Stream Processing on Demand
for Lambda Architectures

Johannes KroB'®™) Andreas Brunnert!, Christian Prehofer!,
Thomas A. Runkler?, and Helmut Krcmar®

! fortiss GmbH, Guerickestr. 25, 80805 Munich, Germany
{kross,brunnert,prehofer}@fortiss.org
2 Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich, Germany
thomas.runkler@siemens.com
3 Technische Universitiat Miinchen, Boltzmannstr. 3, 85748 Garching, Germany
krcmar@in.tum.de

Abstract. Growing amounts of data and the demand to process them
within time constraints have led to the development of big data systems.
A generic principle to design such systems that allows for low latency
results is called the lambda architecture. It defines that data is analyzed
twice by combining batch and stream processing techniques in order to
provide a real time view. This redundant processing of data makes this
architecture very expensive. In cases where process results are not con-
tinuously required to be low latency or time constraints lie within several
minutes, a clear decision whether both processing layers are inevitable
is not possible yet. Therefore, we propose stream processing on demand
within the lambda architecture in order to efficiently use resources and
reduce hardware investments. We use performance models as an analyti-
cal decision-making solution to predict response times of batch processes
and to decide when to additionally deploy stream processes. By the exam-
ple of a smart energy use case we implement and evaluate the accuracy
of our proposed solution.

Keywords: Lambda architecture - Big data - Performance - Model -
Evaluation

1 Introduction

With the increasing ubiquity of information and communication technology
(ICT) and the emergence of the Internet of things (IoT) the available data
amount is growing exponentially. Simultaneously, technologies have been devel-
oped to store, manage and analyze these diverse and high volumes of data, also
known as big data [30]. These circumstances allow for applying analytics in order
to gain knowledge and support decision-making. For more and more usage sce-
narios, these analytical capabilities must also meet specific time requirements
such as real-time [17]. One common approach to design big data systems that
can cover many use cases is the lambda architecture [26]. It mainly consists of a

© Springer International Publishing Switzerland 2015
M. Beltrén et al. (Eds.): EPEW 2015, LNCS 9272, pp. 243-257, 2015.
DOI: 10.1007/978-3-319-23267-6_16

244 J. Krof} et al.

batch layer and a speed layer. The former iteratively processes a set of historical
data in batches while the latter processes the arriving data stream in parallel
to incrementally analyze latest data. By joining the output of both layers query
results always reflect current data.

Nowadays, various complementary technologies with different characteristics
exist to build a big data system and there is hardly one technology solution
that fits most use cases of an organization. Although the lambda architecture
simply is a generic design framework which offers a solution for many use cases,
nonetheless, a variety of technologies can be applied for the batch or speed layer.
Examples for the batch layer are Hadoop MapReduce [5], Apache Pig [7], and
Apache Spark [9] and for the speed layer Apache Storm [10], Apache Spark
Streaming [9], Apache Samza [8], or Amazon Kinesis [2]. This multitude leads
to the development of complex system of systems, which often results in per-
formance issues and high resource requirements [14]. Furthermore, the lambda
architecture intends to process all data twice in both layers. Batch processes
also analyze data from the ground up in each iteration to ensure fault toler-
ance in case of hardware failures or human mistakes [26]. These fundamental
ideas require costly resources. For use cases where time constraints are not con-
tinuously needed or lie between several minutes, it can be often an important
question whether a speed layer is really required or not. However, this question
can usually not be answered during system development nor in test systems
under realistic workload. As stream processing heavily utilizes main memory,
the speed layer can also become an expensive investment [24].

Therefore, we propose a speed layer or stream processing, respectively, on
demand. The idea is to exclusively use batch processes as often as possible and
switch on stream processing only when batch processes are likely to exceed
response time constraints. In this way, computing power is utilized more effi-
ciently and resources can be saved as well as be available for other processes.
In case of virtualized environments, investments can be directly decreased by
reducing cloud service resources. In order to switch on stream processing at the
right time, it is inevitable to predict the response time of succeeding batch iter-
ations. For this purpose, we use performance models. They allow to describe
performance influencing factors of software systems and to predict performance
metrics such as response time, throughput and utilization by means of analyti-
cal solvers or simulation engines [13]. Therefore, we integrate estimated resource
demands into the model based on measurements from batch processes to simu-
late an accurate system behavior. This enables us to efficiently schedule stream
processes.

