQL injection vulner-
ability usually occurs when web application does not properly sanitize the user input.

With the majority of vulnerability exists in web applications today, it is important
to evaluate and detect the vulnerability of web application before it is sent to production
[5]. Detecting and preventing vulnerabilities in web application has become an
important concern for organizations. Many organizations are starting to take initiatives
to prevent these types of attacks. To minimize the probability of vulnerabilities exist in
web applications, organizations need some methodologies or approaches to increase
efforts to protect against web-based application attack [5, 6]. Therefore, organizations
have a big task to implement security testing methodologies into the software devel-
opment life cycle. The purpose of security testing is to find any security weaknesses or
vulnerabilities within an application and document all the vulnerabilities to help
developer to fix them. In this paper we develop a framework for testing and detection
SQL injection vulnerabilities in web applications. We automate the process of security
testing based on input injection attack pattern. We separated the framework into three
stages. (i) Develop Test Cases Generator which is used to generate test cases. In the
first stage, we apply permutation technique in order to generate test cases automati-
cally; (ii). Develop Attack Generator. This generator will be used to automate the
injection attack process based on input generated in the first stage. (iii). Response
Generator. The goal of response generator is to analyze and determine whether an
attempted attack has been successful or not. Some manual work is still required before
automating the testing process. The process of modeling test case generation may not
be very time consuming if the tester has knowledge about the internal structure of the
application and type of SQL injection vulnerabilities.

This idea is using penetration testing framework adapted from Open Web Appli-
cation Security Project (OWASP) and security testing lifecycle as shown in Fig. 1 [6–8].

Automated Security Testing Framework 161

On the middle of Fig. 1, by selecting and combining some components in penetration
testing framework and security testing lifecycle, we proposed the new framework to
automate the security testing in web application. In this paper, we are focusing on
SQLIA due to the common vulnerabilities that have evolved in the last decade. The rest
of the paper, we follow the idea of developing our framework. Our framework closely
related to [7, 9, 10].

The structure of this paper is as follows. Section 2 briefly describes the background
of SQL injection attack. Section 3 discusses the proposed framework, Sect. 4 presents
test result and Sect. 5 presents the conclusion.

2 Background of SQL Injection Attack (SQLIA)

SQL injection attacks are one of the topmost threats for applications written for the
Web. In OWASP listing, SQLIA is always appear in top ten list. These attacks are
launched through specially crafted user input on web applications that use input string
operations to construct SQL queries [11]. These attacks used by attackers to steal data
from back-end database of web application. It takes the advantage of dynamic input of
web applications that allow users to insert data such as login form and registration
page. This type of attack usually takes place when attackers insert some special code
into web form. Online forms such as login prompts, search enquiries, guest book
and registration forms are always the main target of SQL injection vulnerabilities.

Fig. 1. Transition to new framework

162 N.F. Awang and A.A. Manaf

The simple test to check for SQLIA is to append ‘OR 1 = 1’ [12] or just single quote (‘)
to any input of any form and wait for the data response returned. The response could be
error message or any information that may give some clue to the attackers to con-
ducting next step of attack. In the rest of this section, we discuss three important
characteristics of SQLIAs that we use for describing SQLIA: how SQL works,
injection based on attack input, injection based on attack intend and injection based on
SQL types.

2.1 How SQL Works

SQL is stand for Structure Query Language and originally developed in the early
1970’s by Edgar. SQL is used for accessing database servers including MySQL, Oracle
and SQL server. Web programming language such as Java, ASP.NET and PHP provide
various methods for constructing and executing SQL statements. In addition, SQL
language is a communication way between users and database in order to allow the user
to interact with database. SQL statement can modify the structure of databases and
manipulate the contents of databases [16].

2.2 SQL Injection Attack Based on Input Source

Malicious SQL statements can be introduced into a vulnerable application using many
different input mechanisms. In this section, we explain the most common mechanisms.
Table 1 explains the most common input that usually used by attackers [12–15].

Table 1. SQLIA based on input source

Classification Description

Injection through user
input

Injects malicious SQL commands into user input query in web form
based on GET and POST parameter.

