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Preface

This volume contains the papers presented at the 13th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR 2015) held September
27–30, 2015, in Lexington, Kentucky, USA.

LPNMR is a forum for exchanging ideas on declarative logic programming, non-
monotonic reasoning, and knowledge representation. The aim of the LPNMR con-
ferences is to facilitate interactions between researchers interested in the design and
implementation of logic-based programming languages and database systems, and
researchers who work in the areas of knowledge representation and nonmonotonic
reasoning. LPNMR strives to encompass theoretical and experimental studies that have
led or will lead to the construction of practical systems for declarative programming
and knowledge representation. LPNMR 2015 was the 13th event in the series. Past
editions were held in Washington, D.C., USA (1991), Lisbon, Portugal (1993),
Lexington, Kentucky, USA (1995), Dagstuhl, Germany (1997), El Paso, Texas, USA
(1999), Vienna, Austria (2001), Fort Lauderdale, Florida, USA (2004), Diamante, Italy
(2005), Tempe, Arizona, USA (2007), Potsdam, Germany (2009), Vancouver, Canada
(2011), and Corunna, Spain (2013).

LPNMR 2015 received 60 submissions in three categories (technical papers,
applications, and system descriptions) and two different formats (long and short
papers). Each submission was reviewed by at least three Program Committee members.
The final list of 40 accepted papers consists of 29 long and 11 short contributions, of
which 21 were technical papers (16 long and 5 short), 13 were application papers
(9 long, 4 short), and 6 were system descriptions (4 long, 2 short).

The LPNMR 2015 program was anchored by the invited talks by Jérôme Lang,
Nada Lavrač, and Pedro Cabalar. It also included presentations of the technical papers
mentioned above, a session dedicated to the 6th Answer Set Programming Competition
(a report on the results and the award ceremony), a doctoral consortium held jointly
with the 4th International Conference on Algorithmic Decision Theory, ADT 2015, and
four workshops.

The conference proceedings include papers for the three invited talks, the 40
technical papers, the paper reporting on the Answer Set Programming competition, and
four papers presented by LPNMR student attendees at the doctoral consortium.

Many people and organizations contributed to the success of LPNMR 2015. Victor
Marek, the conference general chair, oversaw all organization efforts and led interac-
tions with the organizers of ADT 2015. The members of the Program Committee and the
additional reviewers worked diligently to produce fair and thorough evaluations of the
submitted papers. Martin Gebser, Marco Maratea, and Francesco Ricca organized and
ran the programming competition, which has grown to be one of the major driving
forces of our field. Esra Erdem and Nick Mattei put together an excellent doctoral
consortium program, focused on the development of young logic programming, non-
monotonic reasoning and algorithmic decision theory researchers. Yuliya Lierler, the



workshop chair, spearheaded the effort to expand the scope of the conference with an
exciting selection of workshops, and all workshop organizers worked hard to make their
workshops interesting and relevant. Most importantly, the invited speakers, and the
authors of the accepted papers provided the conference with the state-of-the-art technical
substance. We thank all of them!

Furthermore, we gratefully acknowledge our sponsors for their generous support:
the Artificial Intelligence journal, the Association of Logic Programming (ALP), the
Association for the Advancement of Artificial Intelligence (AAAI), the European
Coordinating Committee for Artificial Intelligence (ECCAI), the Knowledge Repre-
sentation and Reasoning, Incorporated Foundation (KR, Inc.), the National Science
Foundation (NSF USA), the University of Kentucky, and the University of Calabria.

Last, but not least, we thank the people of EasyChair for providing resources and a
marvelous conference management system.

July 2015 Francesco Calimeri
Giovambattista Ianni

Miroslaw Truszczynski
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Stable Models for Temporal Theories

— Invited Talk —

Pedro Cabalar(B)

Department of Computer Science, University of Corunna, A Coruña, Spain
cabalar@udc.es

Abstract. This work makes an overview on an hybrid formalism that
combines the syntax of Linear-time Temporal Logic (LTL) with a non-
monotonic selection of models based on Equilibrium Logic. The result-
ing approach, called Temporal Equilibrium Logic, extends the concept
of a stable model for any arbitrary modal temporal theory, constitut-
ing a suitable formal framework for the specification and verification of
dynamic scenarios in Answer Set Programming (ASP). We will recall
the basic definitions of this logic and explain their effects on some simple
examples. After that, we will proceed to summarize the advances made so
far, both in the fundamental realm and in the construction of reasoning
tools. Finally, we will explain some open topics, many of them currently
under study, and foresee potential challenges for future research.

1 Introduction

The birth of Non-Monotonic Reasoning (NMR) in the 1980s was intimately
related to temporal reasoning in action domains. The solution to the frame prob-
lem [1] (the unfeasibility of explicitly specifying all the non-effects of an action)
played a central role in research on NMR formalisms capable of representing
defaults. In particular, the area of reasoning about actions and change was ini-
tially focused on properly capturing the inertia law, a dynamic default which
can be phrased as “fluent values remain unchanged along time, unless there is
evidence on the contrary.” NMR was also essential to deal with other typical
representational problems in action theories, such as the ramification and the
qualification problems.

The combination of temporal reasoning and NMR in action theories was
typically done inside the realm of first order logic. Classical action languages
such as Situation Calculus [1] or Event Calculus [2] have combined some NMR
technique, usually predicate circumscription [3], with a first-order formalisation
of time using temporal predicates and objects (situations or events, respectively).
In this way, we get very rich and expressive formalisms without limitations on
the quantification of temporal terms or the construction of arbitrary expressions
involving them, although we inherit the undecidability of first order logic in the
general case.
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Another way of dealing with temporal reasoning in NMR approaches has
been the use of modal temporal logic, a combination perhaps less popular1, but
not unfrequent in the literature [5–7]. But probably, the simplest treatment of
time we find in action theories is the use of an integer index to denote situations,
as done for instance in [8] for reasoning about actions using Logic Programming
(LP), and in the family of action languages [9] inspired on that methodology.

