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Abstract. A logic program under the answer set semantics can be
inconsistent because its only answer set is the set of all literals, or because
it does not have any answer sets. In both cases, the reason for the incon-
sistency may be (1) only explicit negation, (2) only negation as failure,
or (3) the interplay between these two kinds of negation. Overall, we
identify four different inconsistency cases, and show how the respective
reason can be further characterised by a set of culprits using semantics
which are weaker than the answer set semantics. We also provide a tech-
nique for explaining the set of culprits in terms of trees whose nodes are
derivations. This can be seen as an important first step towards debug-
ging inconsistent logic programs.
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1 Introduction

A logic program represents knowledge in the form of rules made of statements
which can be negated in two ways: using explicit negation, expressing that the
statement does not hold, or negation as failure (NAF), expressing that the state-
ment cannot be proven to hold. If no negation of either kind is present, a logic
program will always be consistent under the answer set semantics [8]. However,
if negation is used in a logic program, inconsistency may arise in one of two
different ways: either the only answer set of the logic program is the set of all
literals, or the logic program has no answer sets at all.

Efficient solvers have been developed for computing the answer sets of a given
logic program [6,10,11]. However, in the case of an inconsistent logic program
these solvers do not provide any classification of the inconsistency, or explana-
tion thereof. Especially when dealing with a large inconsistent logic program or
if the inconsistency is unexpected, understanding why the inconsistency arises
and which part of the logic program is responsible for it is an important first
step towards debugging the logic program in order to restore consistency. Vari-
ous approaches have been developed for finding the source of inconsistency and
even for suggesting ways of debugging the logic program. In particular, [7,12,17]
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feed the inconsistent logic program into a meta logic program whose answer set
describes the structure of and potential mistakes in the original logic program.
In another recent approach [13], the user assigns truth values to literals in the
inconsistent logic program step-by-step until encountering a conflict.

These debugging approaches assume explicitly or implicitly the existence of
an intended answer set. We propose a new method for identifying the reason
of inconsistency in a logic program without the need of an intended answer
set, based on the well-founded [19] and M-stable [3] model semantics. These
semantics are “weaker” than answer sets in that they are 3-valued rather than
2-valued. In contrast to some previous approaches [1,7,17], we consider logic
programs that may comprise both explicit negation and NAF. We prove that
the two ways in which a logic program may be inconsistent are further divided
into four inconsistency cases which have different reasons for the inconsistency:
one where only explicit negation is responsible and the only answer set is the
set of all literals, one where only NAF is responsible and the logic program has
no answer sets, and two where an interplay of explicit negation and NAF is
responsible and the logic program has no answer sets. We show how in each
of these inconsistency cases the reason of the inconsistency can be refined to a
characteristic set of “culprits”. These “culprits” can then be used to construct
trees whose nodes hold derivations. These trees explain why the inconsistency
arises and which part of the logic program is responsible. Furthermore, we show
how the inconsistency case and the respective set of culprits can be determined
using the aforementioned “weaker” semantics.

2 Background

A logic program P is a (finite) set of ground clauses1 of the form l0 ← l1, . . . , lm,
not lm+1, . . . , not lm+n with m,n ≥ 0. All li (1 ≤ i ≤ m) and all lj (m+1 ≤ j ≤
m+n) are classical literals, i.e. atoms a or explicitly negated atoms ¬a, and not lj
are negation as failure (NAF) literals. We will use the following notion of depen-
dency inspired by [20]: l0 is positively dependent on li and negatively dependent
on lj . A dependency path is a chain of positively or negatively dependent literals.
A negative dependency path is obtained from a dependency path by deleting all
literals l in the path such that some k in the path is positively dependent on l,
e.g. if p, q, r is a dependency path where p is positively dependent on q, and q is
negatively dependent on r then p, r is a negative dependency path.

