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Preface

This volume of LNCS contains the proceedings of the 12th European Performance
Engineering Workshop, held in Madrid, Spain, from August 31 to September 1, 2015.
Following on from the positive experience of Florence 2014, EPEW was once again
co-located with a number of related conferences (including QEST and FORMATS) in
an experience known as Madrid Meet 2015, and we hope this format provided
researchers with the opportunity to engage with a broader range of topics and people
than would usually have been possible.

As with previous EPEW workshops, the present event was supported by submis-
sions from all over the world, including Asia, Africa, North America, and Europe.
There were 39 submissions of which 19 were selected for publication in the pro-
ceedings and presentation at the workshop. We would like to commend the diligent
efforts of all those Program Committee members who returned their reviews on time –
despite the tight reviewing timetable – and all those who participated enthusiastically in
the ensuing discussions.

The papers themselves maintain the tradition of diversity and quality for which the
European Performance Engineering Workshop is known. This year several papers
featured application studies, while others focused on novel techniques for modelling,
simulation and software performance. The domains of the application studies have a
diverse and contemporary feel to them, ranging from mobile networks and cloud
computing environments to railway control and medical imaging systems. Modelling
techniques include fresh perspectives on layered queueing network models and pro-
cessor sharing systems, innovative applications of model checking, and a novel
extension of the Markov Decision Petri Net formalism. Simulation-related advances
include improvements to rare-event and stochastic simulations. In the software per-
formance domain, new ways to assess the on-the-fly impact of software code changes
are revealed.

As program chairs, we would like to thank everyone involved in making EPEW
2015 a success: Springer for their continued support of the workshop series, the invited
speakers (Eva Kalyvianaki and Leandro Soares Indrusiak), the Program Committee and
reviewers, and of course the authors of the papers submitted, without whom there could
not be a workshop. We would also like to thank Jeremy Bradley, who worked extre-
mely hard as publications chair to bring together the LNCS volume, and Isaac Martin
de Díego, who did a great job as publicity chair.

We hope that you, the reader, find the papers in this volume interesting, useful, and
inspiring, and we hope to see you at future European Performance Engineering
Workshops.

July 2015 Marta Beltrán
William Knottenbelt
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A Markovian Queueing System for Modeling
a Smart Green Base Station

Ioannis Dimitriou1, Sara Alouf2, and Alain Jean-Marie2,3(B)

1 Department of Mathematics, University of Patras, Patras, Greece
idimit@math.upatras.gr

2 Inria, Sophia Antipolis, France
{Sara.Alouf,Alain.Jean-Marie}@inria.fr

3 LIRMM, Montpellier, France

Abstract. We investigate a model to assess the performance of a base
station (BS) fully powered by renewable energy sources. The BS is mod-
eled as a three-queue system where two of them are coupled. One repre-
sents accumulated energy, the second is the data queue and the third one
serves as a reserve energy queue. This smart BS is able to dynamically
adjust its coverage area (thereby controlling the traffic intensity) and
to generate signals to the reserve energy queue that trigger the move-
ment of energy units to the main energy buffer. Given the randomness
of renewable energy supply and the internal traffic intensity control, our
queueing model is operated in a finite state random environment. Using
the matrix analytic formalism we construct a five-dimensional Markovian
model to study the performance of the BS. The stationary distribution
of the system state is obtained and key performance metrics are calcu-
lated. A small numerical example illustrates the model and a simplified
product-form approximation is proposed.

Keywords: Coupled queues · QBD processes · Green base station

1 Introduction

The architectural design of cellular networks has evolved in recent years to better
satisfy users needs. The traffic load generated by users exhibits a night-day
pattern, having a peak of traffic during the day and almost no traffic during the
night. A geographical pattern is also observed as offices areas witness a peak
traffic during the day while residential areas witness a smaller peak late in the
evening. Heterogeneous cellular networks are an attractive deployment solution:
large powerful base stations (BSs) are used to ensure coverage and connectivity
whereas smaller coverage-limited BSs are used to accommodate the peak load
where needed. Those BSs can be analyzed in isolation.

In this paper, we consider a single small BS and study the question of pow-
ering it using solely renewable energy. A key factor is that the solar radiation
exhibits a night-day pattern that makes solar panels fit to power a small BS.
We assume that the BS is “smart” in the sense that it is able to dynamically
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-23267-6 1



4 I. Dimitriou et al.

adjust its coverage area, controlling thereby the number of mobiles with which it
communicates, and consequently its offered traffic rate and its energy consump-
tion. The harvested energy is stored in batteries that are used to power the BS.
We propose to model this BS as a queueing system that operates in a finite-
state Markovian random environment (RE). The behavior of such a system is
described by a five-dimensional Markov process, which is a homogeneous finite
Quasi Birth-Death (QBD) process.

The literature on QBD processes is abundant and these processes have been
used to study many different applications. De Cuypere et al. [4], have studied
sensor nodes [3] and kitting processes through a paired queueing system [15]. In
[3], a finite energy queue is paired with an infinite data queue, where customers
arrive at both queues according to Markovian Arrival Processes. In [4], both
queues are finite, but due to the sparsity of the generator matrix of the underlying
Markov process, the size of the state space does not cause serious issues. Closely
to our work, Takahashi et al. [17] consider a synchronization queue consisting of
two buffers with finite capacities, the arrival processes at both buffers are Poisson
for one and phase type renewal for the other. In our work we assume that energy
is discretized (as in e.g. [3,8,9]) but it is also possible to model batteries as fluid
queues; see for instance [11,12].

In the following, we present our model in Section 2 and detail the infinitesimal
generator of the five-dimensional continuous-time Markov chain representing the
state of the system in Section 3. Section 4 discusses several algorithms that
could be used to compute the stationary distribution of the system state and
relevant performance metrics, exploiting the QBD structure of the generator.
The feasibility of the developed algorithm is demonstrated through a numerical
example. First passage times to lower and higher levels in the QBD are discussed
in Section 5. In Section 6, we propose an approximate model with product-form
solution. We briefly conclude in Section 7.

2 The Model

We are interested in a wireless communications base station (BS), isolated from
the electric grid and operating thanks to renewable energy sources. The model
supposes a continuous functioning of the station: it does not handles issues like
startup, shutdown, malfunction and other transitory phenomena.

The model we develop has a 5-dimensional state space, representing the state
of three queues, a service process and an environment process. We describe now
these elements and the way they interact. Figure 1 summarizes the model under
study. Although we describe here a quite specific situation, we point out that all
these elements and their composition can be generalized so as to build models
of other device configurations.
Queues. We consider two energy queues (EQ) of finite capacity Ej , j = 1, 2 that
store energy extracted from the environment, and a data queue (DQ) that keeps
track of packets not yet transmitted, having also a buffer of finite capacity N .
Energy is assumed to be discretized, as for instance in [8,9]. Assume that EQ 1,
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Fig. 1. The model when the RE is in state i.

is coupled with the DQ, whereas EQ 2 is deployed close to the BS and serves as
a reserve. Each EQ, is fed by different renewable energy sources, and the choice
of the one that will be coupled with the DQ depends on the area where the BS
is deployed. We will refer to this EQ, say EQ 1, as the dominant energy queue
(DEQ) and the EQ 2 as the secondary energy queue (SEQ).
Environment. The system behavior depends on the state of the RE. This RE is
defined by means of an irreducible regular continuous-time Markov chain Y (t)
with state space {1, ...,M}, and infinitesimal generator QY . The state of this
environment may represent a variety of factors that make energy arrival or packet
arrival processes, energy consumption and service times non time-stationary. For
instance, the intermittent nature of wind, the variability of sunlight, can be taken
into account with an environment variable. Hourly variations of data traffic can
also be modeled that way. Other features can be the variation of transmission
power due to global adjustments at the network level. As usual, independent
environment features can be combined in a complex environment process with
multiple “phases”, at the cost of large values for M . Clearly, one can skip the
RE and reduce the dimension of the QBD, by assuming that the model migrates
quickly from the stationary situation of one environment setting to another.
Packet Service Duration. The service time distribution is of phase type [14,16]
of order ν and depends on the state of the RE. For a fixed RE state i, this
distribution can be interpreted as a time until some underlying Markov process
ηt with finite state space {1, ..., ν} reaches the absorbing state 0 with initial
probability vector (τ (i)

0 , τ (i)). Transition rates of the process ηt within the set
{1, ..., ν} are defined by the sub-generator T (i) and transition rates into the
absorbing state (which lead to a service completion) are given by the entities of
the column vector t(i) = −T (i)1. Observe that the value ν does not depend on
i. A typical situation allowed by this model is to have a packet size with some
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given distribution, and a service speed given by the environment: T
(i)
kl = Tkl ×vi,

vi begin the “velocity” typical of state i and Tkl some environment-independent
transition rate. If the packet length distribution itself can also depend on the
environment, the model may not be accurate for the packet in service during the
change of environment state.

By using a generalized PH distribution for the service process, we can incor-
porate several realistic concepts of the operation of a BS such as: different levels
of noise in the transmission channel, hardware degradation and recovering, vari-
ations in the distance of a mobile user to the base station, etc.
Packet Arrival. The rate of packet arrival to the BS depends on its coverage area.
We adopt a multi-threshold scheme in order for the BS to dynamically adjust the
coverage area according to the available energy units in the DEQ: in this sense,
we model a smart BS. More precisely, we introduce thresholds, say h0 = 0 < h1 <
h2 < ... < hK < E1 = hK+1. Given the state i of RE, and if hs < m1 ≤ hs+1,
s = 0, ...,K, the users’ arrival rate equals λ

(i)
p,s. In practice, it is expected that

λ
(i)
p,0 ≤ λ

(i)
p,1 ≤ . . . ≤ λ

(i)
p,K but this is not needed for the definition of the model.

Note that the packet traffic potentially includes system control packets, signaling
(e.g. for handovers) etc. Superposition of different traffic sources can classically
be taken care of.
Energy Arrival and Depletion. For a fixed state i, i = 1, ...,M of the RE, energy
units are stored in EQ j at rate λ

(i)
ej . Transmission opportunities occurs only

when both the DEQ and the DQ queue are non empty.
The modeling of energy consumption by a packet transmission requires some

trick. Indeed, it is unlikely that a phase of the service of some packet will consume
exactly an integer amount of energy quanta. Randomness in consumption and/or
non-integral energy values can be taken into account using random variables.

The number of energy units required for the transmission of a single packet
depends both on the state of the RE and on the phase of the service process.
Thus, the transmission of a packet may be interrupted, if the completion of a
phase of service consumes the available energy. In this paper, we assume that the
transmission of this packet has to restart from scratch (but with a stochastically
independent value), whenever there will be available energy. If some mechanism,
e.g. error-correcting codes, allows for it, transmission could resume from the same
phase. Alternately, the transmission of the packet could be simply canceled in
case of energy shortage. Moreover, we can also allow this cancellation to occur
only after some timeout, by introducing a timer for each “impatient” packet
when energy is 0. None of these alternatives would make the transition matrix
much more complex. With the “restart” point of view, given the state i of RE
and if there are m1 available energy units in the DEQ, the completion of phase x,
x = 1, 2, ..., ν requires k energy units with probability p

(i,m1)
kx ,

∑m1
k=0 p

(i,m1)
kx = 1.

We allow a priori k = 0, i.e. that the completion of a phase of service may not
consume even a single energy unit. However, in order to initiate a transmission
we need at least one energy unit.

Energy leakage from each EQ is unavoidable. More precisely, an energy unit
will be lost from EQ j, j = 1, 2 at exponential rate uij , given that the RE is
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in state i. Note that if the DEQ drains during the transmission of a packet, the
packet has to be retransmitted, whenever there will be available energy units.
Energy Transfers. The SEQ serves as backup storage for the DEQ. The control
of our smart BS generates signals to the SEQ at a rate Λ

−(i)
s , that trigger the

movement of energy units to the DEQ, according to the multi-threshold rule
introduced above. Given the state i of the RE, and hs < m1 ≤ hs+1, s = 0, ...,K,
signals are generated at a rate Λ

−(i)
s , and trigger [7] k energy units from the

SEQ towards the DEQ with probability q
(m1,m2,i)
ks (

∑m2
k=1 q

(m1,m2,i)
ks δm1+k≤E1 =

1). Define also q
(m1,m2)
ks = diag(q(m1,m2,1)

ks , . . . , q
(m1,m2,M)
ks ). In case the SEQ is

empty, the signal will have no effect. As above, it is expected in practice that
Λ

−(i)
0 ≥ Λ

−(i)
1 ≥ . . . ≥ Λ

−(i)
K : the demand rate for replenishment of DEQ becomes

larger as the energy in the DEQ depletes. It is also possible to reflect the urgency
of replenishment by modifying the distribution qks. Moreover, when the DEQ is
full, i.e. m1 = E1, there will be no signal towards the SEQ (i.e., Λ

−(i)
K = 0). We

also adopt an overflow operation in the sense that when an EQ buffer is full, its
energy traffic is rerouted to the other EQ. Clearly, the signal generation possibly
consumes an amount of energy, which is assumed to be negligible in our model.

Thanks to the generality of the definition of the probabilities p
(i,m1)
kx , q(m1,m2,i)

ks

(which are function of the state of the RE, the phase of service process and the
available energy in DEQ, SEQ), the modeler can incorporate additional realistic
features regarding the energy consumption, related to the control channel data
transmission, or processing and forwarding of packets. More complex packet pro-
cessing architectures may however require more than one packet queue.

Clearly, recent technological developments are towards smart autonomic
wireless networks. The concept of signaling towards the SEQ, that triggers the
instantaneous transition of energy units to the DEQ, has become an intelligent
modeling tool for communication systems. Queues with signals [7] were intro-
duced to model the behavior of control actions such as the displacement of units
from one queue to another using “triggers” resulting in load balancing.

3 Process of the System State

The behavior of the system under consideration can be described in terms of the
CTMC Xt = {Qp(t), J(t), Qe1(t), Qe2(t), Y (t)}, t ≥ 0, where Qp(t), J(t), Qej

(t)
and Y (t) are, respectively, the number of data packets, the phase of the service
process (present only when Qp > 0 and Qe1 > 0), the number of energy units in
EQ j and the state of RE at time t. The state space of Xt is Ĥ = ∪N

n=0l(n) and
the “levels” l(n) are defined as:

l(0) = {(0,m1,m2, i);mj = 0, 1, ..., Ej , j = 1, 2, i = 1, ...,M}, (1)

and for 1 ≤ n ≤ N :
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l(n) = l(n, 0) ∪ l(n),
l(n, 0) = {(n, 0,m2, i);m2 = 0, 1, ..., E2, i = 1, ...,M},

l(n) = {(n, x,m1,m2, i);x = 1, . . . , ν;m1 = 1, . . . , E1;m2 = 0, 1, ..., E2;
i = 1, ...,M}.

(2)

These levels have cardinals |l(0)| = L0 := M(E1 + 1)(E2 + 1) and for n ≥ 1,
|l(n)| = L := M(E2 +1)(νE1 +1). For convenience, define also S := M(E2 +1).
The state space has then cardinal |Ĥ| = M(E2 + 1)[N(νE1 + 1) + (E1 + 1)].

Using this decomposition in levels, the infinitesimal generator of Xt has a
quasi-birth-death structure with block matrix representation as:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 C̃ 0 0... 0 0
A10 A1 C 0... 0 0
0 A21 A1 C... 0 0

. . . . . . . . .

0 0 0 ...A21 A1 C
0 0 0 ...0 A21 A2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We proceed with a detailed description of the blocks. We shall need the
definition of the following matrices Λej

= diag(λ(i)
ej ), j = 1, 2, Λp,s = diag(λ(i)

p,s),
Λ−

s = diag(Λ−(i)
s ), s = 0, ...,K, Uj = diag(uij), where i = 1, ...,M , and tx =

diag(t(1)x , ..., t
(M)
x ), p

(m1)
lx = diag(p(1,m1)

lx , ..., p
(M,m1)
lx ).

The edge block A10 is an L × L0 matrix that corresponds to packet service
and energy consumption events that lead to an empty data queue. It has a block-
triangular structure with A

(0,m′
1)

10 = 0S×S , for all m′
1 (this first row corresponds to

the case where there is a packet waiting for service, but the transmission cannot
be initiated since there is no available energy in the DEQ), A

(m1,m′
1)

10 = 0νS×S

for 1 ≤ m1 < m′
1 ≤ E1 and for m1 = 1, ..., E1, m′

1 = 0, ...,m1:

A
(m1,m′

1)
10 = A

(m1−m
′
1)

m1m
′
1

=

(I(E2+1)×(E2+1) ⊗ [t(m1)
1 p

(m1)
m1−m′

1,1], ..., I(E2+1)×(E2+1) ⊗ [t(m1)
ν p

(m1)
m1−m′

1,ν ])
′
.

(3)

The sub-diagonal block A21 is an L × L matrix that corresponds to packet
service and energy consumption:

A21 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0S×S 0S×S 0S×S ... 0S×S 0S×S

A
(1)
10 F11 0νS×S ... 0νS×S 0νS×S

A
(2)
20 F21 F22 ... 0νS×S 0νS×S

... ... ...
. . .

... ... ...
. . .

A
(E1)
E10

FE11 FE12 ... FE1E1−1 FE1E1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where Fm1m′
1

is a νS × νS matrix defined from τx = diag(τ (1)
x , ..., τ

(M)
x ) as:

Fm1m′
1

= I(E2+1)×(E2+1) ⊗ (txτyp
(m1)
m1−m′

1x), x, y = 1, ..., ν. (4)

Packet arrivals are represented in block C̃ = diag(C0, C1, ..., CK), which is
an L0 × L matrix where Cs is of order n(s)S × n(s)Sν for s = 1, 2, ...,K, and of
order n(0)S × [(n(0) − 1)ν + 1]S for s = 0, with n(s) = hs+1 − hs + 1δs=0 and

C0 = diag(C00, G0, ..., G0︸ ︷︷ ︸
h1

), Cs = In(s)×n(s) ⊗ Gs, s = 1, ...,K,

Gs = (G(1)
s , ..., G

(ν)
s ), G

(x)
s = I(E2+1)×(E2+1) ⊗ (Λp,sτx).

(5)

Matrix C = diag(C ′
0, C

′
1, ..., C

′
K) is of order L × L, where

C ′
0 = diag(C00, G

′
0, ..., G

′
0︸ ︷︷ ︸

h1

), C ′
s = In(s)×n(s) ⊗ G′

s, s = 1, ...,K,

G′
s = Iν×ν ⊗ C0s, C0s = I(E2+1)×(E2+1) ⊗ Λp,s, s = 0, ...,K.

(6)

Next, B0 = (B(0)
m1,m′

1
), 0 ≤ m1,m

′
1 ≤ E1, is an L0 × L0 matrix formed of

square sub-blocks B
(0)
m1,m′

1
of order S, typical of energy movements in the DEQ

that are independent of packet transmissions, such as energy leakage, energy
generation and signal-triggered energy unit transition from SEQ to DEQ. Its
structure is:

B0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B
(0)
00 B

(0)
01 B

(0)
02 ... B

(0)
0E1

Û1 B
(0)
11 B

(0)
12 ... B

(0)
1E1

... ... ... ...

0L0×L0 0L0×L0 0L0×L0 ...Û1 B
(0)
E1−1,E1−1 B

(0)
E1−1,E1

0L0×L0 0L0×L0 0L0×L0 ...0L0×L0 Û1 B
(0)
E1E1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Û1 = I(E2+1)×(E2+1) ⊗ U1 represents energy leakage from DEQ, and for
0 ≤ m1 < E1, hs < m1 ≤ hs+1,

B
(0)
m1,m1+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Λe1 ...
Λ−

s q(m1,1)
1s

Λe1 ...

... ... ... ...

...Λ−
s q(m1,E2−1)

1s
Λe1

... Λ−
s q(m1,E2)

1s
Λe1 + Λe2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The remaining sub-blocks concern the energy replenishment due to signals.
Assuming E1 ≤ E2, for k = m1 + 2, ..., E1, hs < m1 ≤ hs+1,
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B
(0)
m1k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . . . . . . . . . . . . . .

Λ−
s q

(m1,k−m1)
k−m1s . . .

Λ−
s q

(m1,k−m1+1)
k−m1s . . .

. . . . . . . . . . . .

. . . Λ−
s q

(m1,E2)
k−m1s . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Remark: In this work we assume without loss of generality that E1 ≤ E2. For
E1 > E2, k = m1+2, ...,m1+E2, B

(0)
m1k has also the same form but B

(0)
m1k = 0S×S ,

for k = m1 + E2 + 1, ..., E1. �
Furthermore, for 0 ≤ m1 ≤ E1 and hs < m1 ≤ hs+1, set Fs = QY −∑2

j=1(Λej
δmj<Ej

+ Ujδmj>0) − Λp,s − Λ−
s δm1<E1 . Then for m2,m

′
2 = 0, ..., E2,

B
(0)
m1m1 = (B(0;m2,m′

2)
m1m1 ) where, B

(0;m2,m2−1)
m1m1 = U2 and,

B(0;m2,m2+1)
m1m1

= Λe2 + Λe1δm1 �=E1 , B(0;m2,m2)
m1m1

= Fs, hs < m1 ≤ hs+1. (7)

Finally, the main diagonal blocks A1 and A2 are square matrices of order L,
also composed of sub-blocks Al = (A(l)

m1m′
1
), m1,m

′
1 = 0, 1, ..., E1, for l = 1, 2.

Here, A
(l)
00 is of order S × S, A

(l)
0m′

1
, m′

1 = 1, ..., E1 are of order S × νS, A
(l)
m10

,

m1 = 1, ..., E1, of order νS ×S, and A
(l)
m1m′

1
, m1,m

′
1 = 1, ..., E1 of order νS ×νS.

They are given by, A
(1)
00 = B

(0)
00 and A

(1)
0m1

= (Z(0,m1)
1 , ..., Z

(0,m1)
ν ) where

Z
(0,m1)
x = (Z(0,m1)

x;m2,m′
2
), x = 1, ..., ν, are S × S matrices where, Z

(0,1)
x;m2,m2 = (Λe1 +

Λe2δm2=E2)τx, m2 = 0, 1, ..., E2, Z
(0,1)
x;m2,m2−1 = Λ−

1 q(0,m2)
11

τx, Z
(0,1)
x;m2,m′

2
= 0M×M ,

elsewhere. For m1 = 2, ..., E1, hs < k ≤ hs+1,

Z
(0,m1)
x;m2,m′

2
= Λ−

s q(0,m2)
m1s

τx, m2 = m1, ..., E2,m
′
2 = 0, 1, ...,m2 − m1, (8)

and Z
(0,m1)
x;m2,m′

2
= 0M×M elsewhere. Furthermore, for l = 1, 2, m1 = 1, ..., E1,

A
(l)
m10

= (Ŝm11, ..., Ŝm1ν)′, where

Ŝm1x = I(E2+1)×(E2+1) ⊗ [U1δm1=1

+diag(
∑ν

c=1,c �=x T
(1)
xc p

(1,m1)
m1x , ...,+

∑ν
c=1,c �=x T

(M)
xc p

(M,m1)
m1x )],

A
(l)
m1k = Iν×ν ⊗ B

(0)
m1k, k = m1 + 1, ..., E1, m1 ≥ 1.

(9)

Moreover, A
(l)
m1,m1−1 = (A(l;x,y)

m1,m1−1), k = 1, 2, ..., ν, and A
(l;x,x)
m1,m1−1 = Û1, x =

1, 2, ..., ν, A
(l;x,y)
m1,m1−1 = I(E2+1)×(E2+1) ⊗ [Txyp

(m1)
1x ], x, y = 1, 2, ..., ν, x �= y.

For k = m1−2, ..., 1, A
(l)
m1k = (A(l;x,y)

m1k ), x, y = 1, ..., ν, where, A
(l;x,x)
m1k = 0S×S ,

x = 1, ..., ν, and A
(l;x,y)
m1k = I(E2+1)×(E2+1) ⊗Txyp

(m1)
m1−kx, x, y = 1, ..., ν, x �= y and

A
(2)
m1k = A

(1)
m1k, k = m1 + 1, ..., E1.
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Moreover, A
(l)
m1m1 = (Φ(l,m1,m1)

xy;m2,m′
2
), l = 1, 2, x, y = 1, ..., ν, ml = 1, ..., El, where

for Txy = diag(T (1)
xy , ..., T

(M)
xy ),

Φ
(l,m1,m1)
xy;m2,m′

2
= I(E2+1)×(E2+1) ⊗ [Txyp

(m1)
0x ],m1 = 0, 1, ..., E1, x �= y,

Φ
(l,m1,m1)
xx;m2,m′

2
= I(E2+1)×(E2+1) ⊗ (Txx + Λp,sδm1<E1) + B

(0)
m1m1 + Wsδm1<E1 ,

Ws = diag(0M×M , I(ME2×ME2) ⊗ Λ−
s ).

(10)
Sparsity of the Generator. The number of non-zero transition rates in the gener-
ator Q can be roughly evaluated as follows. Neglecting the “border” cases, tran-
sitions from a typical state (n, x,m1,m2, i) occur as: a) packet arrival, energy
arrival, energy leakage: one transition each; b) service phase change: ν −1 possi-
ble transitions with service continuation, plus service completion, which triggers
energy consumption with up to m1 possible transitions; c) environment phase
change: M − 1 possible transitions (this could be much less if the phase process
is itself a superposition, see Section 2); d) energy transfers: up to m2 transitions.
Summing over m1 and m2, we conclude that storing the elementary blocks of Q
requires O

(
(ν + M)ME2

1E2
2

)
space. Storing all Q in sparse form would require

O
(
N(ν + M)ME2

1E2
2

)
space. The ratio of this quantity with the total number

of entries in Q: O
(
(NMνE1E2)2

)
, is of order α = O((ν + M)/NνM). It may

even be smaller if the RE transition matrix QY is itself sparse, or if the distri-
butions p

(i,m1)
kx or q

(m1,m2,i)
ks have restricted supports. Note that some algorithms

work with storing only the different blocks.

4 Stationary Solution

4.1 Algorithms for Stationary Probabilities

Under reasonable assumptions on packet arrival rates and the representation of
service distributions, the chain Xt is irreducible. Since it is finite, it then admits
a unique stationary distribution given by (referring to the notation in (1) and
(2)):

p(n, x, m1, m2, i)

= lim
t→∞

P (Qp(t) = n, J(t) = x, Qe1(t) = m1, Qe2(t) = m2, Y (t) = i)

p(n, m1, m2, i) = lim
t→∞

P (Qp(t) = n, Qe1(t) = m1, Qe2(t) = m2, Y (t) = i).

In order to compute this stationary probability vector, several methods are
available. On the one hand, the QBD structure of Q offers the possibility to use
direct numerical methods, such as the Matrix Analytic ones. Those are “exact”
(up to round off errors) and in general they are efficient especially for systems
where their generator matrix has a special form, which is the case here. On the
other hand, the sparsity of Q points at the use of iterative and other advanced
techniques [18].
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One way or the other, a closer investigation of the block structure of Q
is fruitful. The stationary distribution vector p is represented using the level
structure as p = (p

0
, p

1
, ..., p

N
). Global balance equations pQ = 0 can then be

written as

p
0
B0 + p

1
A10 = 0, (11)

p
0
C̃ + p

1
A1 + p

2
A21 = 0, (12)

p
i−1

C + p
i
A1 + p

i+1
A21 = 0, i = 2, ..., N − 1, (13)

p
N−1

C + p
N

A2 = 0. (14)

The matrix analytic formalism gives the opportunity to obtain the station-
ary probability vector p using several algorithms (see [14] and references within,
and later contributions among which [1,5,19]). The methods of [6,19] are high-
lighted in [14, Chap. 10]. The key step in [6] resides especially in the inversion
of a matrix of order L0 and N matrices of order L. Given that L0 ≤ L, the
overall complexity is O(NL3). The “folding method” in [19] is less expensive,
reducing the “N” to log2 N , but at a higher implementation cost. Moreover,
[6] also provides an algorithm for the computation of the expected first passage
times between the neighbour levels. This result is interesting for further capacity
planning investigation, see Section 5 and our conclusion. In our situation, the
limiting factor is clearly the value of L ≈ MνE1E2.

The form of the block generator matrix will help us to improve the efficiency
in obtaining the stationary probabilities, since the matrix C is a diagonal non-
singular matrix. Solving recursively system (11)–(14) starting from (14) we get
that, p

n
= p

N
Rn for n = 0, ..., N , with: RN = I, RN−1 = −A2C

−1, R0 =
(R2A1 + R3A21)A10B

−1
0 , and

Rn = −(Rn+1A1 + Rn+2A21)C−1, n = 1, ..., N − 2. (15)

To obtain p
N

, we solve equation (12) along with the normalizing condition:

p
N

(R0C̃ + R1A1 + R2A21) = 0, p
N

(R010 +
N∑

n=1

Rn1) = 1, (16)

where 1, 10 are column vectors of order L and L0 respectively.
The computation of the Rn’s involves only matrix additions and multipli-

cations. Since C is diagonal and non singular, multiplying by its inverse is not
costly. The computation of the pn’s [5] requires two matrix inversions (one to
compute B−1

0 , one to solve the system (16)), 4N + 5 matrix multiplications and
2N + 1 matrix additions. The resulting complexity is O(L3). Using an iterative
method to solve (16) and exploiting the inner structure of blocks (see Section 2)
may help overcome difficulties about the computational complexity.

4.2 Performance Metrics

By calculating the stationary distribution vector of the underlying Markov pro-
cess we can obtain some important performance metrics, such as the depletion
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probability (DP ) (i.e., the probability of an empty DEQ), and the expected
number of data packets and energy packets in each EQ:

DP =
∑N

n=0

∑E2
m2=0

∑M
i=1 p(n, 0,m2, i),

E(Qp) =
∑N

n=1

∑E2
m2=0

∑M
i=1 n [p(n, 0,m2, i)

+
∑E1

m1=1

∑ν
x=1 p(n, x,m1,m2, i)

]
,

E(Qe1) =
∑E1

m1=1

∑E2
m2=0

∑M
i=1 m1 [p(0,m1,m2, i) ,

+
∑N

n=1

∑ν
x=1 p(n, x,m1,m2, i)

]
,

(17)

E(Qe2) =
∑E2

m2=1

∑M
i=1 m2

[∑E1
m1=0 p(0,m1,m2, i)

+
∑N

n=1

(
p(n, 0,m2, i) +

∑E1
m1=1

∑ν
x=1 p(n, x,m1,m2, i)

)]
.

(18)

Using Little’s law we can obtain the mean waiting time for a data packet to
be served. Moreover, various optimization problems can be formulated, such as
finding optimal values of λ

(i)
p,s that minimizes E(Qp), asking DP ≤ a, or finding

an optimal value for E1 which minimizes DP = DP (E1).

4.3 Numerical Example

To demonstrate the feasibility of the developed algorithm and numerically show
some features of the model, we present the results of a preliminary numerical
experiment, inspired from values taken from [13]. Assume that the RE is defined
by the 2-state infinitesimal generator with rates (QY )12 = 0.01 and (QY )21 =
0.1. We may interpret that the first state of the RE corresponds to a mode when
the system is overloaded by the data units (peak time) and the second state
to a normal mode of the system. Under the first and second state of the RE
the service time distribution is characterized by the vectors τ (1) = (0.2, 0.8),
τ (2) = (0.7, 0.3) and the matrices

T (1) =
(−0.4368 0.40768

0.42608 −1.71809

)

, T (2) =
(−0.6402 0.56812

0.22308 −1.34325

)

,

respectively. We assumed for m1 + m2 ≤ E1, q
(m1,m2,i)
ks = 2ki/

∑m2
j=1 2ji, k =

1, ...,m2 and if m1 + m2 > E1, q
(m1,m2,i)
ks = 2ki/

∑E1−m1
j=1 2ji, k = 1, ..., E1 − m1.

Furthermore, p
(i,m1)
kx = (

∑m1
j=1(ix)k−j)−1, k = 1, ...,m1. Table 1 contains the

values of the parameters of the system.

Table 1. Overview of system’s parameters

E1 = 10, E2 = 12 M = 2, ν = 2 N = 15, h1 = 8, h2 = 12

Λp,1 = diag(1.5, 1) Λp,2 = diag(2, 1.5) U1 = diag(0.1, 0.3) U2 = diag(0.3, 0.4)

Λ−
1 = diag(0.3, 0.2) Λ−

2 = diag(0.2, 0.1) Le1 = diag(1.5, 1) Le2 = diag(1.8, 1.2)
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We focus on the depletion probability. Figure 2 (left) describes the way the
depletion probability is affected by the RE for increasing values of the data
arrival rate when m1 ∈ [0, 8] (s = 0). Clearly, the depletion probability will
increase, but this increase will become more apparent during the overloaded
period, as expected. In Figure 2 (right) we can observe the benefits of the smart
operation of the base station due to the presence of signals. By increasing the
signal generation rate, the depletion probability is strongly reduced. As a result,
the quality of service is thoroughly increased.

Fig. 2. Sensibility of DP w.r.t. data rate and RE for Λ−
0 = diag(0.35, 0.25) (left) and

w.r.t. signal rate when the RE is in overload

5 First Passage Times

Gaver et al. [6] analyzed the first passage times for general finite QBD processes.
They obtained two systems of recurrence equations for the Laplace-Stieltjes
transforms of passage times to higher and lower levels.

In the following we turn our attention to the computation of the average first
passage times. Let the expected values of the first passage time from the states
of l(n − 1) to the states of l(n) be c(n) and that from the states of l(n + 1) to
l(n) be v(n). Define the following matrices:

H0 = B0 H1 = A1 + A10(−H−1
0 )C̃,

Hj = A1 + A21(−H−1
j−1)C, 2 ≤ j ≤ N − 1,

HN = A2 + A21(−H−1
N−1)C.

(19)

Then we have the following recurrence relations for the expected values of first
passage times to higher levels:

c(n) =

⎧
⎪⎨

⎪⎩

−H−1
0 1, n = 1,

−H−1
1 (1 + A10c

(1)), n = 2,

−H−1
n−1(1 + A21c

(m1−1)), 3 ≤ n ≤ N.
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For the determination of the expected values of the first passage time to lower
levels we have first to denote by Ĥn, n = 0, 1, ..., N the infinitesimal generator
of the restriction of the process Xt observed during those intervals of time spent
at l(n) before the original process moves to l(n − 1) for the first time. Then,
all Ĥn-processes, 1 ≤ n ≤ N are transient while Ĥ0 is positive recurrent. The
matrices Ĥn are recursively computed as follows

Ĥn =

⎧
⎪⎨

⎪⎩

B0 + C̃(−Ĥ−1
1 )A10, n = 0,

A1 + C(−Ĥ−1
n+1)A21, 1 ≤ n ≤ N − 1,

HN , n = N.

Then,

v(n) =

⎧
⎪⎨

⎪⎩

−Ĥ−1
1 (1 + C̃v(1)), n = 0,

−Ĥ−1
n+1(1 + Cv(n+1)), 1 ≤ n ≤ N − 2,

−Ĥ−1
N 1, n = N − 1.

These computations can be exploited, for instance, for controlling the
(expected) time at which the packet queue overflows for the first time. Based
on them, values for the control thresholds hs and packet arrival rates λ

(i)
p,s,

s = 0, ...,K can be determined numerically offline. If the computation is fast
enough, online adaptation becomes possible. Another use of first passage times
is to compute the average length of busy periods. From this metric, analyses
about the opportunity to put the BS in sleep mode during idle periods can be
envisioned.

Computing first passage times for energy levels is also of great interest, in
order to determine and optimize the autonomy of the BS. However, the model
we have presented is not directly a QBD for energy levels, and a more elaborate
analysis is the topic of a work in progress.

6 An Approximated Product-form Model

In this section, we describe a simplification of the model proposed in Section 2,
strongly motivated by recent works in [8,9]. This new model is a G-network
and therefore has product-form solution. The simplification applies to instances
of our model where: a) there is no threshold control for the DEQ, therefore
just environment-dependent packet as well as signal arrival rates λ

(i)
p , Λ−(i),

i = 1, ...,M ; b) exactly one energy unit is required to transmit any data packet.
Consider the following simplifications: 1) infinite capacity buffers for the

DEQ, SEQ, and the data queue; 2) as soon as the BS has both a data packet
and enough energy to transmit that packet, the transmission is instantaneous;
3) environment-dependent parameters are averaged out using the stationary dis-
tribution q

Y
of the generator QY . Thus, defining the vector λp = (λ(1)

p , ..., λ
(M)
p )
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and Λ− = (Λ−(1), ..., Λ−(M)), then the arrival rates for packets, DEQ and SEQ
energy units, and signals in the simplified model are as:

λ̂p = λpq
′

Y
, λ̂− = Λ−q

′

Y
, λ̂ej

= 1Λej
q

′

Y
, j = 1, 2. (20)

Similarly, we will take into account the average leakage rate for each energy
queue, i.e., if uj = 1Ujq

′

Y
, j = 1, 2, where 1 is an 1 × M vector of 1.

The state of the approximation model can be represented by the pair (n,m),
where n = 0, means that the BS has neither energy units in the DEQ, nor data
packets to transmit, while n > 0, means that it currently stores n data packets
but no energy units in DEQ, while n < 0, means that it stores −n energy units
in DEQ but no data packets. The element m ≥ 0, counts the number of stored
energy units in SEQ. Note that our system is a special type of G-networks.
The underlying Markov process X̃ = {(n,m);n ∈ Z,m ∈ Z+ ∪ {0}} is ergodic
provided that:

λ̂p < λ̂e1 + λ̂−q2, λ̂e2 < û2 + λ̂−, λ̂e1 + λ̂−q2 < λ̂p + û1, (S)
where q2 = λ̂e2/(û2 + λ̂−), is the probability that the SEQ is not empty. These
conditions come from the fact that the system must be stable with respect to
the data packets (n > 0, left hand condition), with respect to the energy units in
SEQ, (the condition at the middle), and with respect to the energy units in DEQ
(n < 0, right hand condition). To conclude we state the following proposition.

Proposition 1. Under conditions (S) and with f(m) = qm
2 , m ≥ 0, the joint

stationary distribution of X̃ has the product form:

p(n,m) = Cg(n)f(m), (21)

g(0) = 1, g(n) = qn
1 , n > 0, g(n) = (q̃1)−n, n < 0, (22)

q1 =
λ̂p

λ̂e1 + λ̂−q2
, q̃1 =

λ̂e1 + λ̂−q2

λ̂p + û1

, C =
(1 − q1)(1 − q̃1)(1 − q2)

1 − q1q̃1
. (23)

The proof proceeds with the substitution of (21) into the global balance equa-
tions, and is omitted due to page constraint. For alternative approaches see
[2,10]. C is obtained using the normalizing condition

∑+∞
n=−∞

∑+∞
m=0 p(n,m) = 1.

Extension to a Network of SEQs. The approximation model is flexible enough to
incorporate an arbitrary number of SEQs that are deployed close to the target
BS while preserving the product-form solution. Indeed, assume that there are K
reserve energy queues deployed close to our BS. In such a case our smart BS will
generate signals at SEQ k, at a Poisson rate λ̂−

k , while energy units arrive at SEQ
k at a Poisson rate λ̂r

ek
, and energy leakage at a Poisson rate û2k k = 1, ...,K.

The system’s state is now (n,m) = (n,m1, ...,mK), n ∈ Z, mk = 0, 1, ..., where
now mk, counts the number of stored energy units in SEQ k.

Then, provided that q̌1 =
̂λp

̂λe1+
∑K

k=1
̂λ−
k q2k

< 1, ˇ̃q1 =
̂λe1+

∑K
k=1

̂λ−
k q2k

̂λp+û1
< 1,

q2k =
̂λr
ek

̂λ−
k +û2k

< 1, k = 1, ...,K, a modification of Proposition 1 can be proved,



A Markovian Queueing System for Modeling a Smart Green Base Station 17

and the joint stationary distribution of (n,m) is for fk(mk) = qmk

2k , k = 1, ...,K,
mk ≥ 0,

p(n,m) = C
′
v(n)

K∏

k=1

fk(mk), (24)

v(0) = 1, v(n) = q̌n
1 , n > 0, v(n) = (˜̌q1)−n, n < 0, (25)

and the normalization constant is C
′
= (1− q̌1)(1− ˜̌q1)

∏K
k=1(1−q2k)/(1−q1q̃1).

7 Conclusion

We have given the detailed specification of a versatile model of energy supply
for base stations or similar devices and presented preliminary numerical results.
Our future investigations will concentrate on the resolution of models with a
challenging size, the comparison with the product-form approximation, and also
on ways to compute efficiently transient measures such as the mean time to
depletion. With that objective, we will also investigate whether an approximate
analysis through time decomposition is accurate. In a future work, we intent to
specify the component interactions of our model by means of high level formalism
such as a Markovian process algebra.
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Abstract. The problem of maximizing the profit achieved by hiring
servers from a Cloud and offering virtual machines to paying customers
is examined. A number of VMs, each running a user job, can share a
server. Hiring a server incurs an initial set-up cost, as well as running
costs proportional to the duration of hire. New jobs that cannot start
immediately may be lost, or they may be queued. It may or may not be
possible to move running VMs from server to server. The effect of these
different conditions on several hiring policies, both static and dynamic,
is analyzed and evaluated.

1 Introduction

This paper addresses a problem that arises in the market for computer services.
A host gains income by running user jobs on servers that it hires from a Cloud
provider. To run a job, a Virtual Machine (VM) is instantiated on one of the
servers. However, there is a limit on the number of VMs, and hence jobs, that can
run in parallel on one server without unduly degrading each other’s performance.
When that limit is reached for all currently hired servers, the host may

(a) reject newly arriving jobs, thus losing revenue;
(b) queue newly arriving jobs, possibly having to pay penalties mandated by a
Service Level Agreement (SLA);
(c) hire more servers, incurring more costs.

The cost of hiring a server may include a fixed initial set-up component, plus
a cost proportional to the duration of hire. In the case of queued jobs, the SLA
may guarantee a bound on waiting, with a penalty payable when that bound
is exceeded. In all cases, the problem is to decide what actions to take so as to
maximize the long-term average profit (revenues minus costs) obtained per unit
time.

We analyze, evaluate and compare several server hiring policies. Some of
these are static, choosing a fixed number of servers and keeping them for as
long as the input parameters remain the same. Others are dynamic, hiring and
releasing servers in response to changes in the number of jobs in the system.
The majority of policies reject incoming jobs which cannot start immediately.
However, the possibility of queueing such jobs subject to waiting time guarantees
is also considered.
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 19–31, 2015.
DOI: 10.1007/978-3-319-23267-6 2
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In a practical application, these policies would have to be combined with some
monitoring and parameter estimation technique that would detect when the
loading parameters change. We do not dwell on that aspect because it has already
been covered quite extensively in the literature (see below). Our assumption is
that the system reaches steady state during a period where the parameters stay
the same.

It should be pointed out that the behaviour of a dynamic policy depends on
whether a running VM can be moved from one server to another or not. In the
former case, jobs can be packed into the smallest number of servers required,
whereas in the latter one may need to keep an unnecessarily large number of
partially filled servers.

A special queueing model is analyzed and solved for the case of a dynamic
hiring policy with non-movable VMs.

The general conclusion reached after a number of numerical experiments com-
paring the different hiring policies is that a static policy can perform really well,
provided that it is chosen optimally (this proviso is important!). Dynamic poli-
cies do tend to produce higher profits, but the improvements rarely exceed 10%.

There has been quite a lot of work on server allocation, often in the context
of the trade-off between performance and energy consumption. In most cases
the focus has been on static policies, with an emphasis on estimating the traffic
and reacting to changes in the parameters. Such studies were carried out by
Mazzucco et al. [7,8], using models and empirical observations. Bod́ık et al. [2]
use statistical machine learning to estimate the workload during the next period.

Chaisiri et al. [3] attempt to exploit the lower costs of future reservations in
order to minimize the overall cost of hiring Cloud servers. They use stochastic
and deterministic programming techniques, coupled with approximations. This
study has some dynamic features. However, the actual demand process is not
modelled and therefore neither losses nor waiting can be taken into account.

A dynamic optimization using Markov decision theory was carried out by
McGough and Mitrani [9] for a model with batch arrivals and also when hiring
decisions are made at fixed intervals. Gandhi et al [5], and Mitrani [12] analyzed
certain dynamic server allocation policies with set-up costs. In these studies
jobs are queued but there are no SLAs, and the possibility of rejections is not
considered.

More distantly related work concerns the maximization of throughput and
the minimization of waiting or response time in different scheduling contexts,
e.g. Urgaonkar et al. [13], Chandra et al. [4] and Bennani and Menascé [1].
A deterministic example of job scheduling with migration in order to minimize
the number of servers was considered by Ghribi et al [6].

In all of the above papers, servers are assumed to serve one job at a time
(VMs are mentioned in [8] for the purpose of parameter estimation, but are not
included in the analysis). Where a dynamic policy has been compared to a static
one (e.g. in [9]), the latter has been chosen in an ad-hoc manner, rather than
optimally. The effect of not being able to move VMs between servers has not
been examined.



Static and Dynamic Hosting of Cloud Servers 21

Section 2 introduces a number of static and dynamic policies and evaluates
the profit they achieve. The models involve job losses and also queueing. The
dynamic policies assume that VMs can move instantaneously from one server to
another. The model of a dynamic policy that does not move VMs is analyzed in
section 3. Section 4 summarizes the conclusions and outlines some directions for
further research.

2 Static and Dynamic Policies

A host hires servers from a cloud provider in order to offer services to paying
customers, Servers can be hired and released instantaneously and at any time.
Similarly, VMs can be initiated and terminated instantaneously and at any time.
In this section we also assume that VMs can be moved from server to server
without delay and without incurring costs.

The service provided by a VM during its lifetime is referred to as a ‘job’.
A server can run efficiently up to m parallel VMs, so if there are n active servers
at a given moment, there is room for a maximum of nm jobs.

The cost of a server which is used for a period of length t is c1 +c2t. The first
term, c1, if non-zero, may be considered as a ‘set-up’ cost, or it may be introduced
by the provider in order to discourage short-term hire. The coefficient c2 reflects
the cost of operating a server per unit time.

Jobs arrive into the system in a Poisson stream at rate λ. Their lifetimes may
have arbitrary distribution with mean 1/μ. The offered load is thus ρ = λ/μ.
The values of these parameters are assumed to remain constant long enough so
that the system can be treated as being in steady state.

The assumption of easily movable VMs implies that jobs can be ‘packed’
efficiently. Suppose that the servers currently hired are numbered 1, 2, . . .. When
accepting an incoming job, allocate it to the server with the lowest index that
has room for it. When a job is completed and its VM is terminated, move a job
from the non-empty server with the highest index (if different) to the vacated
place. This ensures that if there are j jobs present, they can be run on �j/m�
servers, where �x� is the smallest integer exceeding or equal to x.

The problem that needs to be addressed in this context is: When, and how
many, servers should be hired or released? One possibility is to employ a static
policy whereby a fixed number of servers, n, is hired and kept for as long as the
parameters λ and μ retain their values. An incoming job that finds all servers
full, i.e. nm jobs present, is rejected. If the policy is static, the question of moving
jobs between servers does not arise.

In such a system, the number of jobs present behaves like an M/M/K/K
queue, i.e. an Erlang loss model where K = nm is the maximum number of
jobs that can be accepted. The steady-state probability, qj , that there are j jobs
present is equal to (e.g., see [11])

qj =
ρj

j!

[
nm∑

k=0

ρk

k!

]−1

; j = 0, 1, . . . , nm . (1)
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The decision on what value of n to choose depends on the objective function
to be optimized. If, for example, the aim is simply to avoid job losses, one could
fix a desirable value, ε, and hire the smallest number of servers which ensures
that the probability of rejection does not exceed ε:

n∗ = min{n : q(nm) ≤ ε} . (2)

This will be referred to as the ‘fix-ε’ policy.
Alternatively, one could attempt to maximize profit. Suppose that every

accepted job brings in a revenue of r. Then the average long-run profit pro-
duced by n servers per unit time, R(n), is given by

R(n) = rλ(1 − q(nm)) − c2n , (3)

The long-run set-up costs incurred per unit time are zero, because after the
initial moment there are no new hiring events.

It is known that the Erlang loss probability, q(nm), is convex in n (see [10]).
Hence, the profit function R(n) is concave in n and has a single maximum. The
optimal number of servers, and the corresponding maximum achievable profit,
can therefore be computed quite easily by evaluating R(n) for n = 1, 2, . . ., and
stopping as soon as R(n+1) < R(n). The resulting hiring policy will be referred
to as ‘fix-opt’.

Now consider the possibility of hiring and releasing servers dynamically, in
response to changes in the system state. A rather general policy of this type
would work as follows: Hire a block of k1 servers; if there are k1m jobs present
and a new job arrives, hire a new block of k2 servers. This goes on up to a
maximum of b blocks with a total of n = k1 + k2 + . . . + kb servers. When a
job completes, a job from a block with a higher index (if any) is moved into
its place so as to maintain optimal packing. If, as a result of this completion,
a block empties, all the servers in it are released. One may also decide to keep
block 1 permanently hired. This policy will be referred to as ‘blocks-b’, with a
bound of n.

The number of jobs in the system under the blocks-b policy with bound n has
the same distribution, given by (1), as under the static policy with n servers. In
particular, the probability that an incoming job is accepted is the same. However,
the dynamic policy incurs set-up costs, while reducing the operating costs.

Let Ki be the total number of servers in the first i blocks: Ki = k1 + k2 +
. . . + ki; i = 1, 2, . . . , b; Kb = n and, by definition, K0 = 0. Since block i + 1
is hired whenever an incoming job finds exactly Kim jobs present, the average
number of hiring events per unit time is

S = λ

b−1∑

i=0

q(Kim)ki+1 . (4)

For a given number, j, of jobs present (1 ≤ j ≤ nm), denote by K(j) the
number of servers currently hired. That is the smallest Ki such that Ki ≥ �j/m�.
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With that notation, the average number of servers hired, L, can be written as

L =
nm∑

j=1

qjK(j) . (5)

Hence, the average long-term profit obtained per unit time under the blocks-b
policy is equal to

R(n) = rλ(1 − q(nm)) − c1S − c2L . (6)

To determine the best blocks-b policy with a bound n, one would have to
search not only with respect to n, but also with respect to b and ki. That search
may be quite expensive. However, two special cases can be handled quite easily.
At one extreme is the policy which we shall call ‘one-by-one’: it hires and releases
servers one at a time (b = n and ki = 1 for all i). The best one-by-one policy can
be found by a simple search with respect to n. At the other extreme is blocks-2,
where only two blocks are used; b = 2, k1 + k2 = n. The search in this case is
with respect to n and k1.

Figure 1 illustrates the performance of the above policies in the context of a
system where each server runs up to 5 VMs in parallel. The average residence
of a VM is taken as the unit of time, μ = 1. The revenue per job is r = 1, while
the server costs are c1 = 0.1 and c2 = 3. Thus, a server can make a profit by
running 5 jobs, but the margin is not large.

For the policies fix-opt, one-by-one and blocks-2, the profit produced by the
best server bound n (and, in the case of blocks-2, the best block sizes k1 and k2,
all determined by a search), is plotted against the offered load by increasing the
arrival rate. For the fix-eps policy, the value of n is chosen so that no more than
one job in a thousand is lost, ε = 0.001.

We observe that the fix-ε policy has the worst performance, actually losing
money unless the arrival rate exceeds 30. This is not surprising, since the value
of ε is quite small, and the costs of servers are disregarded when choosing n. Of
the dynamic policies, one-by-one is better than blocks-2, but not by much. Both
are better than the static fix-opt policy, but again not by much.

The server allocations for each value of λ are shown in the table below (the
values of λ now go up to 100). n∗ is the best number of servers found for the
fix-opt policy; n1∗ is the best upper bound for the one-by-one policy; k1 and k2
are the best block sizes for the blocks-2 policy. Note that n1∗ is always larger
than n∗, while k1 (at least in this example) is the same as n∗. The improvement
in profit produced by the blocks-2 policy is due to the small second block which
is brought into play when the first block is full.

The above behaviour is observed for other parameter values, as long as the
set-up costs are quite small compared to the operating costs. When that is not
the case, the comparison is less clear-cut. This is illustrated in Figure 2, where
the performance of the fix-opt, one-by-one and blocks-2 policies is plotted against
the set-up cost c1. The job arrival rate is λ = 40 and the other parameters are
as in figure 1.

Since the fix-opt policy is not affected by the set-up cost, its plot is a horizon-
tal line. The one-by-one policy starts off as the best of the three, but eventually
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Fig. 1. Comparison of hiring policies m = 5, μ = 1, r = 1, c1 = 0.1 c2 = 3

Table 1. Server allocations

λ n∗ n1∗ k1 k2

20 4 14 4 1

40 8 20 8 1

60 12 27 12 1

80 16 33 16 2

100 20 39 20 2

becomes the worst. This is because it keeps hiring and releasing servers even
when that is not warranted by the high set-up costs. The blocks-2 policy is more
conservative. It yields slightly lower profits than one-by-one when c1 is low, but
on the other hand it never becomes worse than fix-opt as c1 increases. What
happens is that for high values of c1, the best blocks-2 policy is of the form
k1 = n, k2 = 0. In other words, it becomes identical to fix-opt.

The conclusions that can be drawn from these results, as well as from others
derived with different parameter values and cost coefficients, can be summarized
as follows:

The optimally chosen static policy fix-opt, which does not incur repeated
set-up costs and does not require moving VMs from server to server, performs
very well. The dynamic policies from the blocks-b family can achieve 10% – 15%
higher profits when the set-up costs are low. The best blocks-2 policy is always
at least as good as the fix-opt policy and is never much worse than one-by-one.
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Fig. 2. Comparison of hiring policies; different set-up costs m = 5, μ = 1, r = 1, λ =
40 c2 = 3

2.1 Queued Jobs

Instead of rejecting the jobs that find all available VMs occupied, it may be
possible to queue them. That would avoid the revenue loss due to rejections,
but would raise the question of quality of service. Since customers do not like
waiting, the host would normally offer some Service Level Agreement (SLA), e.g.
promising to pay a penalty u for any job whose waiting time exceeds a given
threshold, v.

Would that be worth doing? To evaluate the trade-off, assume that the service
times are distributed exponentially. Consider the static policy that hires a fixed
number of servers, n, and queues jobs. The long-run average profit produced per
unit time is now

R(n) = λ[r − uP (w > v)] − c2n , (7)

where P (w > v) is the steady-state probability that the waiting time in the
M/M/(nm) queue exceeds v. For a stable queue (ρ < nm), that probability is
given by (e.g., see [11])

P (w > v) = qe−μ(nm−ρ)v , (8)

where q is the steady-state probability that an incoming job would have to wait:

q =
ρnm

(nm − 1)!(nm − ρ)

⎡

⎣
nm−1∑

j=0

ρj

j!
+

ρnm

(nm − 1)!(nm − ρ)

⎤

⎦

−1

. (9)
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This last expression is known as the ‘Erlang-C formula’, or ‘Erlang’s delay for-
mula’.

The policy that uses the value of n which maximizes the right-hand side of (7)
will be referred to as fixQ-opt. The trade-off between fix-opt and fixQ-opt would
clearly depend on the SLA. Intuitively, queueing jobs is likely to be advantageous
if customers are willing to put up with waiting, otherwise rejections would be
better.

In figure 3, the fixQ-opt policy is compared with fix-opt for three different
thresholds v. To make the queueing policy more directly comparable to the
rejection one, the penalty u is taken to be equal to r. In other words, customers
whose jobs wait longer than v get their money back. From the profit perspective,
it is as if they had been rejected. The other parameters are as in figure 1. The
threshold values chosen are v = 0.2, v = 0.4 and v = 0.6. In other words, the
penalty is payable if the customer’s waiting time is more than 20%, 40% or 60%
of their residence time. In all cases, the achieved average profit is plotted against
the arrival rate, λ.

Fig. 3. Rejection vs queueing; different thresholds v m = 5, μ = 1, r = u = 1, c2 = 3

We observe that when customers are impatient (v = 0.2), it is better to reject
jobs than to queue them. The situation is reversed when customers are quite
tolerant of waiting (v = 0.6) and the load exceeds 20. However, the differences
are not large in either case. For the intermediate threshold (v = 0.4), there
is even less to choose between queueing and rejecting. Moreover, increasing v
beyond 0.6 does not improve the profits achieved by fixQ-opt significantly.

In summary, one can say again that, as long as the number of servers is
chosen optimally, the management of the jobs is of secondary importance.
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N.B. The Markovian assumptions of Poisson arrivals and exponential service
times can be relaxed, at the price of replacing the exact results with approxima-
tions. There are approximate results for the G/GI/n/n loss model, as well as
for the G/GI/n queue. To use those expressions one would need to estimate not
only the average interarrival and service times, but also their second moments.

3 Virtual Machines Do Not Move

The dynamic policies examined in the last section relied for their operation on
the ability to move virtual machines from server to server instantaneously and
without cost. It would be interesting to evaluate the extent to which profits are
affected when that flexibility is removed. In order to do that, we shall assume
that the job service times are distributed exponentially, with mean 1/μ.

Consider the dynamic policy blocks-2, where n servers are divided into two
blocks, 1 and 2, of sizes k1 and k2 respectively (k1+k2 = n). A VM, once started
in a server, remains there until its job completes. Let us assume that the servers
in block 1 are permanently hired. Incoming jobs are allocated VMs in block 1
whenever there are fewer than k1m jobs present there; otherwise they go to block
2, if there are fewer than k2m jobs there; when all nm VMs are busy, jobs are
rejected. The servers in block 2 are released when a departure leaves all of them
empty; they are re-hired at the next arrival instant which finds block 1 full.

A single integer - the total number of jobs present - is no longer enough to
describe the state of the system. One needs to specify the number of jobs, I,
present in block 1, and the number of jobs, J , present in block 2. Those two
random variables are not independent: J can increase only when I = k1m. Let
pi,j be the joint steady-state probability that I = i and J = j (i = 0, 1, . . . , k1m;
j = 0, 1, . . . , k2m).

The servers in block 2 are being used whenever J > 0. Hence, the average
number of servers hired, L, is given by

L = k1 + k2

[

1 −
k1m∑

i=0

pi,0

]

. (10)

The hiring of block 2 occurs whenever an incoming job finds the system in state
I = k1m, J = 0. Hence, the average number of server hiring events per unit
time, S, is

S = λk2pk1m,0 . (11)

Jobs are rejected when both blocks are full, which occurs with probability
pk1m,k2m. The average profit obtained per unit time is thus given by an expres-
sion similar to (6):

R(n) = rλ(1 − pk1m,k2m) − c1S − c2L . (12)

It now remains to determine the joint distribution pi,j . The instantaneous
transition diagram for the Markov process (I, J) is illustrated in figure 4.



28 P. Ezhilchelvan and I. Mitrani

Fig. 4. Transition diagram

For i = 0, 1, . . . , k1m − 1 and j = 0, 1, . . . , k2m, the probabilities pi,j satisfy
the following balance equations:

(λ + iμ + jμ)pi,j = λpi−1,j + (i + 1)μpi+1,j + (j + 1)μpi,j+1 , (13)

where p−1,j = 0 and pi,k2m+1 = 0 by definition. When i = k1m, the equations
become:

(λ + k1mμ + jμ)pk1m,j = λpk1m−1,j + λpk1m,j−1 + (j + 1)μpk1m,j+1 , (14)

where pk1m,k2m+1 = 0 by definition.
The numerical complexity of solving this set of simultaneous equations, plus

the normalizing equation, by Gaussian elimination, can be high. It is on the order
of O[(k1m + 1)3(k2m + 1)3]. Fortunately, we can exploit the special structure of
this Markov process in order to reduce that complexity considerably.

Note first that the total number of jobs present, I+J , behaves like the number
of calls in an Erlang loss system M/M/nm/nm with offered traffic ρ = λ/μ. In
particular, the rejection probability, pk1m,k2m, is equal to the probability qnm,
given by expression (1) for j = nm.

Examining equations (13) for j = k2m and i = 0, 1, . . . , k1m − 1 in turn, we
see that they can be transformed into recurrence relations. Denoting k2m by K,
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these can be written as

pi,K = ai+1pi+1,K ; i = 0, 1, . . . , k1m − 1 , (15)

where a0 = 0 and

ai+1 =
i + 1

(1 − ai)ρ + i + K
; i = 0, 1, . . . , k1m − 1 . (16)

After evaluating pk1m,k2m and the coefficients ai, the recurrences (15) enable
the probabilities, pk1m−1,K , pk1m−2,K , . . ., p0,K to be computed by successive
substitution. Denote the sum of those probabilities, i.e. the marginal probability
that block 2 is full, by p·,K . Equating the rate at which the number of jobs in
block 2 decreases from K to K − 1 with that at which it increases from K − 1
to K, we obtain

Kμp·,K = λpk1m,K−1 . (17)

This equation determines pk1m,K−1. In general, if the marginal probability,
p·,j+1, that there are j + 1 jobs in block 2 is known, then the probability pk1m,j

is determined from

(j + 1)μp·,j+1 = λpk1m,j ; j = 0, 1, . . . ,K − 1 . (18)

Now consider the balance equations corresponding to row j in the diagram,
for j = 0, 1, . . . ,K − 1. They can be written in the form

pi,j = ai+1,jpi+1,j + bi+1,j ; i = 0, 1, . . . , k1m − 1 , (19)

with a0,j = 0,

ai+1,j =
i + 1

(1 − ai,j)ρ + i + j
; i = 0, 1, . . . , k1m − 1 , (20)

and b0,j = 0,

bi+1,j =
ρbi,j + (j + 1)pi,j+1

(1 − ai,j)ρ + i + j
; i = 0, 1, . . . , k1m − 1 . (21)

Having determined the probabilities in row j + 1, and consequently pk1m,j from
(18), these relations determine all the other probabilities in row j.

Proceeding in this manner through rows K−1, K−2, . . ., 0, one can compute
all unknown probabilities. The numerical complexity of that procedure is on the
order of O[(k1m + 1)(k2m + 1)], i.e. it is linear in the number of unknowns.

It may be expected that the inability to move VMs and pack them into the
smallest number of servers would reduce the effectiveness, and hence the profits,
of a dynamic hiring policy. The extent of that reduction is illustrated in figure
5. The blocks-2 policy of this section is compared with the fix-opt and blocks-
2 policies of section 2, where VMs could move instantaneously from server to
server. For both versions of the dynamic policy, the block sizes k1 and k2 are
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Fig. 5. Static and dynamic policies with movable and immovable VMs m = 5, μ =
1, r = 1, c1 = 0.1 c2 = 3

chosen optimally, by performing a search. In all cases, the achieved profit is
plotted against the arrival rate λ, while the other parameters are as in figure 1.

The figure shows that when VMs cannot be moved, the advantage of dynamic
hiring is almost eliminated. The blocks-2 policy with immovable VMs still pro-
duces slightly higher profits than the fix-opt policy, but the improvements are
on the order of 1%.

4 Conclusion

We have evaluated and compared the performance of several static and dynamic
server hiring policies. The results of a number of numerical experiments lead
to the rather general conclusion that a well-chosen static policy can be nearly
as good as a dynamic one. Moreover, either an increase in set-up costs, or a
restriction in the movement of VMs, tends to reduce the gains achieved by a
dynamic policy. That will be the case, for example, if VMs can be moved, but
not instantaneously. The costs and durations of moving VMs were examined in
more detail in Voorsluys et al [14].

Among the dynamic hiring policies, the simple blocks-2 policy may be recom-
mended. The best block sizes are quite easily determined, and it is robust with
respect to rising set-up costs. However, its advantages are significantly reduced
if VMs cannot move from server to server.

If the incoming jobs belong to different classes, with different parameters,
and if servers are hired and dedicated to separate classes, then our results would
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apply to each individual class. The situation would be more complicated if VMs
of different classes were allocated to the same server. That would require further
work.

What if jobs do not arrive in a Poisson stream? Some answers may be
obtained by applying approximate results, but those would probably need to
be validated by simulations.
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Abstract. Mobile offloading systems have been proposed to migrate
complex computations from mobile devices to powerful servers. While
this may be beneficial from the performance and energy perspective, it
certainly exhibits new challenges in terms of security due to increased
data transmission over networks with potentially unknown threats.
Among possible security issues are timing attacks which are not pre-
vented by traditional cryptographic security. Metrics on which offloading
decisions are based must include security aspects in addition to perfor-
mance and energy-efficiency. This paper aims at quantifying the security
attributes and their impact on the performance of mobile offloading sys-
tems. The offloading system is modeled as a hybrid CTMC and queueing
model. The proposed model focuses on state transition and state-based
control. The quantification analysis is carried out for steady-state behav-
ior of the CTMC model as to optimize the weighted-sum cost measure.
By transforming the security model to a model with absorbing state, we
compute the “mean time to security failure” (MTTSF) measure. Finally,
a security and performance tradeoff measure is computed based on the
system model and optimum parameter set is found for the system.

Keywords: Mobile offloading · Security attributes · Quantitative ana-
lysis · Phase-type distribution

1 Introduction

Mobile phones are no longer used only for voice communication and short mes-
sage service (SMS); instead, they are used for watching videos, gaming, web surf-
ing, and many other applications. While the last decades witness great advances
in hardware technology, mobile devices still face the restriction of resources,
such as battery life, network bandwidth, storage capacity, and processor perfor-
mance. Offloading is a solution to augment these mobile systems’ capabilities by
migrating computation to more resourceful computers (i.e., servers). This is dif-
ferent from the traditional client-server architecture, where a thin client always
migrates computation to a server [1]. In many scenarios, the limited comput-
ing speeds of mobile systems can be enhanced by offloading. One example is
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 32–46, 2015.
DOI: 10.1007/978-3-319-23267-6 3
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context-aware computing infrastructure [2] –where multiple streams of data from
different sources like GPS, maps, accelerometers and temperature sensors need
to be analyzed together in order to obtain real-time information about a user’s
context. Even though battery technology has been steadily improving, it has
not been able to keep up with the rapid growth of power consumption of mobile
systems. Offloading may extend battery life by migrating the energy-intensive
parts of the computation to servers [3].

The smooth offloading of computation depends on a fast and stable network
connection, which guarantees seamless communication. While in unreliable net-
work condition, task completion can be delayed or interrupted by congestion or
packet loss, when offloading may not always benefit [4]. This involves making
a decision regarding whether and what computation to migrate, which usually
depends on many parameters such as the network bandwidths and the amounts
of data exchanged through the networks. A vast body of research exists on offload-
ing decisions for improving system performance and saving energy [5][6][7][8].

While offloading becomes an attractive solution for mobile systems from the
performance and energy perspective as applications become increasingly com-
plex, it certainly exhibits new challenges in terms of security due to increased
data transmission over networks with potentially unknown threats. Protecting
user privacy and data/application secrecy from an adversary is a key to establish
and maintain consumers’ trust in the mobile platform, especially in mobile cloud
computing. Metrics on which offloading decisions are based must include secu-
rity aspects in addition to performance and energy-efficiency. Indeed, security is
such a big area covering large numbers of issues. In this paper, we deal with the
specific threat of timing attacks whose remote feasibility has been proved [9].
Timing attacks based on information gained from the service response time are
so effective that they pose a real threat to mobile offloading systems.

Quantitative analyses of system dependability and reliability have received
great attention for several decades. However quantification of security has only
recently attracted more attention, and some initial conceptual work has been
published already decades ago, serious model-based evaluation of security mech-
anisms has been published only recently. The authors in [10] have shown how a
key distribution centre can be modelled and analysed, and how to find an optimal
key refresh rate for such a system. Previous work on the security of computing
and information systems has been mostly assessed from a level point of view. A
system is assigned a given security level with respect to the presence or absence of
certain functional characteristics and the use of certain development techniques.
In 2013, Zhang [11] proposed an approach to evaluate the network security sit-
uation objectively using Network Security Index System (NSIS). Only a few
studies have considered the quantitative evaluation of security. The authors in
[12] make an effort to examine the security vulnerabilities of operating systems
of routers within the cloud carrier by assessing the risk based on the National
Vulnerability Database (NVD) and gives a quantifiable security metrics for cloud
carrier, which is very useful in the Service Level Agreement (SLA) negotiation
between a cloud consumer and a cloud provider.
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In order to proceed to a quantitative treatment of the performance-security
tradeoff of offloading system we propose a hybrid Continuous-time Markov
chain (CTMC) and queueing model which treats the security and performance
attributes respectively. In this paper, we show how to formulate measures that
include both, performance and security aspects and that optimize the tradeoff
between the two. Our model is aimed to deal with a general offloading system
with a master secret stored on the server side, where the attacking client can
get normal offloading service. Of course many security problems are relevant to
the mobile offloading scenario, but in this paper we only address timing attacks.
In a timing attack the attacker deduces information about a secret key from
runtime measurements of successive requests. This process can be interrupted
by frequently changing the key [13]. By solving the proposed model, we propose
different metrics on which offloading decisions can be based. The system cost
metric is based on a weighted sum of security and system effort made for rekey-
ing. The tradeoff metric is the product of a security metric and a performance
metric. Also, optimal rekeying rates are found for the two measures.

The remainder of this paper is structured as follows. In Section 2, we overview
the system and attackers’ behavior and propose a hybrid model for a offloading
system under timing attacks. The system metrics on which the evaluation based
are addressed in Section 3. Section 4 shows the model analysis by solving the
model. Section 5 gives numeral results of the analysis performed on the model
for a sample. And finally, the paper is concluded and future work are presented
in Section 6.

2 System Overview and The Model

A mobile offloading system is a common solution to enhance the capabilities
of the mobile system by migrating computation to more resourceful computers
(i.e., servers). To quantitatively analyze the performance and security attributes
of such a system under the threat of timing attacks, we have to incorporate
the actions of an attacker who is trying to capture sensitive information in con-
junction with the protective actions taken by the system. Therefore, we have
to develop a hybrid CTMC and queueing model that takes into account the
behavior of both actors.

The state transition model represents the system behavior for a specific
attack and given system configuration that depends on the actual security
requirements. In our scenario, the system is assumed to be vulnerable to timing
attacks in which the attacker in the worst case will eventually decrypt the system
private key saved in the server. We assume that the server is configured as to
renew its key regularly to prevent or handle these attacks. At the same time, the
queueing model presents the offloading decision and jobs processing operation.
A job is either processed locally by the mobile device or offloaded and served by
cloud servers.
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2.1 Behavior of System and Attackers

In the offloading system we consider, a master key stored in the server is used for
the encryption and decryption operations of all user data. In order to improve
security, the server regularly or irregularly changes the master key, which is
called the rekeying process. The system has to process all user-files with both
the new and the old master key. In this process, the system does not accept any
other user commands. When user data is very large, this process will take long.
Therefore, it is reasonable to recommend an optimal interval time for the master
key replacement cycle, and select a suitable time, when there is a low amount of
user access(e.g. at night).

Implementations of cryptographic algorithms often perform computations in
non-constant time, due to performance optimization. If such operations involve
secret parameters, these timing variations can leak some information and a care-
ful statistical analysis could even lead to the total recovery of these secret keys.
Because of timing attacks gain secret information from the server response time,
they are a real threat to mobile offloading systems. However this threat is not
covered by traditional notions of cryptographic security [14]. It was commonly
believed that timing attacks can be directed only towards smart cards or affect
inter-process locally, but more recent research reveals that remote timing attacks
are also possible and should be taken into consideration [15][9]. Mobile offload-
ing requires access to resourceful servers for short duration through wireless
networks. These servers may use virtualization techniques to provide services so
that they can isolate and protect different programs and their data. However,
the author in [16] shows that using a cache timing attack, an attacker can bypass
the isolated environment provided by virtualization characteristics, where sen-
sitive code is executed in isolation from untrustworthy applications. It is worth
mentioning that a timing attack also poses a threat to other types of systems.
Timing attacks can be detrimental in the mix-zone construction and usage model
over road networks [17].

In timing attacks to our offloading system, an attacker continues to send
requests to the server and the obtained offloading service will be properly per-
formed by the server. In addition the attacker records each response time for
a certain service and tries to find clues to the master secret of the server by
comparing time differences from several request queues. If the attacker success-
fully breaks the secret information from the timing results, he may hack into the
system, read and even modify other users’ information without authorization.