With the consolidation of Answer Set Programming (ASP) [10,11] as a suc-
cessful paradigm for practical NMR, many examples and benchmarks formalis-
ing dynamic scenarios became available. ASP inherited the treatment of time
as an integer index from LP-based action languages but, in practice, it further
restricted all reasoning tasks to finite narratives, something required for ground-
ing time-related variables. To illustrate this orientation, consider an extremely
simple ASP program where a fluent p represents that a switch is on and q repre-
sents that it is off. Moreover, suppose we have freedom to arbitrarily fix p true at
any moment and that either p or q holds initially. A typical ASP representation
of this problem could look like this:

p(0) ∨ q(0) (1)
p(I+1) ← p(I),not q(I+1), sit(I) (2)
q(I+1) ← q(I),not p(I+1), sit(I) (3)

p(I) ∨ not p(I) ← sit(I) (4)

where (1) describes the initial state, (2) and (3) are the inertia rules for p and
q, and (4) acts as a choice rule2 allowing the introduction of p at any situation.
Predicate sit would have some finite domain 0 . . . n for some constant n ≥ 0.
A planning problem can be solved incrementally [12], using an iterative deep-
ening strategy similar to SAT-based planning [13]. If we want to reach a state
satisfying p ∧ ¬q, we would include two constraints for the last situation:

⊥ ← not p(n) ⊥ ← q(n)

and go increasing n until a solution is found. However, this strategy falls short for
many temporal reasoning problems that involve dealing with infinite time such
as proving the non-existence of a plan or checking the satisfaction of temporal
properties of a given dynamic system. For instance, questions such as “is there a
reachable state in which both p and q are false?” or “can we show that whenever
p is true it will remain so forever?” can be answered by an analytical inspection
of our simple program, but cannot be solved in an automated way.
1 John McCarthy, the founder of logical knowledge representation and commonsense

reasoning, showed in several occasions an explicit disapproval of modal logics. See
for instance his position paper with the self-explanatory title “Modality, si! Modal
logic, no!” [4].

2 Generally speaking, a disjunction of the form ϕ ∨ not ϕ in ASP is not a tautology.
When included in a rule head it is usually written as { ϕ } and acts as a non-
deterministic choice possibly allowing the derivation of ϕ.
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In principle, one may think that this kind of problems dealing with infi-
nite time are typically best suited for modal temporal logics, whose expressive
power, computation methods (usually decidable) and associated complexity have
been extensively well-studied. Unfortunately, as happens with SAT in the non-
temporal case, temporal logics are not designed for Knowledge Representation
(KR). For instance, the best known temporal logics are monotonic, so that the
frame and ramification problems constantly manifest in their applications, even
for very simple scenarios.

In this work, we make a general overview on Temporal Equilibrium Logic [14],
to the best of our knowledge, the first non-monotonic approach that fully covers
the syntax of some standard modal temporal logic, providing a logic program-
ming semantics that properly extends stable models [15], the foundational basis
of ASP. TEL shares the syntax of Linear-time Temporal Logic (LTL) [16,17]
which is perhaps the simplest, most used and best known temporal logic in The-
oretical Computer Science. The main difference of TEL with respect to LTL
lies in its non-monotonic entailment relation (obtained by a models selection
criterion) and in its semantic interpretation of implication and negation, closer
to intuitionistic logic. These two properties are actually inherited from the fact
that TEL is a temporal extension of Equilibrium Logic [18], a non-monotonic
formalism that generalises stable models to the case of arbitrary propositional
formulas. This semantic choice is a valuable feature because, on the one hand,
it provides a powerful connection to a successful practical KR paradigm like
ASP, and on the other hand, unlike the original definition of stable models, the
semantics of Equilibrium Logic does not depend on syntactic transformations
but, on the contrary, is just a simple minimisation criterion for an intermediate
logic (the logic of Here-and-There [19]). This purely logical definition provides
an easier and more homogeneous way to extend the formalism, using standard
techniques from other hybrid logical approaches.

As an example, the ASP program (1)–(4) would be represented in TEL as:

p ∨ q (5)
�(p ∧ ¬© q → ©p) (6)
�(q ∧ ¬© p → ©q) (7)

�(p ∨ ¬p) (8)

where, as usual in LTL, ‘�’ stands for “always” and ‘©’ stands for “next.”
Checking whether p and q can be eventually false would correspond to look for a
plan satisfying the constraint ¬♦(¬p ∧ ¬q) → ⊥ with ‘♦’ meaning “eventually.”
Similarly, to test whether p remains true after becoming true we would add the
constraint �(p → �p) → ⊥ and check that, indeed, no temporal stable model
exists.

The rest of the paper is organised as follows. In Sect. 2 we recall the basic
definitions of TEL and explain their effects on some simple examples. In Sect. 3
we summarize some fundamental properties whereas in Sect. 4 we explain some
aspects related to computation. Finally, Sect. 5 concludes the paper and explains
some open topics. For a more detailed survey, see [20].
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2 Syntax and Semantics

The syntax is defined as in propositional LTL. A temporal formula ϕ can be
expressed following the grammar shown below:

ϕ :: = ⊥ | p | α ∧ β | α ∨ β | α → β | ©α | α U β | α R β

where p is an atom of some finite signature At, and α and β are temporal
formulas in their turn. The formula α U β stands for “α until β” whereas α R β
is read as “α release β” and is the dual of “until.” Derived operators such as
� (“always”) and ♦ (“at some future time”) are defined as �ϕ

def= ⊥ R ϕ

and ♦ϕ
def= 	 U ϕ. Other usual propositional operators are defined as follows:

¬ϕ
def= ϕ → ⊥, 	 def= ¬⊥ and ϕ ↔ ψ

def= (ϕ → ψ) ∧ (ψ → ϕ).
Given a finite propositional signature At, an LTL-interpretation T is an

infinite sequence of sets of atoms, T0, T1, . . . with Ti ⊆ At for all i ≥ 0. Given
two LTL-interpretations H,T we define H ≤ T as: Hi ⊆ Ti for all i ≥ 0.

The next step is defining a semantics for the temporal extension of the inter-
mediate logic of Here-and-There, we will call Temporal Here-and-There3 (THT).
A THT-interpretation M for At is a pair of LTL-interpretations 〈H,T〉 satisfying
H ≤ T. A THT-interpretation is said to be total when H = T.

