
Integrating ASP into ROS for Reasoning
in Robots

Benjamin Andres1, David Rajaratnam2, Orkunt Sabuncu1,
and Torsten Schaub1,3(B)

1 University of Potsdam, Potsdam, Germany
torsten@cs.uni-potsdam.de

2 University of New South Wales, Sydney, Australia
3 INRIA Rennes, Rennes, France

Abstract. Knowledge representation and reasoning capacities are vital
to cognitive robotics because they provide higher level functionalities for
reasoning about actions, environments, goals, perception, etc. Although
Answer Set Programming (ASP) is well suited for modelling such func-
tions, there was so far no seamless way to use ASP in a robotic setting. We
address this shortcoming and show how a recently developed ASP sys-
tem can be harnessed to provide appropriate reasoning capacities within
a robotic system. To be more precise, we furnish a package integrating
the new version of the ASP solver clingo with the popular open-source
robotic middleware Robot Operating System (ROS). The resulting sys-
tem, ROSoClingo, provides a generic way by which an ASP program can
be used to control the behaviour of a robot and to respond to the results
of the robot’s actions.

1 Introduction

Knowledge representation and reasoning capacities are vital to cognitive robotics
because they provide higher level functionalities for reasoning about actions,
environments, goals, perception, etc. While Answer Set Programming (ASP) is
well suited for modelling high level functionalities, there was so far no seamless
way to use ASP in a robotic setting. This is because ASP solvers were designed
as one-shot problem solvers and thus lacked any reactive capabilities. So, for
instance, each time new information arrived, the solving process had to be re-
started from scratch.

In this paper, we address such shortcomings and show how a recently devel-
oped (multi-shot) ASP system [1] can be harnessed to provide knowledge rep-
resentation and reasoning capabilities within a robotic system. We accomplish
this by integrating a multi-shot ASP approach, where online information can be
incorporated into an operative ASP solving process, into the popular open-source
middleware ROS1 (Robot Operating System; [2]).

T. Schaub—Affiliated with Simon Fraser University, Canada, and IIIS Griffith Uni-
versity, Australia.

1 http://www.ros.org.

c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 69–82, 2015.
DOI: 10.1007/978-3-319-23264-5 7

http://www.ros.org


70 B. Andres et al.

To be more precise, we furnish a ROS package integrating the ASP solver
clingo 4 with the popular open-source ROS robotic middleware. The resulting
system, called ROSoClingo, provides a generic method by which an ASP program
can be used to control the behaviour of a robot and to respond to the results
of the robot’s actions. In this way, the ROSoClingo package plays the central
role of fulfilling the need for high-level knowledge representation and reasoning
in cognitive robotics by making details of integrating a reasoning framework
within a ROS based system transparent to developers. As we detail below, the
robotics developer can encode high-level planning tasks in ASP keeping only the
interface requirements of the underlying behaviour nodes in mind and avoiding
implementation details of their functionality (motion planning for example).

One crucial added value of our integration of reactive ASP framework into
ROS is the facility of encoding adaptive behaviours directly in a declarative
knowledge representation formalism. Additionally, the robot programmer can
handle execution failures directly in the reasoning formalism. This paves the
way for deducing new knowledge about the environment or diagnostic reasoning
in the light of execution failures. The case study in Sect. 4 demonstrates these
advantages of ROSoClingo.

Finally, it is worth mentioning a number of related approaches which utilize
ASP or other declarative formalisms in cognitive robotics. In the work of [3,4]
ASP is used for representing knowledge via a natural language based human
robot interface. Additionally, action language formalisms and ASP have been
used to plan and coordinate multiple robots for fulfilling an overall task [5,6].
ASP has also been used to integrate task and motion planning via external
calls from action formalism to geometric reasoning modules [7]. However, all
these implementations rely on one-shot ASP solvers and thus lack any reactive
capabilities. Hence, they could greatly benefit from the reactive solving that
comes from the usage of ROSoClingo.