HBP is the Herbrand Base of P, i.e. the set of all ground atoms of P, and
LitP = HBP ∪ {¬a | a ∈ HBP} consists of all classical literals of P. NAFHBP =
{not a | a ∈ HBP} consists of all NAF literals of atoms of P and NAFLitP =
{not l | l ∈ LitP} of all NAF literals of classical literals of P. An atom a and the
explicitly negated atom ¬a are called complementary literals.

�MP denotes derivability using modus ponens on ← as the only inference
rule, treating l← as l← true, where P �MP true for any P. For a logic program
1 Clauses containing variables are used as shorthand for all their ground instances over

the Herbrand Universe of the logic program.
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P and Δ ⊆ NAFLitP , P ∪ Δ denotes P ∪ {not l ← |not l ∈ Δ}. When used on
such P∪ Δ, �MP treats NAF literals syntactically as in [4] and thus P∪Δ can
be seen as a logic program. l ∈ LitP is strictly derivable from P iff P �MP l,
and defeasibly derivable from P iff P �MP l and ∃Δ ⊆ NAFLitP such that
P∪Δ �MP l. l is derivable from P iff l is strictly or defeasibly derivable from P.

Answer Sets [8]. Let P be a logic program without NAF literals. The answer
set of P, denoted AS(P), is the smallest set S ⊆ LitP such that:

(1) for any clause l0 ← l1, . . . , lm in P: if l1, . . . , lm ∈ S then l0 ∈ S; and
(2) S = LitP if S contains complementary literals.

For a logic program P, possibly with NAF literals, and any S ⊆ LitP , the reduct
PS is obtained from P by deleting:

– all clauses containing not l where l ∈ S, and
– all NAF literals in the remaining clauses.

Then S is an answer set of P if it is the answer set of the reduct PS , i.e. if
S = AS(PS). P is inconsistent if it has no answer sets or if its only answer set
is LitP , else it is consistent.

3-Valued Models [15]. Let P be a logic program with no explicitly negated atoms.
A 3-valued interpretation of P is a pair 〈T ,F〉, where T ,F ⊆ HBP , T ∩ F = ∅,
and U = HBP\(T ∪F). The truth value of a ∈ HBP and not a ∈ NAFHBP with
respect to 〈T ,F〉 is:
val(a) = T , if a ∈ T ; val(not a) = T , if a ∈ F ;
val(a) = F , if a ∈ F ; val(not a) = F , if a ∈ T ;
val(a) = U , if a ∈ U ; val(not a) = U , if a ∈ U ;
The truth values are ordered by T > U > F and naturally val(T ) = T , val(F ) =
F , and val(U) = U . A 3-valued interpretation 〈T ,F〉 satisfies a clause a0 ←
a1, . . . , am, not am+1, . . . , not am+n if val(a0) ≥ min{val(a1), . . . , val(am+n)}.
〈T ,F〉 satisfies a0 ← if val(a0) = T . The partial reduct P

〈T ,F〉 of P with respect
to a 3-valued interpretation 〈T ,F〉 is obtained by replacing each NAF literal in
every clause of P by its respective truth value.

– A 3-valued interpretation 〈T ,F〉 of P is a 3-valued model of P iff 〈T ,F〉
satisfies every clause in P.

– A 3-valued model 〈T ,F〉 of P is a 3-valued stable model of P iff it is a minimal
3-valued model of P

〈T ,F〉 , i.e. if �〈T1,F1〉 which is a 3-valued model of P
〈T ,F〉

such that T1 ⊆ T and F1 ⊇ F and T �= T1 or F �= F1.
– A 3-valued stable model 〈T ,F〉 of P is the well-founded model of P if U is

maximal (w.r.t. ⊆) among all 3-valued stable models of P. The well-founded
model always exists for logic programs without explicitly negated atoms.