Definition 1 (THT satisfaction). Given an interpretation M = 〈H,T〉, we
recursively define when M satisfies a temporal formula ϕ at some state i ∈ N as:

– M, i |= p iff p ∈ Hi with p an atom
– ∧,∨,⊥ as usual
– M, i |= ϕ → ψ iff for all w ∈ {H,T}, 〈w,T〉, i �|= ϕ or 〈w,T〉, i |= ψ
– M, i |= © ϕ iff M, i+1 |= ϕ
– M, i |= ϕ U ψ iff ∃k ≥ i such that M, k |= ψ and ∀j ∈ {i, . . . , k-1},M, j |= ϕ
– M, i |= ϕRψ iff ∀k ≥ i such that M, k �|= ψ then ∃j ∈ {i, . . . , k-1},M, j |= ϕ.

��

We say that 〈H,T〉 is a model of a theory Γ , written 〈H,T〉 |= Γ , iff 〈H,T〉, 0 |=
α for all formulas α ∈ Γ .

Proposition 1 (from [20]). The following properties are satisfied:

(i) 〈T,T〉, i |= ϕ in THT iff T, i |= ϕ in LTL.
(ii) 〈H,T〉, i |= ϕ implies 〈T,T〉, i |= ϕ (that is, T, i |= ϕ).

In other words, (i) means that, when restricting to total interpretations, THT
collapses to LTL, whereas (ii) means that the T component of a THT model is
also an LTL-model.

Definition 2 (Temporal Equilibrium/Stable Model). An interpretation
M is a temporal equilibrium model of a theory Γ if it is a total model of Γ ,
that is, M = 〈T,T〉 |= Γ , and there is no H < T such that 〈H,T〉 |= Γ . An
LTL-interpretation T is a temporal stable model (TS-model) of a theory Γ iff
〈T,T〉 is a temporal equilibrium model of Γ . ��
3 The axiomatisation of THT is currently under study [21].
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By Proposition 1 (i) it is easy to see that any TS-model of a temporal theory
Γ is also an LTL-model of Γ . As happens in LTL, the set of TS-models of a
theory Γ can be captured by a Büchi automaton [22], a kind of finite automaton
that accepts words of infinite length. In this case, the alphabet of the automaton
would be the set of states (classical propositional interpretations) and the accep-
tance condition is that a word (a sequence of states) is accepted iff it corresponds
to a run of the automaton that visits some acceptance state an infinite number of
times. As an example, Fig. 1 shows the TS-models for the theory (5)–(8) which
coincide with sequences of states of the forms {q}∗{p}ω or {q}ω. Notice how p
and q are never true simultaneously, whereas once p becomes true, it remains
true forever.

S0start

S1

S2 {p}

{p}

{q}

{p}

{q}

Fig. 1. Temporal stable models of theory (5)–(8).

Let us discuss next some simpler examples of the behaviour of this semantics.
As a first example, consider the formula

�(¬p → ©p) (9)

Its intuitive meaning corresponds to the logic program consisting of rules of the
form: p(s(X)) ← not p(X) where time has been reified as an extra parameter
X = 0, s(0), s(s(0)), . . . . Notice that the interpretation of ¬ is that of default
negation not in logic programming. In this way, (9) is saying that, at any
situation, if there is no evidence on p, then p will become true in the next state.
In the initial state, we have no evidence on p, so this will imply ©p. As a result
© © p will have no applicable rule and thus will be false by default, and so on.
It is easy to see that the unique temporal stable model of (9) is captured by the
formula ¬p ∧ �(¬p ↔ ©p) and is shown in the automaton of Fig. 2(a).

As a second example, take the formula ♦p. This formula informally corre-
sponds to an infinite disjunction p ∨ ©p ∨ © © p ∨ . . . . Again, as happens in
disjunctive logic programming, in TEL we have a truth minimality condition
that will make true the formula with as little information as possible. As a
result, it is easy to see that the temporal stable models of ♦p are captured by
the formula ¬p U(p ∧ ©�¬p) whose models are those where p holds true at
exactly one position – see automaton in Fig. 2(b).
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S0start S1

{p}

∅

(a) TS-models of (9)

S0start S1
{p}

∅ ∅

(b) TS-models of ♦p

Fig. 2. A pair of Büchi automata showing TS-models.

It is worth noting that an LTL satisfiable formula may have no temporal
stable model. As a simple example (well-known from non-temporal ASP) the
logic program rule ¬p → p, whose only (classical) model is {p}, has no stable
models. When dealing with logic programs, it is well-known that non-existence of
stable models is always due to a kind of cyclic dependence on default negation like
this. In the temporal case, however, non-existence of temporal stable models may
also be due to a lack of a finite justification for satisfying the criterion of minimal
knowledge. As an example, consider the formula α

def= �(¬©p → p)∧�(©p → p).
This formula has no temporal equilibrium models. To see why, note that α is
LTL-equivalent (and THT-equivalent) to �(¬©p∨©p → p) that, in its turn, is
LTL-equivalent to �p. Thus, the only LTL-model T of α has the form Ti = {p}
for any i ≥ 0. However, it is easy to see that the interpretation 〈H,T〉 with
Hi = ∅ for all i ≥ 0 is also a THT model, whereas H < T.

Another example of TEL-unsatisfiable formula is �♦p, typically used in LTL
to assert that property p occurs infinitely often. This formula has no temporal
stable models: all models must contain infinite occurrences of p and there is no
way to establish a minimal H among them. Thus, formula �♦p is LTL satisfiable
but it has no temporal stable model. This example does not mean a lack of
expressiveness4 of TEL: we can still check or force atoms to occur infinitely
often by including formulas like �♦p in the antecedent of implications or in the
scope of negation. As an example, take the formula:

¬�♦q → ♦(q U p) (10)

An informal reading of (10) is: if we cannot prove that q occurs infinitely often
(¬�♦q) then make q until p (q U p) at some arbitrary future point. As we
minimise truth, we may then assume q false at all states, and then ♦(q U p)
collapses to ♦(⊥ U p) = ♦(♦p) = ♦p. As a result, its TS-models also correspond
to the Büchi automaton depicted in Fig. 2(b) we obtained for ♦p.

3 Fundamental Properties

We first begin providing some translation results relating TEL and LTL.

