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1 Jožef Stefan Institute, Jamova 39,
1000 Ljubljana, Slovenia
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Abstract. Inductive Logic Programming (ILP) and Relational Data
Mining (RDM) address the task of inducing models or patterns from
multi-relational data. One of the established approaches to RDM is
propositionalization, characterized by transforming a relational data-
base into a single-table representation. After introducing ILP and
RDM, the paper provides an overview of propositionalization algorithms,
which have been made publicly available through the web-based Clowd-
Flows data mining platform. The paper concludes by presenting recent
advances in Semantic Data Mining, characterized by exploiting relational
background knowledge in the form of domain ontologies in the process
of model and pattern construction.
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1 Introduction

Standard machine learning and data mining algorithms induce hypotheses in the
form of models or propositional patterns learned from a given data table, where
one example corresponds to a single row in the table. Most types of propo-
sitional models and patterns have corresponding relational counterparts, such
as relational classification rules, relational regression trees, relational associa-
tion rules. Inductive Logic Programming (ILP) [23] and Relational Data Mining
(RDM) [4,6] algorithms can be used to induce such relational models and pat-
terns from multi-relational data, e.g., data stored in a relational database.

For relational databases in which data instances are clearly identifiable (the
so-called individual-centered representation [7]), various techniques can be used
for transforming a relational database into a propositional single-table represen-
tation [14]. After performing such a transformation [18], usually named proposi-
tionalization [12], standard propositional learners can be used, including decision
tree and classification rule learners.
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The first part of the paper presents a survey of the state-of-the-art propo-
sitionalization techniques. Following an introduction to the propositionalization
problem and a description of a number of propositionalization methods, we trans-
late and unify the terminology, using a language that should be familiar to an
analyst working with relational databases. Furthermore, we provide an empir-
ical comparison of freely available propositionalization algorithms. Finally, we
present our approach to making the use of propositionalization algorithms easier
for non-experts, as well as making the experiments shareable and repeatable. The
freely available state-of-the-art methods discussed in this paper were wrapped as
reusable components in the web-based data mining platform ClowdFlows [13],
together with the utilities for working with a relational database management
system (RDBMS).

The second part of the paper addresses a more recent ILP setting, named
semantic data mining (SDM), characterized by exploiting relational background
knowledge in the form of domain ontologies in the process of model and pattern
construction. The development of SDM techniques is motivated by the availabil-
ity of large amounts of semantically annotated data in all domains of science,
and biology in particular, posing requirements for new data mining approaches
which need to deal with increased data complexity, the relational character of
semantic representations, as well as the reasoning capacities of the underlying
ontologies. The paper briefly introduces the task of semantic data mining, fol-
lowed by a short overview of the state-of-the-art approaches. Finally, the paper
presents the Hedwig semantic subgroup discovery algorithm [1,33] developed by
the authors of this paper.

The paper is structured as follows. Section 2 gives an introduction to the
propositionalization task, describes the state-of-the-art methods, and presents a
number of reusable propositionalization workflows implemented in the Clowd-
Flows data mining platform. In Sect. 3 we introduce the SDM task, a quick
state-of-the-art overview, and a recent semantic subgroup discovery approach
Hedwig. Section 4 concludes the paper with a brief summary.

2 Propositionalization

Propositional representations (a single table format) impose the constraint that
each training example is represented as a single fixed-length tuple. Due to the
nature of some relational problems, there exists no elegant propositional encod-
ing; for example, a citation network in general cannot be represented in a proposi-
tional format without loss of information, since each author can have any number
of co-authors and papers. The problem is naturally represented using multiple
relations, e.g., including the author and the paper relations.