2.2 The System Model

As compared to our previous work [18], in which the model only considered the
security attributes of offloading systems, the proposed hybrid CTMC and queue-
ingnmodel in this work takes the performance properties of a generic offloading
system into account (Fig. 1). When jobs are generated by a mobile device, they
are either offloaded to the cloud or executed locally, expressed by the two queues,
respectively. The parameters λ and λ′ indicate the arrival rates for the two
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queues. A job dispatched to offload comes to the upper queue and is served by
the server with service rate μ, which also includes the data transmission time.
For jobs dispatched to execute locally, the service rate is μ′ which is assumed to
be lower than μ.

Fig. 1. State transition diagram for a generic offloading system

The states and parameters of the CTMC model are summarized here:

– G Good state in which the offloading system works properly
– T Timing attack happening state
– C Compromised state after the attacker knows the secret of the system
– R Rekeying state in which system renews its master secret
– λ1 rate at which the system launches the rekeying process in state G and

state T
– λ2 rate at which an attacker triggers a timing attack to the system
– λ3 rate at which a timing attack succeeds to break the system secret
– λ4 rate at which the system is brought back to the good state by the rekeying

process
– λ5 rate at which the system launches the rekeying process in state C
– λ6 rate at which the attacker successfully breaks the key, while fails at

accessing the data or he just fails to conduct a successful timing attack

The upper part of Fig. 1 shows a CTMC model representing the states of the
system. After initialization, the system starts to operate properly in the good
state G. The system is under the specific threat of timing attacks conducted by
random attackers. We describe the events that trigger transitions among states
in terms of transition rates. It is assumed that there is only one attacker in the
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system at one time. If an attack happens, the system is brought to the timing
attack state T at rate λ2. In this state the attacker tries to break the server
encryption key by making time observations. So while the system is in state T ,
the attacker is not yet able to access confidential information.

It takes a certain time to perform the timing attack after which the attacker
may know the encryption key and the system moves to the compromised state C
at rate λ3. So λ−1

3 is the mean time a timing attack takes. There is a possibility
indicated by the arc λ6 that the attacker successfully breaks the key, while fails
at accessing the data or he just fails to conduct a successful timing attack. If the
attacker succeeds to determine the encryption key through time measurements,
confidential data will be disclosed which is assumed to incur a high cost. This
can only happen if the system is in the compromised state C and we call the
incident of entering the compromised state a security failure. In this state, all jobs
dispatched to offload are not secure any more, therefore they must be repeated
and do not contribute to the throughput. The jobs lost is represented by the red
arc in Fig. 1.

Renewing the server encryption key can prevent or interrupt a timing attack.
The arcs from other states to state R represent these operations in the server.
The rekeying rate is the parameter one can tune as a system administrator. It
indicates how often the system launches the rekeying process. The rate λ1 is the
rekeying rate when the system is in good state G or in the timing attack state
T . We assume the offloading system has intrusion detection mechanisms running
on it, that can find clues of compromised behavior, in which case the system will
trigger the rekeying process more frequently. So in the compromised state C,
we assume the rekeying process is triggered at a different rate, λ5 = nλ1 . The
parameter n is called the coefficient of rekeying in the compromised state because
it represent the relationship between the rekeying rate (or rekeying frequency)
in good state and the rekeying rate in compromised state. All these three paths
transfer the system to the rekeying state R from which it will finally return to
the initial state G. The challenge is to find an optimal value for the rekeying
interval. The rekeying should in the optimal case happen before or soon after
the system enters the compromised state. We consider 4 rekeying options in this
paper, that is n = 0.5, 1, 2, 3 respectively.

In the rekeying state the system refuses all user requests. So we put a inhibitor
arc on the cloud server. All the jobs are dispatched to the local queue and some
jobs will be lost in this state. As a result, the system throughput is degraded.
The rekeying process will bring the system back to the initial state G at rate λ4.
Consequently, the mean time to perform the rekeying process is λ−1

4 and during
this time the server refuses user requests.

For the system parameters we use experimental data from an offloading
engine and OCR (Optical Character Recognition) implementation [4]. The mean
local execution time for an OCR job on the mobile device was 2377 ms. We set
μ′ = 1/2.377 ≈ 0.42. The mean offloading time including the data transition
time is 1191 ms. Then μ = 1/1.191 ≈ 0.84 . For the queues to be stable, we
assume λ = 0.8 and λ′ = 0.4.



38 T. Meng et al.

In this work, we use the CTMC model for the brevity of analysis which means
we assume all the state transition times are exponential distributed. While in
practice, depending on the nature of an attack, attacking time may follow one
of the several distribution functions. After getting the realistic time distribution
of timing attacks, we will do phase-type fitting using Hyperstar [19] to get more
accurate parameters for our model.

3 Metrics

After defining the model and its parameters, we must now establish the measures
we want to investigate. We present security and performance metrics, respec-
tively.

3.1 Security Metrics

As in our previous work [18], the security measures are defined as confidentiality
and system (security) cost that are functions of the steady-state probabilities of
the CTMC model. The steady-state probabilities πi may be interpreted as the
proportion of time that the CTMC spends in state i, where i ∈ {R,G, T,C}.

If a timing attack to the offloading system is successful, the attacker obtains
the master key and can browse unauthorized files thereafter. The entered states
denote the loss of confidentiality. Therefore, the steady-state confidentiality mea-
sure can be computed as

Confid = 1 − πC . (1)

We also define a system cost metric. In our scenario, the offloading system
suffers from cost in two states, the compromised state C and the rekeying state
R. The system loses sensitive information in the compromised state, and cost
is also incurred when the system deploys a rekeying process. The rekeying cost
and the data disclosure cost are both interpreted as the proportion of system life
time, that is, the steady-state probability of the CTMC. We define a weight w
and its complement 1 − w for the two kinds of cost. We use normalised weights
for simplicity. So the system cost is defined as:

Cost = wπR + (1 − w)πC , (2)

where πi, i ∈ {R,C} denotes the steady-state probability that the continuous-
time Markov process is in state i. 0 ≤ w ≤ 1 is the weighting parameter used
to share relative importance between the loss of sensitive information and the
effort needed to rekey regularly.

3.2 Performance Metrics

The performance metrics we are interested in describe the system in terms of
its throughput, completion times, or response times, as defined e.g. in queueing
theory or networking. In this paper we use the throughput as the performance
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metric for the offloading system. By Little’s Law, the throughput (denoted X)
is defined as:

X =
E[N ]
E[R]

. (3)

For each queue, the throughput equals the average number of jobs in the
queueing station (E[N ]) divided by the average time a job spends in the queueing
station (E[R]). The system throughput equals the sum of the two queues.

3.3 Tradeoff Metric

In order to investigate how system security will interact with performance, we
also define a tradeoff metric. An objective function formed from the product
of the security attribute confidentiality and system throughput is created to
demonstrate the tradeoff situation. As a system designer, one may look forward
to maintaining the confidentiality of sensitive information with higher through-
put, as for the tradeoff measure, the larger the better.

Tradeoff = Confid × X . (4)

The security and performance metrics defined here will be used to evaluate
the system attributes in the rest of this paper. In the next Section, we will
evaluate these measures by computing the steady-state probability of the CTMC
model and solving the queueing model.

4 Model Analysis

In this section, we derive and evaluate the security and performance attributes of
the offloading system using methods for quantitative assessment of dependability,
known as the dependability attributes, e.g. reliability, availability, and safety
which have been well established quantitatively.

4.1 CTMC Steady-State Probability Computation

For the system security attributes, we have described the system’s dynamic
behavior by a CTMC model with the state space Xs = {R,G, T,C} and the
transitions between these states. In order to carry out the security quantification
analysis, we need to determine the stationary distribution of the CTMC model.

The steady-state probabilities {πi, i ∈ Xs} of the CTMC can be computed
by solving the system of linear equations [20]

πQ = 0, (5)

where π = [πR, πG, πT , πC ] and Q is the infinitesimal generator (or transition-
rate matrix) which can be written as:

Q =

R G T C
R
G
T
C

⎛

⎜
⎜
⎝

−λ4

λ1

λ1

λ5

λ4

−λ1 − λ2

λ6

0

0
λ2

−λ1 − λ3 − λ6

0

0
0
λ3

−λ5

⎞

⎟
⎟
⎠

(6)
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In addition, we have the total probability relationship:
∑

i

πi = 1 i ∈ Xs. (7)

The transition-rate matrix Q describes the dynamic behavior of the security
model as shown in Fig. 1. The first step towards quantitatively evaluating secu-
rity attributes is to find the steady-state probability vector π of the CTMC states
by solving Eqs. 5 and 7. We can get solutions:

πR =
[(λ1 + λ2)(λ1 + λ3) + λ1λ6]λ5

φ
, (8)

πG =
(λ1 + λ3 + λ6)λ4λ5

φ
, πT =

λ2λ4λ5

φ
, πC =

λ2λ3λ4

φ
.

For the sake of brevity, we assume:
φ = (λ1 + λ4)(λ1 + λ3 + λ6)λ5 + [(λ1 + λ4)λ5 + (λ4 + λ5)λ3]λ2.

Given the steady-state probabilities of CTMC model, various measures, such
as, confidentiality and cost can be computed via Eqs. 1 to 4.

4.2 CTMC with Absorbing State - MTTSF Analysis

For quantifying the reliability of a software system, mean time to failure (MTTF)
is a widely used reliability measure. MTTF provides the mean time it takes for
the system to reach one of the designated failure states, given that the system
starts in a good state. In reliability analysis, the failed states are made absorbing
states. Once the system reaches one of the absorbing states, the probability of
moving out of this state is 0, i.e., there are no outgoing arcs from such states.
In this section, we use mean time to security failure (MTTSF) as the measure
for quantifying the security of our offloading system. MTTF or MTTSF can be
evaluated by making the compromised state of the CTMC an absorbing state,
as shown in Fig. 2.

Given a Continuous-Time Markov Chain (CTMC) with one absorbing state,
we may enter this chain at some state i with probability αi. For each state
that is visited, the time before going to the next state follows an exponential
distribution. Thus, the time required to reach the absorbing state from an initial
state i is a sum of samples from exponential distributions. For a given CTMC,
a phase-type distribution is defined as the distribution of the time to absorption
that can be observed along the paths in a CTMC with one absorbing state [21].

In our scenario, the MTTSF is the mean time it takes for the system to
reach the security failure state C. The first moment of a PH-distribution exactly
expresses the mean time to absorption in an absorbing CTMC. So for our model

MTTSF = E[X] = −αT−11. (9)

The parameters are
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Fig. 2. CTMC model with an absorbing state

T =

⎛

⎝
−λ4 λ4 0
λ1 −λ1 − λ2 λ2

λ1 λ6 −λ1 − λ3 − λ6

⎞

⎠ , (10)

and the initial probability vector is

α =
(
0 1 0

)
. (11)

Substituting into Eq. 9, we get

MTTSF =
(λ1 + λ4)(λ1 + λ2 + λ3 + λ6)

λ2λ3λ4
. (12)

4.3 Throughput Analysis

The steady-state probabilities πi may be interpreted as the proportion of time that
the CTMC spends in state i. We have defined the throughput metric in Eqe. 3. We
assume the total system life time is T . In the good state G and timing attack state
T , the number of jobs served by the system should be λ(πG+πT )T +λ′(πG+πT )T ,
given the queues are stable. While in the rekeying state R, the server refuses all
the users’ requests and all jobs must be executed locally. Assuming μ′ < λ + λ′,
the number of jobs served then is μ′πRT . In the compromised state C, all the jobs
dispatched to offload are not secure, so they do not contribute to the throughput.
In this state, the system throughput only covers the jobs executed locally λ′πCT
Therefore, we get the system throughput as

X =
λ(πG + πT )T + λ′(πG + πT )T + μ′πRT + λ′πCT

T
(13)

=(πG + πT )λ + (1 − πR)λ′ + πRμ′ .

After determining the security and performance measures for the model, we
conduct tradeoff analysis in the following Section.
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5 Numerical Results

In this section, we evaluate the measures proposed in the previous sections using
the model analysis results. It is assumed that the attack rate to the system
is λ2 = 1. Because a timing attack is considered to consume more time than
attacker coming interval, the rate at which a timing attack succeeds to break
the system secret is assumed to smaller than the attack rate, i.e. λ3 = 0.3 .
We also assume it takes an average of 0.5 time units for the server to carry
out a rekeying process and the rate at which the system is brought back to the
good state by the rekeying process is λ4 = 2. The rate at which the attacker
successfully breaks the key, while fails at accessing the data or he just fails to
conduct a successful timing attack is assumed to be λ6 = 1.

Fig. 3. System measure Cost as a function of the rekeying rate λ1

Fig. 3 shows the system measure cost, which is defined in Eq. 2, changing
with the rekeying rate λ1. We set the weighting parameter w = 0.5 to put
equal importance to the loss of sensitive information cost and the effort needed
to rekey regularly. The parameter n in this figure is the coefficient of rekeying
in the compromised state, i.e. λ5 = nλ1. In this work, we consider 4 rekeying
options, that is n = 0.5, 1, 2, 3 respectively. The rekeying rate λ1 indicates how
often the system launches the rekeying process. When the rekeying rate is low,
the system cost is very large due to the high probability of an insecure state.
We find the optimum rekeying rate λ1 = 0.2996 for the lowest system cost when
n = 3. After the lowest value, because of the increasing effort to perform rekeying
process, the cost is also getting larger at high rekeying rate. We further see that
the system cost decreases with increasing coefficient n. This is because for all
rekeying durations, the mean time in the compromised state decreases as we
rekey more frequently in this situation. On practical bound, it is to trigger more
rekeying process when the intrusion detection mechanism finds some clues.
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Fig. 4. Cost over rekeying rate λ1 and weighting parameter w

Fig. 5. Confidentiality and Throughput over the rekeying rate λ1

We study the effect of the weighting parameter w on the system cost in Fig. 4.
Also 4 rekeying options are considered here, i.e. n = 0.5, 1, 2, 3 respectively. We
look at the marginal values first. It can be seen from the figure that the cost
decreases monotonically with the rekeying rate λ1 when w = 0, where we only
consider the costs of losing sensitive information in the compromised system. Intu-
itively, in this case when we trigger the rekeying process more often, the security
cost will decrease. When we put all weight on the rekeying effort (w = 1), the
cost increases with the rekeying rate. The light color in the middle of the figure
shows the optimum rekeying rate. For the middle values of the weighting parame-
ter w, the optimum rekeying rate for the lowest cost decreases when we put more
weight on rekeying effort cost. For each specific rekeying rate λ1 the system cost
is a straight line weighting the two kinds of cost. In this figure, we get the largest
rekeying effort cost and lowest security cost at rate λ1 = 2.0.
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Fig. 6. Security and Performance Tradeoff with rekeying rate λ1

Fig. 5 shows the system security and performance measures, i.e. system confi-
dentiality (defined in Eq. 1) and throughput (defined in Eq. 3), changing with the
rekeying rate λ1. It can be seen that the confidentiality measure monotonically
increases with growing rekeying rate λ1. It also increases when the multiple of
the rekeying rate in the compromised state n is larger. This is because the secu-
rity improves when the system launches the rekeying process more frequently,
as the system is more likely to be brought back to good state from the timing
attack state and the compromised state. At small values of the rekeying rate, the
system throughput is low because more time is spent in the compromised state
when the offloading throughput is not contributing. After obtaining the maxi-
mum throughput, the more often the server triggers the rekeying act, the more
often the server denies offloading requests. As a result, the system throughput
decreases with the rekeying rate.

At last, we present the security and performance tradeoff analysis for the
offloading system in Fig. 6. The tradeoff measure increases rapidly with the
rekeying rate λ1 at its low values, as the system security improves quickly. We
find the optimum rekeying rate for the best security and performance tradeoff
at λ1 = 0.5169, when n = 3 (n is the multiple of rekeying rate in compromised
state). This optimum rekeying rate is different from the one for the lowest cost
measure since they look at different aspects of evaluating the system. However,
after reaching the optimum value, the tradeoff measure decreases much slower as
the rekeying rate is getting larger. When the rekeying rate has a large value, the
multiple parameter n does not affect the tradeoff measure much as the rekeying
act is triggered frequently enough. The system tradeoff metric decreases because
of the degrading system throughput at large rekeying rates.

We show a method that can be used by the system administrator to find
out how to tune the security mechanism (rekeying) in the system. The system
cost measure can act as a criterion for service providers to charge their users. If
users need higher security level, they have to pay more for offloading services.
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The system administrator can also use the result to obtain the minimum cost or
maximum security performance tradeoff for the system.

6 Conclusion and Future Work

In order to proceed to a quantitative treatment of the security-performance
tradeoff of offloading systems we have proposed a hybrid CTMC queueing model
for an offloading system under the specific threat of timing attacks. We have
shown how to formulate measures that include both security and performance
attributes and that optimize the tradeoff between the two. System metrics are
also proposed which take into account both the rekeying effort a system makes
and the sensitive information loss. An optimum rekeying rate is found for the
tradeoff measure depending on n, the parameter for the rekeying rate in com-
promised state. On the metrics discussed in this paper an offloading decision can
be based.

Extending the analysis to include a key refresh protocol and validating
against implementation will be the future work. At the same time, the model
will be extended including retries. Another objective of our future work is to
conduct experiments to get the precise input parameters for our model. We have
implemented a simple timing attack demonstrator which we will develop further
and use to determine the time distribution for timing attacks.
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Abstract. The European Rail Traffic Management System/European
Train Control System (ERTMS/ETCS) is an innovative standard intro-
duced to enhance reliability, safety, performance, and interoperability of
trans-European railways. In Level 3, the standard replaces fixed-block
safety mechanisms, in which only one train at a time is allowed to be
in each railway block, with moving blocks: a train proceeds as long as it
receives radio messages ensuring that the track ahead is clear of other
trains. This mechanism increases line capacity, but relies crucially on the
communication link: if messages are lost, the train must stop within a
safe deadline even if the track ahead is clear. We develop upon results
of the literature to propose an approach for the evaluation of transient
availability of the communication channel and probability of train stops
due to lost messages. We formulate a non-Markovian model of commu-
nication availability and system operation, and leverage solution tech-
niques of the ORIS Tool to provide experimental results in the presence
of multiple concurrent activities with non-exponential durations.

Keywords: European Rail Traffic Management System (ERTMS) ·
European Train Control System (ETCS) · Real-time systems design ·
Markov Regenerative Process (MRP) · Transient analysis · Stochastic
state classes

1 Introduction

Quantitative evaluation of models with stochastic timers often provides crucial
support in the engineering of dependability requirements. Both analytic and
simulative approaches can serve the objective, with different limitations and
advantages. In particular, when applicable, analytic approaches facilitate the
exploration of the space of preliminary design, especially in the presence of rare
events. The limits for applicability are determined by various factors, and notably
by the class of the underlying stochastic process of the model [10].

If all activity durations are distributed according to (memoryless) exponen-
tial distributions, the underlying stochastic process is a continuous-time Markov
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 47–62, 2015.
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chain and evaluation can resort to consolidated and efficient analytic approaches
[11,23,26,27]. However, the system under analysis is sometimes strongly char-
acterized by activity durations that are deterministic (e.g., timeouts) or dis-
tributed according to general (i.e., nonexponential) distributions, imposing hard
constraints on the minimum or maximum value. In this case, the underlying
stochastic process is non-Markovian, but it can still satisfy the Markov property
(conditional independence of future evolution from past history, given the current
state) at selected time instants called regeneration points. In Markov Regenera-
tive Processes (MRPs) [20], a new regeneration is eventually reached with prob-
ability 1, and the analysis can be formulated in terms of a local and a global
kernel that characterize the behavior of the process between subsequent regen-
eration points. Solutions for the evaluation of kernels have been consolidated
only for models satisfying the so-called enabling restriction, which requires that
at most one generally distributed transition is enabled in each state [5,9,10,21].
Recent results based on the method of stochastic state classes have overcome
the limit [18,32], enabling the numerical solution of models beyond the enabling
restriction, and in particular MRPs reaching regenerations in a bounded num-
ber of state transitions [18]. The ORIS Tool provides an implementation of the
approach [8], opening the way to the analysis of a large class of problems.

Level 3 is the most promising operation level of the European Rail Traffic
Management System/European Train Control System (ERTMS/ETCS) [15,16]
in terms of capacity gains and trackside installation savings, and it represents
a challenging case study in the engineering of future train control systems.
As in Communication Based Train Control (CBTC) for metro-railways, the
ERTMS/ETCS Level 3 standard adopts a radio-based moving-block technology,
where the maximum distance before a virtual stop is computed in real-time from
locations and speeds of all trains, requiring continuous two-way communication
between each train and the control center.

The case study has been widely addressed in the literature of quantitative eval-
uation of dependability [1,2,13,14,17,22,30,35]. Notably, in [30,35], probabilistic
parameters were derived from the analysis of the standard specification and cast
into a hierarchical modeling and evaluation approach, based on rare events sim-
ulation and analysis of non-Markovian models under enabling restriction, both
supported by the TimeNET Tool [33,34]. Reliability analysis is addressed in [17]
by leveraging the MODEST language [6] and the Möbius Tool [12]. Reliability
aspects are also assessed in [14] by means of a compositional approach that inte-
grates analysis of fault trees and evaluation of Bayesian networks. Dependability
and safety metrics are evaluated in [2] focusing on the parameters that affect the
probability of an emergency train stop. A multi-formalism model is used in [13]
to evaluate the influence of basic design parameters on the probability of system-
level failure modes, showing that system availability is lower than the threshold
prescribed by the specification. In [22], the ERTMS/ETCS Level 2 railway sig-
naling system (using radio communication but not moving blocks) is modeled as
a system of systems and its dependability parameters are evaluated using state-
charts, taking into account human factors, network failures, and imprecise failure
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Acronym Meaning

BTS Base Transceiver Station

DET Transition with deterministic duration

ERTMS European Rail Traffic Management System

ETCS European Train Control System

EVC European Vital Computer

EXP Exponentially distributed transition

GEN Transition with general (i.e., nonexponential) distribution

IMM Immediate transition

MA Movement Authority

MRP Markov Regenerative Process

PR Position Report

RBC Radio Block Center

sTPN Stochastic Time Petri Net

Fig. 1. Summary of acronyms used in the rest of the paper.

and repair rates. Reverse engineering is used in [1] to perform static analysis of the
software of a complex safety-critical subsystem of the ERTMS/ETCS, supporting
both correctness verification of software and its refactoring.

In this paper, we develop upon the results of [30,35] to propose a model
of communication availability including multiple concurrent activities with gen-
erally distributed durations. The model accounts for the concurrent nature of
communication failures due to handovers between neighboring radio stations,
and random burst noise or connection losses. We provide a safe approximation
of the transient availability of the communication layer, and leverage this mea-
sure in a higher-level operational model of moving-block signaling, in which a
train proceeds as long as it receives messages ensuring that the track ahead is
clear of other trains. Through a first-passage analysis of this model, we compute
the transient probability that the train has stopped due to lost messages, as
opposed to previous work focusing on steady state analysis [30,35]. Since the
“arrive and depart” mechanism of trains is inherently transient, the results pro-
vide a further step in the analysis of the effects of communication failures on
moving-block signaling. The evaluation leverages the analysis of MRPs based on
stochastic state classes [18] and its implementation within the ORIS Tool [8].

The rest of the paper is organized in four sections. In Sect. 2, we examine the
ERTMS/ETCS case study, with specific focus on the Level 3 implementation.
In Sect. 3, we recall syntax and semantics of a non-Markovian variant of stochas-
tic Petri nets [32] and the salient traits of regenerative analysis [18]. In Sect. 4, we
present a non-Markovian model of communication availability and derive a safe
approximation that is used, in turn, to compute transient performability measures
on the operationalmodel based onmoving blocks. Conclusions are drawn in Sect. 5.
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2 The ERTMS/ETCS L3 Case-Study

The ERTMS/ETCS is a recent standard that has been developed to enhance
performance, reliability and safety of trans-European railway networks. In fact,
the standard has been an intercontinental success, so that ERTMS/ETCS com-
pliant railways have been or are being engineered in several installations even
outside Europe (e.g., China, United Arab Emirates). Though actual systems can
be very complex, heterogeneous and highly distributed, the working principles of
ERTMS/ETCS are rather straightforward. Trains are equipped with on-board
automatic train control devices, which are embedded real-time computers known
as European Vital Computers (EVCs). EVCs are connected with train-borne
apparels (e.g., odometer, brakes) to allow automatic braking in case the speed is
over the allowed limit. To compute the maximum allowed speed (known as the
braking curve or dynamic speed profile), the EVC needs to receive the follow-
ing information from the trackside subsystems: i) Movement Authority (MA),
i.e., the maximum distance before a virtual stop signal; ii) Static speed profile,
i.e., the maximum speed depending on track morphology; iii) Possible temporary
speed restrictions or conditional/unconditional emergency stops. Such informa-
tion can be provided to the EVCs using different communication means in the
three levels of operation defined by the standard. At Level 2 and 3, the so-called
Radio Block Centers (RBCs) are employed, enabling continuous radio-signalling
using GSM-R (similar to the well-known mobile phone standard) and the safe
Euroradio protocol. In turn, the RBC needs to know the Position Reports (PRs),
that is the precise position of all the trains on the track. The EVC obtains
this information by reading “telegrams” sent by the so-called balises, which are
devices installed between the track lines and acting like milestones. PRs are sent
by the EVC to the RBC either periodically, at each newly encountered balise,
or upon specific RBC requests.

Most of the lines that are currently operational, starting from the first Rome-
Naples Italian high-speed railway, are based on the ERTMS/ETCS Level 2,
which employs fixed-block signaling. That means the MA is computed by sum-
ming track circuits and routes that are neither occupied by any train nor in
out-of-service/exclusion conditions. Such an implementation needs an interface
between the RBC and the underlying (possibly legacy) interlocking systems. The
ERTMS/ETCS Level 2 is generally considered safer at the expense of longer
headways due to the obviously less fine-grained spacing.

To increase line capacity, Level 3 introduces moving-block signaling : the MA
of the chasing train is computed considering the minimum safe rear-end of the
foregoing train, and not the status of track-circuits. In those conditions, it is
rather intuitive that system safety is highly dependent on train integrity checks,
hence the EVC has to provide this additional information to the RBC. Moving-
block signaling has received higher attention in mass-transit (e.g., subways), due
to the required high-frequency of trains (few minutes waiting times), and it is
adopted in Communication Based Train Control (CBTC) for metro-railways.
To justify the adoption of Level 3 for new high-capacity railways, where the
braking distances and data latencies are essential factors to take into account,
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it is very important to preliminarily evaluate the real expected performance by
model-based analysis. Such an analysis can also assess which are the variables
having a higher impact on system performance. Actually, since both performance
(computing latencies, communication delays) and reliability (data transmission
errors, connection faults) aspects need to be addressed, this kind of assessment
comprises a classical problem of performability evaluation.

In [35,36], the maximum delay d (i.e., deadline) after which automatic brak-
ing is activated by the on-board system is derived for the condition of a train
that runs at speed v = 300 km h−1, as usual in most real installations, and
it is expressed as a function of the following factors: i) the train headway s,
i.e., the distance between the maximum safe front-end of the train and the min-
imum safe rear-end of its predecessor, with those positions corrected taking into
account the estimated odometric measurement errors; ii) the braking distance
sbrake, assumed to be approximately 3 km including the aforementioned position
errors; iii) the packet age page, i.e., the maximum staleness of a received packet
(page is assumed to be 12 s in the worst case). More specifically, in [35,36] it is
shown that d = (s−sbraking)/v−page. Based on these assumptions, it is evinced
that headways cannot be shorter than 4 km, that is the theoretical minimum.
In such a scenario, model-based analysis is essential to evaluate the train stop
probability as a function of the required headways, or, conversely, the minimum
headways allowing acceptable system availability measures. Also, sensitivity to
other parameters can be evaluated in order to support system design choices in
industrial and operational settings.

3 Non-Markovian Modeling and Analysis

The system is modeled using a variant of non-Markovian stochastic Petri nets
called stochastic Time Petri Nets (sTPN) [32], enriched with enabling functions,
flush functions, and priorities, augmenting the modeling convenience without
impacting on the nature and complexity of the analysis, as in [25,28].

3.1 Stochastic Time Petri Nets

Syntax. An sTPN is a tuple 〈P ;T ;A−;A+; A•;m0;EFT s;LFT s;F ; C;E;L;R〉,
where: P is a set of places; T is a set of transitions; A− ⊆ P × T , A+ ⊆ T × P ,
and A• ⊆ P × T are the sets of precondition, postcondition, and inhibitor arcs,
respectively; m0 : P → N is the initial marking associating each place with a
non-negative number of tokens; EFT s : T → Q

+
0 and LFT s : T → Q

+
0 ∪ {∞}

associate each transition with a static Earliest Firing Time and a static Latest
Firing Time, respectively, such that EFT s(t) ≤ LFT s(t) ∀ t ∈ T ; F : T →
F s

t associates each transition with a static Cumulative Distribution Function
(CDF) such that x < EFT s(t) ⇒ F s

t (x) = 0 and x > LFT s(t) ⇒ F s
t (x) = 1;

C : T → R
+ associates each transition with a weight; E : T → {true, false}NP

associates each transition t with an enabling function E(t) : NP → {true, false}
that, in turn, associates each marking with a boolean value; L : T → P(P )
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is a flush function associating each transition with a subset of P ; R : T → N

associates each transition with a priority. A place p is called an input, an output,
or an inhibitor place for a transition t if 〈p, t〉 ∈ A−, 〈t, p〉 ∈ A+, or 〈p, t〉 ∈ A•,
respectively. A transition t is called immediate (IMM) if [EFT s(t), LFT s(t)] =
[0, 0] and timed otherwise. A timed transition t is called exponential (EXP) if
F s

t (x) = 1 − eλx over [0,∞] for some λ ∈ R
+
0 and general (GEN) otherwise.

A GEN transition t is called deterministic (DET) if EFT s(t) = LFT s(t) > 0
and distributed otherwise (i.e., if EFT s(t) �= LFT s(t)). For each distributed
transition t, we assume that F s

t is absolutely continuous over [EFT s(t), LFT s(t)]
and, thus, that there exists a Probability Density Function (PDF) fs

t such that
F s

t (x) =
∫ x

0
fs

t (y)dy.

Semantics. The state of an sTPN is a pair 〈m, τ〉, where m : P → N is a
marking that associates each place with a non-negative number of tokens and τ :
T → R

+
0 associates each transition with a (dynamic) real-valued time-to-fire. A

transition is enabled by a marking if each of its input places contains at least one
token, none of its inhibitor places contains any token, and its enabling function
evaluates to true. An enabled transition t is firable if its time-to-fire is not higher
than that of any other enabled transition and, in case t is IMM or DET, if its
priority is not lower than that of any other enabled IMM/DET transition. When
multiple transitions are firable, one of them is selected as the firing transition
with probability Prob{t is selected} = C(t)/

∑
ti∈T f (s) C(ti), where T f (s) is the

set of transitions that are firable in s. When a transition t fires, the state s =
〈m, τ〉 is replaced by a new state s′ = 〈m′, τ ′〉. Marking m′ is derived from m
by: i) removing a token from each input place of t and removing all tokens from
the places in L(t) ⊆ P , which yields an intermediate marking mtmp, ii) adding a
token to each output place of t. Transitions that are enabled both by mtmp and
by m′ are called persistent, while those that are enabled by m′ but not by mtmp

or m are called newly-enabled. If the fired transition t is still enabled after its
own firing, it is always regarded as newly enabled [4,31]. While the time-to-fire of
persistent transitions is reduced by the time elapsed in s, that of newly-enabled
transitions takes a random value sampled according to the static CDF.

3.2 Regenerative Transient Analysis Through Stochastic State
Classes

The method of stochastic state classes [7,32] faces the analysis of the underly-
ing stochastic process of models with multiple concurrent GEN transitions. To
this end, the marking and the vector of times to fire of GEN transitions are
characterized after each firing. This yields an embedded discrete time Markov
chain encoded in a so-called stochastic graph, whose states are called stochastic
state classes. Each class is made of a marking plus the joint support and PDF
of the times-to-fire of enabled GEN transitions. To support transient evalua-
tion, in [18] a fresh clock named τage is added to each class to account for the
absolute elapsed time. The marginal PDF of τage permits to derive the PDF
of the absolute time at which a class can be entered, enabling the evaluation
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of continuous-time transient probabilities of reachable markings within a given
time horizon, provided that the number of classes that can be reached within
that time interval is either bounded or can be truncated under the assumption
of some approximation threshold on the total unallocated probability.

In general, the approach of [18] supports transient analysis of models
with underlying Generalized Semi-Markov Process (GSMP) with equal-speed
timers [10,24]. Nevertheless, the complexity of the solution technique can be
significantly reduced when applied to models with underlying Markov Regener-
ative Process (MRP) that always reaches a regeneration point within a bounded
number of steps, i.e., a state where the future behavior is independent from the
past. In fact, transient analysis can be restrained within the first regeneration
epoch from each regenerative point, and finalized to the derivation of the local
and global kernels that characterize the behavior of the MRP [5,9,10]. Transient
probabilities of reachable markings at any time can then be derived by numerical
integration of generalized Markov renewal equations [20].

4 Performability Evaluation of ERTMS/ETCS Level 3

We consider a model of communication availability that features a non-
Markovian representation of failures due to handovers (Sect. 4.1), and we
derive a safe estimation of the transient evolution of communication availability
through a 3-step function (Sect. 4.2). Such approximation is cast within a non-
Markovian model of communication beyond the limits of the enabling restriction
(Sect. 4.3), evaluating the transient probability that a timeout occurs within time
t (Sect. 4.4).

4.1 A Non-Markovian Model of Communication Availability

At the ERTMS/ETCS Level 3, the GSM-R communication channel appears
the most relevant source of unreliability, due to almost unavoidable data trans-
mission errors, connection losses, and Base Transceiver Station (BTS) han-
dovers. In [35,36], stochastic parameters characterizing communication failures
are derived from specification documents and guidelines, evaluating the probabil-
ity of stops through a combined use of analytic evaluation under enabling restric-
tion and rare-event simulation, both supported within the TimeNET Tool [33].

Here we present a model of communication failure that develops upon the
results of [35,36], leveraging the same stochastic parameters while extending the
model structure to encompass a non-Markovian representation of handovers. The
model is shown in Fig. 2. As in [35,36]: the arrival and duration of “bursts” of
noise are modeled by the EXP transitions startBurst and endBurst with rate
0.007 33 s−1 and 3 s−1, respectively, derived by fitting the specification that the
mean time between two bursts is at least 7 s, with each burst shorter than 1 s
in 95% of the cases; the occurrence of a connection loss is represented by the
EXP transition loss with rate 2.77 × 10−8 s−1, derived from the specification
that the probability to have a connection loss per hour is less than 10−4; the
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Fig. 2. The sTPN model of communication availability (times expressed in s), com-
bining the sub-models of failures due to handovers (right) and transmission errors or
connection losses (left). IMM, EXP, DET, and GEN transitions are represented by thin
bars, thick empty bars, thick gray bars, and thick black bars, respectively.

time needed to detect a connection loss is required to be not greater than 1 s,
thus it is accounted by the DET transition indicate; the reconnection attempt
is required to be successful with a probability higher than 99.9%, which is repre-
sented as a switch between the IMM transitions estP and failP, having weight
0.999 and 0.001, respectively; in case of reconnection success, the establishment
time must be less than 5 s in 95% of the cases, which is modeled by the EXP tran-
sition connect with rate 0.6 s−1; in case of reconnection failure, a reconnection
is retried after 7.5 s, which is modeled by the DET transition fail.

In [35,36], connection loss due to handovers is modeled by an EXP transition
conflicting with startBurst and loss, whose rate is derived as the inverse of the
time spent by a train that runs at the maximum speed v = 500 km h−1 to cover
the 7 km distance between BTS, i.e, 1/0.0198 = 50.4 s−1. As opposed to [35,36],
we model failures due to hand-overs and failures due to transmission errors or
connection losses as concurrent events. Actually, this reflects the nature of the
phenomenon, as handovers indeed occur in parallel to transmission errors and
connection losses. According to this, in the model of Fig. 2, the sub-model that
accounts for failures due to handovers (the right part) is concurrent to the sub-
model that represents failures due to transmission errors and connection losses
(the left part). The time between subsequent communication failures due to
handovers is modeled by a GEN distribution with bounded support rather than
with an EXP distribution over [0,∞). This captures the fact that the distance
between subsequent BTS is nearly constant and the speed of trains ranges within
a min-max interval. In the present experimentation, a uniform distribution sup-
ported over [45, 55] s is associated with the GEN transition cellBorder in the
model of Fig. 2. The mean value of such transition (i.e., 50 s) is a conservative
approximation of the mean value of the namesake EXP transition in the model
of [35,36] (i.e., 50.4 s). As in [35,36], the time to reconnection is modeled by the
DET transition reconnect, whose duration equal to 0.3 s is the maximum time
allowed by the requirements specification.

4.2 Evaluation of the Communication Availability Model

To reduce the stiffness of the problem due to failures that occur with different
time-scales, we separate the analysis of independent events. According to this,



Non-Markovian Performability Evaluation of ERTMS/ETCS Level 3 55

(a) (b)

(c)

Fig. 3. Transient probability that the communication is available, derived through
regenerative analysis of: (a) the model of Fig. 2 and (b) the communication availability
sub-model of [35,36]. (c) A conservative approximation of the curve of Fig. 3-a for the
time scale [0, 600] s through a 3-step function. Times are expressed in s.

the two sub-models shown in Fig. 2 are separately analyzed using the ORIS
Tool [8]. Overall, regenerative analysis of both sub-models is performed in nearly
15 min on a machine equipped with an Intel Xeon 2.67 GHz and 32 GB RAM,
assuming time bound equal to 3600 s, approximation threshold equal to zero
(i.e., exact analysis), and discretization step in the integration of renewal equa-
tions equal to 0.1 s. The analysis yields the transient probability that the com-
munication is not available due to a transmission error or a connection loss,
i.e., pc(t) = Prob{connected == 1 at time t}, and the transient probability
that the train is not crossing the border between the communication areas of
two neighboring BTS, i.e., pw(t) = Prob{withinCell == 1 at time t}. By mul-
tiplying the obtained numerical results, we derive the transient probability that
the communication is available, i.e., p(t) = pc(t) · pw(t), whose plot is shown
in Fig. 3-a. The plot shows an oscillating pattern, with ripples of decreasing
heights, converging to a neighborhood of 0.9912 after a settling time of about
3000 s. This is mainly due to the floating trend of pw(t), which in fact has a
settling time around 3000 s. Conversely, pc(t) exhibits an exponential trend with
a much shorter settling time around 5 s.
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Fig. 3-b shows the transient probability that the communication is available,
derived through the analysis of communication availability sub-model of [35,36].
Also in this case, regenerative analysis is performed in nearly 20 min with time
bound equal to 3600 s, approximation threshold equal to zero, and step equal to
0.1 s. While the curve shown in Fig. 3-b tends to approximately 0.9913, which
is very close to the settling value of the curve shown in Fig. 3-a, the transient
behavior of the two curves is significantly contrasting. As a notable difference, in
the model under enabling restriction, the settling time is nearly 10 s and actually
elapses by the time the first message is sent from the RBC to the following train.
Conversely, in the model beyond enabling restriction, the settling time is much
longer and the curve still exhibits ripples with height in the order of 10−4 after
that time, until the time bound of 3600 s.

The transient probability p(t) that the communication is available can be
safely under-approximated by means of a monotone non-decreasing step func-
tion. Fig. 3-c shows the original curve of Fig. 3 for the time scale [0, 600] s and
an approximation by the following 3-step function:

f(t) =

⎧
⎪⎨

⎪⎩

0.9671 if 0 ≤ t ≤ 105,

0.9746 if 105 < t ≤ 405,

0.9827 if 405 < t < ∞.

(1)

While a greater number of steps could provide a finer grained approximation,
a 3-step function turns out to be sufficient for the purposes of the subsequent
treatment. Note that the complexity of the subsequent analysis is substantially
insensitive to the number of steps used in the approximation, and it only depends
on the time at which the last jump of the step function is positioned, i.e., 405 s
in the present experimentation. In fact, beyond that time instant, the estimate
on communication availability is constant and does not carry memory over time,
reducing by 1 the number of GEN transitions that are concurrently enabled.

4.3 A Non-Markovian Model of ERTMS/ETCS Level 3

Following the results of [35,36], the proposed approach resorts to the hierarchi-
cal composition of models, by relying on the assumption that the availability of
communication is independent of the exchange of PR between track-side equip-
ments and on-board devices. In so doing, the method also takes advantage of
some approximations of model variables that are guaranteed to be stochastically
ordered. As opposed to [35,36], the approach leverages a solution technique that
goes beyond the limits of the enabling restriction. In the methodological perspec-
tive, this largely relaxes modeling restrictions, as the requirement that the under-
lying stochastic process is a Markov regenerative process poses less constraints
on the model expressivity than the limitation on the number of concurrent GEN
timers. In the applicative perspective, this permits to refine the models presented
in [35,36] and the way they are composed through a more accurate representa-
tion of communication failures due to hand-overs. As a major result, solution
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can be attained through a fully analytic treatment without facing complexities
and limits of simulation in the presence of rare events.

The overall model of communication failure is shown in Fig. 4. As discussed
in [35,36], at ERTMS/ETCS Level 3, train integrity checks are performed in 5 s
in order to maximize track throughput, and the results are sent together with
the PR (transition genMsg). RBC processing time for PR is assumed to be 0.5 s
at most, while message transmission delays up-link and down-link are required
to be: between 0.4 s and 0.5 s on average, less than 0.5 s in 95% of the cases,
less than 1.2 s in 99% of the cases, and less than 2.4 s in 99.99% of the cases.
RBC processing and up-link transmission delays are accounted by the GEN
transition transmitUp, while down-link transmission delays are represented by
the GEN transition transmitDown; in the present experimentation, transmitUp
and transmitDown have a uniform distribution over their respective support.
Whenever the deadline on the time between subsequent messages is violated
(transition timeout), the train starts to brake until it comes to a complete stop:
in this case, the resetup/restart delay (not considered in the model of Fig. 4) is
assumed to be 15 min long, with all MA dropped during this time.

Fig. 4. The sTPN model of the ERTMS/ETCS Level 3 case study beyond the limits
of the enabling restriction (times expressed in s). IMM, DET, and GEN transitions are
represented by thin bars, thick gray bars, and thick black bars, respectively.

To manage the complexity of the analysis, in [35,36], the sub-model of com-
munication availability is analyzed in isolation and its results are used to derive
the rates of a condensed birth-death process made of 2-states, which is then
recast in the overall model of communication failure. Yet, such model is not
amenable to analysis with methods operating within the limits of the enabling
restriction, and the evaluation is thus performed through rare-event simula-
tion [19] supported by the TimeNET Tool, deriving the probability that the
train is stopped for different values of the packet age and the head-to-head dis-
tance between trains. Conversely, in the proposed approach, the approximation
of communication availability is recast within the overall system by means of a
phased sub-model with phases of deterministic duration, so that, in each phase,
failures of the communication up-link and down-link are accounted by a switch
between IMM transitions, whose weights reflect the value of the approximating
step function in the corresponding time interval. More specifically, in the model
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of the overall system shown in Fig. 4: the IMM transitions lossUp1, lossUp2, and
lossUp3 represent failures of the communication up-link, while the IMM transi-
tion tSendingUpOk accounts for its availability; lossUp1, lossUp2, and lossUp3
have an enabling condition that evaluates to true only during the corresponding
phase (i.e., phase1 == 1, phase2 == 1, and phase3 == 1, respectively); their
weights are set equal to 0.03402, 0.02607, and 0.01761, respectively, while the
weight of tSendingUpOk is maintained equal to 1, so that the probability that the
communication is available turns out to be equal to 0.9671, 0.9746, and 0.9827
in phase 1, phase 2, and phase 3, respectively, as defined in Eq. 1. Similarly,
the IMM transitions lossDown1, lossDown2 and lossDown3 model failures of
the communication down-link, while the IMM transition tSendingDownOk rep-
resents its availability; they have the same enabling condition and weight of
lossUp1, lossUp2, lossUp3, and tSendingDownOk, respectively.

Transition restart is associated with an enabling function that evaluates
to true if sendingUp contains a token, and it has higher priority than lossUp1,
lossUp2, lossUp3, and tSendingUpOk. This guarantees that, whenever the time-
out fires, the last received packet has an age equal to (12+timeout) s. Moreover,
since we evaluate the transient probability that a timeout occurs within time
t (i.e., the transient probability of the first token arrival in place stopped), an
inhibitor arc is added from place stopped to transition genMsg, and transition
timeout is associated with a flush function that removes any token in any place,
except for place stopped, upon its firing.

4.4 Evaluation of the ERTMS/ETCS Level 3 Model

Regenerative analysis of the model of Fig. 4 is performed in nearly 1 min with
time bound 3600 s, time step 1 s, and approximation threshold equal to zero. The
analysis is repeated for different values of the DET transitions genMsg (i.e., 6 s,
8 s, and 10 s) and timeout (i.e., 12 s, 15 s, and 18 s), and the obtained results are
shown in Fig. 5. Such values of genMsg are selected based on the requirement
that the time between two subsequent PR is ≥ 5 s. The values of timeout are
thereby chosen with the purpose of showing the variability of the studied reward.

For an assigned value of genMsg, the probability that the train is stopped
within time t decreases as the timeout increases. In fact, in Figs. 5-a, 5-b, and
5-c, the black curve dominates the gray curve which, in turn, dominates the
light gray curve. Nevertheless, the gap between the curves may significantly vary
among cases. For instance, in Fig. 5-a (i.e., genMsg = 6 s), the stop probability
is nearly equal to 0.2018, 0.1514, and 0.0114 at time 600 s, and nearly equal to
0.5486, 0.4396, and 0.0305 at time 3600 s, for timeout equal to 12 s, 15 s, and 18 s,
respectively. Conversely, in Fig. 5-b (i.e., genMsg = 8 s), the stop probability is
approximately equal to 0.6654 at time 600 s and reaches nearly 0.9930 at time
3600 s for timeout equal to 12 s, while it has substantially the same trend for
timeout equal to 15 s and 18 s (with a difference in the order of 10−2 at time
3600 s). Overall, this motivates the opportunity of a sensitivity analysis to assess
the considered reward depending on the system parameters.
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(a) (b)

(c)

Fig. 5. Transient probability that a timeout occurs within time t (expressed in s).

5 Conclusions

We address performability modeling and evaluation of the ERTMS/ETCS Level
3 case study, supporting exploration of the space of model parameters through
regenerative transient analysis [8,18,32]. As in [35,36], the approach relies on the
hierarchical composition of sub-models to manage the complexity and stiffness
of the problem. Yet, in this paper, we evaluate a model beyond the limits of
the enabling restriction. While the approach of [35,36] is concerned with the
evaluation of the steady state probability that a timeout occurs, we focus on
the transient behavior and derive the probability that a timeout expires within
an assigned time. This comprises a measure that is not of less interest than the
one studied in [35,36]. In fact, whether the steady state value of the timeout
probability is greater than the required threshold or not, it is valuable to study
its trend over time and the factors that mainly affect it.

Overall, the approach provides insight in the problem characterization, show-
ing that working beyond the limits of a Markovian setting poses major complex-
ities, but it also provides an advantage in composing results. While this paper
specifically addressed the ERTMS/ETCS Level 3 case-study, the model used for
system performability evaluation is general enough to be easily adapted to suit
similar systems featuring radio-signalling and moving block, like the modern
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Communication Based Train Control (CBTC) applications for metro railways.
The approach is also open to sensitivity analysis and integration with simulative
and model-driven approaches [3], possibly in conjunction with other tools such
as TimeNET [33], Möbius [12], and SHARPE [29].
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extensible tool for dependability, security, and performance evaluation of large and
complex system models. In: IEEE/IFIP Int. Conf. on Dependable Systems and
Networks (DSN), pp. 353–358 (2009)

13. Flammini, F., Marrone, S., Iacono, M., Mazzocca, N., Vittorini, V.: A multi-
formalism modular approach to ERTMS/ETCS failure modeling. International
Journal of Reliability, Quality and Safety Engineering 21(1) (2014)



Non-Markovian Performability Evaluation of ERTMS/ETCS Level 3 61

14. Flammini, F., Marrone, S., Mazzocca, N., Vittorini, V.: Modelling structural reli-
ability aspects of ERTMS/ETCS by fault trees and Bayesian networks. In: Proc.
of the European Safety & Reliability Conference, ESREL, vol. 6 (2006)

15. EEIG Ertms User Group. ERTMS/ETCS RAMS System Requirements Specifica-
tion, UIC, Brussels (1999)

16. EEIG Ertms User Group. ERTMS/ETCS Systems Requirements Specification,
UIC, Brussels (1999)

17. Hermanns, H., Jansen, D.N., Usenko, Y.S.: From StoCharts to MoDeST: a com-
parative reliability analysis of train radio communications. In: Int. Workshop on
Software and performance, pp. 13–23. ACM (2005)
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Abstract. The amount of detail to include in a performance model is usually 
regarded as a judgment to be made by an expert modeler and the question “how 
much detail is necessary?” is seldom asked and is difficult to answer. However, 
if a simpler model gives essentially the same performance predictions, it may be 
more useful than a detailed model. It may solve more quickly, for instance, and 
may be easier to understand. Or a model for a complex sub-system such as a da-
tabase server may be usefully simplified so it can be included in larger system 
models. This paper describes an aggregation process for layered queuing mod-
els that reduces the number of queues (called tasks and processors, in layered 
models) while preserving the total execution demand and the bottleneck charac-
teristics of the detailed model. It demonstrates that this process can greatly  
reduce the number of tasks and processors with a very small relative error. 

Keywords: Performance models · Layered queuing networks · Model simplifi-
cation 

1 Introduction 

A performance model may include a very large amount of detail about resources and 
operations, which makes it difficult to create, maintain and understand, and expensive to 
solve. This is often true of models created from a system design, for example, because 
the model includes every operation and component. Frequently many of the model enti-
ties have little impact on the performance, and can be aggregated or ignored. 

This paper considers layered queuing (LQ) models of service systems with a single 
class of users, and with distributed and layered operations and resources. It examines 
a process for aggregating operations and entities in the model, and its impact on per-
formance predictions. The ultimate goal is a process for automatically simplifying a 
model to an essential core level of detail governed by an accuracy requirement over a 
range of cases. The first step is to find operations that successfully simplify some 
details, and this is what is reported here.  

The paper examines model-simplification operations that aggregate sub-operations 
(in LQ terms, activities), operations (in LQ terms, entries), software processes (in LQ 
terms, tasks), and physical resources (processors). Aggregation may be vertical (along 
a calling path) or horizontal (across multiple calling paths and classes of operation). 
Restrictions on simplification that preserve the bottleneck characteristics of the model 
(which in turn determine its capacity) are investigated. More sophisticated methods 
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may be found, but there is value in simplicity, and furthermore this simple process is 
remarkably good. 

The end result is a simplified model containing one non-bottleneck task and pro-
cessor, and one or more bottleneck tasks or processors. The process is demonstrated 
on two small models and one large complex model taken from the literature, and the 
results show remarkably small errors in most cases. The simplification operations are 
evaluated by their effect on the system response time or, equivalently, the system 
throughput with a finite user population.  

Section 2 discusses related work, Section 3 describes layered queuing network 
models, and Section 4 presents heuristic principles for simplification using two exam-
ple LQN models.  Section 5 shows application of simplification principles on a case 
study that presents and compares performance results among different levels of sim-
plifications. Conclusions, limitations and future works are discussed in Section 6.  

2 Related Work 

In performance models which are product-form queuing networks, there is a powerful 
and much-used simplification result in the Norton Theorem for Queues [1], by which 
any subnetwork of queues can be replaced by a single server with a state-dependent 
service rate. The replacement is exact in the sense that the throughput and delay at the 
subnetwork interface is the same for the single server. The original result was for a 
single class of customers, and it was extended to multiple classes in [2]. The exact 
simplification for product form networks, and approximations that use the same con-
struction technique for other models, can be referred to as flow-equivalent server 
(FES) methods [3]. When a submodel is replaced by a FES centre, the entire model is 
smaller and easier to solve, and parameter changes outside the submodel can be stu-
died efficiently. However the FES construction method requires solving the subnet-
work many times, once for every user population that it may experience, which does 
not scale well to large systems with thousands of customers. 

Surrogate delay methods (e.g. [3]) replace a subsystem by a delay which is found 
by solving an auxiliary model. A surrogate delay is somewhat like a FES with a fixed 
delay rather than a state-dependent rate, but the construction method is different and 
requires an iterative solution which includes the auxiliary model. Surrogate delays are 
most useful to address problems of simultaneous resource possession, rather than 
particularly for model simplification. 

When performance models are fitted by regression methods as in [4], a choice must 
be made for the level of detail in the model and the modeler can select a simple struc-
ture to fit (and test the goodness of fit afterwards). Regression thus automatically 
raises the question of detail, and can answer it through tests of goodness of fit as dis-
cussed in [4] (the reference describes fitting ordinary queuing models but it applies 
equally to layered models). However this approach cannot be applied to models con-
structed from a design, before a system is built. 

There does not appear to be any prior work on deriving a simplified layered queuing 
model directly from a detailed one. In particular there is a lack of simplification  



 Simplifying Layered Queuing Network Models 67 

techniques that avoid the scalability problems of calibrating an FES. This work approx-
imates the system by a model with ordinary multiservers with parameters derived as 
part of the aggregation. 

3 The Layered Queuing Network (LQN) Model 

Layered queuing networks (LQNs) are an elegant way to express simultaneous re-
source possession and are particularly intended to model layered software systems, in 
which a software server depends not just on its processor, but on other software serv-
ers as well [8]. An LQN model basically presents software processes as tasks, one or 
more operations (or service classes) of a process as entries, interactions among differ-
ent entries as calls or requests for service, and the host processors at which tasks are 
deployed. Tasks and processors are servers with queues. Fig. 1 shows an example 
LQN model of a three tiered (three layered) architecture. Each task is represented as a 
parallelogram (labeled by the task’s name and thread multiplicity m), containing pa-
rallelograms for its entries (each labeled by entry name and host demand se for one 
invocation of the entry e). Every task is deployed on a host drawn as a circle. Icons 
are stacked to represent tasks or processors with multiplicity. A call from one entry to 
another is represented as an arrow labeled with the mean number of calls yde from 
entry d to entry e. A task is a multiserver (the threads are the servers) with a single 
queue, usually FIFO, to hold all the calls to its entries; thus the calls are targeted to 
the entries but actually go first to the task queue.  

 

Fig. 1. LQN model of a three-tier architecture 

Client {20}

request
[1e-006]
Z=[1000]

(1) (2)

ClientH
{20}

WebServer

webEntry1
[2]

(2)

webEntry2
[3]

(3)

DBServer

dbEntry1
[3.5]

dbEntry2
[4]

WebH

DbH



68 F. Islam et al. 

In Fig. 1, the LQN model has three tasks - Client, WebServer and DBServer, each 
of which is deployed on its own host - ClientH, WebH and DbH, respectively. The 20 
users each takes 1000 ms think time (Z) between requests. They are modeled as 20 
tasks each running on its own processor ClientH. Both WebServer and DBServer are 
single threaded tasks and they each have two entries with host service demands indi-
cated in braces (i.e. webEntry1 has service demand 2 ms). A single client operation 
includes one request to webEntry1 and two to webEntry2.  Storage devices are not 
shown but they can be modeled by a task representing the storage logic (read, write 
operations for example) running on a host representing the device. An entry may in-
clude an activity subgraph, as shown in Fig. 2. 

LQN models of real systems can be very large, if they describe systems with many 
servers, replicated servers, and storage devices. Models with a dozen layers and do-
zens of tasks are common, and hundreds of tasks may arise in complex cases or with 
large scale-out by replication. These large models are cumbersome and most of the 
detail does not impact the performance.  

Some asymptotic (bottleneck) properties of the model can be deduced from its  
parameters and will be used to guide the simplification. Let:  

• Ye = the number of calls to entry e, per user Request. Ye = Σd Yd yde , where the 
sum is over all the entries, with Yrequest = 1; 

• Xe = the service time of one request to entry e, including its own execution se, 
waiting for its host, and waiting for replies to calls it makes to other entries;  

• Uh = utilization of each core in host h, per user response = (1/ mh) Σe(h) Ye se, 
where the sum is over entries of tasks deployed on h; 

• Ut = utilization of each thread of task t per user response = (1/ mt) Σe(t) YeXe,, 
where the sum is over the entries of task t.  

Then the most-saturated host is the one with the largest value of Uh and the most satu-
rated task is the one with the largest value of Ut. The system bottleneck is the entity 
with the largest utilization, provided it is not a client of an entity that also has a large 
utilization. To identify the system bottleneck in a layered system we must consider 
the possibility of software bottlenecks as discussed in [9]. Considering any task, we 
say its “servers” are its processor and any tasks that it calls. The bottleneck strength of 
a task is the ratio of its utilization to the highest utilization among its servers. Then a 
task is a software bottleneck (and the system bottleneck) if it has the largest bottle-
neck strength (considerably greater than unity) and also a high utilization (say greater 
than 0.9). If no task qualifies, then the processor with the highest utilization is the 
system bottleneck. If there is a software bottleneck and a saturated processor or pro-
cessors, then there are multiple system bottlenecks; this is uncommon but possible. 

4 The Simplification Process 

An LQN model is simplified by aggregating the activities, entries, tasks and proces-
sors, using the following four operations. The goal is to reduce the number of tasks 
and processors in the model while retaining the externally visible performance meas-
ures, in this case the mean throughput and response time seen by the users.  
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1. Substitute the activities of an entry by a total entry demand equal to the sum of the 
demands caused by executing the activities. Substitute the calls from these activi-
ties by calls from the entry, so for each destination entry the number of calls 
equals the sum of the calls from the activities.  

2. Merge the entries of a task. Thus all calls to these entries are redirected to the 
merged entry, and all calls from these entries now originate from the merged entry. 
If this gives multiple call arcs between one pair of entries, they are merged also. 

3. Merge a set of tasks deployed on a common processor into one task. The entries 
of each task are first merged separately, and then the merged entries are merged. 
The merged call rates are calculated based on the relative throughputs of the 
merged entries, as weights. The merged task’s multiplicity is the summation of 
multiplicities of all the tasks that are being merged. 

4. Merge a set of processors and all their tasks. The set of processors is replaced by a 
single processor whose multiplicity is the sum of the multiplicities in the set, and 
the merged task is assigned to the merged processor. 

Simplification rules using these operations are applied with the goal of retaining the 
externally visible performance measures, in this case the mean throughput and re-
sponse time seen by the users. The rules sequence the operations partly as indicated 
within the operation descriptions (activities, then entries, then tasks, then processors), 
and partly guided by the location of the system bottleneck. 

The first principle of the simplification rules is to preserve the bottleneck task or 
processor, since the capacity limit of a system is a key property. Thus operations 1 
and 2 are applied to all tasks, but operations 3 and 4 are not applied to a task or pro-
cessor identified as a bottleneck. 

A second principle is to preserve the total workload, so that the total throughput 
and host demand of a merged entry or task, per user request, is the same as for the 
entities that were merged. The third principle is to preserve concurrency, by which the 
total multiplicity of a merged task or processor is equal to the sum of multiplicities of 
the entities that were merged. These three principles are respected in the description 
of the operations, given above. 

4.1 Details of the Operations: Example 1 

The detailed application of the operations, including the parameter calculations, will 
be described with a running example defined by the LQN model from [6] presented in 
Fig. 2(a). Each of a number of users ($N = 20) make one visit to the Server task, 
which has one entry server with a number of activities. Some requests from different 
activities are delegated to the pseudo-task BigLoop and some are requested from the 
task Disk for diskread and diskwrite operations. Server and BigLoop are deployed on 
the same processor ServerP which has a processor-shared queuing discipline. Task 
Disk is deployed on DiskP with FIFO queuing discipline. From the initial experi-
ments, Disk and its processor are found to be the bottleneck in this model. Thus, Disk 
and its processor are to be preserved in the simplification process. 
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       (a) Original model from [6]           (b) After aggregating the activities 

Fig. 2. Aggregating activities in an example LQN model 
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The simplification operations are applied on this example and described as follows. 
Some calculations can take advantage of finding a single solution of the model being 
simplified, and this is assumed to be available. 

Operation 1: Substituting Activities. In each task t, for each entry e that has activi-
ties in its definition, the activities are aggregated. For activity i, let:  

se, si = execution demand of entry e (to be found), and activity i, (given) 
λe, λi = throughput of entry e and activity i, in any solution of the model. 
wi = executions of activity i per request to entry e (this may be calculated by  
examining the activity graph, or from a model solution as wi = λi/λe) 
yib = mean calls from activity i to another entry b of another task 
yeb = aggregated mean calls from entry e to entry b (to be found). 

Then the aggregated execution demand is 

 se = Σi wi si      (1) 

and the aggregated number of calls from entry e to another entry b is  

yeb = Σi wi yib      (2) 

where the sum in both cases is over the activities of entry e. 
In the example, in entry server for each activity, the values of (activity name, 

weight, execution demand) are (serverStart, 1, 1.e-6), (parinit, 0.6, 0.1), (parA, 0.6, 
0.05), (parReply, 0.6, 0.01), (seqinit, 0.4, 0.3), (loopOperation, 1.4, 0.1), (loop2, 1.4, 
1.e-6), (loopEnd, 0.4, 1.e-6), (bigLoopDriver, 0.48, 1.e-6), (seqReply, 0.4, 0.005). 
Applying Eq (1) we obtain sserver = 0.358. Applying Eq (2) for the call from bigLoop-
Driver to bigLoop, the entry has the aggregated calls yserver,bigLoopDriver = 0.48. Fig. 2(b) 
represents the model after aggregating all the activities from Fig. 2(a). 

Operation 2: Merging Entries. The second operation merges the entries of each task 
t having more than one entry. Let: 

sm, sk = execution demand of the merged entry m (to be found), and of the original 
entry k of task t, 
ykb, ymb = mean number of calls from entry k of task t to an entry b of another task, 
and from the merged entry m to entry b, 
wk = weight of original entry k = fraction of all calls to task t, that go to entry k. 
From any solution, wk can be found as λk/Σk λk, where the sum is over the entries to 
be merged. Then the service demand of the merged entry is: 

sm = Σk wk sk                                                (3) 

and the calls from entry m to another entry b are: 

ymb = Σk wk ykb                                             (4) 

where the sums are over the entries to be merged in both equations. 

In Fig. 2(b), only task Disk has more than one entry. So, the values of (entry name, 
weight, execution demand) are (diskread, 0.797, 1), (diskwrite, 0.203, 0.04). Applying 
Eq (3), sm = 1 * 0.797 + 0.04 * 0.203 = 0.805. There are no outgoing calls from Disk.  
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                         (a) after merging entries        (b) after merging the Server and BigLoop tasks 

Fig. 3. More merging operations 
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Then the service demand and number of calls for the entry of the merged task are: 

                   sm = sa + yab sb      (5) 
                   ymc = yac + yab ybc      (6) 

The incoming calls in vertically merged tasks are calculated as for merged entries. 
In Fig. 3(a), Server and BigLoop both are deployed on the same processor ServerP. 
They are merged in Fig. 3(b) as “MergedTask1” with an entry “mergedEntry1” with 
service demand of 0.3580003 + 0.479998 * 0.140001 = 0.425204 (following Eq (5)). 
The number of outgoing calls from mergedTask1 to eDisk is = 3.7599926 + 0.479998 
*2 = 4.71999 (following Eq (6)).  

Horizontal merging: We call it horizontal merging when there is no calling relation-
ship between the tasks. Just as for merging two entries of the same task, the service 
demand and the calls of the merged task are computed by Eq (3) and (4), where the 
entry k designates the single entry of one of the tasks to be merged, and the sums are 
over this set of entries. As in merging entries, the calls into the separate entries are 
transferred to the merged entry m and if this results in multiple calls between a pair of 
entries, the calls are merged and the numbers summed. There are no additional sets of 
tasks sharing a processor in figure Fig. 3(b), so this calculation is not applied. For this 
example the last step would be to possibly merge some of the processors, each having 
a single task. This step will be discussed in the second example in Section 4.2. 

Table 1. Performance results of three simplification operations of Example1 

 

In Example1, tasks Server and BigLoop are infinite servers (i.e., no thread limit), 
whereas Disk and the processors ServerP and DiskP are single servers.   

The effect of the three levels of simplification on the model of Example1 can be seen 
in Table 1. On the first row of this table, the system throughput, system service time and 
resource utilizations of the original model are shown. In the subsequent rows, the same 
performance metrics are reported after activity, entry and task simplifications respec-
tively. From the two rightmost columns of Table 1, it is observed that the amount of 
errors incurred by each simplification is relatively low comparing to the gain in the size 
of the models (discussed more in Section 5). Throughput error due to activity and entry 
simplifications are less than 1%, and due to task simplification less than 2%. The errors 
incurred by activity, entry and task simplifications on system response time is less than 
1%, about 2% and almost 5% respectively. Moreover, along the simplifications steps, 
the utilizations of tasks and processors also remain almost same. The system bottleneck 
is DiskP (the disk hardware) for all cases. Although the Disk task is also saturated, its 
server DiskP is equally saturated, so Disk is not a software bottleneck (see [9] for tech-
niques for identifying and mitigating software bottleneck).  
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4.2 Details of the Operations: Example 2 

Fig. 4(a) represents another example of an LQN model called eShop, where a number 
of users’ requests go through StoreApp, CustomerDB, InventoryDB and FileServer for 
read and write operations. This model has just one entry per task so it is ready for 
task-level simplification. Preliminary experiments show that the bottleneck is the task 
StoreShopping. 

                      
                    (a) Original model of eShop       (b) After merging CustomerDB  and  InventoryDB 

Fig. 4. An LQN model of eShop 

In this model, tasks CustomerDB and InventoryDB are merged since they are dep-
loyed on the same processor. The values of (entry name, weight, execution demand) 
are (cRW, 0.439, 3) and (iRW, 0.561, 2). Thus, applying Eq (3) the service demand of 
the mergedTask we found sm = 3 * 0.439 + 2 * 0.561 = 2.439 (where the throughputs 
of cRW and iRW are 0.03001 and 0.03833, respectively). The number of incoming 
calls to the merged entry is 9 since the incoming calls from storeShopping should be 
directly summed up. For the number of outgoing calls, the values of (entry name, 
weight, number of calls from merged entry of task to fRW) are (cRW, 0.439, 3), (iRW, 
0.561, 3). Thus, applying Eq (4), the number of calls from the merged entry to fRW is 
3 * 0.439 + 3 * 0.561 = 3. Fig. 4(b) represents the model after merging CustomerDB 
and InventoryDB tasks. 
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Operation 4: Merging Processors and Tasks 
The next step of aggregation for this example will be merging different tasks that are 
deployed on different processors. In case of horizontal as well as vertical merging of 
such tasks, the service demands, incoming and outgoing calls and multiplicities of 
tasks are calculated as for horizontal and vertical merging of tasks on the same pro-
cessor, as discussed in Operation 3 in Section 4.1. The merged processor’s multiplici-
ty is the aggregation of multiplicities of merging processors. In Fig. 5(a), FileServer 
and MergedTask1 (originally deployed on different processors) are merged.  

                     
(a) Merging tasks deployed           (b) Merging processors only 
on different processors 

Fig. 5. More simplification operations on eShop 

Table 2. Effects of the simplification operations on system Response Time and Throughput for 
Example2 
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Table 3. Effects of simplification operations on Utilizations of resources of Example2 

  

In Fig. 5(b), the non-bottleneck pWebServers (multiplicity 2) and merged-
Processor2 (multiplicity 1) are merged into mergedProcessor3 with multiplicity 3. 

Table 2 and Table 3 represent the performance results of the simplification process 
for Example2. The task and processor resources are all single servers in the original 
model, but the merged resources become multiservers, with the multiplicities shown 
in the curly brackets after the utilization. The saturation level of the merged resource 
is then (utilization)/(multiplicity). Because of averaging, the saturation level for a 
merged resource is lower than for the highest utilized resource before merging. 

From Table 2, it is observed that merging tasks CustomerDB and InventoryDB 
incur only about 1% error in system throughput and system response time. Then, 
merging vertical tasks MergedTask1 and FileServer incur less than 6% and 4% errors 
in system throughput and system response time respectively. However processor 
merging incurred much higher errors (about 17% each). We see that the database 
processor utilization is only 0.16, compared to 0.81 for the file server processor. 
When the total capacity is shared, the contention is significantly lower for the 
fileserver accesses, and this effect is even stronger after the very lightly loaded 
webserver processor is merged (note that the merged processor utilization of 0.992 is 
relative to a capacity of 3, so it is only 33% saturated). This effect would be much less 
pronounced if the original database processor utilization were lower. At 81% 
saturation, it is almost a bottleneck itself. So, it appears probable that merging near-
bottleneck resources (tasks and processors)  degrades accuracy. 

It is worth noting in  Table 3, which shows the utilizations of tasks and processors 
after the simplification operations, that the system bottleneck (i.e., the StoreShopping 
task)  remains the same throughout the simplifcation process.  

5 Case Study 

The performance results reported in this section were obtained by simulation with the 
lqsim solver [5] with a confidence interval of ±1% of the mean at 95% confidence 
level. A Java application was created to generate a series of simplified models from 
the original LQN by merging activities, entries and tasks. 

The Case study example is a Business Reporting System described in [7], which 
can retrieve reports and statistical data about various business processes from a data 
base. Fig. 6(a) shows the original LQN model (generated from a design specified as a 
Palladio Component Model) from [7]. The original model has 43 tasks with a large 
number of entries and activities, running on 43 processors.  
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Fig. 6(b) shows the final simplified model. The two highly utilized tasks are pre-
served in the simplified model: one is the software bottleneck of the system and the 
other is a direct caller of the bottleneck tasks, saturated due to pushback (waiting for 
services that are delayed by congestion). These two tasks remain the most highly 
utilized. All the other tasks are merged into a single task.  

The performance results after different steps of the simplification process (i.e., ac-
tivity, entry and task simplification) are comparable, as shown in Figures 7 and 8.   

 

(a) Original model from [7]                 (b) Simplified model 

Fig. 6. Layered Queueing Network of the Business Reporting System generated from PCM 

 
(a) System Throughput (jobs/ms) 

 
(b) System Throughput Error (in %) 

Fig. 7. System throughput after various simplification operations 
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(a) System Response Time (ms) 

 
(b) System Response Time Error (%) 

Fig. 8. System response time after various simplification operations 

Fig. 7(a) shows that the system throughput is very little changed by the simplifica-
tion. Fig. 7(b) further shows that the error caused by task simplification is higher than 
that of entry simplification, which in turn is higher than that of activity simplification. 
This relationship is expected because the simplifications done for larger model ele-
ments (e.g., task) make more approximations than simplifications for smaller model 
elements (e.g., activity and entry). Also, the simplification process incurs larger per-
centage errors for fewer customers, perhaps because the approximations involved are 
better in heavier traffic. 

Fig. 8(a) shows similar effects on the response time accuracy. With more custom-
ers (e.g., N>20), the error in response time is less than 5% (see Fig. 8(b)). However, 
for small N (e.g., N=10), the error is larger.  

What is important is that, throughout the simplification process, the bottlenecks of 
the system remain unchanged with similar utilizations. For example with N = 10 the 
two heaviest task utilizations (73% and 70%) changed by less than 1%.  

6 Conclusions 

Large performance models are problematic for human and computer, as they are diffi-
cult to maintain and take a long time to solve. This paper proposes a model simplifi-
cation process that compacts a given LQN model to its smallest possible size by  
reducing non-bottleneck task and processor resources to a single task and processor. 
The process is rather simple to apply and is very successful in dramatically reducing 
the model size, for example from 40 tasks and processors to three, with small errors in 
response times and throughputs (less than 1% if the system load is substantial). Errors 
are larger in lightly loaded systems. Thus accuracy improves as the model results 
become more critical. 