Injection through
cookies

Injects malicious command and modified cookies variables
containing SQLIA. Cookies are files used for an origin website
and generated by website and send this state information to a
user’s browser or client machine. This state information can be
used for authentication or identification of a user session. Cookie
variables sometimes are not properly sanitized and can be used to
bypass authentication or make any SQL query by injecting
arbitrary SQL code.

Injection through server
variables

Server variables are components of the message header that contain
HTTP header, network header and environmental variable. They
define the operating parameters for HTTP transaction such as
request and response information. By using the request and
response field, attackers can submit arbitrary input and exploit
through HTTP header.

Second order injection This injection occurs when data input stored in a place and then used
in a different SQL query without correct filtering or without using
parameterized queries

Automated Security Testing Framework 163

2.3 SQL Injection Attack Based on Attack Intend

SQLIA can also be characterized based on the goal, or intent, of the attacker. Attacks
have been characterized by their intent are summarized in Table 2 [9, 12–14].

2.4 SQL Injection Attack Based on Attack Techniques

There are a variety of techniques that attackers can use to perform these attacks
[9, 12–14]. The most common SQLIA based on the attack type are summarized in
Table 3. The different techniques of attacks are generally not performed in isolation.
Attackers may use and combine these techniques in order to achieve several attack
types based on attackers’ goal. In this paper, we just summarize all possible attack
without writing detail. These types of attacks will be used in the next section to
generate test case generation.

3 Our Proposed Framework

As shown in Fig. 1, our proposed framework adapted from penetration model and
security testing lifecycle model. In our framework, we develop three main components
and Fig. 2 shows our proposed framework.

1. Input Generator - input generator component is used to generate test cases based on
injection attack pattern. We apply permutation technique in order to generate test
cases automatically [17].

Table 2. SQLIA based on attack intend

Classification Description

Identifying injectable
parameter

The first step to identify SQLI vulnerabilities is to identify which
input parameter values are likely to have vulnerabilities into SQL
query statements. Attackers will use their knowledge to discover
which parameters and user input fields are vulnerable to SQLIA

Extracting data The goal of these types of attack is to extract data values from
database. Attackers usually use GET and POST method to extract
response from web server.

Adding or modifying To add or change information in database
Performing denial of
Service

To shutdown, locking or dropping database. Attackers can extract
or dump the complete database by using “UNION” and
“SELECT” commands.

Bypassing
authentication

Attackers occurs use these types of attacks to inject some malicious
code such as ‘OR 1 = 1’ into login form and try to bypass
database and application authentication mechanism

Executing remote
commands

To execute arbitrary commands on the database including stored
procedure or functions

Determine database
schema

Attackers use these types of attacks to obtain information about
table names, column names, column type, etc.

164 N.F. Awang and A.A. Manaf

2. Attack Generator - this generator will be used to automate the injection attack
process based on input or test cases generated in the first phase.

Table 3. SQLIA based on attack technique

Classification Description

Tautologies Inject code to one or more SQL query and these query will always evaluates
to true. For example:

query = “SELECT * FROM users WHERE username = 'name' AND
password = 'pwd'”; Attackers can use tautologies to exploit this peace of
code by inserting this value ‘OR 1 = 1’ to the text box of login page in
WHERE username clause. This make the system will always evaluates the
result to be true and bypass the authentication system. In addition, tautology
method can inject string type, numerical type and comment type. Once the
user has got the access, he can modify the data in the database and this can
cause a major loss for the organization.
Injection Attack = SELECT * FROM users WHERE username =″ OR 1 = 1–
AND password = ″

Illegal/Logical When faced with invalid queries, databases will provide an error message
that can give detailed information about the type of database that is
running and further information about the query. Using error messages
rejected by the database, the attacker will use to find useful data.
A number of different approaches can be used to generate invalid queries.
For example single quote string, double quote or other logical errors can
all be used to help identify information about the database.

Injection Attack = SELECT * FROM users WHERE name = '/*! – */' AND
password = ″

Piggy-backed Piggy-Backed queries are used when the attacker would like to alter the
developer statement and potentially run an entirely separate statement of
their own. Insert additional queries to be executed. The secondary queries
will be used to alter, delete or disable the application. Using the same
example as before, the syntax of SQL defines the semicolon as a delimiter
and executes the two separate statements. As a result, DROP syntax will
remove the logs table from database.