Problems characterized by multiple relations can be tackled in two different
ways: (1) by using a relational learner such as Progol [22] or Aleph [30], which
can build a model or induce a set of patterns directly, or (2) by constructing
complex relational features used to transform the relational representation into
a propositional format and then applying a propositional learner on the trans-
formed single-table representation. In this paper we focus on the latter approach,
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called propositionalization. Propositionalization is a form of constructive induc-
tion, since it involves changing the representation for learning. As we noted
before, propositionalization cannot always be done without loss of information,
but it can be a powerful method when a suitable relational learner is not avail-
able, when a non-conventional ILP task needs to be performed on data from
a given relational database (e.g., clustering), and when the problem at hand is
individual-centered [7]. Such problems have a clear notion of an individual and
the learning occurs only at the level of (sets of) individual instances rather than
the (network of) relationships between the instances. As an example consider
the problem of classifying authors into research fields given a citation network;
in this case the author is an individual and learning occurs at the author level,
i.e. assigning class labels to authors, rather than classifying the authors in terms
of their citations in the citation network of other authors.

Table 1. A sample propositional
representation of authors table.

Author q1 q2 . . . qm Class
A1 1 1 . . . 1 C1

A2 0 1 . . . 0 C1

A3 1 0 . . . 0 C2

. . . . . . . . . . . . . . . ...
An 0 1 0 0 C1

To illustrate the propositionalization sce-
nario, consider a simplified multi-relational
problem, where the data to be mined is a data-
base of authors and their papers, with the task
of assigning a research field to unseen authors.
In essence, a complete propositional represen-
tation of the problem (shown in Table 1) would
be a set of queries q ∈ Q (complex relational
features) that return value true or false for a
given author. Each query describes a property of an author. The property can
involve a rather complex query, involving multiple relations as long as that query
returns either true or false. For example, a query could be “does author X have
a paper published at the ECML/PKDD conference?”.

While this transformation could be done by hand by a data miner, we are
only interested in automated propositionalization methods. Furthermore, the
transformation into a propositional representation can be done with essentially
any ML or DM task in mind: classification, association discovery, clustering, etc.

2.1 Relational Data Mining Task Formulation

A relational data mining task can be formally defined as follows.

Given:

– evidence E (examples, given extensionally),
– an initial theory B (background knowledge, given extensionally or as sets of

clauses over the set of background relations).

Find:

– a theory H (hypothesis, in the form of a set of logical clauses) that together
with B explains the target properties of E.

where the target property can be a selected class label (the target class) or some
other property of interest.
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This is a typical ILP definition of the problem, given that numerous existing
approaches to relational data mining and propositionalization were developed
within the field of ILP. However, since real-world data is in most cases stored in
some Relational Database Management System (RDBMS), we try to unify the
terminology used across various approaches to be as familiar as possible also to
researchers working with databases—which are likely the ones most interested in
propositionalization techniques. The definition of a relational data mining task
using a more conventional database terminology is given below.

Given:

– target table t, where each row is one example,
– related tables T , connected to t via foreign keys.

Find:

– a query Q (a set of sub-queries) that together with T describes the target
properties of t.

In the rest of this paper we will focus on the classification (and subgroup dis-
covery) tasks with a clear notion of the target property of interest (a selected class
label), since we can effectively compare different approaches via the performance
of the resulting classifier. Using propositionalization to tackle classification tasks
must involve two independent steps: (1) preparing a single-table representation
of the input database, and (2) applying a propositional learner on that table.
In contrast, learners that directly use the multi-relational representations inter-
twine feature construction and model construction. In propositionalization, these
two steps are separated. The workload of finding good features (which have large
coverage of instances, or which best separate between different classes) is done by
the propositionalization algorithm, while the work of combining these features
to produce a good classification model is offloaded to the propositional learner.

The actual art of propositionalization is to generate a number of good, poten-
tially complex features (binary queries), to be evaluated as true or false for each
individual, which the learner will use to construct a classifier. In the model
construction phase, the learner exploits these queries about each individual as
features used to construct the model. For example, if a decision tree model is
constructed, each node in the tree will contain a single query, with the two values
(true and false) on the outgoing branches of this node. Note that propositional-
ization is not limited only to binary features—many approaches (e.g., [15] and
[11]) also use aggregation functions to calculate feature values.

To classify unseen individuals, the classifier must then evaluate the queries
that are found in the decision tree nodes on the unseen example and follow the
branches according to their answers to arrive at a classification in the leave of
the decision tree.