– A 3-valued stable model 〈T ,F〉 of P is a 3-valued M-stable model (Maximal-
stable) of P if �〈T1,F1〉 which is a 3-valued stable model of P such that
T ⊆ T1 and F ⊆ F1 and T �= T1 or F �= F1 [3].
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The translated logic program P ′ of a logic program P is obtained by substi-
tuting every explicitly negated atom ¬a in P with a new atom a′ /∈ HBP [8,15].
Then a′ (resp. a) is the translated literal of the original literal ¬a (resp. a).
The 3-valued stable models of a logic program P, possibly containing explicitly
negated atoms, are defined in terms of the 3-valued stable models of P ′ [15].
For every 3-valued stable model 〈T ′,F ′〉 of P ′ the corresponding 3-valued stable
model 〈T ,F〉 of P is obtained from 〈T ′,F ′〉 by replacing every translated literal
by its original literal. The 3-valued stable models of P are those correspond-
ing 3-valued stable models where T does not contain complementary literals.
Note that P ′ always has a well-founded model but that P might not have a
well-founded model. Furthermore, note that a 3-valued stable model of P is an
answer set of P iff U = ∅.

From here onwards, and if not stated otherwise, we assume as given an incon-
sistent logic program P and the translated logic program P ′, where a′, a′

i, a are
the translated literals of ¬a, ¬ai, and a, respectively.

3 Characterising the Type of Inconsistency

We first show how to identify in which way a logic program is inconsistent, i.e. if
its only answer set is the set of all literals or if it has no answer sets at all, assuming
that we only know what an answer set solver gives us, i.e. that the logic program is
inconsistent. This identification is based on whether or not the logic program has
a well-founded model, which can be computed in polynomial time [19]. Our results
show that even though a logic program can only be inconsistent in two ways, in fact
there are three different inconsistency cases which arise due to different reasons
(see Sect. 4). The three inconsistency cases are:

– P has no well-founded model and:
(1) the only answer set of P is LitP ;
(2) P has no answer sets.

– P has a well-founded model and

(3) P has no answer sets.

In the following, we prove that these three cases are the only ones, and charac-
terise them in more detail.

Example 1. Let P1 be the following logic program:
p ← q

u ← not t

q ← r, s

t ← not u

r ←
¬p ←

s ←

P1 has no well-founded model and its only answer set is LitP1 , so P1 falls into
inconsistency case 1. The reason that the only answer set is LitP1 is that for any
S ⊆ LitP1 satisfying the conditions of an answer set, s, r,¬p ∈ S, then q, p ∈ S,
and thus S contains the complementary literals p and ¬p. Note that NAF liter-
als do not play any role in the inconsistency of P1; an atom and its explicitly
negated atom, both strictly derivable, are responsible for the inconsistency.
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The observations in Example 1 agree with a well-known result about logic
programs whose only answer set it the set of all literals (Proposition 6.7 in [9]).

Lemma 1. The only answer set of P is LitP iff ∃a ∈ HBP such that P �MP a
and P �MP ¬a.

Example 2. Let P2 be the following logic program:
q ← not r ¬q ← ¬s, not p r ← not ¬t ¬s ← ¬t ←

P2 has no well-founded model and no answer sets, so P2 falls into inconsistency
case 2. The reason that P2 has no answer sets is an interplay of explicit nega-
tion and NAF: for any S ⊆ LitP2 satisfying the conditions of an answer set,
¬t,¬s ∈ S, and thus r ← not ¬t is always deleted in P2

S and both q ← and
¬q ← ¬s are always part of P2

S . Consequently, for any such S it holds that
q,¬q ∈ AS(P2

S), meaning that the only possible answer set is LitP2 . However,
since r, p,¬t ∈ LitP2 the reduct will only consist of ¬t ← and ¬s ←, so that
AS(P2

LitP2 ) = {¬t,¬s} which does not contain complementary literals. Con-
sequently, P2 has no answer sets at all. Even though both here and in P1 the
inconsistency arises due to complementary literals, the difference lies in their
derivations: here the complementary literals are defeasibly derivable, i.e. not
only explicit negation but also NAF involved in the derivation is responsible for
the inconsistency.

The following Theorem characterises inconsistency cases 1 and 2 illustrated
in Examples 1 and 2.

Theorem 1. If P has no well-founded model then

1. the only answer set of P is LitP iff ∃a ∈ HBP such that P �MP a and
P �MP ¬a;

2. P has no answer sets iff �a ∈ HBP such that P �MP a and P �MP ¬a.

Proof. From Lemma 1.