The present approach may be improved. For example, where some resources are 
“near-bottlenecks”, there appear to be advantages in not merging them, and the crite-
rion for “near-bottleneck” requires more study. It needs to be investigated whether the 
simplifications are associative for a set of resources. If not, then further investigation 
can be done on finding the optimal order of simplification that incurs less error. Also, 
models can be classified into different patterns (e.g., sequential, tree-like etc.) and it 
can be studied whether they need different rules for finding the optimal order. The 
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position (e.g., at the top, middle or bottom) of the bottleneck resource as well as the 
bottleneck intensity in a model may also affect the optimal rule. Furthermore, tracea-
bility models can be developed to keep track of the simplification steps so that the 
modeler can go back to an intermediate simplification step and modify performance 
parameters if needed.  The proposed simplification has been applied so far to systems 
with a single class of users. Further investigation is needed to find the effect of the 
simplification process on performance results for multiple classes of users.  
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Abstract. Response times are arguably the most representative and
important metric for measuring the performance of modern computer
systems. Further, service level agreements (SLAs), ranging from data
centres to smartphone users, demand quick and, equally important, pre-
dictable response times. Hence, it is necessary to calculate moments,
at least, and ideally response time distributions, which is not straight-
forward. A new moment-generating algorithm for calculating response
times analytically is obtained, based on M/M/1 processor sharing (PS)
queueing models. This algorithm is compared against existing work on
response times in M/M/1-PS queues and extended to M/M/1 discrimi-
natory PS queues. Two real-world case studies are evaluated.

1 Introduction

One could argue that performance is driving mobile [12,39,41] and cloud [1,2]
technologies. For example, users wait, on average, just over nine seconds for a web
page to load [27] before opting for more reliable performance from competitors.
The same argument applies to delays in data centers [14,16] as part of quality
of service (QoS) standards, which is incorporated, along with operational and
energy costs [15,18], into service level agreements (SLAs). Whether it’s using
smartphones to download files using WiFi or streaming web content on the cloud,
the delay principle still applies. With emerging technology companies selling
increasingly more smartphones in 2015 – Xiaomi and Huawei are each aiming to
sell 100 million handsets this year [47,48] – wireless communication via mobile
devices will only intensify. Therefore, it is important to understand the effect of
delay on asynchronous data transmission and how this impacts performance of
millions of devices. From a queueing perspective, delay and response time (or
latency, i.e. the time between a job arriving and leaving the system) are closely
related. To meet QoS demands, application developers and content providers
aim for quick response times to minimize performance bottlenecks. Modelling
response times analytically requires a fair scheduling policy, such as processor-
sharing (PS), which gives n incoming tasks an equal share of the processor
(i.e. 1/n if service rate is 1). PS scheduling has relevant applications in web
server designs and for bandwidth-sharing protocols in packet-switched networks
[17,26]. PS queueing models provide an abstraction for such systems and allow
analytical response time metrics to represent system delay. Minimising mean
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 80–95, 2015.
DOI: 10.1007/978-3-319-23267-6 6
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response time alone is usually not acceptable nowadays because users tend to
be equally frustrated with a highly variable service. They demand response time
that is predictable [20,23], which makes it important to calculate moments at
least, and ideally response time distributions, which is not straightforward. In the
past three decades, work has addressed response time in various ways using PS
queues [19,21,22,24,36,46]. In the present work, we introduce a novel moment-
generating algorithm to calculate response times analytically. The algorithm is
based on M/M/1-PS queues and offers the following contributions:

1. Iterative computation of moments, in terms of mean service rate (μ) and
utilisation (ρ) of the system, using a partial differential equation for the
Laplace transform of response time density.

2. Extension of the moment-generating algorithm to calculate response times
for multiple job classes, which is automated for different job weights under
discriminatory PS.

3. Applications include performance models dealing with smartphone data
transfers, switching states for cloud servers given user demand, resource allo-
cation for data centres, etc.

The rest of the paper is organised as follows: section 2 provides some background
on queueing theory, PS scheduling and its applications and defines response
times for different scheduling algorithms; in section 3, we describe related work
on obtaining higher moments of response time in PS queueing systems; section
4 presents the moment-generating algorithm, which calculates response time
in PS queueing systems analytically, with corresponding results under different
scenarios; in section 5, we extend the moment-generating algorithm to support
mutiple job classes and analyse two real-world case studies in section 6; we
conclude and offer extensions in section 7.

2 Background

In this section, we introduce key queueing concepts and justify the importance
of queueing models with respect to diverse applications such as servers in smart-
phones, data centres and networks. Queueing models allow us to abstract the
dynamic processes governing modern, complex computer systems and obtain
representative performance measures (i.e. response times) with minimal compu-
tational cost. Fundamentally, scheduling is an integral part of queueing models
for obtaining such measures.

2.1 Scheduling

There exist many scheduling disciplines for servers in queueing models. The
most well-known is the first-come first-served (FCFS) discipline, which serves
jobs in order of arrival and the job that waits the longest is served first. The
best example of the FCFS discipline is in the first-in first-out (FIFO) queue
when organising a data buffer. Other scheduling disciplines include last-come
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first-served (LCFS), which selects the most recent job and serves it first. The
most fundamental example of a data structure which implements LCFS is a
stack. In terms of system utilisation (ρ), LCFS suffers from greater variability
than FCFS as ρ → 1 [7].

Organising servers under processor-sharing (PS) disciplines, such as egalitar-
ian PS (EPS), allows for current jobs to be served at equal rates. Under EPS, if
there are n jobs in a system with service rate 1, each job will be served at 1/n
times the speed of the processor, which means there is no queueing and all jobs
start immediately. One useful property of EPS is its fairness, where the expected
response time of a job is directly proportional to its size. There are variants of
PS such as discriminatory PS (DPS), where each job j in the system receives
its own percentage of the server, therefore catering for multiple job classes. In
DPS, a single processing system serving K job types is controlled by a vector
of weights (αj > 0, j = 1, . . . , K). Further, assuming there are ni class i jobs
(i = 1, . . . , K) in the system, each class j job is served at rate:

rj(n1, . . . , nK) =
αj

∑K
i=1 αini

, j = 1, . . . , K (1)

Note that when αi = αj , i, j = 1, . . . , K, DPS scheduling becomes EPS as each
job request has equal weight. Round robin (RR) scheduling offers equal time
slices for each job, assigned in circular order and without priorities. The EPS
algorithm is seen as an idealisation of RR scheduling in time-shared computer
systems [43]. Hereinafter, we use the terms EPS and PS interchangeably. The
following section summarises PS applications for a range of computer systems.

2.2 PS Applications

Within queueing systems, the PS server discipline has been of considerable inter-
est for several decades. PS is applied to modelling performance of bandwidth-
sharing protocols in packet-switched networks [17,26] and approximating the
fair-queueing server disciplines used in communication network routers [45],
where delays and congestion control are key measures. Further, PS has proved
useful for modelling heavy-tailed service time distributions [31] and bulk arrivals
[33]. Stochastic analysis of PS systems dealing with power management and
energy consumption have also been of interest. More specifically, a queueing
model with PS scheduling was employed when setting bounds on performance
of dynamic speed scaling [29].

When predicting queueing delays, for example, the PS discipline is more com-
plex to model than FCFS because the remaining response times in PS systems
depend on future (i.e. uncertain) arrivals and dependent service requirements.
Nonetheless, the simplicity of PS, coupled with fairness properties, has made it
easily applicable to a variety of high-speed, computer systems that are abstracted
by queueing systems.

Typically, modern servers are often difficult to replicate precisely in a numeri-
cally tractable way; to model such servers, PS scheduling is assumed for a number
of reasons:
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1. PS is popular for web server design [9] and evaluating flow-level performance
of end-to-end flow control mechanisms like TCP [44].

2. Under PS, there is no queueing per se and arriving jobs start immediately
to access server resources.

3. The implicit fairness means expected response time of a job is directly pro-
portional to its size.

4. PS is effective for heavy-tailed service times, which may arise, for example,
as short jobs are allowed to overtake long jobs. It also facilitates tractable
asymptotic analysis of heavy-tailed service time distributions [31].

2.3 Queueing Models

The most fundamental queueing model is the M/M/1-FCFS queue, with Poisson
mean arrival rate λ and exponential mean service time μ for one server with
FCFS scheduling. Similarly, the M/M/1 queue under PS scheduling is written
as M/M/1-PS using Kendall notation. Generalising such queues, the G/G/m
queue offers generally distributed arrivals and service times for m parallel servers.
Note that arrivals and service times may have specific distributions such as
hyperexponential, phase-type, MAP-induced, etc.

One utilises underlying continuous time Markov chain (CTMC) properties
of queueing models. Additionally, classes of product-form models exist, where
state equilibrium probability is a scaled product of the marginal state proba-
bilities of Markov processes that represent individual system components [30].
Therefore, queueing models approximate modern communication systems and
their long-term behaviour, without the state explosion problem limiting mod-
elling possibilities. Often, response time is a key measurement, which we define in
subsequent sections, because it is useful for approximating performance and thus
provides resource allocation on large-scale storage systems, mobile technology,
wireless sensor networks (WSNs), etc. Typically, response times are obtained
using aforementioned queues, given queueing theoretic assumptions.

2.4 Response Times

We refer to response time (or, sojourn time) as the time a customer spends in
the system before completely departing from it. In queueing terms, response
time T is the sum of the queueing time and the service time (i.e. duration of
customer service). Let λ be the arrival rate, μ be the service rate, and ρ =
λ/μ < 1 be the equilibrium system utilisation. Of course, under FCFS queueing
discipline, the response time probability density function is well known to be
f(t) = (μ − λ)e−(μ−λ)t, [8]. Under PS, the mean unconditional response time
may be computed using Little’s law. Let L = ρ/(1 − ρ) be the mean number
of jobs in the system and E[T ] be the mean unconditional response time at
equilibrium. Then, it follows from Little’s law that L = λE[T ] and re-arranging
for E[T ] gives us:

E[T ] =
L

λ
=

ρ

λ(1 − ρ)
=

λ/μ

λ(1 − ρ)
=

1
μ(1 − ρ)

(2)
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When jobs require x units of service time, the mean conditional response time is
given by E[T (x)] = x/(1−ρ). Therefore, E[T (x)] is linear in x, meaning that jobs
with twice the size have double the response time, on average. Note that this
fairness property only applies to means. As ρ approaches 1, the unconditional
mean response time E[T ] grows as 1/(1−ρ) and is independent of the variability
of the service time distribution. Terms only affected by the mean of the service
time distribution exhibit the insensitivity property [38].

Calculating higher moments of response time under PS scheduling requires,
in general, an advanced understanding of layered branching of incoming jobs into
the system [22]. Additionally, higher moments identify variability and skewness
in time-series and approximate distributions, which may help to flatten heavy-
tails, for instance. The next section describes existing methods in the literature
for obtaining response time in PS queues.

3 Related Work on Response Times

There are a number of works on approximating response time under PS schedul-
ing, but few which adopt analytical queueing theory, even for the Markovian
M/M/1-PS queue. Some of the earliest significant work on PS queues is by Coff-
man et al in 1970 [4], which analysed waiting time means and variance of PS
systems compared to FCFS. In 1980, Fayolle et al [37] summarised results of
Kleinrock and Mitrani for DPS and also obtained average response time (both
conditionally and unconditionally on job request sizes) in M/M/1-DPS queueing
systems. Further, Laplace transforms provided average waiting time for multiple
class types and asymptotic behaviour of service demand was also obtained, but
no results on higher response time moments were given.

The abstraction of PS scheduling as a layered branching of incoming jobs
into the system was first used by Yashkov in 1987 and led to a derivation of
conditional response time moments a decade later [22,24]. The kth moment of
response time of a job with service requirement x, E[T (x)k], is given by:

E[T (x)k] = −
k∑

i=1

(
k

i

)

(−1)i
E

[
T (x)k−i

]
αi(x)

αk(x) =
k

(1 − ρ)k

∫ x

t=0

(x − t)k−1F (k−1)∗(t)dt

F 0∗(x) = 1

Fn∗(x) =
∫ x

0

F (n−1)∗(x − u)dF (u) for n ≥ 2

F (x) =
1
β1

∫ x

0

(
1 − B(u)

)
du

where B(·) is a general service time distribution with finite mean β1 < ∞.
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In 2003, Masuyama et al obtained a complementary response time distribu-
tion [32]. Specifically, for an M/M/1-PS queue with arrival rate λ, service rate
μ and job size x, the complement of response time distribution T̄ (x) = 1 − T (x)
is defined recursively as:

T̄ (x) =
∞∑

n=0

(1 − ρ)ρn
∞∑

k=0

(λ + μ)kxk

k!
e−(λ+μ)xhn,k (3)

where hn,k+1 = n
n+1

μ
λ+μhn−1,k + λ

λ+μhn+1,k, hn,0 = 1 and h−1,k = 0.
This computationally intensive recursion is more costly than Yashkov’s iter-

ative solution, although storing previous terms in a buffer would speed up cal-
culations. However, truncating multiple infinite sums is a serious disadvantage
of Masuyama’s method.

In 2004, Kim et al offered a joint transform to obtain response time moments
for K job classes with different shares of service. An M/M/1-DPS queueing
system is considered, where ρi = λi/μi, for all jobs i = 1, . . . , K, subject to
ρ =

∑K
i=1 ρi < 1. Let Ni be the number of jobs in the system at steady

state and Q(z1, . . . , zK) = E
[
zN1
1 · · · zNK

K

]
be the joint probability generat-

ing function for the numbers of jobs of each class in the queue at steady
state. A job i with required service time greater than x is tagged such that
when it attains service x, Si(x) and Nij(x) denote the elapsed response time
and the number of class j jobs in the system, respectively (j = 1, . . . , K).
The joint distribution of Si(x) and Nij(x) is then given by the transform
Tix(s; z1, . . . , zK) = E

[
e−sSi(x)z

Ni1(x)
1 · · · zNiK(x)

K

]
for | zi | ≤ 1, i = 1, . . . , K,

and s ≥ 0.
The joint transform Tix(s; z1, . . . , zK) is governed by the following partial

differential equation (PDE):

∂

∂x
Tix(s; z1, . . . , zK)

= −
K∑

j=1

αj

αi

{(

s +
K∑

k=1

λk(1 − zk)
)

zj − μj(1 − zj)

}
∂

∂zj
Tix(s; z1, . . . , zK)

−
(

s +
K∑

j=1

λj(1 − zj)
)

Tix(s; z1, . . . , zK) (4)

Deconditioning on x, which has exponential distribution with parameter μi

requires only taking a Laplace transform.
We define Ti(s; z1, . . . , zK) =

∫ ∞
0

μie
−μixTix(s; z1, . . . , zK)dx as the joint La-

place transform of the unconditional joint density of response time and proba-
bility generating function of class populations. It is easy to see this is given by
the PDE, for i = 1, . . . , K,
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−μiQ(z1, . . . , zK) + μiTi(s; z1, . . . , zK)

= −
K∑

j=1

αj

αi

{(

s +
K∑

k=1

λk(1 − zk)
)

zj − μj(1 − zj)

}
∂

∂zj
Ti(s; z1, . . . , zK)

−
(

s +
K∑

j=1

λj(1 − zj)
)

Ti(s; z1, . . . , zK) (5)

Unconditional moments of response time are derived by differentiating equa-
tion (5). Kim et al solve (K + 1)(K + 2)/2 linearly independent equations to
obtain unknown moments M jk

i , 0 ≤ j ≤ k ≤ K, for each i, i = 1, . . . , K, which
are defined as:

M jk
i =

∂

∂zj∂zk
Ti(s; z1, . . . , zK)

∣
∣
∣
∣
s=0,z1=···=zK=1

(6)

where z0 is taken to be the Laplace-parameter s. We illustrate the calculation of
such moments in the case of one class (K = 1) in Appendix 7. The next section
introduces a novel moment-generating algorithm that can iteratively calculate
arbitrary moments of response time, thus improving an aspect of the Kims’
method in this respect.

4 Moment-Generating Algorithm

In a PS queue with utilisation ρ, the response time T of an arriving customer that
requires x units of service time is known to have a probability density function
that has Laplace transform:

W ∗(s | x) =
(1 − ρ)(1 − ρr2)e−[ρμ(1−r)+s]x

(1 − ρr)2 − ρ(1 − r)2e−[1/r−ρr]μx
(7)

where r is the smaller root of the equation ρr2 − (ρ + 1 + s/μ)r + 1 = 0. The
result is long known, see for example [4,7], and is derived by solving a partial
differential equation for a certain generating function G(z, s, x), viz.

(μz2 − (ρμ + μ + s)z + ρμ)
∂G

∂z
− ∂G

∂x
= (ρμ + s − μz)G (8)

which yields W ∗(s | x) = (1 − ρ)G(ρ, s, x). We make the following observations:

1. The unconditional response time density for an arriving customer that has
exponentially distributed service time requirement with mean 1/u is the
product of u and the Laplace transform of W ∗(s|x) with respect to x, eval-
uated at Laplace-parameter u.

2. To calculate moments, the generating function’s derivatives need only be
computed at s = 0.
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3. There is no need to solve the differential equation (8) for the generating func-
tion G since the moments are given by its derivatives evaluated at s = 0 and
z = ρ, corresponding to the geometric equilibrium queue length probability
distribution.

4. The Laplace transform of derivative ∂G/∂x yields the term uG∗x(z, s, u) −
G(z, s, 0), where G∗x denotes the Laplace transform of G with respect to x
and the initial value G(z, s, 0) is known to be 1/(1 − z).

5. At s = 0 and z = ρ, the coefficient of ∂G/∂x vanishes. Thus, by successive
differentiation of the Laplace-transformed equation (8), we can determine
the moments recursively.

In this way, we obtain the following unconditional moments for response time:

E[T ] =
1

μ(1 − ρ)
(9)

E[T 2] =
4

μ2(2 − ρ)(1 − ρ)2
(10)

E[T 3] =
12(ρ + 2)

μ3(2 − ρ)2(1 − ρ)3
(11)

E[T 4] =
48(48 + 52ρ − 10ρ2 − 6ρ3 − 24ρ4 + 9ρ5)

μ4(2 − ρ)3(1 − ρ)3(3 − 2ρ)(4 − 3ρ)
(12)

In table 1, we summarise response time moments with fixed μ = 1 whilst increas-
ing ρ and also obtain moments with fixed ρ = 0.5 whilst increasing μ. After
calculating response time moments analytically, approximating a full response
time distribution is typically straightforward [11], for example via the general
lambda distribution (GLD) [25,34]. As such approximations are not the main
scope of this paper, we guide the reader to relevant material [35,40,42] for more
information. We extend the moment-generating algorithm to multiple job types
in the next section.

Table 1. Moments for varying ρ with fixed μ = 1 (left) and varying μ with fixed
ρ = 0.5 (right).

Moment ρ = 0.2 ρ = 0.5 ρ = 0.8

E[T ] 1.25 2.0 5.0
E[T 2] 3.47 10.67 83.33
E[T 3] 15.91 106.7 2.9e3
E[T 4] 105.3 1.6e3 1.1e5

Moment μ = 0.5 μ = 2.5 μ = 8.5

E[T ] 4.0 0.8 0.235
E[T 2] 42.67 1.71 0.147
E[T 3] 853.3 6.82 0.174
E[T 4] 2.5e4 40.5 0.303
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5 Multi-Class Algorithm

We build an automated moment-generating algorithm for multiple job classes,
which supports DPS scheduling for K job classes and incorporates service
weights αi for each job class i, i = 1, . . . , K. For simplicity of presentation, we
use equal job weights (i.e. αi = αj , i, j = 1, . . . , K), but this is not a requirement
of our method. Adapting a multi-class version of the PDE given in equation (8),
we apply similar methods of successive differentiation to determine moments
recursively. Assuming two job classes (i.e. K = 2), with mean arrival rates λ1

and λ2, mean service rates μ1 and μ2, and utilisation ρ1 = λ1/μ1 and ρ2 = λ2/μ2

such that ρ1 +ρ2 < 1, we obtain respective mean response times E[T1] and E[T2]
as:

E[T1] =
1

μ1(1 − ρ1 − ρ2)
; E[T2] =

1
μ2(1 − ρ1 − ρ2)

(13)

Further, we derive second moments of response time E[T 2
1 ] and E[T 2

2 ] as:

E[T 2
1 ] =

4
(
μ1(1 + ρ2) + μ2(1 − ρ2)

)

μ2
1(1 − ρ1 − ρ2)2(μ1(2 − ρ1) + μ2(2 − ρ1 − 2ρ2))

(14)

E[T 2
2 ] =

4
(
μ1(1 − ρ1) + μ2(1 + ρ1)

)

μ2
2(1 − ρ1 − ρ2)2(μ1(2 − 2ρ1 − ρ2) + μ2(2 − ρ2))

(15)

Fig. 1. Mathematica code for K-class moments up to 2
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These expressions were obtained by solving the moment equations obtained
by repeatedly differentiating equation (5) up to two times. The algorithm to
do this, written in Wolfram’s Mathematica, is shown in figure 1. Obtaining the
variance (i.e. σ2

i = E[T 2
i ] − E[Ti]2) of a class i job reveals the spread of the

response time distribution from the mean. Further, calculating higher moments
of response time is useful for predicting performance in a variety of multi-class
applications where jobs have different priorities – or shares of a PS server. As with
the second moment, higher moments are derived by differentiating equation (5)
and defining the steady state generating function Q(·), which is straightforward
to derive. This is the approach used in figure 1 for just two moments, but which is
easy to extend to any higher moments. The difficulty that arises is the number of
calculations needed, since every partial derivative up to p is required to calculate
moment p – a rapidly increasing number, especially if there are many classes. A
symbolic solution is surely intractable, but mathematical software could easily
cope with a numerical solution when values are pre-set for the parameters of the
model. Using such an automated multi-class algorithm, it is straightforward to
estimate the probability distribution of response time for K job classes; good
approximations can usually be found from the first four moments or so.

6 Case Studies

We obtained workload traces from two applications, which we abstract using
M/M/1-PS queueing models, each with two job classes (i.e. K = 2). The first
application is an HTC One (M7) smartphone transmitting data via 4G cell radio,
where a time-stamped trace was recorded from a transmission period of 30 min-
utes. We summarise this HTC trace with the following mean service rates for each
job class: μ1 = 0.6 and μ2 = 2.4. The second application is an Apache Cloud-
Stack VM executing programs on an Intel Core i7-2600 CPU @ 3.40GHz host
machine. The CloudStack trace was recorded with mean service rates μ1 = 1.4
and μ2 = 6.1. Using equation (13), we plot mean response times (i.e. E[Ti], for
i = 1, 2) in figure 2 with increasing system load (i.e. ρ1 + ρ2) for the HTC and
CloudStack traces. Further, using equations (14) and (15), we plot variance (i.e.

Fig. 2. E[T1] and E[T2] for HTC (left) and CloudStack (right) traces under increasing
load.
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Fig. 3. σ2
1 (left) and σ2

2 (right) for the HTC trace under increasing load.

Fig. 4. σ2
1 (left) and σ2

2 (right) for the CloudStack trace under increasing load.

σ2
i , for i = 1, 2) of response time for increasing values of ρ1 and ρ2 in figures 3

and 4. Note that for the variance, the total system load (i.e. ρ1 + ρ2) does not
exceed 1. For systems with more than two job classes, it is important to measure
performance via response time moments for resource provisioning whilst con-
sidering different system load. Indeed, the moment-generating algorithm allows
such measurements for any K job classes.

7 Conclusion and Future Work

We proposed an automated moment-generating algorithm for calculating
response times analytically in M/M/1-PS queues in terms of mean service rate
(μ) and utilisation (ρ) of the system. This incremental algorithm uses a par-
tial differential equation for recursively evaluating terms in a Laplace transform
and is extended for multiple job classes. Further, we examined two case studies,
specifically workloads from a smartphone and a VM exhibiting two job classes
each, and obtained response time means and variance for both workloads. Other
possible applications include resource allocation in data centres, run-time anal-
ysis of multi-class workload in storage systems, and online server provisioning
with switching states. Indeed, response times have become essential components
of SLAs and thus support the long-term performance goals of many systems.

Extensions include generalising response time analysis for G/G/1-DPS
queues and catering for bursty arrivals through an online MMPP or HMM used



Moment-Generating Algorithm for Response Time 91

for possible workload prediction. Further, incorporating energy cost into our per-
formance models would match the SLA requirements more realistically. Indeed,
battery models are popular in the literature [3,5,6,10,13,28], but there is scarce
analysis on power consumption related to performance via higher response time
moments for multiple job classes.

References

1. Curtis, J.: 10 top cloud computing providers for 2014. http://tinyurl.com/
top-10-cloud-providers-2014

2. Velazco, C.: Google gives students unlimited cloud storage. http://www.engadget.
com/2014/09/30/google-drive-for-education/

3. Huria, T., Ceraolo, M., Gazzarri, J., Jackey, R.: High fidelity electrical model with
thermal dependence for characterization and simulation of high power lithium bat-
tery cells. In: Proc. IEEE IEVC, Greenville, pp. 1–8 (2012)

4. Coffman Jr., E.G., Muntz, R.R., Trotter, H.: Waiting Time Distributions for
Processor-Sharing Systems. Journal ACM 17, 123–130 (1970)

5. Prabhu, B.J., Chockalingam, A., Sharma, V.: Performance analysis of battery
power management schemes in wireless mobile devices. In: Proc. IEEE WCNC,
Orlando, vol. 2, pp. 825–831 (2002)

6. Open Battery. http://www.doc.ic.ac.uk/∼gljones/openbattery/index.php
7. Harrison, P.G., Patel, N.M.: Performance Modelling of Communication Networks

and Computer Architectures. Addison-Wesley (1993)
8. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Mathe-

matical Basis of Performance Modeling, p. 409. Princeton University Press (2009)
9. Kjaer, M.A., Kihl, M., Robertsson, A.: Response-time control of a processor-

sharing system using virtualised server environments. In: Proc. IFAC, Korea, vol.
17, p. 3612–3618 (2008)

10. Rohner, C., Feeney, L.M., Gunningberg, P.: Evaluating battery models in wireless
sensor networks. In: Tsaoussidis, V., Kassler, A.J., Koucheryavy, Y., Mellouk, A.
(eds.) WWIC 2013. LNCS, vol. 7889, pp. 29–42. Springer, Heidelberg (2013)

11. Au-Yeung, S.W.M., Dingle, N.J., Knottenbelt, W.J.: Efficient approximation of
response time densities and quantiles in stochastic models. In: Proc. ACM WOSP,
Redwood Shores, vol. 4, pp. 151–155 (2004)

12. Shye, A., Scholbrock, B., Memik, G., Dinda, P.A.: Characterizing and Modeling
User Activity on Smartphones, Technical Report, Northwest University (2010)

13. Rao, V., Singhal, G., Kumar, A., Navet, N.: Battery model for embedded systems.
In: Proc. IEEE VLSID, Washington, DC, vol. 18, pp. 105–110 (2005)

14. Gao, P.X., Curtis, A.R., Wong, B., Keshav, S.: It’s not easy being green. In: Proc.
ACM SIGCOMM, Helsinki, vol. 44, pp. 211–222 (2012)

15. Wray, J.: Where’s The Rub: Cloud Computing’s Hidden Costs. http://tinyurl.com/
cloud-computing-hidden-costs

16. Alawnah, R.Y., Ahmad, I., Alrashed, E.A.: Green and Fair Workload Distribution
in Geographically Distributed Data. Journal Green Eng. 4, 69–98 (2014)

17. Massoulie, L., Roberts, J.W.: Bandwidth sharing and admission control for elastic
traffic. Telecomm. Systems 15, 185–201 (2000)

18. AISO.net. http://www.aiso.net/index.html
19. Ott, T.J.: The Sojourn-Time Distribution in the M/G/1 Queue with Processor

Sharing. Journal of Applied Probability 21, 360–378 (1984)

http://tinyurl.com/top-10-cloud-providers-2014
http://tinyurl.com/top-10-cloud-providers-2014
http://www.engadget.com/2014/09/30/google-drive-for-education/
http://www.engadget.com/2014/09/30/google-drive-for-education/
http://www.doc.ic.ac.uk/~gljones/openbattery/index.php
http://tinyurl.com/cloud-computing-hidden-costs
http://tinyurl.com/cloud-computing-hidden-costs
http://www.aiso.net/index.html


92 T. Chis and P. Harrison

20. Wierman, A.: Scheduling for Today’s Computer Systems: Bridging Theory and
Practice, PhD Thesis, School of Computer Science, Carnegie Mellon University
(2007)

21. Kim, J., Kim, B.: Sojourn time distribution in the M/M/1 queue with discrimina-
tory processor-sharing. Performance Evaluation 58, 341–365 (2004)

22. Yashkov, S.F.: Processor-Sharing Queues: Some Progress In Analysis. Queueing
Systems 2, 1–17 (1987)

23. Wierman, A., Harchol-Balter, M.: Classifying scheduling policies with respect to
higher moments of conditional response time. In: Proc. ACM SIGMETRICS (2005)

24. Zwart, A.P., Boxma, O.J.: Sojourn time asymptotics in the M/G/1 processor shar-
ing queue. Queueing Systems 35, 141–166 (2000)

25. Lakhany, A., Mausser, H.: Estimating the parameters of the General Lambda
Distribution. Algo. Research Quarterly 3, 47–58 (2000)

26. Roberts, J.W.: A survey on statistical bandwidth sharing. Computer Networks 45,
319–332 (2004)

27. Lohr, S.: For Impatient Web Users, an Eye Blink Is Just Too Long to Wait.
New York Times. http://tinyurl.com/eye-blink-too-long-to-wait

28. Jones, G.L., Harrison, P.G., Harder, U., Field, T.: Fluid queue models of battery
life. In: Proc. IEEE MASCOTS, vol. 19, pp. 278–285 (2011)

29. Wierman, A., Andrew, L.L.H., Tang, A.: Power-aware speed scaling in proces-
sor sharing systems: Optimality and robustness. Performance Evaluation 69(12),
601–622 (2012)

30. Casale, G., Harrison, P.G.: AutoCAT: automated product-form solution of stochas-
tic models. In: Matrix-Analytic Methods in Stochastic Models, vol. 27, pp. 57–85
(2013)

31. Queija, R.N.: Sojourn times in non-homogeneous QBD processes with processor
sharing. Stochastic Models 17, 61–92 (2001)

32. Masuyama, H., Takine, T.: Sojourn time distribution in a MAP/M/1 processor-
sharing queue. Op. Res. Letters 31, 406–412 (2003)

33. Bansal, N.: Analysis of the M/G/1 processor-sharing queue with bulk arrivals. Op.
Res. Letters 31, 401–405 (2003)

34. Lebrecht, A.: Queueing network models of Zoned RAID system performance, PhD
Thesis, Department of Computing, Imperial College London (2009)

35. Ramberg, J., Schmeiser, B.: An approximate method for generating asymmetrics
random variables. Comm. ACM 17, 78–82 (1974)

36. Ward, A.R., Whitt, W.: Predicting reponse times in processor-sharing queues. In:
Proc. of Fields Institute Conference on Communication Networks (2000)

37. Fayolle, G., Iasnogorodski, R., Mitrani, I.: Sharing a Processor Among Many Job
Classes. Journal ACM 27(3), 519–532 (1980)

38. Kelly, F.: Stochastic Networks and Reversibility, vol. 1. Wiley (1979)
39. Embedded Microprocessor Benchmark Consortium (EEMBC). http://eembc.org/
40. Ramberg, J., Dudewicz, E., Tadikamalla, P., Mykytka, E.: A probability distribu-

tion and its uses in fitting data. Technometrics 21, 201–214 (1979)
41. AndEBench-Pro. http://eembc.org/andebench/index pro.php
42. Freimer, M., Mudholkar, G., Kollia, G., Lin, C.: A study of the generalized Tukey

Lambda family. Comm. in Statistics 17, 3547–3567 (1988)
43. Aalto, S., Ayesta, U., Borst, S., Misra, V., Nunez-Queija, R.: Beyond Processor

Sharing. ACM SIGMETRICS Perform. Eval. Rev. 34, 36–43 (2007)
44. Kherani, A.A., Kumar, A.: On processor sharing as a model for TCP controlled

HTTP-like transfers. In: Proc. IEEE ICC, Paris, vol. 4, pp. 2256–2260 (2004)

http://tinyurl.com/eye-blink-too-long-to-wait
http://eembc.org/
http://eembc.org/andebench/index_pro.php


Moment-Generating Algorithm for Response Time 93

45. Dukkipati, N., Kobayashi, M., Zhang-Shen, R., McKeown, N.: Processor sharing
flows in the internet. In: de Meer, H., Bhatti, N. (eds.) IWQoS 2005. LNCS, vol.
3552, pp. 271–285. Springer, Heidelberg (2005)

46. Harrison, P.G.: Response time distributions in queueing network models. In:
Donatiello, L., Nelson, R. (eds.) SIGMETRICS 1993 and Performance 1993. LNCS,
vol. 729, pp. 147–164. Springer, Heidelberg (1993)

47. Huilgol, M.: Xiaomi aims to sell 100 million smartphones in 2015. http://tinyurl.
com/xiaomi-100-million-smartphones

48. Moore, M.: Huawei Looks To Shift 100 Million Smartphones in 2015. http://tinyurl.
com/huawei-100-million-smartphones

Appendix: The Kims’ Method of Response Time Moments
for K = 1

Conditional and unconditional joint transforms of response time are given in
equations (4) and (5), respectively. This allows calculation of conditional and
unconditional moments of response time [21], where there are K job classes.
For the K = 1 case, let us assume the following conditions for the M/M/1-PS
queueing model:

1. The mean arrival rate is λ and the mean service rate is μ.
2. Utilisation is ρ = λ/μ < 1.
3. z1 = z/ρ, where z is the parameter from equation (8).

Let Q(z1) = E
[
zN1
1

]
be the probability generating function in the system at

steady state for one job type, where N1 is the number of jobs in the system at
steady state. Note that z1 = z/ρ is the difference of deconditioning on ρ in Kim’s
method. Further, Kim et al tag a job with required service time greater than x;
when the tagged job attains service x, let S1(x) and N1(x) denote the elapsed
response time and the number of jobs in the system, respectively. Then, Kim et
al use a joint transform to derive a relation on the joint distribution of S1(x)
and N1(x):

Tx(s; z1) = E
[
e−sS1(x)z

N1(x)
1

]

which is defined for | z1 | ≤ 1 and s ≥ 0.
The proof of this relation is given in [21] and is omitted here. For the K = 1

case, we evaluate the expression for the PDE given in equation (4), such that
we obtain equation (8) as follows:

∂
∂xTx(s; z1) =

−α1
α1

(
(
s + λ(1 − z1)

)
z1 − μ(1 − z1)

)
∂

∂z1
Tx(s; z1) − (s + λ(1 − z1))Tx(s; z1)

Simplifying terms gives us

∂
∂xTx(s; z1) = −

(

sz1 +λz1 −λz21 −μ+μz1

)
∂

∂z1
Tx(s; z1)− (s+λ−λz1)Tx(s; z1)

http://tinyurl.com/xiaomi-100-million-smartphones
http://tinyurl.com/xiaomi-100-million-smartphones
http://tinyurl.com/huawei-100-million-smartphones
http://tinyurl.com/huawei-100-million-smartphones
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Substituting z/ρ for z1, we have

∂
∂xTx(s; z1) = −ρ

(

s z
ρ + λ z

ρ − λ z2

ρ2 − μ + μ z
ρ

)
∂
∂z Tx(s; z1) − (s + λ − λ z

ρ )Tx(s; z1)

Simplifying terms further and using relation ρ = λ/μ gives us

∂
∂xTx(s; z1) =

(

− sz − λz + λ z2

ρ + ρμ − μz

)
∂
∂z Tx(s; z1) − (s + λ − λ z

ρ )Tx(s; z1)

∂
∂xTx(s; z1) =

(

− sz −ρμz +μz2 +ρμ−μz

)
∂
∂z Tx(s; z1)− (s+ρμ−μz)Tx(s; z1)

Replacing G for Tx(s; z1) and rearranging terms gives us equation (8) as follows:
(

μz2 − (ρμ + μ + s)z + ρμ

)
∂G
∂z − ∂G

∂x = (ρμ + s − μz)G

Obtaining unconditional moments of response time uses repeated differentiation
of the PDE given in equation (5), where we use the joint transform T (s; z1) for
the K = 1 case. To obtain the first moment of response time T (i.e. E

[
T

]
),

we use equation (2) and Little’s law. The second moment requires derivation
of (K + 1)(K + 2)/2 linearly independent equations with unknown moments
Lj ,M0,M j ,M00,M0j , j = 1, . . . , K, and Ljk,M jk, 1 ≤ j ≤ k ≤ K. For K = 1,
the moments are defined as follows:

L1 =
∂

∂z1
Q(z1)

∣
∣
∣
∣
z1=1

, M0 =
∂

∂s
T (s; z1)

∣
∣
∣
∣
s=0,z1=1

, M1 =
∂

∂z1
T (s; z1)

∣
∣
∣
∣
s=0,z1=1

,

M00 =
∂2

∂s2
T (s; z1)

∣
∣
∣
∣
s=0,z1=1

, M01 =
∂2

∂s∂z1
T (s; z1)

∣
∣
∣
∣
s=0,z1=1

,

L11 =
∂2

∂z21
Q(z1)

∣
∣
∣
∣
z1=1

, M11 =
∂2

∂z21
T (s; z1)

∣
∣
∣
∣
s=0,z1=1

(16)

Evaluating derivatives for these moments gives us

L1 = E
[
N1z

(N1−1)
1

]∣
∣
∣
z1=1

,

M0 = E
[−S1e

−sS1zN1
1

]∣
∣
∣
s=0,z1=1

, M1 = E
[
e−sS1N1z

(N1−1)
1

]∣
∣
∣
s=0,z1=1

,

M00 = E
[
S2
1e−sS1zN1

1

]∣
∣
∣
s=0,z1=1

, M01 = E
[−S1e

−sS1N1z
(N1−1)
1

]∣
∣
∣
s=0,z1=1

,

L11= E
[
N1(N1 − 1)z(N1−2)

1

]∣
∣
∣
z1=1

, M11= E
[
e−sS1N1(N1 − 1)z(N1−2)

1

]∣
∣
∣
s=0,z1=1

(17)
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Substituting values for s and z1, we have

L1 = E
[
N1

]
, M0 = E

[−S1

]
, M1 = E

[
N1

]
, M00 = E

[
S2
1

]
, M01 = E

[−S1N1

]
,

L11 = E
[
N1(N1 − 1)

]
, M11 = E

[
N1(N1 − 1)

]

(18)

Note that L1 = M1 and L11 = M11 such that these terms are used inter-
changeably hereinafter. Further, it is known that E

[
N1

]
= ρ/(1 − ρ) and

E
[−S1

]
= −1/μ(1 − ρ). In the K = 1 case, taking partial derivatives of equa-

tion (5) gives us three linearly independent equations from which we obtain the
moments. The first equation is obtained by taking partial derivatives twice in
equation (5) with respect to s and evaluating at s = 0, z1 = 1:

μM00 + 2M01 = −2M0 (19)

Then, we take partial derivatives of equation (5) with respect to s and z1 and
evaluate at s = 0, z1 = 1:

(2μ − λ)M01 + M11 = λM0 − 2M1 (20)

Again, we take partial derivatives twice in equation (5), but this time with
respect to z1 and evaluate at s = 0, z1 = 1:

(μ − λ)M11 = 2λM1 (21)

Solving equations (19), (20) and (21), we obtain the following values for the
moments:

M00 =
4

μ2(2 − ρ)(1 − ρ)2
; M01 =

−λ(3 − ρ)
μ2(2 − ρ)(1 − ρ)2

; M11 =
2ρ2

(1 − ρ)2
(22)

Therefore, we verify that values for M00 from equation (22) and E
[
T 2

]
from

equation (10) are indeed the same for the K = 1 case. Extending analysis to
the third moment is computationally more complex and Kim et al do not pro-
vide explicit values for M000 as we do for E

[
T 3

]
in equation 11. Hence, this is

an advantage of the moment-generating algorithm proposed in our work over
existing work.
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Abstract. Today, telecommunication networks host a wide range of het-
erogeneous services. Some demand strict delay minima, while others only
need a best-effort kind of service. To achieve service differentiation, net-
work traffic is partitioned in several classes which is then transmitted
according to a flexible and fair scheduling mechanism. Telecommunica-
tion networks can, for instance, use an implementation of Generalized
Processor Sharing (GPS) in its internal nodes to supply an adequate
Quality of Service to each class. GPS is flexible and fair, but also noto-
riously hard to study analytically. As a result, one has to resort to sim-
ulation or approximation techniques to optimize GPS for some given
objective function. In this paper, we set up an analytical framework
for two-class discrete-time probabilistic GPS which allows to optimize
the scheduling for a generic objective function in terms of the mean
unfinished work of both classes without the need for exact results or
estimations/approximations for these performance characteristics. This
framework is based on results of strict priority scheduling, which can
be regarded as a special case of GPS, and some specific unfinished-work
properties in two-class GPS. We also apply our framework on a popu-
lar type of objective functions, i.e., convex combinations of functions of
the mean unfinished work. Lastly, we incorporate the framework in an
algorithm to yield a faster and less computation-intensive result for the
optimum of an objective function.

Keywords: Generalized processor sharing (GPS) · Optimization ·
Queueing · Scheduling · Objective function

1 Introduction

Times when telecommunication networks were used for one single service like
telephony or television are long gone. Nowadays, telecommunication systems host
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 96–111, 2015.
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a wide collection of services. Amongst those services are the traditional services
like internet, telephony, and television, but modern telecommunication networks
also support more demanding interactive multimedia services such as online
gaming and video conferencing. Every service desires other network requirements
in order to deliver a certain Quality of Service (QoS) or Quality of Experience
(QoE) to the end user [4,8]. Hence, the network needs a way to differentiate
services. This can be achieved by dividing the network traffic into several classes
and implementing some kind of priority scheduling amongst those classes.

Giving strict priority to the different classes in a hierarchical way may not
be flexible enough. Additionally, strict priority is not fair since a high load of a
higher-priority class can lead to starvation of lower-priority classes [3,5,6]. One
scheduling mechanism able to deliver fairness and flexibility is Generalized Pro-
cessor Sharing (GPS) [10,11]. With GPS, each class is given a certain weight
and the available link capacity is shared according to the weights of the back-
logged classes. In this way, no capacity goes to waste and each class gets a min-
imum capacity. Starvation is thus not an issue for GPS. The biggest drawback
of all GPS-like scheduling mechanisms is the complexity of obtaining analytical
results for their performance characteristics, such as (mean) delays, queue con-
tents or unfinished work. As a consequence, it is hard to analytically determine
the optimal weights minimizing an objective function that depends on these
characteristics.

In this paper, we consider a discrete-time, probabilistic emulation of single-
server, two-class GPS. The weights of the two classes are normalized such that
they sum up to one. Then setting the weight of one of the classes to 1 implies
that this class has strict priority over the other class; so strict priority scheduling
can be seen as a special case of GPS. Strict priority scheduling is well-studied
and allows, in many important cases, for an explicit analytical solution. In the
remainder, we first show how to use (i) results of strict priority scheduling
and (ii) some specific properties of the unfinished work in this GPS system,
to transform a generic objective function as to determine its behaviour. This
transformation leads to a format which does not require exact results or esti-
mations/approximations for performance characteristics. It allows to find the
number of (local) extrema and inflection points and determine the values of the
objective function in these points. This analytical framework can thus be invalu-
able to network operators as it provides an opportunity for them to quickly
estimate the need for the possible time-consuming quest for the optimal weight.
Furthermore, in case such a quest is recommended, the framework helps to make
it more efficient.

Secondly, we extend the results of [13], where we have considered the same
GPS-like model. Our theoretical study there concentrated on the behaviour of
a specific type of objective functions, i.e., convex combinations of increasing
functions (both convex, concave or linear) of the mean unfinished work of both
classes. Here, we consider a more general type of objective functions, i.e., con-
vex combinations of (more) general functions of the mean unfinished work of
both classes. This removes the requirement for the functions of the unfinished
work to be increasing and both either convex, concave or linear in the relevant
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Class1

Class2

Fig. 1. GPS system at hand

domain. We show how to study the behaviour of this popular type of objective
functions, based on some new theorems and by using the analytical framework
described in the first part of our paper. Finally, we show how to exploit our
theoretical results in a sensitivity analysis on the objective function parameters
of the optimum. This is very useful for network operators, as it allows them to
avoid simulating the system or use complex approximation techniques.

In the next section, we unfold our analytical framework, for a generic objec-
tive function. We show some illustrative examples of our findings in Sect. 3. In
Sect. 4, we apply this framework to study a more specific type of objective func-
tions. We prove a theorem to easily carry out the higher order derivative test on
this type of objective functions and demonstrate how to study the behaviour of
these objective functions with respect to (w.r.t.) the GPS weights and the coef-
ficients in these functions. Before summarizing the most important conclusions,
we illustrate the gains of the framework with a practical example in Sect. 5.

2 Analytical Framework

As already mentioned, we consider a discrete-time GPS model with one server
and two traffic classes. We denote these classes by class 1 and class 2. The
weights of both classes are normalized: class 1 is assigned weight β and class 2
is assigned weight 1 − β, with 0 ≤ β ≤ 1. So when both classes are backlogged,
the server will choose a class-1 packet with probability β and a class-2 packet
with probability 1 − β. In case one of the classes is not backlogged, the server
picks a packet of the other class. For the sake of convenience, we assume that
both classes have their own queue. This GPS system is depicted in Fig. 1. The
cases β = 0 and β = 1 reduce to strict priority scheduling.

Next, we define the unfinished work in a queue at the beginning of a slot as
the sum of the residual service/transmission times of the packets present in the
queue at that moment. It is obvious that the unfinished work in both queues
depends on the parameter β: the lower (higher) the value of β, the less capacity
for class 1 (2). Therefore, the mean unfinished work in queue j at the beginning
of a random slot in steady state is denoted as w̄j(β) (j = 1, 2). We assume that
the arrival and service processes of the system at hand are such that w̄1(β) and
w̄2(β) satisfy two important properties, i.e.,

Property 1. Function w̄1(β) + w̄2(β) is independent of β.
Property 2. w̄2(β) and w̄1(β) are analytic and strictly monotonic (increasing

and decreasing, respectively) w.r.t. β, i.e., on the interval [0, 1].
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These properties basically follow (i) from the observation that GPS is a work-
conserving scheduling mechanism and (ii) that class 2 is given less capacity with
increasing β, respectively (see, e.g., [13,14,18] for more formal proofs). (In fact,
only strict monotonicity of one of the w̄j(β) functions is required as Property 1
implies the other is stricly monotone as well.) The first property states that the
mean total unfinished work is a constant w.r.t. β. This constant, say w̄T , can be
calculated explicitly for a whole range of arrival and service processes. Indeed,
since the scheduling mechanism is work-conserving, in every time slot one unit of
work (if any) is executed. So to study the total unfinished work, we can consider
the system to be a single queue consisting of units of work which are, for instance,
executed according to a First-In-First-Out (FIFO) scheduling. Discrete-time,
single-queue systems with a FIFO scheduling are much easier to study analyti-
cally than multi-queue systems (see, e.g., [2]).

The second property, furthermore, has important consequences as well. Since
w̄2(β) is continuous on the interval [0, 1] and takes the values w̄2(0) and w̄2(1)
at each end of that interval, we can apply the intermediate value theorem to
conclude that w̄2(β) takes any value between w̄2(0) and w̄2(1) at minimum one
point within [0, 1]. From the strict monotonic increasing property, finally, we have
that w̄2(β) is bijective on [0, 1], i.e., that there is a one-to-one correspondence
between all values in [0, 1] and all values in [w̄2(0), w̄2(1)]. For w̄1(β), we can set
up a similar reasoning. However, since w̄1(β) is decreasing w.r.t. β, the image of
w̄1(β) is the interval [w̄1(1), w̄1(0)]. For ease of notation, we define the intervals
[w̄1(1), w̄1(0)] and [w̄2(0), w̄2(1)] as Ω1 and Ω2, respectively. For a whole range
of arrival and service processes, Ω1 and Ω2 can be determined explicitly, as they
arise from results of strict priority systems (see, e.g., [16,17]).

Now we turn to optimization. The optimal β is defined as the β-value
that minimizes some objective function. In the context of scheduling mecha-
nisms, objective functions are often constructed in terms of (mean) delays or
holding times. Here, we assume the objective function to be a generic func-
tion of the mean unfinished work in both queues, i.e., f(w̄1(β), w̄2(β)).1 It is
clear that the objective function f(w̄1(β), w̄2(β)) can be seen as a function
in terms of β, say F (β) � f(w̄1(β), w̄2(β)), with domain [0, 1]. The objective
function f(w̄1(β), w̄2(β)), however, can also be expressed in terms of another
single variable. In particular, the first unfinished-work property states that
w̄1(β) = w̄T −w̄2(β), implying that f(w̄1(β), w̄2(β)) can be expressed in terms of
w̄2(β) only. With a slight abuse of notation, we define this format as f∗(w̄2). It
is obvious that F = f∗ ◦ w̄2. As mentioned earlier, analytical results for w̄2(β)
are notoriously complex to obtain, so we need estimations/approximations for
this performance measure to study the objective function f(w̄1(β), w̄2(β)) in

1 In some specific cases, it is possible to find easy relations between the mean unfinished
work in both queues and the corresponding mean queue contents and/or delays (see
[13] for such a case). Then one can initially consider an objective function in terms
of, e.g., mean packet delays, which may be practically most relevant in the context
of heterogeneous services, translate it to an objective function in terms of the mean
unfinished work in both queues, and apply our framework to study the latter.
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terms of β. However, since we know the image (Ω2 = [w̄2(0), w̄2(1)]) and
behaviour (continuous and strictly increasing) of w̄2(β), we can already study
f(w̄1(β), w̄2(β)) in terms of w̄2(β) instead of β, with domain Ω2 instead of [0, 1]
(i.e., studying f∗(w̄2)).

Consequently, we can observe the number of extrema and inflection points
and determine the values of f(w̄1(β), w̄2(β)) in these points without running sim-
ulations or relying on possibly inaccurate approximate expressions. Obviously,
we do not know the β-values corresponding to these points (except when they
coincide with the endpoints). To determine these β-values, we still need esti-
mations/approximations. Now some preliminary conclusions can be drawn from
the behaviour of f∗(w̄2). For instance, the minimum can be in the endpoints
β = 0 or β = 1. In that case, strict priority is optimal and we do not have
to simulate. Another possible conclusion is that the difference in the objective
function between the minimum and one of the endpoints is too small to justify a
time-consuming quest for the β-value corresponding to the minimum. Summa-
rized, from the analysis of f∗(w̄2), an interval in Ω2 with an acceptable value for
the objective function can be selected. The optimization problem then reduces
to finding a value of β for which the continuous and monotonic function w̄2(β)
reaches a value in the selected interval (stopping criterium). In the next section,
we demonstrate these findings by means of some illustrative examples.

3 Some Illustrative Examples

For the examples, we consider one-slot service times and a two-dimensional bino-
mial arrival process characterized by the joint probability generating function

A(z1, z2) �
(

1 +
λ1

N
(z1 − 1) +

λ2

N
(z2 − 1)

)N

, (1)

of the independently and identically distributed number of class-1 and class-2
arrivals in a slot. Here, λj (j = 1, 2) is the arrival rate of class-j packets. This is
the arrival process in a queue of an NxN output-queueing switch with Bernoulli
arrivals at its inlets and with independent and uniform routing towards the out-
lets. Parameter N expresses the maximum total number of arrivals in a queue
during a slot. For the sake of convenience, we also introduce the parameters λT

and α, indicating the total arrival rate (i.e., λT = λ1 + λ2) and the fraction of
class-1 packets in the overall arrival stream (i.e., α = λ1

λT
), respectively. A queue-

ing model with this type of arrival process, one-slot service times and strict
priority scheduling is, for instance, studied in [15]. Adopting some concrete val-
ues for the parameters of the arrival process, the results of [15] can be used to
calculate w̄j(0) and w̄j(1) (j = 1, 2). For N = 16, λT = 0.9, and α = 0.8, for
example, we find that

w̄1(0) = 4.50, w̄2(0) = 0.20,

w̄1(1) = 1.59, w̄2(1) = 3.11. (2)

Then w̄T = w̄1(·) + w̄2(·) = 4.70 and the intervals Ω1 and Ω2, defined in the
previous section, equal [1.59, 4.5] and [0.2, 3.11], respectively.
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Fig. 2. Comparison between the objective function f1(w̄1(β), w̄2(β)) and f∗
1 (w̄2)

As objective function for our first example, we add two logistic functions:

f1(w̄1(β), w̄2(β)) � 1
1 + e−2w̄1(β)+8

+
1

1 + e−2w̄2(β)+3
. (3)

Applying the framework of the previous section and using the values of (2) then
yields f1(w̄1(β), w̄2(β)) in terms of w̄2(β) only, i.e.,

f∗
1 (w̄2) =

1
1 + e2w̄2−1.4

+
1

1 + e−2w̄2+3
. (4)

This function is plotted in Fig. 2b. In Fig. 2a, f1(w̄1(β), w̄2(β)) is plotted as a
function of β; this figure results from a Monte-Carlo simulation over one million
slots (see further for more details), as it is notoriously complex to find analytical
results for w̄2(β). We see from the figures that both graphs have equal char-
acteristics. Both graphs, for instance, have the same number of minima (i.e.,
one). Also, the ranges of both graphs are the same. So, f∗

1 (w̄2) helps identifying
the minimum value of the objective function and determining how much this
value differs from the values in the endpoints. As opposed to f1(w̄1(β), w̄2(β)),
however, we can plot f∗

1 (w̄2) right away.
Nevertheless, we cannot conclude from the behaviour of f∗

1 (w̄2) at what β-
value this minimum occurs (say βmin). We only know that w̄2(βmin) = 1.1 at F =
0.62. So for instance if we are satisfied with the objective function within 2% of
its minimum (i.e. F smaller than 0.6324), we then argue that we need w̄2 to be in
the interval [0.9, 1.3]. This subsequently is the stopping criterium for a simulation
or approximation procedure on the function w̄2(β). As can be seen from Fig. 2a,
the procedure should result in a βopt value in the interval [0.71, 0.77], as to have
a value for the objective function within 2% of the minimum.

As a second example, we examine the objective function

f2(w̄1(β), w̄2(β)) � (0.5w̄1(β))2 + (1.3w̄2(β))2. (5)

Applying the framework of Sect. 2 and using the values in (2) then leads to

f∗
2 (w̄2) = (2.35 − 0.5w̄2)2 + (1.3w̄2)2. (6)

We know from the theory of [13] that f2(w̄1(β), w̄2(β)) will have a minimum
different from the endpoints β = 0 or β = 1, because of the convex character of
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Fig. 3. Comparison between the objective function f2(w̄1(β), w̄2(β)) and f∗
2 (w̄2)

the squaring in the objective function. Plots for this second example are found
in Fig. 3. Function f∗

2 (w̄2) provides us with the value of the objective function
in its minimum (see Fig. 3b). The difference between the value of the objective
function at β = 0 (5.13) and the minimum value (4.81) is perhaps not worth
the effort to search for βmin (the difference is 6.6%). Fig. 3b can thus be used
in advance to decide whether significant gain can be won by searching βmin

compared to using the priority cases β = 0 or β = 1.
If, on the other hand, we make the same reasoning as in the previous exam-

ple, thus allowing at most 2% deviation of the minimum, we need the objective
function F to be smaller than 4.90 and consequently w̄2 in [0.38, 0.83]. An accom-
panying simulation/approximation method should then result in a βopt-value in
the interval [0.44, 0.69].

The reasoning done here can be done for an arbitrarily complex objective
function in w̄j(β). Indeed, every objective function minimization problem can
be translated to a problem of finding the corresponding β for a certain perfor-
mance vector (with or without some error margin). This effectively simplifies
procedures; we will come back to this in Sect. 5.

Note: Critical for this method is the availability of the values for w̄j(0) and
w̄j(1) (j = 1, 2). However, it does not matter how these values are obtained. For
strict priority systems, a lot of analytical results are available; this is, for instance,
the case for the arrival and service processes we have used in the examples
above (see [15]). For more complex arrival and/or service processes, this is not
necessarily the case. To still obtain accurate values for w̄j(0) and w̄j(1) (j = 1, 2),
we can, for example, simulate the system for β = 0 and β = 1 only.

4 Framework Application

In this section, we address another important issue, namely the selection of
an objective function and in particular the influence of this selection on the
optimum. In a first step, a network operator chooses the type of relation of each
performance characteristic in the objective function. When equal increments for
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high or low values should have an equal influence on the objective function, a
linear relation can be used. The behaviour of other types of relations can easily
be derived from a plot of the corresponding function. Other examples are a
squared relation (as in f2, see (5)) or a logistic one (as in f1, see (3)). This
choice of relation is closely related to the relation between QoS and QoE [4] and
the choice of utility functions [7,9]. A second question for the operator is how to
weigh the performance of both classes. An answer to this question is less clear
and in most cases more arbitrarily chosen. In the next paragraphs, we derive a
method the operator can use to do a sensitivity analysis on these weights. This
way, he can assess the impact of his choice on the behaviour and the resulting
minimum of the objective function.

Following the reasoning above, we propose the following template for the
objective function:

F (γ, β) = γg1(w̄1(β)) + (1 − γ)g2(w̄2(β)), (7)

whereby other characteristics can be achieved by incorporating them in gj as
noted before. The parameter γ, assumed to be in the interval [0, 1], serves as
weight parameter, on which we want to do our sensitivity analysis. When γ = 0,
the objective function only takes into account w̄2(β); when γ = 1, only w̄1(β)
plays a role.

The exposition in the previous sections allows us to study this objective
function for a specific value of γ. In [13], we already studied a subclass of this
kind of objective functions. The analysis there was limited to increasing gj that
were either both linear, convex or concave. We proved that for linear or concave
gj the optimal β-value is always one of the endpoints (i.e., β = 0 or β = 1). For
convex gj , on the other hand, we have found that for certain values of γ the
objective function reaches a minimum for some β different from 0 and 1.

In [13], we were able to study the objective function for all γ in one effort,
but we were limited to increasing functions gj . Now we generalize the results of
[13], allowing all functions gj . The function

φ(β) � g′
2(w̄2(β))

g′
2(w̄2(β)) + g′

1(w̄1(β))
, (8)

defined in [13], plays a key role.

Theorem 1. Assume gj is continuously differentiable in Ωj. Then γ = φ(β) if
and only if (iff) ∂F

∂β (γ, β) = 0.2

Proof. From (7), we find that ∂F
∂β (γ, β) = 0 is equivalent with

[g′
2(w̄2(β)) − γ(g′

1(w̄1(β)) + g′
2(w̄2(β)))]w̄′

2(β) = 0, (9)

where we have used that w̄′
1(β) = −w̄′

2(β), see Property 1. According to Prop-
erty 2 (w̄′

2(β) > 0) and (9), this leads to

γ = φ(β). (10)

2 In fact, Theorem 1 is a generalization of Lemma 1 in [13].
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β-values for which φ(β) = γ are the critical points of the objective function
F (γ, β). Critical points can be either extrema or inflection points with a hori-
zontal asymptote.

For simplicity, we assume φ(β) to be continuous. Discontinuities only occur
for β-values for which g′

2(w̄2(β)) = −g′
1(w̄1(β)). For these β-values,

∂F

∂β
(γ, β) = g′

2(w̄2(β))w̄′
2(β). (11)

As w̄′
2(β) is positive, the objective function will increase or decrease like g2. We

will disregard these cases in the remainder, as the discontinuities in φ(β) do not
lead to special cases for F (γ, β). The extensions are straightforward but only
result in more involved expressions.

To be able to distinguish extrema from inflection points, we need higher-order
derivatives of the objective function. These will allow us to perform the higher-
order derivative test on the objective function. Therefore, we extend Theorem 1.

Theorem 2. Assume gj is n times continuously differentiable in Ωj. Then
φ(i−1)(β) = 0,∀i = 2, ..., n, and φ(β) = γ iff ∂iF

∂βi (φ(β), β) = 0,∀i = 1, ..., n.
Here, φ(j)(β) denotes the j-th derivative of φ(β).

Proof. (by induction) The base case n = 1 follows from Theorem 1. For the
induction hypothesis, assume that φ(β) = γ and φ(i−1)(β) = 0 for i = 2, ..., n−1
iff ∂iF

∂βi (φ(β), β) = 0 for i = 1, ..., n − 1. To complete the theorem, we prove that
φ(n−1)(β) = 0 iff ∂nF

∂βn (φ(β), β) = 0. We find that

∂nF

∂βn
=

∂n−1

∂βn−1

(
∂F

∂β

)

=
∂n−1

∂βn−1

(
w̄′

2(β)
(
g′
1(w̄1(β)) + g′

2(w̄2(β))
)(

φ(β) − γ
))

,

where we have used (9). Define, furthermore, Δ(γ, β) as φ(β) − γ and χ(β) as
w̄′

2(β)
(
g′
1(w̄1(β)) + g′

2(w̄2(β))
)
. Then we can write

∂nF

∂βn
=

∂n−1

∂βn−1

(
χ(β)Δ(γ, β)

)
=

n−1∑

r=0

(
n − 1

r

)

χ(n−1−r)(β)
∂rΔ

∂βr
(γ, β). (12)

We know from the induction hypothesis that ∂rΔ
∂βr (γ, β) = ∂r(φ(β)−γ)

∂βr = ∂rφ(β)
∂βr =

φ(r)(β) = 0, r = 1, ..., n − 2, and that Δ(γ, β) = 0. This yields

∂nF

∂βn
=

(
n − 1
n − 1

)

χ(0)(β)
∂n−1Δ

∂n−1β
(γ, β)= w̄′

2(β)
(
g′
1(w̄1(β)) + g′

2(w̄2(β))
)
φ(n−1)(β).

Strict monotonicity of w̄2(β) and the continuity assumption of φ(β) that we
made earlier prove that φ(n−1)(β) = 0 iff ∂nF

∂βn (φ(β), β) = 0.

The next corollary follows directly from Theorem 2:

Corollary 1. If γ = φ(β), φ(1)(β) = · · · = φ(n)(β) = 0 and φ(n+1)(β) �= 0, then
F (γ, β) has a local extremum at β if n is even and an inflection point at β if n
is odd.
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Fig. 4. For F3: Comparison between φ(β) and φ∗(w̄2)

With this corollary, we can determine the behaviour of F (γ, β) by studying the
behaviour of φ(β). Suppose, for instance, that φ(β) has one inflection point β̂

with horizontal tangent. Then φ(2)(β̂) = φ(1)(β̂) = 0 and φ(3)(β̂) �= 0, and, as a
consequence, F (γ, β) has an extremum at β̂ when γ = φ(β̂).

Unfortunately, we do not have a formula for φ(β), as we do not have explicit
analytical results for the functions w̄j(β). This is where the framework of Sect. 2
comes into play. In particular, the function φ(β) can be translated into a function
in terms of w̄2(β) instead of β (i.e. φ∗(w̄2) in the remainder). As there is a one-
to-one mapping between the values in Ω2 and the values in [0, 1], we find that

φ∗(w̄2) =
g′
2(w̄2)

g′
2(w̄2) + g′

1(w̄T − w̄2)
. (13)

Using the framework, the previous corollary is reformulated as follows:

Corollary 2. If γ = φ∗(w̄2), φ∗(1)(w̄2) = · · · = φ∗(n)(w̄2) = 0 and φ∗(n+1)

(w̄2) �= 0, then F ∗(γ, w̄2) has a local extremum at w̄2 if n is even and an inflection
point at w̄2 if n is odd. As w̄2(β) is bijective on [0, 1], F (γ, β) also has a local
extremum at β if n is even and an inflection point at β if n is odd.

Hereby, we defined F ∗(γ, w̄2) analogously to the other functions marked with a
star, using the framework presented in Sect. 2.

As in Sect. 3, we have composed figures to compare φ(β) (see Fig. 4a) with
φ∗(w̄2) (see Fig. 4b). For these figures, we have used the objective function

F3(γ, β) = γ(0.5
√

2w̄1(β))2 + (1 − γ)(1.3
√

2w̄2(β))2. (14)

and the same arrival and service processes as in Sect. 3. It should be noticed that
F3(0.5, β) = f2(w̄1(β), w̄2(β)) (see (5)); we refer to this equivalence later. We can
draw similar conclusions as in the previous section. For instance, we can see that
both graphs have the same range.

Using the aforementioned corollary, we see that for γ ∈ [0.1, 0.83] (obtained
using strict priority scheduling results only, see [13]), F3(γ, β) reaches an
extremum at a β-value different from 0 or 1. In particular for γ ∈ [0.1, 0.83], there
is a β-value and corresponding w̄2(β)-value, say β̂ and w̄2(β̂), respectively, for
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Fig. 5. For F4: Comparison between φ(β) and φ∗(w̄2)

which γ = φ(β) = φ∗(w̄2(β)). Visually, this β̂ and w̄2(β̂) can be presented in the
Cartesian coordinate systems (β, φ(β)) and (w̄2, φ

∗(w̄2)), by drawing a horizontal
line at the chosen value of γ (see Fig. 4b); the intersection points of the horizontal
lines and curves of φ(β) and φ∗(w̄2) then yield β̂ and w̄2(β̂), respectively.

Now according to Theorem 2, ∂F3
∂β (γ, β̂) = 0 and we have an extremum at

β̂ if ∂2F3
∂β2 (γ, β̂) �= 0 or, equivalently, if φ(1)(β̂) �= 0. From Fig. 3, where we have

depicted F3(γ, β) for γ = 0.5, we can see that F3(γ, β) is decreasing at β = 0 for
γ ∈ [0.1, 0.83]. As we have a β̂ for which γ = φ(β) in that interval, F3(γ, β) has an
extremum, which is necessarily a minimum. Summarized, the couples (φ(β), β),
indicated by the curve in the figure, are parameter combinations for (γ, β) that
minimize the objective function. For γ < 0.1, there is no β for which γ = φ(β)
and thus, according to Theorem 1, F3(γ, β) has no extremum between 0 and
1. Since F3(γ, β) is increasing at β = 0, F3(γ, β) is increasing w.r.t. all β. Anal-
ogously, for γ > 0.83, the objective function is decreasing w.r.t β.

As a last example, we look at the objective function

F4(γ, β) =
γ

1 + e−3w̄1(β)+9
+

1 − γ

1 + e−4w̄2(β)+7
. (15)

Using the same arrival and service processes and the same arrival process param-
eters as before, we depict the corresponding φ(β) in Fig. 5a and φ∗(w̄2) in
Fig. 5b. Remember that the former is obtained via simulations, while the lat-
ter can be drawn directly. We can make the same reasoning as before. φ(β)
and φ∗(w̄2) will have intersection points with horizontal lines at γ ∈ [0.2, 0.58]
only. For a γ-value in this interval, Theorem 1 dictates that F4(γ, β) will have
extrema or inflection points. Using the corollary of Theorem 2, we know that
inflection points only occur when also φ′(β) = 0, so when φ(β) and φ∗(w̄2) have
an extremum. For the example at hand, this occurs for γ = 0.58 and w̄2 = 1.8
(and from simulation, β = 0.82).

At w̄2 = 0.2 (β = 0), F ∗
4 (γ, w̄2) is decreasing if γ > 0.2 and increasing if

γ < 0.2 (this can easily be seen from (15)). So if we take γ = 0.4, we find
that F ∗

4 (γ, w̄2) is decreasing at w̄2 = 0.2. Furthermore, F ∗
4 (0.4, w̄2) reaches an

extremum at w̄2 = 1.1 because at that w̄2-value φ∗(w̄2) intersects with a horizon-
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tal line at 0.4 (see Fig. 5b). This extremum is necessarily a minimum. For higher
values of w̄2, F ∗

4 (γ, w̄2) is increasing again. At w̄2 = 2.7, we once more have a
point of intersection between φ∗(w̄2) and the horizontal line at 0.4, and, hence,
F ∗
4 (γ, w̄2) has a second extremum, in this case a maximum. These conclusions

can be verified in Fig. 6, where we have plotted F ∗
4 (0.4, w̄2).

Using similar arguments for other values of γ, we constructed an annotated
version of Fig. 5a in Fig. 7. In this figure, the arrows indicate the behaviour
of F4(γ, β) for the (γ, β)-values in that area. We see that F4(γ, β) is decreasing
above the curve of φ(β) and increasing under the curve. In fact, if we draw a path
in the unit square (a collection of couples for (γ, β)), we know that the behaviour
of the objective function is indicated by the arrows in the figure. Furthermore,
the sign (and thus the behaviour) of ∂F4

∂β (γ, β) will only change if the path
intersects with φ(β). At the intersection point, the sign will change and the
objective function will have an extremum or an inflection point. We can thus
conclude that from a plot of φ∗(w̄2), we can determine the complete behaviour
of the objective function without running any simulation or relying on possibly
inaccurate approximate expressions for the performance characteristics.

In Fig. 8, finally, we have graphs of F4(γ, β), for several γ; they are
obtained through simulation (see further for more details). We have chosen a
γ-value from each area in Fig. 7 and we see that the graphs in Fig. 8 confirm
our analysis. For γ = 0.5, for instance, we see that F4(γ, β) first reaches a min-
imum and later a maximum; for γ = 0.58, F4(γ, β) has an inflection point. We
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see from this study that the behaviour of the objective function largely depends
on the coefficient γ in that function. Using our theorems presented here, these
different behaviours can be seen at a glance from a graph of φ∗(w̄2).

Let us now return to the sensitivity analysis. From Fig. 5b, an analist can
see what the impact of a variation in γ will be on w̄2 (and subsequently also on
the value of the objective function). An annotated version as presented in Fig. 7
easily shows how the objective function behaves for different γ. This figure can be
used to make a selection of different values of γ for which the objective function
can be studied more closely, as was done in Fig. 8. The mapping from w̄2 to β,
however, is still unknown. To get this information, one needs to resort to, e.g.,
simulation. In the next section, we show how this can be done efficiently.

5 Achieving a Specific Performance Vector

In this section, we combine the results obtained in the previous sections to
optimize the simulation and optimization procedure. We will optimize objective
functions of the form of (7). We do this by optimizing for 101 values of γ equally
spaced in [0, 1]. We compare several techniques and see how they influence the
simulation effort and execution time. Lastly, we give some closing remarks on
how the procedure could be sped up even further. If you only need to optimize a
simple objective function (without changing the γ parameter) the optimization
is even faster, though completely analog to the one presented here.

For all simulations, we used one slot service times and the arrival process pre-
sented in Sect. 3. We used Monte-Carlo simulations over 108 slots. This length
of trajectory is long enough to minimize bias and variance from the transient
behaviour (before reaching steady state) and the selection of the specific trajec-
tory. To guarantee, however, that Property 2 is fulfilled we use identical arrival
and decision variable trajectories, i.e., in each M -th slot of every simulation the
same number of packets arrives and the same decision variable to choose a queue
to serve (which then needs to be compared to β) is used. We achieve this by ini-
tializing the random generator with the same seed for each simulation. This is
the well known method of common random numbers (CRN) [1,12].

For the numerical results in this section, we optimized the objective func-
tion F3. During the simulation runs for different γ, we only do one simulation for
a given value of β. A table in memory holds the already simulated values for β
and their results. This is a first way to speed up the process. As we use the CRN-
method, each simulation for the same weight β will give us the same result.

A first, albeit naive, method is to just simulate equally spaced β’s in [0, 1].
We call this the brute force method. In a second method, we use a golden section
search on the objective function, like we used in [13]. This method, however, is
only usable for objective functions known to have a single extremum and this
extremum being a minimum. This is, for instance, the case for F3 with convex gj .

A third method follows from Sect. 2. We know that it is not needed to
work directly with the objective function. From the objective function, the opti-
mal value of w̄2 can be calculated. Subsequently, the corresponding value of β
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Table 1. Simulation times

Method Stopping criterium Needed simulations

Brute force β-precision: 0.0001 10001

Golden section on F β-precision: 0.0001 897

Golden section on w̄2 β-precision: 0.0001 617

Golden section on w̄2 β-precision: 0.0001 12

or F -precision: 1%

to achieve this value of w̄2 needs to be obtained by simulation. Knowing that
w̄2(β) is monotonically increasing, we can use a simplified version of the golden
section search method (mentioned in the previous paragraph). In this method,
the algorithm maintains an interval [A,B] for β (starting from [0, 1]) wherein the
optimal solution can be found. Each iteration, the algorithm chooses a point C in
the interval (according to the golden ratio). This point is subsequently simulated
whereafter the algorithm updates the interval to either [A,C] or [C,B].

We can use two different stopping criteria. The first one is the β-precision.
This is the value B − A; if this value is small enough, we stop the algorithm
and use the average (A + B)/2 as value for βopt. Another option, called the
F -precision, is to stop the simulation once we found a β that leads to a reasonable
value of F . This F -precision is the percentage deviation from the minimum of the
objective function F (which we can calculate in advance, as shown in Sect. 2).