2.2 Overview of Propositionalization Algorithms

The best known propositionalization algorithms are first briefly described, fol-
lowed by the experimental evaluation of the ones which are publicly available.
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LINUS [18] is one of the first propositionalization approaches. It generates
features that do not allow recursion and newly introduced variables. The
second limitation is more serious and means that the queries cannot contain
joins. An improvement of LINUS is SINUS [19] which incorporates more
advanced feature construction techniques inspired by feature construction
implemented in 1BC [7].

Aleph [30] is an ILP toolkit with many modes of functionality: learning the-
ories, feature construction, incremental learning, etc. In this paper we are
interested in its feature construction facility which can be used as a tool for
propositionalization. Aleph uses mode declarations to define the syntactic
bias. Input relations are defined as Prolog clauses: either extensionally or
intensionally.

RSD [36] is a relational subgroup discovery algorithm composed of two main
steps: the propositionalization step and the subgroup discovery step. The
output of the propositionalization step can be used also as input to other
propositional learners. RSD effectively produces an exhaustive list of first-
order features that comply with the user-defined mode constraints, similar
to those of Progol [22] and Aleph [30]. Furthermore, RSD features satisfy the
connectivity requirement, which imposes that no feature can be decomposed
into a conjunction of two or more features. Mode declarations define the
algorithm’s syntactic bias, i.e. the space of possible features.

HiFi [17] is a propositionalization approach that constructs first-order features
with hierarchical structure. Due to this feature property, the algorithm per-
forms the transformation in polynomial time of the maximum feature length.
Furthermore, the resulting features are the smallest in their semantic equiv-
alence class. The algorithm is shown to perform several orders of magnitude
faster than RSD for higher feature lengths.

RelF [16] constructs a set of tree-like relational features by combining smaller
conjunctive blocks. The novelty is that RelF preserves the monotonicity of
feature reducibility and redundancy (instead of the typical monotonicity of
frequency), which allows the algorithm to scale far better than other state-
of-the-art propositionalization algorithms.

RELAGGS [15], which stands for relational aggregation, is a proposition-
alization approach that uses the input relational database schema as a
basis for a declarative bias and it aims to use optimization techniques usu-
ally used in relational databases (e.g., indexes). Furthermore, the approach
employs aggregation functions in order to summarize non-target relations
with respect to the individuals in the target table.

Stochastic propositionalization [12] employs a search strategy similar to
random mutation hill-climbing: the algorithm iterates over generations of
individuals, which are added and removed with a probability proportional
to the fitness of individuals, where the fitness function used is based on the
Minimum Description Length (MDL) principle.

Safarii [11] is a commercial multi-relation data mining tool.1 It offers a unique
pattern language that merges ILP-style structural descriptions as well as

1 http://www.kiminkii.com/safarii.html.

http://www.kiminkii.com/safarii.html
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aggregations. Safarii comes with a tool called ProSafarii, which offers several
pre-processing utilities—including propositionalization via aggregation.

Wordification [26,27] is a propositionalization method inspired by text min-
ing, which can be seen as a transformation of a relational database into a
corpus of text documents. Wordification aims at constructing simple, easy
to understand features, acting as words in the transformed Bag-Of-Words
representation.

Extensive description of the experimental evaluation of the available propo-
sitionalization algorithm is presented in [28]. Fully reproducing the experimental
results is outside the scope of this paper. The evaluation of different proposition-
alization approaches was performed on binary classification tasks using seven
datasets from five different relational domains. The Friedman test [8] using
significance level α = 0.05 and the corresponding Nemenyi post-hoc test [24]
were applied. This evaluation approach was used as an alternative to the t-test,
which is proven to be inappropriate for testing multiple algorithms on multiple
datasets [5]. A birds’s eye view of the results is shown in Fig. 1.

Wordification (1.9)

RelF (2.2)

RSD (2.3)

AlephFeaturize (3.6)

CD = 1.77

4 3 2 1

Measure = CA

Wordification (1.0)

AlephFeaturize (2.9)

RSD (3.0)

RelF (3.1)

CD = 1.77

4 3 2 1

Measure = run-time

Fig. 1. Critical distance diagram for the reported classification accuracy (left; not
enough evidence to prove that any algorithm performs better) and run-time (right;
significant differences for α = 0.05) results. The numbers in parentheses are the average
ranks.