In this paper, we first give a detailed description of our proposed approach
in Section 2 and how we use performance models to support decision-making. In
Section 3, we validate our approach in an experiment. We describe the selected
use case, the setup and sample algorithm for the batch layer, and the prototype
performance model to predict batch processes. Afterwards, we discuss the experi-
mental results we derived for different workload scenarios. In Section 4, we reflect

Stream Processing on Demand for Lambda Architectures 245

related work in the area of the lambda architecture and, finally, conclude our
paper with providing an outlook for future work in Section 5.

2 Stream Processing On Demand

In order to make decisions about when to switch on stream processing, we use
performance models as an analytical solution. As illustrated in Figure 1, the
iterative process is divided into two main steps in which the following Sections 2.1
and 2.2 are structured. First, one batch iteration and, potentially, a concurrent
stream process are started within the lambda architecture. Second, after the
batch process has ended, a decision-making model is used to decide whether
stream processing is required in the next batch process iteration or not. Basis
of decision-making is a performance model which is used to predict the response
time of a batch process. Afterwards, the procedure is repeated.

@ Lambda architecture

A 4

| Batch process @ Decision-making model

Sl Stream process
on demand

Fig. 1. Stream Processing On Demand Process

2.1 Data Processing in the Lambda Architecture

As already mentioned, our focus is on data processing, namely batch and stream
processing, within lambda architecture and not storing data sets or results.
Figure 2 illustrates the data flow and structure of batch and speed layer that dif-
fer from each other. Starting point is a shared data source which either streams
the same data into each processing layer or gets accessed by each layer to retrieve
data. Within the batch layer, all data are stored in a data set. A special char-
acteristic of the data set is that it is append-only and data are not updated
or removed [26]. Batch processes use the data set to operate on. In doing so,
each batch process usually analyzes a huge set of historical data which leads to
response times of minutes or hours for one batch job. The results are written to
separate views, which is also considered as serving layer by Marz and Warren
[26] for batch results. Batch processes constantly run iteratively and start from
the beginning once a batch job has finished. If a batch process starts, only data
that have been created before are included. Consequently, data that arrive dur-
ing the current batch process are only included in the next new batch process.

246 J. Krof} et al.

Since all data are analyzed in each cycle, each new result view can replace its
predecessor. As the batch layer does not rely on incremental processing, it has
the advantage of being a robust system where everything can be recomputed and
reconstructed in case of hardware or software failures or human mistakes [26].

Batch layer
Data Iterative batch processing
set View
Incoming data \
Double processing Merge
Query
Speed layer
\‘| Incremental stream processing
View

Fig. 2. Composition and data flow of batch and speed layer of the lambda architecture
(adapted from Marz and Warren [26])

In contrast to the batch layer, the speed layer does not keep a record of his-
torical data and solely uses main memory. As of today, stream processes run per-
manently and analyze each incoming message. They incrementally calculate and
immediately update their result views. Thus, both layers include separated views
and, in practice, usually different technologies are used as underlying databases
because of their distinct requirements regarding read and write operations. In
order to receive a holistic result, the view of both layers have to be merged in a
query.

Although both layers process the same data, the results of queries that merge
views only reflect data that are processed once at the time of the query. The
purpose of the speed layer is to analyze the data prior to the batch layer and
enable low latency by incremental updated result views. As a result, a past
view of the speed layer can be discarded as soon as a subsequent batch job has
finished.

A typical implementation of the lambda architecture as illustrated in Figure
2 would be to use Apache Kafka [6] - a publish-subscribe messaging system -
as shared source for incoming data. For the batch layer, HDFS can be used
as data set and Hadoop MapReduce for batch processing. For storing batch
results, which Marz and Warren [26] also describe as serving layer, ElephantDB*
represents a specialized database for this purpose. For the speed layer Apache
Storm [10] is an example of an appropriate technology and Apache Cassandra
[4] of a database.

! https://github.com/nathanmarz/elephantdb

https://github.com/nathanmarz/elephantdb

Stream Processing on Demand for Lambda Architectures 247

2.2 Decision-Making Model

To decide when to switch on stream processing, we predict the response time of
succeeding batch processes and build a decision-making model. To comprehend
why it is necessary to predict the succeeding batch processes, the chronological
sequence of batch and stream processes as intended by the lambda architecture
is illustrated in Figure 3. As already mentioned, results of batch processes are
not available until they finish, while results of stream processes are incremental
and can be queried at any time. Supposing one batch process i has ended and
a decision must be made at time y on whether additional stream processes are
needed afterwards or not, the earliest point in time where results of stream pro-
cesses can be reasonably used is at time z. Stream process j considers only data
newer than time y. Therefore, a batch process is required that has analyzed data
before time y. However, the corresponding batch process j will only start after
time y and end at a given time z. Thus, a decision must already be made at time
y, if batch process k violates time-constraints so stream processes are switched
on at time y. Consequently, query results after time z will have consistently
incorporated all data.