4 In fact, Theorem 1 in the next section shows that LTL can be encoded into TEL by
adding a simple axiom schema.
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Proposition 2 (from [23]). The LTL models of a formula ϕ for signature At
coincide with (the THT) and the TEL models of the theory ϕ plus an axiom
�(p ∨ ¬p) for each atom p in the signature At. ��

The translation from THT to LTL is not so straightforward. It requires
adding an auxiliary atom p′ by each atom p in the signature, so that the for-
mer captures the truth at component H in a THT model 〈H,T〉 while the
latter represents truth at T. Given a propositional signature At, let us denote
At∗ = At ∪ {p′ | p ∈ At}. For any temporal formula ϕ we define its translation
ϕ∗ as follows:

1. ⊥∗ def= ⊥
2. p∗ def= p′ for any p ∈ Σ

3. (⊗ϕ)∗ def= ⊗ϕ∗, for any unary operator ⊗ ∈ {�,♦,©}
4. (ϕ ⊕ ψ)∗ def= ϕ∗ ⊕ ψ∗ for any binary operator ⊕ ∈ {∧,∨,U ,R}
5. (ϕ → ψ)∗ def= (ϕ → ψ) ∧ (ϕ∗ → ψ∗)

We associate to any THT interpretation M = 〈H,T〉 the LTL interpretation
Mt = I in LTL defined as the sequence of sets of atoms Ii = {p′ | p ∈ Hi} ∪ Ti,
for any i ≥ 0.

Theorem 1 (from [23]). Let ϕ′ be the formula ϕ∗ ∧
∧

p∈At �(p′ → p). Then
the set of LTL models for the formula ϕ′ corresponds to the set of THT models
for the temporal formula ϕ. ��

Theories like (5)–(8) have a strong resemblance to logic programs. For
instance, a rule preceded by � like (9) can be seen as an infinite set of rules
of the form ¬ ©i p → ©i+1p where we could understand expressions like ‘©ip’
as an infinite propositional signature. In [24] it was recently proved that, in
fact, we can use this understanding of modal operators as formulas in Infinitary
Equilibrium Logic (see [25] for further detail) in the general case.

Definition 3. The translation of ϕ into infinitary HT (HT∞) up to level k ≥ 0,
written 〈ϕ〉k, is recursively defined as follows:
〈⊥〉k

def
= ∅∨

〈p〉k
def
= ©k p, with p ∈ At.

〈©ϕ〉k
def
= 〈ϕ〉k+1

〈ϕ ∧ ψ〉k
def
= {〈ϕ〉k, 〈ψ〉k}∧

〈ϕ ∨ ψ〉k
def
= {〈ϕ〉k, 〈ψ〉k}∨

〈ϕ → ψ〉k
def
= 〈ϕ〉k → 〈ψ〉k

〈ϕ U ψ〉k
def
= {{〈ψ〉i, 〈ϕ〉j | k ≤ j < i}∧ | k ≤ i}∨

〈ϕ R ψ〉k
def
= {{〈ψ〉i, 〈ϕ〉j | k ≤ j < i}∨ | k ≤ i}∧

It is easy to see that the derived operators � and ♦ are then translated as
follows: 〈♦ϕ〉k = {〈ϕ〉i | k ≤ i}∨ and 〈�ϕ〉k = {〈ϕ〉i | k ≤ i}∧. For instance, the
translations for our examples 〈♦p〉0 and 〈(10)〉0 respectively correspond to:

{¬ ©i p → ©i+1p | i ≥ 0}∧

{{{©kq | j ≤ k}∨ | i ≤ j}∧ → {{©kp, ©hq | j ≤ h < k}∧ | i ≤ j ≤ k}∨ | i ≥ 0}∧
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Theorem 2 (from [24]). Let ϕ be a temporal formula, M = 〈H,T〉 a THT
interpretation and M∞ = 〈H∞, T∞〉 its corresponding HT interpretation where
©ip are considered as propositional atoms. For all i ∈ N, it holds that:

(i) M, i |= ϕ if and only if M∞ |= 〈ϕ〉i.
(ii) M is a temporal equilibrium model of ϕ if and only if M∞ is an (infinitary)

equilibrium model of 〈ϕ〉0. ��

In [24] it was also proved that Kamp’s translation from LTL to First Order
Logic is sound for translating TEL into Quantified Equilibrium Logic [26] too.
This means that there always exists a way of resorting to first-order ASP and
reifying time as an argument, as we did before with p(i) or p(i + 1), so that
modal operators are replaced by standard quantifiers.

Definition 4 (Kamp’s translation). Kamp’s translation for a temporal for-
mula ϕ and a timepoint t ∈ N, denoted by [ϕ]t, is recursively defined as follows:

[⊥]t
def= ⊥

[p]t
def= p(t), with p ∈ At.

[¬α]t
def= ¬[α]t

[α ∧ β]t
def= [α]t ∧ [β]t

[α ∨ β]t
def= [α]t ∨ [β]t

[α → β]t
def= [α]t → [β]t

[©α]t
def= [α]t+1

[α U β]t
def= ∃x ≥ t. ([β]x ∧ ∀y ∈ [t, x). [α]y)

[α R β]t
def= ∀x ≥ t. ([β]x ∨ ∃y ∈ [t, x). [α]y)

where [α]t+1 is an abbreviation of ∃y ≥ t. ¬∃z ∈ [t, y). (t < z ∧ [α]y) . ��

Note how, per each atom p ∈ At in the temporal formula ϕ, we get a monadic
predicate p(x) in the translation. The effect of this translation on the derived
operators ♦ and � yields the quite natural expressions [�α]t ≡ ∀x ≥ t. [α]t and
[♦α]t ≡ ∃x ≥ t. [α]t. For instance, the translations of our running examples (9)
and (10) for t = 0 respectively correspond to:

∀x ≥ 0. (¬p(x) → p(x + 1)) (11)

∀x ≥ 0.