Example 3. Let P3 be the following logic program:
r ← not s

s ← not r

q ← not s

¬q ← not s

p ← not r

¬p ← not r
The well-founded model of P3 is 〈∅, ∅〉 but P3 has no answer sets, so it falls into
inconsistency case 3. The reason that P3 has no answer sets is an interplay of
explicit negation and NAF similar to Example 2. From the first two clauses, it
follows that any potential answer set S ⊆ LitP3 cannot contain both s and r.
If r /∈ S then p,¬p ∈ S; if s /∈ S then q,¬q ∈ S, and thus the only possible
answer set is LitP3 . However, P3

LitP3 is empty, so AS(P3
LitP3 ) = ∅, which

does not contain complementary literals. Thus, P3 has no answer sets. As in
Example 2, the inconsistency is due to an atom and its explicitly negated atom
being defeasibly derivable, but in contrast to P2 here the derivations of the
complementary literals involve NAF literals which form an even-length negative
dependency loop, namely s and r.

Theorem 2 characterises inconsistency case 3, illustrated in Example 3.
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Theorem 2. If P has a well-founded model then P has no answer sets.

Proof. Assume that ∃a ∈ HBP s.t. P �MP a and P �MP ¬a. Then a and a′

are in the well-founded model of P ′ (by the alternating fixpoint definition of
well-founded models [18]) and thus a and ¬a are contained in the corresponding
well-founded model of P, so P has no well-founded model (contradiction). Thus,
�a ∈ HBP s.t. P �MP a and P �MP ¬a, so by Lemma 1 it is not the case that
the only answer set of P is LitP . Consequently, P has no answer sets.

In summary, if P has no well-founded model then its only answer set is LitP
– caused by explicit negation – or it has no answer sets – caused by the interplay
of explicit negation and NAF. If P has a well-founded model then it definitely
has no answer sets – caused by the interplay of explicit negation and NAF.

4 Characterising Culprits

In the examples in Sect. 3, we already briefly discussed that the reasons for the
inconsistency are different in the three inconsistency cases: either only explicit
negation or the interplay of explicit negation and NAF. In this section, we show
that inconsistency case 3 can in fact be further split into two sub-cases: one where
the interplay of explicit negation and NAF is responsible as seen in Example 3
(case 3a), and one where only NAF is responsible for the inconsistency (case
3b). Furthermore, we characterise the different reasons of inconsistency in more
detail in terms of “culprit” sets, which are sets of literals included in the well-
founded (cases 1,2) or 3-valued M-stable (case 3b) model of P, or in the answer
sets of P ′ (case 3a). In other words, culprits can be found in “weaker” models.

Definition 1 (culprit sets). Let P, 〈T ′
w,F ′

w〉 be the well-founded model of P ′,
S′
1, . . . , S

′
n (n ≥ 0) its answer sets, and 〈T ′

M ,F ′
M 〉 one of its 3-valued M-stable

models with U ′
M the set of undefined atoms.

– If P has no well-founded model then
• {a,¬a} is a culprit set of P iff a, a′ ∈ T ′

w and a and a′ are strictly
derivable from P ′ (case 1).

• {a,¬a} is a culprit set of P iff a, a′ ∈ T ′
w and one of them is defeasibly

derivable from P ′ and the other one is derivable from P ′ (case 2).
– If P has a well-founded model and

• P ′ has n answer sets (n ≥ 1), then {a1,¬a1, . . . , an,¬an} is a culprit
set of P iff ∀ai,¬ai (1 ≤ i ≤ n): ai, a

′
i ∈ S′

i and one of them is defeasibly
derivable from P ′ and the other one is derivable from P ′ (case 3a).

• P ′ has no answer sets, then C is a culprit set of P iff for some a1 ∈ U ′
M

there exists a negative dependency path a1, . . . , am, b1, . . . , bo (m, o ≥ 1),
in P ′ such that all ah (1 ≤ h ≤ m) and bj (1 ≤ j ≤ o) are in U ′

M , o
is odd, am = bo, and C consists of the original literals of the translated
literals b1, . . . , bo (case 3b).