Decision point whether batch process k will exceed
time-constraint and stream processes j and k are demanded

l

Batch process 1 Batch process j Batch process k
time < X time <y time <z
Stream process j Stream process k
time> y time > z
} >
X y z time

Fig. 3. Chronological sequence of batch and stream processes

The above mentioned response time prediction is part of our decision-making
model. Its procedure is depicted in Figure 4. Starting point is a finished batch
process iteration. The response time of the second next batch iteration is pre-
dicted by using a performance model, which takes two inputs - the time con-
straint for the duration of a batch process and the load intensity. The latter
means information about the incoming data of the batch layer. For instance,
this can be in the form of a variable distribution as modeled by the LIMBO
tool [22]. The prediction can be accomplished by means of simulation or ana-
lytical solving. If the predicted response time does not lie within the specified

248 J. Krof} et al.

Start
Batch process

(and stream process)
are completed

A 4

Load intensity
Time
constraint

Will the batch
process exceed time
constraints?

Yes
or —>
No

Start new
batch process

Predict response time of
second next batch process

Yes

Start new
stream process

Fig. 4. Decision-making model

time limitation, the model tries to start batch processing in parallel with stream
processing, otherwise the model considers batch processing only as sufficient.

3 Experimental Validation

For the evaluation of our proposed approach, we conduct a controlled experiment
which is described in the following Subsections. First, we discuss the selected use
case. Second, we list the used setup and technologies of our exemplary batch layer
as well as the sample algorithm for data processing. Afterwards, the performance
model prototype to support decision-making is presented. Finally, we evaluate
the accuracy of the inferred decision-making on the basis of three selected sce-
narios and discuss results from our observed measures.

3.1 Use Case and Design Options

To represent incoming data and their distribution, we pick the example of a
common smart energy use case as illustrated in Figure 5.

Here, several hundred wind turbines are positioned in several wind farms in
different geographic locations with long distances onshore or offshore. In order to
operate efficiently, they measure several thousand parameters per turbine such as
pressure, temperature or vibrations of rotor blades. As they are subject to various
influences, wind turbines are not always in operation and do not measure data,
for instance, if they are defect or are maintained. While onshore wind turbines
and wind farms, respectively, tend to have a time-based availability between 95-
99%, the values for offshore wind farms with distance less than 12km range from

Stream Processing on Demand for Lambda Architectures 249

Batch processing >

\ Sensor data

no~=oc

v

Stream processing

Fig. 5. Data processing of wind power facilities

67.4% to 90.4% [19]. However, wind turbines include also downtimes, if wind is
too strong or too weak which is described by the metric energy-based availabil-
ity. Faulstich et al. [20] compared time-based and energy-based availability of
wind turbines. In an extreme case where the downtime due to defects and the
downtime due to wind speed does not overlap, the energy-based availability lies
within 90.4-95,2%.

Dependent on a wind turbine’s availability, we assume it either produces a set
of measurement data with constant volume or does not produce any output data.
As a result, wind turbines generate not only immense amount of heterogeneous
data, but also variable load which makes it difficult to predict the production
rate of data. As soon as data are generated, they flow into a central data cen-
ter where they are processed. Dependent on the use case, data are handled in
different ways. They can be gathered and stored in a central repository where
batch processing can be used to extract, transform, and load (ETL) data and
to apply complex analytics. This procedure usually lies in the range of minutes
or hours and is not suitable for real-time requirements. For this purpose, stream
processing can be used to directly process data as they stream in. Here, ana-
lytical algorithms may be designed in a simpler and less complex way than at
batch processing as well as implemented in slightly different way as they produce
incremental results.

In scenarios where low latency results are required and normally stream pro-
cessing is chosen, but also analysis of historical data by batch processing need to

250 J. Krof} et al.

be incorporated for conclusive results, the lambda architecture is an appropriate
solution that allows for serving such use cases. Therefore, on both processing
layers, stream and batch, the same kind of algorithm is implemented and results
are joined.

