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Abstract. Acyclicity constraints are prevalent in knowledge representa-
tion and, in particular, applications where acyclic data structures such as
DAGs and trees play a role. Recently, such constraints have been consid-
ered in the satisfiability modulo theories (SMT) framework, and in this
paper we carry out an analogous extension to the answer set program-
ming (ASP) paradigm. The resulting formalism, ASP modulo acyclicity,
offers a rich set of primitives to express constraints related with recur-
sive structures. The implementation, obtained as an extension to the
state-of-the-art answer set solver clasp, provides a unique combination
of traditional unfounded set checking with acyclicity propagation.

1 Introduction

Acyclic data structures such as DAGs and trees occur frequently in applica-
tions. For instance, Bayesian [1] and Markov [2] network learning as well as
Circuit layout [3] are based on respective conditions. When logical formalisms
are used for the specification of such structures, dedicated acyclicity constraints
are called for. Recently, such constraints have been introduced in the satisfia-
bility modulo theories (SMT) framework [4] for extending Boolean satisfiability
in terms of graph-theoretic properties [5,6]. The idea of satisfiability modulo
acyclicity [7] is to view Boolean variables as conditionalized edges of a graph
and to require that the graph remains acyclic under variable assignments. More-
over, the respective theory propagators for acyclicity have been implemented in
contemporary CDCL-based SAT solvers, minisat and glucose, which offer a
promising machinery for solving applications involving acyclicity constraints.

In this paper, we consider acyclicity constraints in the context of answer set
programming (ASP) [8], featuring a rule-based language for knowledge represen-
tation. While SAT solvers with explicit acyclicity constraints offer an alternative
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mechanism to implement ASP via appropriate translations [7], the goal of this
paper is different: the idea is to incorporate acyclicity constraints into ASP,
thus accounting for extended rule types as well as reasoning tasks like enumer-
ation and optimization. The resulting formalism, ASP modulo acyclicity, offers
a rich set of primitives to express constraints related with recursive structures.
The implementation, obtained as an extension to the state-of-the-art answer set
solver clasp [9], provides a unique combination of traditional unfounded set [10]
checking and acyclicity propagation [5].

2 Background

We consider logic programs built from rules of the following forms:

a ← b1, . . . , bn, not c1, . . . , not cm. (1)
{a} ← b1, . . . , bn, not c1, . . . , not cm. (2)
a ← k ≤ [b1 = w1, . . . , bn = wn, not c1 = wn+1, . . . , not cm = wn+m]. (3)

Symbols a, b1, . . . , bn, c1, . . . , cm stand for (propositional) atoms, k,w1, . . . , wn+m

for non-negative integers, and not for (default) negation. Atoms like bi and
negated atoms like not ci are called positive and negative literals, respectively.
For a normal (1), choice (2), or weight (3) rule r, we denote its head atom
by head(r) = a and its body by B(r). By B(r)+ = {b1, . . . , bn} and B(r)− =
{c1, . . . , cm}, we refer to the positive and negative body atoms of r. When r is a
weight rule, the respective sequence of weighted literals is denoted by WL(r), and
its restrictions to positive or negative literals by WL(r)+ and WL(r)−. A normal
rule r such that head(r) ∈ B(r)− is called an integrity constraint, and we below
skip head(r) and not head(r) for brevity, where head(r) is an arbitrary atom
occurring in r only. A weight constraint program P , or simply a program, is a
finite set of rules; P is a choice program if it consists of normal and choice rules
only, and a positive program if it involves neither negation nor choice rules.

Given a program P , let head(P ) = {head(r) | r ∈ P} and At(P ) = head(P )∪⋃
r∈P (B(r)+ ∪ B(r)−) denote the sets of head atoms or all atoms, respectively,

occurring in P . The defining rules of an atom a ∈ At(P ) are DefP (a) = {r ∈ P |
head(r) = a}. An interpretation I ⊆ At(P ) satisfies B(r) for a normal or choice
rule r iff B(r)+ ⊆ I and B(r)− ∩ I = ∅. The weighted literals of a weight rule r
evaluate to vI(WL(r)) =

∑
1≤i≤n,bi∈I wi+

∑
1≤i≤m,ci /∈I wn+i; when r is a weight

rule, I satisfies B(r) iff k ≤ vI(WL(r)). For any rule r, we write I |= B(r) iff I
satisfies B(r), and I |= r iff I |= B(r) implies head(r) ∈ I. The supporting rules
of P with respect to I are SRP (I) = {r ∈ P | head(r) ∈ I, I |= B(r)}. Moreover,
I is a model of P , denoted by I |= P , iff I |= r for every r ∈ P such that r
is a normal or weight rule. A model I of P is a supported model of P when
head(SRP (I)) = I. Note that any positive program P possesses a unique least
model, denoted by LM(P ).