Injection Attack = SELECT * FROM users WHERE username = 'name' and
password = ″;DROP TABLE logs –

Union Injected query is joined with a safe query using the keyword UNION.
UNION statement in SQL allows an attacker to combine two separate
SELECT statements into one result. By Unioning on extra data from other
tables, or the same table in the system the attacker is able to recover
additional information. Assuming the number and types of the columns in
both the users and Email Addresses tables match, and there is no user
with the username `̀ , the database will union together the two sets. One
containing all the Email Addresses in the database, the other containing
all zero users with the username ″. The ending result is the display of all
Email Addresses in the system to the user.

Injection Attack = SELECT * FROM users WHERE username =''UNION
SELECT * from EmailAddresses – AND password = ″

Automated Security Testing Framework 165

3. Response Generator - The goal of response generator is to analyze and determine
the response and output send by web server in order to detect vulnerabilities.

3.1 Input Generator

In this section, we discuss our approach in generating test cases automatically based on
attack techniques. Based on input string in attack technique as shown in Fig. 3, we
formulate and design the attack grammar and divide into six different patterns templates
as listed below:

• #numeric = all numeric characters [0-9]
• #alphabet = all alphabet characters [A-z]

Fig. 2. Overview of proposed framework

Fig. 3. Formulation of attack file to generate test cases

166 N.F. Awang and A.A. Manaf

• #non_alphanumeric = not alphanumeric but printable (e.g.: punctuation)
• #sql = sql syntax (sql.txt)
• #operator = the operators used in various programming language (operators.txt)
• #inline_comment = various type of comments (inline_comments.txt)

Using permutation algorithm [17] this pattern generates different variations of test cases
based on SQL injection attack as shown in Fig. 4. For example, from the tautology
technique, the simple input string to inject to input field is ‘OR 1 = 1. There are a lot of
combination of tautology’s input string in order to detect vulnerability such as ‘OR
1 = 1–, ‘OR 1 = 1#, etc. Testers are allowed to modify and insert new data in pattern
template.

In this section, we follow closely related paper for test case generation. [18–20].
The main important in this phase is master_template file. Master_template file will be
executed after tester run the generator. The master template contains list of template for
the application to perform permutation to generate more test cases. To form the tem-
plate we introduce a syntax which started with ‘#’ symbol to represent the data that
needs to be replaced. The generator then generate the dictionary files that contains all
pattern files (sql.txt, operators.txt, inline_comments.txt, etc.) to form list of string
tokens for test cases. Each test case is generated automatically by using permutation
algorithm based on the input line in the master_template file. Refer to Fig. 4.

Based on a sample in Fig. 4, we can see in master_template file, there are two lines
listed and attack generator will generate the test cases separated and saved in a different
file. By applying the permutation technique algorithm, we shall get the following
results as stated in Table 4.

Fig. 4. Input generator component

Automated Security Testing Framework 167

3.2 Attack Generator

The fundamental objective of this section is the design of the framework that covers all
steps to automate the injection attack process. After the generation of test cases have
completed, Attack generator starts processing a set of target URL and target parameter.
As mentioned before, some manual work is still required before automating the attack
generator process. Tester is needed to identify target URL and target parameter. The
test cases that have been generated in phase1 will be used as an input in this phase. In
order to extract HTTP response and injecting to the target system automatically, we
develop our framework with Apache HTTP Client API. We present an efficient
algorithm to send many attacks and handle many HTTP response page as shown in
Fig. 5. Attack generator component will use input.xml file to attack to target system by
using POST or GET method and also identify which parameter is chosen to inject the
input generated test cases from previous phase [21–24].

Sample of Input.xml file

3.3 Response Generator

After an attack has been launched, the analysis of response page will be send to the
response generator. The response generator component uses attack specific response

Table 4. Test Case Generation

Test cases for line 1: Test cases for line 2:

OR 1 = 1 ‘OR 1 = 1 –

‘OR 1 = 1 #
“OR 1 = 1 –

“OR 1 = 1 #
AND 1 = 1 ‘AND 1 = 1 –

‘AND 1 = 1 #
“AND 1 = 1 –

“AND 1 = 1 #

168 N.F. Awang and A.A. Manaf

criteria to decide if the attack was successful. If the web application does not handle
exceptions or server errors, the result for SQL error description will be included in the
response page.