Sensor data can be used for a variety of analytical scenarios such as for
condition monitoring, diagnostics, predictive analytics or maintenance, and load
forecasting. For our experiment, we concentrate on the latter example. Since the
introduction of energy exchange such as the continuous intraday spot market of
the European power exchange (EPEX), power can be bargained in 15-minute
intervals up to 45 minutes before delivery which enables providers as well as
consumers to efficiently act on short notice. In this case, the time-constraint
is within 15 minutes. Typical forecast methods for short-term load forecasting
include different exponential smoothing methods such as an autoregressive inte-
grated moving average (ARIMA) model [33] or recurrent neural networks [29].
Furthermore, these algorithms are often applied on a sliding window of historical
data.

Therefore, we will use this smart energy scenario as an example for our
proposed approach and generate sensor data that are processed by one central
system in similarly way as we have modeled it in a previous work [23]. The
generator produces comma-separated values (CSV) files that represent measure-
ments from wind turbines of one wind farm. Listing 1 shows the file structure
and syntax.

Listing 1. Example of generated monitoring data from wind turbines

id, timestamp, power, paraml, ... paramN
12, 2015-04-01 08:23:04.125, 12.67, valuel, ... valuel
15, 2015-04-01 08:23:03.973, 13.49, value2, ... value2
13, 2015-04-01 08:23:04.096, 12.59, value3d, ... value3

Each line represents a measurement of one wind turbine consisting of a id,
timestamp, a power value and several hundred more parameters which we gen-
erated randomly and do not include in our succeeding analytic algorithms.

3.2 Implementation of the Batch Layer

To examine the accuracy of response time prediction for batch processes, we
setup the batch layer using HDFS to store data sets and Hadoop MapReduce
for batch processing. For simplicity, we installed a single node cluster in pseudo-
distributed mode so Apache Hadoop runs only on one machine, but their dae-
mons have their own Java processes. In order to do load forecasting and apply
the data generator as mentioned in Section 3.1, we implemented a simple mov-
ing average algorithm in a Hadoop MapReduce job. It is based on an example
algorithm?.

2 https://github.com/jpatanooga/Caduceus/

https://github.com/jpatanooga/Caduceus/

Stream Processing on Demand for Lambda Architectures 251

The MapReduce programming model intends to implement one map and one
reduce function. The former takes a key/value pair as input and produces a set
of key/value pairs, whereas the latter takes a key and set of associated values
and combines the values to another smaller set [18]. In our case the map function
is implemented as

Listing 2. Map function pseudo code
map (Object keyl, String valuel):
// keyl: file name
// valuel: measurements of wind turbines of one farm
for each line 1 in value:
kv = parse(l)
emit ({kv.id, kv.timestampl}, {kv.timestamp, kv.powerl})

The function is called for each file within a given folder. It receives one
CSV file and its value, which are multiple rows of measurement data of wind
turbines. The algorithm reads every line and parses it in order to filter the id
of a wind turbine, the timestamp of the measurement and the power value that
describes the generated power to that time. Afterwards it releases a composite
key containing the id and timestamp, and the values timestamp and power. By
using a composite key Hadoop sorts the ids of wind turbines and, in a secondary
sort, the timestamp for each id. Subsequently, the reduce method results in a
simpler design as displayed in Listing 3.

Listing 3. Reduce function pseudo code

reduce (Object key, Iterator<object> values):

// key: an object containing id and timestamp
// values: power values ordered by timestamp
result = simpleMovingAverage (values)

emit (id, result)

The reduce function is called for each different wind turbine and calculates
the actual simple moving average. It receives the key object and a list of values
as input which contains timestamps and power values sorted by the former. The
function itself calculates the result and emits it with the corresponding wind
turbine id.

3.3 Performance Model Prototype

We use the Palladio component model (PCM) [12] for our performance model.
PCM is an annotated software architecture model that allows for describing per-
formance relevant factors of software architecture, execution environment and
usage profile [13]. Such performance models enable software architects and per-
formance engineers to predict performance metrics such as response time, uti-
lization or throughput by means of simulation or analytical solving.

PCM is divided into several sub-models. In the repository model, we specify
a batch process as a software component with its service effect specification
(SEFF) to describe the resource demands of the provided service. In the resource

252 J. Krof} et al.

environment model, we describe the hardware resources and processing rates on
which a batch process will be executed. The concrete assignment of modeled
batch processes to resources is determined in the allocation model. Finally, we
specify the load intensity from wind turbine measurements in the usage model.