For a normal or choice rule r, B(r)I = B(r)+ denotes the reduct of B(r)
with respect to an interpretation I, and B(r)I = (max{0, k − vI(WL(r)−)} ≤
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WL(r)+) is the reduct of B(r) for a weight rule r. The reduct of a program P with
respect to an interpretation I is P I = {head(r) ← B(r)I | r ∈ SRP (I)}. Then,
I is a stable model of P iff I |= P and LM(P I) = I. While any stable model
of P is a supported model of P as well, the converse does not hold in general.
However, the following concept provides a tighter notion of support achieving
such a correspondence.

Definition 1. A model I of a program P is well-supported by a set R ⊆ SRP (I)
of rules iff head(R) = I and there is some ordering r1, . . . , rn of R such that,
for each 1 ≤ i ≤ n, head({r1, . . . , ri−1}) |= B(ri)

I .

In fact, a (supported) model I of a program P is stable iff I is well-supported
by some subset of SRP (I), and several such subsets may exist. The notion of
well-support counteracts circularity in the positive dependency graph DG+(P ) =
〈At(P ),
〉 of P , whose edge relation a 
 b holds for all a, b ∈ At(P ) such that
head(r) = a and b ∈ B(r)+ for some rule r ∈ P . If a 
 b, we also write 〈a, b〉 ∈
DG+(P ).

3 Acyclicity Constraints

In [5], the SAT problem has been extended by explicit acyclicity constraints.
The basic idea is to label edges of a directed graph with dedicated Boolean vari-
ables. While satisfying the clauses of a SAT instance referring to these labeling
variables, also the directed graph consisting of edges whose labeling variables are
true must be kept acyclic. Thus, the graph behind the labeling variables imposes
an additional constraint on satisfying assignments. In what follows, we propose
a similar extension of logic programs subject to stable model semantics.

Definition 2. The acyclicity extension of a logic program P is a pair 〈V, e〉,
where

1. V is a set of nodes and
2. e : At(P ) → V × V is a partial injection that maps atoms of P to edges.

In the sequel, a program P is called an acyclicity program if it has an acyclicity
extension 〈V, e〉. To define the semantics of acyclicity programs, we identify the
graph of the acyclicity check as follows. Given an interpretation I ⊆ At(P ), we
write e(I) for the set of edges e(a) induced by atoms a ∈ I for which e(a) is
defined. For a given acyclicity extension 〈V, e〉, the graph e(At(P )) is the maximal
one that can be obtained under any interpretation and is likely to contain cycles.
If not, then the extension can be neglected altogether as no cycles can arise. To
be precise about the acyclicity condition being imposed, we recall that a graph
〈V,E〉 with the set E ⊆ V 2 of edges has a cycle iff there is a non-trivial directed
path from any node v ∈ V back to itself via the edges in E. An acyclic graph
〈V,E〉 has no cycles of this kind.
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Definition 3. Let P be an acyclicity program with an acyclicity extension 〈V, e〉.
An interpretation M ⊆ At(P ) is a stable (or supported) model of P subject
to 〈V, e〉 iff M is a stable (or supported) model of P such that the graph 〈V, e(M)〉
is acyclic.

Example 1. Consider a directed graph 〈V,E〉 and the task to find a Hamiltonian
cycle through the graph, i.e., a cycle that visits each node of the graph exactly
once. Let us encode the graph by introducing the fact node(v) for each v ∈ V
and the fact edge(v, u) for each 〈v, u〉 ∈ E. Then, it is sufficient (i) to pick
beforehand an arbitrary initial node, say v0, for the cycle, (ii) to select for each
node exactly one outgoing and one incoming edge to be on the cycle, and (iii) to
check that the cycle is not completed before the path spanning along the selected
edges returns to v0. Assuming that a predicate hc is used to represent selected
edges, the following (first-order) rules express (ii):

1{hc(v, u) : edge(v, u)}1 ← node(v).
1{hc(v, u) : edge(v, u)}1 ← node(u).

To enforce (iii), we introduce an acyclicity extension 〈V, e〉, where e maps an
atom hc(v, u) to an edge 〈v, u〉 whenever v and u are different from v0. �

Our next objective is to relate acyclicity programs with ordinary logic pro-
grams in terms of translations. It is well-known that logic programs subject to
stable model semantics can express reachability in graphs, which implies that
also acyclicity is expressible. To this end, we present a translation based on
elimination orderings [11].