In what follows, we provide the architecture and basic functionality of the
ROSoClingo system. We then outline the ASP encoding for an example mail
delivery robot. This example serves to highlight the features of the system but
also serves as a guide for how an ASP encoding could be written for other appli-
cation domains. The operations of the mail delivery robot are illustrated via
a case-study conducted within a 3D simulation environment.2 The features of
ROSoClingo are discussed with reference to this case study and through compar-
isons to alternative approaches. Finally, it should be mentioned that the ROSo-
Clingo system is publicly available [13] and we are committed to submitting the
ROSoClingo package to the public ROS repository.

2 ROSoClingo

In this section, we describe the general architecture and functionality of the
ROSoClingo system. With the help of the reactive ASP solver clingo (ver-
sion 4), ROSoClingo provides high-level knowledge representation and reasoning
2 http://gazebosim.org.

http://gazebosim.org


Integrating ASP into ROS for Reasoning in Robots 71

Fig. 1. The general architecture and main work flow of ROSoClingo.

capabilities to ROS based autonomous robots. Critically, clingo supports multi-
shot reactive solving, where the solver does not simply terminate after an initial
answer set computation, but instead enters a loop, incrementally incorporating
new information into the solving process. For more extensive background to both
clingo 4 and ROS the interested reader is referred to an extended version of this
paper [8].

Figure 1 depicts the main components and workflow of the ROSoClingo sys-
tem. It consists of a three layered architecture. The first layer consists of the
core ROSoClingo component and the instantiation of a ROS actionlib API. In
essence, this API simply exposes the services provided by ROSoClingo for use by
other processes (i.e., ROS nodes). The package also defines the message structure
for communication between the core ROSoClingo node and the various nodes of
the interface layer. In contrast to the reasoning layer, the interface layer provides
the data translations between what is required by the ROSoClingo node and any
ROS components for which it needs to integrate. This architecture provides for a
clean separation of duties, with the well-defined abstract reasoning tasks handled
by the core node and the integration details handled by the interface nodes.

2.1 The ROSoClingo Core

The main ROSoClingo node is composed of a python module for the answer
set solver clingo controlled by clingoControl, an actionExtractor, and an
inputFeeder. Through its ROS actionlib API, it can receive goal and cancella-
tion requests as well as send result, feedback, and status information back to a
client node (marked by 1 in Fig. 1). The ASP program, encoding the high-level
task planning problem, is given to the ROSoClingo node at system initialization
(marked by 2). During initialization, ROSoClingo grounds the base subprogram
of the ASP encoding and sets the current logical time point as well as the current
horizon to 0. The logical time point identifies which actions of a task plan are to
be executed next, while the horizon identifies the length of the task plan. The
time point is incremented at the end of each cycle.



72 B. Andres et al.

Algorithm 1. clingoControl
solveAsynchronous

if clingo returns satisfiable then
task plan ← get answer set from clingo
actionExtractor(task plan)

if clingo returns unsatisfiable then
horizon ← horizon + 1
assignExternal(Fun("horizon",[horizon-1]),False)
ground([("transition",[horizon])])
ground([("query",[horizon])])
assignExternal(Fun("horizon",[horizon]),True)
clingoControl

Fig. 2. Keywords used for communicating between ROSoClingo and clingo.

ROSoClingo’s workflow starts with a goal arriving at the inputFeeder
(marked by 1). If clingo is already in the process of searching for a task plan, the
solving procedure is interrupted and the new goal is added to the solver. The
goal request is transformed into an ASP fact and transmitted to clingo (marked
by 3). Then clingoControl is called to resume the solving process with the
additional goal.

Algorithm 1 presents the pseudo code representation of the clingoControl
procedure. The clingo functions assignExternal as well as ground are explained
in more detail in Sect. 3. It instructs the clingo solver to asynchronously find a
task plan that satisfies all given goals. If clingo is able to find a valid task
plan then the solution is forwarded to the actionExtractor. If no task plan
is found for the current horizon, the horizon is incremented by one time step.
This is realized by assigning False to the external atom that identifies the old
horizon, followed by the grounding of the transition and query subprograms for
the new horizon, and finally, the assignment of True to the external atom that
identifies this new horizon. Note that the keyword Fun represents clingo’s data
type for function terms, here applied to the external horizon atoms. Finally,
clingoControl is called again to find a task plan with the new horizon. If an
interrupt occurs, the solving process is stopped without clingo determining the
(un-)satisfiability of the current program and clingoControl ends.