=] MapReduce
%7 SEFF <processjob>

PassiveResourceCompartment ¢ MapReduce

ResourceDemands

ComponentParameterCompartment [dataSet BYTESIZE * 261.0428141 <CPU>
FailureOccurrenceDescriptions

< <Provides> > InfrastructureCallsCompartment

€) BatchProcess o

: void processJob(byte dataSet)

(b) Service effect specification
a) Repository mode <processJob>
(a) Repository model (SEFF) <processJob

Fig. 6. Modeling a batch process with the Palladio component model

Figure 6 shows the substantials of modeling the batch process in our per-
formance model. As shown in Figure 6a, we specify one interface BatchProcess
with the method processJob to analyze an input data set. The implementation of
the interface and its method is modeled by the component MapReduce with the
corresponding SEFF. As illustrated in Figure 6b the SEFF itself solely consists
of a CPU resource demand in dependence on an incoming data set size. The
data set size is specified in the usage model, in our case, in gigabyte.

In order to define the CPU resource demand and simulate a realistic system
behavior we integrated measurements into our performance model. Therefore,
we measured response times of the MapReduce job described in Section 3.2 while
running it. Afterwards, we used an approximation with response times, which
is also implemented by the LibReDe library [32], to estimate the required CPU
time each process takes per transaction. One transaction means exactly one
batch process that analyzes a set of messages. In our case, the resulting resource
demand we estimated is 261 as represented in Figure 6b.

In order to predict results, PCM instances must be first transferred to be
either simulated or solved analytically. Available model transformations are
a model-to-text transformation like SimuCom [12], queuing Petri nets (QPN)
transformations as well as a transformation to layered queuing networks (LQN).
Brosig et al. [13] evaluated these model transformations with regards to their
efficiency and accuracy. In our application scenario, time is critical and the model
need to be solved as efficiently as possible so resulting predictions are available

Stream Processing on Demand for Lambda Architectures 253

at an early opportunity and the next batch process can be initiated. Therefore,
we recommend the use of a model transformation to LQNs. It showed to be the
most efficient solution as it is an analytical solver [13].

The performance model prototype has the limitation that is does not reflect
the scheduling of processes itself within a cluster, for instance, as accomplished
by Apache Hadoop YARN. Therefore, we assume sufficient available resources
so batch and stream processes always run without interference.

3.4 Controlled Experiment

To conduct our experiments we run the mentioned data generator to produce
CSV files for 10 wind farms with 100 wind turbines each, whereas one wind tur-
bine approximately produces one measurement every second. Afterwards, we run
the implemented Hadoop MapReduce job which reads only data measured within
a sliding window of 24 hours. While the batch process is running, meanwhile we
determine the incoming data volume. After the batch process is finished, we pre-
dict the response time of the second next batch process using our performance
model. For the immediate succeeding batch process, we exactly know the data
volume it will process as we know the historical data distribution and tracked
new arrived data. For the batch process to be predicted, the data volume must
be estimated. Therefore, a variety of specialized tools and algorithms exist to
classify and forecast workload such as the approach by Herbst et al. [21]. As we
target an efficient solution and a short-term forecast is required, namely, only
the next point, we only use a naive forecast in this study. It does not involve any
computational overhead and simply takes the value of the latest observation as
next forecast point in contrast to other methods such as cubic smoothing splines
or ARIMA 101 that are more appropriate for scenarios with strong trends or
noises [21]. In our case, the next forecast point equals the arrived data volume
which has not been absorbed by the last batch process yet. Afterwards, we trigger
the performance models with the predicted load intensity as input, and compare
the predicted response time with the eventual measured response time.

As already mentioned, the aim is to minimize the usage of the speed layer.
The level of potential resource reductions and costs savings that can be achieved
depends on the characteristics of the underlying workload and variations in data
distributions. The effectiveness of our solution itself, however, depends on how
well the data volume is predicted and, especially, how accurate batch processes
are predicted. Therefore, we concentrate on the latter in this controlled exper-
iment and perform three selected scenarios with different load intensities by
assuming different availabilities of wind turbines based on Faulstich et al. [19,20]
to evaluate the accuracy of our solution.