The computational effort of the different simulation methods for this specific
case can be found in Table 1. Cases can be engineered where the efficiency order
of these methods is different; however, these cases are exceptional and need to be
tailor-made. Furthermore, golden section search on F has a limited usability as
it can only be used for objective functions with a single extremum, specifically
a minimum. It is clear that in general the more information and knowledge you
have about the queueing system and objective function, the less simulations are
needed. This often leads to complex algorithms that are only usable in a limited
number of cases. The framework presented here, being as simple and general as
it is, leads to large simulation gains without significant increase in complexity.

The methods presented here can be improved even further. Instead of using
the golden section search in its purest form, the table with the already simulated
β’s could be used to select a starting interval [A,B] after which golden section
search could be used to further refine the result. This would lead to faster con-
vergence. Another method (variation on golden section search), is to use multiple
cores and select multiple C’s. This way the interval [A,B] will shrink much faster.
Lastly, one could also vary the number of simulated slots as we get further into
the algorithm, simulating less slots (and having a rougher estimation) when the
interval [A,B] is still large. A word of caution however is in order here, as this
also induces extra variance. This variance could cause the algorithm to exclude
the minimum. Using the presented insights the algorithm can easily detect when
this happens and act accordingly.
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6 Conclusions

In this paper, we have shown that no simulations or complex approximation
techniques are needed for two-class GPS to study a generic objective function in
terms of mean performance characteristics. With our framework, we are able to
calculate the number of local extrema and the values of the objective function
in these extrema. In this way, we are able to characterize the entire behaviour of
the objective function w.r.t. the GPS weights. Our framework is based on results
of strict priority scheduling and some specific properties of two-class GPS. To
find the weights that optimize GPS, we still need to resort to a simulation
approach. However, knowing the behaviour of the objective function beforehand
can aid immensely in this optimization process.
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Abstract. Resource demands are a core aspect of performance mod-
els. They describe how an operation utilizes a resource and therefore
influence the systems performance metrics: response time, resource uti-
lization and throughput. Such demands can be determined by two extrac-
tion classes: direct measurement or demand estimation. Selecting the
best suited technique depends on available tools, acceptable measure-
ment overhead and the level of granularity necessary for the performance
model. This work compares two direct measurement techniques and an
adaptive estimation technique based on multiple statistical approaches
to evaluate strengths and weaknesses of each technique. We conduct a
series of experiments using the SPECjEnterprise2010 industry bench-
mark and an automatic performance model generator for architecture-
level performance models based on the Palladio Component Model. To
compare the techniques we conduct two experiments with different lev-
els of granularity on a standalone system, followed by one experiment
using a distributed SPECjEnterprise2010 deployment combining both
extraction classes for generating a full-stack performance model.

Keywords: Performance model generation · Resource demand
measurements · Resource demand estimations

1 Introduction

Performance models can be used to predict the performance of application sys-
tems. Resource demands are an important parameter of such performance mod-
els. They describe how an operation utilizes the available resources. A busy
resource increases the time an operation needs to execute, therefore increas-
ing the response time of the operation and ultimately the time for the user
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 115–129, 2015.
DOI: 10.1007/978-3-319-23267-6 8
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accessing the system. When performance models are applied for capacity man-
agement, such information is essential as the available hardware must be sized
according to the demand of the operations for a certain workload. Demands can
be extracted from different sources. Expert guesses are used, especially when
no running application artifact is available, to forecast the application’s perfor-
mance behavior. If running artifacts are available (e.g., in a test environment),
measurement and estimation techniques can be applied. This work compares two
direct measurement techniques and an adaptive estimation technique based on
multiple statistical approaches and compares strengths and weaknesses of each
technique.

Manually creating performance models often outweighs their benefits [6].
Therefore, automatic performance model generator (PMG) frameworks for run-
ning applications have been introduced in the scientific community [3,6]. Such
PMGs create performance models, which include the software architecture, con-
trol flow and the resource demand of the application. These PMGs use either
direct measurements by instrumenting the operations that are executed or
resource demand estimations calculated from coarse-grained measurement data
like total resource utilization and response time per transaction invocation.

Applying direct measurements requires to alter the installation of the sys-
tem that is instrumented by applying an agent that intercepts invocations. This
allows for extracting the software architecture and control flow, but causes over-
head on the system running for every instrumented operation that is invoked
[5]. Furthermore, such measurements require that for each instrumented tech-
nology and resource type, a dedicated measurement approach must be available.
A number of industry solutions for direct measurements are already available
and have been integrated into such a PMG previously [17].

As an alternative to direct measurements, resource demand estimation tech-
niques can approximate the demand of a resource from coarse-grained monitoring
data like Central Processing Unit (CPU) utilization of a system and response
time of a transaction. Such data can be collected for a wide range of systems and
technologies and requires no in-depth measurement of the application’s technol-
ogy stack. This coarse-grained monitoring data causes less overhead, produces
less data to collect, and to process. However extracting the control flow of an
application is not possible with such an approach.

The Library for Resource Demand Estimation (LibReDE)1 provides differ-
ent resource demand estimation approaches [15]. In order to do the estimations,
LibReDE requires information about the resource utilization as well as about
the response times of an operation or transaction during the same time frame.
This work integrates LibReDE with the PMG introduced by Brunnert et al. [6]
in order to be able to generate models based on direct resource demand mea-
surements or estimations. This integration allows to compare the direct measure-
ment and estimation approaches and to determine strengths and weaknesses for

1 http://se.informatik.uni-wuerzburg.de/tools/librede/

http://se.informatik.uni-wuerzburg.de/tools/librede/
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extracting resource demands using the SPECjEnterprise20102 industry bench-
mark as representative enterprise application for the evaluation.

We compare these two extraction classes for resource demands in a series
of experiments evaluating the accuracy of automatically generated performance
models in terms of CPU utilization and response times. Therefore, the main
contributions of this work are as follows:

(i) An integration of resource demand estimation in a PMG.
(ii) A comparison of the accuracy of two direct measurement techniques with

the most common resource demand estimation approaches used in practice.
(iii) An evaluation of an integrated PMG, utilizing the benefits of direct mea-

surement and estimation techniques.
This work begins with an introduction to the performance model gener-

ation workflow followed by introducing measurement technologies. We con-
tinue with an introduction to LibReDE and the approaches used to estimate
resource demands including the selection of the most accurate estimation app-
roach for meaningful resource demands. The experiment for comparing all three
approaches is described and evaluated, followed by a hybrid setup where a com-
bination of direct measurements and resource demand estimations is used. The
work closes with related work, followed by the conclusion and future work section.

2 Extracting Resource Demands

In order to support resource demand measurement and estimation approaches,
we extend the previously introduced Performance Management Work (PMW)-
Tools’ automatic PMG with LibReDE [6,15]. Generating a performance model
is divided into three separate steps depicted in Figure 1. First monitoring data
is gathered. This monitoring data is, in a second step, aggregated per operation
and stored in a monitoring database (DB). The last step is the actual model
generation, which uses the aggregated data and generates an architecture-level
performance model based on the Palladio component Model (PCM) [1].

The PMG supports data from different data sources:
(i) PMW-Tools monitoring, a monitoring solution for Java Enterprise Edition

(EE) applications to measure CPU, memory, and network demands and
response times of Java EE components and its operations [4,6].

(ii) Dynatrace3 Application Monitoring (AM), an industry monitoring solution
for Java, .NET, PHP and other technologies [17].

(iii) System Activity Reporter (SAR), an Unix/Linux based tool to display
various system loads like CPU utilization.

2 SPECjEnterprise is a trademark of the SStandard Performance Evaluation Corp.
(SPEC). The SPECjEnterprise2010 results or findings in this publication have not
been reviewed or accepted by SPEC, therefore no comparison nor performance infer-
ence can be made against any published SPEC result. The official web site for SPEC-
jEnterprise2010 is located at http://www.spec.org/osg/Enterprise2010.

3 http://www.dynatrace.com

http://www.spec.org/osg/Enterprise2010
http://www.dynatrace.com
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Fig. 1. Performance model generator framework (adapted from [5,17])

(iv) Java Management Extensions (JMX) Logger, a command line tool that
reads CPU utilization values from Java Virtual Machines (JVMs) using
the JMX interface.

The first two data sources are able to collect direct measurement data, but
also response times for estimation techniques. The demand estimation is real-
ized using LibReDE [15]. This library uses response times of an operation or
transaction and utilization of a resource, collected by one of the last two data
sources, to estimate the resource demands of an operation [15].

2.1 Performance Management Work - Tools Monitoring

PMW-Tools monitoring provides a Servlet Filter, an Enterprise JavaBean (EJB)
Interceptor, a SOAP-Handler and a Java Database Connectivity (JDBC)-Wrap-
per for Java EE applications [4,6]. The aforementioned technologies allow to
collect CPU time, heap allocation and network demand on the level of single
operation invocations [4–6]. Furthermore, the PMW-Tools monitoring allows to
collect information about the transaction control flow and about an applica-
tion architecture on the level of components and their operations. All public
operations within the instrumented system are extracted and combined to one
transaction. The PMW-Tools monitoring agent is able to measure the response
time of an operation. The start and end time of each operation invocation is
measured. Subinvocations are removed from this time interval, so the actual
response time of one operation invocation is calculated.

2.2 Dynatrace Application Monitoring

The Dynatrace AM solution allows for measurements on different levels of gran-
ularity. This ranges from measuring the response time on the system entry point
level, through fine-grained measurements per operation invocation. Dynatrace
AM uses, depending on the host system, various timers that measure the CPU
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utilization in different time intervals [7]. It furthermore traces a transaction
throughout the instrumented system and can therefore determine the control
flow as the PMW-Tools monitoring does [17]. The Representational State Trans-
fer (REST) interface of this solution provides, among other metrics, the ability
to access CPU time and response times of the instrumented operations. Thus,
this approach, as well as the PMW-Tools monitoring approach can be used for
direct measurements and estimation techniques.

2.3 Library for Resource Demand Estimation

Demand Estimation Approaches. While the monitoring tools described in
subsection 2.1 and subsection 2.2 are able to directly measure the CPU time per
operation invocation, their usage is infeasible in certain situations, e.g., when
using third-party or legacy applications that cannot provide the required instru-
mentation. For other scenarios, the costs for fine-grained instrumentation can be
considered too high. Therefore, different statistical approaches have been pro-
posed in the literature to estimate resource demands for individual operations
based on aggregated measurements such as average response time or CPU uti-
lization. These aggregated measurements are often collected by default in appli-
cations (e.g., in access log files) and in the operating system (OS). Therefore,
resource demand estimation techniques can be applied in many situations where
the usage of direct measurements is prohibitive.

LibReDE is a Java library providing different ready-to-use implementations
of statistical approaches for resource demand estimation [15]. The library cur-
rently comes with implementations of six commonly used approaches: response
time approximation [3], service demand law [3], linear regression [13], two vari-
ants of a Kalman filter [16,18] and an optimization-based approach [12]. Pre-
vious work [14] showed that the accuracy of the individual techniques strongly
depends on the characteristics of the observations and the modeled system result-
ing in significant differences in the estimates. In order to evaluate the accuracy
of the estimated resource demands, LibReDE supports the evaluation of the
results using k-fold cross-validation: the input data is randomly partitioned into
k equally large subsets and the estimation is repeated k times, each time using
a different one of the k subsets as validation set and the others as training set.
As the actual values of the resource demands are unknown, the estimation error
is evaluated using the observed utilization Uact and the observed response times
Ract,r of operation r. The observed values are compared to the calculated ones,
Ucalc and Rcalc,r, which are obtained using equations from operational analysis
of queuing networks. Using the estimated resource demands, Ucalc is determined
based on the Utilization Law [8, Chap.6]:

Ucalc(λ) =
1

p

n∑

r=1

λrDr (1) Rr
calc(λ) = Dr(1 +

PQ

1 − Ucalc(λ)
). (2)

Assuming a M/M/k/PS queue for Equation 2 [8, Chap.14]: n is the number of
operations, Dr is the estimated resource demand of operation r, λ = (λ1, . . . , λn)
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is a vector of arrival rates, p is the number of processor cores and PQ is the
probability that an arrival finds all servers busy (calculated using the Erlang-C
formula [8, Chap.14]).

The mean relative errors Eutil for the utilization and Ert,r are then deter-
mined on the validation set V={(λ(i)
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The relative errors are calculated for each of the k validation sets and the
result of the cross-validation is the mean relative error over all validation sets.
Based on the relative errors, the PMG dynamically chooses an approach as
described in the next section.

Estimation Approach Selection. Selecting the right estimation approach for
LibReDE makes a huge difference (in our experiments we observed differences
in the range of 6% to 6000% relative response time error). Each approach has
strengths and weaknesses depending on the application in place [14,15].
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We are looking for the approach that calculates the most accurate resource
demands, therefore we use both validators and select the one with the lowest
relative error when combining both validation results provided by LibReDE. The
utilization law validator provides a vector Eutil, as we only use one resource, with
the length of m, where m is the number of estimation approaches used. Each
row in this vector contains the relative utilization error of one approach. The
response time validator provides a m× n matrix Ert, where m is the number of
estimation approaches used and n the number of operations to estimate resource
demands for. Each row i contains all relative response time errors of one approach
and each column j contains the relative response time error of one operation.
Therefore, the value at index i,j is the relative response time error of operation
j using approach i.

Some operations might get a small amount of calls, misleading the approach
selection when just selecting the approach with the smallest relative error. We
weight the relative error of each operation according to the arrival rates of the
input data as the number of values used for the estimation varies due to different
workload on each operation. We therefore multiply the arrival rates matrix λ with
the relative response time error matrix Ert. The result is a weighted matrix that
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considers the operation call probability. To select the best suited approach we
need to reduce this matrix to a vector, where each value contains a meaningful
relative error for one approach considering all operations. We calculate the sum
over each row of the matrix resulting in a relative response time error vector.
Both vectors, containing either the response times or the CPU utilization error,
are added up as shown in Equation 5.

We finally select the approach with the minimum total error in the resulting
vector. The resource demands Dr of this approach are stored in the monitoring
DB of the PMG. The model generation then uses these resource demands for
building an architecture-level performance model.

3 Evaluation

In order to evaluate the accuracy of resource demand measurement and esti-
mation approaches, we used two environments. The first evaluation compares
the three presented approaches (PMW-Tools monitoring, Dynatrace AM and
LibReDE) with each other on two levels of granularity in a virtualized environ-
ment. In the second evaluation, we use a distributed bare-metal installation and
combine direct measurement and estimation approaches.

For both evaluations, we use the orders domain application of the SPECjEn-
terprise2010 (Version 1.03) industry standard benchmark as exemplary enter-
prise application. Since the benchmark defines a workload and a dataset for the
test execution, the results are reproducible for others. The orders domain applica-
tion is a Java EE web application comprised of servlet, JavaServer Pages (JSPs)
and EJB components. The application represents a platform for automobile deal-
ers to sell and order cars; the dealers (henceforth called users) interact with the
platform using the Hypertext Transfer Protocol (HTTP). There are three basic
business transactions which describe how users interact with the system: Browse,
Manage and Purchase.

3.1 Standalone Evaluation

For the standalone evaluation, we installed the SPECjEnterprise2010 bench-
mark and its corresponding load test driver on two Virtual Machines (VMs),
each deployed on separate hosts (IBM System X3755M3) to avoid interferences
between the two systems. The system under test (SUT) VM contains the appli-
cation server, hosting the orders domain application. The other VM executes
load tests on the SUT using the Faban4 harness driver of the benchmark. Both
virtual machines run openSUSE 12.3 64-bit as OS and have access to 40 giga-
bytes of Random Access Memory (RAM). The application server VM uses six
CPU cores while the driver VM has access to four CPU cores.

The benchmark is deployed on a JBoss Application Server (AS) 7.1 in the
Java EE 7.0 full profile. The DB on the test system VM is an Apache Derby DB

4 https://java.net/projects/faban/

https://java.net/projects/faban/
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in version 10.9.1.0. The JBoss AS and the Apache Derby DB are both executed
in the same 64-bit Java OpenJDK VM (JVM version 1.7.0 17).

The first step of the evaluation is to obtain the relevant performance metrics
(response time, utilization and throughput) of the SUT under different workloads
by performing measurement runs. As the network overhead between the Faban
harness and the SUT is not considered in the first step, the response time mea-
surements are conducted by measuring the system entry point response times
with the PMW-Tools monitoring. For this purpose, a workload of 600, 800, 1000
and 1200 concurrent users is put on the SUT, resulting in a mean CPU utiliza-
tion of 39%, 56%, 69% and 79% on the server. Each measurement run lasts for
sixteen minutes while data is only collected between a five minute ramp-up and
a one minute ramp-down phase.

The standalone evaluation is conducted on two levels of granularity. We com-
pare system entry point level, where only the boundaries of the system are moni-
tored, with a component operation level monitoring, where each public operation
of each used component is instrumented. This results in different performance
models as resource demands are only measured or estimated for either servlet
invocations (system entry point) or servlet calls and EJB operation invocations.
For both cases we execute a load test with 600 concurrent users and collect mon-
itoring data. Depending on the approach selected, this monitoring data contains
either fine-grained measurements of CPU demanded time per operation invoca-
tion or only response times and total CPU utilization of the VM.

The performance models generated with this monitoring data are used for
simulating the same and higher amounts of concurrent users (800 - 1200). We
compare the simulated CPU utilization and the response times with actual mea-
surements on the system. For the utilization we compare the measured mean
CPU utilization (MMCPU) with the simulated mean CPU utilization (SMCPU)
and calculate the relative CPU utilization prediction error (CPUPE).

When examining the CPU utilization prediction results shown in Table 1,
it is visible that LibReDEs prediction is very accurate, especially in the replay
case with 600 concurrent users and the upscaled case with 1200 concurrent users.
The two monitoring solutions only measure the CPU time of the actual request
thread while LibReDE also takes the overhead of the application server and
CPU time for other processing like garbage collection (GC) into account. Dyna-
trace AM can use different CPU timers optimized for specific environments (i.e.,
VM, Windows OS, etc.) and the here used POSIX Hi-Res timer produces more
accurate results than the PMW-Tools monitoring [7].

Table 1. Measured and simulated CPU utilization for system entry point level

System PMW-Tools monitoring Dynatrace AM LibReDE - estimation

Users MMCPU SMCPU CPUPE SMCPU CPUPE SMCPU CPUPE

600 39,33% 36.66% 6.80% 38.73% 1.53% 39.73% 1.01%

800 55,69% 48.68% 12.58% 51.41% 7.68% 52.69% 5.37%

1000 69,28% 60.92% 12.06% 64.02% 7.58% 65.56% 5.36%

1200 79,31% 73.21% 7.69% 77.33% 2.50% 78.66% 0.82%



Comparing the Accuracy of Resource Demand Measurement 123

B 
M

R
T

B 
PM

W
B 

D
T

B 
LR

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P 
M

R
T

P 
PM

W
P 

D
T

P 
LR

D

0

50

100

150

R
es

po
ns

e 
Ti

m
e 

[m
ill

is
ec

on
ds

]

600 Users

B 
M

R
T

B 
PM

W
B 

D
T

B 
LR

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P 
M

R
T

P 
PM

W
P 

D
T

P 
LR

D

800 Users

B 
M

R
T

B 
PM

W
B 

D
T

B 
LR

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P 
M

R
T

P 
PM

W
P 

D
T

P 
LR

D

1000 Users

B 
M

R
T

B 
PM

W
B 

D
T

B 
LR

D
M

 M
R

T
M

 P
M

W
M

 D
T

M
 L

R
D

P 
M

R
T

P 
PM

W
P 

D
T

P 
LR

D

1200 Users

Fig. 2. Measured and simulated response times on system entry point level

Figure 2 shows the response times for system entry point level granularity
using box plots. Each box depicts one measurement/simulation series. The figure
is divided into four sections, distinguishing between different user amounts. In
each section, three measured response time (MRT) box plots are shown, one for
each business transaction: Browse (B), Manage (M), Purchase (P). The sections
are completed by nine simulation box plots, one for each of the three business
transactions times the three techniques: PMW-Tools monitoring (PMW), Dyna-
trace AM (DT) and LibReDE (LRD).

We see that LibReDE tends to overestimate the resource demands, lead-
ing to a higher median and broader Interquartile range (IQR) for the Browse
and Manage transaction, but delivers good results in general. The differences
between PMW-Tools monitoring and Dynatrace AM are minimal in most cases.
All approaches have in common that they cannot predict the lower quartiles.
However, this is most likely caused by the fact, that only mean values for CPU
demands are represented in the resource demands of the generated performance
models.

The CPU utilization results and errors are similar for component operation
level compared to system entry point level. Table 2 shows that LibReDE again
produces the most accurate resource demands when simulating and comparing

Table 2. Measured and simulated CPU utilization for component operation level

System PMW-Tools monitoring Dynatrace AM LibReDE - estimation

Users MMCPU SMCPU CPUPE SMCPU CPUPE SMCPU CPUPE

600 39,33% 36.39% 7.49% 37.21% 5.39% 39.61% 0.69%

800 55,69% 48.42% 13.04% 49.83% 10.51% 52.77% 5.24%

1000 69,28% 60.26% 13.01% 61.89% 10.67% 65.71% 5.15%

1200 79,31% 71.78% 9.49% 74.07% 6.60% 79.32% 0.01%
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Fig. 3. Measured and simulated response times on component operation level

the CPU utilization with actual measurements. Dynatrace again is more accurate
than PMW-Tools monitoring but the differences are smaller compared to the
system entry point level.

The response time errors presented in Figure 3 are best predicted with
direct measurements. The differences between the two monitoring approaches
are rather small. LibReDE overestimates in most of the cases. The upper quar-
tiles are better predicted using estimation than direct measurements, but the
median and IQR are worse with estimation approaches. Again all approaches
have in common that they cannot predict the lower quartile.

3.2 Distributed Setup

The previous evaluation showed that resource estimation techniques provide suf-
ficiently accurate results for most of the evaluated scenarios. However, in order
to use these estimations, it is important to be able to measure control flows and
response time on the level of granularity that needs to be represented in a model.
Furthermore, estimations work only as long as response time and throughput val-
ues for all requests are available for a measurement interval. Therefore, there are
a lot of cases in which it is desirable to mix direct measurements with resource
estimation techniques.

This evaluation validates a distributed deployment scenario for SPECjEnter-
prise2010 in which direct measurements and estimations are used in combination.
This is necessary to be able to properly account for the resource demands and
times spent on different layers of the architecture (e.g., what portion is spent
in the DB tier). It is important to note that the following models also account
for network resource demands which was not done for the previous evaluations
as the standalone setup was deployed on a single server. The models for this
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evaluation are automatically generated using the PMG by providing input from
multiple sources (PMW-Tools monitoring, Dynatrace AM, SAR and LibReDE).

The SPECjEnterprise2010 benchmark is deployed in a multi-tier architecture
consisting of a presentation, application and a data tier. As we do not have an
in-depth monitoring for the data tier, we use estimation here while the presen-
tation and application tier are instrumented using the PMW-Tools monitoring
as well as the Dynatrace AM. The resulting resource demands are used to build
a performance model based on PCM. In order to model the data tier, the data
collection solution (i.e., PMW-Tools monitoring, Dynatrace AM) gathers the
tier’s response times, CPU utilization on the DB is gathered using SAR. These
values are used as input for a resource demand estimation using LibReDE [15].
The generated performance model is then enriched with the data tier’s esti-
mated resource demands. Finally, the model is used to perform simulations with
increasing workloads; the results are then compared to measurements of the real
system to gauge the prediction performance of the approach.

To obtain a multi-tier architecture, the standard orders domain application is
modified by converting the EJB components to web services. This allows for the
application’s deployment on two different machines. In addition, the application
tier is connected to a PostgreSQL DB located on a third machine.

The different tiers of the application are deployed on three different machines
which in the following will be called User Interface (UI) server, Web Service (WS)
server and DB server. Additionally, a benchmark driver is deployed on one VM
to generate load on the whole system by accessing the UI server using the three
business transactions. To achieve a moderate load on each system, the CPU
core count of each system has been modified by disabling some cores. All of the
systems’ technical specifications are listed in Table 3.

The distributed evaluation also begins with performing similar measurement
runs using minimal instrumentation. Executing the same workload (600 - 1200
users), as in the previous evaluation results in a maximum CPU utilization of
77%, 59% and 68% on the UI, WS and DB server, respectively. The benchmark
driver has been modified to collect the response time of the three business trans-
actions for each invocation, instead of measuring them directly on the SUT as
in the previous evaluation.

Table 3. Software and hardware configuration of the SUT

Server UI Server WS Server DB Server

Application SPECjEnterprise2010 (version 1.03) orders domain

AS/DB GlassFish 4.0 (build 89) JBoss AS 7.1.1 PostgreSQL 9.2.7

JVM
64-bit Java HotSpot 64-bit Java OpenJDK
JVM version 1.7.0 71 JVM version 1.7.0 40 -

OS openSUSE 12.2 openSUSE 12.3

CPU Cores 2 x 2.1 GHz 6 x 2.1 GHz 4 x 2.4 GHz

CPU Sockets 4 x AMD Opteron 6172 2 x Intel Xeon E5645

RAM 256 GB 96 GB

Hardware System IBM System X3755M3 IBM System X3550M3

Network 1 gigabit-per-second (GBit/s)
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Table 4. Measured and simulated CPU utilization using PMW-Tools monitoring

UI server WS server DB server

Users MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE

600 39.97% 40.36% 0.96% 30.96% 26.93% 14.96% 34.51% 40.77% 15.35%

800 53.11% 54.05% 1.74% 41.86% 36.11% 15.94% 45.89% 54.54% 15.86%

1000 65.27% 67.37% 3.11% 48.39% 44.99% 7.57% 56.51% 68.02% 16.93%

1200 77.01% 80.52% 4.36% 59.71% 53.81% 10.96% 68.38% 81.42% 16.01%

Table 5. Measured and simulated CPU utilization using Dynatrace AM

UI server WS server DB server

Users MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE

600 39.97% 33.29% 20.06% 30.96% 30.54% 1.36% 34.51% 34.25% 0.77%

800 53.11% 44.47% 19.43% 41.86% 40.82% 2.55% 45.89% 45.80% 0.20%

1000 65.27% 55.55% 17.49% 48.39% 51.03% 5.17% 56.51% 57.20% 1.21%

1200 77.01% 66.82% 15.25% 59.71% 61.34% 2.66% 68.38% 68.92% 0.79%

Afterwards, the UI and WS server are instrumented and another benchmark
run with a workload of 600 concurrent users is performed. The collected data
is used to generate a performance model using the PMG. Simultaneously, the
response times per invocation and aggregated utilization of the DB server are
collected. These are automatically used by the PMG as input for the LibReDE
resource demand estimation. The model is further enhanced by adding latency
and throughput values of the network connecting the individual servers as shown
in [4]. These values are gathered using the lmbench5 benchmark suite. Finally,
the finished model is used to simulate the SUT with a workload of 600, 800,
1000 and 1200 concurrent users; the duration and steady state times correspond
to the ones used for the measurements.

When examining the CPU utilization values in Table 4 and Table 5, we see
that the SMCPU of the DB server is predicted with very high accuracy using
Dynatrace AM, with the highest error being 1.21% at 1000 concurrent users.
The PMW monitoring does not intercept all JDBC calls, leading to an overes-
timation of CPU demands on the calls that are intercepted. Furthermore, the
accounting of this calls is also missing in the WS server, leading to an under-
estimation of the CPU demands in the business tier. The CPU utilization of
the WS server is predicted very well using Dynatrace AM, while the UI server’s
utilization is predicted too low. Dynatrace distributes the processing time to all
active operations. We have more running operations on the WS server, leading
to better results for this tier compared to the UI server. The PMW monitoring
instruments the CPU demands of the UI server better, because its servlet inter-
ceptor measures each operation individually. Overall, the results show that the
approach is well suited for predicting the performance of a multi-tier application.

The response time values are illustrated in the box plots in Figure 4. The
figure is divided into four sections, one section for each user amount. Each section
again contains three MRT series (Browse, Manage, Purchase) and six simulation
box plots. Three plots for the combination PMW-Tools monitoring and LibReDE

5 http://lmbench.sourceforge.net/

http://lmbench.sourceforge.net/
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Fig. 4. Measured and simulated response times

(PMW) and three plots for the combination Dynatrace AM and LibReDE (DT).
Note that the last section uses another scale as the first three sections, as the
response times are significantly higher with 1200 concurrent users.

The comparison shows that the combination of resource demand measure-
ment and estimation techniques leads to a good representation of the real system.
The median of the simulated response time is close to the actual measurements.
The prediction error for the median response time values is at most 25.02%
for the browse transaction at 1200 concurrent users. The IQR prediction using
PMW is usually a bit closer to the real system measurements than DT.

4 Related Work

This section presents related work that is concerned with measurement accuracy
in different environments or the overhead caused by such measurements.

CPU accounting on VMs can be error prone due to sharing the same phys-
ical resource over multiple machines. Hofer et al. [9] discovered that malicious
accounting, so called steal time, can be detected and calculated in a VM. If
not corrected, CPU utilization measurements produce wrong resource demands.
Wrong CPU utilization accounting decreases the quality of performance models
created either using direct measurement or estimation methods. We avoid this
by isolating the SUT VM on a single host. However, virtualized environments
need to correct this steal time in order to calculate accurate resource demands.

Estimating the overhead of virtualized environments has been described by
Brosig et al. [2] and Huber et al. [10]. These approaches estimate, among others,
virtualization overhead based on monitoring data using a queuing network. Such
calculations can increase the accuracy of resource demands of such environments.

Kuperberg compared different timers and measurement approaches for a
number of systems [11]. While the Dynatrace AM already offers different timers
to select the most suitable one, the other two approaches rely on either the
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ThreadMXBean, JMX monitoring or SAR. The accuracy of these approaches
can vary depending on the underlying system monitored and therefore the cal-
culated resource demands accuracy may vary.

Measurement approaches cause overhead on the SUT. Brunnert et al. [5]
measured and discussed this effect for the PMW-Tools monitoring solution in
previous work. This overhead effect turns out to be at around 0.003 ms for
each measurement when only CPU no other resource demands are collected.
This overhead can effect the system at its capacity limits, while an estimation
approach can use coarse-grained monitoring data with less overhead.

5 Conclusion and Future Work

This work compared three different techniques for deriving resource demands
for performance models. We compared a monitoring approach from academia,
an industry monitoring solution and a library combining six different estima-
tion approaches. These techniques have been integrated into a single automatic
PMG. The evaluation compared all techniques in a standalone and a distributed
setup, as well as in a virtualized and a bare-metal environment for two levels of
granularity: system entry point level and component operation level.

All techniques deliver good results for both granularity levels and in all
environments. Estimation techniques deliver better results for the system entry
point level, but fall short behind direct measurements for the component oper-
ation level. Furthermore, direct measurements can extract resource demands
on any level of detail, while estimation techniques must calculate demands for
the complete system to distribute the measured utilization among the compo-
nents. Estimation techniques can be applied to a broad variety of technologies
as the requirements for data collection are lower. We demonstrated accurate
results using a hybrid setup, where measurement approaches are used to extract
resource demands for the UI and WS combined with estimations for the DB.

The evaluation uses a Java EE application. Industry monitoring like Dyna-
trace AM are capable of observing other technologies. Demonstrating the appli-
cability of the framework for other technology stacks as well as extending the
monitored resources are interesting challenges for further research.

Acknowledgement. This work has been supported by the Research Group of the
Standard Performance Evaluation Corporation (SPEC).
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Abstract. In managed memory environments, code changes influence
performance both through time spent executing the code and time spent
collecting garbage generated by the code. This complicates decision mak-
ing when considering performance impact of code changes—while the
impact on execution time is usually easy to assess in isolation, the impact
on garbage collection time depends on the memory allocation behavior
of the code surrounding the changes. In our paper, we describe a method
to estimate the impact of code changes with additional allocations on
garbage collection time, which can be applied, e.g., when assessing the
overall performance impact of alternative changes. The method is demon-
strated on experiments with the HotSpot virtual machine.

Keywords: Garbage collection · Performance · Modeling

1 Introduction

Performance is intuitively related to execution time, which is why execution time
is often chosen as a performance metric. Unfortunately, the relationship between
execution time and performance of a particular software artifact (application,
component, function) is not always straightforward. Besides having its own code
executed, a software artifact can also cause the platform it executes on to perform
additional work—and therefore consume additional time—when the artifact code
is not running.

The technical reasons for the additional work vary. Among typical examples,
leaving dirty data in caches may cause later writes, loading code may cause later
compilation and optimization, allocating memory on heap may cause additional
garbage collections. In all these situations, tasks such as performance debugging
or performance optimization become difficult when the additional execution time
is not properly attributed.

Here, we focus on additional execution time due to garbage collection (GC).
So far, methods of predicting GC time are only coarse grained [12]. It has also
been shown that generational GC time can vary significantly even with minute
workload changes [8]. Furthermore, GC time is related to program allocation
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 130–145, 2015.
DOI: 10.1007/978-3-319-23267-6 9
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behavior, which is technically difficult to observe in detail due to associated
overhead [5,10], and may even change due to observation [8].

In light of these obstacles, we devise a method that does not attempt to pre-
dict GC time of a complete application, but instead estimates the change in GC
time after code modifications that insert additional allocations. The estimate is
made under some limiting assumptions which make it possible to use only easily
obtained input, in particular the GC log and the information on heap occupation
in the modified locations, as provided by the standard HotSpot virtual machine.

We believe the method can find application in situations where modifications
to an application with stringent GC overhead budget are considered, for example
to choose between alternative modifications or alternative locations where the
modifications are applied. The method also provides some insight on how objects
survive individual collections and migrate between generations, which can be
useful in GC tuning tasks. Finally, we illustrate the expressive limits of easily
obtained input as far as the allocation behavior reconstruction is concerned.

The presentation structure is as follows. First, we review essential GC features
related to our estimation method in Section 2. We follow with the description of
the method itself in Section 3. Evaluation and discussion are given in Section 4.
Related work and conclusion close the paper.

2 Garbage Collection Essentials

Our overhead estimation method has been developed in the context of the default
(parallel) garbage collector of the HotSpot virtual machine. We present the essen-
tial GC features we rely on, the reader can find more details in [11].
Architecture. The collector architecture is generational. It separates objects
into young generation and tenured generation and uses two configurable collec-
tors, one to collect the young generation, one to collect both generations.

The default young generation collector (sometimes called parallel scaveng-
ing) is a copying collector. The memory allocated for the young generation is
separated into one eden area and two survivor areas. New objects are allocated
(mostly) in eden, each GC copies reachable objects from eden and one survivor
into the other survivor. Objects that survive more than a particular young col-
lection count, called tenuring threshold, are promoted to the tenured generation. (§1)

The default full collector (sometimes called parallel mark and sweep) is a
mark and sweep collector with support for optional compaction. Each GC tra-
verses reachable objects and releases objects that were not traversed. The young
generation is evacuated into the tenured generation on each collection. (§2)
Dimensioning. The generations have default dimensions derived from the
memory capacity of the execution platform. A suite of ad hoc rules, sometimes
called ergonomics, is used to dynamically scale the generations. This can some-
times lead to performance anomalies [9], which is why manual sizing is recom-
mended for production deployment.

A young collection is triggered whenever the eden in the young generation is
full. During collection, the survivor that the objects are copied to may overflow,
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leading to premature promotion of the remaining objects to the tenured gen-(§3)
eration. These facts can be used to configure the young generation—it should(§4)
be big enough to avoid excessive overhead due to frequent collections but small
enough to prevent individual collections taking too much time, and the tenuring
threshold should be small enough to prevent frequent premature promotions.

A full collection is triggered whenever the tenured generation is close to full.
Some reserve is maintained to prevent promotion failures in young collections,(§5)
the size of this reserve is derived dynamically as a weighted average of the amount
of promoted objects.
Monitoring. The HotSpot virtual machine provides support for displaying
information about heap occupation at GC events. The information is recorded
in the GC log, whose abbreviated example follows:(§6)
[GC (Alloc Failure) [PSYoungGen: 131072K- >64672K(131072K)] 556149K- >511381K

↪→ (589824K), 0.5975770 secs] [Times: user =0.58 sys =0.01 , real =0.60 secs]
[Full GC (Ergonomics) [PSYoungGen: 64672K->0K(131072K)] [ParOldGen:

↪→ 446709K- >333843K(458752K)] 511381K- >333843K(589824K), ...

For each young collection (first line above), we have the collection reason, the
size of the young generation before and after the collection, the size of the entire
heap before and after collection, and the collection time. For each full collection
(second line above), we additionally have the size of the tenured generation
before and after collection.

Outside the garbage collection events, an application can also use a standard
interface to query information on free memory in the virtual machine. Although
the exact meaning of the provided values is not documented, subtracting con-
secutive values provides an estimate on the amount of object allocations.

3 Modeling Garbage Collection Overhead

Besides the obvious time spent traversing and collecting heap content, GC may
impose overhead for example by trashing memory cache content, adding barriers
to memory access operations, enforcing particular object layout or reference
structure, and so on. Although the overhead can be measured by comprehensive
experiments [4], the interactions involved are too many to be captured in a white
box model of reasonable complexity.

Rather than modeling GC overhead for an entire application—a task that
requires detailed input on application allocation behavior even for partial tasks
such as modeling GC frequency [8]—we focus on modeling the impact of certain
application modifications on the total GC time. We consider modifications that
add allocations of short lived objects into particular application locations—in(§7)
practice, these are for example minor code patches, insertion or activation of
features such as logging, modifications that change optimization decisions and
turn stack allocations into short lived heap allocations, and so on.

In contrast, we do not consider modifications that allocate significant
amounts of long lived objects. We also assume applications that have a rel-
atively stable allocation behavior, rather than passing through phases whose(§8)
allocation behavior varies significantly. We discuss these assumptions in more
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detail together with the model description—we believe they represent reason-
ably minimal constraints for a model that does not require expensive inputs.

In the limited context of this paper, the problem of estimating the total GC
time can be decomposed into estimating the time of each collection and estimat-
ing the collection frequency. To estimate the time, we use gray box modeling
with assumptions about algorithmic complexity of the GC algorithms involved.
For estimating frequency, we look at the partial application allocation behavior
that can be reconstructed from the information provided in the GC log (§6).

In the following derivations, we use verbose variable and function names
to make the formulas more readable. For example, the heap dimensions are
denoted as max.size.eden, max.size.survivor , max.size.tenured . The information
from the GC log is log.young.before and log.young.after for the young generation
occupation, log.heap.before and log.heap.after for the whole heap occupation.
The current occupation of the heap is denoted in.eden, in.survivor , in.tenured ,
obviously in.young = in.eden + in.survivor and so on.

Some symbols refer to information concerning a particular garbage collection.
When presented without additional specification, the symbols refer to the current
collection in the discussion context. Symbols with subscript refer to a particular
collection index or rank. We index young collections following a full collection
starting from 1, and also define collection rank r as the collection index i capped
one collection above the tenuring threshold, r = min(i, tenuring.threshold + 1).

3.1 Reconstructing Allocation Behavior

Central to our model is the construction of a function that approximates how
objects survive young collections. The function is directly related to object
lifetime—only objects whose lifetimes exceed that of the particular young col-
lection survive, objects whose lifetimes are shorter are collected.

We use the information from the GC log, specifically the sizes of the young
generation and the entire heap before and after each young collection (§6). Obvi-
ously, we also have log.tenured.before = log.heap.before − log.young.before and
log.tenured.after = log.heap.after − log.young.after .1

After a full collection, the young generation is empty (§2). The first young
collection following a full collection (rank 1) is triggered when the eden is full and
both survivors are empty, we therefore have log.young.before1 = max.size.eden as
the amount of objects allocated during one young collection period. Denoted as
surviving1, log.young.after1 is the amount of surviving objects allocated during
one young collection period.

The second young collection following a full collection (rank 2) is again trig-
gered when the eden is full, we therefore have log.young.before2 = max.size.eden+
log.young.after1. The amount of surviving objects allocated during two young
collection periods, surviving2 = log.young.after2, consists of objects that have

1 Some configurations of HotSpot can display object lifetime distribution at GC events,
however, that feature is not available in the default collector and not sufficiently
complete in other collectors.
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survived two young collections (allocated before the first young collection) and
objects that have survived one young collection (allocated after the first young
collection).

We can proceed inductively for as long as no objects are promoted. When
young collection with index i promotes some objects, the savings in the young
generation will not match the savings in the entire heap:

log.young.beforei − log.young.after i �= log.heap.beforei − log.heap.after i

When this happens, it no longer holds that surviving i = log.young.after i,
because log.young.after i does not include the promoted objects. We can, how-
ever, still salvage the computation of surviving i:

surviving i = log.heap.after i − log.heap.beforei + log.young.beforei

After a promotion in young collection with index i, we no longer have enough
information to compute the amount of surviving objects survivingj for j > i,
simply because the liveness of promoted objects is only examined during a full
collection. However, if the promotion is due to objects reaching the tenuring
threshold (§1), we can still use the young collections with index j > i to compute
additional estimates for surviving i:

surviving i = log.heap.after j − log.heap.beforej + log.young.beforej

Because every full collection empties the young generation, we can repeat the
same computations as many times as there are full collections, obtaining multiple
estimates surviving i for each i ∈ 1 . . . tenuring.threshold + 1. We note that a
premature promotion due to survivor overflow (§3) may introduce inflation in
the estimate of the amount of surviving objects, we therefore omit such estimates
and average over the remaining ones:

valid.surviving i = {surviving i : log.young.after i < max.size.survivor}
surviving.averagei = average(valid.surviving i)

3.2 Considering Additional Allocations

We now consider modifications that add allocations of short lived objects (§7). In
the text, we refer to the application without modifications as the original appli-
cation (and original allocations, original collections and so on for artifacts present
in the original application), and the application with envisioned modifications
as the modified application (and modified allocations, modified collections and
so on for artifacts not present in the original application).

To describe where the modified allocations happen, we execute the original
application with minimalistic instrumentation that records information on free(§9)
memory (§6) in all locations where the modified allocations are to be added.
Merged with the record of the original GC behavior (§6), this forms the record
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of the original allocation behavior as the input of our model, which then estimates
the modified GC behavior.
Triggering Young Collections. We pass sequentially through the record of
the original allocation behavior, keeping track of the aggregate size of origi-
nal and modified objects in eden, in.eden.original and in.eden.modified , and
the aggregate size of objects in survivors, in.survivor.original . We only need
to consider the original objects in survivors, because the modified objects are
short lived and therefore unlikely to survive (§7). We denote in.young.original =
in.eden.original + in.survivor.original .

The modified allocations will cause the eden to fill up faster until a modified
young collection is triggered, this is simply the moment when in.eden.original +
in.eden.modified reaches max.size.eden.
Estimating Surviving Amount. When the modified young collection is trig-
gered, the young generation will contain both original and modified objects.
To estimate the modified amount of surviving objects, we rely on the knowl-
edge of the average amount of surviving objects in original collections of
rank r, or surviving.averager. We define surviving.interpolated(x) as an inter-
polation of surviving.average for allocated amount x ∈ 0 . . .max.eden.size ·
(tenuring.threshold + 1):

surviving.average0 = 0
r.complete = xdivmax.size.eden
r.partial = xmodmax.size.eden

surviving.interpolated(x) = surviving.averager.complete+

+
r.partial

max.size.eden
· (
surviving.averager.complete+1 − surviving.averager.complete

)

Given an entirely stable allocation behavior (§8), we could set
surviving.modified = surviving.interpolated(in.young.original), using the inter-
polation directly. To support some fluctuations in survival behavior, however,
we further adjust the estimate by looking at the original survival behavior in the
nearest young collection. Specifically, for a modified young collection of rank r,
we find the nearest original young collection of the same rank r. We then look at
how the amount of surviving objects in this original collection differs from the
average amount of surviving objects and adjust the estimate accordingly:

surviving.original = log.heap.afterr − log.heap.beforer + log.young.beforer

scale =
surviving.original
surviving.averager

surviving.modified = surviving.interpolated(in.young.original) · scale

Estimating Promoted Amount. After estimating the modified amount of
surviving objects, we estimate the modified amount of promoted objects. Pre-
mature promotions aside, a modified young collection can only promote objects
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if its index exceeds the tenuring threshold. For such collections, we compute the
promotion rate of the nearest original young collection:

promotion.rate =
log.tenured.afterr − log.tenured.beforer

surviving.original

When the nearest original young collection involved premature promotions,
we instead use the average promotion rate computed from surviving.interpolated :

surviving.all.lifetimes = surviving.interpolated(in.young.originalr)
surviving.except.oldest = surviving.interpolated(in.young.originalr−1)

promotion.rate =
surviving.all.lifetimes − surviving.except.oldest

surviving.all.lifetimes

Finally, we adjust the aggregate size of objects in survivors and in the
tenured generation. The survivors will hold min(surviving.modified · (1 −
promotion.rate),max.size.survivor) bytes, the rest is promoted.
Triggering Full Collections. After estimating the promoted amount for the
modified young collection, we update the weighted average of the promoted
amount, which serves as the reserve for triggering full collection (§5). For this,
we simply reproduce the formulas used in the virtual machine sources.

Finally, we test whether a modified full collection is triggered. If it is, we
find the nearest original full collection and use the size of the tenured generation
after this collection as the size of the tenured generation after the modified full
collection. This estimate is possible because the modified objects are short lived
and the tenured generation therefore contains mostly original objects (§7).

3.3 Estimating Collection Time

Given the estimate of the modified GC behavior, we complete the model with
estimates of the modified GC time. This is trivial for the full collections—
although the modified collections may differ from the original collections in fre-
quency, they traverse and collect mostly original objects in similar amounts. As a
consequence, we estimate that each modified full collection takes about as much
time as the nearest original full collection.

For the young collections, we rely on the empirical observation that the young
collection time is strongly correlated with the number of live objects. We use total
amount in place of total number of objects and estimate the modified time based
on the time of the nearest original young collection with the same rank:

surviving.originalr = log.heap.afterr − log.heap.beforer + log.young.beforer

time.modifiedr = time.originalr · surviving.modifiedr

surviving.originalr
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4 Evaluation and Discussion

The primary goal of our evaluation is to understand and explain what makes or
breaks the model. Towards this, we present and discuss the results of using the
model on two workloads. With one workload, the model works reasonably well,
especially given the quality of the inputs. With the other workload, the results
are notably worse. This is interesting because the workloads represent similar
applications, but differ in how they satisfy the model assumptions on application
behavior. In particular, the first workload has a stable allocation behavior, while
the second workload has two alternating phases, each allocating objects with
significantly different demographics.

4.1 Methodology and Metrics

Our evaluation is based on comparing the measured and predicted values of
metrics that capture the amount of GC work. The key metrics are the total
number of young and full collections and the total time spent doing young and
full collections (in seconds). We also collect internal model metrics which serve
as the basis for the high-level metrics—the average amount of data surviving
young collections, the average amount of data promoted in young collections,
and the average tenured generation occupancy before and after full collections
(all in bytes). These enable better understanding of the results, especially in the
cases where the model loses accuracy.

In each experiment, we first execute the original workload with a workload-
specific GC configuration2 that conforms to (§4). The JVM is instructed to
produce a GC log (§6). The planned modification locations are instrumented
per (§9), the instrumentation is carefully designed to avoid allocating any heap
memory. The results of this run provide inputs for the model as well as baseline
data for evaluating the real effect of the added allocations.

In the second step, the workload is modified to allocate more data at the
designated locations and run using the same JVM configuration. The allocated
data is a single integer array of configurable length, and is only used in the scope
of the modified code, thus increasing the allocation rate of the workload without
increasing the steady state live size. The results from this run provide data for
establishing the ground truth regarding the effect of the added allocations.

Third, we solve the model using data from the original workload execution.

4.2 Workloads

Ideally, our evaluation workloads would be standard benchmarks. Unfortunately,
this runs into difficulties—SPECjvm2008 does not exhibit an interesting alloca-
tion behavior in our context, SPECjEnterprise2010 is extremely unwieldy and
not well supported with open source technologies (proprietary platforms restrict

2 We manually fix the min and max heap sizes, the size of the young generation space,
the ratio of the eden and survivor spaces, and the tenuring threshold.
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Fig. 1. Live size, dbart and DaCapo h2 workload, partial

result publication), and the DaCapo [3] suite breaks our requirements with often
rather low heap occupancy and distinct sawtooth patterns in the live size profile
(owing to naive use of iterations) [8].

The h2 workload from DaCapo comes closest to the live size stability assump-
tion (§8), but is still rather uninteresting in a single iteration—with a reasonable3

heap size, the workload does not trigger any full collection. We therefore use the
h2 workload with 400 iterations, default input size, 1 thread, and no forced GC.
We also create a modified benchmark that performs additional allocations in
each transaction, with a total of 13 479 600 added allocations. The JVM config-
uration uses 256 MB tenured generation, 96 MB young generation (32 MB eden,
two 32 MB survivor spaces), and a tenuring threshold of 7.

Even in the above configuration, the h2 workload still violates some of the
model assumptions—the most notable being the presence of two distinct phases
in every iteration. In the work phase, h2 allocates objects representing database
records that contribute to the global state. In the cleanup phase, which restores
the initial state of the database, h2 allocates only very short-lived objects that
do not survive even one collection. Both phases are clearly visible in the GC
log, and in the live size trace shown in Figure 1. Moreover, the workload design
(together with multiple iterations) causes the full collections to synchronize with
the end of some iterations (every second one in our case). The full collections
always happen approximately in the middle of the cleanup phase, and changing
the size of the tenured generation only influences their frequency, but not the
point at which they occur during the iteration.

To evaluate the model on a workload that better conforms to the underlying
assumptions, we created a benchmark simulating a simple university information
system accessing an in-memory database. The benchmark, called dbart, operates
on entities such as students, courses, schedules, and grades. Its live size trace is
more stable, as shown in Figure 1. The modified benchmark performs additional
allocations in the operation that records courses for a student, with a total of

3 Heap size 10 % above the minimal heap size required by the workload.
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5 935 084 added allocations. The JVM configuration uses 448 MB tenured gener-
ation, 192 MB young generation (64 MB eden, two 64 MB survivor spaces), and
a tenuring threshold of 4.

4.3 Measurement Platform and Results

We conducted the experiments on two different hardware platforms. The h2
workload was executed on a Dell PowerEdge M620 system4 and OpenJDK
1.8.0 25 JVM5. The dbart workload was executed on a Dell PowerEdge 1955
system6 and Oracle HotSpot 1.8.0 11 JVM7. In both cases, the JVM was con-
figured to use a single GC thread to make the GC times stable.

To evaluate the model for different amounts of additional allocations, the
modified workloads were executed in two configurations, using arrays of 211

(2K) and 212 (4K) elements as a base allocation unit. This corresponds to allo-
cating 8 208 and 16 400 extra bytes (including object header and alignment),
respectively, at each instrumented workload location.

The measurement and model evaluation results are summarized in Table 1.
For each workload, the table shows the key metrics corresponding to the execu-
tion of the original workload, followed by results for the two modified workloads.
For each modified workload, the table shows metrics obtained by measurement
and by evaluating the model. Table 2 summarizes the accuracy of the model
in form of prediction errors for the metrics that serve as a basis for calcu-
lating collection counts and durations. For each modified workload configura-
tion, the table shows two prediction errors. The error.wrt.base is calculated as∣
∣
∣1 − modified.model

modified.measurement

∣
∣
∣, and expresses the relative difference between the mea-

sured and predicted metrics for the modified workload. The error.wrt.change
is calculated as

∣
∣
∣1 − original.measurement−modified.model

original.measurement−modified.measurement

∣
∣
∣, and expresses the

error made in predicting the change in GC work. This error is not calculated for
the tenured amounts before and after full collection, because the high-level met-
rics such as collection counts and times are influenced by the difference between
the amounts before and after full GC, but not by the difference between the
original and modified workloads.

4.4 Results Discussion

The results for the dbart workload are encouraging. The predicted young col-
lection counts are very close to the measured values, which is expected [8]. The
prediction accuracy for the survived and promoted amounts, summarized as aver-
ages in Tables 1 and 2, can be considered reasonable, as illustrated in Figures 2
and 3, which plot the individual predicted values.

4 48 GB RAM, two Intel Xeon E5-2660 (Sandy Bridge) chips, 16 processors, NUMA.
5 OpenJDK Runtime (1.8.0 25-b18) and OpenJDK 64-Bit VM (25.25-b02).
6 24 GB RAM, two Intel Xeon E5345 (Clovertown) chips, 8 processors.
7 Java(TM) SE Runtime (1.8.0 11-b12), and Java HotSpotTM64-Bit VM (25.11-b03).
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Fig. 2. Size of objects in survivor space after young collections, dbart workload, partial

The lower prediction accuracy for the young collection times and full col-
lection counts can be primarily attributed to errors in predicting the survived
and promoted amounts—these errors are additive and accumulate over all young
collections, of which there are thousands. The errors also influence each other,
e.g., over-estimating the promoted amount causes under-estimating the survived
amount, which in turn results in under-estimating the total young collection time
(which has a linear dependency on live size).

The accuracy of full collection count estimates is also influenced by the esti-
mates of free space in the tenured generation, which is based on the estimated
amounts of tenured objects before and after a full collection. We again consider
these estimates reasonably accurate, as illustrated in Figure 4.

To explain why we consider the high-level results generally encouraging, con-
sider the 4.82% error in the prediction of the promoted amount for the 4K
variant of the dbart workload. To predict the full collection count exactly, the
promoted amount would need to be predicted with error no more than 0.47%,
which we consider impossible given the model inputs.

The results for the h2 workload are considerably less accurate. Similarly to
the dbart workload, the individual predicted values of selected metrics are shown
in Figures 5–7. The predicted full collection counts and times basically match
the measured values, which we consider a coincidence of two errors canceling
each other (over-estimating the promoted amount by 7% and compensating by
over-estimating the free space in the tenured generation).

The match in the tenured amount after full collection is not really
surprising—the model estimates the value using data from the nearest full col-
lection occurring in the original workload, and due to the full collections always
occurring at the same point in the cleanup phase, there is basically no room for
observing different values. The tenured amount before full collection is predicted
with reasonably low error, given the complexity of the tenured space reserve cal-
culation.

The estimate of the young collection time is rather inaccurate. This is
due to significant under-estimation of the survived amount, which is in turn
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Fig. 3. Size of promoted objects in young collections, dbart workload, partial

Fig. 4. Tenured space sizes before and after full collections, dbart workload, partial

caused by the presence of the alternating workload phases and the fact that a
full collection always occurs at the same point in the cleanup phase. Because
the cleanup phase allocates extremely short-lived data, the model observes
surviving i ≈ 0, i ∈ {1 . . . 5}, which severely disrupts the surviving.average
calculation—a major contributing factor to the survived amount estimation.

5 Related Work

Our work complements research on predictive performance models in software
development, where frameworks such as [1] can be extended with platform spe-
cific models of GC overhead to increase prediction accuracy. In this context, we
are aware of no models that would estimate GC overhead of a production VM
accurately—as explained in our earlier work [8,9], GC overhead is sensitive to
many minute details and accurate estimates may be infeasible in practice.

GC overhead modeling is also useful in the context of VM configuration,
where appropriate GC settings are often tuned heuristically. Vengerov [12] intro-
duced an analytical GC model to optimize the generation sizes and the tenur-
ing threshold. The model is to be incorporated in the VM runtime, obtaining
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Fig. 5. Size of objects in survivor space after young collections, h2 workload, partial
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Fig. 6. Size of promoted objects in young collections, h2 workload, partial

Fig. 7. Tenured space sizes before and after full collections, h2 workload, partial

its inputs by observing application execution. In a related modeling work, Li
et al. [7] define a windowed liveness metric, which can be used to derive opti-
mal heap sizes and minimal survival rates in applications. This rate estimate is,
however, significantly lower than the actual rate.
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Table 2. Accuracy of the internal model metrics

Error Survived Promoted Tenured at full Tenured after
wrt young GC [%] [%] GC start [%] full GC end [%]

d
b
a
rt

2K

{
base 1.41 0.85 1.46 1.15

change 10.04 3.34 — —

4K

{
base 3.75 4.82 0.20 1.47

change 9.81 10.84 — —

h
2

2K

{
base 63.22 7.36 0.97 0.01

change 213.86 25.00 — —

4K

{
base 66.40 7.45 1.59 0.00

change 118.52 14.60 — —

Tightly related to GC models are tools to gather model inputs, in particular
object lifetimes. The Merlin algorithm [5] is an efficient algorithm to collect
lifetimes, the most current tool inspired by Merlin is ElephantTracks [10]. Finally,
research often empirically investigates general GC performance. Blackburn et
al. [2] describe essential GC performance characteristics, Jones and Ryder [6]
investigate object lifetimes and their distributions, Hertz et al. [4] compare GC
performance to explicit memory management.

6 Conclusion

Although GC overhead is generally difficult to model accurately, we demonstrate
that it is possible to estimate the impact of added short lived allocations on
GC overhead using only readily available information from the GC log. The
low requirements on model input make it suitable for use in situations where
expensive instrumentation required by [8] is not feasible, such as considering
modifications in production applications.

The accuracy of the model can stay very good even when a significant amount
of allocations (up to two thirds more in our experiments) is added, however, the
model is sensitive to violating assumptions on stable allocation behavior. In par-
ticular, we show how GC can synchronize with regular fluctuations in allocation
behavior, producing collection patterns that distort the available information on
object survival in critical parts of the GC log—the model accuracy then suffers.

Our work is provided together with complete data and tools, available at
http://d3s.mff.cuni.cz/resources/epew2015.
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Abstract. The earlier performance problems are detected, the easier
they can be solved. Performance evaluations during the implementa-
tion phase of software projects cause overhead for developers. Unless
performance evaluations are highly automated, they are not adopted
in practice. This paper presents an approach to introduce performance
awareness in Java Enterprise Edition (EE) integrated development envi-
ronments (IDE) by providing automated model-based performance eval-
uations. The approach predicts response times of Java EE component
operations and provides feedback to the developer within the IDE.
Response time predictions are performed based on the component imple-
mentation and the response time of required services. The source code of
the component to be evaluated is parsed and represented as an abstract
syntax structure. This structure is then converted into a performance
model representing the control flow of component operations and calls
to required services. The response time of external calls is parameter-
ized using monitoring data acquired by application performance moni-
toring (APM) tools from production systems. Developers are provided
with immediate feedback, if the estimated response time of a component
operation exceeds a predefined threshold.

Keywords: Performance awareness · Performance evaluation · Perfor-
mance modeling · Palladio Component Model · Java Enterprise Edition

1 Introduction

Evaluating the performance of enterprise application systems in terms of
response time, resource utilization and throughput is a complex task which
requires deployable software artifacts and a realistic testing environment. Thus,
performance tests are often conducted late during the development phase. Eval-
uating the performance of their software artifacts continuously during implemen-
tation highly impacts the productivity of developers. Unless these activities are
highly automated, they are not adopted in practice. The concept of performance
awareness [16] addresses these challenges. It describes the availability of insights
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 146–160, 2015.
DOI: 10.1007/978-3-319-23267-6 10
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on the performance of software systems and the ability to act upon them [16].
From a developer’s perspective, the concept aims at providing methods and tools
supporting them in improving the performance of the code they are currently
developing.

Obtaining insights on the performance of enterprise application systems
becomes increasingly difficult due to continuous developments in their architec-
ture, governance, and life cycle [3]. Application system architectures evolve from
monolithic structures to complex system of systems architectures implying a con-
siderable amount of components, dependencies, environments, and deployments.
The transparency on system structures cannot be easily obtained by individuals.
The technical, organizational, and cultural diversity of architectures also leads
to a more complex IT governance. The rights and obligations associated with
individual components and functions are distributed across many organizational
units. Accessing data and coordinating activities related to application system
performance is, thus, more difficult. Finally, application systems are nowadays
subject to a continuous shift between life cycle phases. Individual teams and
components undergo life cycle phases in an independent rhythm. Ensuring time-
liness of data and the existence of ever-new versions complicate the assessment
of application systems.

Developers of component-based software systems specify loosely coupled
components fostering separation of concerns and supporting reuse across the
system. Existing components are, thus, reused by developers for implementing
new functionality. Reuse thereby highly impacts the performance of components.
The factors influencing the performance of software components are [11]: com-
ponent implementation, required services, deployment platform, usage profile,
and resource contention.

For gathering insights on the performance of components before these can
be deployed, developers would have to investigate the implementation, required
services, and the usage profile. The steps and tools required for developers to
investigate the performance manually is shown in figure 1. In a first step, the
developer needs to employ the integrated development environment (IDE) to
extract the control flow of the component and to identify external calls from the

Fig. 1. Manual steps for evaluating the response time of a component which is currently
being implemented
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source code. For each external call, developers have to gather monitoring records
and aggregate them to expectancy values. By employing a performance modeling
tool, the developer needs to combine the knowledge about the control flow and
the performance metrics for external calls to a performance model. Using this
model, performance evaluations can then be performed.

This work presents an approach for integrating performance awareness in Java
Enterprise Edition (EE) IDEs. The approach provides developers with response
time estimations for the component operations they are currently implementing.
Component developers are not required to have any expertise in the performance
engineering domain or to apply corresponding tools. By automatically deriving
component dependencies and providing access to the latest monitoring data for
reused components, the approach attempts to overcome the challenges mentioned
above. The contribution of this work is to provide and evaluate an actual imple-
mentation of the approach outlined in [6] only conceptually.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the approach and describes the phases of data collection and aggre-
gation, performance model generation, and feedback provision in detail. The
accuracy of the response time estimations provided by the approach is presented
in section 3. Section 4 describes similar research performed in this area. Section 5
concludes this article and presents future research directions.

2 Performance Awareness Approach

The aim of the performance awareness approach presented in this paper is to sup-
port developers of Java EE components with response time estimations for indi-
vidual component operations they are currently implementing without requiring
additional effort. The Java EE specification distinguishes several types of com-
ponents such as applets, Enterprise JavaBeans (EJB), servlets and JavaServer
Pages (JSP) [7]. Components either run on the client or on the server. The app-
roach is intended to support all types of server components which are developed
using the Java programming language and reuse existing services.

The approach is intended to support developers with performance estima-
tions for components they are currently implementing and which are not yet
deployable by automating the manual steps displayed in figure 1. The factors
influencing the performance of components which are taken into account for
response time estimations are the component implementation, required services,
and the usage profile. The component implementation is addressed in terms of
the control flow, which determines the sequence of calls to required services. The
usage profile is addressed in terms of workload and path coverage. An outline
of the performance awareness approach is shown in figure 2. Functions are dis-
tributed over two separate tools, the Java EE IDE and the tool for collecting and
aggregating monitoring data. The Java EE IDE is based on the Eclipse IDE for
Java EE developers1 adding several extensions to the existing functionality using
the Eclipse plugin architecture. The user interface provided by the approach is
1 http://eclipse.org/

http://eclipse.org/
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Fig. 2. Overview of the performance awareness approach

integrated in the existing source code editor. Developers are able to request
response time estimations for any component within the project workspace. The
corresponding source code is passed to the model creation module. MoDisco [2]
is an open source Eclipse plugin used to parse the source code and to extract the
control flow of the component operations. As a result, MoDisco creates a Knowl-
edge Discovery Model (KDM) containing the abstract syntax tree (AST) of
operations and an inventory of all software artifacts discovered in the code. This
KDM model serves as input for the SOftware MOdel eXtractor (SoMoX) [12].
SoMoX is an open source Eclipse plugin used to reverse engineer the component
architecture of software systems based on static analysis. The Palladio Compo-
nent Model (PCM) [14] serves as meta-model for the output of SoMoX. PCM
enables analyzing the performance of a software system without actually having
to run the system. Several model layers are used to represent the user workload,
the system behavior and the component deployment. Response times of reused
components are also modeled and parameterized with values provided by the
monitoring tool.

The monitoring tool represents a central server application responsible for
the provision of performance measurements. Running Java EE applications are
monitored using the Kieker framework [9]. Kieker supports the instrumenta-
tion of Java classes and stores performance measurements in local monitoring
records. These records are transferred to a central database application. Within
the database application, these measurements are filtered and aggregated. Aggre-
gated performance data is provided to clients via a web-service interface.

The resulting PCM model serves as input for the performance simulation
module. SimuCom [1] implements an engine for simulating the execution of a
system specified using PCM. During a simulation run, the response time of
component operations is simulated. Both the creation of performance models
and the simulation are performed in the background of the Java EE IDE so
that the workflow of the developer is not interrupted considerably. The collected
measurements are then evaluated and used to provide feedback on the expected
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response time of component operations to the developer within the code editor.
The modules of the performance awareness approach are described in detail
below.

2.1 Developer Interaction

There are different types of interaction between developers and our approach.
Developers are able to request a response time estimation for the component
they are currently developing by performing a right mouse click on the corre-
sponding class object within the package explorer. In the resulting pop-up menu,
an according button is displayed. By clicking this button, the model creation and
performance simulation are triggered.

The response time estimations resulting from the simulation are reported
back to the developer. If the estimation for a method exceeds a predefined thresh-
old, a notification is displayed in the code editor next to the method declaration.
Notifications are displayed as small icons on the left side of the editor, similar
to syntax error notifications. Two different thresholds are defined. If the first
threshold is exceeded, a yellow icon is displayed. When the second threshold is
exceeded, a red icon is displayed. Thresholds are implemented as plugin prefer-
ences within the IDE using default values and can be adjusted by the developer.

Before requesting response time estimations, developers are able to supply
additional knowledge on the expected runtime behavior of the component oper-
ations. The actual control flow of operations at runtime heavily depends on
the outcome of if statements and the number of iterations loops are passed
through. If one outcome of an if statement consumes more time than the other,
than the probabilities of the outcomes have a high impact on the accuracy of
response time estimations. Similar, the more times a loop is passed through,
the more time is consumed. The performance awareness approach assumes by
default that outcomes of if statements have an equal probability and loops are
passed through only once. The expected behavior can be specified by developers
using annotations within the source code. Annotations can be added either to
operation parameters or to local variables. Boolean attributes can be annotated
with the probability of having the value true. List attributes can be annotated
with the expected number of elements. Wherever these attributes are used in
the control flow as arguments of an if statement or a loop, the generated PCM
models are parameterized accordingly.

2.2 Model Creation

During this phase several models which depend on one another are created
sequentially. The most important aspects during the creation of each model
are described below.

KDM Model Discovery. MoDisco receives a Java project as input and creates
a KDM model representation of the discovered artifacts. The scope of the arti-
facts to be analyzed can be limited using a regular expression. Classes located
in standard Java packages are excluded from the analysis by default.
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Repository Model Creation. Based on the KDM model extracted from the
source code, a repository model is created. The repository model depicts the
components of a system, their relationships, as well as resource demands. Rela-
tionships between components are represented using interfaces. A component
can both provide and require interfaces. In the context of Java EE components
may implement multiple interfaces, which in turn inherit operations from the
same superinterface. The existing SoMoX implementation was enhanced to sup-
port such complex scenarios while avoiding the existence of duplicate component
operations. Also private and protected operations were previously not repre-
sented within interfaces. When a component calls itself, these operations must,
however, be present.

Initially, each class identified in the KDM model is considered as a component
candidate. SoMoX attempts to reduce the set of candidates first by merging
candidates to a component of higher abstraction level, and then by composing
them to a composite component [12]. Classes implementing servlets or enterprise
beans are considered in the context of Java EE as implicit components [7]. Our
performance awareness approach, therefore, considers each class as an individual
component. Merging and composing of component candidates is not performed.

In a next step, SoMoX removes candidates meeting specific criteria from
the set. The existing implementation was enhanced to remove candidates rep-
resenting external components. External components are called by the compo-
nent which is currently being implemented by the developer. They should not
be depicted within the repository model, but are represented by their response
time values. However, components sometimes use helper classes, which outsource
recurring functions, and cannot be regarded as independent external compo-
nents. Figure 3 shows an example for this scenario, where IntComp1 repre-
sents the analyzed component and IntComp2 represents the helper class. Helper
classes are often developed simultaneously to the analyzed component and there-
fore no response time measurements exist for their operations. Helper classes
may, in turn, call external components as shown in figure 3a. The approach
should therefore consider the control flows of the analyzed component and the
one of helper classes together. As shown in figure 3b, candidates representing
helper classes are, thus, kept. All classes located within the package of the ana-
lyzed component are identified as helper classes. The existing SoMoX imple-
mentation removes component candidates representing data objects, e.g., classes
having only getter and setter methods. Operations executed on values returned
by data objects are then, however, no longer possible. SoMoX was adapted to
keep these candidates. The remaining candidates are later converted into actual
components.

System Model Creation. The components of the repository model are assem-
bled to a system, as shown in figure 3c. The system model depicts the boundaries
and the interfaces of the system. For each component in the repository model
SoMoX creates a corresponding instance called assembly context. Assembly con-
nectors are created for each matching pair of provided and required interfaces.
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(a) Source code example (b) Repository diagram example

(c) System diagram example

Fig. 3. Component representation example

The existing SoMoX implementation exposes all interfaces provided by com-
ponent instances as interfaces provided by the system. The implementation was
enhanced so that only interfaces of the analyzed component are exposed as sys-
tem provided interfaces. Additionally, all required interfaces missing a matching
provided interface used to be connected to an artificially created component.
A match is missing when external components which are not represented in
the repository model are called. Instead of creating an artificial component, the
required interfaces are exposed to the system boundary and mapped to response
time values for the external component operations.

Resource Environment and Allocation Model Creation. The resource
environment model depicts containers where system components are hosted.
Containers provide resources such as CPU to components. As our approach
ignores resource contention as a factor influencing performance (refer to section
1), the design of the resource environment has no impact on the performance
evaluation results. Therefore, the resource environment model consists of a min-
imum configuration, comprising one server and a single CPU. An allocation
model is created for mapping the system to this hardware environment.

Specification of Performance Curves. The response time behavior of exter-
nal components is specified using performance curves [18]. Performance curves
describe the performance of component operations in dependence of their usage
or configuration. The SoMoX implementation was extended to iterate through
all interfaces required by the system and search for a corresponding performance
curve within the performance measurement database.

Usage Model Creation. The existing SoMoX implementation was also
enhanced to support the creation of a usage model, which specifies how users
interact with the system. The approach identifies all interfaces provided by
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the system and creates for each one a corresponding transition. Transitions are
accessed by users with an evenly distributed probability within a closed work-
load. Each transition contains a call to an operation of the analyzed component.
The number of users and the user think times are specified as plugin preferences
within the IDE.

Resource Demanding Service Effect Specifications (RDSEFF) Cre-
ation. At the end of the model creation process, for each component operation,
a RDSEFF diagram is created. RDSEFF diagrams represent the control flow of
operations depicting conditions, loops, internal and external calls. The existing
SoMoX implementation was enhanced to support several new functions.

The approach now supports the extraction of annotations from code. Data on
the expected parameterization of an operation provided by the developer using
annotations is used to parameterize the model (refer to section 2.1). The app-
roach was also enhanced to support the representation of session-level caching.
Operations known to cache results within the context of a user session are mod-
eled as branches. When executing the operation for the first time, a transition
containing an external call is selected. For subsequent executions, an empty tran-
sition is selected. Additionally, the approach was enhanced to support method
chaining, calls within return statements and a more fine-grained identification
of interfaces providing specific operations. Also, the handling of composed state-
ment containing both internal and external calls was implemented.

2.3 Data Collection and Aggregation

The existence of response time measurements for reused components is a main
requirement of the presented approach. We propose the collection of monitoring
data from productive environments. Applications are instrumented by Kieker
using aspect oriented programming. Manual changes to the application code
are, therefore, not necessary. Additionally, the instrumentation can be activated
only for certain operations. Kieker was extended with a custom monitoring writer
responsible for passing monitoring records to the central database application.
Monitoring records consist of response times and the current workload of the
application in terms of resource utilization and queue length. Performance mea-
surement can be collected from several application servers for different work-
loads. It is also possible, that measurements for different versions of the same
component are collected. The monitoring writer, therefore, collects information
on the deployment where the measurements were performed, including informa-
tion on the host, the application server instance and meta-data of application
binaries. This enables the database application to aggregate performance mea-
surements collected from the same environment and component version. The
data model used for storing performance measurements is based on the Software
Metrics Meta-Model (SMM) [13]. Records are aggregated to average values, per-
centiles, and formulas describing the response time of an operation in dependence
of the workload. A web-service interface handles requests for aggregated values
from clients.
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2.4 Performance Simulation

During this phase the workload specified in the usage model is executed on the
RDSEFFs representing the component operations. SimuCom first transforms the
provided PCM models to Java code and then executes this code. The interac-
tion of users with the system is performed by a corresponding thread. For each
component operation, a response time sensor is created. Sensors measure and
store response times during the execution of the generated code. Values used to
parameterize performance curves, e.g. the current queue length, are determined
by the simulation engine based on the current state of the simulation runtime
environment. The simulation is executed until a specified time limit is reached
or a certain amount of measurements has been collected. At the end of the
simulation run, the sensors need to be matched to method declarations within
the source code. Sensors representing operations of the analyzed component are
matched to method declarations based on their signatures. Response times are
then extracted from the identified sensors. Before reporting the results to the
developer, average values are calculated.