The actionExtractor identifies actions to be executed during the cur-
rent logical time point and transforms them into ROSoClingo output messages
(marked by 4). These messages are then transmitted via the /ROSoClingo/out
topic3 (marked by 5). It is then the task of the interface layer nodes to trans-

3 Topics are a named publisher-subscriber communications mechanism for message
passing between ROS nodes.



Integrating ASP into ROS for Reasoning in Robots 73

form them into goal requests for the underlying actionlibs and to compose a
response once the action is executed. The response arrives at the inputFeeder
component of the ROSoClingo node via the /ROSoClingo/in topic (marked by
6). The details of how the ROSoClingo interface layer interacts with existing
ROS components are outlined in Sect. 2.2.

In contrast to goal requests, messages arriving at the inputFeeder com-
ponent via /ROSoClingo/out are transformed into event predicates and then
incorporated into the existing ASP program as external facts and processed by
clingo. The keywords of Fig. 2 encode the protocol for this (internal) communica-
tion between ROSoClingo and clingo. The second column indicates whether the
keyword is an input (in) or part of the output (out) of clingo. The (un)successful
result of an action may generate new knowledge for the robot about the world
(for example, the fact that a doorway is blocked or a new object is sensed).

Once all actions of the current time point report a result the cycle is com-
pleted and a new one is initiated, provided there are still actions left to be
executed in the task plan. If the task plan is completed ROSoClingo waits for
new goal requests to be issued.

Finally, it is worthwhile noting that the ROSoClingo package is able to sup-
port multiple goal requests at a time.

2.2 Integrating with Existing ROS Components

The core ROSoClingo node needs to issue commands to, and receive feedback
from, existing ROS components. The complexity of this interaction is handled
by the nodes at the interface layer (cf. Fig. 1). Unlike the components of the
reasoning layer it is, unfortunately, not possible to define a single ROS interface
to capture all interactions that may need to take place. Firstly, there is a need for
data type conversions between the individual modules. Turning ROS messages
into a suitable set of clingo statements therefore requires data type conversions
that are specific for each action or service type.

A second complicating issue is that the level of abstraction of a ROS action
may not be at the appropriate level required by the ASP program. For example,
the pose goal for moving a robot consists of a Cartesian coordinate and orienta-
tion. However, reasoning about Cartesian coordinates may not be desirable when
navigating between named locations such as corridors, rooms and offices. Instead
one would hope to reason abstractly about these locations and the relationship
between them; for example that the robot should navigate from the kitchen to
the bedroom via the hallway.

While it is not possible to provide a single generic interface to all ROS com-
ponents, it is however possible to outline a common pattern for such integration.
For each existing component that needs to be integrated with ROSoClingo there
must be a corresponding interface component. We therefore adopt a straightfor-
ward message type for messages sent by ROSoClingo. This type consists of an
assigned name for the robot performing the action and the action to be executed.
Note, the addition of robot names allows for the coordination of multiple robots,



74 B. Andres et al.

or multiple robot components, within a single ASP program and to identify the
actions performed by each robot or component.

In a similar manner to the ROSoClingo output messages, the input messages
also consist of a straightforward message type. These messages allow for an
interface node to either respond with the success or failure of a ROSoClingo
action, or alternatively to signal the result of some external or sensory input.

In the scope of the work presented in this paper we implemented an inter-
face to the ROS move base actionlib, a standard ROS component for driving
a robot. The interface maps symbolic locations with specific coordinates in the
environment, e.g. kitchen to (12.40,34.56,0.00), and vice versa. The interface
node then tracks the navigation task and reports back to the ROSoClingo core
the success or failure of its task.

3 ASP-based Task Planning in ROSoClingo

The methodology of ROSoClingo’s ASP-based approach to task planning is
composed of two main activities, viz. formalizing the dynamic domain and for-
malizing the task as a planning problem in this domain. Each activity involves
representing different types of knowledge related to the problem.