In the first scenario, we assume the wind turbine availability (WTA) is con-
stant during two following batch iterations. Consequently, the measurement data
wind turbines produce do also not fluctuate so the predicted load intensity using
a naive forecast is very close to the actual measured load intensity. In the second
scenario, we assume an increase of the WTA of 5 % for the subsequent batch
process and, vice versa, we assume a decrease in a final third scenario. For each

254 J. Krof} et al.

Table 1. Measured and predicted results of batch processes

Scenario‘ WTA Fluctuation ‘ PRT MRT ‘ RE
85 % +0% 12.78 minutes 12.17 minutes 5.01 %
1 90 % +0% 13.53 minutes 13.60 minutes 0.51 %
95 % +0% 14.28 minutes 15.47 minutes 7.69 %
85 % + 5% 12.78 minutes 13.82 minutes 7.53 %
2 90 % + 5% 13.53 minutes 15.03 minutes 9.98 %
90 % -5% 13.53 minutes 12.58 minutes 7.55 %
3 95 % -5% 14.28 minutes 13.17 minutes 8.43 %

scenario, we conduct several experiments with different WTA to also validate
the prediction accuracy under different load intensities. Afterwards we compare
predicted response times (PRT) with eventual measured response times (MRT)
of the batch process and calculate the relative error (RE) of the PRT. The results
are listed in Table 1.

For a WTA of 8% and no fluctuation during the following batch process,
we predict the response time for the batch process to be 12.78 minutes. We
measured a MRT of 12.17 minutes which leads to a RE of 5.01%. For a WTA
of 90%, the RE of the predicted response time is only 0.51 % and 7.69% for a
WTA of 95%.

In the second scenario, for a 85% WTA and a 5% increase of available wind
turbines during the following batch iteration, the PRT is 12.78 minutes and the
MRT 13.82 minutes with a 7.53% RE. Here, the PRT equals the same PRT as
in the experiment for first scenario with a 85% WTA since the naive forecast,
as already mentioned, uses the last observation point, namely 85%, as next
prediction point. The same occurrence also applies for the following experiments.
The highest RE with 9.98% appeared for a WTA of 90% with +5% fluctuation
at which the PRT is 13.53 minutes and the MRT 15.03 minutes.

For a decrease of the 5% WTA in the last scenario, we measured REs in the
range similar to the former scenario. With a starting point of 90% WTA, the
PRT is 13.53 minutes and the MRT 12.58 minutes. For 95% WTA, the PRT
equals 14.28 minutes and MRT 13.17 minutes.

In our experiments, we showed that we are able to predict the response times
of a batch process or MapReduce job, respectively, with RE between 0.51% and
9.98%. With regards to our exemplary use case, power can be traded every quar-
ter of an hour in the intraday spot market. Assuming a fluctuating workload and
a maximum acceptable response time of 14 minutes remaining one minute buffer,
we would be able to accurately schedule stream processing in the second scenario,
namely, not to switch on in the first experiment and to switch on stream pro-
cessing in the second experiment as the MRT exceeds the time-constraint with
15.03 minutes. For a decreasing fluctuation, we would proper schedule stream
processing for a starting WTA of 90%. However, for the last experiment in Table
1, we would have left the speed layer switched on as the PRT lies over 14 minutes
in contrast to the MRT which is mainly caused by the naive forecast.

Stream Processing on Demand for Lambda Architectures 255

4 Related Work

Similar to our use case, Sequeira et al. [31] propose a system based on the lambda
architecture to analyze energy consumption. Martnez-Prieto et al. [25] adapted
the architecture for semantic data and Casado and Younas [15] give an extensive
review about technologies for the lambda architecture. Regarding optimization
or efficient resource usage of the architecture, however, related research mainly
focuses on the processing layers itself. For instance, Aniello et al. [3] and Rychl
et al. [28] specify on scheduling stream processes, while Alrokayan et al. [1]
concentrate on scheduling batch processes.

Regarding predicting batch processes, there is comprehensive research avail-
able, for instance, specialized for MapReduce jobs [11], [34], [35] as well as for
big data applications in cloud infrastructures [16].

To overcome redundancy regarding software development and infrastructure
complexity, approaches such as storm-yarn® or by Nabi et al. [27] exist to inte-
grate stream processing in the Apache Hadoop environment. Summingbird? is
an open source library that allows to write algorithms that can be used for batch
as well as stream processing.