Definition 4. Let P be an acyclicity program with an acyclicity extension 〈V, e〉.
The translation TrEL(P, V, e) extends P as follows.

1. For each atom a ∈ At(P ) such that e(a) = 〈v, u〉, the rules:

el(v, u) ← not a. (4)
el(v, u) ← el(u). (5)

2. For each node v ∈ V such that 〈v, u1〉, . . . , 〈v, uk〉 are the edges in e(At(P ))
starting from v:

el(v) ← el(v, u1), . . . , el(v, uk). (6)
← not el(v). (7)

The intuitive reading of the new atom el(v, u) is that the edge 〈v, u〉 ∈
e(At(P )) has been eliminated, meaning that it cannot belong to any cycle. Anal-
ogously, the atom el(v) denotes the elimination of a node v ∈ V . By the rule (4),
an edge 〈v, u〉 is eliminated when the atom a such that e(a) = 〈v, u〉 is false, while
the rule (5) is applicable once the end node u is eliminated. Then, the node v
gets eliminated by the rule (6) if all edges starting from it are eliminated. Finally,
the constraint (7) ensures that all nodes are eliminated. That is, the success of
the acyclicity test presumes that el(v, u) or el(v), respectively, is derivable for
each edge 〈v, u〉 ∈ e(At(P )) and each node v ∈ V .
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Theorem 1. Let P be an acyclicity program with an acyclicity extension 〈V, e〉
and TrEL(P, V, e) its translation into an ordinary logic program.

1. If M is a stable model of P subject to 〈V, e〉, then M ′ = M ∪ {el(v, u) |
〈v, u〉 ∈ e(At(P ))} ∪ {el(v) | v ∈ V } is a stable model of TrEL(P, V, e).

2. If M ′ is a stable model of TrEL(P, V, e), then M = M ′ ∩ At(P ) is a stable
model of P subject to 〈V, e〉.
Transformations in the other direction are of interest as well, i.e., the goal

is to capture stable models by exploiting the acyclicity constraint. While the
existing translation from ASP into SAT modulo acyclicity [7] provides a starting
point for such a transformation, the target syntax is given by rules rather than
clauses.

Definition 5. Let P be a weight constraint program. The acyclicity translation
of P consists of TrACYC(P ) =

⋃
a∈At(P ) TrACYC(P, a) with an acyclicity exten-

sion 〈At(P ), e〉 such that e(dep(a, b)) = 〈a, b〉 for each edge 〈a, b〉 ∈ DG+(P ),
where TrACYC(P, a) extends DefP (a) for each atom a ∈ At(P ) as follows.

1. For each edge 〈a, b〉 ∈ DG+(P ), the choice rule:

{dep(a, b)} ← b. (8)

2. For each defining rule (1) or (2) of a, the rule:

ws(r) ← dep(a, b1), . . . , dep(a, bn), not c1, . . . , not cm. (9)

3. For each defining rule (3) of a, the rule:

ws(r) ← k ≤ [dep(a, b1) =w1, . . . , dep(a, bn) = wn,

not c1 = wn+1, . . . , not cm = wn+m]. (10)

4. For DefP (a) = {r1, . . . , rk}, the constraint:

← a, not ws(r1), . . . , not ws(rk). (11)

The rules (9) and (10) specify when r provides well-support for a, i.e., the
head atom a non-circularly depends on B(r)+ = {b1, . . . , bn}. The constraint
(11) expresses that a ∈ At(P ) must have a well-supporting rule r ∈ DefP (a)
whenever a is true. To this end, respective dependencies have to be established
in terms of the choice rules (8).

Theorem 2. Let P be a weight constraint program and TrACYC(P ) its transla-
tion into an acyclicity program with an acyclicity extension 〈At(P ), e〉.
1. If M is a stable model of P , then there is an ordering r1, . . . , rn of some

R ⊆ SRP (M) such that M ′ = M ∪ {ws(r) | r ∈ R} ∪ {dep(head(ri), b) | 1 ≤
i ≤ n, b ∈ Bi}, where Bi ⊆ B(ri)+ ∩ head({r1, . . . , ri−1}) for each 1 ≤ i ≤ n,
is a supported model of TrACYC(P ) subject to 〈At(P ), e〉.
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2. If M ′ is a supported model of TrACYC(P ) subject to 〈At(P ), e〉, then M =
M ′ ∩ At(P ) is a stable model of P and M is well-supported by R = {r |
ws(r) ∈ M ′}.
It is well-known that supported and stable models coincide for tight logic

programs [12,13]. The following theorem shows that translations produced
by TrACYC possess an analogous property subject to the acyclicity extension
〈At(P ), e〉. This opens up an interesting avenue for investigating the efficiency of
stable model computation—either using unfounded set checking or the acyclicity
constraint, or both.