3 Evaluation

Several assumptions and techniques underlie the performance awareness app-
roach. The feasibility of the approach is evaluated in an experimental setup
which aims at investigating the following aspects:

– How accurate are response time estimations for component operations while
considering only the component implementation, reused services, and the
usage profile?

– What impact does the type of average value used to represent response times
of reused services have on the accuracy of estimations?

– What impact does the existence of annotations for boolean and list attributes
have on the accuracy of estimations?

A prerequisite for applying the approach is the existence of Java EE com-
ponents which reuse each other’s services. Response time measurements for the
reused components are also a requirement. For investigating the accuracy of the
response time estimation, measurements for the calling component are needed.
For meeting these requirements we employ the SPECjEnterprise20102 industry
standard benchmark. The setup and the results of the experiment are described
in the following sections.

2 SPECjEnterprise is a trademark of the Standard Performance Evaluation Corp.
(SPEC). The SPECjEnterprise2010 results or findings in this publication have not
been reviewed or accepted by SPEC, therefore no comparison nor performance infer-
ence can be made against any published SPEC result. The official web site for SPEC-
jEnterprise2010 is located at http://www.spec.org/jEnterprise2010.

http://www.spec.org/jEnterprise2010
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3.1 Experiment Setup

The SPECjEnterprise2010 benchmark consists of a benchmark driver emulat-
ing workload of a car manufacturing company and a Java EE application [15].
The Java EE application itself is divided into three domains supporting busi-
ness processes for customer relationship management, manufacturing and supply
chain management. The Orders domain, supporting the supply chain manage-
ment scenario, fulfills the previously stated requirements and is used as basis for
this experiment.

Several types of Java EE components are implemented in the Orders domain,
as shown in figure 4. Servlets receive requests from the benchmark driver. The
business logic is realized by stateless EJBs which use Java Persistence API (JPA)
entities for storing information. EJBs also use the JPA EntityManager and Query
classes for reading and writing data from or to the database. Components of the
lower layers are, thus, reused by components of the layer above. The layer of
stateless EJBs is selected as the population for this evaluation. The experiment
consists of selecting one component from this layer at a time and predicting the
response time of each operation. This selection represents the component which
is currently implemented by the developer. The set of reused components consists
of every component within the Orders domain, which is called by the investigated
component. Yet, not every component operation is suitable for the experiment.
A preliminary investigation has revealed that several components share the cache
provided by the EntityManager. For example, when the OrderSession retrieves
an entity from the database using the EntityManager, the CustomerSession will
retrieve the same entity directly from the cache. As a result, the response time of
the corresponding CustomerSession operation will be much lower than expected.
Component operations affected by this phenomenon are, thus, not eligible for
the evaluation. The remaining operations which employ caching are still consid-
ered. Other component operations execute queries on the database. The response
time of the operation then highly depends on the query string. These operations
are assumed to represent data access services which don’t reuse other compo-
nents. These operations are also excluded from the evaluation. The remaining
component operations, which are eligible for the evaluation are listed together
with some of their characteristics in table 1. This set includes both very simple
operations, consisting of only one source line of code (SLOC), and more complex

Fig. 4. Layers of the SPECjEnterprise2010 Orders domain
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Table 1. Component operations selected for the experiment

Component Operation Input Parameters SLOC
External

Operations
If

Statements
For

Statements

CustomerSession getCustomer (Integer) 1 1 0 0

CustomerSession getInventories (Integer) 6 2 1 0

CustomerSession sellInventory (Integer, long, boolean) 17 5 3 0

CustomerSession validateCustomer (Integer) 2 1 0 0

LargeOrderSenderSession sendOrdersToManufacturing (List<OrderLine>, int) 26 5 0 1

OrderSession cancelOrder (int) 8 2 1 0

OrderSession getItem (String) 1 1 0 0

OrderSession newOrder (int, ShoppingCart, int, boolean, boolean) 96 22 8 3

ones, containing multiple if and for statements. The benchmark is executed for
collecting response time measurements for the EJB operations and the reused
components. While measuring the response times for EJB operations, an even-
tual overhead created by monitoring the persistence layer should be avoided.
Therefore, each layer is instrumented individually and the benchmark is exe-
cuted several times. Percentile values are used to represent response times of
reused components. The evaluation is performed first using median and then
using 95-percentile values. Input values for annotations are derived by executing
the benchmark and observing the actual runtime behavior.

For measuring response times, the benchmark driver and the Java EE appli-
cation are deployed on separate hosts in a virtualized environment. The hardware
consists of an IBM System X3755 M3 server having 4 AMD Opteron 6172 pro-
cessors, 12 2.1 GHz cores and 256 GB memory. Storage is provided by an IBM
DS3512 SAN. The hardware is virtualized using VMWare ESXi 5.1.0. Virtual
machines (VM) run openSUSE 12.3 as operating system. Each VM has 8 virtual
processors configured. The VM hosting the Java EE server has 12 GB memory.
The Java EE application is deployed on a JBoss 7.1.1 server.

3.2 Experiment Results

For interpreting experiment results, response times estimated by the performance
awareness approach are compared to actual measurements. The response time of
each component operation was estimated both with and without using annota-
tions and using median values and 95-percentiles for representing response times
of reused services. The simulated and the measured response times while using
median values for representing response times of reused services are shown in
table 2. Measured response times (MRT) are compared to simulated response
times (SRT). The MRT is also calculated as median value. The response time
error (RTE) represents the percentage difference between the MRT and the
SRT. The overall error without using annotations is equivalent to 68 % and
while using annotations 42 %. Without providing annotations, the RTE ranges
between 9,84 % and 227,01 %. For a complex operation such as sendOrder-
sToManufacturing, the approach displays the highest accuracy. As the operation
contains only one loop and no if statements at all, annotations would provide
limited benefits. The worst estimation was provided for the operation newOrder,
containing the highest amount of external calls, if statements, and loops. The
second worst estimation was provided for the operation getItem which consists
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Table 2. Evaluation results using median values for representing response times of
reused services

Without Annotations With Annotations

Component Operation MRT SRT RTE SRT RTE

CustomerSession

getCustomer 0.96 ms 0.71 ms 25.60 % 0.71 ms 25.60 %
getInventories 0.80 ms 0.71 ms 10.63 % 0.71 ms 10.63 %
sellInventory 0.91 ms 0.73 ms 19.87 % 0.73 ms 19.87 %
validateCustomer 1.24 ms 0.71 ms 42.41 % 0.71 ms 42.41 %

LargeOrderSenderSession sendOrdersToManufacturing 12.35 ms 11.13 ms 9.84 % 11.42 ms 7.52 %

OrderSession
cancelOrder 1.88 ms 0.72 ms 61.57 % 0.73 ms 61.13 %
getItem 0.28 ms 0.71 ms 152.09 % 0.71 ms 152.09 %
newOrder 1.83 ms 6 ms 227.01 % 2.30 ms 22.57 %

of only one external call of the EntityManager operation find. This is because
the response time of the operation find highly depends on the type of entity
which is looked up. In this case, finding an Item takes less time than for other
entities. While using annotations, the estimation for the operation newOrder has
dramatically improved. Other operations having less or no if and for statements
have remained relatively constant.

The experiment results while using 95-percentiles for representing response
times of reused services are shown in table 3. The overall error without using
annotations is equivalent to 38 % and while using annotations 46 %. Regard-
less of the usage of annotations, the accuracy of most of the estimations has
improved. However, in two cases, a significant deterioration can be observed.
The estimation for getItem is now based on a more pessimistic assumption by
using 95-percentiles and differs even more from the measurement. The estima-
tion for newOrder is now worse when using annotations. When annotations are
provided, the control flow is actually represented more accurately. However, by
representing the MRT also as 95-percentile, the reference value of the estimation
seems to be too pessimistic.

Table 3. Evaluation results using 95-percentiles for representing response times of
reused services

Without Annotations With Annotations

Component Operation MRT SRT RTE SRT RTE

CustomerSession

getCustomer 2.43 ms 2.22 ms 8.63 % 2.22 ms 8.63 %
getInventories 2.14 ms 2.22 ms 3.92 % 2.22 ms 3.92 %
sellInventory 2.35 ms 2.28 ms 2.84 % 2.28 ms 2.84 %
validateCustomer 2.87 ms 2.22 ms 22.71 % 2.22 ms 22.71 %

LargeOrderSenderSession sendOrdersToManufacturing 19.81 ms 21.92 ms 10.64 % 23.06 ms 16.39 %

OrderSession
cancelOrder 4.83 ms 2.25 ms 53.41 % 2.28 ms 52.83 %
getItem 0.75 ms 2.22 ms 196.69 % 2.22 ms 196.69 %
newOrder 14.77 ms 13.34 ms 9.71 % 5.30 ms 64.13 %

The experiment results show that the type of average values used both as
input for the estimation and as reference for the estimation results highly impacts
the accuracy of the approach. Average values should, therefore, be selected based
on the skewness of the probability distribution of the corresponding operation’s
response time.
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4 Related Work

A number of approaches propose automated and integrated means for support-
ing developers with performance awareness. Existing approaches either provide
recorded observations [5,8,10], or performance estimations [17] to developers.

Heger et al. [8] present an approach to integrate performance regression root
cause analysis into the development environment. When performance regres-
sions are detected, the approach provides the developer with insights on the
causes of the regression. Information on the change and the methods causing
the regression is displayed to the developer. The performance measurements
used by the approach are collected during the execution of unit tests. The evolu-
tion of the performance of affected methods is presented graphically as a function
and the methods causing the regression are displayed as a graph.

Bureš et al. [5] propose the integration of performance evaluation and aware-
ness methods into different phases of the development process of autonomic
component ensembles. During the design phase, performance goals are formu-
lated. At runtime, performance measurements are collected. The authors propose
the presentation of these measurements to the developers within the IDE. Feed-
back on the measurements is displayed graphically as functions within a pop-up
window.

Horký et al. [10] present an approach for enhancing the documentation of
software libraries with information on their performance. The performance of
libraries is measured using performance unit tests. Tests are executed on demand
after the developer looks up a specific method for the first time. Tests can be
executed locally or on remote machines. Measurements are then cached and
enhanced.

Weiss et al. [17] propose an approach for evaluating the performance of per-
sistence services based on tailored benchmarks during the implementation phase.
By applying this approach, developers are able to track the impact of changes
on the performance or to compare different design alternatives. The estimated
response time is displayed within the IDE using numerical values and graphically
as bar charts. The approach is only applicable for Java Persistence API services,
however, instructions on how to design and apply benchmark applications to
other components are also provided.

The actual performance behavior of applications can only be observed dur-
ing runtime. At this point it may be, however, unclear whether the observed
behavior also reflects the expected one. Bulej et al. [4] propose an approach
for supporting the awareness of performance expectations by providing means
to formulate, communicate and evaluate these expectations. The approach uses
the Stochastic Performance Logic (SPL) to express performance assumptions for
specific methods. Assumptions are represented independently from any hardware
and are formulated relative to another method. During runtime, measurements
are collected and compared to the formulated expectations. Potential violations
are reported to the developer.
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5 Conclusion and Future Work

In this work, we have presented an approach to introduce performance aware-
ness in Java EE development environments by providing automated model-based
performance evaluations. The approach performs response time estimations for
component operations and provides feedback to the developer within the IDE.
Employing the approach requires neither expertise in the performance engineer-
ing domain nor additional effort from the developer.

Future research will investigate what improvements in the performance of
component operations can be observed by supporting developers with the per-
formance awareness approach. The benefits of employing this approach could
be quantified by comparing the response times of implementations with same
functionality achieved by two groups of developers - one with and one without
performance awareness support. Another option could be to measure the amount
of cases where the display of performance estimations to developers leads to an
optimization of the source code. Further research will also investigate the accu-
racy of estimations using more extensive experiment setups. The approach will
be extended to support a more extensive interaction with the developer by pro-
viding more expressive annotations and indicating expensive external calls using
heat maps in the code editor. The accuracy of the approach will be improved by
automatically selecting appropriate average values for response times of reused
services based on the skewness of their probability distribution. Future work
will also investigate if the duration of estimations can be improved by using an
analytical approach instead of simulation.

Acknowledgement. This work has been supported by the Research Group of the
Standard Performance Evaluation Corporation (SPEC).
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3. Brunnert, A., Vögele, C., Danciu, A., Pfaff, M., Mayer, M., Krcmar, H.:
Performance management work. Business & Information Systems Engineering 6(3),
177–179 (2014)
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Abstract. Canonical forms of Markovian distributions and processes
provide an efficient way of describing these structures by eliminating
the redundancy of the general description. Canonical forms of order-2
stationary Markov arrival processes (MAPs) have already been estab-
lished for both continuous and discrete time. In this paper we prove that
the canonical form of continuous time MAPs can be naturally extended
to their non-stationary generalisations. We also prove that the equiva-
lence proven for order-2 stationary Markov arrival processes and rational
arrival processes also holds for the non-stationary counterparts.

1 Introduction

Markov chain based stochastic models, and, among them, phase type distribu-
tions (PHs) and Markov arrival processes (MAPs), are used in a wide array of
fields from healthcare [8] to risk theory [3] and, most notably, queueing theory
[13,16,19,21]. One of the main benefits of using Markovian structures in queue-
ing models is that they enable the application of the matrix analytic method-
ology [15], which provides a powerful tool for analysing these systems. When
trying to model a real life system these Markovian structures have to be con-
structed by fitting to empirical data. Several fitting methods have been produced
for this purpose. Some use special structures or heuristic fitting methods, e.g.
[1,10,11,24], while other methods apply general optimisation techniques such
as expectation maximisation [2,6,23], or a mixture of these two, e.g. [9,14].
Using special structures reduces the flexibility of the stochastic model, while
using the general structure the efficiency diminishes due to the redundancy in
the standard description of the respective stochastic models. This issue can be
eliminated by the usage of canonical forms. The canonical form of a Markovian
distribution or process is its unique representation that is defined by a minimal
number of parameters. This means that every distribution or process has to have
a one-to-one correspondence with a canonical form description. In the past years
canonical forms for several Markovian structures have been devised. Canonical
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forms have been established for order-2 phase type distributions (PHs) [18,20]
and stationary Markov arrival processes (MAPs) [4,17], and order 3 phase type
distributions [12,20] in both continuous and discrete time.

The non-Markovian generalizations of these Markov chain based models,
matrix exponential distributions and rational arrival processes, can be efficiently
used for overcoming some limitations of the Markovian models. For example
Markovian models with low coefficients of variation can be represented far
more efficiently with non-Markovian generalizations [5]. In the analysis of these
stochastic models it is important to determine whether the Markovian and the
non-Markovian class of the same order has the same flexibility or not. In the for-
mer case there is no need for the investigation of more complex non-Markovian
models. For stationary Markov arrival processes (MAPs) it has been proved that
the order-2 Markovian class and the order-2 non-Markovian class are identical
[4,17] (both in case of continuous time and discrete time models).

In this paper we focus on the non-stationary extension of (continuous time)
order-2 Markov arrival processes and rational arrival processes and investigate
their canonical representation and identity. The main contribution of the paper
is that we show that the same canonical form is applicable as for the station-
ary MAPs and that the order-2 Markov arrival processes and rational arrival
processes are identical.

The rest of the paper is organized as follows. The next section presents
the necessary background of Markov arrival processes and rational arrival pro-
cesses. Section 3 summarizes the existing results for stationary arrival processes
of order 2. Section 4 and 5 present the new results, the canonical representation
of non-stationary Markov arrival processes of order 2 and the equivalence of the
Markovian and the non-Markovian classes. The paper is concluded in Section 6.

2 Theoretical Background

In this section we present the definitions and some basic characteristics of sta-
tionary and non-stationary Markov arrival processes and their non-Markovian
generalizations.

Let X (t) be a point process on R
+ with joint probability density function

(joint pdf) of inter-event times f(x0, x1, . . . , xk) for k = 1, 2, . . ..

Definition 1. X (t) is called a stationary rational arrival process if there exists
a finite (H0,H1) square matrix pair such that (H0 + H1)1 = 0 (where 1 and
0 are the column vectors of ones and zeros, respectively, with appropriate size),

π(−H0)−1H1 = π, π1 = 1 , (1)

has a unique solution, and for ∀k ≥ 0, x0, . . . , xk its joint pdf is

f(x0, x1, . . . , xk) = πeH0x0H1eH0x1H1 . . . eH0xkH11. (2)

In this case we say that X (t) is a stationary rational arrival process (RAP) with
representation (H0,H1), or shortly, RAP(H0,H1).
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Definition 2. If X (t) is a stationary RAP(H0,H1), where H0 and H1 have
the following properties:

– H1 has only non-negative elements
– H0ii < 0, H0ij ≥ 0 for i �= j, H01 ≤ 0,

then we say that X (t) is a stationary Markov arrival process (MAP) with repre-
sentation (H0,H1), or shortly, MAP(H0,H1).

The importance of the MAP class comes from the associated stochastic
interpretation. Every MAP representation can be mapped to a continuous time
Markov chain with generator H = H0 +H1 where H1 contains transition rates
with arrivals and H0 contains transition rates without arrivals and the Markov
chain starts from initial distribution π which is the stationary probability vec-
tor embedded at arrivals. In such a Markov chain (2) is the joint pdf of the
inter-arrival times. We note here that an arbitrary (H0,H1) square matrix pair
satisfying (1) does not necessarily define a valid RAP as (2) may still give nega-
tive values for some x0, . . . , xk. If an (H0,H1) matrix pair fulfils the additional
sign constraints of MAPs in Definition 2, however, then (2) is guaranteed to
be positive for arbitrary x0, . . . , xk as can be seen from the mapping to Markov
chains. One of the major advantages of MAPs to RAPs is exactly this difference.

RAPs (MAPs) have infinite different representations (as it is demonstrated
below for the non-stationary case), i.e. matrix pair sets that give the same
f(x0, x1, . . . , xk) joint probability density function. The different representations
might have different sizes [7]. The size of the smallest among those representa-
tions is referred to as the order of the RAP (MAP). The class of order n RAPs
(MAPs) is denoted by RAP(n) (MAP(n)). From Definition 1 and 2 it follows
that MAP(n)⊆RAP(n).

In Definition 1 and 2 the initial vector in (2), π, has to fulfil (1). That is
why π is also referred to as the embedded stationary vector. By relaxing this
constraint we obtain the class of non-stationary RAPs and MAPs.

Definition 3. X (t) is called a non-stationary rational arrival process if there
exists a finite (π0,H0,H1) initial vector and square matrix pair triple such that

π01 = 1

f(x0, x1, . . . , xk) = π0e
H0x0H1eH0x1H1 . . . eH0xkH11. (3)

In this case we say that X (t) is a non-stationary rational arrival process (NRAP)
with representation (π0,H0,H1), or shortly, NRAP(π0,H0,H1).

Definition 4. If X (t) is a non-stationary RAP(π0,H0,H1), where

– π0 has only non-negative elements
– H1 has only non-negative elements
– H0ii < 0, H0ij ≥ 0 for i �= j, H01 ≤ 0,

then we say that X (t) is a non-stationary Markov arrival process (NMAP) with
representation (π0,H0,H1), or shortly, NMAP(π0,H0,H1).
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Similar to the stationary case every NMAP representation can be mapped
to a continuous time Markov chain with generator H = H0 + H1 where the
initial distribution is π0, and every NRAP (NMAP) has infinite different rep-
resentations, i.e. (π0,H0,H1) sets that give the same f(x0, x1, . . . , xk) joint
probability density function. One way to get a different representation of an
NRAP(π0,H0,H1) with the same size is the application of the similarity trans-
formation

π′
0 = π0T , H ′

0 = T −1H0T , H ′
1 = T −1H1T , (4)

where T is a non-singular transformation matrix with T1 = 1. The transformed
representation gives the same joint pdf as

f(x0, . . . , xk) = πeH0x0H1 . . . eH0xkH11 =

= πTT −1eH0x0TT −1H1T . . . T −1eH0xkTT −1TH1T −11 =

= πeH
′
0x0H ′

1 . . . eH
′
0xkH ′

11 = f(x0, x1, . . . , xk), (5)

where we used that T −11 = 1 (from T1 = 1).
The order of NRAPs and NMAPs is defined similarly as for RAPs and MAPs.

The class of order n NRAPs (NMAPs) is denoted by NRAP(n) (NMAP(n)).
From Definition 3 and 4 it follows that NMAP(n)⊆NRAP(n).

3 Previous Results for MAP(2) and RAP(2) Processes

Before discussing the canonical form of NMAP(2) we summarize the results on
the canonical structure of MAP(2) from [4] as these will provide the basis for
the subsequent argumentation.

For MAP(2)s one of the eigenvalues of matrix (−H0)−1H1 is 1, since
π(−H0)−1H1 = π. The other eigenvalue is denoted by γ, for which we have
−1 ≤ γ < 1. Based on the sign of γ the following canonical forms can be
applied.

Theorem 1. [4] If the γ parameter of the order-2 RAP(H0,H1) is

– non-negative, then it can be represented in the following Markovian canonical
form

D0 =
[−λ1 (1 − a)λ1

0 −λ2

]

, D1 =
[

aλ1 0
(1 − b)λ2 bλ2

]

.

where 0 < λ1 ≤ λ2, 0 < a, b < 1, b ≥ aλ1
λ2
, γ = ab, and the associated

embedded stationary vector is π =
[

1−b
1−ab

b−ab
1−ab

]
,

– negative, then it can be represented in the following Markovian canonical
form

D0 =
[−λ1 (1 − a)λ1

0 −λ2

]

, D1 =
[

0 aλ1

bλ2 (1 − b)λ2

]

,
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where 0 < λ1 ≤ λ2, 0 ≤ a ≤ 1, 0 < b ≤ 1, b ≥ aλ1
λ2
, γ = −ab and the

associated embedded stationary vector is π =
[

b
1+ab 1 − b

1+ab

]
.

Theorem 2. [4] For the MAP(2) and RAP(2) sets of point processes we have

MAP(2) ≡ RAP(2).

The aim of this paper is to verify the existence of Theorem 1 and 2 for
non-stationary processes, NMAP(2) and NRAP(2).

4 Canonical Form of Order-2 NMAP

In this section we present the canonical form of NMAP(2) and prove that such
canonical form is Markovian for any valid NMAP(2).

Theorem 3. An order-2 NMAP(π0,H0,H1) can be represented in the
(δ,D0,D1)=(π0T ,T −1H0T ,T −1H1T ) canonical form, where T is the trans-
formation matrix which transforms H0 and H1 to the MAP(2) canonical form
(T −1H0T ,T −1H1T ).

The previous theorem simply means that the canonical form that was used
for MAP(2)s can be used for NMAP(2)s with a natural extension to the initial
vector. The Markovity of D0 and D1 is trivially satisfied because of Theorem 1,
thus the proposed representation is Markovian if and only if the elements of
δ are non-negative, which can be formally described as δei ≥ 0 for i = 1, 2,
where δ = π0T and ei is the ith unit column vector (whose elements equal to
zero except the ith one which is one). As π0 is non-negative, δ will also be non-
negative if the elements of T are non-negative. (This is a sufficient, but not a
necessary condition.) In the following we show that T is indeed non-negative for
any initial Markovian (π0,H0,H1) representation.

Because every Markovian NMAP(2) representation can be obtained from the
canonical forms using similarity transformations, the previous statement can be
reversed to get the following equivalent: If (δ,D0,D1) is an arbitrary NMAP(2)
in canonical form, then its similarity transform

(π0,H0,H1) = (δT −1,TD0T −1,TD1T −1) (6)

is Markovian only if T is non-negative. In other words we “reverse similarity
transform” the canonical form (note that here the transformation matrix is T −1

while in (4) it was T ) and examine what could the original representation be and
prove that for every possible original representation that satisfies the MAP rep-
resentation constraints in Definition 2, matrix T is non-negative. In the following
we prove this last version of the theorem.

We have different canonical forms for negative and non-negative γ that we
have to examine separately. Let us first consider NMAPs with non-negative γ.
In this case the matrices of the canonical form are

D0 =
[−λ1 (1 − a)λ1

0 −λ2

]

, D1 =
[

aλ1 0
(1 − b)λ2 bλ2

]

.
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Let

T =
[
1 − t1 t1

t2 1 − t2

]

. (7)

From (6) we get

H0 =

[
− (1−t1)(1−at2)λ1−t1t2λ2

1−t1−t2

(1−t1)((1−a(1−t1))λ1−t1λ2)
1−t1−t2

t2((1−t2)λ2+at2λ1−λ1)
1−t1−t2

− (1−t1)(1−t2)λ2−(1−a−at1)t2λ1
1−t1−t2

]

H1 =

[
a(1−t1)(1−t2)λ1+t1λ2(1−b−t2)

1−t1−t2

t1(λ2(b−t1)−aλ1(1−t1))
1−t1−t2

(1−t2)(aλ1t2+λ2(1−b−t2)
1−t1−t2

λ2(1−t2)(b−t1)−aλ1t1t2
1−t1−t2

]

. (8)

We have to prove that if the off-diagonal elements of H0 and the elements of
H1 are non-negative, then 0 ≤ t1 ≤ 1 and 0 ≤ t2 ≤ 1. By using the restrictions
on a, b in Theorem 1 we can derive constraints from the elements of H0 and H1.
From the (1, 2) element of H0 we obtain

t1 + t2 < 1 ∧
(

t1 > 1 ∨ t1 <
(1 − a)λ1

λ2 − aλ1

)

(9a)

or

t1 + t2 > 1 ∧ t1 < 1 ∧ t1 >
(1 − a)λ1

λ2 − aλ1
(9b)

From the (2, 1) element of H0 we have

t1 <
(1 − a)λ1

λ2 − aλ1
&& t1 + t2 > 1 ∨

(

0 < t2 ∧ t2 <
λ2 − λ1

λ2 − aλ1

)

(10a)

or

t1 >
(1 − a)λ1

λ2 − aλ1
&& (t1 < 1) &&

(

t2 >
λ2 − λ1

λ2 − aλ1
∨ (0 < t2 ∧ t1 + t2 ≤ 1)

)

(10b)

Combining the constraints for the two elements we get

t1 <
λ1(1 − a)
λ2 − λ1

∧ 0 < t2 <
λ2 − λ1

λ2 − aλ1
(11a)

or
λ1(1 − a)
λ2 − aλ1

< t1 < 1 ∧ t2 >
λ2 − λ1

λ2 − aλ1
. (11b)
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The first case corresponds to t1 + t2 < 1, while the second to t1 + t2 > 1. From
the (1, 1) element of H1 we have

t1 + t2 < 1 ∧ 0 < t1 <
bλ2 − aλ1

λ2 − aλ1
(12a)

or

t1 + t2 > 1 ∧
(

t1 >
bλ2 − aλ1

λ2 − aλ1
∨ t1 < 0

)

(12b)

From (11a) and (12a) we get that t1 > 0 and t2 > 0 for the t1 + t2 < 1 case,
from which 0 ≤ t1, t2 ≤ 1 if t1 + t2 < 1. It remains to show the same for the
t1 + t2 > 1 case. From (11b) we have that 0 ≤ t1 ≤ 1 and 0 ≤ t2 thus we only
have to prove that t2 ≤ 1 also holds. From the (2, 1) element of H1 we get

t1 < 0 ∧
(

t2 <
(1 − b)λ2

λ2 − aλ1
∨ (t1 + t2 < 1 ∧ t2 > 1)

)

(13a)

or

t1 > 0 ∧ t1 <
bλ2 − aλ1

λ2 − aλ1
∧

(

t2 <
(1 − b)λ2

λ2 − λ1
∨ (t1 + t2 > 1 ∧ t2 < 1)

)

(13b)

or

t1 >
bλ2 − aλ1

λ2 − aλ1
∧

(

t1 + t2 < 1 ∨
(

t2 < 1 ∧ t2 >
(1 − b)λ2

λ2 − aλ1

))

(13c)

In the (13c) subcase t2 ≤ 1 is explicitly stated if t1 + t2 > 1. For the other two
subcases t2 ≤ 1 holds if (1−b)λ2

λ2−aλ1
≤ 1. But this is true because from Theorem 1

we know that b ≥ aλ1
λ2

, consequently we can use the transformation

t2 <
(1 − b)λ2

λ2 − aλ1
≤

(
1 − aλ1

λ2

)
λ2

λ2 − aλ1
= 1. (14)

Substituting this into (13a) and (13b) we obtain that t2 < 1 if t1 + t2 > 1 in
both subcases, thus 0 ≤ t1, t2 ≤ 1 is proven for γ ≥ 0, which means that the
proposed canonical form is valid for γ ≥ 0.

Let us now consider NMAPs with γ < 0. The matrices of the canonical
form are

D0 =
[−λ1 (1 − a)λ1

0 −λ2

]

, D1 =
[

0 aλ1

bλ2 (1 − b)λ2

]

.

Using the (6) similarity transformation we get

H0 =

[
− (1−t1)(1−at2)λ1−t1t2λ2

1−t1−t2

(1−t1)((1−a(1−t1))λ1−t1λ2)
1−t1−t2

t2(1−t2)λ2+at2λ1−λ1
1−t1−t2

− (1−t1)(1−t2)λ2−(1−a+at1)t2λ1
1−t1−t2

]

H1 =

[
t1(1−b−t2)λ2−a(1−t1)t2λ1

1−t1−t2

a(1−t1)
2λ1+t1(b−t1)λ2
1−t1−t2

(1−t2)(1−b−t2)λ2−at22λ1
1−t1−t2

a(1−t1)t2λ1+(b−t1)(1−t2)λ2
1−t1−t2

]

. (15)
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We apply the same approach as before, i.e., we prove that if the respective
elements of H0 and H1 are non-negative then 0 ≤ t1, t2 ≤ 1 has to hold. The
H0 matrix is the same as for γ ≥ 0, therefore we get (11) again. In the following
we use substitutions

e =
bλ2 − 2aλ1

λ2 − aλ1
, f =

(2 − b)λ2

λ2 − aλ1
, g =

√
λ2(4a(1 − b) + b2λ2)

λ2 − aλ1

From the (1, 2) element of H1

t1 + t2 > 1 ∧ t1 >
1
2
(e + g) (16a)

or

t1 + t2 > 1 ∧ t1 <
1
2
(e − g) (16b)

or

t1 + t2 < 1 ∧ t1 <
1
2
(e + g) ∧ t1 >

1
2
(e − g). (16c)

from the constraints on the (2, 1) element of H1 we get

t1 + t2 < 1 ∧ t2 <
1
2
(f − g) ∧ t1 <

1
2
(e + g) (17a)

or

t1 + t2 < 1 ∧ t1 >
1
2
(e + g) (17b)

or

t1 + t2 < 1 ∧ t2 <
1
2
(f + g) ∧ t1 <

1
2
(e − g) (17c)

or

t1 + t2 > 1 ∧ t2 <
1
2
(f + g) ∧ 1

2
(e − g) < t1 <

1
2
(e + g) (17d)

or

t1 + t2 > 1 ∧ 1
2
(f − g) < t2 <

1
2
(f + g) ∧ t1 >

1
2
(e − g) (17e)

If (16a) then only the (17e) subcase is possible. None of the constraints in
(17) allow (16b) to be true, while is (16c) only possible for the (17a) subcase.
Summarising these we get

t1 + t2 > 1 ∧ 1
2
(f − g) < t2 <

1
2
(f + g) ∧ t1 >

1
2
(e + g) (18a)

or

t1 + t2 < 1 ∧ 1
2
(e − g) < t1 <

1
2
(e + g) ∧ t2 <

1
2
(f − g) (18b)
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Using the further substitution

h =
(1 − b)t1λ2

t1λ2 + a(1 − t1)λ1

from the constraints on the (1, 1) element of H1 we obtain

t1 + t2 < 1 ∧ t1 <
1
2
(e − g) ∧ t2 > h (19a)

or

t1 + t2 < 1 ∧ t1 >
1
2
(e + g) (19b)

or

t1 + t2 > 1 ∧ 1
2
(e − g) < t1 < − aλ1

λ2 − aλ1
∧ t2 < h (19c)

or

t1 + t2 > 1 ∧ − aλ1

λ2 − aλ1
< t1 <

1
2
(e + g) (19d)

or

− aλ1

λ2 − aλ1
< t1 <

1
2
(e + g) ∧ t2 < h (19e)

or

t1 >
1
2
(e + g) ∧ t2 > h (19f)

We combine these with the previously obtained expressions for the elements
of H0 and H1. Let us examine first the t1+t2 < 1 case. As (18b) has to hold, only
the (19e) subcase is possible. Because of the constraints on the elements of H0,
for t1 + t2 < 1 (11a) has to hold, i.e., t1 < λ1(1−a)

λ2−λ1
≤ 1 and 0 ≤ t2 ≤ λ2−λ1

λ2−aλ1
≤ 1

are true, thus we only have to show that 0 ≤ t1 is also true. From (19e) we have
that

t2 = h =
(1 − b)t1λ2

t1λ2 + a(1 − t1)λ1
. (20)

From Definition 1 we know that λ2 ≥ a
b λ1 has to hold. The expression is mono-

tonically increasing in t1 for t1 > − aλ1
λ2−aλ1

(which is the other constraint in
(19e)) and non-negative only if t1 ≥ 0. But we know from (11a), that t2 ≥ 0 has
to hold, thus, for t2 to have a valid range t1 ≥ 0 also has to be true. This proves
that 0 ≤ t1, t2 ≤ 1 if t1 + t2 < 1.

Finally, from (11b) we have that 0 ≤ λ2(1−a)
λ2−λ1

≤ t1 ≤ 1 and 0 ≤ λ2−λ1
λ2−aλ1

≤ t2,
thus we only have to show that t2 ≤ 1. First we note that from (19) only the
(19f) subcase is possible due to the t1 > 1

2 (e + g) condition in (18). We use the
constraints on the (2, 2) element of H1 with substitutions

i =
bλ2 − aλ1

λ2 − λ1
, j =

(b − t1)λ2

(b − t1)λ2 − a(1 − t1)λ1
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to get

t1 + t2 < 1 ∧ t1 <
1
2
(e − g) (21a)

or

t1 + t2 < 1 ∧ 1
2
(e − g) < t1 < i (21b)

or

t1 + t2 < 1 ∧ i < t1 <
1
2
(e + g) ∧ t2 > j (21c)

or

t1 <
1
2
(e − g) ∧ t2 < j (21d)

or
1
2
(e − g) < t1 < i ∧ t2 > j (21e)

or

t1 + t2 > 1 ∧ t1 >
1
2
(e + g) ∧ t2 < j (21f)

For the (21d)-(21f) subcases t1 + t2 > 1 holds, but because of the constraint
t1 > 1

2 (e + g) in (18a), subcase (21d) and (21e) are not possible. For the last
remaining (21f) subcase the last needed constraint t2 ≤ 1 has to hold, because

t2 < j =
(b − t1)λ2

(b − t1)λ2 − a(1 − t1)λ1
≤ 1

as j is monotonously increasing between t1 = b and t1 = 1 and j = 1 if t1 = 1,
but we know from (11) that t1 ≤ 1, thus t2 ≤ 1 also holds.

5 Equivalence of the NMAP(2) and NRAP(2) Classes

In this section we focus on the relation of the NMAP(2) and the NRAP(2)
classes.

Theorem 4. For the NMAP(2) and NRAP(2) sets of point processes we have

NMAP(2) ≡ NRAP(2).

That is, every NRAP(2) process has a Markovian representation. The proof
follows a similar pattern as the one that proves the equivalence between MAP(2)
and RAP(2) in [4], therefore we reiterate some of the main points from there.
The kth inter-arrival time in an NRAP has joint probability density function

f(Xk = xk|X0 = x0,X1 = x1, . . . , Xk−1 = xk−1) =

=
π0e

H0x0H1eH0x1H1 . . . eH0xk−1H1

π0eH0x0H1eH0x1H1 . . . eH0xk−1H11
eH0xkH11. (22)
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The Xk random variable has to have a valid distribution for ∀k ≥ 0 and
∀x0, . . . , xk ≥ 0. Let πk(x0, x1, . . . , xk−1) be the initial vector before the kth
inter-arrival, Xk. It is given by

πk(x0, x1, . . . , xk−1) =
π0e

H0x0H1eH0x1H1 . . . eH0xk−1H1

π0eH0x0H1eH0x1H1 . . . eH0xk−1H11
. (23)

If (π0,H0,H1) in the previous expression is an NRAP(2) representation in
NMAP(2) canonical form, then the first element of vector πk(x0, x1, . . . , xk−1)
has to be in the range of

0 ≤ πk(x0, x1, . . . , xk−1)e1 ≤ 1
1 − aλ1

λ2

, (24)

otherwise the joint pdf in (22) is not strictly non-negative (see [4] for more
details). To prove the equivalence of NRAP(2) and NMAP(2) we show that if
the H0, H1 matrices of an NRAP(2) are in canonical form, then its initial vector
is Markovian (non-negative) as well. Let u(x, t) be the first element of the initial
vector after an inter-arrival time of length t if the initial vector after the previous
arrival was [x, 1 − x]. Then u(x, t) can be expressed as

u(x, t) =
[x, 1 − x]eH0tH1e1

[x, 1 − x]eH0tH11
. (25)

From (24) it is clear that δe1 ≥ 0 holds regardless of the value of γ. We have
to show that δe1 ≤ 1 (δe2 ≥ 0) is also true. We will assume a series of arrivals
with negligibly small inter-arrival time (t → 0 and consequently eH0t → I) and
prove that for x to satisfy the constraints in (24) δe1 ≤ 1 has to hold. First we
examine the γ ≥ 0 case. From (25) after using the respective canonical form in
Definition 1 and simplifying the expression we get that

u(x, 0) =
[x, 1 − x]H1e1

[x, 1 − x]H11
=

axλ1 + (1 − x)(1 − b)λ2

axλ1 + (1 − x)λ2
. (26)

This function is a hyperbola that has one or two fix points (points where
u(x, 0) = x, see Figure 1 for illustration). These are (1−b)λ2

λ2−aλ1
and 1. (There is

only one fix point in x = 1 if a = b = 0 or λ2 = a
b λ1.) Because λ2 ≥ a

b λ1, we
know that x = 1 is the higher fix point. The first element of δ cannot be higher
than this value, because for 1 < x < 1

1−a
λ1
λ2

we have u(x, 0) > x, which means

that the first coordinate of the initial vector would increase after every arrival
and would finally go above the upper limit of x = 1

1−a
λ1
λ2

in (24) (this value is

the vertical asymptote of the hyperbola). This means that 0 ≤ δe1 ≤ 1 has to
hold for γ ≥ 0.

Now let us investigate the γ < 0 case. As before we examine the u(x, 0)
function and substitute the canonical form from Definition 1 corresponding to
γ < 0. Doing so we get



174 A. Mészáros and M. Telek

Fig. 1. Behaviour of u(x, 0) for positive (left) and negative (correlation) for λ1 = 1,
λ2 = 2, a = 0.4, b = 0.8

u(x, 0) =
[x, 1 − x]H1e1

[x, 1 − x]H11
=

bλ2(1 − x)
(1 − x)λ2 + axλ1

. (27)

Again from (24) we know that δe1 < 1

1−a
λ1
λ2

, and we have to prove that δe1 < 1

The numerator of the expression becomes negative for x > 1, while the denom-
inator is negative for 1 < x < 1

1−a
λ1
λ2

, thus for δe1 > 1 the first coordinate of

the initial vector would become negative, which is not allowed according to (24).
Thus 0 ≤ δe1 ≤ 1 has to hold for γ < 0 as well.

To summarize, we showed that 0 < δe1 ≤ 1 has to hold for any
NRAP(2) transformed to the canonical NMAP(2) representation thus we proved
that any NRAP(2) can be transformed to a Markovian canonical form, thus
NRAP(2)≡NMAP(2).

6 Conclusion

In this paper we proposed a canonical form for NMAP(2)s and proved that
this canonical form is Markovian for every NMAP(2). We also showed that the
classes of NMAP(2) and NRAP(2) processes are equivalent by proving that
every NRAP(2) has a Markovian canonical form. In the course of this work we
got informed of a similar effort [22] with partially similar goals. The authors
of [22] consider only the first of the two problems investigated in this paper.
For that problem they derive the same conclusion as Theorem 3, but with a
completely different proof.
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11. Horváth, A., Telek, M.: A Markovian point process exhibiting multifractal
behaviour and its application to traffic modeling. In: Proceedings of 4th
International Conference on Matrix-Analytic Methods in Stochastic models, pp.
183–208 (2002)
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3 DiSIT, Università del Piemonte Orientale, Alessandria, Italy
giuliana.franceschinis@di.unipmn.it

Abstract. Markov Decision Processes (MDPs) are a well known math-
ematical formalism that combines probabilities with decisions and allows
one to compute optimal sequences of decisions, denoted as policies, for
fairly large models in many situations. However, the practical application
of MDPs is often faced with two problems: the specification of large mod-
els in an efficient and understandable way, which has to be combined with
algorithms to generate the underlying MDP, and the inherent uncertainty
on transition probabilities and rewards, of the resulting MDP. This paper
introduces a new graphical formalism, called Markov Decision Petri Net
with Uncertainty (MDPNU), that extends the Markov Decision Petri
Net (MDPN) formalism, which has been introduced to define MDPs.
MDPNUs allow one to specify MDPs where transition probabilities and
rewards are defined by intervals rather than constant values. The result-
ing process is a Bounded Parameter MDP (BMDP). The paper shows
how BMDPs are generated from MDPNUs, how analysis methods can
be applied and which results can be derived from the models.

Keywords: Markov Decision Process · Bounded parameter MDP ·
Markov decision Petri net · Multi-objective optimization

1 Objectives and Contributions

MDPs are a well known mathematical formalism introduced in the 1950s [5] in
the context of operations research and dynamic programming. It has been used in
a wide range of applications to compute policies (i.e. sequences of decisions) that
optimize some reward measure. Indeed an MDP allows a modeler to specify a
stochastic control process by means of different states, in which a decision maker
may choose any action available in that state. Then, the process responds by
randomly moving into a new state according to a specified transition probability,
and gives back to the decision maker the corresponding reward (depending on
the chosen action and by the source and destination states). An MDP policy
defines the choice of actions to be taken in any possible MDP state, so that it
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 177–192, 2015.
DOI: 10.1007/978-3-319-23267-6 12
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is possible to derive the policies that maximize a target function based on the
MDP’s rewards. Often the expected discounted or expected average reward over
an infinite time horizon is used as measure to be optimized.

One limitation of MDPs, like many other modeling formalisms, is that they
are based on a complete knowledge of the parameters. Unfortunately, in many
real systems parameters are usually estimated and suffer from several limitations
or measurement errors. In addition, the knowledge of the system behavior is
usually incomplete, hence the real probability distribution of transitions is in
most cases an uncertain value in some confidence interval. In this case, the
available information defines a set of MDPs rather than a single MDP and the
question is what is an optimal policy? It might be the case, that one policy
is good for one concrete realization of the parameters whereas it is bad for
another realization. A policy is denoted as robust if it shows an acceptable
performance for every possible realization of the uncertain parameters and it is
of high practical interest to find out robust policies.

BMDPs were introduced in [10]. In a BMDP, action probabilities and rewards
may be expressed either as exact values, or as an interval-valued parameter. In
this way a BMDP defines a family of MDPs exactly in the way as it is required
for situations where parameters are uncertain. In the original paper [10] and suc-
cessor papers that consider particularly the efficient analysis of BMDPs [8], the
computation of policies for the worst or best case (which is the parameter values
that minimize resp. maximize the resulting rewards) is described. It is shown
that in a BMDP the policies for optimizing the discounted expected reward over
infinite horizons for the best and worst cases are stationary, which means that
they depend only on the current state. This does not really solve the problem of
very pessimistic or optimistic policies because an optimal policy in the worst or
best case might yield a bad performance in most other cases.

Recently, the analysis of BMDPs was extended by introducing multi-objective
optimization [12]. In this setting, worst, average, and best cases are considered
together as a single optimization criterion. In some BMDPs it is possible to
identify a robust stationary policy (and prove the robustness), which is a single
strategy that exhibits optimal or near optimal rewards in all the MDPs of the
BMDP. In other words, this strategy shows good performances no matter how the
uncertainty is resolved. However, the existence of such a policy is not guaranteed,
hence in other cases one has to search for more complex policies or has to be at
least aware that the system is very sensitive to parameter changes.

Modeling a system directly at the level of the MDP or BMDP could be a
hard task, due to the complexity of most real systems. To cope with this prob-
lem, a number of higher-level formalisms have been proposed in the literature
(e.g., stochastic transition systems [1], dynamic decision networks [6], probabilis-
tic extensions of reactive modules [2], Markov decision Petri nets and Markov
decision well-formed nets [3], Factored Petri Net [9], etc.). Almost all of these
approaches have been defined to specify MDPs, parameter uncertainty is not
considered. In [7] the uncertainty is introduced to solve factored MDPs with
large state space exploiting ε-homogeneous partitions of their states. Indeed,
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ε-homogeneous partition approach are used to induce a family of explicit MDPs
corresponding to a BMDP. The derived BMDP has hence a smaller state space,
and it can be solved to obtaining a lower and upper bound on the optimal value
function of the original MDP.

In this paper we introduce a new extension of Markov decision Petri nets
(MDPN), called MDPN with uncertainties (MDPNU), where probabilistic dis-
tributions and the reward functions are specified with interval-valued parame-
ters, such that the MDPNU semantics is expressed as a BMDP. It is shown how
a BMDP is derived from the MDPNU. The resulting models are amenable to
the analysis approaches for BMDPs. We show how the new analysis algorithms
can be applied and which effort becomes necessary to optimize BMDPs with a
varying number of states. The different steps of the approach, from specifica-
tion, to process generation and solution, ending with the result representation
are currently integrated in a new version of the GreatSPN modeling tool which
will be part of the next official release of the tool. As an example of application
of MDPNU we present the model of the control room of an utility company
and provide experimental results computed with the implementation of the new
multi-objective BMDP algorithm in [12].

2 Background

Before defining MDPNU as a high level model, we introduce the underlying
stochastic models and begin with MDPs in discrete time [11].

Definition 1. A Markov Decision Process (MDP) is a tuple (S,A, F,R) where

– S is a (finite) set of states,
– A is a (finite) set of actions and Ai ⊆ A the set of available actions in state

i ∈ S,
– F : S × A → μ(S) the (partial) transition function which assigns to each

possible state action pair a probability distribution over the set of states, and
– R : S×A → R≥0 is the (partial) reward function that assigns to each possible

state action pair a non-negative reward value.

R(i, a) is the reward if action a is chosen in state i and F (i, a, j) is the probability
of a transition from state i to j under the condition that action a is chosen in state
i. In state i, |Ai| different decisions are possible by choosing one of the available
actions. The choice of actions in states is denoted as a policy which is stationary if
it only depends on the state and not on the history. It is deterministic, if a single
action is chosen with probability 1. If it is both stationary and deterministic,
then it is pure. A pure policy can be described by a vector a of length |S| where
a(i) ∈ Ai is the action chosen in state i. Each pure policy a defines a unique
transition matrix Pa and a reward vector ra. The triple (S,Pa, ra) defines a
Markov reward process in discrete time. Pa is a stochastic matrix for every pure
policy a.

http://www.di.unito.it/~greatspn/index.html
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MDPs are used to compute optimal policies which maximize or minimize
gains (= discounted accumulated reward) over infinite time horizons. We con-
sider the maximization of the expected discounted reward for some discount
factor γ ∈ [0, 1). It can be shown that the solution of the set of Bellman equa-
tions [11]

v∗(i) = max
a∈Ai

⎛

⎝R(i, a) + γ
∑

j∈S

F (i, a, j)v∗(j)

⎞

⎠ for all i ∈ S (1)

results in a vector v∗ that contains for all states the maximum of the expected
discounted rewards. A corresponding policy is pure and results from the actions
that are chosen in the above equations. Since the corresponding actions need not
be unique, there can be more than one optimal policy. Other reward measures
can be computed similarly [11]. We denote v∗ as the optimal gain vector.

Parameters of an MDP should reflect the behavior of the modeled system and
usually have to be estimated based on measured data (resulting in confidence
intervals) or, if no data is available, based on expert knowledge or other sources.
In general this means that parameters are subject to some uncertainty. The
choice of states in MDP modeling may also introduce uncertainty. Often the
behavior of the system is not completely memoryless as required, which means
that transition probabilities depend slightly on the history, on the sojourn time
in a state, or on hidden parameters of the environment that are unavailable
at decision time. In all these situations, interval parameters represent a more
realistic choice than exact values, which results in a BMDP [10].

Definition 2. A Bounded Parameter Markov Decision Process (BMDP) is a
tuple (S,A, F�, R�) where

– S is a (finite) set of states;
– A is a (finite) set of actions, Ai ⊆ A the set of actions in state i ∈ S;
– F� = (F↓, F↑):

• F↓ : S × A → μlow(S), maps a state action pair on a lower bound for a
distribution over S, i.e.,

∑
j∈S F↓(i, a, j) ≤ 1 for every i ∈ S and a ∈ Ai;

• F↑ : S × A → μup(S), maps a state action pair on an upper bound for a
distribution over S, i.e.,

∑
j∈S F↑(i, a, j) ≥ 1 for every i ∈ S and a ∈ Ai;

• F↓(i, a, j) ≤ F↑(i, a, j) for every pair i, j ∈ S and a ∈ Ai;
– R� = R↑ ∪ R↓ where R↑, R↓ : S × A → R≥0 and R↓(i, a) ≤ R↑(i, a) for all

i ∈ S and a ∈ Ai.

A BMDP defines a set of MDPs (S,A, F,R), where F↓(i, a, j) ≤ F (i, a, j) ≤
F↑(i, a, j) and R↓(i, a) ≤ R(i, a) ≤ R↑(i, a). Let BM(S,A, F�, R�) be the set
of MDPs that is defined by the bounds. We denote by (S,A, F ,R) one specific
MDP from the set, the average case MDP. If the parameters of the BMDP result
from two-sided symmetric confidence intervals, then the average case results from
taking the average values between minimum and maximum. If other distributions
are assumed, then the average value is computed as the expected value in the
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interval. For the average case MDP, an optimal policy for the discounted reward
can be computed using (1) with F and R rather than F and R. Let v and a
be the value vector and an optimal stationary policy for the average case MDP.
The bounds of the gain achieved by any MDP of a BMDP are provided by the
following equations:

v↓(i) = max
a∈Ai

(

min
((S,A,F,R)∈BM(S,A,F�,R�)

(
R(i, a) + γ

∑

j∈S

F (i, a, j)v↓(j)
))

(2)

v↑(i) = max
a∈Ai

(

max
((S,A,F,R)∈BM(S,A,F�,R�)

(
R(i, a) + γ

∑

j∈S

F (i, a, j)v↑(j)
))

(3)

for all i ∈ S. Observe that the inner optimization fixes the MDP and the outer
maximization determines the policy. It is, of course also possible to formulate
similar equations to minimize the gain. The equations can be solved by an exten-
sion of value or policy iteration for MDPs [10] which requires more effort than the
solution of (1). Nevertheless, as shown in our case study, the vectors can be com-
puted for fairly large BMDPs, with several thousands of states, which is larger
than examples on BMDPs available from literature. Obviously, v↓ ≤ v ≤ v↑. Let
a↓, a and a↑ be policies which are optimal for the worst, average or best case.
The policy together with the MDP resulting from the inner optimization defines
a transition matrix Pa where a equals a↓ (or a↑) and a reward vector ra. If Pa

is ergodic, then the stationary vector pa (paPa = pa) can be computed such
that pa↓v↓ and pa↑v↑ are the worst and best case stationary gain, respectively.

For a given policy a let va = (va
↓ ,va,va

↑) be the vector of worst, average
and best case rewards; they can be computed by fixing the action in Equa-
tions (2), (1), and (3). We denote a policy a as robust if ‖va↓

↓ − va
↓‖ < ε↓,

‖va − va‖ < ε and ‖va↑
↑ − va

↑‖ < ε↑ for some appropriate thresholds (ε↓, ε, ε↑).
The goal is to compute robust policies which show an acceptable behavior in all
cases covered by the parameter uncertainty. It is easy to find a robust policy
if v↓ = v = v↑ which implies that there is a single optimal gain vector, and
all optimal policies are indistinguishable with respect to the chosen optimal-
ity criterion. If this is not the case, then there can be many policies which are
incomparable. Let A be the set of all policies, i.e., the set of all vectors a with
a(i) ∈ Ai. The set of Pareto optimal policies Aopt ⊆ A is defined as

Aopt =
{
a|a ∈ A ∧ ¬∃a′ ∈ A : va′ ≥ va ∧ va′ �= va

}
. (4)

If the worst, average or best case policies are not adequate, the set Aopt has
to be computed or approximated. A method that solves simultaneously (1-3) is
described in [12]. Such a method requires much more effort than the analysis of
single policies. Sometimes even Aopt does not contain an adequate policy. In this
case non-stationary policies that depend on the history might be a solution but
these policies are even harder to compute and to implement in a real system.



182 M. Beccuti et al.

3 Markov Decision Petri Net with Uncertainty

The Markov Decision Petri Net (MDPN) formalism was first introduced in [3]
as a high level formalism to specify MDPs; an example of its application in the
context of Fault Tree is shown in [4]. As in MDPs, state changes are the result
of a non deterministic choice of an action and a subsequent probabilistic choice:
this is realized in MDPNs through the alternation of the executions between
two submodels: a non deterministic subnet, denoted PNnd, and a probabilistic
one, denoted PNpr. Both subnets are specified using the Petri net formalism,
where a single Petri net is defined by a tuple 〈P, T, I,O,H, prio,m0〉 where: P
is the finite set of places; T is the finite set of transitions; I : T × P → N,
O : T × P → N, H : T × P → N are the sets of input, output and inhibitor
arcs; prio : T → N

+ assigns priorities to transitions; and m0 : P → N is the
initial marking. Subnets in an MDPN share the same place set P , and have
disjoint transition sets: the set of non deterministic transitions Tnd and the set
of probabilistic transitions T pr. In both subnets the transitions are partitioned
into run and stop subsets, where the firing of stop transitions is the base for the
alternation between probabilistic and non deterministic behavior. The definition
of PNpr includes also a notion of “weight” associated with each transition. The
weight of conflicting transitions are then normalized to obtain a probability
distribution out of each state of PNpr. The PNnd is often referred to as the
controllable component since it represents part of the system that is subject to
non deterministic choices, that can be interpreted as an external control.

The original definition of MDPN also includes a notion of “components”
at system level, so each transition of the two subnets PNnd and PNpr can be
mapped onto one or more components. Although components play an important
role in modeling, they are not particularly relevant for the extension of MDPN to
consider uncertainty, and, for sake of notational simplicity, we shall not include
them in the definition of MDPNU given in this section. Components shall be
illustrated in the case study.

The dynamics of an MDPN is defined in terms of an alternation between fir-
ing sequences of transitions in PNnd and firing sequences of transitions in PNpr.
By construction, each (maximal) firing sequence of non deterministic transitions
includes zero or more firings of run transitions and exactly one stop transition fir-
ing, and a similar situation holds for the probabilistic side. Maximal sequences of
non deterministic transitions correspond to actions of the modeled system (and
of the underlying MDP). Maximal probabilistic firing sequences are mapped into
single probabilistic transitions in the MDP. The probability of a sequence is com-
puted by using the weight attributes associated with all probabilistic transitions
appearing in the sequence.

An MDPN model includes a reward/cost function specified in terms of state
reward/cost, rs(), and of non deterministic transition reward/cost, rt(); the
reward rg() for a state-action pair is then obtained by composing rs() and rt().

MDPNU extends MDPN by introducing uncertainty in the weights of the
PNpr transitions and in the reward functions, which leads to an underlying
process which is a BDMP.
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Definition 3. A Markov Decision Petri Net with uncertainty (MDPNU) is a
tuple MN = 〈Npr, Nnd,W 〉 where:

– Npr is a Petri net 〈P, T pr, Ipr, Opr,Hpr, priopr, m0〉;
– Nnd is a Petri net 〈P, Tnd, Ind, Ond,Hnd, priond,m0〉;
– T pr = Trunpr � Tstoppr and Tnd = Trunnd � Tstopnd;
– T pr ∩ Tnd = ∅: a transition is either non deterministic or probabilistic.
– W : T pr → (R)3 assigns to each transition t ∈ T pr a triple 〈w, l, u〉 that

defines an interval in which the weight of transition t may vary (uncertainty
on the transition weight). Value w represents the reference weight, while l
and u are the lower and upper bounds of uncertainty, so that the weight can
vary between (w − l) and (w + u). We assume that l ≤ w;

MDPN rewards are specified with three functions: rs and rt, that associate a
reward to any MDPN state and non deterministic transitions respectively, and a
function rg that combines them into a single reward (as it is typically expected
by MDP solvers). All three functions evaluate to R. Rewards in an MDPNU can
have an associated uncertainty, therefore the definition is extended for rs, rt and
rg to map on the triplets: reference value, lower and upper bound.

Definition 4 (MDPN reward functions). Let MN be an MDPN with
uncertainty. Then its reward specification is given by:

– rs : NP → R
3 which defines for every marking an interval reward value.

– rt : Tnd → R
3 which defines for every transition its interval reward value.

– rg : rs ⊕ rt, where ⊕ is a function with values over triplets of values in R.

From MDPNU to BMDP. The construction of the BMDP defined by an MDPNU
follows the analogous construction for the MDP defined by an MDPN: the prob-
abilistic and the non deterministic subnets are composed to obtain a single
“global” Petri net Ng and then the MDP is built based on the reachability
graph (RG) of Ng. In the following we shall recall the composition, and explain
how uncertainty is combined to build a BMDP.

Figure 1 shows the construction of Ng: the two subnets PNnd and PNpr

are abstracted as two boxes in which only the transitions are shown, together
with their classification as Run and Stop transitions. Four places are introduced
(Stoppr, Runpr, Stopnd and Runnd) and two transitions (Pr→Nd and Nd→Pr)
to regulate the alternation between the probabilistic and the non deterministic
phases. Each Run transition in PNnd (PNpr) is connected with a test arc to
the corresponding Run place Runnd (Runpr). Run places in PNnd (PNpr) are
emptied by the firing of a stop transition of PNnd (PNpr) that puts a token in
place Stopnd (Stoppr), thus activating the switch of control to the other subnet
through the firing of the Pr→Nd and Nd→Pr transitions. This construction
ensures that the probabilistic behavior is completed/stopped before the decision
maker starts the non deterministic phase, and takes decisions before starting
the next probabilistic phase. When multiple components are introduced, run
and stop transitions are labelled with components identifiers, and places Stoppr,
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Fig. 1. The construction of the global net Ng from an MDPN.

Runpr, Stopnd and Runnd are replicated as many times as the number of com-
ponents. The enabling of Pr→Nd (Nd→Pr requires the presence of one token
in all Stoppr (Stopnd) places.

More precisely, Ng = 〈P g, T g, Ig,Og,Hg, priog,W g,m0〉 where:

– P g = P ∪ {Runpr,Stoppr} ∪ {Runnd,Stopnd}
– T g = T pr ∪ Tnd ∪ {Pr→Nd ,Nd→Pr}
– Ig,Og,Hg

• ∀p ∈ P, t ∈ Tnd : Ig(t, p) = Ind(t, p),Og(t, p) = Ond(t, p),Hg(t, p) = Hnd(t, p)

• ∀p ∈ P, t ∈ T pr : Ig(t, p) = Ipr(t, p),Og(t, p) = Opr(t, p),Hg(t, p) = Hpr(t, p)

• ∀t ∈ T pr : Ig(t,Runpr) = 1 • Ig(Pr→Nd ,Stoppr) = 1
• ∀t ∈ Tstoppr : Og(t,Stoppr) = 1 • Og(Pr→Nd ,Runnd) = 1
• ∀t ∈ Trunpr : Og(t,Runpr) = 1 • Ig(Nd→Pr ,Stopnd) = 1
• ∀t ∈ Tnd : Ig(t,Runnd) = 1 • Og(Nd→Pr ,Runpr) = 1
• ∀t ∈ Tstopnd : Og(t,Stopnd) = 1
• ∀t ∈ Trunnd : Og(t,Runnd) = 1
• for all the other pairs t, p, Ig(t, p) = 0,Og(t, p) = 0,Hg(t, p) = 0;

– ∀t ∈ Tnd, priog(t) = priond(t), ∀t ∈ T pr, priog(t) = priopr(t) and
priog(Pr→Nd) = priog(Nd→Pr) = 0 (lowest priority).

– ∀t ∈ T pr,W g(t) = W (t); for all other t ∈ T g, W g(t) is not defined;
– the initial marking m0 is equal to that of PNnd (which is the same as

that of PNpr) for the set P of places, while for the added places we have:
m0(Runnd) = 1 (system starts in a non deterministic state);
m0(Stopnd) = 0; and m0(Runpr) = 0 and m0(Stoppr) = 0;

By construction it is not possible to have both non deterministic and prob-
abilistic transitions enabled in any given state. Therefore, the Reachability Set
(RS) of Ng can be partitioned into two subsets RSpr and RSnd, such that:

– RSpr contains the probabilistic states (where place Runpr of Ng is marked);
– RSnd has the non-deterministic states (place Runnd of Ng is marked).

Considering this partition of the system states it is possible to identify on
the Reachability Graph (RG) the (maximal) sub-paths traversing only states
of the same type, so that the RG paths can be described as an alternating
sequence of non deterministic and probabilistic sub-paths (we shall consider
the particular case of paths with loops in a moment). Then, each probabilistic
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sub-path can be substituted by a single probabilistic multi-step and assigned
an interval probability based on the weight intervals of the transitions firing
along the path, as explained in the last part of this section (from Def.6 on). In
the same way, a non deterministic maximal sequence can be substituted by a
single “long” action, and only the states that start a (maximal) non deterministic
sequence σ will appear as states in the BMDP, while the other states in RSnd will
be eliminated. Observe that each maximal sequence of probabilistic transitions
starts in a state from RSpr and ends in a state from RSnd and each maximal
sequence of non deterministic transitions starts in a state from RSnd and ends
in a state from RSpr. The reward function has to be extended as follows:

Definition 5. The transition reward for a non deterministic transition sequence
σ is defined by:

rt(σ) =
∑

t∈Tnd

rt(t) |σ|t

where |σ|t is the number of times the non deterministic transition t occurs in σ.

The above definition of rt(σ) assumes that reward values are independent from
the firing order in the sequence σ.

A BMDP can be generated from an MDPNU if the RG of the MDPNU sat-
isfies the following properties: (1) there are no terminal strongly connected com-
ponents involving only probabilistic/non deterministic states (and hence there
are no deadlock states); (2) there are no loops of non deterministic transitions;
(3) loops of probabilistic transitions can be handled under some condition, as
discussed next.
The BMDP can be derived from the RG of MDPNU model in two steps:
1) build from the RG a Reduced RG (RRG) in which any non determinis-
tic (maximal) path σ = nd1

t1→ nd2 . . . ndh
th→ pr1 is replaced by a path

σ′ = nd1
{t1,...,th}−→ pr1 where the first non deterministic state nd1 ∈ σ is

directly connected to the probabilistic state pr1 through a new arc labeled with
the (multi)set of all the transitions in σ, corresponding to the possible actions
from nd1 in the BMDP. For the corresponding transitions we define a function

G(nd, σ′, pr) → {0, 1} where G(nd, σ′, pr) = 1 if σ′ = nd
{t1,...,th}−→ pr and 0 oth-

erwise. The reward associated with σ′ is computed by rt(σ′).
2) build from the RRG the BMDP by reducing all the probabilistic paths. Every
path starting with a non deterministic state followed by a “composite action” σ
and by a (maximal) sequence of probabilistic states ending with a non determin-
istic state, is substituted in the BMDP by a path directly connecting the two
non deterministic states and labeled with action σ and a probability obtained
from the probabilistic path.

State space S of the BMDP is given by all nd ∈ RSnd such that G(nd, σ, pr) =
1 for some path σ and pr ∈ RSpr and A = {σ|∃pr ∈ RSpr : G(nd, σ, pr) = 1}.
The transition function F of the BMDP can be computed by combining non
deterministic and probabilistic transitions.
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Definition 6 (Transition probability matrix R�). The transition proba-
bility matrix R� is defined by three matrices R↓, R and R↑. Each matrix
R∗ ∈ {R↓,R,R↑} can be computed from

R∗ =

( ∞∑

n=0

(
R(pr,pr)

∗
)n

· R(pr,nd)
∗

)

. (5)

R(pr,pr)
∗ is the matrix encoding the probability of going from state pr to state pr′

without hitting any intermediate non deterministic state, and R(pr,nd)
∗ encodes

the matrix of the transition probabilities of moving from a probabilistic state pr
to a non deterministic state nd.
Moreover R∗(i, j) is computed as follows:

R↓(i, j) =

∑
i

t→j
(wt − lt)

∑

i
t′→ wt′

, R(i, j) =

∑
i

t→j
wt

∑

i
t′→ wt′

, R↑(i, j) =

∑
i

t→j
(wt + ut)

∑

i
t′→ wt′

(6)

where 〈wt, lt, ut〉 = W g(t), i
t→ stands for “all transitions t enabled in state i”.

Two possibilities must be considered when computing R(pr,pr)
∗ . The first cor-

responds to the situation in which there are no loops involving only probabilistic
states. This means that for any probabilistic state pri ∈ RSpr there is a value
n0,i such that any sequence of transition firings of length n ≥ n0,i starting from
such state must reach a non deterministic state ndj ∈ RSnd. In this case:

∃n0 :
∞∑

k=0

(
R(pr,pr)

∗
)k

=
n0∑

k=0

(
R(pr,pr)

∗
)k

The second corresponds to the situation in which there are possibilities of loops
involving only probabilistic states, so that there is a possibility to be “trapped”
within a set of probabilistic states. In this case if there is at least one path that
allows to exit from the loop arriving in a non deterministic state, then:

∞∑

n=0

(
R(pr,pr)

∗
)n

=
[
I − R(pr,pr)

∗
]−1

To ensure the convergence of the infinite summation on the left, the dominant
eigenvalue of matrix R(pr,pr)

∗ must be < 1. This is surely true for R if from each
probabilistic state pri there is a reachable probabilistic state prj such that in prj
there is a transition with non-zero probability that leads to a non deterministic
state ndk. The condition is necessary and sufficient. The same condition applied
to R↓ is sufficient but not necessary and if it is applied to R↑ it is necessary but
not sufficient. In conclusion R∗ can be rewritten in this way:

R∗ =

⎧
⎪⎨

⎪⎩

(∑n0
k=0

(
R(pr,pr)

∗
)k)

· R(pr,nd)
∗ if there are no loops

([
I − R(pr,pr)

∗
]−1)

· R(pr,nd)
∗ if there are loops

Function F of the BMDP is then given by F∗(i, a, j) =
∑

k∈RSpr G(i, a, k)
R∗(k, j) where a ∈ A.



Markov Decision Petri Nets with Uncertainty 187

4 Case Study

The use case presented in this paper1 describes the operator of a Control Room
receiving incoming calls for different types of emergency services with different
priorities (i.e. high and low emergency) and two services (gas and electricity).

Clients call by phone the control room operators to notify a malfunction of
the utility. The called operator has to classify the request as either HG (gas high
priority), LG (gas low priority), HE (electricity high priority), LE (electricity low
priority) or inappropriate (redirected to another service center). Phone call ends
with the classification. Request of HG, LG, HE and LE requires the intervention
of a company technician at the client’s homes, plumbers for gas and electricians
for electricity. Deciding whether to allocate a technician to a low or high priority
call is an optimization problem, as there are costs and penalties associated with
the treatment of an emergency. When a technician is sent to the caller’s home,
he determines if the emergency call was properly classified. If it was not, a new
request with (hopefully) the correct classification is inserted in the system.

Fig. 2. The three components of the PNpr and PNnd subnets of the MDPNU.

The MDPNU of the system models the allocation part as a set of non deter-
ministic choices (the PNnd subnet) and the operator classification and the techni-
cian intervention with possible re-classification of the emergency as probabilistic
choices with uncertainty (the PNpr subnet).
1 Taken from a control room model of the Artemis project HoliDes.
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The PNpr subnet is actually made of two components: NC1 and NC2, (NC
stands for “non controllable”). The first models the environment outside the
Control room, while the latter models the Control room itself. The two compo-
nent nets are shown in the upper part of Fig. 2. The reference value w of each
triplet W (t) is depicted as w = . . ., while each range of uncertainty is written in
brackets as [−l,+u]. The PNnd subnet has a single component GC, that decides
for the technician allocations (where GC stays for “globally controllable”). Tran-
sitions are labeled as either 〈Run〉 or 〈Stop〉. Starting from the NC2 component
of Figure 2, an Incoming Call is taken by an Idle Operator, and the client’s call
is classified into the four places for HG, LG, HE, LE or as inappropriate and
the Call is Ended. Note that answers is a transition of priority 2 (denoted π2),
while all the others have priority 1 (the default value), as incoming calls should
be answered as soon as possible. The Stop transition has no relation with the
rest of the net, it may fire at any time, thus allowing to pass the control to
the decision component GC, if also the probabilistic component NC1 has fired
its stop transition. When the control goes to GC, the operator is sent back to
the Idle state and a decision is taken to send an Idle Plumber to serve a HG
or LG request, and/or an Idle Electrician to serve a HE or LE request. Since
technicians are a finite resource, some low-priority requests could be delayed in
order to carry out high-priority requests. Again we have a stop transition that is
not connected to any place and that can therefore stop the technician allocation
at any time, and give back the control to NC1 and NC2.

Of the 12 transitions on the left and right sides of Component NC1, 4 transi-
tions model the technician considering the call as properly classified and resolv-
ing the problem (sending a token back to the Clients place),while the remaining
transitions deal with misclassification. The Stop transition is independent from
the other transitions, and can fire at any time.

The global net Ng is not shown, but it is obtained by inserting one Run place
per component, one Stop place per component, a transition Pr→Nd enabled
when the Stop places of NC1 and NC2 are marked and that puts a token in
the Run place of the non deterministic component GC, a transition Nd→Pr
enabled when the Stop place of GC is marked and that puts a token in the Run
places of the two probabilistic componentsNC1 and NC2. This schema ensures
the alternation between the Npr and the Nnd of the MDPNU.

For this example we have used only state rewards, so only rs(m) is defined:
as a function of the marking m, as follows:

rs(m) = − 5 · #IncomingCalls − 10 · (
#LG + #LE

) − 100 · (
#HG + #LE

)

being #P the number of tokens of place P in the marking m of the MDPNU.
For the experiments we have considered three variations of the model param-

eters, as reported in Table 1, that results in BMDPs with an increasing number
of states and actions. All experiments are performed on a standard PC with
3.3 GHz processor and 8 GB main memory. The documented times describe
the whole computation including the computation of the optimal policies and
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Table 1. Model parameters and sizes of the MDPNU RG and its BMDP process.

Params State space

Model
instance

Clients Ops Electr. Plumb.
RG

States
BMDP
States

Actions Time
(sec)

I1 2 2 1 1 220 160 27 2.9

I2 4 2 1 1 2326 1679 35 69.3

I3 6 3 1 1 15420 11868 52 1722.6

Table 2. Experimental results computed for the First Scenario.

Min Avg Max Pareto

Model
instance

Iter Stationary
gain

Time
(sec)

Iter Stationary
gain

Iter Time
(sec)

Stationary
gain

Time
(sec)

Optim.
policies

Time
(sec)

I1 7 -1.632e+04 <0.1 4 -1.546e+04 <0.1 9 -1.438e+04 <0.1 1 <0.1

I2 7 -3.632e+04 1.6 6 -3.546e+04 1.2 7 -3.438e+04 1.5 1 5.7

I3 6 -5.632e+04 64.9 5 -5.547e+04 50.8 7 -5.438e+04 59.8 1 421.2

Table 3. Experimental results computed for the Second Scenario.