5 Conclusion and Future Work

This paper introduced a novel approach to use resources more efficiently when
implementing the lambda architecture. It is applicable for usage scenarios where
time constraints of queries are not permanently required to be low or lie within
several minutes. To reduce processing power, we propose to switch on stream
processing on demand in cases where batch processes are likely to exceed time
requirements. By using historical information of incoming data and naive fore-
casting to classify workload, we predicted the response time of succeeding batch
iterations. Therefore, we used performance models in which we integrated esti-
mated resource demands based on measurements. The results allow us to make
decisions when additional stream processes are required or, vice versa, can be
saved to reduce resource usage. If hardware provision is used in a as-a-service
manner, it allows for reducing costs directly.

For future work we plan to automate the process illustrated in Figure 1.
This involves to automatically measure incoming data during each batch itera-
tion, apply workload forecasting techniques and trigger solving the performance
model. Another challenge is to also integrate the speed layer into our test envi-
ronment. This will enable us to examine our approach and its efficiency for
successive batch iterations for a lengthy period of time. Furthermore, we will
integrate other workload forecasting techniques besides the naive forecast to
evaluate possible prediction enhancements and scheduling optimizations.

3 https://github.com/yahoo/storm-yarn
4 https://github.com /twitter /summingbird

https://github.com/yahoo/storm-yarn
https://github.com/twitter/summingbird

256

J. Krof} et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. Alrokayan, M., Vahid Dastjerdi, A., Buyya, R.: Sla-aware provisioning and schedul-

ing of cloud resources for big data analytics. In: Proceedings of the 2014 TEEE
International Conference on Cloud Computing in Emerging Markets, pp. 1-8. IEEE
(2014)

Amazon Web Services: Amazon Kinesis (2015). http://aws.amazon.com/kinesis/
(accessed: April 28, 2015)

Aniello, L., Baldoni, R., Querzoni, L.: Adaptive online scheduling in storm. In:
Proceedings of the 7th ACM International Conference on Distributed Event-based
Systems, pp. 207-218. ACM, New York (2013)

Apache Cassandra: The Apache Cassandra project (2015). http://cassandra.
apache.org/ (accessed April 28, 2015)

Apache Hadoop: Welcome to Apache Hadoop! (2015). http://hadoop.apache.org/
(accessed April 28, 2015)

Kafka, A.: A high-throughput distributed messaging system (2015). http://kafka.
apache.org/ (accessed April 28, 2015)

. Apache Pig: Welcomt to Apache Pig! (2014). https://pig.apache.org/ (accessed

April 28, 2015)

Apache Samza: Samza (2015). http://samza.apache.org/ (accessed April 28, 2015)
Apache Spark: Lightning-fast cluster computing (2015). https://spark.apache.org/
(accessed April 28, 2015)

Apache Storm: Storm, distributed and fault-tolerant realtime computation (2015).
http://storm.apache.org/ (accessed April 28, 2015)

Barbierato, E., Gribaudo, M., lacono, M.: Performance evaluation of nosql big-data
applications using multi-formalism models. Future Generation Computer Systems
37, 345-353 (2014)

Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. The Journal of Systems and Software 82(1), 3-22
(2009)

Brosig, F., Meier, P., Becker, S., Koziolek, A., Koziolek, H., Kounev, S.: Quantita-
tive evaluation of model-driven performance analysis and simulation of component-
based architectures. IEEE Transactions on Software Engineering 41(2), 157-175
(2015)

Brunnert, A., Vogele, C., Danciu, A., Pfaff, M., Mayer, M., Krcmar, H.: Per-
formance management work. Business & Information Systems Engineering 6(3),
177-179 (2014)

Casado, R., Younas, M.: Emerging trends and technologies in big data processing.
Concurrency and Computation: Practice and Experience 27(8), 2078-2091 (2015)
Castiglione, A., Gribaudo, M., Tacono, M., Palmieri, F.: Modeling performances of
concurrent big data applications. Practice and Experience, Software (2014)

Chen, C.L.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and
technologies: a survey on big data. Information Sciences 275, 314-347 (2014)
Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
Communications of the ACM 51(1), 107-113 (2008)

Faulstich, S., Hahn, B., Tavner, P.J.: Wind turbine downtime and its importance
for offshore deployment. Wind Energy 14(3), 327-337 (2011)