4 Result

This section presents the testing results that we have carried out to assess our frame-
work. For the testing of our framework, two different vulnerable web applications were
deployed locally and tested against SQLIA. This testing applications are namely as
Mutillidae and WackoPicko website. Mutillidae website has an authentication bypass
vulnerability, which allows the attacker to directly access the administrative func-
tionalities. WackoPicko is an online photo sharing website that allows users to upload,
comment and purchase pictures It is designed with a number of vulnerabilities, such as
cross-site scripting and SQL injection [11]. Our framework was deployed by setting up
Eclipse development environment with Java Program. Apache HTTP Client API
library has been installed in our machine to extract HTTP header from response page.
In test case generation phase, we generate 124 attack injection for SQL injection attack.
Each parameter will be tested with 124 test cases. In this paper, we focus on the SQL
injection vulnerability through input field such as login, search and registration field.

We test the framework with injecting attack test cases, and the results are sum-
marized in Table 5. The response results will consider vulnerable if error messages and
bypass authentication result are appeared in HTML document header. Based on testing
results, we can conclude that all input forms are vulnerable to website. Response
generator will analyze which input test cases have been generated to produce
vulnerabilities.

Fig. 5. Attack generator component

Automated Security Testing Framework 169

5 Conclusion

In this paper, we have proposed a method to generate test cases by using attack
technique pattern with applying permutation algorithm to generate it automatically.
This framework has been successfully tested and including several type of SQL
injection vulnerabilities. Our framework is able to addresses the vulnerabilities based
on results in Table 5. Future work will also be focused on extending our approach to
cover other types of vulnerabilities such as Cross Site Scripting vulnerabilities.

Acknowledgment. This work was supported by the Advanced Informatics School (AIS),
University Technology of Malaysia and National Defence University of Malaysia

References

1. Vermatt, S.: Discovering Computers 2009, Complete. Cengage Learning Course
Technology (2009)

2. Anastacio, M., Blanco, J.A., Villalba, L., Dahoud, A.: E-Government: benefits, risks and a
proposal to assessment including cloud computing and critical infrastructure. In: International
Conference on Information Technology (2013)

3. Internet World Stats, Usage and Population Statistics (2013). http://www.internetworldstats.
com/stats.htm

4. Symantec Corp.: Web Based Attacks (2013). http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/web_based_attacks_02-2009.pdf

5. Software Security Testing, Software Assurance Pocket Guide Series: Development, vol. III,
Version 1.0, 21 May 2012

6. Gu, T.-Y., Shi, Y.-S., Fang, Y.-U.: Research on software security testing. World Academy
of Science, Engineering and Technology 69, 647–651 (2010)

7. Halfond, W.G.J., Choudhary, S.R., Orso, A.: Improving penetration testing through static
and dynamic analysis. In: ICST 2009, the Second IEEE International Conference on
Software Testing, Verification and Validation, vol. 21, pp. 195–214 (2011). doi:10.1002/stvr

8. Khan, S.A., Khan, R.A.: Software security testing process: phased approach. In: Agrawal,
A., Tripathi, R.C., Do, E.Y.-L., Tiwari, M.D. (eds.) IITM 2013. CCIS, vol. 276, pp. 211–
217. Springer, Heidelberg (2013)

Table 5. Vulnerability detection result

Web
application

Parameter
involved

HTTP
method

No of test cases
injected

of vuln.
detected

WackoPicko Login Post
Get

496 20
Password
Search
Register

Mutillidae Login Post
Get

248 9
Password

170 N.F. Awang and A.A. Manaf

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/web_based_attacks_02-2009.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/web_based_attacks_02-2009.pdf
http://dx.doi.org/10.1002/stvr

9. Djuric, Z.: A black-box testing tool for detecting SQL injection vulnerabilities. In: 2013 2nd
International Conference on Informatics and Applications, ICIA 2013, pp. 216–221 (2013).
doi:10.1109/ICoIA.2013.6650259

10. Akrout, R., Alata, E., Kaaniche, M., Nicomette, V.: An automated black box approach for
web vulnerability identification and attack scenario generation. J. Braz. Comput. Soc. 20, 4
(2014). doi:10.1186/1678-4804-20-4