Min Avg Max Pareto

Model
instance

Iter Stationary
gain

Time
(sec)

Iter Stationary
gain

Iter Time
(sec)

Stationary
gain

Time
(sec)

Optim.
policies

Time
(sec)

I1 6 -1.669e+04 <0.1 4 -1.547e+04 <0.1 7 -1.210e+04 <0.1 3597 4587

I2 10 -3.669e+04 1.2 5 -3.547e+04 0.4 10 -1.599e+04 1.4 out-of-memory

I3 10 -5.669e+04 83.9 5 -5.547e+04 54.7 10 -1.270e+04 96.2 out-of-memory

the stationary distribution, as well as the input and output operations to read
the matrices and write the gain vectors.

First Scenario: in this case, the MDPNU is the one shown in Figure 2, where
the uncertainty is on the operator’s interpretations of the customer’s problem
description. The Min, Avg and Max columns report the number of policy iter-
ations to achieve convergence, the stationary gain (computed with discount
γ = 0.999) and the solution time for the computation of the formula in Eq. (2),
(1), and (3). The last two columns report the number of Pareto optimal policies,
and the time needed to compute them. The main result that emerges from this
scenario is that there is just one optimal policy, which is the same for the min,
avg and max cases. This means that the optimal strategy remains stable despite
the uncertain classification, providing a robust optimal strategy for the entire
class of MDPs underlying this BMDP.

Second Scenario: in this case we add an uncertainty of [−0.7,+2.5] to the client-
Calling transition, simulating the fact that usually, when a problem happens on
the utility infrastructure, a lot of customers call the control room simultaneously
to signal the problem, while on other days there are few or no customers call-
ing at all. Taking into account an uncertainty on the probability of the clients
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(a) Min/Avg Pareto policies. (b) Avg/Max Pareto policies.

(c) Min/Max Pareto policies. (d) Min/Avg/Max Pareto policies.

Fig. 3. Distribution of the optimal Pareto policies in the second scenario.

calling the Control Room results in an BMDP with different parameters, whose
solution is reported in Table 3. The main difference with regard to the First Sce-
nario is that now we have many Pareto optimal policies. For the smaller model
instance I1, there are 3597 Pareto optimal policies (out of 21950 policies checked
in the algorithm). The computation of the Pareto set is very time consuming
and requires almost 1.5 hours whereas policies that maximize only one goal (min,
avg or max) can be computed for the small configuration in a negligible time.
Fig. 3 shows the stationary gain of these policies in the min/avg/max case for
all these policies in three dimensions, as seen from the min/avg plane, avg/max
plane, min/max plane and in perspective. Each red mark represents an optimal
policy, and its coordinate in the min/max/avg axes are the stationary gains in
the min/max/avg cases. Interestingly, there is a single policy that minimizes
the costs for both the minimum and average case (in the upper-left corner of
Fig. 3(a)), which intuitively represents the most conservative choice (performing
not that bad in the worst case, and still good in the average case), which is the
goal of the Pareto optimization. However, it can also be seen from the results
that according to best case, the conservative strategy does not behave well, other
more optimistic policies yield much higher rewards in this case.
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5 Conclusions

This paper introduces the high-level formalism of MDPNU that translates
directly into a BMDP process. This high level formalism allows one to model
complex Markov decision processes with uncertainty on the probabilistic distri-
butions and on the reward function, and can be applied to verify the robustness
of optimal strategies on the continuous family of MDPs underlying the BMDP.

The MDPNU formalism has been used to model the problem of person-
nel allocation in a utility company, under different scenarios of uncertainty of
the process parameters, that model real system variations. Experimental results
show that in some scenarios it is possible to identify a robust strategy (and
prove the robustness) that yields optimal results under all possibly resolutions
of uncertainty in the parameters, while in other scenarios a single strategy that
exhibits a good behavior in all situations does not exist. In such cases, Pareto
multi objective optimization often allows one to find strategies with good per-
formance for all possible realizations of uncertainty, i.e. which are less sensitive
to the parameter variations of the BMDP.

Results in the paper indicate that the computation of optimal strategies
according to a single MDP or even with respect to one of the extreme MDPs
defined by a BMDP can be done efficiently for BMDPs with several thousands
of states. In the same way the performance of a given strategy can be eas-
ily analyzed. Pareto optimal policies computation requires more effort, because
the number can be huge and many policies have to be checked and analyzed
for Pareto optimality. Thus, there is a need for more efficient algorithms that
compute good compromise solutions without analyzing the whole set of Pareto
optimal policies. This is, however, a subject for future research.
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Abstract. We show that, under suitable convergence and scaling con-
ditions, fluid model checking bounded CSL formulas on selected indi-
viduals in a continuous large population model can be approximated by
checking equivalent bounded PCTL formulas on corresponding objects
in a discrete time, time synchronous Markov population model, using
an on-the-fly mean field approach. The proposed technique is applied
to a benchmark epidemic model and a client-server case study showing
promising results also for the challenging case of nested formulas with
time dependent truth values. The on-the-fly results are compared to those
obtained via global fluid model checking and statistical model-checking.

1 Introduction

Model checking has been widely recognised as a powerful approach to the auto-
matic verification of concurrent and distributed systems, including aspects of
their performance. It consists of an efficient procedure that, given an abstract
model M of the system, decides whether M satisfies a logical formula Φ, typi-
cally drawn from a temporal logic. Recently, the integration of mean field and
fluid approximation techniques, that originate in statistical physics, with formal
modelling techniques has received increasing attention as a way to obtain highly
scalable approximate model checking techniques, such as fluid model check-
ing [3,4,12] and mean field model checking [16]. These approaches are inde-
pendent of the population size, as long as this is large enough. Such extreme
scalability is a prerequisite for the verification of large scale collective adaptive
systems, of which performance aspects and emerging behaviour are an essential
feature.

Traditional model checking approaches do not scale up to such large sys-
tems due to the well-known state space explosion problem. Statistical model-
checking [21] is in general performing much better in this respect. It avoids the
generation of the state space and approximates the results by a statistical analy-
sis of a number of randomly generated finite executions of the model. This leads to
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better scalability, but the complexity is still linear in the number of objects that
the system is composed of. Furthermore, depending on the accuracy required and
the particular property of interest, it may be necessary to take a large number of
samples into consideration.

Fluid model checking [3,4,12] relies on a global model checking approach for
time-inhomogeneous Continuous Time Markov Chains (ICTMC) representing a
typical individual object in the context of a large CTMC population model. The
rates of the individual may depend on the fraction of the population that is in
a particular state. The algorithm relies on the deterministic approximation of
the average stochastic behaviour of the system in continuous time, i.e. a fluid
approximation. An alternative approach is the one we refer to in this paper by
on-the-fly mean field model checking [16]. In this approach only as much of the
state space as strictly needed to verify the given formula is generated from a high-
level specification of the individual behaviour and the population. The algorithm
relies on the deterministic approximation of the probabilistic behaviour of the
population in discrete time and can be used to verify formulas of the bounded
Probabilistic Computation Tree Logic (PCTL)[9].

The main contribution of the present paper is to show that, under suitable
convergence and scaling assumptions1, and for models that are not too stiff2,
fluid model checking can be performed exploiting on-the-fly mean field model
checking techniques [16] applied on a time-inhomogeneous Discrete Time Markov
Chain (IDTMC) model and bounded PCTL formula that are derived from a cor-
responding ICTMC model and bounded Continuous Stochastic Logic (CSL) [1]
formula via a transformation presented in Sect. 2.3. This approach is interesting
and differs from other approaches in several respects: 1) the mean field model
checking algorithm is implemented as a particular instantiation of an on-the-fly
probabilistic model-checking algorithm [16]; 2) the latter is parametric w.r.t. the
semantics interpretation of the model specification language and in this case we
instantiate it on the mean-field approximation of a simple probabilistic popula-
tion description language; 3) the transformation presented in Sect. 2.3 allows one
to reuse the implementation once more for a class of CTMC population models;
4) the global fluid model checking algorithm in [3,4] requires the a priori cal-
culation of discontinuity points, i.e. points in time in which the truth values of
time-dependent (sub)-formulas of an until formula change. This is a non-trivial
task and consists in finding all zeros of an analytic function. In the on-the-
fly setting such points are detected automatically during the computation of the
probabilities, upto a difference that is in the order of a small discrete step size; 5)
on-the-fly approaches are particularly efficient when verifying conditional reach-
ability properties because in that case much fewer states need to be generated.
Ultimately, however, the on-the-fly mean field algorithm is based on an Euler
method to solve differential equations. This poses certain limitations on the con-
tinuous time models that can be analysed efficiently this way, in particular they
should not be too stiff. For non stiff models the results are promising as shown

1 See Theorem 5 of [4].
2 Stiff models are those whose rates differ several orders of magnitude.
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by the available benchmark models for which also some results for global fluid
model checking and statistical model checking are available in the literature.

The outline of the paper is as follows. Sect. 2 introduces discrete and contin-
uous time Markov population models. The relevant temporal logics are recalled
in Sect. 3. Sect. 4 presents the model and logic transformation functions and the
correctness results w.r.t. fluid model-checking. Sect. 5 provides a comparison
with benchmark examples from the literature. Related work and conclusions are
presented in Sect. 6 and Sect. 7, respectively. Basic knowledge on Markov chains
and related model checking algorithms is assumed.

2 Population Models

We consider two types of Markov population models: continuous time models
and discrete time models. In both models we assume that the number of objects
in the population is N and that this size remains constant during execution.

2.1 Continuous Time Population Models

For CTMC population models we adopt the notation following [3]. Let Y
(N)
i (t) ∈

S be the random variable representing the state of object i at time t, where S =
{1, 2, . . . , n} represents the local state space of each object. Multiple classes of
agents are represented by partitioning S into disjoint subsets and allowing state
changes only within a single class. Let Q(N)(x) denote the n × n infinitesimal
generator matrix that depends on the fraction of objects x ∈ [0, 1]n that are
in each state. The latter quantity can be computed from Y

(N)
i as X̂

(N)
i (t) =

1
N

∑N
j=1 1{Y

(N)
j (t) = i}3. 〈X̂(N)

1 (t), X̂(N)
2 (t), . . . , X̂(N)

n (t)〉 is a CTMC X̂ (N) [2]
on the state space [0, 1]n, also called the occupancy measure, with initial state
x
(N)
0 ∈ [0, 1]n. The average infinitesimal variation of X̂ (N), given that it is in

state x is F (N)(x) = xTQ(N)(x), also called the drift4. If, for N → ∞, Q(N)(x)
converges uniformly to the Lipschitz continuous generator matrix Q(x), and
x
(N)
0 to x0, and, furthermore, if x(t) is the solution of the ODE dx

dt = F (x) =
xTQ(x) for initial condition x(0) = x0, then in the limit the two processes
behave almost surely the same for a finite time horizon T [7,13]5.

It is possible to decouple the analysis of a single object from the analysis of
the global system by letting the behaviour of the single object depend on the
other objects only through the solution of the fluid ODE. This result is known
as fast simulation [7,18]. The stochastic behaviour of a single object can be
defined as Z(N) = Y

(N)
1 on state space S, assuming, without loss of generality,

we are interested in the behaviour of the first object. Note that Z(N) is an
3 1{x = y} yields 1 if x = y and 0 otherwise.
4 xT denotes the transpose of vector x.
5 The conditions on uniform convergence and Lipschitz continuity automatically hold

for PEPA population models because in that case the rate functions are all piecewise
linear [20].
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ICTMC. Let z(t) be the ICTMC of an individual object with states in S such
that Pr{z(t + dt) = j|z(t) = i} = qi,j(x(t))dt, and let Qz(x(t)) = (qi,j(x(t))).
We then have that for any finite horizon T and t ≤ T the behaviour of the single
object Z(N)(t) tends to the behaviour of the object that senses the rest of the
system only through its limit behaviour given by x, i.e. z(t).

Running Example: Consider the simple PEPA specification of processors and
resources that synchronise on a common task [11]:

Proc0 := (task1 , r1).Proc1 Res0 := (task1 , r1).Res1
Proc1 := (task2, r2).Proc0 Res1 := (reset, s).Res0

Proc0[Np] ��
task1

Res0[Nq]

where Proc0[Np] is a shorthand notation for Np instances of process Proc0 in
parallel, and Res0[Nq] denotes Nq instances of process Res0 in parallel. Such
population oriented PEPA specifications have been given a formal semantics
based on ODE by Hillston in [11] and by Tribastone et al. in [20]. In particular,
the ODE associated to the example specification can be given as:

d proc0 (t)
dt = −r1.min(proc0 (t), res0(t)) + r2.proc1 (t)

d proc1 (t)
dt = −r2.proc1 (t) + r1.min(proc00(t), res0(t))

d res0(t)
dt = −r1.min(proc0 (t), res0(t)) + s.res1 (t)

d res1(t)
dt = −s.res1(t) + r1.min(proc0 (t), res0 (t))

where proc0 (t), proc1 (t), res0 (t) and res1 (t) denote the limit occupancy measure
at time t for each local state respectively. The function min denotes the minimum
function and originates from the specific definition of action synchronisation of
the semantics of PEPA [11].

The infinitesimal Q-matrix of an individual object that depends on the
behaviour of the global system via its limit occupancy measure can be retrieved
as follows (see [3]). From the PEPA semantics of the synchronisation (cooper-
ation) operator we know that the total rate of a shared task1 action is given
by min(r1.proc0 (t), r1.res0 (t)). The rate of an individual process performing a
task1 action is then this global rate divided by the fraction of objects present in
the system at time t, i.e. proc0 (t). The rate of an individual process performing
a task2 action is simply r2 because this action does not depend on the limit
occupancy measure x, where xT (t) = (proc0 (t), proc1 (t), res0 (t), res1 (t)). Simi-
lar reasoning applies to the rates of a resource object. So, we obtain the following
rate functions for the Q-matrix:

Qproc0 ,proc1 (x(t)) = r1.min(proc0 (t), res0 (t))/proc0 (t)
Qproc1 ,proc0 (x(t)) = r2

Qres0 ,res1 (x(t)) = r1.min(proc0 (t), res0 (t))/res0 (t)
Qres1 ,res0 (x(t)) = s

The rate functions used in the Q-matrix are all continuous and bounded, at least
as long as we do not divide by zero.



On-the-fly Fluid Model Checking via Discrete Time Population Models 197

2.2 Discrete Time Population Models

For DTMC population models we consider again a system of N interacting
objects. Let W

(N)
i (k) ∈ S be the random variable representing the state of

object i at step k, where S = {1, 2, . . . , n} represents the local state space of
each object. Let K(N)(m) denote the n×n one step transition probability matrix
that depends on the fraction of objects m ∈ [0, 1]n that are in each state of S.
This fraction can be computed as M̂

(N)
i (k) = 1

N

∑N
j=1 1{W

(N)
j (k) = i}. It is easy

to see that the process 〈M̂ (N)
1 (k), M̂ (N)

2 (k), · · · , M̂
(N)
n (k)〉 is a DTMC M̂(N) on

the state space [0, 1]n, with initial state m
(N)
0 ∈ [0, 1]n.

The average variation of M̂(N), given that it is in state m is F (N)(m) =
mTK(N)(m). Suppose that, for all i, j and for N → ∞, the elements K(N)

i,j (m)
converge uniformly in m to some Ki,j(m), which is a continuous function of
m, and m

(N)
0 converges almost surely to m0, and furthermore define m(k) as

follows: m(0) = m0 and m(k+1) = m(k)T ·K(m(k)); then, for any fixed step t,
almost surely M̂(N) converges to function m(k) [18]. As for CTMC population
models, it is possible to decouple the analysis of the single object from the
analysis of the global system using a fast simulation approach involving the
solution of a difference equation rather than an ODE.
Example: Taking probabilities αi for the rates ri in the processes and
resources example, we obtain the following difference equations for mT (k) =
(mp0(k),mp1(k),mr0(k),mr1(k))):

mp0(k + 1) = mp0(k) − α1.min(mp0(k),mr0(k)) + α2.mp1(k)
mp1(k + 1) = mp1(k) + α1.min(mp0(k),mr0(k)) − α2.mp1(k)
mr0(k + 1) = mr0(k) − α1.min(mp0(k),mr0(k)) + αs.mr1(k)
mr1(k + 1) = mr1(k) + α1.min(mp0(k),mr0(k)) − αs.mr1(k)

where mpj(k) and mrj(k) denote the limit occupancy measure at step k for
processes and resources. We can also retrieve the one step probability matrix for
each individual process and resource object using a similar reasoning as in the
CTMC case:

Kp0,p1(m(k)) = α1.min(mp0(k),mr0(k))/mp0(k)
Kp1,p0(m(k)) = α2

Kr0,r1(m(k)) = α1.min(mp0(k),mr0(k))/mr0(k)
Kr1,r0(m(k)) = αs

The difference equations can be obtained from K by m(k + 1) =
m(k)T .K(m(k)).

2.3 Relationship Between the Models

First note that we can interpret the difference equations obtained from a dis-
crete time population model as an instance of the Euler forward method for
approximating the solution of a set of ODEs. The set of ODEs we are interested
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in solving are those of a corresponding continuous population model. To obtain
an acceptable approximation of the solution we need to find a step size for the
difference equations such that absolute stability of the method, to avoid that the
global error grows exponentially, and a sufficient accuracy [19] are guaranteed.
This, in turn, means that we need to derive suitable values for the probabilities α
from the rates in the continuous model. What we would be even more interested
in is to transform an ICTMC model of an individual (from which the ODEs
can be derived) into an IDTMC model, with the same local states and jump
structure as the ICTMC, from which we get exactly the set of difference equa-
tions that can be used to approximate the solution of the ODEs. We proceed as
follows. Using a feature of CTMC uniformisation6 we can obtain a DTMC with
probability matrix K such that K = I+ 1

q ·Q, where Q is the infinitesimal rate
matrix and q the uniformisation rate that is at least as large as the maximal exit
rate of the states in the original CTMC. This DTMC preserves the local states
and the jumps of the original CTMC apart from additional self-loops. Note that
in our case the rates in Q may depend on the occupancy measure m. However,
0 ≤ mi ≤ 1 for all i ∈ |S|, so assuming rate-functions that include minimum
functions and linear combination7 (but not rational functions) that we derive
from PEPA specifications we can easily find a suitable q.

At this point we need to satisfy also the requirements of absolute stability
and obtain a satisfactory accuracy following standard procedures [19]. If we
are lucky, q is already large enough so that these requirements are fulfilled,
otherwise we need to increase q, which is allowed because q is only a lower
bound (see above). For linear systems of l differential equations where u(t) ∈ R

l

and d u(t)/dt = A · u(t) where A is an l × l matrix a necessary condition is that
hλ is in the stability region of the Euler method for each eigenvalue λ of matrix
A and step size h. So, for each eigenvalue λ we need that −2 ≤ hλ ≤ 0 [19].
For non-linear systems we need to determine the range of each eigenvalue and
make sure that the step size h is taken small enough so that hλ stays within the
region of absolute stability for its complete range. Note that h = 1/q.
Example: For the running example, with r1 = 10, r2 = 3.0 and s = 7.0, we
obtain uniformisation rate q = 10 and eigenvalues λ1 = 0 or −r1−r2 ≤ λ1 ≤ −r2
and λ2 = 0 or −r1−s ≤ λ2 ≤ −s, showing that all eigenvalues are in a bounded
range, with a maximum absolute value of 17. So when taking h = 1/q we get that
0 ≤ 17 ∗ 1/q ≤ 2. This implies that q = 10 guarantees stability of the method,
but a higher value may be preferred for better accuracy.

3 Properties of Individual Objects

Properties of the behaviour of individuals in the context of a large population
model can be expressed as formulas of a suitable temporal logic. For the purpose
6 I.e. transforming a CTMC into one where each state has the same exit rate by adding

self-loops where needed, which is an operation that does not alter the transient and
steady state properties of the CTMC.

7 I.e. piecewise linear functions leading to the class of split-free PEPA models [10].
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Table 1. Satisfaction relation: CSL fragment.

s, t |=C a ⇔ a ∈ �(s)

s, t |=C ¬Φ ⇔ not s, t |=C Φ

s, t |=C Φ1 ∨ Φ2 ⇔ s, t |=C Φ1 or s, t |=C Φ2

s, t |=C P��p(ϕ) ⇔ Pr{σ ∈ PathsC(s, t) | σ, t |=C ϕ} �� p

σ, t |=C Φ1 U≤τ Φ2 ⇔ ∃ τ2 s.t. 0 ≤ τ2 ≤ τ, σ@τ2, t + τ2 |=C Φ2 ∧
∀ 0 ≤ τ1 < τ2, σ@τ1, t + τ1 |=C Φ1

of this paper, properties of continuous time models are expressed in bounded
CSL, and properties of discrete time models are expressed in bounded PCTL.
Both are briefly recalled in this section, where we assume set P of atomic propo-
sitions is given and a ∈ P, τ ∈ Q≥0, k ∈ N and ��∈ {>,<} and p ∈ [0, 1] ∩ Q.

Continuous Stochastic Logic for ICTMC. The syntax of the fragment of
bounded CSL we consider is defined below:

Φ ::= a | ¬Φ | Φ ∨ Φ | P��p(ϕ) where ϕ ::= ΦU≤τ Φ.

CSL formulas8 are interpreted over state labelled ICTMCs 〈C, 	〉, where C is
an ICTMC with state set S and 	 : S → 2P associates each state with a set
of atomic propositions. We define the satisfaction relation on C and the logic
in Table 1. We abbreviate 〈C, 	〉 with C, when no confusion can arise, with Q
its infinitesimal generator matrix. A path σ over C is a non-empty sequence
s0

t0→ s1
t1→ · · · such that the probability of going from state si to si+1 at time

Ti =
∑i

j=0 ti is positive for all i ≥ 0. We let PathsC(s, t) denote the set of all
infinite paths over C starting from state s at time t. We require that all subsets
of paths considered are measurable. We let σ@t denote the state sk in σ such
that k is the maximum i such that

∑i
j=0 ti ≤ t, i.e. the state reached on path

σ at time t. Finally, in the sequel we will consider ICTMCs equipped with an
initial state s0, i.e. the probability mass is initially all in s0.

Probabilistic Logic for DTMC.9 The syntax of the fragment of bounded
PCTL we consider is defined below:

Φ ::= a | ¬Φ | Φ ∨ Φ | P��p(ϕ) where ϕ ::= ΦU≤k Φ.

PCTL formulas are interpreted over state labelled DTMCs D in a similar way as
for CTMCs. We assume P to be the one step probability matrix for D. A path
σ over D is a non-empty sequence of states s0, s1, · · · where Psi,si+1 > 0 for all
i ≥ 0. We let PathsD(s) denote the set of all infinite paths over D starting from

8 For simplicity the time bounds in the formulas are of the form [0, τ ] instead of the
more general [τ1, τ2].

9 Note that, by making time explicit, the structures used by FlyFast are DTMCs rather
than IDTMCs (see Sect. 4).
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Table 2. Satisfaction relation: PCTL fragment.

s |=D a ⇔ a ∈ �(s)

s |=D ¬Φ ⇔ not s |=D Φ

s |=D Φ1 ∨ Φ2 ⇔ s |=D Φ1 or s |=D Φ2

s |=D P��p(ϕ) ⇔ Pr{σ ∈ PathsD(s) | σ |=D ϕ} �� p

σ |=D Φ1 U≤k Φ2 ⇔ ∃ 0 ≤ h ≤ k s.t. σ[h] |=D Φ2 ∧ ∀ 0 ≤ i < h . σ[i] |=D Φ1

state s. By σ[i] we denote the element si of path σ. We will consider DTMCs
equipped with an initial state s0. We define the satisfaction relation on D and
the logic in Table 2.

4 Fluid Model Checking via Discrete Time Models

We first define two transformation functions. Function TM takes an ICTMC z(t)
with infinitesimal generator matrix Q(t) and initial state s0. It takes a step size
d ∈ Q and a time bound b > d. It returns a DTMC with state set S×{0, . . . , � b

d},
initial state (s0, 0) and one step transition probability matrix U, as follows:

Definition 1. For all 0 < d ∈ Q, b ∈ R with b > d, and infinitesimal generator
matrix Q(t), TM (Q(t), d, b) is the one step transition probability matrix U:

U(s,i),(s′,i′)=

⎧
⎨

⎩

[I + d·Q(i·d)]s,s′ , if i′ = i+1,Q(i·d)s,s �= 0,
1, if i′ = i, s′ = s,Q(i·d)s,s = 0,
0, otherwise

where the indexes of U are assumed to be ordered as follows:

(s0, 0), ..., (sn, 0), (s0, 1), ..., (sn, 1), ..., (s0, � b

d
), ..., (sn, � b

d
).

Function TF below transforms bounded CSL into bounded PCTL formulas:

Definition 2. For atomic propositions a, bounded CSL formulas Φ, Φ1 and Φ2,
and d ∈ Q, function TF is defined as follows:
TF [[a]]d = a TF [[Φ1 ∨ Φ2]]d = TF [[Φ1]]d ∨ TF [[Φ2]]d
TF [[¬Φ]]d = ¬TF [[Φ]]d TF [[P��p(Φ1 U≤τ Φ2)]]d = P��p(TF [[Φ1]]d U≤� τ

d � TF [[Φ2]]d)

The definition for the basic state formulas is straightforward. Bounded CSL until
formulas translate to bounded PCTL until formulas with the same probability
bound and structure, but with a time bound τ

d where τ was the original time
bound in the CSL formula. In the sequel, we let |Φ| denote the duration of Φ,
i.e. the length of time to which it refers, as follows:

Definition 3. For any bounded CSL formula Φ the duration of Φ, |Φ| is defined
as follows:
|a| = 0 |Φ1 ∨ Φ2| = max{|Φ1|, |Φ2|}
|¬Φ| = |Φ| |P��p(Φ1 U≤τ Φ2)| = τ + max{|Φ1|, |Φ2|}
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Table 3. Comparison of model checking times. Times for Statistical MC (SMC) based
on 10000 runs. Data for SMC and Fluid MC from [5]. Time in seconds.

Model CSL Property
FlyFast
(N > 500)

Fluid MC
(N > 500)

SMC
(N=100)

SMC
(N=1000)

SEIR s U≤T r ∼ 0.005 s ∼0.05 s ∼ 5 s ∼ 20 s

SEIR tt U≤T P≤0.01(true U≤10 i ) ∼ 6.3 s N.A. N.A. N.A.

CS tt UT (P≤0.167[tt U50CR]) ∼ 63.9 s N.A. N.A. N.A.

Recall that we assume that time bounds in until formulas are rational num-
bers. For formula Φ, we let τΦ = (τ1, . . . , τl), denote the vector of all time
bounds occurring in the (until subformulae of) Φ; furthermore we define dΦ and
DΦ as follows: dΦ = max{d ∈ Q | τj

d ∈ N, for j = 1 . . . l} and DΦ = {d ∈
Q | there exists w ∈ N s.t. d = dΦ

w }. Note that dΦ is well defined since τj ∈ Q,
for j = 1 . . . l; actually, letting τi = ai

bi
, s.t. gcd(ai, bi) = 1, it is easy to see that

dΦ = 1

lcm(b1,...,bl)
. We are now ready to state the main Theorem for robust CSL

formulas10:

Theorem 1. Let X (N) be a sequence of CTMC population models, with deter-
ministic fluid limit x(t) for any fixed time t < T , under initial condition
x(0) = x0, and let z = z(t) be the stochastic process defined from X (N) as
in Sect. 2.1. Let Φ be a robust CSL formula for z. There exists N0 ∈ N, such
that, for all d ∈ DΦ, with d ≤ 1

q as in Sect. 2.3 and for all N ≥ N0 and b > � |Φ|
d �

the following holds:

s, t |=z Φ iff (s, � t

d
) |=TM (z,d,b) TF [[Φ]]d

The proof is by induction on the structure of the CSL formula Φ. One is usually
interested in the result for t = 0. The proof is available in [14]. The result of The-
orem 1 shows that it is indeed possible, under suitable scaling and convergence
conditions, to use PCTL and a discrete time Markov population model to obtain
similar results as by global fluid model checking CSL formulas on ICTMCs. The
advantages and limitations of this approach were already outlined in the intro-
duction.

Complexity. For what concerns the complexity of the approach, this depends
on the complexity of the underlying on-the-fly probabilistic model-checking algo-
rithm that consists of two phases, an expansion phase and a computation phase,
both phases are linear in the number of states and transitions [17] for the time
bounded fragment of PCTL. Furthermore it depends on the length and type
of the formula, e.g conditional reachability is more likely to lead to the genera-
tion of fewer states, the time bounds in the formula and the uniformisation rate
needed.

10 We refer to [4] for the definition of formula robustness and to [6,13] for constraints
on time horizon T .
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5 Benchmark Examples and Comparison

Fluid model-checking is a young field of research and to the best of our knowl-
edge, the global fluid model checking algorithm has not been fully implemented
as yet and is not publicly available; consequently we will only use the few bench-
mark examples available in the literature. More complex examples can be found
in [15]. For those we compare results of global fluid model-checking, on-the-fly
fluid model checking and statistical model checking for a computer epidemic
model and a client-server model [3–5]. Our experiments were conducted with a
1.8 GHz Core i7 Intel processor and 4 GB RAM running Mac OS X 10.7.5. The
results are summarised in Table 3.

5.1 A Computer Worm Epidemic Model

The computer worm epidemic model consists of a large number of nodes, each
with four local states; susceptible (S), exposed (E), infected (I) and recov-
ered (R) (see Fig. 1). Susceptible nodes can be infected by an external source
(inf e) or by other nodes that are already infected (inf s) or, rarely, be patched
(patch s). Exposed nodes can be activated (act) and become infected, or they
can be patched (patch e). Infected nodes can be de-activated (de act) or patched
(patch i), or infect other nodes (inf s) while remaining infected. Recovered nodes
can loose (loss) their protection and become susceptible.

S R

E I

inf s

patch s

loss

patch i

act

inf sinf e

de act

patch e

Individual object

Probability functions:

action inf e :: kext/q;
action inf s :: (kinf/q) ∗ (frc I);
action act :: kact/q;
action de act :: kdeact/q;
action patch i :: khigh/q;
action patch s :: klow/q;
action patch e :: klow/q;
action loss :: kloss/q;

system worm = < S[10000] >;

Fig. 1. Computer Worm Epidemic Process and related rates: kext = 0.01, kinf = 5,
kact = kdeact = 0.1, klow = 0.005, khigh = 0.1, kloss = 0.005 (left) and derived
probability functions using uniformisation rate q = 10 (right).

Following the procedure outlined in Sect. 2.3 the model shown in Fig. 1 is
transformed into a discrete time model using a suitable rate which guarantees
absolute stability and sufficient accuracy of the Euler forward method. The high-
est exit rate is that of state S, namely 5.2, if we assume that in theory all nodes
could be infected at some stage, such that frc I = 1. However, to facilitate com-
parison with results in the literature we take q = 10, at the cost of being slightly
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less efficient. Fig. 1 (right) shows the probabilities for the actions in the discrete
time probabilistic model. Note that additional self-loops are added implicitly to
the model to make sure that the total outgoing probability for each state is 1.

Fig. 2 shows the correspondence for model checking results (see also [5]) for
all three model checking methods for the CSL path formula s U≤T r, where s (r,
resp.) denote the atomic propositions of being in state S (R, resp.), for T ranging
from 0 to 20 showing the probability that a node is patched before being infected
within T time steps. This corresponds to an equivalent PCTL formula with T
ranging from 0 to 200. Model checking times for all methods for this formula are
shown in Table 3. FlyFast generated 601 states. Note that this holds for any large
number of nodes. FlyFast is faster than global fluid model-checking in this case.
This is likely due to the fact that we are dealing with a conditional reachability
property, so not all states need to be generated, showing the advantage of an on-
the-fly approach. Furthermore, the algorithm uses memoization, meaning that
probabilities computed once are preserved for later use. Note that both fluid
model-checking approaches are several orders of magnitude faster than statistical
model checking for a large population size, providing a scalability compatible
with their use for analysing properties of individuals in the context of large scale
collective systems, which is the main aim of the current work.

0 50 100 150 200
Time bound T
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Fig. 2. Results for FlyFast (left) and Stat. MC and global Fluid MC (right).

An example of a nested path formula is true U≤T P≤0.01(true U≤10 i ),
where i denotes to be in state I. It says that eventually, within time T ∈ [0, 100],
a state will be reached in which the probability to get infected within 10 time
units is less than 0.01. In PCTL the formula is true U≤T ′ P≤0.01(true U≤100 i ),
for T ′ ranging from 0 to 1000, given q = 10. Figures are omitted due to space
limitations, but a comparison of results for a similar formula are shown in Fig. 4
for a more complex example. The FlyFast model-checking time is approximately
6.3 sec. and the number of states generated is 4000. No data on efficiency is
available for the other two techniques for this formula.

5.2 A Client-Server Model

A larger model involving synchronisation is the Client-Server model [3,4]. This
model is composed of two populations of processes that synchronise on request
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and reply actions. A Client process (see Fig. 3) has initial state (CQ) in which
it can only perform a request (rq) to the server and then waits (CW ) for either
a timeout (to) or a reply (rp) from the server to happen. After a timeout it goes
to a state to recover (CR), and then returns to the initial state when recovery
is completed (rc). After receiving a reply (rp) the Client enters a thinking state
(CT ) after which it returns to the initial state upon completing thinking (th).
The Server process (see Fig. 3) is initially (SQ) ready to receive a request (rq)
from a Client. If it receives it, either a timeout (top) may occur or it may process
the request (pr) moving to the reply state (SR). From the latter it may either
produce a timeout (tor) or deliver a reply (rp) to the client and in both cases the
server moves to a log-state (SL) and afterwards returns to the initial state (SQ)
upon completion of logging (lg). So, the behaviour of Clients and Servers are
synchronising via actions rq and rp, using a PEPA-based interaction paradigm
based on a minimum rate principle [3,4]. The various timeouts are occurring
independently. The ratio between the number of Clients and Servers is 2 to 1.

CQ CT

CR CW

SQ SP

SL SR

rq

to

rc rp

th rq

pr
top

lg

rp

tor

Client Server

Fig. 3. Client and Server process. Client rates: th=1, rp=100, rq=1, rc=1, to=0.01;
Server rates: rq=1, pr=0.1, top=0.005, tor=0.005, rp=1, lg=10.

As before, we proceed with the transformation of the model shown in Fig. 3
into a discrete time one, by finding a suitable rate. Note that the rate of an action
shared by two types of objects can never be higher than the rate of the objects
that contribute to the synchronisation, and will also be proportional to the
(normalised) population size of the model. Therefore we can choose a rate equal
to the maximum total exit rate of any of the states of the objects. In the client-
server case this maximum is 100.01 (the sum of rates for Client actions rp and to).
This is a large overestimation of the maximal exit rates, since the reply action of
the Client is synchronised with that of the much slower Server (with reply rate
1). Therefore q = 10 is sufficient, given that the next highest rate is that of action
lg which is 10. Table 4 shows the translation of the continuous time model into
a discrete time model in the probabilistic input language of FlyFast. Actions of
different objects must be distinct which is achieved by appropriate prefixing (c
for Client actions and s for Server ones). Fig. 4 (left) shows results concerning
the nested, time-dependent PCTL (path) formula tt UT (P≤0.167[tt U500CR]),
concerning a Client timeout; the FlyFast results are given for T varying from 0
to 400 steps. Nested formulas are computationally the most complex to analyse.
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Fig. 4. FlyFast results (left) and global fluid model checking (right) from [3].

Table 4. Client and Server specification in FlyFast with q = 10 and the following
values for the probabilities: αc th = 1/q, αc rp = 100/q, αc rq = 1/q, αc rc = 1/q,
αc to = 0.01/q, αs rq = 1/q, αs pr = 0.1/q, αs top = 0.005/q, αs tor = 0.005/q, αs rp =
1/q, αs lg = 10/q.

action c rq : min(αc rq ∗frc (CQ), αs rq ∗frc (SQ))/frc (CQ) state CQ {c rq.CW}
action c to : αc to state CW {c to.CR + c rp.CT}
action c rc : αc rc state CR {c rc.CQ}
action c th : αc th state CT {c th.CQ}
action c rp : min(αc rp∗frc (CW ), αs rp∗frc (SR))/frc (CW )

action s rq : min(αc rq ∗frc (CQ), αs rq ∗frc (SQ))/frc (SQ) state SQ {s rq.SP}
action s pr : αs pr state SP {s pr.SR + s top.SL}
action s tor : αs tor state SR {s tor.SL + s rp.SL}
action s top : αs top state SL {s lg.SQ}
action s rp : min(αc rp∗frc (CW ), αs rp∗frc (SR))/frc (SR)
action s lg : αs lg

system clientServerSystem =< CQ[1000], SQ[500] >

The property is the PCTL version of the corresponding CSL nested property
analysed using the global fluid model checking approach in [3,4]. Model checking
times for FlyFast are shown in Table 3. This time is the cumulative time for the
400 different values for T considered, while it needed to generate 1598 states.

In the original model in [3], the recovery rate of the Client is 100 and not 10.
This only affects the curve shown as a solid line in Fig. 4 (left), therefore the
other curves continue to show close correspondence to ones on the right of Fig. 4
showing the fluid model checking results for the original model. The latter is a
stiff model in which the parameter values differ five orders of magnitude. It would
require a uniformisation rate of at least 100 and consequently a time bound of
5000 steps in the PCTL formula. The FlyFast results would still correspond well
to the original global fluid model checking results, but model-checking times
increase considerably. Global fluid model checking might be a viable alternative
in that case because it can exploit existing highly optimised adaptive transient
analysis methods, once the points in which the truth values change have been
established.
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6 Related Work

Closest to our work is that by Bortolussi and Hillston [3,4] presenting a technique
for global fluid model checking. We have briefly recalled some of the elements of
this technique and compared their model checking results with those obtained
by our on-the-fly technique and to statistical model checking where available.
Work on fluid model checking can also be found in [12] which uses in part similar
techniques as [4]. On-the-fly probabilistic model checking for bounded PCTL has
also been developed by Della Penna et al. [8] but they do not consider its use for
on-the-fly fast mean field model checking as we did in [16]. Stochastic population
models can also be analysed using statistical model checking methods based on
simulation (see for example [21]). The computational complexity of the latter
increase linearly with the number of objects N, whereas on-the-fly fast mean-field
model checking and fluid model checking do not depend on N.

7 Conclusions

We have illustrated an alternative way to perform fluid model checking of
bounded CSL properties of individual entities in the context of large CTMC
population models. The framework makes use of a prototype implementation of
the on-the-fly fast mean field model checker FlyFast to check bounded PCTL
formulas of individuals in the context of synchronous, discrete time DTMC pop-
ulation models. We have provided a correctness result and shown promising
verification results compared to those available in the literature. Future work
will consist in integrating the method and related transformation functions into
FlyFast, looking for further optimisations and investigating the possibility of gen-
erating error bounds along with the analysis results. We will also consider the
extension of the fragment of the logic with intervals and further operators.
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Abstract. System designers need to have insight in the response times
of service systems to see if they meet performance requirements. We
present a high-level evaluation technique to obtain the distribution of
services completion times. It is based on a high-level domain-specific lan-
guage that hides the underlying technicalities from the system designer.
Under the hood, probabilistic real-time model checking technology is
used iteratively to obtain precise bounds and probabilities. This allows
reasoning about nondeterministic, probabilistic and real-time aspects in
a single evaluation. To reduce the state spaces for analysis, we use two
sampling methods (for measurements) that simplify the system model: (i)
applying an abstraction on time by increasing the length of a (discrete)
model time unit, and (ii) computing only absolute bounds by replacing
probabilistic choices with non-deterministic ones. We use an industrial
case on image processing of an interventional X-ray system to illustrate
our approach.

1 Introduction

Service-oriented systems are designed for interconnection with other systems and
are commonplace in the domains of business, engineering and operations [12].
Their complexity lies in their capability to handle many service requests in par-
allel, for multiple kinds of services. To that end, they are equipped with multiple
resources to process services requests, with variable execution times. Service-
oriented systems operate in a real-time manner. When used to perform safety-
critical tasks, they have to respect real-time requirements like bounded response
times. In this way, their safety is determined by their performance.

Performance prediction early in design is difficult [8], especially when the sys-
tem of concern does not exist yet. Simulation can provide an indication of average
response times, but simulation results tend to be too optimistic. Worst-case exe-
cution time analysis [16], on the other hand, leads to absolute bounds. While
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it can prove that hard real-time requirements are met, the computed bounds
are often pessimistic, leading to costly, over-dimensioned implementations. For
many applications, soft real-time guarantees are sufficient, i.e., it is acceptable if
deadlines are met with a certain (high) probability. In such a scenario, a designer
may want to know, e.g., the latency value for which, in the long run, 85 % of
the service requests complete. These questions can be answered by probabilis-
tic real-time model checking, in which probabilistic, nondeterministic and timed
aspects are combined in one model.

This paper presents an approach that allows computing response time dis-
tributions using iterative probabilistic model checking. First a model is specified
in a high-level domain specific language, iDSL [2], that abstracts from various
under-the-hood technicalities, making it usable for systems engineers. From this
model input for the Modest Toolset [7] is automatically generated in the
Modest modelling language [6], which can be used for both simulations and
model checking. By calling the model checking procedures iteratively, we are
able to efficiently compute response time distributions in an automated fashion,
which allows to better compare different designs. This is also the main differ-
ence to our previous work [2–4], where this performance evaluation trajectory
has first been proposed, however without the ability to compute response time
distributions precisely.

We illustrate our approach with a case study on interventional X-ray (iXR)
systems as built by our industrial partner Philips Healthcare. These systems
provide a continuous stream of X-ray images to a surgeon that operates on a
patient. Low latency is necessary for hand-eye coordination [10], i.e., the surgeon
must perceive the image stream to be real-time. Low response times of images are
thus of vital importance, but a few misses of response deadlines are acceptable.

Related work. The tagged customer approach [5] is a numerical method to com-
pute the response time distribution for open queuing networks, represented as
continuous-time Markov chains (CTMCs). It may be used as a fast but approxi-
mate measure besides simulation, especially when utilizations are low and service
times have high variances. The hierarchical performance evaluation tool (HIT,
[1]) supports the model-based evaluation of computing system performance. HIT
models are highly structured, based on functional hierarchies and modulariza-
tion, as with the Y-chart philosophy [11]. HIT models are analysed using various
techniques. However, the HIT model at hand determines which techniques can
be used, with simulation covering the greatest spectrum. It does not have spe-
cific support for response time distributions. Modular Performance Analysis with
Real-Time Calculus (MPA, [17]) is based on the Network Calculus and computes
hard lower and upper bounds using event streams. Hence, these approaches do
not deliver what we do.

Context. The measures that we compute and the type of systems our approach is
designed for make it fall right into the field of performance evaluation [9]. Typical
performance evaluation approaches build on fully stochastic formalisms, such as
continuous-time Markov chains or stochastic Petri nets. However, our examples
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require a mixture of deterministic timing with probabilistic effects and concur-
rency; we want also to be able to compute hard bounds; and we use abstraction
techniques for model simplification that introduce nondeterministic delays. Since
they capture exactly these aspects in a compositional fashion, we chose prob-
abilistic timed automata (PTA, [14]) as the semantic basis of our models. The
analysis of PTA is supported by a number of tools including Prism [13] and the
Modest Toolset [7]. We use the latter due to its high-level input language
and the ability to perform model checking using the included mcsta tool as well
as simulation using the modes simulator.

2 Problem Statement and Case Study

We describe service-oriented systems (Section 2.1) and their performance char-
acteristics (Section 2.2), and use the case study on iXR systems as an example.

2.1 Service-Oriented Systems

In service-oriented systems, the system receives a service request after which the
system replies with a service response that completes the request. The latency
is the elapsed time between service request and response. A service decomposes
into a number of atomic tasks that each require access to resources (e.g. a CPU,
I/O bus or GPU) for computation or data transfer. These tasks may have vari-
able execution times. A service system can make use of multiple instances of
one or more services at the same time, which gives rise to concurrency among
service instances. A scheduling policy resolves this concurrency by prescribing
an order in which tasks gain access to resources, e.g., first-in, first-out (FIFO).
A scenario describes when these service requests arrive; for example, “a service
system receives one service request every 100ms, forever”. Service systems can
have one or more configurations, each with their own properties.

Example: iXR Systems. provide a continuous stream of images to support
a surgeon that operates a patient, i.e., they provide an image processing (IP)
service. Service requests are incoming, unprocessed images that arrive with fixed
inter-arrival times. The iXR system responds with processed images. The latency
should be low enough to enable hand/eye-coordination [10]. The system com-
prises one resource, the CPU. The service decomposes into a pipeline of twelve
image processing steps, all performed on the CPU via a FIFO scheduling policy.
Service IP receives 10 images per second. We consider two configurations having
image resolutions of 5122 and 10242 pixels, respectively.

2.2 Performance Questions

We define performance questions of service-oriented systems to assess their per-
formance. There are black-box and white-box measures. Black-box measures are
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Fig. 1. The iDSL solution chain

observable from the outside of the system, and examples include the latency per
service. White-box measures, such as resource utilizations, require knowledge
about the inside of the system. We focus on service latencies because they are
the prime measure of interest in the case study on iXR systems, viz., latencies
should be low enough to enable hand/eye coordination. We show two categories
of performance questions that are concerned with service requests of a given
service in a given service system, operating in a given scenario, as follows:
Q1. What is the latency for which a given percentage of the service requests

completes?
Q2. Which percentage of the service requests has a latency below a given value?

Example: iXR systems have performance questions that are as follows:
Q1a. What is the latency for which 85% of the service requests completes?
Q2a. Which percentage of the service requests has a latency below 55ms?

3 A Formal Model for Service Systems

iDSL comprises a high-level language for modelling service systems, and a
toolset to evaluate their performance (see Figure 1 for its solution chain). Each
iDSL model leads to the generation of performance artefacts for many so-called
designs. iDSL has been developed using the Xtext and Xtend plug-ins of Eclipse
for Domain Specific Languages (DSLs). iDSL is thus an Eclipse plug-in with an
extensive Integrated development environment (IDE). In a pre-processing phase,
measurements can be imported into the model and syntactic sugar is resolved.
For each design, performance analysis is done via multiple mcsta (see Section 4)
and modes calls of the Modest Toolset [7] for model checking and simulation,
respectively. Visualizations are generated with Graphviz and GNUplot.

In Section 3.1, we provide the syntax of the iDSL language by showing its key
language constructs. We apply it to iXR systems in Section 3.2 and show three
sampling methods for measurements in Section 3.3. In Section 3.4, we define
utility and cost functions that answer performance questions using a query on the
computed results. In Section 3.5, we define the semantics of iDSL by describing
the transformation from iDSL to Modest.
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3.1 iDSL Language Syntax

We specify service systems formally using iDSL [2], following the six concepts as
illustrated in Figure 2

Fig. 2. The iDSL language’s concepts.

1. A process decomposes service
requests into atomic tasks. iDSL
provides the following process alge-
bra constructs: palt, a probabilistic
choice among alternatives; alt, a non-
deterministic choice between alterna-
tives; par for parallel activities; and
seq for sequential activities. iDSL also
offers a mutex, a mutual exclusion to
run processes uninterruptedly.
2. Resources are capable of perform-
ing one atomic task at a time, in a
certain amount of time. A mapping assigns atomic tasks to resources.
3. A service system consists of one or more services, each implemented using a
process, a set of resources and a mapping between processes and resources.
4. A scenario comprises a number of invoked service requests over time to observe
the performance behaviour of the system in specific circumstances.
5. Measures of interest define which performance measures are obtained.
6. A study evaluates a selection of systematically chosen systems and scenarios.

3.2 iDSL Model of iXR Systems

Let us now explain the iDSL
model of an iXR system:
1. Section process (right) con-
tains process “Image -processing”
that specifies how images are
processed, viz., via two high-level
operations “Noise reduction” and
“Refine”. They in turn decom-
pose in a sequential pipeline of
twelve image operations, each
with a load (an amount of
work), specified via an abstrac-
tion mechanism. These loads
are assumed to be independent.
Section 3.3 shows how these
abstract loads are implemented.
2. Section resource comprises resource “Image processing PC”, that has a CPU
with a rate of 1, i.e., it can process 1 unit of load per μs, the time unit of choice.
The resource is defined as follows.
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3. Section system comprises a service named “Image Processing Service”, which
connects process “Image Processing” to resource “Image Processing PC” by
defining a mapping, i.e., each of the twelve image operations is performed on
the CPU, and a FIFO scheduling policy is used to resolve concurrency.

4. Section scenario comprises scenario “Image Processing Run”, in which the
service is invoked 10 times per second, i.e., once every 100000 s, forever.

5. Below, section measure contains two measures: “ServiceResonseTimes”
retrieves average latencies of 100 service requests via simulations, using 3 runs.
Simulations provide quick insight into the general behaviour of a system, but
are less suitable for showing the extreme behaviour of a system.

Measure “CDF . . . ” yields a cumulative distribution function (CDF) with
latencies, obtained via probabilistic model checking. As usual, a CDF is a func-
tion that displays for each latency value l, the percentage of the service requests
that has a latency below l, e.g., cdf(60) = 0.5 means that half of all service
requests have a latency below 60 ms. This measure is obtained via model check-
ing and is thus much slower than simulation, but conveys different insights, e.g.,
absolute lower and upper bounds. It is explained in detail in Section 4.

6. Finally, section study allows for design instances to be defined that are each
evaluated using the defined measures. We model two iXR systems having image
resolutions 5122 and 10242 pixels, respectively.
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iDSL offers two approaches to handle uncertainty: probabilism and nondetermi-
nism. Probabilism specifies a range of weighted outcomes, e.g., an image opera-
tion completes with probability 0.6 in 45 s, and 0.4 in 46 s. Non-determinism
is similar but without probabilities, e.g., an image operation completes in either
45 s, 46 s, or between 45 s and 46 s. Nondeterminism can also occur when
a system processes multiple service requests, i.e., if a resource is potentially
accessed multiple times at the same time, the order of action is undefined.

3.3 Three Sampling Methods for Measurements

In Section 3.2 (process), twelve image operations are defined using abstract loads.
In our case, these loads are based on 300 latency measurements each, performed
on a real iXR system, to calibrate the model. We show three implementations
for “pre-processing”, each corresponding to a different way of sampling, viz.,
uniform, abstract time, and non-deterministic time sampling. The other image
operations are implemented similarly.

Uniform Sampling. Below, the abstract load “preproc” defines the variable
load of “Pre processing”, using uniform sampling. In uniform sampling, each
measurement has an equal probability to be sampled. The load is defined for
two image resolutions, viz., 5122 and 10242 pixels. The dspace operator selects
the right set of measurements, depending on the resolution of the design instance
at hand. Uniform from file refers to an external file and a position in that file
at which the correct measurements are stored.

iDSL transforms the implementations into basic process algebra constructs, via a
so-called model transformation. This leads to one palt-construct per resolution,
consisting of measurements. For resolution 5122, it is as follows:

E.g., the probability for 130 s is 8
300 , because 8 out of 300 measurements are

130 s, for 131 s it is 67
300 , because 67 out of 300 measurements are 131 s, etc.

Abstract Time Sampling. Next, the abstract load “preproc” defines the vari-
able load of “Pre processing” using abstract time sampling, as follows.
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In abstract time sampling, measurements are divided by a given constant number
and rounded to make the model simpler at the price of some precision. We
divide by 250 for resolution 5122, and 800 for 10242. The final results will be
multiplied by the same constants again. The result of the model transformation
for resolution 5122, is as follows.

Non-deterministic Time Sampling. Finally, “preproc” defines the variable
load of “Pre processing” using non-deterministic time sampling. It is as follows:

In non-deterministic time sampling, the time of an image operation is defined as
the smallest segment that contains all measurements, as follows.

Non-deterministic time sampling is typically used to obtain absolute latency
bounds. Semantically, the above means that any real value in segment [130 : 136]
is a valid sample, but that their individual probabilities are unknown.

3.4 Performance Queries in iDSL

In the following, we add performance queries to the iDSL model. They are speci-
fied as so-called utility and cost functions that specify a query on the performance
results, and return a real number. They rely on measures. In the case study, we
show two measures that are based on simulations and model checking, resp.

A function is either a cost function when lower values are preferred, e.g.,
the average latency of a service, or a utility function when higher values are
preferred, e.g., the percentage of service requests completed after some time.

The iDSL model comprises both the system model and a scenario in which it
operates. We analyze the response times to service requests of a given service S
of this system, the latencies. To this end, we introduce four model checking-based
functions and two simulation functions, based on Q1 and Q2 (see Section 2.2).



216 F. van den Berg et al.

First, we introduce two pairs of model checking functions.
1. Function Q1alb (Q1aub) returns the minimum (maximum) latency before
which P percent of the service requests of service S complete.
2. Function Q2alb (Q2aub) returns the minimum (maximum) percentage of ser-
vice requests of service S that has a latency below time T .
Second, we introduce two similar simulation based functions:
1. Function Q1asim returns the latency before which P percent of the service
requests of service S complete, based on R simulation runs of Rq requests each.
2. Function Q2asim returns the percentage of service requests of service S that
has a latency below time T , based on R simulation runs of Rq requests each.

Note that model checking-based functions have two variants, viz., a minimum
and maximum one; they return bounds. Simulation has two parameters: runs
and requests. The higher these values are, the more accurate the results will be.

Example: iXR Systems. We define two groups of performance queries for
iXR systems in iDSL, which are added to the Measure section of iDSL. Each
performance question is defined three times, viz., twice for model checking and
once for simulation. Simulations are based on 3 runs of 100 requests each.

Questions of type Q1 ask latencies before which a given percentage of service
requests completes. They are cost functions, since lower latencies are preferred:

Questions of type Q2 ask percentages of service requests that have latencies
below a given time. They are utility functions since higher values are preferred:

3.5 Translation to Modest

The semantics of the iDSL language is specified via a transformation from iDSL
models to Modest models. Modest is a high-level modelling language rooted in
process algebra with a formal semantics in terms of stochastic hybrid automata
(SHA) [6]. Several other popular formalisms such as PTA and discrete-time
Markov chains are special cases of SHA. The analysis of Modest models is
supported by the Modest Toolset [7], which in particular includes the tools
modes for simulation (or: statistical model checking) and mcsta for model check-
ing of Modest models conforming to the PTA subset of the language.
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Fig. 3. An interaction diagram.

iDSL is a high-level language specif-
ically tailored to service systems, yield-
ing, for the iXR case, a model that
is seven times smaller textually than
the autogenerated Modest code. Addi-
tionally, small architectural changes to
the iDSL model can affect the whole
Modest code, making a Modest-only
approach hard w.r.t. maintenance.

An iDSL model transforms into one or more Modest models, each containing
an overarching Modest process. This process decomposes in a number of parallel
sub-processes of class generator, process, mapping or resource. They interact in
the way as shown in Figure 3, viz., a generator triggers a process, which in turn,
via a mapping, obtains access to a resource and receives an acknowledgement.

iDSL processes transform into processes of class process in Modest. Process
algebra constructs in iDSL are thereby translated to their Modest counter-
parts. Processes also contain calls to mapping processes, for each atomic task.
iDSL resources become resource processes in Modest, containing a queue and a
counter for service time. Mappings lead to mapping processes that each connect
an atomic tasks to a resource. iDSL systems and services do not lead to Modest
code, but merely organize the iDSL model. In the iDSL scenario, service requests
lead to a Modest generator that sends a trigger to a process periodically and
forever. Measures lead to one or more Modest models, depending on the mea-
sure. In the next section, we show how multiple Modest models are generated
for model checking purposes. An iDSL study contains design instances that are
evaluated separately. Separate Modest models are generated for each design.

4 Computing Response Time Distributions

We present a new approach to compute latency response times, based on iterative
probabilistic model checking. It answers performance questions of iDSL models
(of Section 3.4) in five steps: (i) iDSL models are transformed into Modest
models that are used to retrieve service latencies (Sect. 4.1); (ii) latencies are
aggregated into one overarching latency per service (Sect. 4.2); (iii) mcsta is
applied iteratively to obtain probability bounds (Sect. 4.5); (iv) these bounds
are transformed into a set of possible CDFs (Sect. 4.4); and (v) performance
questions are answered using the set of possible CDFs (Sect. 4.5).

4.1 From iDSL Queries to Modest

We generate a range of Modest models to answer performance queries, for
each iDSL model i, each service s within that model, and both the minimum
and maximum probability (a flag f). The models have one parameter, t ∈ R≥0,
and return probability p: the probability that a service completes within time t.
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The Modest models are generated using the transformation in Section 3.5.
Also, a measure is added to the specific service the model measures, i.e., its
process is enclosed by stopwatches that record latencies of its service requests.
Finally, a property to retrieve the minimum or maximum probability (pmin or
pmax) that a service completes within time t is added. Hence, Modest models
are reused to obtain many probabilities, for many values of time t. For the sake of
simplicity, we specify an abstract function M that retrieves such a probability:

p = M(i, s, f, t),

where p is either the minimum or maximum probability (depending on flag f)
that service s in iDSL model i completes within time t.

M is implemented using the following three steps: (i) select the Modest
model of iDSL model i, service s and f ; (ii) run this model in mcsta with param-
eter time t; and (iii) return the result of mcsta as probability p.

4.2 Aggregating Latencies of Service Requests

Modest models have been generated that return the probability that a service
request completes within a given time. In iDSL, however, a service leads to
an infinite stream of service requests, each with their own latency. Ideally, the
average of these latencies is a measure for the performance of the whole service:

PΩ(t) = lim
k→∞

1
k

k∑

n=1

Pn(t), (1)

where PΩ(t) is the combined probability, n the service request number, t the
latency time, Pn(t) the probability that service request n finishes within time t.
However, this infinite sum is not computable. Hence, we show the following two
weighted averages of the latencies that can be used to approximate the measure.

First, the arithmetic mean considers the first N service requests and weighs
them equally, as follows:

PΩ(t) =
1
N

N∑

n=1

Pn(t), (2)

where N ∈ N
+ is the number of service requests considered, e.g., N = 100. It

is similar to (1) for large values of N . However, even for small values of N , it

(a) with a service request counter (b) without a counter

Fig. 4. Binary probabilistic choices induce the geometric distribution
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has two drawbacks: (i) it requires a counter to be added to the state in Modest
to keep track of the service request number; and (ii) latencies of the (N + 1)th

service request and later are neglected.
Second, the geometric distribution [15] weighs service requests exponentially

decreasing, as follows:

PΩ(t) =
∞∑

n=1

(1 − ρ)n−1 ρ Pn(t), (3)

where ρ ∈ (0 : 1) is the parameter of the geometric distribution.

It is, again, similar to (1) for ρ close to 0. Lower ρ-values lead to a more complex
model but more precise results, and vice versa. Since the geometric distribu-
tion considers all service requests and it is capable of finding absolute maximum
latencies. In Modest, it is implemented as a binary probabilistic choice every
time a service request completes (as depicted in Figure 4a): either the currently
measured latency is returned, with probability ρ, or the next service request is
evaluated, with probability 1−ρ. Moreover, the geometric distribution is memo-
ryless, i.e., the binary choice does not rely on state information. Consequently, it
is possible to omit the service request number from the model, leading to a single
reoccurring service request (as in Figure 4b). In the remainder of this paper, we
only consider the geometric distribution with ρ = 1

10 , empirically determined.

(a) The initial scan and resulting
bounds

(b) The set of possible CDFs

Fig. 5. Cumulative Distribution Functions (CDFs) based on function M

4.3 Iterative Model Checking for Probability Bounds

We provide an algorithm to compute function M, for a given iDSL model i,
service s in this model and a minimum/maximum bound flag f . M(i, s, f, t) is
iteratively applied for different values t, comprising three stages, viz., an initial
scan, a binary lower & upper bound search, and a brute force computation.
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Initial Scan. The initial scan gives an idea of the order of magnitude of the
time values. We compute M(i, s, pmin/max, t) for t = 1, 2, 4, 8, 16, . . . , 2m, 2m+1,
. . . , 2n, 2n+1 until M(i, s, pmin/max, 2n+1) = 1. The lower bound is
then located between 2m and 2m+1 with M(i, s, pmin/max, 2m) = 0 and
M(i, s, pmin/max, 2m+1) > 0, and the upper bound between 2n and 2n+1 with
M(i, s, pmin/max, 2n) < 1 and M(i, s, pmin/max, 2n+1) = 1. Note that m and n
are unique values.

Figure 5a depicts the initial scan graphically. It shows computations i1, i2,
. . . , i7, with i7 having a probability of 1. We observe that the lower bound is
located between i3 and i4, and the upper bound between i6 and i7.
Binary Lower & Upper Bound Search. Next, two binary searches are
performed to determine the exact lower and upper bound, using the ranges of
the initial scan. The binary searches are applied to [2m : 2m+1] and [2n : 2n+1]
for the lower and upper bound, respectively. They lead to lower and upper bound
lb and ub, respectively. By definition, M(i, s, pmin/max, t) = 0, for t < lb, and
M(i, s, pmin/max, t) = 1, for t > ub. Thus, only M(i, s, pmin/max, t), for t ∈ [lb :
ub], need to be determined yet.
Brute Force Computation. We obtain M(i, s, pmin/max, t) for all times t ∈
[lb : ub]. We compute them on c CPU cores by distributing the possible values
for t equally to the available CPU cores.

Finally, a cache is used throughout all computations for M to avoid duplicate
computations, which is possible because M is deterministic.

4.4 Transforming Bounds into a Set of Possible CDFs

By iteratively computing values of function M, lower and upper bound proba-
bilities (pmin and pmax) of latencies have been computed, for a given iDSL model
i and service s. Figure 5b shows five probabilities (upper bounds U1, U2 and U3,
and lower bounds L1 and L2) and two CDFs that respect these bounds. We
consider the set of all CDFs that respect these bounds, i.e., each CDF is below
the upper bounds and above the lower bounds, for all times t. Formally, function
CDFall : I × S → 2 ̂CDF returns, where ĈDF is the universe of all CDFs, given
an iDSL model i and service s, the set of CDFs that respect the bounds in M:

CDFall(i, s) = { cdf ∈ ĈDF | cdf (0) = 0 ∧ M(i, s, pmin, t) = p1 ⇒ cdf (t) ≥ p1

∧ M(i, s, pmax, t) = p2 ⇒ cdf (t) ≤ p2 }
Constraint cdf (0) requires all the values to be greater than or equal to 0.

4.5 Answering the Performance Queries Using the CDFs

We now use CDFall to answer the performance queries, as follows. Queries of type
Q1, the minimum time for which a service request completes with probability p,
are determined, as follows:

Q1(i, s, p, Tmin) = min { t | (t, p) ∈ cdf ∧ cdf ∈ CDFall(i, s) }



Computing Response Time Distributions 221

Queries of type Q2, the minimum probability that a latency is below a given
time t, are determined, as follows:

Q2(i, s, t, Pmin) = min { p | (t, p) ∈ cdf ∧ cdf ∈ CDFall(i, s) }
The maximum cases of Q1 and Q2 are determined analogously.

5 Case Study Results

We apply the performance analysis approach of Section 4 to the iXR system
of the case study. We define three experiments and compare their results with
simulations and real measurements, in three steps: (i) we present CDFs with
latency times; (ii) we show the execution times and model sizes; and (iii) we
show the answers to the performance questions (for Experiment 1).

Three experiments are defined, based on the sampling methods in Section
3.3, respectively. Experiment 0 uses uniform sampling. Running MCSTA leads

(a) Experiment 1, Image Res. 5122 (b) Experiment 1, Image Res. 10242

(c) Experiment 2, Image Res. 5122 (d) Experiment 2, Image Res. 10242

Fig. 6. CDFs with latencies of IP of iXR systems: measurements on a real iXR system
(a), model checking (lower & upper bounds) (b+c) and simulations (d).
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to a incremental generation of the state space, but runs out of memory and
stalls after having generated 38 million states. Experiment 1 uses abstract time
sampling. Experiment 2 uses non-deterministic time sampling, but on a subset
of the system to reduce complexity, i.e., only the first 3 image operations are
considered, instead of all 12.

CDFs with Latencies. Figure 6 shows latency CDFs, for resolutions 5122 and
10242, and experiment 1 and 2. They show the percentage of service requests
that complete, on the Y-axis, within a given latency, on the X-axis.

Table 1. Two experiments: execution times for simu-
lations and model checking, the number of states of the
Modest model and the number of MCSTA calls.

Exp sim. MC img.
time time res. states calls

Experiment 1: 56” 3:17’28” 5122 8.05M 88
abstract time 10242 1.29M 85
Experiment 2: 44” 5:59’22” 5122 2.03M 49
bounds only 10242 2.77M 57

Experiment 1: Figure 6a
and 6b convey that the
bounds, obtained by model
checking, do not enclose
all measurements in both
cases, e.g., in Figure 6a the
lower bound has probabil-
ity 0.16 for time 16.5 while
measurements are close to
0. This imprecision results
from the time abstrac-
tion. Also, model checking
returns higher time values
than simulations for probabilities close to 1.
Experiment 2: Figure 6c and 6d show that the computed bounds enclose all mea-
surements, as required. Simulations show, compared with measurements, more
average behaviour, i.e., less variance and tighter bounds.

Table 2. Performance questions outcomes

5122 10242

n sim lb ub sim lb ub
Q1a 85 16.9 16.8 17.0 55.0 55.2 56.0
Q1b 0 16.6 15.8 15.8 53.8 52.0 52.0
Q1c 50 16.8 16.5 16.8 54.4 54.4 55.2
Q1d 90 17.0 16.8 17.0 55.1 55.2 56.0
Q1e 100 18.1 18.5 18.5 57.0 59.2 59.2
Q2a 55 x x x 84% 32% 77%
Q2b 17 91% 91% 96% x x x

Execution Times and Complex-
ities. Table 1 shows for Experiment
1 and 2 the execution times (on an
AMD A6-3400M APU, 8 GB RAM
system) and state space sizes. All
simulations finish within a minute,
whereas model checking takes in the
order of hours, i.e., up to 500 times
longer. The number of states ranges
from 1.29 million to 8.05 million.
mcsta is called up to 88 times.
Results of the Performance
Queries. Table 2 shows the answers to the performance queries for Experiment
1 (as obtained in Section 4.4 and 4.5).

Table 2 (top) shows that model checking leads to lower values (for n = 0), via
comparable values (for n = 50), to higher values (for n = 100) than simulations,
i.e., it has a higher variance. For resolution 10242, Model checking values are
higher , for n = 85. This difference even increases for p = 90 and p = 100.
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Table 2 (bottom) shows that, for a given latency, the percentage of service
requests that meet a latency deadline can be obtained. E.g., if 90 % of the images
need to be in time, then a latency of 17 ms for resolution 5122 is met.

6 Conclusion

We have introduced a high-level domain specific language to model service sys-
tems and retrieve their response time distributions, usable by system designers.
Besides the traditionally used simulations, response times are also obtained via
iterative probabilistic model checking. Since model checking faces the state space
explosion problem, we have introduced sampling methods to reduce the model
complexity: (i) increasing the model time unit, and (ii) eliminating probabilism.
A case studty on iXR systems shows the feasibility of our approach.
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Abstract. iDSL is a language and toolbox for performance prediction of
Medical Imaging Systems; It enables system designers to automatically
evaluate the performance of their designs, using advanced means of model
checking and simulation techniques under the hood, and presents results
graphically. In this paper, we present a performance evaluation approach
based on iDSL that (i) relies on few measurements; (ii) evaluates many
different design alternatives (so-called “designs”); (iii) provides under-
standable metrics; and (iv) is applicable to real complex systems. Next
to that, iDSL supports advanced methods for model calibration as well
as ways to aggregate performance results. An extensive case study on
interventional X-ray systems shows that iDSL can be used to study the
impact of different hardware platforms and concurrency choices on the
overall system performance. Model validation conveys that the predicted
results closely reflect reality.

1 Introduction

Embedded systems have faced a significant increase in complexity over time
and are confronted with stringent costs constraints. They are frequently used
to perform safety critical tasks, as with Medical Imaging Systems (MIS). Their
safety is significantly determined by their performance. As an example of an
important class of MIS, we consider interventional X-ray (iXR) systems, as built
and designed by Philips Healthcare.

These systems create images continuously based on X-ray beams, which are
observed by a surgeon operating a patient. Images need to be shown quickly for
hand-eye coordination [14], viz., the surgeon perceives images to be real-time.

In earlier work, when the ASD method [10] was considered to be used for the
design of iXR machines, we have evaluated their performance using simulation
models, derived from the design specification by hand.

This paper presents a fully formalised performance evaluation trajectory in
which we go from real measurements, via a formal model, to performance pre-
dictions, for many different designs, in a fully automated way. Starting point
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for this evaluation are models expressed in the IDSL formalism, which has been
introduced in [4] and is extended here to fit our new approach. From such mod-
els input for the Modest toolset [11] is automatically generated and results are
visualized using Graphviz and Gnuplot. This is not only very efficient, it also
brings advanced formal performance evaluation techniques, e.g., based on model
checking of timed automata and Markov chains, and discrete-event simulation,
at the fingertips of system designers, without bothering them with the technical
details of these. Furthermore, the approach allows to efficiently predict the per-
formance of a large number of design variants, to compare them, and select the
best design given a set of constraints and measures of interest. However, note
that in contrast to Design Space Exploration (DSE) [2], in which a few optimal
designs are being searched for, we evaluated a large and fixed amount of designs.

Even though the presented approach is fairly general, we illustrate its fea-
sibility on so-called biplane iXR systems, which comprise two imaging chains,
positioned in perpendicular planes to enable 3D-imaging. They are currently
implemented using two separate hardware platforms. However, for various rea-
sons, e.g., costs, physical space, energy consumption and failure rate, it is worth
investigating running the software for both image chains on shared (but more
powerful) hardware. Hence, we use the above mentioned approach to predict the
performance for shared hardware as a case study. Sharing hardware gives poten-
tial to concurrency, which may result in increased latency and jitter of images,
which, in their turn, affect (perceived) system safety.

We have identified four key objectives that such an integral and fully auto-
mated performance evaluation approach should meet, i.e., it should

O1: use as few costly measurements as possible;
O2: be able to evaluate a large number of complex designs;
O3: present its predictions intuitively via understandable (aggregated) metrics;
O4: be applicable to real complex systems.

These objectives are realized through the following four contributions made in
this paper. First, the model is calibrated using measurements and measurement
predictions to rely on few costly measurements. In contrast, current Design Space
Exploration approaches typically require many measurements to be readily avail-
able [2,13]. Second, we use iDSL [4], a language and toolbox for automated per-
formance evaluation of service systems, and extend it to support the prediction
of unseen empirical cumulative distribution functions (eCDFs). The automation
allows us to evaluate many designs, using Modest [11] for simulations, in line with
previous work [5,12]. Third, we use a variety of aggregation functions to evaluate
designs on different aspects. Fourth, we conduct a case study on a real-life MIS,
viz., Image Processing of iXR systems. We validate our model by comparing its
predictions with corresponding measurements. Also, the predictions are used to
gain insight in the performance of biplane iXR systems with shared hardware.
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Paper Outline: This paper is organised as follows: Section 2 provides the
methodology of our approach. Section 3 describes how measurements are taken,
predicted and applied. Section 4 sketches the iDSL tool chain and model. Section
5 presents the results of the case study. Section 6 concludes the paper.

2 Methodology

Fig. 1. The solution chain of the approach
comprising pre-processing (performing mea-
surements and deriving execution times), pro-
cessing (predicting eCDFs and simulating)
and post-processing (aggregate functions).

We specify our approach as a solu-
tion chain as depicted in Figure 1,
consisting of three consecutive
stages, viz., pre-processing, pro-
cessing and post-processing. The
iDSL toolbox automates these steps
and connects them seamlessly.

During pre-processing, mea-
surements are performed and exe-
cution times derived from them.
They are performed for differ-
ent iXR system configurations and
yield large sets of so-called activ-
ities for every single design. An
activity specifies, for a particular
resource and a performed func-
tion, the time interval of execution.
Activities are visualized automat-
ically in Gantt charts [15]. They
are grouped to obtain total execu-
tion times per function and in turn
aggregated into so-called empirical
cumulative distribution functions.

During processing, we start
with many inverse eCDFs, all based
on measurements, that cover all
possible designs of interest. Many are used for model validation (explained below)
and a fraction of them is used to predict new, inverse eCDFs. Hence, one may
reason about the performance of many designs, while relying on only few mea-
surements, in line with Objective O1.