We now show that for every inconsistency case at least one culprit set exists.
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Example 4. The well-founded model of the translated logic program P1
′

(see P1 in Example 1) is 〈{p, p′, q, r, s}, ∅〉. p, p′ ∈ T ′
w and both of them are

strictly derivable from P ′. Thus, {p,¬p} is a culprit set of P1, which confirms
our observation that LitP1 is the only answer set of P1 because every potential
answer set contains both p and ¬p (see Example 1). Note that it is not only
the literals in the culprit set which characterise this inconsistency case, it is the
derivation of the literals, i.e. that both are strictly derivable.

Theorem 3 states the existence of a culprit set in inconsistency case 1.

Theorem 3. Let P have no well-founded model and let its only answer set be
LitP . Then P has a case 1 culprit set {a,¬a}.

Proof. By Lemma 1, ∃a, a′ ∈ HBP′ s.t. P ′ �MP a and P ′ �MP a′. By definition
of well-founded model (as an alternating fixpoint [18]), a, a′ ∈ T ′

w where 〈T ′
w,F ′

w〉
is the well-founded model of P ′. By Definition 1, {a,¬a} is a case 1 culprit set.

Example 5. The well-founded model of P ′
2 (see P2 in Example 2) is 〈{q, q′, s′,

t′}, {p, r}〉. q, q′ ∈ T ′
w and here even both of them are defeasibly derivable. Thus,

{q,¬q} is a culprit set of P2 which confirms our observation that the reason
for the inconsistency of P2 is that every potential answer set contains both q
and ¬q, but LitP2 is not an answer set due to the NAF literals involved in the
derivations of q and ¬q. Note that even though the culprit sets of P1 and P2 are
very similar – both consist of complementary literals – the difference lies in the
derivations of the literals in the culprit set: here the literals are not both strictly
derivable, so the reason of the inconsistency is both that complementary literals
are derivable (explicit negation) and that their derivations involve NAF literals.

Theorem 4 proves the existence of a culprit set in inconsistency case 2.

Theorem 4. Let P have no well-founded model and no answer sets. Then P
has a case 2 culprit set {a,¬a}.

Proof. Let 〈T ′
w,F ′

w〉 be the well-founded model of P ′. Since P has no well-
founded model, T ′

w must contain some a, a′. Since every answer set is a superset
of the well-founded model (Corollary 5.7 in [19]), every potential answer set of
P contains a and ¬a, meaning that the only possible answer set is LitP . From
the assumption that P has no answer sets, we can conclude that AS(PLitP )
does not contain a and ¬a. Thus, all of the rules needed for the derivation of
either a or ¬a are deleted in PLitP , meaning that a or ¬a is defeasibly derivable.
Trivially, the other literal is also derivable as a, a′ ∈ T ′

w. Then by Definition 1,
{a,¬a} is a case 2 culprit set of P.

Example 6. P ′
3 (see P3 in Example 3) has two answer sets S′

1 = {q, q′, r} and
S′
2 = {p, p′, s}, so P3 falls into inconsistency case 3a. q, q′, p, p′ are all defeasibly

derivable from P3
′ and thus {q,¬q, p,¬p} is a culprit set of P3. This confirms

our observation that the reason for the inconsistency of P3 is that the two poten-
tial answer sets both contain complementary literals but that LitP3 is not an
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answer set due to the NAF literals involved in the derivations of the complemen-
tary literals. Thus, as in Example 5 the inconsistency is due to the interplay of
explicit negation and NAF with the difference of the even-length loop described
in Example 2. Due to this difference in the derivations, here the well-founded
model of the translated logic program does not provide any information about
culprits, but the answer sets do.

Theorem 5 states the existence of a culprit set in inconsistency case 3a.

Theorem 5. Let P have a well-founded model and let P ′ have n ≥ 1 answer
sets. Then, P has a case 3a culprit set {a1,¬a1, . . . , an,¬an}.