The basic principles of this methodology are similar to the general guidelines
of representing dynamic domains and solving planning problems in ASP (either
it is a direct ASP encoding [9] or an implementation of an action language
via ASP [10]). However, since ROSoClingo relies upon the multi-shot solving
capacities of the clingo 4 ASP system [1], the resulting encoding should meet
the requirements of the incremental setting, where the whole program is struc-
tured as parametrizable subprograms. Multi-shot ASP solving is concerned with
grounding and the integration of subprograms into the solving process, and is
fully controllable from the procedural side, viz. the scripting language Python in
our case. In explaining this process, we first concentrate on the methodology of
representing various types of knowledge and later explain the way this knowledge
is partitioned into subprograms.

For illustrating the methodology, consider the ASP encoding of a simplified
mail delivery scenario, offering a well-known exemplary illustration of action for-
malisms in robotics [11,12]: A robot is given the task of picking up and delivering
mail packages between offices. Whenever a mail delivery request is received, the
robot has to navigate to the office requesting the delivery, pick up the mail pack-
age, and then navigate and deliver the item at the destination office. In addition,
cancellation requests may happen. If the robot has already picked up the pack-
age, it must then return the package to the originating office. Additionally, some
of the pathways in the environment may be blocked for some time.

We formalize the dynamic domain by representing the following types of
knowledge. Due to space constraints, we provide only representative ASP snip-
pets. One can find the full encoding at [13].
Static Knowledge. Time-independent parts of the domain constitute the static
knowledge. In view of Sect. 4, we assume a world instance from the Willow



Integrating ASP into ROS for Reasoning in Robots 75

Garage office map and encode this map related information as static knowledge.
The following is a snippet from the logic program declaring nodes of waypoints,
which are composed of offices, corridors, and open areas, and connections among
waypoints.
corridor(c1). corridor(c2). open(open1 ). office(o4).

connection(c3 ,o4). connection(c1 ,open1 ). connection(c1 ,c2).

connection(X,Y) :- connection(Y,X). waypoint(X) :- corridor(X).

waypoint(X) :- open(X). waypoint(X) :- office(X).

In contrast to static knowledge, dynamic knowledge is time-dependent. In
the following program snippets we use the parameter t to represent a time
point. It is also used as an argument when declaring clingo 4’s parameterizable
subprograms (such as #program transition(t)). ROSoClingo’s control mod-
ule incrementally grounds and integrates such programs with increasing integer
values for t. For instance, the call ground([("transition",[42])]) grounds
the transition subprogram for planning horizon 42.

In order to specify a state of a dynamic domain, fluents (i.e., properties that
change over time) are used. A state associated with a time point t is characterized
by the fluents captured by atoms of the form holds(F,t) where F is an instance
of a fluent. Figure 3 lists not only the fluents, but also the actions and exogenous
events of the domain. While actions are performed by the robot, events may
occur in the dynamic domain without the control of the robot. Actions and
events occur within a state of the world and lead to some resulting state. We use
the meta-predicates occurs(A,t) and event(E,t) for stating the occurrence of
action A and event E respectively at time point t. We use the following choice
rule to allow any action (extensions of action predicate includes all actions of
the domain) to occur at time point t. The upper bound 1 concisely expresses
that no concurrent task plans are permitted.

Fig. 3. Fluents, actions, and events used to formalize the domain



76 B. Andres et al.

{ occurs(A,t) : action(A) } 1.

Within the fluents, actions, or events of the domain, we identify each mail
package delivery with the pair (O,P) consisting of its origin O and destination
P. Although this leads to a simpler encoding, it does limit us to a single delivery
from O to P at a time.

A crucial role in modeling exogenous events is played by clingo’s external
directives [1]. An #external directive allows for, as yet, undefined atoms. To
signal external events to the solver, ROSoClingo relies upon clingo’s library func-
tion assignExternal that allows for manipulating the truth values of external
atoms. For instance, the following rules show how the goal request (based on
the signature given in Fig. 2) is declared as an external atom and projected into
exogenous event request(O,P).
#external event(request ,(ID ,bring(O,P)),t) :- office(O;P), id(ID).

event(request(O,P),t) :- event(request ,(ID ,bring(O,P)),t).

Recall that the first element of the occurs(Robot,Action,T) atom (Fig. 2)
allows for reasoning with concurrent task plans for multi-robot scenarios or for
robots with multiple actuators. However, we use occurs(A,t) in our case study,
since we generate non-concurrent task plans for a single robot. The following
rule adds the actuator name.
occurs(mailbot ,A,t) :- occurs(A,t).