(

∀y ≥ x. ∃z ≥ y. q(z) → ∃y ≥ x. ∃z ≥ y.
(
p(z) ∧ ∀t ≥ y. zq(t)

)
)

(12)

Theorem 3 (from [24]). Let ϕ be a THT formula built on a set of atoms At,
M = 〈H,T〉 a THT-interpretation on At and M = 〈H, T 〉 its corresponding
Quantified HT-interpretation. It holds that M, i |= ϕ in THT iff M |= [ϕ]i in
Quantified Here-and-There. Moreover, T is a TS-model of ϕ iff T is a stable
model of [ϕ]0 in Quantified Equilibrium Logic. ��

Another group of properties is related to comparison among temporal theo-
ries and subclasses of theories. For instance, in NMR, the regular equivalence,
understood as a mere coincidence of selected models, is too weak to consider that
one theory Γ1 can be safely replaced by a second one Γ2 since the addition of a
context Γ may make them behave in a different way due to non-monotonicity.
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Formally, we say that Γ1 and Γ2 are strongly equivalent when, for any arbi-
trary theory Γ , both Γ1 ∪ Γ and Γ2 ∪ Γ have the same selected models (in
this case, stable models). [27] proved that checking equivalence in the logic of
Here-and-There is a necessary and sufficient condition for strong equivalence in
Equilibrium Logic, that is, Γ1 and Γ2 are strongly equivalent iff Γ1 ≡HT Γ2.
It must be noticed that one direction of this result, the sufficient condition, is
actually trivial. As HT is monotonic, Γ1 ≡HT Γ2 implies Γ1 ∪ Γ ≡HT Γ2 ∪ Γ
and so, their selected models will also coincide. The real significant result is the
opposite direction, namely, that HT-equivalence is also a necessary condition for
strong equivalence, as it shows that HT is strong enough as a monotonic basis
for Equilibrium Logic. In [28] it was shown that something similar happens in
the temporal case, namely:

Theorem 4 (from [28]). Two temporal formulas α and β are strongly equiva-
lent in TEL iff they are THT-equivalent. ��

Another interesting result related to equivalence is the existence of normal
forms for THT and TEL. In the case of Equilibrium Logic, it has been already
proved [29] that any arbitrary propositional theory is strongly equivalent to a
logic program (allowing disjunction and negation in the head). Similarly, in the
case of (monotonic) LTL, an implicational clause-like normal form introduced
in [30] was used for designing a temporal resolution method.

Following [31], TEL can be similarly reduced (under strong equivalence) to
a normal form, called temporal logic programs (TLP), consisting of a set of
implications (embraced by a necessity operator) quite close to logic program
rules. The obtained normal form considerably reduces the possible uses of modal
operators and, as we will see later, has became useful for a practical computation
of TEL models. The definitions are as follows. Given a signature At, we define
a temporal literal as any expression in the set {p,©p,¬p,¬ © p | p ∈ At}.

Definition 5 (Temporal rule). A temporal rule is either:

1. an initial rule of the form B1 ∧ · · · ∧ Bn → C1 ∨ · · · ∨ Cm where all the Bi

and Cj are temporal literals, n ≥ 0 and m ≥ 0.
2. a dynamic rule of the form �r, where r is an initial rule.
3. a fulfillment rule like �(�p → q) or like �(p → ♦q) with p, q atoms. ��
In the three cases, we respectively call rule body and rule head to the antecedent
and consequent of the (unique) rule implication. In initial (resp. dynamic) rules,
we may have an empty head m = 0 corresponding to ⊥ – if so, we talk about an
initial (resp. dynamic) constraint. A temporal logic program5 (TLP for short) is
a finite set of temporal rules. The reduction into TLP normal form introduces
an auxiliary atom per each subformula in the original theory and applies the
inductive definitions of temporal operators used for LTL in [30]. We will not
enter into further details (see [31]) but the obtained reduction into TLP is mod-
ular, polynomial and strongly faithful (that is, it preserves strong equivalence,
if auxiliary atoms are ignored).
5 In fact, as shown in [31], this normal form can be even more restrictive: initial rules

can be replaced by atoms, and we can avoid the use of literals of the form ¬©p.
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4 Computation

Computation of TS-models is a complex task. THT-satisfiability has been classi-
fied [23] as Pspace-complete, that is, the same complexity as LTL-satisfiability,
whereas TEL-satisfiability rises to ExpSpace-completeness, as recently proved
in [32]. In this way, we face a similar situation as in the non-temporal case
where HT-satisfiability is NP-complete like SAT, whereas existence of equilib-
rium model (for arbitrary theories) is ΣP

2 -complete (like disjunctive ASP).
There exists a pair of tools, STeLP [33] and ABSTEM [28], that allow computing

temporal stable models (represented as Büchi automata). These tools can be used
to check verification properties that are usual in LTL, like the typical safety,
liveness and fairness conditions, but in the context of temporal ASP. Moreover,
they can also be applied for planning problems that involve an indeterminate or
even infinite number of steps, such as the non-existence of a plan.

The first tool, STeLP, accepts a strict subset of the TLP normal form called
splittable temporal formulas (STF) which will be of one of the following types:

B ∧ N → H (13)
B ∧ ©B′ ∧ N ∧ ©N ′ → ©H ′ (14)

�(B ∧ ©B′ ∧ N ∧ ©N ′ → ©H ′) (15)

where B and B′ are conjunctions of atomic formulas, N and N ′ are conjunctions
of ¬p, being p an atomic formula and H and H ′ are disjunctions of atomic
formulas.

The name splittable refers to the fact that these programs can be splitted
using [34] thanks to the property that rule heads never refer to a time point
previous to those referred in the body. As we can see above, the main property
of a splittable temporal rule is that, informally speaking, past never depends on
the future, that is, we never get references to © in the rule bodies unless all
atoms in the head are also in the scope of ©. As shown in [35], when the input
temporal program is splittable, it is possible to extend the technique of loop
formulas [36] to temporal theories so that it is always possible to capture the
TS-models of a theory Γ as the LTL-models of another theory Γ ′ obtained from
Γ together with its loop formulas. Although splittable theories do not cover the
full expressiveness of TEL, most action domains represented in ASP are indeed
splittable. To cover an ASP-like syntax, STeLP further allows the use of variables:
a preliminary grounding method was presented in [37], proving its correctness.