Proof. By Theorem 2, P has no answer sets, so all Si ⊆ LitP with Si = AS(PSi)
contain complementary literals ai and ¬ai, but AS(PLitP ) does not contain
complementary literals. Thus, all S′

i with S′
i = AS(P ′Si

′
) contain ai and a′

i, so
ai and a′

i must be derivable from P ′. Assume that P ′ �MP ai and P ′ �MP a′
i.

Then by Lemma 1 the only answer set of P is LitP (contradiction). Thus, at
least one of ai and a′

i is defeasibly derivable from P ′. Then by Definition 1,
{a1,¬a1, . . . , an,¬an} is a case 3a culprit set of P.

Example 7. Let P4 be the following logic program:
s ← w

¬u ← not v

w ← not t

v ← not t, not x

t ← ¬x

x ←
¬x ← not ¬u

y ← not x
P4 has a well-founded model and P ′

4 has no answer sets, so P4 falls into inconsis-
tency case 3b. The only 3-valued M-stable model of P ′

4 is 〈{x}, {y}〉, where U ′
M =

{s, t, u′, v, w, x′}. For s ∈ U ′
M there exists a negative dependency path s, t, u′, v, t

of atoms in U ′
M , where u′, v, t is an odd-length loop. Thus, C = {¬u, v, t} is

a culprit set of P4. Note that this culprit set is found no matter with which
atom in U ′

M the negative dependency path is started. This example shows that
in inconsistency case 3b the inconsistency is due to NAF on its own; explicit
negation plays no role.

Theorem 6 states not only the existence of a culprit set in inconsistency
case 3b, but also characterises how to find a culprit set. This extends the results
of [20] about odd-length loops.

Theorem 6. Let P have a well-founded model and let P ′ have no answer sets.
Let 〈T ′

M ,F ′
M 〉 be a 3-valued M-stable model of P ′ with U ′

M the set of unde-
fined atoms. Then, for any a1 ∈ U ′

M there exists a negative dependency path
a1, . . . , an, b1, . . . , bm such that the set C consisting of the original literals of the
translated literals b1, . . . , bm is a case 3b culprit set of P.

Proof (Sketch). By definition of 3-valued stable models any undefined atom is
negatively dependent on an undefined atom. Thus, there is a negative depen-
dency path of undefined atoms a1, . . . , an, which must lead to a negative
dependency loop an, b1, . . . , bm (an = bm) where no bj is part of another negative-
dependency path containing literals other than the ones in the loop. Assuming
that the negative-dependency loop and all sub-loops are of even length, the loop
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on its own has a 2-valued stable model. We can show (omitted for lack of space)
that it is possible to change the truth values of atoms not in the loop and in
U ′
M to T or F in such a way that if combined with the new truth values of the

loop, a 3-valued stable model 〈T ′,F ′〉 of P ′ is created. Clearly T ′
M ⊂ T ′ and

F ′
M ⊂ F ′, so 〈T ′

M ,F ′
M 〉 is not a 3-valued M-stable model. Contradiction.

Note that in each of the three inconsistency cases discussed in Sect. 3, the
translated logic program P ′ might or might not have answer sets. However,
regarding culprit sets this distinction only makes a difference in inconsistency
case 3.

It follows directly from the previous theorems that the culprit sets we identi-
fied are indeed responsible for the inconsistency, i.e. if no culprit sets exist then
the logic program is not inconsistent, which is an essential first step for a user
to understand what causes the inconsistency in a logic program.

Corollary 1. Let P be a (possibly consistent) logic program. If there exists no
culprit set of inconsistency cases 1, 2, 3a, or 3b of P, then P is consistent.