Faulstich, S., Lyding, P., Tavner, P.: Effects of wind speed on wind turbine avail-
ability (2011)

http://aws.amazon.com/kinesis/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://hadoop.apache.org/
http://kafka.apache.org/
http://kafka.apache.org/
https://pig.apache.org/
http://samza.apache.org/
https://spark.apache.org/
http://storm.apache.org/

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Stream Processing on Demand for Lambda Architectures 257

Herbst, N.R., Huber, N., Kounev, S., Amrehn, E.: Self~-adaptive workload classifi-
cation and forecasting for proactive resource provisioning. Concurrency and Com-
putation: Practice and Experience 26(12), 2053-2078 (2014)

von Kistowski, J., Herbst, N.R., Kounev, S.: LIMBO: A tool for modeling variable
load intensities. In: Proceedings of the 5th ACM/SPEC International Conference
on Performance Engineering, pp. 225-226. ACM, New York (2014)

Krof}, J., Brunnert, A., Prehofer, C., Runkler, T.A., Krcmar, H.: Model-based
performance evaluation of large-scale smart metering architectures. In: Proceedings
of the 4th International Workshop on Large-Scale Testing, pp. 9-12. ACM, New
York (2015)

Liu, X., Iftikhar, N., Xie, X.: Survey of real-time processing systems for big data.
In: Proceedings of the 18th International Database Engineering & Applications
Symposium, pp. 356-361. ACM, New York (2014)

Martnez-Prieto, M.A., Cuesta, C.E., Arias, M., Fernnde, J.D.: The solid architec-
ture for real-time management of big semantic data. Future Generation Computer
Systems 47, 62-79 (2015), special Section: Advanced Architectures for the Future
Generation of Software-Intensive Systems

Marz, N., Warren, J.: Big data: principles and best practices of scalable real-time
data systems. Manning Publications Co. (2015)

Nabi, Z., Wagle, R., Bouillet, E.: The best of two worlds: integrating ibm infos-
phere streams with apache yarn. In: Proceedings of the 2014 IEEE International
Conference on Big Data, pp. 47-51. IEEE (2014)

Rychly, M., Skoda, P., Smrz, P.: Heterogeneity-aware scheduler for stream process-
ing frameworks. International Journal of Big Data Intelligence 2(2), 70-80 (2015)
Schéfer, A.M., Zimmermann, H.-G.: Recurrent Neural Networks Are Universal
Approximators. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN
2006. LNCS, vol. 4131, pp. 632—-640. Springer, Heidelberg (2006)

Schermann, M., Hemsen, H.: Buchmller, C., Bitter, T., Krcmar, H., Markl, V.,
Hoeren, T.: Big data - an interdisciplinary opportunity for information systems
research. Business & Information. Systems Engineering 6(5), 261-266 (2014)
Sequeira, H., Carreira, P., Goldschmidt, T., Vorst, P.: Energy cloud: Real-time
cloud-native energy management system to monitor and analyze energy consump-
tion in multiple industrial sites. In: Proceedings of the 2014 IEEE/ACM T7th Inter-
national Conference on Utility and Cloud Computing, pp. 529-534. IEEE (2014)
Spinner, S., Casale, G., Zhu, X., Kounev, S.: LibReDE: a library for resource
demand estimation. In: Proceedings of the 5th ACM/SPEC International Con-
ference on Performance Engineering (ICPE 2014), pp. 227-228. ACM, New York
(2014)

Taylor, J.W.: An evaluation of methods for very short-term load forecasting using
minute-by-minute british data. International Journal of Forecasting 24(4), 645-658
(2008)

Verma, A., Cherkasova, L., Campbell, R.H.: Aria: automatic resource inference and
allocation for mapreduce environments. In: Proceedings of the 8th ACM Interna-
tional Conference on Autonomic Computing, pp. 235-244. ACM, New York (2011)
Vianna, E., Comarela, G., Pontes, T., Almeida, J., Almeida, V., Wilkinson, K.,
Kuno, H., Dayal, U.: Analytical performance models for mapreduce workloads.
International Journal of Parallel Programming 41(4), 495-525 (2013)

	Stream Processing on Demand for Lambda Architectures
	1 Introduction
	2 Stream Processing On Demand
	2.1 Data Processing in the Lambda Architecture
	2.2 Decision-Making Model

	3 Experimental Validation
	3.1 Use Case and Design Options
	3.2 Implementation of the Batch Layer
	3.3 Performance Model Prototype
	3.4 Controlled Experiment

	4 Related Work
	5 Conclusion and Future Work
	References