Theorem 3. Let P be a weight constraint program and TrACYC(P ) its transla-
tion into an acyclicity program with an acyclicity extension 〈At(P ), e〉. Then, M
is a supported model of TrACYC(P ) subject to 〈At(P ), e〉 iff M is a stable model
of TrACYC(P ) subject to 〈At(P ), e〉.

As witnessed by Theorems 2 and 3, the translation TrACYC provides means
to capture stability in terms of the acyclicity constraint. However, the computa-
tional efficiency of the translation can be improved when additional constraints
governing dep(v, u) atoms are introduced. The purpose of these constraints is to
falsify dependencies in settings where they are not truly needed. We first con-
centrate on choice programs and will then extend the consideration to weight
rules below. The following definition adopts the cases from [7] but reformulates
them in terms of rules rather than clauses.

Definition 6. Let P be a choice program. The strong acyclicity translation of
P , denoted by TrACYC+(P ), extends TrACYC(P ) as follows.

1. For each 〈a, b〉 ∈ DG+(P ), the constraint:

← dep(a, b), not a. (12)

2. For each 〈a, b〉 ∈ DG+(P ) and r ∈ DefP (a) such that b /∈ B(r)+, the con-
straint:

← dep(a, b), ws(r). (13)

Intuitively, dependencies from a are not needed if a is false (12). Quite simi-
larly, a particular dependency may be safely preempted (13) if the well-support
for a is provided by a rule r not involving this dependency.

The strong acyclicity translation for weight rules includes additional subpro-
grams.

Definition 7. Let P be a weight constraint program and r ∈ P a weight rule
of the form (3), where head(r) = a, |{b1, . . . , bn}| = n, and w1, . . . , wn are
ordered such that wi−1 ≤ wi for each 1 < i ≤ n. The strong acyclicity translation
TrACYC+(P ) of P is fortified as follows.



Answer Set Programming Modulo Acyclicity 149

1. For 1 < i ≤ n, the rules:

nxt(r, i) ← dep(a, bi−1). (14)
nxt(r, i) ← nxt(r, i − 1). (15)
chk(r, i) ← nxt(r, i), dep(a, bi). (16)

2. The weight rule:

red(r) ← k ≤ [chk(r, 2) =w2, . . . , chk(r, n) = wn,

not c1 = wn+1, . . . , not cm = wn+m]. (17)

3. For each 〈a, b〉 ∈ DG+(P ) such that b ∈ B(r)+, the constraint:

← dep(a, b), red(r). (18)

The idea is to cancel dependencies 〈a, b〉 ∈ DG+(P ) by the constraint (18)
when the well-support obtained though r can be deemed redundant by the rule
(17). To this end, the rules of the forms (14) and (15) identify an atom among
b1, . . . , bn of smallest weight having an active dependency from a, i.e., dep(a, bi)
is true, provided such an i exists. By the rules of the form (16), any further
dependencies are extracted, and (17) checks whether the remaining literals are
sufficient to reach the bound k. If so, all dependencies from a are viewed as
redundant. This check covers also cases where, e.g., negative literals suffice to
satisfy the body and positive dependencies play no role.

4 Discussion

In this paper, we propose a novel SMT-style extension of ASP by explicit acyclic-
ity constraints in analogy to [5]. These kinds of constraints have not been directly
addressed in previous SMT-style extensions of ASP [14–16]. The new extension,
herein coined ASP modulo acyclicity, offers a unique set of primitives for appli-
cations involving DAGs or tree structures. One interesting application is the
embedding of ASP itself, given that unfounded set checking can be captured
(Theorem 2). The utilized notion of well-supporting rules resembles source point-
ers [17], used in native answer set solvers to record rules justifying true atoms.
In fact, a major contribution of this work is the implementation of new transla-
tions and principles in tools. For instance, clasp [9] features enumeration and
optimization, which are not supported by acycminisat and acycglucose [5].
Thereby, a replication of supported (and stable) models under translations can
be avoided by using the projection capabilities of clasp [18]. Last but not least,
acyclicity programs enrich the variety of modeling primitives available to users.
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