5 Explaining Culprits

As pointed out in the previous sections, even though we identify culprits as
sets of literals, the reason of the inconsistency is mostly the way in which these
literals are derivable from the logic program. In order to make the reason of
the inconsistency more understandable for the user, we now show how explana-
tions of the inconsistency can be constructed in terms of trees whose nodes are
derivations. For this purpose, we define derivations with respect to a 3-valued
interpretation 〈T ,F〉. We call a derivation true with respect to 〈T ,F〉 if all NAF
literals not k used in the derivation are true with respect to the interpretation,
i.e. the literals k are false in the interpretation. We call a derivation false with
respect to 〈T ,F〉 if there exists a NAF literal not k used in the derivation which
is false with respect to the interpretation, i.e. k is true in the interpretation.

Definition 2 (true/false derivation). Let 〈T ,F〉 be a 3-valued interpretation
of P, l ∈ LitP , and Δ ⊆ NAFLitP .

1. P ∪ Δ �MP l is a true derivation of l w.r.t. 〈T ,F〉 if ∀not k ∈ Δ : k ∈ F .
2. P ∪ Δ �MP l is a false derivation of l w.r.t. 〈T ,F〉 if ∃not k ∈ Δ : k ∈ T .

Example 8. Consider P4 from Example 7. P4 ∪ {not t, not x} �MP v is a true
derivation w.r.t. 〈{s}, {t, x}〉, a false derivation w.r.t 〈{s, t}, {x}〉, and neither a
true nor a false derivation w.r.t. 〈{s}, {x}〉.

An explanation of inconsistency cases 1–3a illustrates why the literals in a
culprit set are contained in the respective 3-valued stable model 〈T ,F〉 used
to identify this culprit set, which is due to the literals’ derivations. Thus, an
explanation starts with a true derivation of a literal in the culprit set with
respect to 〈T ,F〉. The explanation then indicates why this derivation is true,
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i.e. why all NAF literals not k are true with respect to 〈T ,F〉. The reason why
not k is true is that some derivation of k is false, i.e. a NAF literal not m in a
derivation of k is false with respect to 〈T ,F〉. This in turn is explained in terms
of why m is the true with respect to 〈T ,F〉, and so on.

Definition 3 (explanation). Let 〈T ,F〉 be a 3-valued stable model of P and
let l ∈ LitP . An explanation of l w.r.t. 〈T ,F〉 is a tree such that:

1. Every node holds either a true or a false derivation w.r.t. 〈T ,F〉.
2. The root holds a true derivation of l w.r.t. 〈T ,F〉.
3. For every node N holding a true derivation P ∪ Δ �MP k w.r.t. 〈T ,F〉 and

for every not m ∈ Δ: every false derivation of m w.r.t. 〈T ,F〉 is held by a
child of N .

4. For every node N holding a false derivation P ∪ Δ �MP k w.r.t. 〈T ,F〉: N
has exactly one child holding a true derivation of some m w.r.t. 〈T ,F〉 such
that not m ∈ Δ.

5. There are no other nodes except those given in 1–4.

Since culprit sets are determined with respect to different 3-valued stable models
in the different inconsistency cases, explanations are constructed with respect to
these different models, too.

Definition 4 (inconsistency explanation - cases 1,2). Let P have no well-
founded model and let 〈T ′

w,F ′
w〉 be the well-founded model of P ′. Let {a,¬a} be

a culprit set of P. A translated inconsistency explanation of P consists of an
explanation of a w.r.t. 〈T ′

w,F ′
w〉 and an explanation of a′ w.r.t. 〈T ′

w,F ′
w〉. An

inconsistency explanation of P is derived by replacing every translated literal in
the translated inconsistency explanation by its respective original literal.

Since explanations are trees, they can be easily visualised, as shown for P2

(see Examples 2 and 5) in Fig. 1.

Definition 5 (inconsistency explanation - case 3a). Let P have a well-
founded model and let S′

1, . . . , S
′
n (n ≥ 1) be the answer sets of P ′. Let {a1,¬a1,

. . . , an,¬an} be a culprit set of P. A translated inconsistency explanation of P
consists of an explanation of all ai and a′

i (1 ≤ i ≤ n) w.r.t. 〈S′
i, (HBP′\S′

i)〉.
An inconsistency explanation of P is derived by replacing every translated literal
in the translated inconsistency explanation by its respective original literal.