Static Causal Laws. This type of knowledge defines static relations among
fluents. They play a role in representing indirect effects of actions. The following
rule represents that blocked is symmetric and shows how one true blocked
fluent can cause another blocked fluent to be true in a state.
holds(blocked(W,W’),t) :- holds(blocked(W’,W),t).

Dynamic Causal Laws. Direct effects of actions and events are specified by
dynamic causal laws. An action or event occurrence at time t can make its
effect fluent hold at t. Additionally, the occurrence may cancel the perpetuation
of fluents. To this end, we use atoms of the form abnormal(F,t) to express that
fluent F must not persist to time point t. In robotics, however, action execution
failures may occur. Whenever an underlying ROS node fails to perform an action,
ROSoClingo triggers the value(failure) event to signal the execution failure
to the encoding. We use atom executes(A,t) to decouple the occurrence of
action A from its effects taking place.
executes(A,t) :- occurs(A,t), not event(value(failure),t).

This provides us with a concise way of blocking imaginary action effects and
thus avoids inconsistencies between the actual world state and the robot’s world
view. Below are dynamic causal laws for action go(W) and event cancel(O,P).
holds(at(W),t) :- executes(go(W),t).

abnormal(at(W’),t) :- executes(go(W),t), holds(at(W’),t-1).

holds(received(cancel(O,P)),t) :- event(cancel(O,P),t).

abnormal(received(request(O,P)),t) :- event(cancel(O,P),t).

In addition, ASP’s default reasoning capabilities, together with explicit
executes and occurs statements, pave the way for reasoning with execution



Integrating ASP into ROS for Reasoning in Robots 77

failures. For instance, the following rule enables the robot to conclude that the
connection to a waypoint is blocked whenever the attempt to navigate to that
waypoint fails. (See the third scenario in Sect. 4 for an illustration.)

holds(blocked(W’,W),t) :- occurs(go(W),t), not executes(go(W),t),

holds(at(W’),t-1).

Action Preconditions. Action preconditions provide the executability condi-
tions of an action in a state. We use atom poss(A,t) to state that action A is
possible at t. Below are preconditions of action go(W). The integrity constraint
makes sure that only actions take place whose preconditions are satisfied.
poss(go(W),t) :- holds(at(W’),t-1), connection(W’,W),

not holds(blocked(W’,W),t-1).

:- occurs(A,t), not poss(A,t).

Inertia. The following rule is a concise representation of the frame axiom.
holds(F,t) :- holds(F,t-1), not abnormal(F,t).

This completes the formalization of the dynamic domain. Next, we formalize
the robot’s task as a planning problem.
Initial Situation. The following rules represent the initial situation by stating
the initial position of the robot.
init(at(open3 )).

holds(F,0) :- init(F).

Goal Condition. The following snippet expresses the goal condition. This is
the case whenever the robot has no pending delivery request and is not holding
any package.
goal(t) :- not holds(received(request(_,_)),t),

not holds(holding(_,_),t).

#external horizon(t).

:- not goal(t), horizon(t).

The integrity constraint makes the program unsatisfiable whenever the goal is not
reached at the planning horizon. Clearly, this constraint must be removed when-
ever the horizon is incremented and a new instance with an incremented horizon
is added. To this end, we take advantage of the external atom horizon(t) whose
truth value can be controlled from ROSoClingo as shown in Algorithm 1. The
manipulation of truth values of externals provides an easy mechanism to activate
or deactivate ground rules on demand.

We have mentioned that clingo programs are structured into parame-
trizable subprograms. ROSoClingo relies on three subprograms, viz. base,
transition(t), and query(t). The formalized knowledge is partitioned into
these subprograms as follows: base contains the time-independent knowl-
edge (static knowledge and initial situation), transition(t) contains the time-
dependent knowledge (static and dynamic causal laws, action preconditions, and
inertia), and finally query(t) contains the time-dependent volatile knowledge
(goal condition). (See the full encoding at [13].)