The tool ABSTEM, on the contrary, accepts any arbitrary temporal theory as
an input, although it does not accept variables. It relies on an automata-based
transformation described in [23] and it not only allows computing the TS-models
of a temporal theory, but also accepts pairs of theories to decide different types
of equivalence: LTL-equivalence, TEL-equivalence (i.e. coincidence in the set
of TS-models) and strong equivalence (i.e., THT-equivalence). Moreover, when
strong equivalence fails, ABSTEM obtains a context, that is, an additional formula
that added to the compared theories makes them behave differently.
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5 Conclusions and Future Work

In this survey we have summarised the basic results on Temporal Equilibrium
Logic obtained so far, showing that it can be used as a powerful tool for com-
bining temporal reasoning tasks with Answer Set Programming. Still, there are
many open topics that deserve to be studied. For instance, in the theoretical
setting, we still miss a complete axiomatisation of THT. Another open ques-
tion is that, although we know that Kamp’s translation from LTL into First
Order Logic also works for translating TEL into Quantified Equilibrium Logic,
we ignore whether the other direction of Kamp’s theorem also holds in this case.
Namely, we ignore whether any theory in Monadic Quantified Equilibrium Logic
for a linear order relation < can be represented in TEL. A possibly related ques-
tion is whether the set of TS-models of a temporal theory can be captured as
the set of LTL-models of another theory. This holds in the case of splittable
temporal logic programs, but is open in the general case6.

An interesting research line is the extension of TEL with past operators, since
they seem more natural for rule bodies that describe the transitions of a dynamic
system. Besides, following similar steps as those done in TEL, other hybrid
approaches can be explored. For instance, [39] has considered the combination
of Dynamic LTL with Equilibrium Logic. Similarly, other temporal approaches
can be treated in an analogous way, such as CTL, CTL∗, Dynamic Logic or
μ-calculus. Other open topics are related to potential applications including
translation of different action languages, policy languages with preferences [40]
or planning with (temporal) control rules.
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1 Introduction

Algorithmic decision theory can be roughly defined as the design and study
of languages and methods for expressing and solving various classes of decision
problems, including: decision under uncertainty, sequential decision making, mul-
ticriteria decision making, collective decision making, and strategic interactions
in distributed decision making. A decision problem is specified by two main
components: the preferences of the agent(s); and the beliefs the agent(s) has
(have) about the initial state of the world and its evolution, and possibly about
the beliefs and preferences of other agents. Computational tasks involve, among
others: the construction and refinement of the problem, through learning and
elicitation tasks; the search for a centralized decision (for an agent or a group
of agents); the impact of selfish behaviour in decentralized, multi-agent decision
contexts.

Logic in algorithmic decision theory can be useful as a declarative represen-
tation language for the various components of the problems, and as a generic
problem solving tool. The combination of both allow for representing and solving
complex decision making problems. Below I point to some research issues at the
meeting point of logic and algorithmic decision theory. The list is certainly not
exhaustive, and it is biased towards my own work.

2 Representing and Reasoning with Preferences

2.1 Compact Representation

Domains of solutions in algorithmic decision theory often have a combinatorial
structure of the form A = D1 × . . .×Dp, where each Di is a finite set of values
associated with a variable Xi. A can for instance be the set of all alternatives to
choose from in many voting contexts1 such as multiple referenda or committee
elections,

Expressing preferences on such domains by listing or ranking explicitly all
alternatives or solutions is practically infeasible as soon as the number of vari-
ables is more than a few units, because it puts too much communication burden

1 See [1] for an survey of voting in combinatorial domains.
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on the agents. The AI community has produced a considerable amount of work
on compact representation languages for preferences, aiming at expressing and
processing preferences over large combinatorial domains using as few computa-
tional resources (space and time) as possible. Many of these languages are based
on logic (see [2] for a survey). The most elementary language consists in speci-
fying dichotomous preferences via propositional formulae; extensions to nondi-
chotomous preferences consist in associating priorities or weights with formu-
las, using distances between interpretations, or expressing preferences between
propositional formulas using a ceteris paribus completion principle. Logic pro-
gramming languages, especially answer set programming, are also very useful:
see [3–5] for surveys and [6] for a very recent development.

2.2 Preference Logics

While compact preference representation languages primarily aim at express-
ing succinctly preferences over combinatorial domains of alternatives, preference
logics aim at reasoning about preferences. A preference logic consists of a seman-
tics and/or a formal system for interpreting relative preferences between logical
formulas, or monadic, absolute preferences over formulas. The starting point of
preference logics is that individuals often express relative or absolute preferences
that refer not to isolated alternatives, but to logical formulas representing sets of
alternatives. The central component of a preference logic is the lifting operator
inducing preferences between formulas from preferences over single alternatives.
At least two families of preference logics have been developed:

Logics of ceteris paribus Preferences. When an agent expresses a preference
statement such as “I prefer to spend my summer holiday in Kentucky than in
California”, they surely do not mean that they prefer any summer holiday in
Kentucky to any summer holiday in California; the preference statement does
not preclude that they would prefer a sunny holiday in California to a rainy one
in Kentucky. The principle at work when interpreting such preference statements
is that the alternatives should be compared all other things being equal (ceteris
paribus), or more generally, all irrelevant properties being equal. A few milestones
in ceteris paribus preference logics are [7–10]. Note that [10] also compares and
attempts to reunify compact representation languages and preference logics.

Defeasible Preferences and Conditional Preference Logics. Consider the
following statements: (1) I’d like to spend my weekend in Lexington; (2) if there
is a storm warning on Lexington next weekend, then I prefer not to go. Statement
(1) corresponds to a defeasible, default preference: it applies not only if we know
that there is no risk of storm but more generally if there is no specific information
about the weather forecast. This corresponds to assuming that the state of the
world is normal (no storm warning); upon receiving the storm forecast, (1) is
overridden by the more specific statement (2). Defeasible preferences fit the
intuition as well as the natural language expression of preferences, and allow for
their succinct and modular representation: succinct because they avoid to specify
explicitly all the exceptional conditions in which a preference statement does not
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apply; modular because a set of such preference statements can be completed
at any time, without generating an inconsistency — coming back to the latter
example, if to (1) and (2) we later add (3) if there is an exciting joint conference
on algorithmic decision theory and logic programming in Lexington then I want
to be there (independently of the weather), it will have higher priority than (2)
in the ‘doubly exceptional’ circumstance “stormy weather and ADT-LPNMR”.
A neat way of formalizing these defeasible, conditional preferences consists in
using conditional logics; some key papers on conditional preferences are [11–13].