Next, the iDSL model is executed to obtain performance results, in two steps:
(i) iDSL predicts eCDFs for all designs and calibrates the model based on these
eCDFs; and (ii) iDSL performs many simulations via the Modest toolset (see
Section 4), yielding results for all designs, meeting Objective O2.

During post-processing, results are processed into aggregated, understand-
able metrics, facilitating the interpretation of the results (Objective O3).
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3 Measurements and Emperical CDFs

In this section, measurements performed on design instances are used to predict
the performance of other design instances, in four steps: (i) we perform measure-
ments that yield activities; (ii) these activities are grouped into execution times;
(iii) these execution times are used to estimate emperical CDFs (eCDFs); and
(iv) we predict eCDFs for the complete design space, relying on few estimated
eCDFs. We discuss these 4 steps below in more detail.

3.1 Measuring Activities on a Real System

Measurements on embedded systems are typically performed by executing real
program code augmented with stopwatches, during a so-called execution run.
Stopwatches administer the starting and ending times of functions that run on
different resources. We consider iXR systems that loop in cycles and perform a
sequence of n image processing operations (f1, f2, ..., fn) on m parallel resources
(r1, r2, ..., rm). Measurements lead to activities Act : Res × Cycle × Time ×
Time×Func that specify a resource that performs a given function, in a certain
cycle, during a time interval. Figure 2 visualizes this in a Gannt-chart.

The system designer requires iXR systems to meet two properties: (i)
resources process only one operation for one image at a time, which reduces
complexity but comes at the price of a reduced utilization; and (ii) iXR systems
adhere to a strict FIFO scheduling policy to preserve the image order. Combined,
these two properties ensure non-overlapping functions.

3.2 Grouping Activities into Execution Times

To reduce complexity, we combine activities that perform the same functionality,
in the same cycle, but on different resources, into one execution time; formally:

Ef (c) = max{t2 | (ri, c, t1, t2, f) ∈ Act} − min{t3 | (rj , c, t3, t4, f) ∈ Act}, (1)

Fig. 2. Activities displayed in a Gantt-chart: The time is on the X-axis and correspond-
ing resources are on the Y -axis. It shows how E activities are grouped into execution
times. Activities form rectangles that are labelled with the performed function.
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Fig. 3. The empirical distribution func-
tion and its inverse, both based on k
samples. They are used to determine the
probability that a random variable is
below a certain value, and for sampling,
respectively. It shows the execution time
v (X-axis) and corresponding cumula-
tive probability p (Y -axis).

where f is a function, c the cycle, ri and rj resources, and t1, t2, t3 and t4
times. Execution time Ef (c) may include time during which all resources idled.
This may result from executing code without stopwatches, or a resource waiting
for another resource. Either way, this idle time is attributed to Ef (c) to not
underestimate execution times. Finally, EΩ(c) represents the overall execution
time; formally:

EΩ(c) = max{t2 | (ri, c, t1, t2, fi) ∈ Act} − min{t3 | (ri, c, t3, t4, fj) ∈ Act}. (2)

3.3 Using Execution Times to Estimate eCDFs

We now estimate eCDFs that summarize execution times for different functions.
We group the execution times for function f in an array, where we delete the first
j samples from j + k measured cycles to eliminate initial transient behaviour.
In order to chose a suitable truncation point j, we use the Conway rule [7], and
define j as the smallest integer for each function f that is neither the minimum
nor the maximum of the remaining samples:

min(Ef (j + 1), ..., Ef (j + k)) �= Ef (j + 1) �= max(Ef (j + 2), ..., Ef (j + 1)).

This results in array Xf with |Xf | = k elements, where Xf (i), with 1 ≤ i ≤ |Xf |,
denotes the ith element of Xf :

Xf = (Ef (j + 1), Ef (j + 2), ..., Ef (j + k)). (3)

Now, let X∗
f be a numerically-sorted permutation of Xf , such that X∗

f (i) ≤
X∗

f (j), for all i ≤ j. Clearly, |X∗
f | = |Xf | = k and again, X∗

f (i) with 1 ≤ i ≤ |X∗
f |

denotes the ith element of X∗
f .

In the following, we define the eCDF function ef and its inverse e−1
f based

on X∗
f , for all functions f . The eCDF function ef (v) : R → [0 : 1] is a discrete,

monotonically increasing function that returns the probability that a random
variable has a value less than or equal to v. It is defined, for each function f ,
using the commonly known empirical distribution function [1], as follows:

ef (v) =
1
k

k∑

i=1

1{X∗
f (i) ≤ v}, (4)
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where 1 is the usual indicator function. Figure 3 shows an example plot of ef ,
based on k values, which consists of |X∗

f |+1 horizontal lines, one for each of the
cumulative probabilities (0, q, 2q, 3q, ..., 1). It shows that ef (v) = 1

|X∗
f | = q, for

X∗
f (1) ≤ v < X∗

f (2).
The inverse eCDF function e−1

f : [0 : 1] → R is used to draw samples in
line with distribution ef (v), when simulating. Due to the discontinuities, ef

is not invertible. We resolve this by rounding each probability p to the next
higher probability p′ for which e−1

f (p′) is defined (see the vertical dotted lines in
Figure 3). Thus, e−1

f (p) returns for each p ∈ [0 : 1] a value v, as follows:

e−1
f (p) =

{
X∗

f (1), if p = 0,

X∗
f (�|Xf | p�), if 0 < p ≤ 1.

(5)

This inverse eCDF e−1
f (p) can be used within the inverse transformation method

[8]. Due to the above definition, only actual sample are returned.

3.4 Predicting eCDFs for the Complete Design Space

We now predict eCDFs for different designs choices. Formally, a Design Space
has n dimensions, each comprising a set of designs alternatives dimi =
{val1, val2, ..., valmi

}, for 1 ≤ i ≤ n. The Design Space Model DSM : dim1 ×
dim2 × ... × dimn is then the n-ary Cartesian product over all dimensions. A
Design Space Instance DSI, also called a “design” or “design instance”, provides
a unique assignment of values to all dimensions: x = (x1, x2, ..., xn), where each
entry xi ∈ dimi represents the respective design choice for dimension i.

For the sake of simplicity, Qx denotes an inverse eCDF e−1
f that is based

on a set of measurements of an execution run for design x. Additionally, Qx(p)
denotes a sample drawn from Qx, for probability p.

Clearly the number of designs can grow large, making it costly and infeasi-
ble to perform measurements for all possible designs. Hence, we predict inverse
eCDFs based on other inverse eCDFs without additional measurements, as fol-
lows. We carefully select a base design b̄ to serve as basis for all eCDF predictions,
i.e., b̄ is a design that performs well so that its execution times mostly comprise
service time and no queueing time. Consequently, set Q̂ comprises all inverse
eCDFs that need to be acquired through measurements. They correspond to b̄
and all neighbours of b̄ that differ in exactly one dimension, specified as a union
over all dimensions, as follows.

Q̂ = ∪n
i=1{Qb̄[vi]i | vi ∈ dimi}, (6)

where i is the dimension number, and b̄[vi]i = (b1, b2, ..., bi−1, vi, bi+1, ..., bn).
Let t be the design for which the inverse eCDF has to be predicted. We

assume that all n design dimensions are independent. As we will see below, this
assumption does well in the case we have addressed so far.
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Fig. 4. A geometric interpretation
of a 3D Design Space Model; each
spatial dimension relates to a design
space dimension. Each point in 3D-
space represents a Design Space
Instance by assigning a value to
each dimension. An arrow depicts
a ratio between two Design Space
Instances.

Using only inverse eCDFs in Q̂, we specify the product of n ratios that each
compensate for the difference between b̄ and t̄ in exactly one dimension:

R(p) =
n∏

i=1

Qb̄[ti]i(p)
Qb̄(p)

, (7)

where t̄=(t1, t2, ..., tn), p the probability, and n the number of dimensions.
Measuring all eCDFs in a design space with n dimensions and maximally v

values per dimension requires |DSM | = O(vn) measurements, while the predic-
tion approach only requires |Q̂| = O(vn) measurements. Predicting eCDFs is
particularly efficient for many dimensions, e.g., for 5 dimensions having 5 values
each, prediction requires only 25 out of 3125 (0.8%) eCDFs to be measured.

We illustrate eCDF prediction on an iXR machine with three design dimen-
sions: (i) the image processing function, which is f1, f2,..., fn, or Ω (the sum
of all functions); (ii) the mode is either mono(plane) for one imaging chain, or
bi(plane) for two parallel imaging chains; (iii) the resolution is the number of
pixels of the images processed, and is either 5122, 10242 or 20482 pixels.

Let d̄ = (fi,mj , rk) denote design instance d̄ with function fi, mode mj , and
resolution rk. It is presented conveniently in 3D-space (see Figure 4). Addition-
ally, Qd̄ denotes the inverse eCDF of this particular design.

Let t̄ = (f1, bi, 10242) be the design, for which we predict an inverse eCDF.
Let b̄=(Ω,mono, 5122) be the selected base design on which this prediction is
based. We then require eCDFs based on measurements for design b̄ and for
(f1,mono, 5122), (Ω, bi, 5122) and (Ω,mono, 10242) that each differ from b̄ in
exactly one dimension and from t̄ in all other dimensions. We assume that the
three design dimensions are independent. R(p) is then the product of three ratios
that each compensate for the difference between design b̂ and t̂ in one dimension:

R(p) =
Qf1,mono,5122(p)

Qb̄(p)
· QΩ,bi,5122(p)

Qb̄(p)
· QΩ,mono,10242(p)

Qb̄(p)
. (8)

The eCDF of the design Qt̄ is then predicted as follows: Qt̄(p) ≈ Qb̄(p) ·R(p), for
probabilities p ∈ [0 : 1]. To validate, we compare R(p) with ratio Qt(p)/Qb(p)
that is obtained when measuring Qt̄(p) in Figure 5, for all probabilities p ∈ [0 : 1].
Figure 5 shows the three ratio terms of (8):
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Fig. 5. Inverse eCDFs with relative execution times, which are the quotient of two
eCDFs. On the X-axis, it shows relative execution times, and on the Y -axis, cumulative
probabilities. Both axes show ratios and are therefore unitless.

(i) Q(f1,mono,5122) / Qb̄ (dark blue) compares the execution times of function f1
and Ω. Function f1 takes about 0.4 of the total execution time;

(ii) Q(Ω,bi,5122) / Qb̄ (red) compares the performance of a mono and biplane
system. Most values are close to 1. Hence, their performance is comparable;

(iii) Q(Ω,mono,10242) / Qb̄ (purple) shows the performance effect of a resolution
increase from 5122 to 10242 pixels, which is 3.2 for most probabilities p, which
is less than the fourfold increase of pixels.
Presumably, image processing comprises a constant and pixel dependent part,

leading to relatively faster processing for larger images. We also see that (iv) R(p)
matches its measurement-based counterpart Qt̄(p)/Qb̄(p) well.

The shown graphs are fairly constant for most probabilities p, which indicates
that design instances are linearly dependent. However, they display smaller val-
ues for probabilities p close to 1. This is because of the inverse eCDF Qb̄, which
has high execution times for probabilities near 1. Since all ratios discussed have
Qb̄ in their numerator, they consequently display smaller values for the same
probabilities. In Section 5, we show the results of predicting the performance of
designs, using these ratios.

4 Extending the iDSL Language and Solution Chain

In this section, we explain how we use iDSL [4] to automate the solution chain
of Figure 1. For this purpose, we have build on previous work of iDSL in which
a language and toolbox for performance evaluation of service systems has been
constructed. The language comprises six sections that constitute the concep-
tual model, i.e., Process, Resource, System, Scenario, Measures and Study (see
Figure 7). Figure 6 shows the iDSL solution chain that automates the method-
ology. To support it, the iDSL toolbox has been extended with functionalities
“Resolve eCDF”, realizing the concepts of Section 3, and “Compute aggregate”
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Fig. 6. The fully automated iDSL solution chain. An iDSL model and execution times
are used to predict eCDFs, leading to an iDSL model having the predicted eCDFs
incorporated in it. For each design, measures are performed and a number of aggregate
functions are computed using these measures. Finally, the aggregate values of all design
instance are sorted and turned into trade-off plots.

(see Figure 6, component 1 and 3). Below, we discuss the iDSL model of iXR
systems (Section 4.1), followed by the two extensions (Section 4.2 and 4.3).

4.1 The iDSL Model of iXR Systems

The iDSL model is defined as follows. Process Image Processing (IP) encom-
passes two high-level functions “Noise reduction” and “Refine”, which in turn
decompose into a sequence of n atomic functions f1,f2,. . . ,fn (as depicted in
Figure 8). IP is enclosed by a Mutual Exclusion to enforce a strict FIFO schedul-
ing policy by processing images in one go. The only resource, CPU, is equipped
with a FIFO queue. Service IP maps all processes to the CPU. The Scenario
prescribes that images arrive f times per second with fixed inter-arrival times,
where f is the frame-rate. The Measure simulation yields, in one run, latencies
of 50 images and the utilization of the CPU. The Design space is the Cartesian
product resolution and mode. However, to compute two trade-off graphs (as in
Figure 9), we also vary the buffer size and frame-rate.

Fig. 7. The concepts of iDSL [4]: A
service system provides services to
consumers. A service is implemented
using a process, resource and map-
ping. A process decomposes service
requests into atomic tasks, each assigned
to resources by the mapping. Resources
perform one atomic task at a time. A sce-
nario comprises invoked service requests
over time. A study evaluates a set sce-
narios to derive the system’s charac-
teristics. Measures of interest are the
retrieved measures.
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Fig. 8. Service IP contains process IP, which decomposes into a sequential hierarchy
of functions. All atomic functions map to resource CPU. In the figure, it shows latency
times (in μs) for each function and the utilization for Resource CPU. Latency demand-
ing functions are dark to be easily pinpointed by the system designer. Green Resource
CPU has a low utilization. This visual is auto-generated from the iDSL description.

The iDSL model of iXR systems can be depicted as a Discrete-time Markov
chain (DTMC) informally, as follows. Its states are composed of an image
counter, a function counter, the accrued service time of the processed func-
tion, the time until the next image arrives, and the queue of Resource CPU. Its
key events are the arrival of a new image, which is placed in the queue or dis-
carded when the queue is full, and the current function finishing processing. All
states have one or two outgoing transitions. The latter case represents a binary
probabilistic choice, driven by an eCDF, to decide whether the currently pro-
cessed function receives further processing, or finishes. Principally, the number
of states is infinite due to an ever-increasing image counter. However, omitting
this counter from the state, yields a finite-state DTMC that can be analyzed via
model checking [4] to retrieve aggregated latencies, e.g., the maximum latency.
iDSL generates the DTMC via the Modest language, which in turn transforms
into it a Stochastic Timed Automata [11] network. We only use simulations in
this paper.

4.2 Automated Prediction of eCDFs for the Complete Design Space

Pre-processing step “Resolve eCDF” performs iDSL model transformations in
which eCDF constructs are resolved, using execution times of designs. Our iDSL
model (as in Figure 8) contains Process IP with n functions (f1,f2,. . . ,fn) whose
probabilistic execution times are individually computed as in (8), for each design.
Concretely, “Resolve eCDF” predicts eCDFs using execution times, followed by
a discretization step that turns these eCDFs into finite probabilistic choices. It
thereby applies the following four steps, for each function, mode and resolution.
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First, the required eCDFs, as in the right hand of (8), are obtained by retriev-
ing the corresponding execution times, from which in turn eCDFs are estimated.
Second, solving this equation yields the eCDF to be predicted. Third, n samples
are taken from this predicted eCDF for probabilities ( 1

n , 2n ,· · · ,1) to discretize it,
i.e., we use n = 1000. Fourth, these n samples are combined in a probabilistic
choice, a process algebra construct that iDSL supports by default. After this,
the resulting probabilistic choices are ordered by design and function within that
design, and added to the iDSL model.

4.3 Automated Aggregation of Latencies

The post-processing step “Compute aggregate” applies, for each design, a num-
ber of aggregate functions on n obtained latencies from simulations (we use
n = 50). We selected the average, maximum and median as the functions of
interest (for an example, see Table 1). Concretely, “Compute aggregate” executes
when a simulation run finishes and computes the specified aggregate functions.

Next, “Process aggregate values” generates trade-off plots [6,9] that help the
system designer with balancing between two system aspects by plotting these
aspects of designs in a 2D-plane (for examples, see Figure 9). They visualize how
gains on one system aspect pay its toll on another. A design dominates another
design when it ranks better on one aspect and is at least a good on the other
aspect. Dominated designs are called Pareto suboptimal, others Pareto optimal.

Finally, “Process aggregate values” sorts design instances on each individual
aspect. This enables the comparison of designs on a particular system aspect.

5 Results of a Case Study on iXR Systems

In this section, we study the performance results of an iXR system to show the
validity and applicability of our work by evaluating a concrete iXR system.

We obtained all results by executing the constructed iDSL model on a
PC (AMD A6-3400M, 8Gb RAM) using 32’27” (minutes, seconds). Predicting
eCDFs took 1’48” (6%), simulations 30’13” (91%) and aggregate functions 19”
(1%).

5.1 The Performance of an iXR System

In the following, we present eCDFs with execution times and corresponding
aggregate metrics, a latency break-down graph, and two trade-off graphs.

We assess if the performance of biplane iXR systems on shared hardware is
as good as monoplane ones. We use eCDFs with execution times in which
we compare the measured performance (in Figure 10) of these biplane systems
(green) with monoplane ones (red), for resolutions 5122 (top), 10242 (middle)
and 20482 (bottom). As an effect of sharing hardware, biplane systems perform
worse than monoplane ones for image resolutions 5122 and 10242, viz., their
average latencies are 6% and 2% higher (as in Table 1), respectively. In contrast,
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Fig. 9. Two trade-off graphs. Left, designs (Ω, 2048, bi, b) where b is the buffer size,
which affects the relative number of time-outs (y-axis) and the average latency (x-
axis). Designs (Ω, 2048, bi, 0) and (Ω, 2048, bi, 1) are Pareto optimal (black triangles),
opposed to the other designs that are Pareto suboptimal (green circles). Right, designs
(Ω, 2048, bi, f) where f is the frame-rate (x-axis) affecting the time-out ratio (y-axis).

biplane systems with an image resolution of 20482 perform 9% better than their
monoplane counterparts, due to more powerful hardware biplane systems entail.

Additionally, we assess whether the predictions reflect reality. Therefore, we
compare the predicted performance (in Figure 10) of these biplane systems (blue)
with the monoplane one (black). They are consistently 6-7% slower, just as the
difference in the average and median latency of the aggregate metrics (in
Table 1). This difference stems from eCDF prediction, i.e., it is the ratio for
mode between monoplane and biplane: Q(Ω,bi,5122) / Qb̄ (in Figure 5).

Furthermore, iDSL creates latency breakdown charts for all designs,
including design (Ω, 2048, bi) (see Figure 8). “Spatial noise reduction” and “Tem-
poral noise reduction” (dark gray) are on average the most time consuming
functions of IP. We consider the utilization of CPU of 0.65 “good” (green).

Finally, we show two trade-off graphs (in Figure 9). They provide insight
in how an increase in one system aspect implies a loss in another one. For illus-
tration purpose, the design space is therefore expanded here with the dimen-
sions buffer size and frame-rate. First, Figure 9, (left) shows how the buffer size
influences both the average latency (x-axis) and the time-out ratio (the relative
amount of images rejected by the system due to overuse) (y-axis), for designs
(Ω, 2048, bi, b) where b ≥ 0 is the buffer size. Note that both axis are reversed,
so that designs that are on the top-right in the graph are preferable, e.g., design
(Ω, 2048, bi, 1) is preferred to (Ω, 2048, bi, 2). The design with n = 0 yields 50%
time-outs and a latency of 119ms, whereas the design with n = 1 leads to 16%
time-outs, but at the price of a latency of 184ms. All designs with n ≥ 2 yield
16% time-outs, but with an ever increasing latency due to queuing time as n
increases, making them Pareto suboptimal.

Figure 9 shows that the frame-rate and the time-out ratio are positively
correlated, for designs (Ω, 2048, bi, f) where f is the frame-rate. For f ≤ 7, no
time-outs occur, whereas for f > 7 the number of time-outs increases steadily.
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5.2 The Validity and Applicability of the iDSL Model

We compare the predicted and measured eCDFs of six designs to see if the
predicted results reflect reality, using two similarity functions for eCDFs: the
Kolmogorov distance Kd and the maximum execution ratio Er. Er is inspired
by Kd, but returns the “horizontal distance”; these distances are also indicated in
the plot in Figure 10. Er is normalized using the median values of its arguments,
making Er symmetric and unitless. They are defined as follows.

Kdm,n = sup
x∈R

|Fm(x) − Fn(x)|, Erm,n =
supp∈[0:1] |Gm(p) − Gn(p)|

1
2Gm(0.5) + 1

2Gn(0.5)
,

Fig. 10. Measured and predicted execution times eCDFs, for resolution 512 (top), 1024
(middle) and 2048 (bottom), and mode monoplane and biplane. (iDSL auto-generated)
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Table 1. For three aggregate functions, the predicted and measured outcomes (in ms)
and their difference Δ, based on the first 50 latency values, for six designs.

Average latency Maximum latency Median latency

Design Pred. Meas. Δ Pred. Meas. Δ Pred. Meas. Δ

(Ω, 512, mono) 9 9 0% 9 12 -22% 9 9 0%
(Ω, 512, bi) 9 9 0% 12 15 -21% 9 9 0%
(Ω, 1024, mono) 27 28 -2% 29 33 -12% 27 27 0%
(Ω, 1024, bi) 29 28 4% 30 29 3% 29 28 4%
(Ω, 2048, mono) 122 123 -1% 149 198 -25% 120 120 0%
(Ω, 2048, bi) 130 112 16% 149 126 19% 128 112 14%

where m and n are eCDFs, Fi(x) the probability of eCDF i for value x, and
Gi(p) the value of eCDF i for probability p.

Table 2 shows outcomes for Kd and Er. It shows the maximum distance p
and time it occurred for Kd, and the maximum time ratio at which p occurred
for Er. Kd is generally low, i.e., most of its values are below 0.16. However,
for design (Ω, 1024, bi) and (Ω, 2048, bi), Kd is high, 0.86 and 1, resp. Table 1
shows the measured and predicted outcomes of the aggregated functions. Like
Kd, predictions for the average and median latency are high for two designs, i.e.,
for design (Ω, 1024, bi), 4% and 4%, and for (Ω, 2048, bi) 16% and 14% difference,
resp. Contrarily, the eCDFs for these designs (in Figure 10, green and blue) are
not that far apart, although the predictions are clearly conservative. This is due
to the relative efficiency gain that occurs when both the resolution and mode
are increased, which eCDF prediction does not address.

Table 2. Comparing measured and predicted
eCDFs via two similarity functions.

Design Kd x Er p
(Ω, 512,mono) 0.13 8.4 ms 0.27 1.00
(Ω, 512, bi) 0.08 8.9 ms 0.35 1.00
(Ω, 1024,mono) 0.22 27.0 ms 0.14 1.00
(Ω, 1024, bi) 0.86 28.4 ms 0.04 0.20
(Ω, 2048,mono) 0.15 122.6 ms 0.50 0.98
(Ω, 2048, bi) 1.00 125.1 ms 0.24 0.98

Note that Kd is high when
the execution times do not vary
much and the overlap is small (in
Figure 10, green and blue), while
the graphs are fairly similar. Hence,
we propose measure Er, tailored
to this domain, comparing rela-
tive execution times. In the case
study, Er has its maximum (see
Table 2), for probabilities near 1,
the worst case behaviour. Er is high
for designs (Ω, 512,mono), (Ω, 512, bi) and (Ω, 2048,mono) due to outliers. How-
ever, Figure 10 shows that their graphs are relatively similar, especially for prob-
ability values below 0.8.

6 Conclusions and Future Work

In this paper, we used iDSL, a language and toolbox for performance prediction
of medical imaging systems. We extended iDSL to support the prediction of
unseen eCDFs based on other measured eCDFs, and aggregate functions.
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iDSL provides a performance evaluation approach in which we (i) rely on few
costly measurements; (ii) use the iDSL toolset to automatically evaluate many
designs and present the results visually; (iii) automatically generate aggregated
metrics; and (iv) evaluate the performance of complex iXR systems.

In a case study, we have investigated the performance effect of biplane iXR
systems on shared hardware. Measurements indicate that these systems perform
as good as monoplane ones, but predictions show more conservative results.

iDSL generates latency breakdown charts for each design that show the sys-
tem designer the process structure, the time consuming processes and resource
utilizations, at one glance. iDSL also generates trade-off graphs, in which designs
are plotted on two oppose system aspects. They provide the system designer
insight in how an increase on one system aspect implies a loss on another one.

We validated the model by comparing its outcomes with measurements. They
mostly reflect reality, but are conservative for high resolution biplane systems.
The case study involved a medical imaging system, but we consider the approach
applicable to many service-oriented systems.

In parallel work we have extended iDSL with probabilistic model checking
to obtain execution time eCDFs [3] using the Modest toolset [11].
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TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014)

12. Haveman, S., Bonnema, G., van den Berg, F.: Early insight in systems design
through modeling and simulation. Procedia Computer Science 28, 171–178 (2014)

13. Igna, G., Vaandrager, F.: Verification of printer datapaths using timed automata.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416,
pp. 412–423. Springer, Heidelberg (2010)

14. Johnson, J.: Designing with the Mind in Mind: Simple Guide to Understanding
User Interface Design Rules. Morgan Kaufmann (2010)

15. Wilson, J.: Gantt charts: A centenary appreciation. European Journal of
Operational Research 149(2), 430–437 (2003)



Stream Processing on Demand
for Lambda Architectures

Johannes Kroß1(B), Andreas Brunnert1, Christian Prehofer1,
Thomas A. Runkler2, and Helmut Krcmar3

1 fortiss GmbH, Guerickestr. 25, 80805 Munich, Germany
{kross,brunnert,prehofer}@fortiss.org

2 Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich, Germany
thomas.runkler@siemens.com

3 Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
krcmar@in.tum.de

Abstract. Growing amounts of data and the demand to process them
within time constraints have led to the development of big data systems.
A generic principle to design such systems that allows for low latency
results is called the lambda architecture. It defines that data is analyzed
twice by combining batch and stream processing techniques in order to
provide a real time view. This redundant processing of data makes this
architecture very expensive. In cases where process results are not con-
tinuously required to be low latency or time constraints lie within several
minutes, a clear decision whether both processing layers are inevitable
is not possible yet. Therefore, we propose stream processing on demand
within the lambda architecture in order to efficiently use resources and
reduce hardware investments. We use performance models as an analyti-
cal decision-making solution to predict response times of batch processes
and to decide when to additionally deploy stream processes. By the exam-
ple of a smart energy use case we implement and evaluate the accuracy
of our proposed solution.

Keywords: Lambda architecture · Big data · Performance · Model ·
Evaluation

1 Introduction

With the increasing ubiquity of information and communication technology
(ICT) and the emergence of the Internet of things (IoT) the available data
amount is growing exponentially. Simultaneously, technologies have been devel-
oped to store, manage and analyze these diverse and high volumes of data, also
known as big data [30]. These circumstances allow for applying analytics in order
to gain knowledge and support decision-making. For more and more usage sce-
narios, these analytical capabilities must also meet specific time requirements
such as real-time [17]. One common approach to design big data systems that
can cover many use cases is the lambda architecture [26]. It mainly consists of a
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 243–257, 2015.
DOI: 10.1007/978-3-319-23267-6 16
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batch layer and a speed layer. The former iteratively processes a set of historical
data in batches while the latter processes the arriving data stream in parallel
to incrementally analyze latest data. By joining the output of both layers query
results always reflect current data.

Nowadays, various complementary technologies with different characteristics
exist to build a big data system and there is hardly one technology solution
that fits most use cases of an organization. Although the lambda architecture
simply is a generic design framework which offers a solution for many use cases,
nonetheless, a variety of technologies can be applied for the batch or speed layer.
Examples for the batch layer are Hadoop MapReduce [5], Apache Pig [7], and
Apache Spark [9] and for the speed layer Apache Storm [10], Apache Spark
Streaming [9], Apache Samza [8], or Amazon Kinesis [2]. This multitude leads
to the development of complex system of systems, which often results in per-
formance issues and high resource requirements [14]. Furthermore, the lambda
architecture intends to process all data twice in both layers. Batch processes
also analyze data from the ground up in each iteration to ensure fault toler-
ance in case of hardware failures or human mistakes [26]. These fundamental
ideas require costly resources. For use cases where time constraints are not con-
tinuously needed or lie between several minutes, it can be often an important
question whether a speed layer is really required or not. However, this question
can usually not be answered during system development nor in test systems
under realistic workload. As stream processing heavily utilizes main memory,
the speed layer can also become an expensive investment [24].

Therefore, we propose a speed layer or stream processing, respectively, on
demand. The idea is to exclusively use batch processes as often as possible and
switch on stream processing only when batch processes are likely to exceed
response time constraints. In this way, computing power is utilized more effi-
ciently and resources can be saved as well as be available for other processes.
In case of virtualized environments, investments can be directly decreased by
reducing cloud service resources. In order to switch on stream processing at the
right time, it is inevitable to predict the response time of succeeding batch iter-
ations. For this purpose, we use performance models. They allow to describe
performance influencing factors of software systems and to predict performance
metrics such as response time, throughput and utilization by means of analyti-
cal solvers or simulation engines [13]. Therefore, we integrate estimated resource
demands into the model based on measurements from batch processes to simu-
late an accurate system behavior. This enables us to efficiently schedule stream
processes.

In this paper, we first give a detailed description of our proposed approach
in Section 2 and how we use performance models to support decision-making. In
Section 3, we validate our approach in an experiment. We describe the selected
use case, the setup and sample algorithm for the batch layer, and the prototype
performance model to predict batch processes. Afterwards, we discuss the experi-
mental results we derived for different workload scenarios. In Section 4, we reflect
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related work in the area of the lambda architecture and, finally, conclude our
paper with providing an outlook for future work in Section 5.

2 Stream Processing On Demand

In order to make decisions about when to switch on stream processing, we use
performance models as an analytical solution. As illustrated in Figure 1, the
iterative process is divided into two main steps in which the following Sections 2.1
and 2.2 are structured. First, one batch iteration and, potentially, a concurrent
stream process are started within the lambda architecture. Second, after the
batch process has ended, a decision-making model is used to decide whether
stream processing is required in the next batch process iteration or not. Basis
of decision-making is a performance model which is used to predict the response
time of a batch process. Afterwards, the procedure is repeated.

Batch process

Stream process
on demand

1

2

         Lambda architecture

    Decision-making model

Fig. 1. Stream Processing On Demand Process

2.1 Data Processing in the Lambda Architecture

As already mentioned, our focus is on data processing, namely batch and stream
processing, within lambda architecture and not storing data sets or results.
Figure 2 illustrates the data flow and structure of batch and speed layer that dif-
fer from each other. Starting point is a shared data source which either streams
the same data into each processing layer or gets accessed by each layer to retrieve
data. Within the batch layer, all data are stored in a data set. A special char-
acteristic of the data set is that it is append-only and data are not updated
or removed [26]. Batch processes use the data set to operate on. In doing so,
each batch process usually analyzes a huge set of historical data which leads to
response times of minutes or hours for one batch job. The results are written to
separate views, which is also considered as serving layer by Marz and Warren
[26] for batch results. Batch processes constantly run iteratively and start from
the beginning once a batch job has finished. If a batch process starts, only data
that have been created before are included. Consequently, data that arrive dur-
ing the current batch process are only included in the next new batch process.
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Since all data are analyzed in each cycle, each new result view can replace its
predecessor. As the batch layer does not rely on incremental processing, it has
the advantage of being a robust system where everything can be recomputed and
reconstructed in case of hardware or software failures or human mistakes [26].

Query

  Batch layer

  Speed layer

Data
set View

View

Incoming data

Query
Query

Double processing Merge

Fig. 2. Composition and data flow of batch and speed layer of the lambda architecture
(adapted from Marz and Warren [26])

In contrast to the batch layer, the speed layer does not keep a record of his-
torical data and solely uses main memory. As of today, stream processes run per-
manently and analyze each incoming message. They incrementally calculate and
immediately update their result views. Thus, both layers include separated views
and, in practice, usually different technologies are used as underlying databases
because of their distinct requirements regarding read and write operations. In
order to receive a holistic result, the view of both layers have to be merged in a
query.

Although both layers process the same data, the results of queries that merge
views only reflect data that are processed once at the time of the query. The
purpose of the speed layer is to analyze the data prior to the batch layer and
enable low latency by incremental updated result views. As a result, a past
view of the speed layer can be discarded as soon as a subsequent batch job has
finished.

A typical implementation of the lambda architecture as illustrated in Figure
2 would be to use Apache Kafka [6] - a publish-subscribe messaging system -
as shared source for incoming data. For the batch layer, HDFS can be used
as data set and Hadoop MapReduce for batch processing. For storing batch
results, which Marz and Warren [26] also describe as serving layer, ElephantDB1

represents a specialized database for this purpose. For the speed layer Apache
Storm [10] is an example of an appropriate technology and Apache Cassandra
[4] of a database.

1 https://github.com/nathanmarz/elephantdb

https://github.com/nathanmarz/elephantdb
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2.2 Decision-Making Model

To decide when to switch on stream processing, we predict the response time of
succeeding batch processes and build a decision-making model. To comprehend
why it is necessary to predict the succeeding batch processes, the chronological
sequence of batch and stream processes as intended by the lambda architecture
is illustrated in Figure 3. As already mentioned, results of batch processes are
not available until they finish, while results of stream processes are incremental
and can be queried at any time. Supposing one batch process i has ended and
a decision must be made at time y on whether additional stream processes are
needed afterwards or not, the earliest point in time where results of stream pro-
cesses can be reasonably used is at time z. Stream process j considers only data
newer than time y. Therefore, a batch process is required that has analyzed data
before time y. However, the corresponding batch process j will only start after
time y and end at a given time z. Thus, a decision must already be made at time
y, if batch process k violates time-constraints so stream processes are switched
on at time y. Consequently, query results after time z will have consistently
incorporated all data.

Batch process j
time < y

Stream process j
time ≥  y

Batch process k
time < z

Stream process k
time ≥  z

Batch process i
time < x

timey z

Decision point whether batch process k will exceed 
time-constraint and stream processes j and k are demanded

x

Fig. 3. Chronological sequence of batch and stream processes

The above mentioned response time prediction is part of our decision-making
model. Its procedure is depicted in Figure 4. Starting point is a finished batch
process iteration. The response time of the second next batch iteration is pre-
dicted by using a performance model, which takes two inputs - the time con-
straint for the duration of a batch process and the load intensity. The latter
means information about the incoming data of the batch layer. For instance,
this can be in the form of a variable distribution as modeled by the LIMBO
tool [22]. The prediction can be accomplished by means of simulation or ana-
lytical solving. If the predicted response time does not lie within the specified
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Start new
batch process
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stream process

Will the batch
process exceed time 

constraints?

Start
Batch process

(and stream process) 
are completed

End

Yes
or
No

Yes

Predict response time of 
second next batch process

Load intensity 

Time
constraint

Fig. 4. Decision-making model

time limitation, the model tries to start batch processing in parallel with stream
processing, otherwise the model considers batch processing only as sufficient.

3 Experimental Validation

For the evaluation of our proposed approach, we conduct a controlled experiment
which is described in the following Subsections. First, we discuss the selected use
case. Second, we list the used setup and technologies of our exemplary batch layer
as well as the sample algorithm for data processing. Afterwards, the performance
model prototype to support decision-making is presented. Finally, we evaluate
the accuracy of the inferred decision-making on the basis of three selected sce-
narios and discuss results from our observed measures.

3.1 Use Case and Design Options

To represent incoming data and their distribution, we pick the example of a
common smart energy use case as illustrated in Figure 5.

Here, several hundred wind turbines are positioned in several wind farms in
different geographic locations with long distances onshore or offshore. In order to
operate efficiently, they measure several thousand parameters per turbine such as
pressure, temperature or vibrations of rotor blades. As they are subject to various
influences, wind turbines are not always in operation and do not measure data,
for instance, if they are defect or are maintained. While onshore wind turbines
and wind farms, respectively, tend to have a time-based availability between 95-
99%, the values for offshore wind farms with distance less than 12km range from
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Fig. 5. Data processing of wind power facilities

67.4% to 90.4% [19]. However, wind turbines include also downtimes, if wind is
too strong or too weak which is described by the metric energy-based availabil-
ity. Faulstich et al. [20] compared time-based and energy-based availability of
wind turbines. In an extreme case where the downtime due to defects and the
downtime due to wind speed does not overlap, the energy-based availability lies
within 90.4-95,2%.

Dependent on a wind turbine’s availability, we assume it either produces a set
of measurement data with constant volume or does not produce any output data.
As a result, wind turbines generate not only immense amount of heterogeneous
data, but also variable load which makes it difficult to predict the production
rate of data. As soon as data are generated, they flow into a central data cen-
ter where they are processed. Dependent on the use case, data are handled in
different ways. They can be gathered and stored in a central repository where
batch processing can be used to extract, transform, and load (ETL) data and
to apply complex analytics. This procedure usually lies in the range of minutes
or hours and is not suitable for real-time requirements. For this purpose, stream
processing can be used to directly process data as they stream in. Here, ana-
lytical algorithms may be designed in a simpler and less complex way than at
batch processing as well as implemented in slightly different way as they produce
incremental results.

In scenarios where low latency results are required and normally stream pro-
cessing is chosen, but also analysis of historical data by batch processing need to
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be incorporated for conclusive results, the lambda architecture is an appropriate
solution that allows for serving such use cases. Therefore, on both processing
layers, stream and batch, the same kind of algorithm is implemented and results
are joined.

Sensor data can be used for a variety of analytical scenarios such as for
condition monitoring, diagnostics, predictive analytics or maintenance, and load
forecasting. For our experiment, we concentrate on the latter example. Since the
introduction of energy exchange such as the continuous intraday spot market of
the European power exchange (EPEX), power can be bargained in 15-minute
intervals up to 45 minutes before delivery which enables providers as well as
consumers to efficiently act on short notice. In this case, the time-constraint
is within 15 minutes. Typical forecast methods for short-term load forecasting
include different exponential smoothing methods such as an autoregressive inte-
grated moving average (ARIMA) model [33] or recurrent neural networks [29].
Furthermore, these algorithms are often applied on a sliding window of historical
data.

Therefore, we will use this smart energy scenario as an example for our
proposed approach and generate sensor data that are processed by one central
system in similarly way as we have modeled it in a previous work [23]. The
generator produces comma-separated values (CSV) files that represent measure-
ments from wind turbines of one wind farm. Listing 1 shows the file structure
and syntax.

Listing 1. Example of generated monitoring data from wind turbines

id , timestamp , power , param1 , ... paramN

12, 2015 -04 -01 08:23:04.125 , 12.67, value1 , ... value1

15, 2015 -04 -01 08:23:03.973 , 13.49, value2 , ... value2

13, 2015 -04 -01 08:23:04.096 , 12.59, value3 , ... value3

...

Each line represents a measurement of one wind turbine consisting of a id,
timestamp, a power value and several hundred more parameters which we gen-
erated randomly and do not include in our succeeding analytic algorithms.

3.2 Implementation of the Batch Layer

To examine the accuracy of response time prediction for batch processes, we
setup the batch layer using HDFS to store data sets and Hadoop MapReduce
for batch processing. For simplicity, we installed a single node cluster in pseudo-
distributed mode so Apache Hadoop runs only on one machine, but their dae-
mons have their own Java processes. In order to do load forecasting and apply
the data generator as mentioned in Section 3.1, we implemented a simple mov-
ing average algorithm in a Hadoop MapReduce job. It is based on an example
algorithm2.

2 https://github.com/jpatanooga/Caduceus/

https://github.com/jpatanooga/Caduceus/
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The MapReduce programming model intends to implement one map and one
reduce function. The former takes a key/value pair as input and produces a set
of key/value pairs, whereas the latter takes a key and set of associated values
and combines the values to another smaller set [18]. In our case the map function
is implemented as

Listing 2. Map function pseudo code

map(Object key1 , String value1 ):

// key1: file name

// value1: measurements of wind turbines of one farm

for each line l in value:

kv = parse(l)

emit({kv.id, kv.timestamp}, {kv.timestamp , kv.power })

The function is called for each file within a given folder. It receives one
CSV file and its value, which are multiple rows of measurement data of wind
turbines. The algorithm reads every line and parses it in order to filter the id
of a wind turbine, the timestamp of the measurement and the power value that
describes the generated power to that time. Afterwards it releases a composite
key containing the id and timestamp, and the values timestamp and power. By
using a composite key Hadoop sorts the ids of wind turbines and, in a secondary
sort, the timestamp for each id. Subsequently, the reduce method results in a
simpler design as displayed in Listing 3.

Listing 3. Reduce function pseudo code

reduce(Object key , Iterator <object > values ):

// key: an object containing id and timestamp

// values: power values ordered by timestamp

result = simpleMovingAverage (values)

emit(id , result)

The reduce function is called for each different wind turbine and calculates
the actual simple moving average. It receives the key object and a list of values
as input which contains timestamps and power values sorted by the former. The
function itself calculates the result and emits it with the corresponding wind
turbine id.

3.3 Performance Model Prototype

We use the Palladio component model (PCM) [12] for our performance model.
PCM is an annotated software architecture model that allows for describing per-
formance relevant factors of software architecture, execution environment and
usage profile [13]. Such performance models enable software architects and per-
formance engineers to predict performance metrics such as response time, uti-
lization or throughput by means of simulation or analytical solving.

PCM is divided into several sub-models. In the repository model, we specify
a batch process as a software component with its service effect specification
(SEFF) to describe the resource demands of the provided service. In the resource
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environment model, we describe the hardware resources and processing rates on
which a batch process will be executed. The concrete assignment of modeled
batch processes to resources is determined in the allocation model. Finally, we
specify the load intensity from wind turbine measurements in the usage model.

(a) Repository model
(b) Service effect specification
(SEFF) <processJob>

Fig. 6. Modeling a batch process with the Palladio component model

Figure 6 shows the substantials of modeling the batch process in our per-
formance model. As shown in Figure 6a, we specify one interface BatchProcess
with the method processJob to analyze an input data set. The implementation of
the interface and its method is modeled by the component MapReduce with the
corresponding SEFF. As illustrated in Figure 6b the SEFF itself solely consists
of a CPU resource demand in dependence on an incoming data set size. The
data set size is specified in the usage model, in our case, in gigabyte.

In order to define the CPU resource demand and simulate a realistic system
behavior we integrated measurements into our performance model. Therefore,
we measured response times of the MapReduce job described in Section 3.2 while
running it. Afterwards, we used an approximation with response times, which
is also implemented by the LibReDe library [32], to estimate the required CPU
time each process takes per transaction. One transaction means exactly one
batch process that analyzes a set of messages. In our case, the resulting resource
demand we estimated is 261 as represented in Figure 6b.

In order to predict results, PCM instances must be first transferred to be
either simulated or solved analytically. Available model transformations are
a model-to-text transformation like SimuCom [12], queuing Petri nets (QPN)
transformations as well as a transformation to layered queuing networks (LQN).
Brosig et al. [13] evaluated these model transformations with regards to their
efficiency and accuracy. In our application scenario, time is critical and the model
need to be solved as efficiently as possible so resulting predictions are available
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at an early opportunity and the next batch process can be initiated. Therefore,
we recommend the use of a model transformation to LQNs. It showed to be the
most efficient solution as it is an analytical solver [13].

The performance model prototype has the limitation that is does not reflect
the scheduling of processes itself within a cluster, for instance, as accomplished
by Apache Hadoop YARN. Therefore, we assume sufficient available resources
so batch and stream processes always run without interference.

3.4 Controlled Experiment

To conduct our experiments we run the mentioned data generator to produce
CSV files for 10 wind farms with 100 wind turbines each, whereas one wind tur-
bine approximately produces one measurement every second. Afterwards, we run
the implemented Hadoop MapReduce job which reads only data measured within
a sliding window of 24 hours. While the batch process is running, meanwhile we
determine the incoming data volume. After the batch process is finished, we pre-
dict the response time of the second next batch process using our performance
model. For the immediate succeeding batch process, we exactly know the data
volume it will process as we know the historical data distribution and tracked
new arrived data. For the batch process to be predicted, the data volume must
be estimated. Therefore, a variety of specialized tools and algorithms exist to
classify and forecast workload such as the approach by Herbst et al. [21]. As we
target an efficient solution and a short-term forecast is required, namely, only
the next point, we only use a näıve forecast in this study. It does not involve any
computational overhead and simply takes the value of the latest observation as
next forecast point in contrast to other methods such as cubic smoothing splines
or ARIMA 101 that are more appropriate for scenarios with strong trends or
noises [21]. In our case, the next forecast point equals the arrived data volume
which has not been absorbed by the last batch process yet. Afterwards, we trigger
the performance models with the predicted load intensity as input, and compare
the predicted response time with the eventual measured response time.

As already mentioned, the aim is to minimize the usage of the speed layer.
The level of potential resource reductions and costs savings that can be achieved
depends on the characteristics of the underlying workload and variations in data
distributions. The effectiveness of our solution itself, however, depends on how
well the data volume is predicted and, especially, how accurate batch processes
are predicted. Therefore, we concentrate on the latter in this controlled exper-
iment and perform three selected scenarios with different load intensities by
assuming different availabilities of wind turbines based on Faulstich et al. [19,20]
to evaluate the accuracy of our solution.

In the first scenario, we assume the wind turbine availability (WTA) is con-
stant during two following batch iterations. Consequently, the measurement data
wind turbines produce do also not fluctuate so the predicted load intensity using
a näıve forecast is very close to the actual measured load intensity. In the second
scenario, we assume an increase of the WTA of 5 % for the subsequent batch
process and, vice versa, we assume a decrease in a final third scenario. For each
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Table 1. Measured and predicted results of batch processes

Scenario WTA Fluctuation PRT MRT RE

1
85 % ± 0 % 12.78 minutes 12.17 minutes 5.01 %
90 % ± 0 % 13.53 minutes 13.60 minutes 0.51 %
95 % ± 0 % 14.28 minutes 15.47 minutes 7.69 %

2
85 % + 5 % 12.78 minutes 13.82 minutes 7.53 %
90 % + 5 % 13.53 minutes 15.03 minutes 9.98 %

3
90 % − 5 % 13.53 minutes 12.58 minutes 7.55 %
95 % − 5 % 14.28 minutes 13.17 minutes 8.43 %

scenario, we conduct several experiments with different WTA to also validate
the prediction accuracy under different load intensities. Afterwards we compare
predicted response times (PRT) with eventual measured response times (MRT)
of the batch process and calculate the relative error (RE) of the PRT. The results
are listed in Table 1.

For a WTA of 85% and no fluctuation during the following batch process,
we predict the response time for the batch process to be 12.78 minutes. We
measured a MRT of 12.17 minutes which leads to a RE of 5.01%. For a WTA
of 90%, the RE of the predicted response time is only 0.51 % and 7.69% for a
WTA of 95%.

In the second scenario, for a 85% WTA and a 5% increase of available wind
turbines during the following batch iteration, the PRT is 12.78 minutes and the
MRT 13.82 minutes with a 7.53% RE. Here, the PRT equals the same PRT as
in the experiment for first scenario with a 85% WTA since the näıve forecast,
as already mentioned, uses the last observation point, namely 85%, as next
prediction point. The same occurrence also applies for the following experiments.
The highest RE with 9.98% appeared for a WTA of 90% with +5% fluctuation
at which the PRT is 13.53 minutes and the MRT 15.03 minutes.

For a decrease of the 5% WTA in the last scenario, we measured REs in the
range similar to the former scenario. With a starting point of 90% WTA, the
PRT is 13.53 minutes and the MRT 12.58 minutes. For 95% WTA, the PRT
equals 14.28 minutes and MRT 13.17 minutes.

In our experiments, we showed that we are able to predict the response times
of a batch process or MapReduce job, respectively, with RE between 0.51% and
9.98%. With regards to our exemplary use case, power can be traded every quar-
ter of an hour in the intraday spot market. Assuming a fluctuating workload and
a maximum acceptable response time of 14 minutes remaining one minute buffer,
we would be able to accurately schedule stream processing in the second scenario,
namely, not to switch on in the first experiment and to switch on stream pro-
cessing in the second experiment as the MRT exceeds the time-constraint with
15.03 minutes. For a decreasing fluctuation, we would proper schedule stream
processing for a starting WTA of 90%. However, for the last experiment in Table
1, we would have left the speed layer switched on as the PRT lies over 14 minutes
in contrast to the MRT which is mainly caused by the näıve forecast.
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4 Related Work

Similar to our use case, Sequeira et al. [31] propose a system based on the lambda
architecture to analyze energy consumption. Martnez-Prieto et al. [25] adapted
the architecture for semantic data and Casado and Younas [15] give an extensive
review about technologies for the lambda architecture. Regarding optimization
or efficient resource usage of the architecture, however, related research mainly
focuses on the processing layers itself. For instance, Aniello et al. [3] and Rychl
et al. [28] specify on scheduling stream processes, while Alrokayan et al. [1]
concentrate on scheduling batch processes.

Regarding predicting batch processes, there is comprehensive research avail-
able, for instance, specialized for MapReduce jobs [11], [34], [35] as well as for
big data applications in cloud infrastructures [16].

To overcome redundancy regarding software development and infrastructure
complexity, approaches such as storm-yarn3 or by Nabi et al. [27] exist to inte-
grate stream processing in the Apache Hadoop environment. Summingbird4 is
an open source library that allows to write algorithms that can be used for batch
as well as stream processing.

5 Conclusion and Future Work

This paper introduced a novel approach to use resources more efficiently when
implementing the lambda architecture. It is applicable for usage scenarios where
time constraints of queries are not permanently required to be low or lie within
several minutes. To reduce processing power, we propose to switch on stream
processing on demand in cases where batch processes are likely to exceed time
requirements. By using historical information of incoming data and näıve fore-
casting to classify workload, we predicted the response time of succeeding batch
iterations. Therefore, we used performance models in which we integrated esti-
mated resource demands based on measurements. The results allow us to make
decisions when additional stream processes are required or, vice versa, can be
saved to reduce resource usage. If hardware provision is used in a as-a-service
manner, it allows for reducing costs directly.

For future work we plan to automate the process illustrated in Figure 1.
This involves to automatically measure incoming data during each batch itera-
tion, apply workload forecasting techniques and trigger solving the performance
model. Another challenge is to also integrate the speed layer into our test envi-
ronment. This will enable us to examine our approach and its efficiency for
successive batch iterations for a lengthy period of time. Furthermore, we will
integrate other workload forecasting techniques besides the näıve forecast to
evaluate possible prediction enhancements and scheduling optimizations.

3 https://github.com/yahoo/storm-yarn
4 https://github.com/twitter/summingbird

https://github.com/yahoo/storm-yarn
https://github.com/twitter/summingbird
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Abstract. In this paper we propose a simulation framework that allows
for the analysis of power and performance trade-offs for data centres
that save energy via power management. The models are cooperating
discrete-event and agent-based models, which enable a variety of data
centre configurations, including various infrastructural choices, workload
models, (heterogeneous) servers and power management strategies. The
capabilities of our modelling and simulation approach is shown with an
example of a 200-server cluster. A validation that compares our results,
for a restricted model with a previously published numerical model is
also provided.

Keywords: Data centres · Simulation · Discrete-event models ·
Agent-based models · Power management · Performance analysis ·
Power-performance trade-off · Cascading effect · Transient analysis ·
Steady-state analysis

1 Introduction

In 2012-2013, the global power consumption of data centres (DCs) was approx-
imately 40 GW; this number is still increasing [7]. Hence, being able to evaluate
the effect of energy-savings measures is valuable. One such energy-savings mea-
sure is power management (PM), which tries to lower the power state of servers,
while performance is kept intact. Moreover, the so-called cascade effect (to be
discussed later; cf. [8]) on energy consumption in infrastructure, strengthens the
effects of PM strategies.

This paper aims to obtain insight in power usage and system performance
(measured in terms of throughput and response times) in early DC design
phases. It presents high-level models to estimate DC power consumption and
performance. We will present and simulate cooperating models for (a) IT
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equipment, (b) the cascade effect, (c) the system workload, and (d) power
management. The value of our models is shown through the analysis and sim-
ulation of an example DC. Our models combine discrete-event models and
agent-based models. Simulating these models sheds light on the above-mentioned
power-performance trade-off. For the construction of our models, the multi-
method simulation tool AnyLogic [1] is used. AnyLogic supports a mixture of
three common methodologies to build simulation models: (a) system dynamics,
(b) process-centric/discrete-event modelling, and (c) agent-based modelling. In
this paper, we do not use system dynamics. Discrete-event modelling is a suit-
able approach for the analysis of systems that encompass a continuous process,
that can be divided into discrete parts. Each part is characterised by triggering
an event. As [15, p.6] states about discrete-event simulation:

Discrete-event simulation concerns the modeling of a system as it evolves
over time by a representation in which the state variables change instan-
taneously at separate points in time. These points in time are the ones
at which an event occurs, where an event is defined as an instantaneous
occurence that may change the state of the system.

Agent-based modelling allows to model individual behaviour to obtain global
behaviour with so-called communicating agents. It allows to easily specify het-
erogeneous populations. As [15, p.694] states about agent-based simulation:

We define an agent-based simulation to be a DES where entities (agents)
do, in fact, interact with other entities and their environment in a major
way.

This paper contributes by taking the first steps towards accurate insight in both
power and performance by presenting simple queueing models of IT equipment
that are easy to extend and allow heterogeneity. Also, a model for the cascading
effect is taken into account, and workloads can be based on general probability
distributions or on measurement data. Moreover, the insight in power and per-
formance has strong visual support for transient and steady-state analysis. Next
steps that follow from this research involve refining and validation of models
for more realistic case studies based on measurements and knowledge obtained
from cooperation with the project partner Target Holding that allocated their
IT equipment in the Centrum voor Informatie Technologie (CIT) data centre in
Groningen, the Netherlands.

Over the last few years, various authors have proposed models for the anal-
ysis of the power-performance trade-off in data centres. Numerical solutions to
compute power and performance for DCs based on Markov models have been
proposed in [14], [9], [11], fluid analysis has been proposed in [17] and stochastic
Petri nets in [16], [5], [12]. All these numerical approaches allow for the rapid
computation of trade-offs, but are often limited in their modelling capabilities,
thus leaving them useful for only few metrics under limiting assumptions. Sim-
ulation using AnyLogic, as we propose here, might be slower, however, it can
handle a wider variety of DCs than numerical analysis and scales well to larger
systems (as we will see).
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The paper is further organised as follows. First, the DC and its context
are described in Section 2. Section 3 continues from this system description by
introducing all models, metrics and visualisation. A case study with a 200-server
example and model validation are presented in Section 4, followed by Section 5
with the conclusions and future work.

2 System Description

In [2], important customer demands for DCs are distinguished, that direct choices
on the system architecture, namely: availability, scalability, flexibility, security
and performance. The minimum requirements for a server are location, space,
power supply, network accessibility and healthy environment conditions. The
demands from the customer and server requirements drive the choice of the
most relevant components in a typical DC. Therefore, a data centre consist of
various components, as described in [3], which are typically: Automatic Trans-
fer Switches (ATSs), Uninterruptible Power Supplies (UPSs), Power Distribution
Units (PDUs), servers, chillers, coolers, network equipment and devices for mon-
itoring and control.

Through the network the DC becomes accessible from the outside world. The
workload of a DC is the amount of work that is expected to be done by the DC.
The workload of a DC is an important indication for functionality and efficiency.
An indication of the workload in a DC is the number of jobs per time unit that
arrive via the network, together with the length (distribution) of the jobs. Jobs
sent through the network arrive in a buffer of a load balancer, that schedules
the jobs. We assume that storage and network equipment guarantee negligible
job losses in this buffer.

Energy consumption can be reduced in DCs in several ways [8]. One way is
power management (PM), that aims to switch servers into a lower power state
to reduce power consumption, while performance is kept intact. The challenge
is to minimise the number of idle servers but prevent unacceptable performance
degradation. Sometimes energy consumption reduces at the cost of performance,
resulting in a trade-off. We will illustrate such trade-offs later in the paper.

3 Data Center Models

Section 3.1 presents an overview of all implemented agent-based models based on
Section 2. These agent-based models are built from underlying queueing models,
state-chart models and functions for analysis, which are detailed in Sections
3.2-3.5. Finally, power and performance metrics are presented in Section 3.6.

3.1 Model Overview

All relevant entities are modelled as agents, which enables easy extension towards
heterogeneous entities. An overview of all agents is given in the UML diagram
in Figure 1.
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Fig. 1. All implemented agents in one UML diagram.

The MainMenu agent links to the agents PowerPerformance, Infrastructure
and Configuration with visual representation of the results (light grey). The
other agents, i.e., DataCentre, Cascade, LoadBalancer, EnergySupplier, Traf-
fic, Power Management, Servers and Jobs are the DC models, including a
visual representation (dark grey). In the upcoming subsections, the models inside
these agents are discussed. The models inside the agent-based models are queue-
ing models, state-chart models and functions for analysis.

3.2 IT Equipment Model

Jobs arrive in a queue in a load balancer. The load balancer decides to which
server the jobs should be dispatched depending on the state information.

Figure 2 shows an G|G|1|∞|∞ queue of the load balancer. Jobs arrive in a
FIFO buffer in the load balancer according to a general arrival process (left-most
queue) and are served (big circle) in one of the M servers after injection of the
job in one of the server queues and waiting for service there.

In order to compute response times, the LoadBalancer agent flags a job with
a time stamp before it enters the load balancer queue. When a job is finished
it compares the time stamp with its current time stamp to compute a response
time sample.

Each Server agent comprises a G|G|1|∞|∞ queue with FIFO buffer. The
jobs from the load balancer are injected and arrive at the server queue. At most
one job at a time is served with a generally distributed service time (with mean
value 1/μ). If a server has been switched off, then no jobs are routed to it.

The main reason for this modelling approach, instead of directly using an
G|G|M |∞|∞ queue, is that any scheduling algorithm based on the state infor-
mation of the server can be implemented in this framework, and it also allows
for heterogeneous servers.

The power state of a server indicates how the server is used and how
much power is consumed for that use. The server state can be described with
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Fig. 2. Load balancer and servers queueing models.

Fig. 3. State-chart model of server with sleep power states.

a state-chart model that switches between the low power consuming inactive
Asleep state and the high power consuming active states Idle and Processing,
that is controlled by external agents via messages; as depicted in Figure 3. Ini-
tially, the server is idle, i.e., the initial state is Idle. When the server is active,
it can switch between the power state Processing (200 W) and Idle (140 W).
When a server receives a sleep message, it first needs time to suspend the system
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in power state Sleeping (200 W). After a generally distributed time with mean
1/αsl, the server is in power state Asleep (14 W). Power state Waking (200 W),
which takes extra time before the server starts processing the first job, i.e., after
a generally distributed time with mean 1/αwk the server is back on. The cycle
to shut down and boot a server follows the following sequence of power states:
Idle (140 W) → Shutting Down (200 W) → Off (0 W) → Booting (200 W)→
Processing (200 W). The servers leave the power state Booting after a gener-
ally distributed time with mean 1/αbt and the power state Shutting Down after
a generally distributed time with mean 1/αsd. The power consumption values as
used here are taken from [10].

The used power state model is highly abstract and could be refined, e.g.,
based on recent results for CPU-intensive workloads [13].

The currently implemented job scheduling depends on the power state of
servers. Initially, a random idle server is selected. If no idle server is present, an
off server is selected. In case only active servers are available, a random server
is selected. Another variant of a scheduling mechanism is to inject a job in the
server with the shortest queue. In case there are multiple shortest queues, a
random server is chosen; such (and other) variants can all be easily implemented
in our framework.

3.3 Cascade Model

The cascade effect, as elaborated on before, occurs in many DC infrastructure
components that consume power based on server power consumption.

Fig. 4. EnergyLogic’s cascade effect model.

The model for the cascade effect in DCs from [8], as depicted in Figure 4,
is used in the Cascade agent. For each unit of power used by the servers, other
DC infrastructure components, e.g., DC-DC, AC-DC, Power distribution, UPS,
cooling, building switchgear/transformer “waste” power in a linear relation.
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Hence, energy savings at the level of the server has great impact on the overall
energy usage. The Cascade agent computes the power consumption metrics via
simple linear functions.

3.4 Workload

Based on the description from Section 3.2, jobs enter the load balancer in a
G|G|1|∞|∞ queue following a generally distributed inter-arrival time. In Any-
Logic, the most common probability distributions are pre-implemented func-
tions, e.g., exponential, normal, uniform and Erlang. The agent Job is added to
the buffer after an inter-arrival time based on a function call that generates a
random variable for the specified probability distribution. Additionally, in com-
bination with the Traffic agent, custom discrete and continuous probability
distributions can be defined using, e.g., frequency tables or observed samples. In
this paper, we only discuss generally distributed times with time-constant means
and jobs with fixed mean lengths, yet our simulation does allow time-varying
means in order to support realistic time-varying workload with heterogeneous
jobs obtained from measurements in data centres.

3.5 Power Management Strategies

Without application of PM, all servers in the DC are either processing or idle.
PM, however, aims to switch servers into lower power states to reduce power
consumption when the workload is low, while performance is kept intact. The
PowerManagement agent has functions to decide when servers need to be put to
sleep or even switched off, and when servers need to be switched on.

In order to demonstrate the capability of implementing strategies in our
framework, two of the functions are illustrated here. Customers of DCs often
demand a certain performance with a Service Level Agreement (SLA), e.g., the
response time in a DC should never exceed 25 ms (Rthres = 0.025 s).

The threshold strategy tries to stay as close to this response time as possible
by putting servers to sleep until it gets too close to the threshold and servers are
again woken. In more detail, the response time gets too close to the threshold
when the latest observed sample exceeds 80 % of Rthres. Servers are put to sleep
when the latest observed sample is lower than 60 % of Rthres. In future work, we
will investigate more advanced threshold strategies, e.g., including hysteresis.

The aim of the shut-down strategy is to achieve a workload of all active servers
that is equal to a pre-defined percentage, e.g., a server workload of 20 % means
a server spends on average 20 % of the time processing, when jobs are equally
scheduled among all servers. As a consequence, servers are shut down to achieve
that goal. The only exception to this rule is when there are not enough servers
in the DC.

3.6 Power-Performance Metrics

Quantitative metrics are used to provide insight into power and performance in
DCs.
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Power Consumption. An infrastructure component c has power consumption
Pc(t) (in Watt) at time t (in seconds). Power consumption Pserveri(t) of server i
depends on the server’s power state. The total power consumption of K servers
Pservers(t) at time t:

Pservers(t) =
K∑

i=1

Pserveri(t). (1)

The power consumption of other system components (like infrastructure),
Pother(t) =

∑
j Pj(t), where j �= serveri from all other components is computed

through the cascade model. The total power consumption then equals the sum
of power consumption by all components, i.e., Ptotal(t) = Pother(t) + Pservers(t).
The mean power consumption up to time t is computed as:

E[Ptotal(t)] =
1
t

∫ t

x=0

Ptotal(x)dx. (2)

Note that this integral is not explicitly computed, but that an efficient discreti-
sation takes place. This discretisation takes full advantage of the fact that events
trigger changes in the power consumption, i.e., there is a piecewise linear func-
tion for the power consumption over time. The mean power consumption up to
time t, where k events occur at time e0, e1, . . . , ek within the interval [0, t] with
a fixed first event e0 = 0 and a fixed last event ek = t, is computed as:

E[Ptotal(t)] =
1

ek − e0

k∑

i=0

∫ ei+1

x=ei

Ptotal(x)dx (3)

=
1

ek − e0

k∑

i=0

(ei − ei−1)Ptotal(ei) (4)

Response Time. This is the delay Ri (in ms) from the moment a job i enters
until the moment it leaves the DC. So, each job will report its response time Ri.
Given m observations, the mean response time is computed as:

E[R] =
1
m

m∑

i=1

Ri. (5)

Power State Utilisation. The power state utilisation ρi(t) is the percentage
of servers in a particular power state i at time t, with ρi(t) ∈ [0, 1]. The sum of
all power state utilisations at time t is exactly 100 %, i.e.,

∑
i ρi(t) = 1.

The mean power state utilisation up to time t is computed as:

E[ρi(t)] =
1
t

∫ t

x=0

ρi(x)dx. (6)

In practice, the integral is not explicitly computed, but an efficient discretisation
takes place, similar as done for the mean power consumption. The mean power
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state utilisation up to time t, where k events occur at time e0, e1, . . . , ek within
the interval [0, t] with a fixed first event e0 = 0 and a fixed last event ek = t, is
computed as:

E[ρi(t)] =
1

ek − e0

k∑

i=0

∫ ei+1

x=ei

ρi(x)dx (7)

=
1

ek − e0

k∑

i=0

(ei − ei−1)ρi(ei) (8)

3.7 Visualisation

The PowerPerformance and Infrastructure agents are implemented to show
visuals and “live” values obtained from the simulation runs.

Fig. 5. The dashboard for the IT equipment.

Figure 5 shows an intuitive dashboard with results and configuration param-
eters of the DC model. The top line shows a menu bar with (1) links to the
model, visuals and configuration. A cumulative utilisation plot (2) shows “live”
how many servers are in each power state. A stack chart below this plot shows
the mean cumulative utilisation, i.e., how many servers are in each power state.
Furthermore, two time plots (3) show “live” power consumption (left) and live
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response time (right) of the simulation. Two histogram plots (4) show the distri-
bution of samples used to compute the means of power consumption (left) and
response time (right). The values of the means are displayed in a small table
including confidence intervals (5); the exact way how these confidence intervals
are computed is not clear (to us) from the documentation, hence, these should be
handled with care. Table (6) shows the exact number of servers in each power
state, the total number of servers in the DC and the total number of jobs in
the queue(s). Configuration options (7) can be used to change the behaviour of
the simulation on the fly: adjusting the server workload, the PM strategies, reset
the averages and disable averages are the main configuration options. Additional
configuration options are available in the Configuration agent, like changing
the arrival, service, and booting time distributions.

4 Results

First, an example of a data centre with a 200-server computational cluster is
elaborated to illustrate the capabilities of the simulation models in Section 4.1.
Next, steps are taken for model validation by comparison of the results obtained
from simulation to results obtained from models that are solved numerically in
Section 4.2.

4.1 Case Study: Computational Cluster

We address a DC that needs to be installed with 200 servers. A Service Level
Agreement (SLA) permits a response time of at most 25 s. Jobs are served, and,
require on average 1 s service time. Furthermore, we require that at most 33 % of
all servers are processing, which is not unusual [4]. Booting and shutting down of
servers require exactly 100 s and going to sleep and waking up need only 10 s. The
Power Usage Efficiency (PUE) of the DC is 1.5, i.e., 1 W saved at server level
corresponds to 1.5 W saved in total; this is in line with the cascade effect model
of Section 3.3. Furthermore, all the other IT equipment (that is, the non-servers)
consume 1000 W, in total.
Table 1 shows an overview of workload (λ), service time distribution (μ), IT
equipment specifications (mean booting time αbt, mean shutting down time αsd,
mean sleeping time αsl and mean waking time αwk of servers), number of servers
(n), PUE and power consumption by other IT equipment (PotherIT). Figure 6
shows the power consumption in each power state, combined with a legend for
time-cumulative utilisation plot for the shut-down strategy.

First assume that the exact workload is known at all times, and the shut-
down strategy (as described in Section 3.5) is applied. Figure 7 shows transient
behaviour in a time-cumulative utilisation plot. The x-axis represents the model
time t (in s) and the y-axis shows the percentage of servers in each of the power
states. The workload without PM is around 33 %. With PM switched on, 50 % of
all servers is shut down, such that 66 % of all active servers are processing jobs.
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Table 1. DC configuration and
workload.

λ exp(33.0) μ exp(1.0)

αbt det(100) αsd det(100)

αsl det(10) αwk det(10)

n 200 servers PUE 1.5

PotherIT 1000 W Fig. 6. Legend and power consumption in
power-states.

Fig. 7. Time-cumulative
utilisation plot with shut-
down strategy.

Fig. 8. Time-response
time plot with threshold
strategy.

Fig. 9. Time-power con-
sumption plot with thresh-
old strategy.

Fig. 10. Time-cumulative
utilisation plot with
threshold strategy.

Fig. 11. Response time
samples distribution with
threshold strategy.

Fig. 12. Power consump-
tion samples distribution
with threshold strategy.

Furthermore, the mean power consumption is ≈ 18 kW and the mean response
time is ≈ 1 s.

In practice, the future workload is not exactly known. If workload prediction
is inaccurate, late response of the PM strategy can dramatically increase the
number of jobs in the system. Such situations have lead to worse performance,
either by dropped jobs or large queues.

The threshold strategy (as described in Section 3.5) is based on response
times rather than on the workload to control the power state of servers. For this
strategy, the mean values are computed and time plots are generated (as can be
seen from Figure 8–10). The mean response time E[R] ≈ 23 s and mean power
consumption E[Pservers] ≈ 20 kW.
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Figure 8 shows a time-response time plot with again on the x-axis the model
time t and on the y-axis a green line interpolating between the response time
samples. A horizontal red line is drawn to indicate the response time threshold
Rthres = 25 s. Moreover, Figure 9 depicts a time-power consumption plot with
model time t on the x-axis and a blue line that interpolates between power
consumption Pservers(t) samples on the y-axis. Furthermore, Figure 10 shows a
time-cumulative utilisation plot. The x-axis represents the model time t (in s)
and the y-axis shows the percentage of servers in each of the power states.

As seen in Figure 8–10, servers wake (for t ∈ [1120, 1140]), because the
observed response times are approaching the threshold. Therefore, power con-
sumption increases from ≈ 20 kW to ≈ 25 kW and the response time decreases
from ≈ 24 s to ≈ 21 s. The next step is to put servers to sleep again (for
t ∈ [1140, 1220]), because the perceived response time is fine. As a consequence,
response times increase again from ≈ 21 s to ≈ 23 s, but power consumption
decreases from ≈ 25 kW to ≈ 15 kW.

4.2 Model Validation

For a simpler but very similar model, numerical solutions using stochastic Petri
net (SPN) models have been presented in [16], also to compute mean response time
and mean power consumption, again to analyse the power-performance trade-offs
caused by PM (but no response time and power consumption distributions).

Table 2. DC configuration and workload.

λ exp(1.0) μ exp(1.0)

αbt exp(0.01) αsd n.a.

n 2-10 servers β exp(0.005)

In this paper, we compare the power-performance metrics obtained from our
simulation DC models to similar metrics found in the numerical approach, that
was presented in [16]. Therefore, the DC model is configured to exactly the same
rates, power management strategy, number of servers and job scheduling as with
the numerical solution. While this validation covers only a few scenarios, this
comparison does show the feasibility of expressing models with the exact same
data centre scenario that approach the same power and performance values.

Table 2 shows the configuration and workload. The Poissonian arrival rate
λ = 1.0 jobs/s, αbt = 0.01 servers/s, and μ = 1.0 jobs/s. A special PM strategy is
implemented with an exponentially distributed release time with rate β = 0.005
servers/s that determines the number of servers shutting down per second when
idle; note that deterministic time-outs are not allowed in stochastic Petri nets,
which explains why the time-out has been chosen like this with the numerical
approach. The number of servers is scaled from 2 to 10. Time spend on shutting
down a server is ignored.
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Fig. 13. Cumulative utilisation plot
when scaling the number of servers for
numerical analysis.

Fig. 14. Servers-cumulative utilisation
plot when scaling the number of servers
for simulation.

Fig. 15. Mean power consumption for
various number of servers for simula-
tion and numerical analysis.

Fig. 16. Mean response time for var-
ious number of servers for simulation
and numerical analysis.

Figure 13 and Figure 14 show cumulative power state utilisation plots for the
servers with the PM strategy, for respectively the SPN-based numerical analysis
and our simulation. The x-axis represents the number of servers n and the y-axis
shows the percentage of servers in each of the power states (from top to bottom:
red = off, orange = idle, green = booting and blue = processing). The plots
confirm each other as the plots approach similar shape, but different values; the
plots are not completely the same, which is partly the case due to the fact that
we run a stochastic simulation, which, in essence, is a statistical experiment.
Another reason for the observed difference lies in the implementation of the
job scheduling: the SPN-based models use only one general buffer, whereas our
simulation models use a separate buffer per server.