78 B. Andres et al.

4 Case Study

We now demonstrate the application of our ROSoClingo package in the mail
delivery setting described in the previous section (Sect. 3). A robot is given the
task of picking up and delivering mail packages between offices. Whenever a mail
delivery request is received, the robot has to navigate to the office requesting
the delivery, pick up the mail package, and then navigate and deliver the item
at the destination office.

While the mailbot task is intrinsically dynamic in nature, a secondary source
of dynamism is the external environment itself. Obstacles and obstructions are a
natural part of a typical office environment, and it is in such cases that the need
for high-level reasoning becomes apparent. Our scenario not only highlights the
operations of a mail delivery robot in responding to new requests but also shows
how such a robot can respond to a changing physical environment.

The office scenario is provided in simulation by the Gazebo 3D simulator
using an openly accessible world model available for the Willow Garage4 offices.
The robot is a TurtleBot equipped with a Microsoft Kinect 3D scanner, which
is a cost-effective and well supported robot suitable for small delivery tasks.

From the office environment a partial map has been generated using standard
mapping software [14]. This static map is then used as the basis for navigation
and robot localization. Furthermore, from this map a topological graph has
been constructed to identify individual offices and waypoints that serve as a
graph representation for logical reasoning and planning. While this graph has
been hand-coded, topological graphs can also be generated through the use of
automated techniques [15].

As previously outlined, ROSoClingo provides a simple mechanism for integra-
tion with other ROS components, including basic navigation. We further allow
for external messages that can be sent to the robot informing it of paths that
have been blocked and cleared. In an office environment this can correspond
to public announcements, such as work being undertaken in a particular area.
Such external messages can also be viewed in the context of the robot receiving
additional sensor data.

Finally, as our robot was not equipped with a robot manipulator, item pickup
and delivery functionality was simulated by a ROSoClingo interface that simply
responds successfully to pickup and deliver action requests.
Scenarios. We consider three scenarios to highlight the behaviour of the mail-
delivery robot when it detects and is informed of paths that have been blocked
and cleared. In all three scenarios,5 the robot is initially in the open area shown
in Fig. 4.

In the first scenario, the robot is told that the corridor is blocked between
points C3 and C4. It is then told to pick up an item from office O9 and deliver it
to office O14. As ROSoClingo is able to plan at an abstract level it is able to know
that it can move to O9 along the optimal route (i.e., via C6) but must return

4 http://www.willowgarage.com.
5 The videos of these scenarios are available at http://goo.gl/g8S5Ky.

http://www.willowgarage.com
http://goo.gl/g8S5Ky


Integrating ASP into ROS for Reasoning in Robots 79

Fig. 4. (a) An office environment for a mail delivery robot, and (b) scenario showing
delivery from O9 to O14, with a blockage dynamically appearing in the corridor between
C3 and C4.

Fig. 5. (a) Scenario showing an obstruction being cleared allowing re-planning for a
shorter path through C4 and C3, and (b) scenario showing adaptive behaviour where
changes in the physical environment can affect the order in which tasks are performed.

through the open area and travel via the corridor point C2 in order to reach its
destination O14. This path is indicated by the solid blue line in Fig. 4(b).

The second scenario (Fig. 5(a)) extends that of the first. From O9 the robot
knows that the path between C3 and C4 is blocked so it starts to take the long
way around as before. However, by the time it reaches C6 it has been informed
that the blockage has been cleared. This triggers re-planning at the ROSoClingo
level and the robot is turned around and the shorter path taken through C4 and
C3 to the destination O14.

Finally the third scenario shows how dynamic changes to the physical envi-
ronment can affect the order in which tasks are performed. In this scenario
(Fig. 5(b)) the robot is first given a task to deliver an item from the office O7
to O11. While in the vicinity of C6 the robot is given a second task to take an
item from O2 to O3. Since it reasons that it is already close to O7 the robot
continues on with its first delivery task. However, as it progresses past C4 the
robot detects that the path between C4 and C5 is blocked. Consequently, the
robot has to turn around and take the longer route through the open area. But
now offices O2 and O3 are closer to the robot than O7 and O11. This causes a
change in the robot’s task priorities and it swaps the order of tasks, performing
the second delivery task first before continuing on with the original.