3 Representing and Reasoning with Beliefs

Logic (and in particular, doxastic and epistemic logics) allow for distinguishing
between objective facts and subjective beliefs. As there are numerous classes of
problems in algorithmic decision theory where the decision maker(s) do not have
a complete knowledge of the situation, logic has definitely a role to play here.

3.1 The External Perspective: Incomplete Knowledge of Agents’
Preferences

Let us consider the point of view of an external agent that has to make decisions
or to make predictions based on an incomplete, partial view of the agents’ pref-
erences: for instance, a recommender system in decision aid, a central authority
in group decision making, or the modeller in game theory.

For the sake of brevity, let us focus on social choice. Often, the central author-
ity in charge of computing the outcome (the winner of an election, an allocation
of resources, etc.) has an incomplete knowledge of the agents’ preferences, per-
haps because the elicitation process was not conducted until its end, or because
the voters could not report complete preferences. The central authority sees a
set of possible worlds, each corresponding to a complete preference profile; an
alternative is a possible (resp. necessary) winner if it is a winner in some (resp.
all) possible worlds(s) [14].2 Similar notions have been studied in fair division.
It is clear that these notions originate in epistemic logic.

3.2 The Internal Perspective: Beliefs and Strategic Behaviour

A crucial issue in distributed multiagent systems is the impact of strategic behav-
iour on the ‘social quality’ of the reached state. Focusing on social choice, a
tremendously high number of papers examine the conditions under which a
mechanism that takes as input the agents’ declared preferences can be manipu-
lated by them, the computational complexity of finding a manipulation, and the
impact of manipulation on social welfare. The assumption typically made is that
agents have complete knowledge of the others’ preferences. What if they have
complex mutual beliefs, weaker than common knowledge, but stronger than zero

2 See [15] for a review of existing work along this line.
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knowledge? First steps towards handling such mutual beliefs in social choice have
been made [16–19], but they remain preliminary. On the other hand, on reason-
ing about mutual beliefs in game theory there is an abundant literature, and
even a series of workshops (Logical Foundations of Decision and Game Theory).

4 Logic for Problem Solving

4.1 Logical Encoding and Resolution of Decision Problems

Probably the widest use of logic in decision making contexts takes place in
sequential decision making settings, or more generally in contexts where one has
to search in a combinatorial space of solutions. The paradigmatic example is
planning as satisfiability [20]: the planning problem (initial state, action effects,
goal, horizon) is translated into a set of propositional clauses, which is fed to a
SAT solver; the model found by the solver (if any) is translated back to a plan.
The framework has been extended to planning with nondeterministic actions.3

Answer set programming is also a natural and efficient tool for expressing and
solving planning problems [22,23] and for multicriteria optimisation [24].

4.2 Automated Theorem Proving and Discovery

Open research questions can be addressed using computer-aided theorem proving
techniques. The role of computer science here is not to help solving a decision
making problem, but to (re)prove theorems and/or discover new ones. Auto-
mated theorem proving and discovery is especially helpful in branches of decision
making where combinatorial structures prevail, such as decision theory over dis-
crete domains, social choice theory, cooperative or noncooperative game theory.
Some examples are an automated proof of Arrow’s theorem [25,26], impossibility
theorems about pure Nash equilibria in two-person games [27], about ranking
sets of alternatives [28], or about strategyproofness and participation in voting
[29,30]. Also, the modelling of social choice mechanisms in modal logic [31,32]
is related to this research line.
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Abstract. Inductive Logic Programming (ILP) and Relational Data
Mining (RDM) address the task of inducing models or patterns from
multi-relational data. One of the established approaches to RDM is
propositionalization, characterized by transforming a relational data-
base into a single-table representation. After introducing ILP and
RDM, the paper provides an overview of propositionalization algorithms,
which have been made publicly available through the web-based Clowd-
Flows data mining platform. The paper concludes by presenting recent
advances in Semantic Data Mining, characterized by exploiting relational
background knowledge in the form of domain ontologies in the process
of model and pattern construction.

Keywords: Inductive Logic Programming · Relational Data Mining ·
Semantic Data Mining · Propositionalization

1 Introduction

Standard machine learning and data mining algorithms induce hypotheses in the
form of models or propositional patterns learned from a given data table, where
one example corresponds to a single row in the table. Most types of propo-
sitional models and patterns have corresponding relational counterparts, such
as relational classification rules, relational regression trees, relational associa-
tion rules. Inductive Logic Programming (ILP) [23] and Relational Data Mining
(RDM) [4,6] algorithms can be used to induce such relational models and pat-
terns from multi-relational data, e.g., data stored in a relational database.

For relational databases in which data instances are clearly identifiable (the
so-called individual-centered representation [7]), various techniques can be used
for transforming a relational database into a propositional single-table represen-
tation [14]. After performing such a transformation [18], usually named proposi-
tionalization [12], standard propositional learners can be used, including decision
tree and classification rule learners.

c© Springer International Publishing Switzerland 2015
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The first part of the paper presents a survey of the state-of-the-art propo-
sitionalization techniques. Following an introduction to the propositionalization
problem and a description of a number of propositionalization methods, we trans-
late and unify the terminology, using a language that should be familiar to an
analyst working with relational databases. Furthermore, we provide an empir-
ical comparison of freely available propositionalization algorithms. Finally, we
present our approach to making the use of propositionalization algorithms easier
for non-experts, as well as making the experiments shareable and repeatable. The
freely available state-of-the-art methods discussed in this paper were wrapped as
reusable components in the web-based data mining platform ClowdFlows [13],
together with the utilities for working with a relational database management
system (RDBMS).

The second part of the paper addresses a more recent ILP setting, named
semantic data mining (SDM), characterized by exploiting relational background
knowledge in the form of domain ontologies in the process of model and pattern
construction. The development of SDM techniques is motivated by the availabil-
ity of large amounts of semantically annotated data in all domains of science,
and biology in particular, posing requirements for new data mining approaches
which need to deal with increased data complexity, the relational character of
semantic representations, as well as the reasoning capacities of the underlying
ontologies. The paper briefly introduces the task of semantic data mining, fol-
lowed by a short overview of the state-of-the-art approaches. Finally, the paper
presents the Hedwig semantic subgroup discovery algorithm [1,33] developed by
the authors of this paper.