Figure 15 shows the mean power consumption for various servers in a DC.
The x-axis represents the number of servers n and the y-axis shows mean power
consumption (in W). The curves for simulation and numerical analysis have
similar shape, but with different values, which range, respectively, from 353 W
and 342 W for 2 servers to 982 W and 939 W for 10 servers.

Figure 16 shows the mean response times for various servers in a DC with the
PM strategy. The shape of both curves are again very similar, but with different
values, which are for simulation and numerical analysis respectively from 5.2 s
and 1.84 s for 2 servers to 2.19 s and 1.25 s for 10 servers.
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Another reason, for the different values in the curves, is that numerical anal-
ysis has no load balancer, but an implicit way for scheduling jobs. First, jobs are
scheduled to a random idle server with both numerical analysis and simulation.
Otherwise, the jobs are scheduled to a random off server. If all servers are boot-
ing or processing, numerical analysis keeps the jobs in the buffer and simulation
inject the job in a random server.

5 Conclusions and Future Work

The contribution of this paper is the presentation of a new AnyLogic-based tool
with an intuitive dashboard, effective for obtaining quick insights in transient
and steady-state behaviour of heterogeneous DC with any possible workload
and PM strategies. Furthermore, the AnyLogic environment enables to easily
extend, refine and adapt DC models to many other scenarios.

Insight is obtained in the power and performance in DCs with varying num-
ber of servers, PM strategies and workloads. Relevant metrics are derived from
the qualitative DC demands, including power consumption, response time and
power state utilisation. These metrics are estimated by gathering samples from
a mixture of discrete-event and agent-based models for IT equipment, PM and
workload, implemented in AnyLogic. Furthermore, a cascade model enables
the computation of total power consumption. Our approach is illustrated with
a 200-server case study.

A well known open-source toolkit CloudSim [6] allows to simulate cloud
computing scenarios and allows to specify (textually) DC models with virtual
machines, applications, users, scheduling and provisioning. This tool obtains util-
isation, response times, execution times and energy consumption metrics from
simulation runs. It is future work to to investigate the capabilities of CloudSim
in comparison to our AnyLogic-based simulation models.

Foreseen future extensions to the presented models are, among others, (i) the
analyses of other PM strategies, e.g., based on number of jobs in the system and
on hysteresis based strategies; (ii) energy-efficiency measures based on dynamic
voltage and frequency scaling; (iii) power consumption of scaling workload; (iv)
large-scale DC setting with heterogeneous servers, and a mixture of job sizes and
inter-arrival times; (v) virtualisation; and (vi) thermal-aware DCs. Other future
work includes the validation of the models with actual measurements from a DC.
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Abstract. Probabilistic model checking is a powerful tool for analysing
probabilistic systems but it can only be efficiently applied to Markov
models. Monte Carlo simulation provides an alternative for the general-
ity of stochastic processes, but becomes infeasible if the value to estimate
depends on the occurrence of rare events. To combat this problem, intel-
ligent simulation strategies exist to lower the estimation variance and
hence reduce the simulation time. Importance splitting is one such tech-
nique, but requires a guiding function typically defined in an ad hoc
fashion by an expert in the field. We present an automatic derivation
of the importance function from the model description. A prototypical
tool was developed and tested on several Markov models, compared to
analytically and numerically calculated results and to results of typical
ad hoc importance functions, showing the feasibility and efficiency of
this approach. The technique is easily adapted to general models like
GSMPs.

1 Introduction

Nowadays, systems are required to have a high degree of resilience and depend-
ability. Determining properties that fail with extremely small probability in com-
plex models can be computationally very demanding. Though these types of
properties can be efficiently calculated using numerical tools, such as the model
checker PRISM [8], this is limited to finite Markov models, and, moreover, the
representation through an adequate data structure needs to fit in the computer
memory. Beyond this class of models calculations are limited to Monte Carlo sim-
ulation methods. However, standard Monte Carlo simulation may easily need an
enormous amount of sampling to obtain the desired confidence level of the esti-
mated probability, in order to compensate for the high variance induced by the
rare occurrences of the objective property.
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To reduce this considerable need for simulation runs, efficient Monte Carlo
simulation techniques have been tailored to deal with rare events. These can be
largely divided into two conceptually different techniques: importance sampling
and importance splitting methods. Importance sampling (see [12] and references
therein) modifies the sampling distribution in a way that increases the chance to
visit the set of rare states. This introduces a bias in the resulting point estimate
which needs to be corrected by weighing it with the corresponding likelihood ratio
[7]. The change of measure requires some understanding of the system under
study. A bad choice of measure may have a negative impact on the simulation.

Instead we focus on importance splitting techniques, see e.g. [11,18,19].
Importance splitting works by decomposing the state space in multiple levels
where, ideally, the rare event is at the top and a level is higher as the probability
of reaching the rare event grows. Thus the estimation of the rare probability is
obtained as the product of the estimates of the (not so rare) conditional probabil-
ities of moving one level up. As a consequence, the effectiveness of this technique
crucially depends on an adequate grouping of states into levels. Importance func-
tions are the means to assign a value to each state so that, if perfect, such value
is directly related to the likelihood of reaching the rare event. So, a state in the
rare set should receive the highest importance and the importance of a state
decreases according to the probability of reaching a rare state from it.

Usually, an expert in the area of the system provides the importance function
in an ad hoc manner. Again, a badly chosen importance function can deterio-
rate the effectiveness of the technique. With some notable exceptions [3,5,14],
automatic derivation of importance functions has received scarce attention.

In this article we provide a simple but effective technique to derive auto-
matically an importance function. It leads the definition of the different levels
for importance splitting techniques. The algorithm works by applying inverse
breadth first search on the underlying graph of the stochastic process, labelling
each state with the shortest distance to a rare state. The importance of each
state is then defined as the difference between the maximum distance and its
actual distance. Obviously this technique still requires a finite system which fits
in the computer memory, but it is not limited to Markov models.

In particular, we focus on the RESTART method [18,19], though the app-
roach presented here can be applied to other importance splitting techniques.
We show correctness and effectiveness by performing some significant experimen-
tation in several known case studies. We limit experiments to Markov models
to compare the simulated results against numerically obtained values (using
PRISM) in order to show correctness. The effectiveness is shown by comparing
the performance of the simulation under the automatically calculated impor-
tance function against the performance under ad hoc importance functions.

The paper is organised as follows. Sec. 2 introduces the models and the type
of properties we deal with. Sec. 3 presents the criteria to decide when to stop the
simulation. Importance splitting is described in Sec. 4. The algorithm to derive
the importance function and the tool that supports it are described in Sec. 5.
Experimental results are presented in Sec. 6. The paper concludes in Sec. 7.
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2 Formal Models and Properties

Although the technique presented in this paper can be applied to generalised
semi-Markov process, we only focus here on discrete-time and continuous-time
Markov chains since it is our interest to validate, among other things, the cor-
rectness of the technique against values obtained analytically or numerically.

Definition 1 (DTMC). A discrete-time Markov chain or DTMC is a tuple
M = (S,P,AP , L) where S �= ∅ is a countable set of states, the transition
probability function P : S × S → [0, 1] satisfies ∀s ∈ S .

∑
s′∈S P(s, s′) = 1, AP

is a set of atomic propositions and L : S → 2AP is the labelling function.

The transition probability function P specifies for each state s the probability
P(s, s′) of jumping to another state s′ by means of a single transition. Notice
this depends solely on s and s′, there is no information about the path which led
into s. This is called the memoryless property of markovian systems. The states
s′ for which P(s, s′) > 0 are denoted the successors of s. The imposed constraint
ensures P is a distribution.

DTMCs remain in the current state for a single time unit before jumping
to a successor state. In contraposition, state jumps in continuous-time Markov
chains are described with probabilistic timing information. This means that in
order to perform a transition both the probability of the successor state and the
probability of sojourn time in the current state need to be defined.

Definition 2 (CTMC). A continuous-time Markov chain or CTMC is a tuple
M = (S,R,AP , L) where R : S × S → R�0 is the transition rate function and
all the other elements are like in Definition 1.

The non-negative real value λ = R(s, s′) states the speed rate, sampled from
an exponential distribution, at which the transition s → s′ would be taken. A
null value indicates there is no such transition, and a positive value indicates the
probability of jumping to state s′ within t time units is 1 − e−λt.

We focus both on transient and steady state properties. The transient prop-
erties we consider aim to calculate the probability of reaching a set of goal states
G before visiting any reset state in the set R. This is characterised by the PCTL
formula

P (¬RUG) (1)

where U denotes the unbounded until operator from LTL and P(Φ) denotes
the probability of observing any state that satisfies formula Φ. For simulation
purposes we need the probability of reaching a state either in G or in R to be 1.
This type of property is recurring in the literature of rare event simulation, see
e.g. [1,2,4,19]. Though not in this paper, bounded until properties of the form
P (¬RU≤t G) can be addressed by our tool in the same way as (1).

While transient properties focus on probabilities of traversing a system from
a state to a class of states, steady state analysis focuses on the quantification of
a property once the system has reached an equilibrium. In particular, the steady
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state probability of a set of goal states G is the portion of time in which a state
in G is visited in the long run and is characterised by the CSL property

S (G) (2)

Though less frequently, this type of property has also appeared in the literature
of importance splitting [16,19]. More generally, properties of these type quantify
the ratio of goal events G w.r.t. reference events S in the long run such as, e.g.,
the ratio between lost and sent packets or measures like throughput.

3 Stopping Criteria

The efficacy of Monte Carlo simulation depends on the precision of the esti-
mated parameter. Confidence intervals are use to convey a notion of how far the
estimated value may be from the actual value. Confidence intervals are bounds
surrounding the computed point estimate and they are characterised by two
numbers: the confidence level and the precision. The first gives information on,
roughly speaking, how likely it is for the real population parameter (e.g. the
probability of visiting some goal state) to be located within these bounds. The
second defines the length of the interval. It is precisely from these two values
that the number of required simulation runs is dynamically determined.

These intervals can be constructed in different ways depending on the nature
of the sampled population and the parameter to estimate. Following the Central
Limit Theorem consider a “big enough” sample {xi}N−1

i=0 of independently sim-
ulated runs, where xi is the outcome of the i-th run. If X is the mean value of
the sample, then

[
X − z1− α

2

σ̂√
N

, X + z1− α
2

σ̂√
N

]
(3)

is a confidence interval for the estimated rare event probability, with confidence
level 100(1 − α)% and semi-precision (or error margin) σ̂/

√
N · z1− α

2
[9]. Here

the constant value z1− α
2

represents the 1 − α
2 quantile of a unit normal vari-

ate, uniquely determined by the confidence level chosen by the user, and σ̂ is the
observed sample variance. This is the method of choice to build confidence inter-
vals around estimates of steady state properties like (2). Since nothing is known
about the distribution of the xi samples, namely the long run paths generated
on the model, then no tighter bound can be inferred.

The situation is different for transient properties like (1) because every path
will almost surely end as soon as it reaches either some goal or reset state. This
defines a Bernoulli experiment. Hence, each xi in the sample {xi}N−1

i=0 takes
either value 1 if run i reaches a goal state in G or 0 otherwise (i.e., it reaches
a state in R). Thus, if m is the number of runs that reached a goal state,
X

.=
∑N−1

i=0
xi

N = m
N = p̂ , is the estimate of (1).

The previous analysis also shows that σ̂ = p̂(1 − p̂), which is used by the
normal approximation interval to narrow the length of the interval with respect
to eq. (3). Since the precision of the interval has been fixed by the user, this
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translates into smaller values for N and hence shorter simulation times. There
exist however better fitted confidence intervals, specially tailored for situations
when the proportion parameter p takes extreme values (viz. p ≈ 0 or p ≈ 1).
The Wilson score interval is one such method [20], and the technique of choice
to build confidence intervals whenever dealing with property (1).

4 Rare Event Simulation Through Importance Splitting

The use of Monte Carlo simulation for the estimation of parameters that depend
on the occurrence of rare events (i.e. events that occur with very low probability)
may easily become an extremely time demanding process due to the high variance
induced by these rare occurrences. Since the confidence level and precision are
requirements for the estimation, eq. (3) shows that high values of σ̂ can only be
countered by increasing N , which could grow exponentially on the model size [7].

Importance splitting (is for short) attempts to speed up the occurrence of a
rare event, i.e. visiting goal states by generating a drift of the simulations towards
them. The first known reference is due to Kahn and Harris for splitting particles
in a physical context [6]. The work by José and Manuel Villén-Altamirano stands
amongst the most relevant modern contributions. They introduced RESTART,
a version of is with multiple thresholds, fixed splitting and deterministic dis-
cards of unpromising simulations [15–19]. Garvels provides a thorough analysis
of splitting techniques for rare event simulation in his PhD thesis [2]. For a broad
survey of importance splitting see [11] and references therein.

The general idea in is is to favour the “promising runs” that approach the rare
event by saving the states they visit at certain predefined checkpoints. Replicas
of these runs are created from those checkpoint states, which continue evolving
independently from then on. Contrarily, simulation runs deemed to steer away
from the rare event are identified and killed, avoiding the use of computational
power in fruitless calculi. The likelihood of visiting a goal state from any other
state s is called the importance of s. The variation in such importance is what
determines when should a simulation be split or killed, as the importance value
crosses some given thresholds up or down, respectively.

From a statistical point of view, is decomposes the probability of reaching a
goal state into several conditional probabilities, each one of them representing the
probability of crossing a threshold given that the lower thresholds have already
being crossed. The general idea is that sampling each conditional probabilities is
easier, i.e. incurs in less variance per estimation, than attempting to sample the
rare event at once. Take for instance a buffer where the measure of interest is
the probability of exceeding a capacity C ∈ N, starting from a non-empty state.
Denote by c the buffer occupancy and by {c > C} the set of states where such
capacity is exceeded. The sought value is in consequence

p = P({c > C | c > 0}) = P
({

c > C
∣
∣ c � C

2

})
P

({
c � C

2

∣
∣ c > 0

})
= p1 p2 .
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The state space has been divided into the disjoint regions
{
c � C

2

}
and

{
c < C

2

}
,

covered by p1 and p2 respectively. We say C/2 is a simulation threshold and this
can be easily generalised to n < C thresholds:

p =
∏n−1

i=0 P({c � ci+1 | c > ci}) =
∏n−1

i=0 pi (4)

In this equation the i-th threshold is Ti = ci, namely a buffer with ci elements,
c0

.= 0 and cn
.= C. The probability of reaching ci+1 elements in the buffer once

the “simulation is above Ti” is denoted pi.
Using this partition of the state space, is generates the desired estimate

p̂ ≈ p by approximating each of the conditional probabilities pi. The resulting
p̂i estimates are then multiplied to compose p̂ = p̂1 p̂2 · · · p̂n [2,19]. Notice is
will perform efficiently as long as all thresholds are chosen such that pi � p.
Only then will the step-wise estimation present a lower variance than traditional
Monte Carlo runs. Thresholds are intimately related to the importance of states
and could be though of as key importance values.

We focus on the is technique RESTART [19]. A RESTART run can be repre-
sented graphically as in Fig. 1 where the horizontal axis represents the simulation
progress and the vertical axis the importance value of the current state. The run
starts from an initial state of the model and evolves until the first threshold T1 is
crossed upwards. This takes the path from zone Z0 below threshold T1 into zone
Z1 between T1 and T2. As this happens the state is saved and r1 − 1 replicas or
offsprings of the path are created. See A in Fig. 1, where the number of split-
tings for T1 is r1 = 3. This follows the idea of rewarding promising simulations:
up-crossing a threshold suggests the path heads towards a goal state.

Fig. 1. RESTART importance splitting

From then on the r1 simulations will
evolve independently. As they continue,
one of them may hit the upper thresh-
old T2, activating the same procedure as
before: r2 − 1 offsprings are generated
from it and set to evolve independently.
See B on T2; here, the splitting is r2 = 2.

However, it could also happen that
some simulation hits T1 again, mean-
ing this path is leading downwards. That
is an ill-willed simulation steering away
from the goal set, and RESTART deals
with it discarding the run right away
(see C in Fig. 1). In each zone Zi there
exists nonetheless an original simulation, which crossed threshold Ti upwards
generating the ri − 1 offsprings. This run is allowed to survive a down-crossing
of threshold Ti (see D in Fig. 1).

In this setting all simulations reaching a goal state went through the repli-
cation procedure, which stacked up on every threshold crossed. Simply counting
these hits would introduce a bias, because the relative weight of the runs in upper
zones decreases by an amount equal to the number of splittings of the threshold.
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In consequence, each rare event observed is pondered by the relative weight of
the simulation from which it stemmed. If all the goal states exist beyond the
uppermost threshold like in Fig. 1, then this is a matter of dividing the observed
quantity of rare events by the constant SPLITMAX

.=
∏n

i=1 ri. Otherwise more
involved labelling mechanism must be implemented.

5 Fully Automated Importance Splitting

Importance splitting simulations are entirely guided by the importance function
which defines the importance of each state. This function conveys the locations
where the simulation effort should be intensified, and it is from its definition
that many other settings of is are usually derived. Importance functions are
defined in most situations in an ad hoc fashion by an expert in the field of the
particular system model under study. With a few exceptions in some specific
areas [3,5,14], automatic derivation of importance functions is still a novel field
for general systems. Here we present an efficient mechanism to automatically
derive this function from the model description.

Importance Function Derivation. The importance of a state s is formally
defined as the probability of observing a rare event after visiting s. Therefore if
one could track or at least conjecture a path leading from s to a goal state, some
notion of the distance between them may be determined and used to choose an
appropriate importance for s, where shortest paths should be favoured.

Input: system model M
Input: goal state set G �= ∅

g(G) ← 0
queue.push(G)
repeat

s ← queue.pop()
for all s′ ∈ M.predecessors(s) do
if s′ not visited then

g(s′) ← g(s) + 1
queue.push(s′)

end if
end for

until queue empties or s0 visited
g(s) ← g(s0) for every non visited state s

f(s) ← g(s0) − g(s) for every state s
return f

Fig. 2. Importance function derivation

The core idea is simple enough:
starting from the rare event
itself, i.e. from the subset G of
goal states perform a simultane-
ous backwards-reachability anal-
ysis and label each visited states
layer with decreasing importance.
This way the shortest path lead-
ing from each state into G is
computed by means of a Breadth-
First Search routine of complexity
O(k · n) where n is the size of the
state space and k is the branch-
ing degree. Albeit k = n in the
worst case, k is normally several
orders of magnitude smaller than
n. The pseudo-code is described
in Fig. 2, where s0 stands for the
initial state of the model M.

From the description of RESTART it is implied that s0 has minimum impor-
tance. Therefore its distance to the subset G is the largest one our algorithm will
consider, allowing for an incomplete traversal of the state space on the average
case. More precisely, on a first run the states are labelled with their distance to
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the subset G. This solely affects states at smaller or equal distance from G than
s0, revealing at the same time the maximum distance DISTMAX

.= f(G) = g(s0).

Bluemoon Tool. To verify the feasibility of the proposed algorithm the proto-
typical tool Bluemoon1 was developed and run on several sample models. The
software is currently implemented as a module for the probabilistic model checker
PRISM [8]. All functionality related to the Markov chains was borrowed from
PRISM, namely the models description syntax and its internal ADT representa-
tion. We also took advantage of its model checking algorithms to tag the special
states of relevance for the importance labelling and the simulations.

The rare event probability estimation is carried out in five distinctive steps:
1. first the model is composed from its high-level description, using an internal

column-major sparse matrix representation to favour the later construction
of the importance function;

2. then the special states are identified, which includes the goal states and either
the reset or the reference states, depending on whether property (1) or (2)
was queried respectively. Both this step and the previous model construction
are done by means of the mechanisms already provided by PRISM;

3. afterwards the states are labelled with their importance. This can either be
done with the algorithm of Fig. 2, or with an ad hoc user expression. The
importance function is currently represented with a vector of integers;

4. before simulating the proper environment is constructed, which comprises
choosing the number of splitting and initial effort per simulation, determining
the number of thresholds and defining them, and transforming the model
ADT into a row-major sparse matrix, better fitted to forward references;

5. finally several independent RESTART simulations are run, “dynamically”
checking at the end of each run whether the stopping criteria was met.

The importance function can also be specified ad hoc on invocation of the
tool. The user can request any importance assignment of his choice, as long as
it comes expressed as an integer expression which PRISM can evaluate on every
state. This includes the extreme case of no importance: the user can ask for
simulations to be run in a pure Monte Carlo style with no splitting involved.

All these options can be determined by the user in the command line, along
the confidence criteria (confidence level, precision, method to use) and the initial
effort to spend per simulation. “Effort” may have one of two different meanings:
for transient properties like (1), it stands for the number of independent simu-
lations launched per main iteration, and for steady state properties like (2) it
means the maximum number of reference states to visit per simulation.

Regarding the fourth step, the user is allowed to choose the number of split-
tings, which else defaults to the minimal value 2. To minimise the variance
incurred per partial estimation pi (see eq. (4)) this value will be the same for
all thresholds [13,17]. In addition, the number of splittings should ideally be the
inverse of the conditional probability pi [2,19]. The selection of the thresholds
is performed once the importance function is built with those two conditions in

1 Named after the kindred English expression «once in a blue moon».
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mind. Thus, we use the adaptive multilevel splitting technique [1,2] which aims
to locate the thresholds so that all conditional probabilities pi are approximately
the same, and moreover, they are the inverse of the selected number of splittings.

Notice the importance function could have been derived using the algorithm
in Fig. 2, or evaluated on each state if it was defined ad hoc by the user. Given
the nature of the algorithm presented, the former option ensures all states will
be located above the uppermost threshold. If on the other hand the importance
was decided arbitrarily by the user, some goal states might not be given the
maximum value and could, during the later selection of the thresholds, end up
below the uppermost threshold. This anomaly was discussed in [15] and it is
detected and hence countered by our tool.

6 Experimental Validation

With the aim to validate our approach, we selected four case studies from the
literature and analysed them using the Bluemoon tool. To validate correctness,
the results estimated with simulation were compared against the analytic solu-
tion whenever this was available, and also against a numerical solution of the
corresponding logical property as computed by PRISM.

In all cases several independent experiments were launched. In each case we
compute interval estimates p̂ ± em for the probability p of observing the rare
event, where em is the error margin of the confidence interval. The precision and
confidence level were fixed a priori, and each simulation continued until either
the specified confidence criteria was met or a wall time limit was reached.

For each experiment we varied some model parameter, testing the perfor-
mance of the simulation methods for decreasing values of p, overall ranging from
magnitudes of p ≈ 1.63 · 10−2 to p ≈ 2.02 · 10−15. From now on ifun will denote
“importance function”. To validate the performance of our approach, for each
model and parameter value, we tested three simulation strategies: RESTART
using the automatically built ifun, RESTART using a few ad hoc importance
functions, and standard Monte Carlo. Different split values where tested on the
importance splitting runs.

The obtained estimates and total simulation times in seconds are presented in
tables comparing the performance of the different simulations. We have repeated
each experiment a given number of times and each table entry contains the
average of the estimated probabilities p̂ in each repetition and the average of the
total execution time of each repetition. Moreover, a ‘*’ next to an entry indicates
that at least one of the repetitions of the experiment did not finish before the
wall time limit. All experimentation was carried out in 8-cores 2.7 GHz Intel
Xeon E5-2680 processors, each with 32 GiB 1333MHz of available DDR3 RAM.

CTMC Tandem Queue. Consider a tandem network consisting of two con-
nected queues. Customers arrive at the first queue following a Poisson process
with parameter λ. After being served by server 1 at rate μ1 they enter the second
queue, where they are attended by server 2 at rate μ2. The event of interest is an
overflow in the second queue for maximum capacity C. This model has received
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Table 1. Transient analysis of CTMC tandem queue

ifun
C = 8 C = 10 C = 12 C = 14

S
p
li
t

p̂ avg time p̂ avg time p̂ avg time p̂ avg time

2

auto 5.61e-06 12.2 3.13e-07 51.7 1.90e-08 214.4 1.11e-09 2995.8
q2 5.55e-06 11.4 3.18e-07 101.1 1.91e-08 425.9 1.20e-09 2775.4

q1+2q2 5.66e-06 23.8 3.09e-07 403.3 1.91e-08 1631.8 1.17e-09 6712.9 *
q1+q2 5.51e-06 24.9 3.07e-07 422.0 1.87e-08 6821.0 – –

6

auto 6.08e-06 4.0 3.14e-07 40.2 1.88e-08 180.2 1.15e-09 2819.1
q2 5.52e-06 4.2 3.19e-07 66.5 1.86e-08 192.1 1.14e-09 2836.8

q1+2q2 5.57e-06 23.3 3.12e-07 400.4 1.85e-08 6766.5 – –
q1+q2 5.59e-06 23.3 3.17e-07 397.5 1.90e-08 6575.3 – –

15

auto 5.75e-06 2.1 3.47e-07 26.5 1.99e-08 167.8 1.13e-09 2858.2
q2 5.88e-06 1.9 3.10e-07 28.3 1.91e-08 444.2 1.17e-09 2794.2

q1+2q2 5.79e-06 22.0 3.19e-07 396.2 1.85e-08 6764.4 – –
q1+q2 5.29e-06 24.1 3.21e-07 392.1 1.93e-08 6432.1 – –

M.C. 5.67e-06 21.3 3.04e-07 394.6 1.88e-08 6522.8 – –

Prism 5.59e-06 3.15e-07 1.86e-08 1.14e-09

considerable attention in the literature [2–4,16,19]. We follow the setting from [2]
which has an exact analytic solution. The first queue is initially empty and the
second has a single customer. We measure the probability of full occupancy in
the second queue before it empties, i.e. an instance of Property (1). As in [2,
p. 84] the model was tested for the values λ = 3, μ1 = 2, μ2 = 6. The maximum
capacities tested for the second queue were C ∈ {8, 10, 12, 14}. Simulations had
to reach a 95% confidence level with precision equal to 20% of the estimated
parameter within 2 hours of wall time. Results are reported in Table 1 with the
full estimation process time expressed in seconds. Standard Monte Carlo usually
took the longest, and it failed to meet the stopping criteria for the biggest queue
size. With a few meaningless exceptions the automatically derived ifun was the
fastest option, beating in performance all ad hoc versions. As side remark we
notice the splitting value affected the performance, but mostly for the small
queue sizes regarding the automatic function.

We also study long run behaviour for the same setting. In this case the rare
event was the saturation of the second queue and hence, following Property (2),
we estimated the steady state probability of such saturated state. This time sim-
ulations were requested to reach a confidence level of 95% with precision equal
to 10% of the estimated parameter within 2 hours of wall time. The obtained
estimates are shown in Table 2 for capacities C ∈ {10, 15, 20, 25}. Standard
Monte Carlo met the criteria only for the smallest queue size. Importance split-
ting simulations did much better but only when good importance functions were
employed. The automatically built ifun and the best ad hoc ifun “q2” were
the only ones to finish in the majority of the cases. These only failed (in all)
experiments for C = 25 and Split = 2, and in particular q2 also failed to finish
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Table 2. Steady state analysis of CTMC tandem queue

ifun
C = 10 C = 15 C = 20 C = 25

S
p
li
t

p̂ avg time p̂ avg time p̂ avg time p̂ avg time

2

auto 3.38e-06 26.1 1.61e-08 257.6 7.33e-11 3866.0 – –
q2 3.38e-06 50.0 1.62e-08 873.9 7.16e-11 6073.4 * – –

q1+2q2 3.29e-06 62.5 1.63e-08 502.5 7.27e-11 3568.2 – –
q1+q2 3.36e-06 175.8 – – – – – –

6

auto 3.42e-06 21.8 1.59e-08 30.0 7.42e-11 137.6 3.30e-13 1955.4
q2 3.36e-06 29.3 1.61e-08 45.7 7.54e-11 51.0 3.36e-13 181.7

q1+2q2 3.47e-06 89.1 1.60e-08 676.2 7.39e-11 3819.7 * – –
q1+q2 3.33e-06 125.2 – – – – – –

15

auto 3.37e-06 30.1 1.61e-08 99.8 7.52e-11 184.8 3.26e-13 424.0
q2 3.36e-06 14.7 1.63e-08 114.9 7.41e-11 120.0 3.30e-13 341.9

q1+2q2 3.31e-06 143.4 1.61e-08 1608.6 – – – –
q1+q2 3.47e-06 148.7 – – – – – –

M.C. 3.33e-06 201.2 – – – – –

Prism 3.36e-06 1.62e-08 7.42e-11 3.29e-13

4 out of 5 repetitions for C = 20 and Split = 2. We observe that in some few
cases the automatic ifun performed worse than q2 (cf. C = 25, Split = 6).

DTMC Tandem Queue. We model the same tandem system as a DTMC.
Here, each of the three possible events may happen in a single time unit. For
each event, we set the following probabilities per time unit: a0 = 0.1 for arrivals
on the first queue, a1 = 0.14 for packet transition between queues, and a2 =
0.19 for departures from the second queue. We simulated the system for the
overflow levels C ∈ {15, 20, 25, 30, 35} of the second queue. The CTMC and
DTMC version have the same state space but the underlying graph structures
are slightly different. Hence the automatically derived ifun are different but all
ad hoc ifuns are the same in both types of models.

We set the confidence level at 95%, the precision at 10% and the wall time
limit at 4 h. The results are reported in Table 3. For C � 25 all standard Monte
Carlo simulations failed and just a fraction of the RESTART ones finished.
Notice that the ad hoc “q1 + 2q2” ifun lead on performance for some configu-
rations. Notwithstanding, and with the sole exception of C = 25 for splittings 6
and 15, the automatically derived importance function outperformed all tested
ad hoc versions. This was true also for C = 35, where only some of the simula-
tions using q2 and the automatic version of the ifun finished in time.

Mixed Open/Closed Queue Network [4, Sec. 4.1]. This model consists
of two parallel queues handled by one server: an open queue qo, that receives
packets from an external source, and a prioritised closed queue qc, that receives
(sends) packets from (to) some internal system buffer. Elements in qo are served
at rate μ11 unless qc has packets which are handled first at rate μ12. Packets
in internal circulation are served at rate μ2 and sent back to qc. If there is
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Table 3. Steady state analysis of DTMC tandem queue

ifun
C = 15 C = 20 C = 25 C = 30

S
p
li
t

p̂ avg time p̂ avg time p̂ avg time p̂ avg time

2

auto 4.81e-07 20.4 1.28e-08 85.1 3.24e-10 275.8 7.91e-12 699.5 *
q2 4.97e-07 24.6 1.27e-08 83.3 3.15e-10 281.0 8.17e-12 652.8 *

q1+2q2 5.02e-07 15.2 1.31e-08 27.6 3.24e-10 112.2 7.75e-12 3274.7 *
q1+q2 5.05e-07 164.4 1.30e-08 312.7 3.28e-10 2136.3 9.37e-12 2486.3 *

6

auto 4.92e-07 25.9 1.26e-08 81.1 3.18e-10 10674.6 * 7.23e-12 699.9 *
q2 4.97e-07 29.8 1.28e-08 213.6 3.31e-10 5404.3 * – –

q1+2q2 4.98e-07 2494.6 * 1.29e-08 157.9 3.24e-10 1917.1 8.12e-12 11364.6 *
q1+q2 4.90e-07 165.3 1.28e-08 1247.0 3.15e-10 2215.1 * 7.88e-12 4394.2 *

15

auto 4.96e-07 45.1 1.28e-08 155.4 3.37e-10 1298.6 * 8.61e-12 572.3 *
q2 4.98e-07 134.7 1.26e-08 142.4 3.36e-10 839.3 * 7.63e-12 13763.1 *

q1+2q2 4.93e-07 253.9 1.28e-08 4175.4 3.12e-10 635.7 * –
q1+q2 4.97e-07 240.3 1.22e-08 1108.0 3.18e-10 2370.0 * 8.97e-12 4424.2 *

M.C. 4.87e-07 596.4 1.23e-08 – – –

Prism 4.94e-07 1.28e-08 3.22e-10 7.96e-12

only one circulating internal packet, the system is an M/M/1 queue with server
breakdowns.

Starting from an empty system, we estimate the probability that qo reaches
maximum capacity b before both queues are emptied again. The setting is as
in [4]: one packet in internal circulation, μ11 = 4, μ12 = 2, μ2 ∈ {0.5, 1.0} and
capacities b ∈ {20, 40}. We set the confidence at 95%, the precision at 10% and
the wall time limit at 8 h. Results are reported in Table 4. For the cases in which
b = 40 none of the simulations met the desired confidence within the time limit.
Thus, in the respective columns on the table, we show instead the minimum
and maximum estimations of the repetitions. Note that these estimations are
nonetheless very close to the value reported by PRISM. Experiments for b = 20
favour the automatic ifun overwhelmingly for both failure rates and all splitting.
A speedup of at least 148x was gained in comparison to both ad hoc importance
assignments. This is particularly surprising regarding “qo” which seem to be a
sensible choice when comparing to the previous tandem queue systems.

Queueing System with Breakdowns [7, Sec. 4.4]. Consider a system where
sources of type i ∈ {1, 2} have exponential on/off times with parameters αi and
βi respectively. These sources, whenever active, send packets at rate λi to the
only system buffer. Queued packets are handled by a server which breaks down at
rate γ and gets fixed at rate δ, processing at rate μ when functional. We estimate
the probability of the buffer reaching maximum capacity K before emptying.

As in [7] we start with a single packet in the queue and a broken server. There
are five sources of each type and, initially, all are down except for one of type
2. The sources parameters are (α1, β1, λ1) = (3, 2, 3) and (α2, β2, λ2) = (1, 4, 6).
The server parameters are (γ, δ, μ) = (3, 4, 100) and the queue capacities tested
were K ∈ {20, 40, 80, 160}. We set the confidence level at 95%, the precision at
10% and the wall time limit at 2.5 h. Results are shown in Table 5, where sd refers
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Table 4. Mixed Open and Closed Queueing Network

ifun
µ2 = 1.0 µ2 = 0.5

b = 20 b = 40 b = 20 b = 40

S
p
li
t

p̂ avg time p̂ min p̂ max p̂ avg time p̂ min p̂ max

2
auto 5.79e-07 11.1 5.68e-13 5.69e-13 3.91e-08 131.2 2.02e-15 2.03e-15
qo 5.97e-07 1485.1 5.67e-13 5.69e-13 3.92e-08 19690.9 1.99e-15 2.02e-15

qc+qo 5.95e-07 1493.6 5.68e-13 5.70e-13 3.91e-08 19733.3 2.01e-15 2.03e-15

5
auto 5.83e-07 11.2 5.67e-13 5.69e-13 3.90e-08 132.7 1.95e-15 2.04e-15
qo 5.97e-07 1490.2 5.68e-13 5.70e-13 3.91e-08 20118.6 2.01e-15 2.05e-15

qc+qo 5.94e-07 1491.3 5.68e-13 5.68e-13 3.92e-08 19753.9 2.01e-15 2.02e-15

9
auto 6.04e-07 16.8 5.68e-13 5.69e-13 3.86e-08 133.0 2.01e-15 2.03e-15
qo 5.96e-07 1481.2 5.68e-13 5.69e-13 3.91e-08 19816.7 2.02e-15 2.03e-15

qc+qo 5.96e-07 1481.0 5.65e-13 5.69e-13 3.92e-08 19763.1 2.02e-15 2.03e-15

M.C. 6.04e-07 1400.5 – – 4.02e-08 18417.3 – –

Prism 5.96e-07 5.68e-13 3.91e-08 2.02e-15

Table 5. Multiple-source queue with breakdowns

ifun
K = 20 K = 40 K = 80 K = 160

S
p
li
t

p̂ avg time p̂ avg time p̂ avg time p̂ avg time

2

auto 1.63e-02 5.4 4.54e-04 9.8 3.72e-07 478.5 2.43e-13 2464.1 *
q 1.65e-02 5.5 4.62e-04 19.0 3.71e-07 162.9 2.45e-13 3691.3 *

q+sd 1.62e-02 20.2 4.63e-04 448.6 3.75e-07 880.6 * 2.42e-13 9034.9 *
q+su 1.63e-02 181.4 4.48e-04 537.2 – – – –

3

auto 1.64e-02 5.8 4.60e-04 9.1 3.66e-07 84.4 2.47e-13 1809.8 *
q 1.67e-02 5.9 4.54e-04 17.1 3.73e-07 87.5 2.41e-13 4105.4 *

q+sd 1.63e-02 16.4 4.62e-04 53.3 3.73e-07 242.4 * 2.46e-13 4709.4 *
q+su 1.61e-02 115.3 4.61e-04 824.0 3.68e-07 3537.7 2.45e-13 5145.1 *

5

auto 1.64e-02 6.2 4.72e-04 8.1 3.71e-07 91.5 2.45e-13 2836.0
q 1.64e-02 6.3 4.62e-04 17.3 3.70e-07 103.2 2.47e-13 1154.5

q+sd 1.66e-02 7.3 4.60e-04 59.5 3.73e-07 856.4 2.47e-13 1823.5
q+su 1.65e-02 49.5 4.62e-04 159.7 3.74e-07 367.9 2.50e-13 1251.1 *

9

auto 1.60e-02 6.3 4.80e-04 7.8 3.75e-07 109.7 2.46e-13 886.4
q 1.62e-02 6.6 4.54e-04 18.5 3.67e-07 136.6 2.44e-13 591.4

q+sd 1.60e-02 5.5 4.65e-04 26.7 3.72e-07 153.9 2.47e-13 4446.8 *
q+su 1.61e-02 18.0 4.57e-04 67.6 3.72e-07 348.1 2.44e-13 1885.6

15

auto 1.66e-02 6.5 4.98e-04 9.0 3.74e-07 134.9 2.45e-13 1251.0
q 1.61e-02 6.6 4.66e-04 18.9 3.75e-07 367.5 2.43e-13 2812.3 *

q+sd 1.63e-02 5.6 4.68e-04 23.5 3.72e-07 321.7 2.47e-13 1879.9 *
q+su 1.65e-02 11.3 4.56e-04 36.5 3.70e-07 285.1 2.42e-13 1427.6

M.C. 1.65e-02 0.4 4.58e-04 11.8 – – – –

Prism 1.63e-02 4.59e-04 3.72e-07 2.45e-13

to the number of sources down and su = 10 − sd refers to the number of sources
up. Standard Monte Carlo failed for K ≥ 80, and from all ad hoc importance
functions only one, “q ”, showed a relatively stable good behaviour. With very
few exceptions (cf. (K,Split) ∈ {(80, 2), (160, 5), (160, 9)}) the automatic ifun
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was the best importance assignment observed. Furthermore this came at very
low cost, since the function derivation times were 0.1 s, 0.5 s, 2.1 s and 8.3 s for
capacities K = 20, 40, 80, 160 respectively.

7 Concluding Remarks

Related Work. There have been some few incursions in automatic derivation of
importance functions. Sewards et. al construct their function based on the logical
property to be checked [5], which must support some “layered restatement” of its
syntax or resource to approximate heuristics. In [14] the approach from Booth
& Hendriks as reported in [10] is applied to stochastic Petri nets. However no
simulation times are reported in this case and the technique proposed requires
solving several instances of ILP, known to be an NP-complete problem. These
works, like ours, are based on static analysis of the model or property. Instead,
in [3] importance is assigned to states applying reversed simulation sequentially
on each of them. This requires some knowledge on the stationary distribution of
the system, and the applicability of the approach is shown for finite DTMCs.

Further Discussions. Overall the presented algorithm obtained, with very lit-
tle computational overhead, an ifun which rivalled the best ad hoc alternatives.
For transient properties like (1), the derived function performed even better than
the quasi-optimal versions from the literature. This was particularly noticeable
in the queueing system with breakdowns from [7], where very complex internal
behaviours make it hard to distil a good ad hoc importance assignment. In some
cases however the best ad hoc ifun met the stopping criteria faster for steady
state properties like (2), but in all scenarios either both automatic and the best
ad hoc ifun finished before the wall time limit or none did, see Table 2 and 3.
There were also situations where one or two experiment repetitions failed to
finish in time, but those who did took much less than the time limit, as e.g.
Table 3 for C = 30, Split = 6. This could be due to peculiarities of RESTART
discussed in [2,11]. In this direction, it would be good to study the performance
of our technique under other importance splitting algorithms such as [2]. Though
we have only reported an average on the point estimators, we remark all exper-
iments behave according to the confidence parameters when compared to the
numerically calculated values reported by PRISM.

Our algorithm works nicely as long as the number of transitions outgoing each
state is significantly lower than the number of states. If instead, the underlying
graph of the Markov Chain is highly connected, two problems arise. On the
one hand, the BFS algorithm approaches quadratic complexity where the large
majority of the computation is unproductive, spent on visiting already visited
nodes. On the other hand, the eventually derived ifun will most likely run on
a very small domain as a consequence of a short minimal distance between the
initial state and a rare sate. This actually happens in a case study taken from [19]
(and not reported in this paper) were a huge amount of computation was spent
on the derivation of the ifun, spending a total amount of time that largely
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surpassed standard Monte Carlo simulation. In spite of this, the automatic ifun
performed better than the ifun proposed in [19].

To conclude we would like to highlight the generality of our approach, here
limited to Markov chains exclusively with numerical validation purposes. To
show this however the current tool should be exported out of PRISM into a
wider framework with a more expressive model description syntax.

Acknowledgments. We thank Raúl E. Monti who helped on early developments of
the tool. The experiments were performed on the Mendieta Cluster from CCAD at
UNC (http://ccad.unc.edu.ar).
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Abstract. We present a novel statistical model reduction method which
can significantly boost the speed of stochastic simulation of a population
continuous-time Markov chain (PCTMC) model. This is achieved by
identifying and removing agent types and transitions from the simulation
which have only minor impact on the evolution of population dynamics
of target agent types specified by the modeller. The error induced on the
target agent types can be measured by a normalized coupling coefficient,
which is calculated by an error propagation method over a directed rela-
tion graph for the PCTMC, using a limited number of simulation runs
of the full model. Those agent types and transitions with minor impact
are safely removed without incurring a significant error on the simula-
tion result. To demonstrate the approach, we show the usefulness of our
statistical reduction method by applying it to 50 randomly generated
PCTMC models corresponding to different city bike-sharing scenarios.

1 Introduction

Continuous time Markov chains (CTMC) have been widely used to study pop-
ulation dynamics in many domains such as ecology [1], system biology [2] and
computer networking [3]. Recently, with the widespread adoption of wireless
communication techniques, large-scale collective ICT systems comprised of many
communicating entities and without centralised control, have become feasible
and their pervasive, transparent nature makes it crucial that their dynamic
behaviour is predicted prior to deployment. Population CTMCs (PCTMC) have
been proposed as a suitable tool to model such systems.

Currently, there are two typical approaches to analyse PCTMC models. One
is through stochastic simulation, which is usually computationally expensive as
performance metrics can only be derived after many simulation runs. The other
is to build an analytical model in the form of initial value problems by fluid-
limit theory [4] or moment closure techniques [5]. However, due to the intrinsic
spatial-heterogeneity in collective systems (the same agent can exhibit different
behaviour in different positions), the analytical model can be unresolvable due to
the number of coupled ODEs in the model. Moreover, the question also arises of
whether the fractured population is large enough to justify fluid/moment closure
techniques [6]. As a result, in many circumstances, stochastic simulation is the
c© Springer International Publishing Switzerland 2015
M. Beltrán et al. (Eds.): EPEW 2015, LNCS 9272, pp. 291–305, 2015.
DOI: 10.1007/978-3-319-23267-6 19
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only option to analyse such models. Nevertheless, although the spatial property
of collective systems increases the complexity of the underlying PCTMC models,
on the other hand, we also find that it gives us the possibility to decouple parts
of the model. For instance, two agents which are located far away from each
other are generally less likely to influence each other than another two agents
located in close proximity. In this paper, we propose a statistical model reduc-
tion method which can significantly boost the speed of stochastic simulation
of PCTMC models by identifying and removing those unimportant agents and
transitions with respect to some target agents which we are interested in, after a
few simulation runs. The error caused by removing these agents and transitions
can be controlled by the modeller by setting an acceptable error threshold.

Specifically, in order to evaluate the coupling coefficient between two agent
types (which tell us how much error will be caused to the population dynamics
of one agent type if we discard agents of the other type and their associated
transitions), we build a directed relation graph (DRG) for the PCTMC model.
We are inspired by the DRG first introduced by Lu and Law [7] for species and
reaction reduction in the numerical simulation of chemical reaction mechanisms
for hydrocarbon oxidation. This approach has since been improved by many
researchers in the combustion research domain. Examples include DRG with
error propagation [8], DRG with sensitivity analysis [9], etc.

In our DRG for PCTMC models, the vertices are the agent types and the
directed edges are coupling coefficients between agent types. In the DRG for
species in chemical reaction mechanisms for hydrocarbon oxidation, the tech-
nique is used to reduce a deterministic model (a set of coupled ODEs), and the
coupling coefficients between species can be computed using experimental data.
In contrast, in our work we reduce a stochastic model when there is no experimen-
tal data available to establish the value of the coupling coefficients. Instead, we
designed two statistical reduction algorithms in which we evaluate the coupling
coefficients between agent types based on a limited number of simulation runs
of the full PCTMC model. After that, an error propagation method is applied
to identify those agent types and transitions which can be discarded without
leading to significant error. These agents are removed from the simulation, and
the remaining model contains only necessary agent types and transitions, which
are tightly coupled to the identified target agents. The whole process is fast, and
has low computational cost compared to the total simulation cost.

To demonstrate the efficiency of this method, we will apply it to a family of
50 models for bike-sharing systems based on random topology of stations and
random values of parameters. The model is specified in PALOMA [10], a process
algebra recently designed for the modelling of collective adaptive systems, which
makes it easy to generate many variations of the same model. The underly-
ing PCTMC model can be automatically generated according to the population
semantics of this modelling language. Note that although we illustrate the appli-
cation of our method on PCTMC models derived from PALOMA, our method
is not limited to PALOMA models. Moreover, to our knowledge, this is the first
work which applies the DRG method outside the combustion simulation domain.
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2 A Brief Introduction of PCTMC

A CTMC is a Markovian stochastic process defined on a finite state space and
evolving in continuous time. In this paper, we specifically consider PCTMC
models of interacting agents [11], in which we assume that there are a number of
distinct agent types, each of which has a potential population. Agents interact via
a set of transitions. Transitions will change one or more agents from one type to
another. In general, a PCTMC model can be expressed as a tuple P = (X, E,x0):

– X = (x1, ..., xn) ∈ Z
n
≥0 is an integer vector with the ith (1 ≤ i ≤ n) compo-

nent representing the current population level of an agent type i.
– E = {e1, ..., em} is the set of transitions, of the form e = (re(X),de), where:

1. re(X) ∈ R ≥ 0 is the rate function, associating with each transition the
rate of an exponential distribution, depending on the global state of the
model.

2. de ∈ Z
n is the update vector which gives the net change for each element

of X caused by transition e.
– x0 ∈ Z

n
≥0 is the initial state of the model.

Transition rules can be easily visualised in the chemical reaction style, as

x1 + . . . + xn → (x1 + d1e) + . . . + (xn + dn
e ) at re(X)

where di
e (1 ≤ i ≤ n) denotes the net change on the population of agents of

type i caused by transition e. The tuple P contains all the information that
is needed for the discrete event simulation of a PCTMC model using standard
simulation algorithms, like SSA [12]. Clearly, the speed of stochastic simulation
is dependent on the number of agent types, the populations of agents and the
number of transitions in the model.

3 Directed Relation Graph with Error Propagation

The DRG method with error propagation was proposed in [8] to efficiently recog-
nise removable species and reactions in the numerical simulation of large scale
chemical kinetic mechanisms. In this section, we will focus on the modification
of this method for application to PCTMC models.

Specifically, in the DRG for a PCTMC model, each vertex represents an agent
type in the PCTMC. There exists an edge from vertex i to vertex j if and only
if the removal of agents of type j and their associated transitions would directly
induce an error in the evolution of the population dynamics of agents of type i.
This effect can be quantified by a normalized coupling coefficients cij , defined as

cij =
|∑e∈E re di

e δj
e|

max(Prodi, Consi)
(1)

where re is the rate of transition e, di
e is the net change to the population of

agent type i caused by transition e, δj
e equals 1 if agent type j is involved in
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transition e otherwise it is 0 (we say agent type j is involved in transition e
if and only if the net change on the population of agents of type j caused by
transition e is non-zero, or the rate of transition e depends on the population of
agents of type j), and

Prodi =
∑

e∈E

1di
e>0 re di

e (2)

Consi = −
∑

e∈E

1di
e<0 re di

e (3)

which are the total production and consumption of agents of type i respectively.
cij is bounded between 0 and 1 since

|
∑

e∈E

re di
e δj

e| = |
∑

e∈E

1di
e>0 re di

e δj
e +
∑

e∈E

1di
e<0 re di

e δj
e| = |Prodij − Consij | (4)

where Prodij (Consij) is the total production (consumption) of agents of type i
from transitions in which agent type j is involved. Then, as 0 ≤ Prodij ≤ Prodi

and 0 ≤ Consij ≤ Consi, it can be inferred that −Consi ≤ Prodij − Consij ≤
Prodi, which is equivalent to |Prodij − Consij | ≤ max(Prodi, Consi).

Furthermore, we say agent type j and its associated transitions are removable
if cij ≤ θ, where i is the target agent type which we are interested in and θ is an
acceptable error threshold given by the modeller. Moreover, note that coupling
coefficients are not symmetric, since it is not necessarily the case that cij = cji.

3.1 Group-Based Direct Coupling Coefficient

We will remove agents (and their transitions) one by one until the cumulative
induced error reaches the acceptable error threshold. Since a transition typically
involves more than one agent type, when we consider removing an agent type,
we cannot assume that it is independent of the agent types that have already
been removed. The following equation gives the coupling coefficient of an agent
type which also takes into account those agent types which have already been
removed:

cij,{S} =
|∑e∈E re di

e δ
j,{S}
e |

max(Prodi, Consi)
(5)

where S is the set of agent types which have already been removed, δ
j,{S}
e equals

1 as long as agent type j or an agent type in S is involved in transition e,
otherwise it is 0.

3.2 Indirect Coupling Coefficient

For those agent types which are not directly connected in the DRG, by using
an error propagation method, we can evaluate the indirect coupling coefficient
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between two agent types. Specifically, indirect coupling is quantified by path
dependent coefficient cij,σ, which is the product of the direct coupling coefficients
along the path σ between agent types i and j. The influence of removing agent
type j on agent type i is characterized by coefficient Cij , which is the maximum
of the path dependent coefficients:

cij,σ =
∏

xy∈σ

cxy (6)

Cij = max
all paths σ

cij,σ (7)

Figure 1 shows part of a DRG, in which the indirect coupling coefficient between
i and j is Cij = cim × cmj = 0.24, since cim × cmj > cik × ckl × clj .

Similarly, taking into consideration agent types that have already been
removed, we define:

cij,{S},σ =
∏

xy∈σ

cxy,{S} (8)

Cij,{S} = max
all paths σ

cij,{S},σ (9)

where Cij,{S} is the indirect coupling coefficient from agent type i to j given a
set of agent types {S} which have already been removed.

i

k

m

l

j

cik = 0.04

cim = 0.6

ckl = 0.5

clj = 0.3

cmj = 0.4

Fig. 1. Part of a directed relation graph with five agent types

4 Statistical Model Reduction

In this section, we give the details of our statistical model reduction method.
Given the target agent types which we are going to investigate, the dynamics
in a PCTMC and the acceptable error threshold for those agent types, after a
few simulation runs of the full model our method can accurately identify those
agent types and transitions which can be removed from the simulation without
leading to an error beyond the acceptable threshold, based on the DRG with
error propagation. For simplicity, we only deal with a single target agent type
in the introduction of the two algorithms, but it can be readily seen that they
can both be extended to cope with multiple target agent types.
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4.1 Statistical Transition Rate Evaluation

First of all, since the rate of a transition, re(X) depends on the current state
of the PCTMC, we cannot evaluate cij in Equation (1) solely from the system
description since re may evolve during the simulation period. However, by learn-
ing from past simulation runs, we can give a statistical rate for each transition.
Specifically, we let rk

e = Nk
e

T , where Nk
e is the firing count of transition e dur-

ing the kth simulation run, T is the time length of a simulation run, rk
e is the

statistical rate of transition class e in the kth simulation. We use the statistical
transition rate to estimate the coupling coefficient, which gives the overall con-
tribution of an agent type to the evolution of the population dynamics of the
target agent type during a simulation.

4.2 Model Reduction Algorithms

We introduce two automatic model reduction algorithms both based on DRG
with error propagation, but with different sampling methods for deducing the
coupling coefficients and different reduction criteria.

Algorithm with Fixed Length Sampling. We first introduce a straightfor-
ward reduction algorithm. Specifically, we let the user define a number K, which
is the number of simulation runs before the reduction process is actually carried
out. At the end of the Kth simulation run, we approximate the rate of transition

e by re =
∑

k=1,...,K Nk
e

K×T , i.e. the average of the statistical transition rate over the
K runs. Then, we initiate the DRG and compute the coupling coefficients for
the target agent type with respect to all other agent types. We delete an agent
type which has the minimal coupling coefficient with the target agent type each
time, and then update the coupling coefficients of remaining agent types, taking
into account the newly removed agent type. The reduction process is terminated
when removing an agent type will exceed the acceptable error threshold given
by the user. Algorithm 1 gives the pseudo code for this algorithm.

Algorithm with Flexible Length Sampling. The second algorithm is more
strict in the sense that we only remove agent types after we reach Pr(Cti,{S} <
θ) ≥ p, where p is the confidence level. That is to say, that given a set of already
removed agents {S}, we only remove agent type i when we achieve confidence
level p that the coupling coefficient Cti,{S} is less than the acceptable error
threshold θ.

In order to test whether Pr(Cti,{S} < θ) ≥ p holds, we raise two hypotheses,
which are: H0: Pr(Cti,{S} < θ) ≥ p0 and H1: Pr(Cti,{S} < θ) ≤ p1 where (p1, p0)
is an indifference region where we say that the probability is sufficiently close to
p that we are indifferent with respect to which of the two hypotheses H0 or H1

is accepted. Moreover, we require the probability of accepting H1 when actually
H0 holds to be less than α, and the probability of accepting H0 when actually
H1 holds to be less than β.
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Algorithm 1.. Reduction with fixed length sampling
User specifies the target agent type t, number of sampling simulation runs K and
the acceptable error threshold θ.
Simulate the full model K runs
Compute statistical rates for all transitions.
Initiate the DRG, and compute the coupling coefficients from the target agent type
to any other agent types.
repeat

find agent type i which has the minimal coupling coefficient Cti,{S} among the
remaining agent types, where {S} is set of removed agent types.
if Cti,{S} < θ then

remove agent type i and the transitions it is involved.
add agent type i to {S}, and update the coupling coefficient of remaining agent
types.

end if
until Cti,{S} ≥ θ
Use the reduced model in the following simulation runs.

Furthermore, we let

p1m

p0m
=

pdm
1 (1 − p1)m−dm

pdm
0 (1 − p0)m−dm

where m is the current number of simulation runs, dm is the number of simula-
tion runs for which Cti,{S} < θ holds. Applying the idea behind the sequential
probability ratio test (SPRT) [13], we can accept H0 when p1m

p0m
≤ β

1−α and accept
H1 when p1m

p0m
≥ 1−β

α . Accepting H0 means that with confidence level p removing
agent type i and the associated transitions will cause error in the target agent
type of less than θ, thus the agent type and transitions are removable. Accepting
H1 means that we are highly confident that we cannot remove agent type i, thus
the reduction process should be terminated.

It can be seen that we can only reach the removal criterion of an agent
type, or the termination criterion of the reduction process, after at least K =
min(log p1

p0

β
1−α , log 1−p1

1−p0

1−β
α ) simulation runs, when dm = m or dm = 0. Thus,

we will start the reduction process after K simulation runs. Specifically, at the
end of the Kth simulation run, we compute the average statistical rate for each

transition as re =
∑

k=1,...,K Nk
e

K×T , and then build the DRG and compute the
coupling coefficients using the average statistical transition rates. Again, we find
the agent type which has the minimal coupling coefficient with the target agent
type. Then, we remove an agent type each time repeatedly if hypothesis H0

holds. We simulate the model with the reduced version. Compared with the first
algorithm, the difference is that we will continue to check whether there are
more agent types that are removable until we reach hypothesis H1. Note that
when some agent types and transitions are removed, we lose information about
the rate of those removed transitions in the following runs. Thus, we will use
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Algorithm 2.. Reduction with flexible length sampling
User specifies t, θ, p0, p1, α and β
Simulate the full model K = min(log p1

p0

β
1−α

, log 1−p1
1−p0

1−β
α

) runs

Compute statistical transition rates for each simulation run, and the average statis-
tical transition rates for the K runs.
Initiate the DRG and compute the coupling coefficients from the target agent type
t to any other agent types using the average statistical transition rates.
Point A:
repeat

find agent type i which has the minimal coupling coefficient Cti,{S} using the
average statistical transition rates among the remaining agent types, where {S}
is set of removed agent types.
Compute Cti,{S} for each simulation run

if p1m
p0m

≤ β
1−α

then
remove agent type i and the transitions it is involved.
add agent type i to {S}, and update the coupling coefficient of remaining agent
types using the average statistical transition rates.

else if p1m
p0m

≥ 1−β
α

then
stop the reduction process.

end if
until p1m

p0m
> β

1−α

Simulate the reduced model, after each run go to Point A unless the reduction process
has stopped.

the average rate of those removed transitions in the previous simulation runs in
order to calculate the coupling coefficients if they are needed. Algorithm 2 gives
the pseudo code for this algorithm.

4.3 Comparison of the Two Algorithms

It is obvious that the algorithm with fixed length sampling is easier to imple-
ment and has less computational cost for the reduction process. However, the
algorithm with flexible length sampling has the advantage of more stringent
error control on the simulation result. We will report on a comprehensive test of
these two reduction algorithms in Section 6, using 50 randomly generated city
bike-sharing models. But before that, we first briefly introduce the modelling
language we use to generate our models.

5 Modelling Language and Model Definition

In this section, we give a brief introduction of the modelling language, PALOMA,
and the model definition of the bike-sharing scenario using this language.

5.1 PALOMA

PALOMA is a stochastic process algebra, specifically designed to support the
construction of formal models of large collective adaptive systems in which agents
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are distributed over a discrete set of named locations, L. Agents are parame-
terised by a location, denoted by �, � ∈ L. There is a finite set of action types A,
and actions may be undertaken spontaneously or may be induced by a message
of the same type, sent by another agent in the system. All spontaneous actions
are assumed to have a duration governed by an exponential distribution and
characterised by a rate r. A model P consists of a number of agents composed
in parallel. The language has the following grammar:

π ::= !(α, r)@IR{−→
� } | ?(α, p)@Pr{v} | !!(α, r)@IR{−→

� } | ??(α, p)@Wt{v} | (α, r)

S(�) ::= π.S′(�′) | S1(�) + S2(�) | M

P ::= S(�) | P ‖ P

Agents can change their states and locations by different actions:
Spontaneous action with broadcast message emission: !(α, r)@IR{−→

� }
describes that the agent performs an action α, α ∈ A, spontaneously with rate
r. During the occurrence of the action, a broadcast message, also typed α, is
emitted. The influence range of the broadcast is defined by the location vector−→
� , which gives a list of locations where agents can potentially be influenced by
this message. For example,

−→
� = range(d) denotes that the influence range is a

set of locations whose distance from the location of the sender agent is less than
a specific threshold d. Another frequently used definitions of influence range is−→
� = local, which represent that the influence range of the broadcast message is
restricted to the location of the sender agent.

Spontaneous action with unicast message emission: !!(α, r)@IR{−→
� } also

describes a spontaneous action of type α, rate r and influence range
−→
� . The

difference is that here the message is a unicast, meaning that at most one agent
can receive the message.

Action induced by a broadcast message: ?(α, p)@Pr{v} describes that the
agent performs an action α immediately after receiving and accepting a broadcast
message of type α. Whether the agent receives the broadcast message is decided
by two factors. Firstly, the agent must be located within the influence range of the
message; otherwise, the message will be ignored. Secondly, the value v ∈ [0, 1]
gives the probability that the message is received by the agent given that it
is within the influence range of the broadcast. v can be defined dynamically.
For instance, v = 1/|S(�)| denotes that the message reception probability is
dependent on the number of agents in state S in location �, where | · | is an
operator which gives the number of agents in a particular state and location.
Formally, the definition of v follows this grammar:

v ::= c | dist(�1, �2) | |S(�)| | v (op) v

where c is a constant real number, dist(�1, �2) is the distance between locations �1
and �2, (op) is a basic arithmetic operator. Once the message has been received,
the agent decides whether to accept it. Here, a constant value p ∈ [0, 1] encodes
the probability that the agent will accept the message. This can be thought of
as the agent choosing to respond to a spontaneous action of the given type with
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probability p. The definition of v and p supports a rich set of possible interaction
patterns between agents.

Action induced by a unicast message: ??(α, p)@Wt{v} describes that the
agent performs an action α immediately after receiving and accepting a uni-
cast message of type α. Here, v ∈ R

+ gives the weight of the agent to be the
receiver of this unicast message. The definition of v follows the same grammar
as previously, but with a different value domain. The weights are used to resolve
between several potential receiver agents: suppose there are n agents denoted
by S1(�1), S2(�2), ..., Sn(�n), which can potentially receive the unicast message,
with weights v1, v2, ..., vn. Then, the probability that agent S1(�1) receives the
message is v1/Σ, where Σ denotes

∑n
i=1 vi, the sum of the associated weights

of all potential receivers. If there is no potential receiver, the message is sim-
ply discarded. The value p ∈ [0, 1] is a distinct probability deciding whether a
received message is accepted or not. Note that if the selected agent does not
accept the unicast message, the message is discarded; it cannot be passed to any
other potential receiver agent.

Spontaneous action without message emission: (α, r) denotes that the agent
performs a spontaneous action named α with a rate r governed by a negative
exponential distribution. No message is sent out during the firing of this action.

Alternative behaviours are represented by the standard choice operator, +.
A choice between spontaneous actions is resolved via the race policy, based on
their corresponding rates. A choice between two induced actions of the same
type within a single component is not allowed. M denotes a constant name for
an agent. Compositionality is proved by the parallel operator.

5.2 Model Definition

Here we present the PALOMA model for the template city bike-sharing sce-
nario which can be automatically parsed to a PCTMC model via the population
semantics introduced in [10]. Suppose that there are n bike stations in the city,
and each one has a number of available bikes and slots. Therefore, we represent
the available bikes and slots in Station i (for i = 1, ..., n) by agents as follows:

Slot(�i) =??(return, 1)@Wt{1}.Bike(�i) Bike(�i) =??(borrow , 1)@Wt{1}.Slot(�i)

Both Slot(�i) and Bike(�i) are passive. They can only be induced to make a
return (returning a bike to this station) or borrow (borrowing a bike from this
station) action by a unicast message, and when this happens they switch role.

The agents to represent the bike stations are defined as:

Station(�i) = !(SlotAvailablei, γ)@IR{range(1)}.Station(�i) +

!(BikeAvailablei, γ)@IR{range(1)}.Station(�i)

A bike station performs both BikeAvailablei and SlotAvailablei self-jump spon-
taneous actions with broadcast message emission at the rate of γ. The influence
range of the broadcast messages is defined by the function range(d), which means
that only agents in locations whose distance to the location of the sender station
is less than d can potentially be influenced by this message.
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The agents representing bike users are defined as follows:

Pedestrian(�i) = (seekbi, bi).SeekBike(�i) +
∑

j �=i

(walk ij , wij).Pedestrian(�j)

SeekBike(�i) =
m∑

j=1

?(BikeAvailablej , 1)@Pr{v1}.Walk2Stationj(�i)

Walk2Stationj(�i) = (W2S ij , w2sij).CheckBikeNum(�j)

CheckBikeNum(�i) = ?(BikeAvailablei, 1)@Pr{v2}.BorrowBike(�i)

BorrowBike(�i) = !!(borrow , o)@IR{local}.Biker(�i)

Biker(�i) = (seeksi, si).SeekSlot(�i) +
∑

j �=i

(rideij , rij).Biker(�j)

· · ·
ReturnBike(�i) = !!(return, o)@IR{local}.Pedestrian(�i)

where

v1 = θ0 + θ1
d − dist(�i, �j)

d
+ θ2

|Bike(�j)|
|Bike(�j)| + |Slot(�j)| (1)

v2 =
|Bike(�i)|

|Bike(�i)| + σ
(2)

As can be seen from the definition, when the user agent is in the Pedestrian
state, it travels from location �i to location �j at the rate of wij by performing
a spontaneous action walkij without message emission. It may also seek a bike
at the rate of bi, and enter into the SeekBike state.

The user agent in the SeekBike(�i) state can do a BikeAvailablej action
induced by a broadcast message sent by a station agent in location �j and goes
to the Walk2Stationj(�i) state, which represents that the user is walking from
location �i to the bike station in location �j . The probability of receiving a
bike available message from the station in location �j is defined in Equation
(1). It can be interpreted as follows: the users tend to borrow a bike from a
closer bike station with more available bikes, and θ1, θ2 are associated weights
of those factors, θ0 is the noise term (imagine that the user checks the bike
numbers in nearby stations using a smart phone application). The user in the
Walk2Stationj(�i) state can do a spontaneous action W2S ij at the rate of w2sij ,
where 1/w2sij is the expected time to walk from �j to the bike station in �i.

The user in the CheckBikeNum(�i) state can only do a BikeAvailablei action
induced by a broadcast message sent by the station in �i. The probability of
receiving the message is defined in Equation (2), where σ is a very small real
number to avoid a zero denominator. This ensures that the user can only go to
the BorrowBike(�i) state if the bike station is not empty. The borrow bike action
borrow is fired at rate o. Meanwhile, a unicast message borrow is sent out, and
the user becomes a Biker .

A user agent in the Biker state can perform actions and become a Pedestrian
again in a similar fashion, thus we do not give the details due to lack of space.
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Finally, the initial population of agents are given in the following definition:

. . . ‖ Pedestrian(�i)[n
i
p ] ‖ Slot(�i)[n

i
s] ‖ Bike(�i)[n

i
b] ‖ Station(�i) ‖ . . .

where Pedestrian(�i)[ni
p ] is syntactic sugar which represents ni

p copies of
Pedestrian(�i) in parallel.

6 Experiments

The usefulness of a reduction algorithm can be evaluated by the size of the
reduced model (the proportion of removed agent types and transitions), the
decrease of simulation time, and the error caused by the reduction. Thus, in
order to do the evaluation, we simulate the bike-sharing models with and with-
out applying the reduction algorithms. To make our experiments more thorough,
we generated 50 bike-sharing models each with 30 locations. There are 50 pedes-
trians and a bike station which is equipped with 25 available bikes and 5 available
slots initially in each location in the simulation. The topology of the locations
and the value of parameters in each model are generated randomly.

We simulate each model without reduction for 500 runs. Next, we randomly
pick the bike agents in 2 bike stations as our target agent types, denoted as
t1 and t2. The two reduction algorithms are applied in the simulation of these
models with different acceptable error thresholds with respect to t1 and t2. For
each value of the acceptable error threshold, we also simulate each model for 500
runs (including the sampling runs), and compare the size of the reduced model
and the decrease of simulation time with the full model without reduction. In
the simulation with the reduction algorithm with fixed length sampling, we set
the sampling length to 50 simulation runs. In the simulation with the reduction
algorithm with flexible length sampling, we set p0 = 0.95, p1 = 0.9, α = β = 0.1.

Figure 2 gives the proportional reduction of simulation time, agent types
and transitions with different reduction algorithms and varying acceptable error
thresholds. It can be seen that both reduction algorithms can significantly reduce
the size of the model and simulation time. Observe that the larger the value
of the error threshold, the more agent types, transitions and simulation time
can be reduced within the model. This reflects the soundness of our reduction
algorithms from another perspective. Moreover, it can be seen that the algorithm
with fixed length sampling tends to remove more agent types and transitions
from the simulation. The reduction in simulation time cost when applying the
flexible sampling method is smaller compared with fixed length sampling method
both due to a proportionally smaller reduction of agent types and transitions,
and the larger computational cost of the reduction process.

Furthermore, in order to measure the error caused by reduction, we evenly
sample the population of target agents at 200 time points along the simulation.
The error in the population of a target agent type t at a time point i can

be quantified by: Errort,i =
| xf

t,i − xr
t,i |

xf
t,i

where xr
t,i and xf

t,i are the average

population of agents of type t at time point i in the 500 simulation runs with and
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Fig. 2. The proportional reduction of simulation time, agent types and transitions
(y-axis) with different reduction algorithms and acceptable error thresholds (x-axis).

Table 1. The average error caused by reduction with different algorithms and accept-
able error thresholds.

Value of θ 2.5% 5% 7.5% 10% 12.5% 15% 17.5% 20%

Fixed Length Sampling 1.5% 2.8% 3.1% 3.4% 3.5% 3.9% 4.1% 4.6%

Flexible Length Sampling 1.1% 1.8% 2.9% 3.0% 3.3% 3.8% 4.1% 4.4%

without reduction. If we treat each Errort,i where t ∈ {t1, t2}, i ∈ (1, 2, . . . , 200)
as an error sample, then the average error caused by a reduction algorithm in
our experiments can be measured by:

Errort1,t2 =
∑200

i=1(Errort1,i + Errort2,i)
2 × 200

where t1, t2 are the target agent types in our experiments. Table 1 gives the
average error caused by reduction with different algorithms and acceptable error
thresholds. Table 2 shows the 95th percentiles of the error samples (95% of
the error samples are below this value). We find that the average error caused
by both reduction algorithms is significantly smaller than the acceptable error
threshold we assign to the target agents. We can also observe that the reduction

Table 2. The 95th percentiles of error caused by reduction with different algorithms
and acceptable error thresholds.

Value of θ 2.5% 5% 7.5% 10% 12.5% 15% 17.5% 20%

Fixed Length Sampling 2.8% 4.7% 6.8% 8.4% 11.9% 15.8% 16.2% 18.2%

Flexible Length Sampling 1.6% 4.3% 6.3% 7.1% 9.9% 11.6% 13.6% 16.7%
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algorithm with flexible length sampling has better performance in controlling
the error in the tail than the algorithm with fixed length sampling.

6.1 Discussion

As modellers we know that a model is inevitably an abstraction of the system in
the real world. Thus it inevitably contains some deviation from the real system,
due to details that are omitted in the abstraction process. Consequently, except
for the case of particular safety critical systems, it is generally acceptable to allow
some minor noise to be introduced to a model during construction. Taking this
perspective a little further, we can consider the agent types and transitions that
we removed from the simulation using our reduction algorithms as noise factors
which have negligible impact on the evolution of target agent types. Thus our
method can significantly improve the efficiency of analysing the model whilst
retaining a reasonable level of faithfulness with respect to the modelled system.

We anticipate that the benefit to be gained from our approach could be par-
ticularly valuable in statistical model checking since it usually requires thousands
of simulation runs in order to check whether a hypothesis holds. For example, for
the bike-sharing system, suppose we want to check whether the following hypoth-
esis holds: Pr(G[0,100]0 < xb < C) ≥ 95% where xb is the number of bike agents
in a station, C is the capacity of that station. This means we require that in the
first 100 time points, the probability of the station being empty or full should
be less than 5%. Thus, if we set the bike agents in that station as our target
agent type, the simulation speed can be significantly boosted by removing those
agent types and transitions that are loosely-coupled to the target agent type, as
illustrated by the sample simulation runs presented in the previous section.

Moreover, when applying the reduction algorithmwith flexible length sampling
in the bike-sharing model, we find that in general more than 90% removable agent
types are identified at the end of log p1

p0

β
1−α simulation runs which is the minimal

number of runs to reach the removal criterion. Thus, identifying removable agent
types and transitions should in general be much quicker than reaching the criterion
to accept or reject a hypothesis in statistical model checking. We plan to explore
and exploit this promising application of our approach in future work.

7 Conclusion

We have presented two statistical model reduction algorithms for the stochas-
tic simulation of PCTMC models. Both algorithms are based on investigating
the coupling coefficients between agent types in the model by building a directed
relation graph and applying an error propagation method to measure agent types
which are not directly related. We have shown that our reduction algorithms can
significantly reduce the computational cost of the simulation. Moreover, the error
caused by the reduction is well-controlled by the acceptable error threshold set by
the modeller. We have proposed that our reduction method could be very useful
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in statistical model checking for PCTMC models. We are going to investigate
this idea further in the near future.
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