80 B. Andres et al.

Discussion. The three mail-delivery scenarios outlined here showcase the adap-
tive behaviour of the ROSoClingo system. The robot is able to respond dynami-
cally to new mail delivery requests while at the same time adapting intelligently
to changes in the physical environment. Furthermore, an important property of
ROSoClingo is that it implicitly performs a form of execution monitoring [16,17].

Execution monitoring is handled implicitly by ROSoClingo because it makes
no assumptions about the successful execution of actions. Rather, the ROSo-
Clingo interface nodes handle the task of monitoring for the successful comple-
tion of actions. This information is then reported back to the reasoner and any
failures are handled appropriately.

In fact, because execution monitoring is incorporated directly into the ASP
reasoner, ROSoClingo can provide for much finer control than is allowed for by
traditional systems such as [16]. In particular because execution monitors are
specifically designed to deal with anomalous situations, such as action failures,
they typically ignore external events that do not result in the failure of the
current plan. At first glance, this may seem reasonable. However, in practice it
can result in unintuitive and sub-optimal behaviour. For example, in the second
mail delivery scenario (Fig. 5(a)) the robot replans on the announcement that
a blockage has been cleared. Importantly, this re-planning is not triggered as a
result of a failure of the current plan, but instead as a recognition of the existence
of a better plan. In contrast, because the longer plan is still valid, a traditional
execution monitoring based robot would ignore the positive information that the
blockage has been cleared and the robot would simply follow the longer route.

Because of ROSoClingo’s ability to immediately adapt to new information
it bears some resemblance to the Teleo-Reactive programming paradigm of [18].
This goal directed approach to reactive systems is based on guarded action rules
which are being constantly monitored and triggered based on the satisfaction of
rule conditions. However, while Teleo-Reactive systems can provide for highly
dynamic behaviour, they typically do not incorporate the complex planning and
reasoning functionality of traditional action languages. Hence, in the same way
that action language formalisms are rarely applied to highly reactive problem
domains, these reactive approaches are rarely applied in problems that require
complex reasoning and planning.

However, in constrast to the dichotomy suggested by the difference between
these two approaches, many practical real-world cognitive robotic problems do
require both highly reactive behaviour and complex action planning. This is
highlighted by our mail delivery scenarios where the robot has to undertake
its mail deliver tasks while still operating in a dynamically changing physical
environment. The successful application of ROSoClingo to this task shows that
it can be seen as a step towards bridging these two approaches. A robot that
incorporates complex reasoning and planning can at the same time adapt to a
highly dynamic external environment.

5 Conclusion

We have developed a ROS package integrating clingo 4, an ASP solver featuring
reactive reasoning, and the robotics middleware ROS. The resulting system,



Integrating ASP into ROS for Reasoning in Robots 81

called ROSoClingo, fulfils the need for high-level knowledge representation and
reasoning in cognitive robotics by providing a highly expressive and capable
reasoning framework. ROSoClingo also makes details of integrating the ASP
solver transparent for the developer, as it removes the need to deal with the
mechanics of communicating between the solver and external (ROS) components.

Using reactive ASP and ROSoClingo, one can control the behaviour of a
robot within a single framework in a fully declarative manner. This is partic-
ularly important when contrasted against Golog [11] based approaches where
the developer must take care of the implementation (usually in Prolog) details
of the control knowledge, and the underlying action formalism separately. We
illustrated the usage of ROSoClingo via a three-fold case-study conducted with a
ROS-based simulation of a robot delivering mail packages in the Willow Garage
office environment using the Gazebo 3D simulator. We showed that ASP based
robot control via ROSoClingo establishes a principled way of achieving adaptive
behaviour in a highly dynamic environment.

This work on ROSoClingo opens up a number of avenues for future research.
Here we concentrated on the use of ROSoClingo for high-level task planning.
However clingo is a general reasoning tool with applications that extend to other
areas of knowledge representation and reasoning such as diagnosis and hypothesis
formation. Consequently, an important area for future research would be to
consider the use of ROSoClingo in these contexts, such as a robot that makes
and reasons about the causes of observations in its environment. Another line
of future research is to utilize clingo’s optimization statements to find optimal
task plans when costs of actions are not uniform [19].