The statistical test was first performed using the J48 decision tree learner
for classification accuracy and run-time. For classification accuracy, there is not
enough evidence to prove that any propositionalization algorithm on average
performs better than the others (Fig. 1 left, for significance level α = 0.05), even
though wordification achieves the best results on five out of seven benchmarks.
We repeated the same statistical analysis for the LibSVM results, where the
conclusion ended up the same. For run-time, however, the results are statistically
significant in favor of wordification; see the critical distance diagram in the right
part of Fig. 1. The diagram tells us that the wordification approach performs
statistically significantly faster than other approaches, under the significance
level α = 0.05. Other approaches fall within the same critical distance and no
statistically significant difference was detected.
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2.3 ILP in the ClowdFlows Platform

The ClowdFlows platform [13] is an open-source, web-based data mining plat-
form that supports the construction and execution of scientific workflows. This
web application can be accessed and controlled from anywhere while the process-
ing is performed in a cloud of computing nodes. A public installation of Clowd-
Flows is accessible at http://clowdflows.org. For a developer, the graphical user
interface supports simple operations that enable workflow construction: adding
workflow components (widgets) on a canvas and creating connections between
the components to form an executable workflow, which can be shared by other
users or developers. Upon registration, the user can access, execute, modify, and
store the modified workflows, enabling their sharing and reuse. On the other
hand, by using anonymous login, the user can execute a predefined workflow,
while any workflow modifications would be lost upon logout.

We have extended ClowdFlows with the implementation of an ILP toolkit,
including the popular ILP system Aleph [30] together with its feature construction
component, as well as RSD [36], RelF [16] and Wordification [26] propositional-
ization engines. Construction of RDM workflows is supported by other special-
ized RDM components (e.g., the MySQL package providing access to a relational
database by connecting to a MySQL database server), other data mining compo-
nents (e.g., the Weka [34] classifiers) and other supporting components (including
cross-validation), accessible from other ClowdFlows modules. Each public work-
flow is assigned a unique URL that can be accessed by any user to either repeat
the experiment, or use the workflow as a template to design another workflow.
Consequently, the incorporated RDM algorithms become handy to use in real-life
data analytics, which may therefore contribute to improved accessibility and pop-
ularity of ILP and RDM.

Figure 2 shows some of the implemented ILP workflows using ILP and Weka
module components. The first workflow assumes that the user uploads the files
required by RSD as Prolog programs. Workflows constructed for the other three
propositionalization approaches Aleph, RelF and Wordification, which are also
made publicly available, assume that the training data is read from a MySQL
database.

In terms of workflows reusability, accessible by a single click on a web page
where a workflow is exposed, the implemented propositionalization toolkit is a
significant step towards making the ILP legacy accessible to the research com-
munity in a systematic and user-friendly way. To the best of our knowledge,
this is the only workflow-based implementation of ILP and RDM algorithms in
a platform accessible through a web browser, enabling simple workflow adapta-
tion to the user’s needs. Moreover, the ILP toolkit widgets actually use a Python
library called python-rdm which is available on GitHub2. The authors welcome
extensions and improvements from the community.

2 https://github.com/anzev/rdm/.

http://clowdflows.org
https://github.com/anzev/rdm/
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Fig. 2. First: RSD propositionalization workflow using ILP and Weka components
is available online at http://clowdflows.org/workflow/471/ (the same RSD workflow,
extended by accessing the training data using a MySQL database, is available at
http://clowdflows.org/workflow/611/). Second: Aleph workflow available at http://
clowdflows.org/workflow/2224/. Third: RelF workflow available at http://clowdflows.
org/workflow/2227/. Fourth: Wordification workflow available at http://clowdflows.
org/workflow/2222/.