11. Awang, N.F., Manaf, A.A., Zainudin, W.S.: A survey on conducting vulnerability assessment
in web-based application. In: Hassanien, A.E., Tolba, M.F., Taher Azar, A. (eds.) AMLTA
2014. CCIS, vol. 488, pp. 459–471. Springer, Heidelberg (2014)

12. Halfond, W.G.J., Halfond, W.G.J., Viegas, J., Viegas, J., Orso, A., Orso, A.: A classification
of SQL injection attacks and countermeasures (2006)

13. Stuttard, D., Pinto, M.: The web application hacker’s handbook: discovering and exploiting
security flaws. Wiley Publishing, Inc., Indianapolis (2007)

14. Bisht, P., Madhusudan, P., Venkatarish-nan, V.N.: CANDID: dynamic candidate
evaluations for automatic prevention of SQL injection attacks. ACM Trans. Inf. Syst.
Secur. 13(2), 1–39 (2010). Article 14

15. Ezumalai, R., Aghila, G.: Combinatorial approach for preventing SQL injection attacks.
IEEE International Advance Computing Conference, IACC (2009)

16. Kindy, D.A., Pathan, A.S.K.: A detailed survey on various aspects of SQL injection in web
applications: Vulnerabilities, innovative attacks and remedies. Int. J. Commun. Netw. Inf.
Secur. 5, 80–92 (2013)

17. Wodarz, P.N.: Algorithms for Generating Permutations and Combinations, pp. 1–7 (2008)
18. He, K., Feng, Z., Li, X.: An attack scenario based approach for software security testing at

design stage. In: 2008 International Symposium on Computer Science and Computational
Technology, pp. 782–787. IEEE Computer Society (2008)

19. Wassermann, G., Yu, D., Chander, A., Dhurjati, D., Inamura, H., Su, Z.: Dynamic test input
generation for web applications. In: International Symposium on Software Testing and
Analysis (ISSTA), pp. 249–259 (2008)

20. Alata, E., Kaaniche, M., Nicomette, V., Akrout, R.: An automated approach to generate web
applications attack scenarios. In: Proceedings - 6th Latin-American Symposium on
Dependable Computing, LADC 2013, pp. 78–85 (2013). doi:10.1109/LADC.2013.22

21. Bozic, J., Wotawa, F.: XSS pattern for attack modeling in testing. In: 2013 8th International
Workshop on Automation of Software Test, AST 2013 - Proceedings, pp. 71–74 (2013).
doi:10.1109/IWAST.2013.6595794

22. Bozic, J., Wotawa, F.: Security testing based on attack patterns. In: Proceedings - IEEE 7th
International Conference on Software Testing, Verification and Validation Workshops,
ICSTW 2014, pp. 4–11 (2014). doi:10.1109/ICSTW.2014.58

23. Chen, J.M., Wu, C.L.: An automated vulnerability scanner for injection attack based on
injection point. In: ICS 2010 - International Computer Symposium, pp. 113–118 (2010).
doi:10.1109/COMPSYM.2010.5685537

24. Duchene, F., Richier, J., Groz, R.: KameleonFuzz: Evolutionary Fuzzing for Black-Box
XSS Detection. In: CODASPY (2014)

Automated Security Testing Framework 171

http://dx.doi.org/10.1109/ICoIA.2013.6650259
http://dx.doi.org/10.1186/1678-4804-20-4
http://dx.doi.org/10.1109/LADC.2013.22
http://dx.doi.org/10.1109/IWAST.2013.6595794
http://dx.doi.org/10.1109/ICSTW.2014.58
http://dx.doi.org/10.1109/COMPSYM.2010.5685537

	Automated Security Testing Framework for Detecting SQL Injection Vulnerability in Web Application
	Abstract
	1 Introduction
	2 Background of SQL Injection Attack (SQLIA)
	2.1 How SQL Works
	2.2 SQL Injection Attack Based on Input Source
	2.3 SQL Injection Attack Based on Attack Intend
	2.4 SQL Injection Attack Based on Attack Techniques

	3 Our Proposed Framework
	3.1 Input Generator
	3.2 Attack Generator
	3.3 Response Generator

	4 Result
	5 Conclusion
	Acknowledgment
	References