Fig. 1. The inconsistency explanation of P2 (Examples 2, 5).



Characterising and Explaining Inconsistency in Logic Programs 477

Fig. 2. Part of the inconsistency explanation of P3 explaining q and ¬q. The full
inconsistency explanation also comprises similar explanations for p and ¬p.

Figure 2 shows part of the inconsistency explanation of P3 (see Examples 3
and 6). It also illustrates the difference between the reasons of inconsistency in
P2 and P3, namely the negative dependency loop of s and r in P3.

For inconsistency case 3b, where the literals in a culprit set form an odd-
length negative dependency loop, the inconsistency explanation is a tree whose
nodes hold derivations. However, since all literals in a culprit set are undefined
with respect to a 3-valued M-stable model, an explanation is constructed with
respect to the set of undefined atoms U rather than T and F . In particular, the
reason that a literal is undefined is that its derivation contains a NAF literal not k
which is undefined. Then k ∈ U which again is due to the derivation containing
some undefined NAF literal, and so on. Thus, an explanation of inconsistency
case 3b is a tree of negative derivations with respect to U .

Definition 6 (inconsistency explanation - case 3b). Let P have a well-
founded model and let P ′ have no answer sets. Let 〈T ′

M ,F ′
M 〉 be a 3-valued

M-stable model of P ′ with U ′
M the set of undefined atoms. Let C be a culprit set

of P and a ∈ C. A translated inconsistency explanation of P is a tree such that:

1. Every node holds a false derivation w.r.t. 〈U ′
M , ∅〉.

2. The root holds a false derivation of a w.r.t. 〈U ′
M , ∅〉.

3. For every node N holding a false derivation P ∪ Δ �MP b w.r.t. 〈U ′
M , ∅〉: N

has exactly one child node holding a false derivation of some m w.r.t. 〈U ′
M , ∅〉

such that not m ∈ Δ and m ∈ C.
4. There are no other nodes except those given in 1–3.

An inconsistency explanation of P is derived by replacing every translated literal
in the translated inconsistency explanation by its respective original literal.

Figure 3 illustrates the inconsistency explanation of P4 (see Example 7),
showing the responsible odd-length loop. It also illustrates how the derivations
in an inconsistency explanation can be expanded to derivation trees, which can
also be done for cases 1–3a.

Note that in all our examples, the culprit set is unique. However, in general a
logic program may have various culprit sets (from the same inconsistency case)
resulting in various inconsistency explanations. Moreover, there may be various
inconsistency explanations for a given culprit set.
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Fig. 3. The inconsistency explanation of P4 (left) and the version where derivations
are expanded to trees (right).

6 Conclusion

We showed that the two ways in which a logic program may be inconsistent
– it has no answer sets or its only answer set is the set of all literals – can be
determined using the well-founded model semantics and further divided into four
inconsistency cases: one where only explicit negation is responsible, one where
only NAF is responsible, and two where the interplay of explicit negation and
NAF is responsible for the inconsistency. Each of these cases is characterised
by a different type of culprit set, containing literals which are responsible for
the inconsistency due to the way in which they are derivable. These culprit sets
can be identified using “weaker” semantics than answer sets and can be used to
explain the inconsistency in terms of trees whose nodes are derivations.

Our approach is related to early work on characterising logic programs with
respect to the existence of answer sets [2,5,20]. However, none of these considers
the properties of explicit negation in addition to NAF. It should also be pointed
out that our explanations are related to the graphs used in [14,16] for explaining
answer sets. In comparison to debugging approaches [1,7,12,13,17], our approach
detects reasons for the inconsistency in terms of culprit sets, which is independent
of an intended answer set. This naturally leads to the questions how to perform
debugging based on the culprit sets, as well as how to deal with of multiple
culprit sets for a logic program, which will be addressed in the future.

Since answer set programming for real-world applications often involves more
complicated language constructs, e.g. constraints or aggregates, future work
involves the extension of our approach to characterising inconsistency in logic
programs using these constructs.
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