3 Semantic Data Mining

Rule learning, which was initially focused on building predictive models formed of
sets of classification rules, has recently shifted its focus to descriptive pattern min-
ing. Well-known pattern mining techniques in the literature are based on associa-
tion rule learning [2,29]. While the initial studies in association rule mining have
focused on finding interesting patterns from large datasets in an unsupervised set-
ting, association rules have been used also in a supervised setting, to learn pattern

http://clowdflows.org/workflow/471/
http://clowdflows.org/workflow/611/
http://clowdflows.org/workflow/2224/
http://clowdflows.org/workflow/2224/
http://clowdflows.org/workflow/2227/
http://clowdflows.org/workflow/2227/
http://clowdflows.org/workflow/2222/
http://clowdflows.org/workflow/2222/
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descriptions from class-labeled data [20]. Building on top of the research in classifi-
cation and association rule learning, subgroup discovery has emerged as a popular
data mining methodology for finding patterns in the class-labeled data. Subgroup
discovery aims at finding interesting patterns as sets of individual rules that best
describe the target class [10,35].

Subgroup descriptions in the form of propositional rules are suitable descrip-
tions of groups of instances. However, given the abundance of taxonomies and
ontologies that are readily available, these can also be used to provide higher-level
descriptors and explanations of discovered subgroups. Especially in the domain
of systems biology the GO ontology [3], KEGG orthology [25] and Entrez gene–
gene interaction data [21] are good examples of structured domain knowledge
that can be used as additional higher-level descriptors in the induced rules.

The challenge of incorporating the domain ontologies in data mining was
addressed in recent research on semantic data mining (SDM) [32]. See Fig. 3 for
a diagram of the SDM process.

Fig. 3. The Semantic Data Mining (SDM) process illustration.

In [32] we described and evaluated the SDM toolkit that includes two seman-
tic data mining systems: SDM-SEGS and SDM-Aleph. SDM-SEGS is an exten-
sion of the earlier domain-specific algorithm SEGS [31] which allows for semantic
subgroup discovery in gene expression data. SEGS constructs gene sets as com-
binations of GO ontology [3] terms, KEGG orthology [25] terms, and terms
describing gene–gene interactions obtained from the Entrez database [21]. SDM-
SEGS extends and generalizes this approach by allowing the user to input any set
of ontologies in the OWL ontology specification language and an empirical data
collection which is annotated by domain ontology terms. SDM-SEGS employs
ontologies to constrain and guide the top-down search of a hierarchically struc-
tured space of induced hypotheses. SDM-Aleph, which is built using the popular
inductive logic programming system Aleph [30] does not have the limitations of
SDM-SEGS, imposed by the domain-specific algorithm SEGS, and can accept
any number of OWL ontologies as background knowledge which is then used in
the learning process.
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Based on the lessons learned in [32], we introduced a new system Hedwig
in [33]. The system takes the best from both SDM-SEGS and SDM-Aleph. It
uses a search mechanism tailored to exploit the hierarchical nature of ontologies.
Furthermore, Hedwig can take into account background knowledge in the form
of RDF triplets. Compared to [33], the current version of the system uses better
redundancy pruning and significance tests based on [9]. Furthermore, the new
version also support negations of unary predicates. Apart from the financial
domain in [33], the approach was also applied on a multi-resolution dataset of
chromosome abberrations in [1].

Hedwig is open-source software available on GitHub3 and the authors wel-
come improvements from the community.

4 Conclusions

This paper addresses two lines of research of the authors, the propositionalization
approach and the semantic data mining approach to RDM.

First, ILP and RDM are introduced, together with an overview of popu-
lar propositionalization algorithms. Next, the paper briefly presents the results
of an experimental comparison of several such algorithms on several relational
databases. These approaches have been made available through the web-based
ClowdFlows data mining platform, together with repeatable and reusable work-
flows. The paper concludes by presenting recent advances in Semantic Data Min-
ing, characterized by exploiting relational background knowledge in the form of
domain ontologies in the process of model and pattern construction.

In further work, we will combine ILP and RDM approaches with the
approaches developed in the network mining community, to address open chal-
lenges in linked data and heterogeneous information network analysis.
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30 N. Lavrač and A. Vavpetič
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