Acknowledgments. This work was funded by ARC (DP150103034) and DFG
(550/9).

References

1. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
preliminary report. In: Leuschel, M., Schrijvers, T. (eds.) Technical Communi-
cations of the Thirtieth International Conference on Logic Programming (ICLP
2014). Theory and Practice of Logic Programming, Online Supplement (2014).
http://arxiv.org/abs/1405.3694v1

2. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: ICRA Work-
shop on OSS (2009)

3. Chen, X., Jiang, J., Ji, J., Jin, G., Wang, F.: Integrating NLP with reasoning about
actions for autonomous agents communicating with humans. In: Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT
2009), pp. 137–140. IEEE (2009)

4. Chen, X., Ji, J., Jiang, J., Jin, G., Wang, F., Xie, J.: Developing high-level cogni-
tive functions for service robots. In: van der Hoek, W., Kaminka, G., Lespérance,
Y., Luck, M., Sen, S. (eds.) Proceedings of the Ninth International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2010), pp. 989–996.
IFAAMAS (2010)

http://arxiv.org/abs/1405.3694v1


82 B. Andres et al.

5. Aker, E., Erdogan, A., Erdem, E., Patoglu, V.: Causal reasoning for planning and
coordination of multiple housekeeping robots. In: Delgrande, J.P., Faber, W. (eds.)
LPNMR 2011. LNCS, vol. 6645, pp. 311–316. Springer, Heidelberg (2011)

6. Erdem, E., Aker, E., Patoglu, V.: Answer set programming for collaborative house-
keeping robotics: representation, reasoning, and execution. Intel. Serv. Robot. 5(4),
275–291 (2012)

7. Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., Uras, T.: Combining high-
level causal reasoning with low-level geometric reasoning and motion planning for
robotic manipulation. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA 2011), pp. 4575–4581. IEEE (2011)

8. Andres, B., Rajaratnam, D., Sabuncu, O., Schaub, T.: Integrating ASP into ROS
for reasoning in robots: Extended version. Unpublished draft (2015). Available at
[13]

9. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press, Cambridge (2014)

10. Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Minker, J.
(ed.) Logic-Based Artificial Intelligence, pp. 257–279. Kluwer Academic, Dordrecht
(2000)

11. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: a logic
programming language for dynamic domains. J. Logic Program. 31(1–3), 59–83
(1997)

12. Thielscher, M.: Logic-based agents and the frame problem: a case for progression.
In: Hendricks, V. (ed.) First-Order Logic Revisited: Proceedings of the Conference
75 Years of First Order Logic (FOL75), pp. 323–336. Logos, Berlin (2004)

13. Potassco website. http://potassco.sourceforge.net
14. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping

with rao-blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)
15. Thrun, S., Bücken, A.: Integrating grid-based and topological maps for mobile

robot navigation. In: Clancey, W., Weld, D. (eds.) Proceedings of the Thir-
teenth National Conference on Artificial Intelligence (AAAI 1996), pp. 944–950.
AAAI/MIT Press, Portland (1996)

16. De Giacomo, G., Reiter, R., Soutchanski, M.: Execution monitoring of high-level
robot programs. In: Cohn, A., Schubert, L., Shapiro, S. (eds.) Proceedings of the
Sixth International Conference on Principles of Knowledge Representation and
Reasoning (KR 1998), pp. 453–465. Morgan Kaufmann, Trento (1998)

17. Pettersson, O.: Execution monitoring in robotics: a survey. Robot. Autonom. Syst.
53(2), 73–88 (2005)

18. Nilsson, N.: Teleo-reactive programs for agent control. J. Artif. Intell. Res. 1, 139–
158 (1994)

19. Khandelwal, P., Yang, F., Leonetti, M., Lifschitz, V., Stone, P.: Planning in action
language BC while learning action costs for mobile robots. In: International Con-
ference on Automated Planning and Scheduling (ICAPS) (2014)

http://potassco.sourceforge.net

	Integrating ASP into ROS for Reasoning in Robots
	1 Introduction
	2 ROSoClingo
	2.1 The ROSoClingo Core
	2.2 Integrating with Existing ROS Components

	3 ASP-based Task Planning in ROSoClingo
	4 Case Study
	5 Conclusion
	References