The paper is structured as follows. Section 2 gives an introduction to the
propositionalization task, describes the state-of-the-art methods, and presents a
number of reusable propositionalization workflows implemented in the Clowd-
Flows data mining platform. In Sect. 3 we introduce the SDM task, a quick
state-of-the-art overview, and a recent semantic subgroup discovery approach
Hedwig. Section 4 concludes the paper with a brief summary.

2 Propositionalization

Propositional representations (a single table format) impose the constraint that
each training example is represented as a single fixed-length tuple. Due to the
nature of some relational problems, there exists no elegant propositional encod-
ing; for example, a citation network in general cannot be represented in a proposi-
tional format without loss of information, since each author can have any number
of co-authors and papers. The problem is naturally represented using multiple
relations, e.g., including the author and the paper relations.

Problems characterized by multiple relations can be tackled in two different
ways: (1) by using a relational learner such as Progol [22] or Aleph [30], which
can build a model or induce a set of patterns directly, or (2) by constructing
complex relational features used to transform the relational representation into
a propositional format and then applying a propositional learner on the trans-
formed single-table representation. In this paper we focus on the latter approach,
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called propositionalization. Propositionalization is a form of constructive induc-
tion, since it involves changing the representation for learning. As we noted
before, propositionalization cannot always be done without loss of information,
but it can be a powerful method when a suitable relational learner is not avail-
able, when a non-conventional ILP task needs to be performed on data from
a given relational database (e.g., clustering), and when the problem at hand is
individual-centered [7]. Such problems have a clear notion of an individual and
the learning occurs only at the level of (sets of) individual instances rather than
the (network of) relationships between the instances. As an example consider
the problem of classifying authors into research fields given a citation network;
in this case the author is an individual and learning occurs at the author level,
i.e. assigning class labels to authors, rather than classifying the authors in terms
of their citations in the citation network of other authors.

Table 1. A sample propositional
representation of authors table.

Author q1 q2 . . . qm Class
A1 1 1 . . . 1 C1

A2 0 1 . . . 0 C1

A3 1 0 . . . 0 C2

. . . . . . . . . . . . . . . ...
An 0 1 0 0 C1

To illustrate the propositionalization sce-
nario, consider a simplified multi-relational
problem, where the data to be mined is a data-
base of authors and their papers, with the task
of assigning a research field to unseen authors.
In essence, a complete propositional represen-
tation of the problem (shown in Table 1) would
be a set of queries q ∈ Q (complex relational
features) that return value true or false for a
given author. Each query describes a property of an author. The property can
involve a rather complex query, involving multiple relations as long as that query
returns either true or false. For example, a query could be “does author X have
a paper published at the ECML/PKDD conference?”.

While this transformation could be done by hand by a data miner, we are
only interested in automated propositionalization methods. Furthermore, the
transformation into a propositional representation can be done with essentially
any ML or DM task in mind: classification, association discovery, clustering, etc.

2.1 Relational Data Mining Task Formulation

A relational data mining task can be formally defined as follows.

Given:

– evidence E (examples, given extensionally),
– an initial theory B (background knowledge, given extensionally or as sets of

clauses over the set of background relations).

Find:

– a theory H (hypothesis, in the form of a set of logical clauses) that together
with B explains the target properties of E.

where the target property can be a selected class label (the target class) or some
other property of interest.
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This is a typical ILP definition of the problem, given that numerous existing
approaches to relational data mining and propositionalization were developed
within the field of ILP. However, since real-world data is in most cases stored in
some Relational Database Management System (RDBMS), we try to unify the
terminology used across various approaches to be as familiar as possible also to
researchers working with databases—which are likely the ones most interested in
propositionalization techniques. The definition of a relational data mining task
using a more conventional database terminology is given below.

Given:

– target table t, where each row is one example,
– related tables T , connected to t via foreign keys.

Find:

– a query Q (a set of sub-queries) that together with T describes the target
properties of t.

In the rest of this paper we will focus on the classification (and subgroup dis-
covery) tasks with a clear notion of the target property of interest (a selected class
label), since we can effectively compare different approaches via the performance
of the resulting classifier. Using propositionalization to tackle classification tasks
must involve two independent steps: (1) preparing a single-table representation
of the input database, and (2) applying a propositional learner on that table.
In contrast, learners that directly use the multi-relational representations inter-
twine feature construction and model construction. In propositionalization, these
two steps are separated. The workload of finding good features (which have large
coverage of instances, or which best separate between different classes) is done by
the propositionalization algorithm, while the work of combining these features
to produce a good classification model is offloaded to the propositional learner.

The actual art of propositionalization is to generate a number of good, poten-
tially complex features (binary queries), to be evaluated as true or false for each
individual, which the learner will use to construct a classifier. In the model
construction phase, the learner exploits these queries about each individual as
features used to construct the model. For example, if a decision tree model is
constructed, each node in the tree will contain a single query, with the two values
(true and false) on the outgoing branches of this node. Note that propositional-
ization is not limited only to binary features—many approaches (e.g., [15] and
[11]) also use aggregation functions to calculate feature values.

To classify unseen individuals, the classifier must then evaluate the queries
that are found in the decision tree nodes on the unseen example and follow the
branches according to their answers to arrive at a classification in the leave of
the decision tree.

2.2 Overview of Propositionalization Algorithms

The best known propositionalization algorithms are first briefly described, fol-
lowed by the experimental evaluation of the ones which are publicly available.
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LINUS [18] is one of the first propositionalization approaches. It generates
features that do not allow recursion and newly introduced variables. The
second limitation is more serious and means that the queries cannot contain
joins. An improvement of LINUS is SINUS [19] which incorporates more
advanced feature construction techniques inspired by feature construction
implemented in 1BC [7].

Aleph [30] is an ILP toolkit with many modes of functionality: learning the-
ories, feature construction, incremental learning, etc. In this paper we are
interested in its feature construction facility which can be used as a tool for
propositionalization. Aleph uses mode declarations to define the syntactic
bias. Input relations are defined as Prolog clauses: either extensionally or
intensionally.

RSD [36] is a relational subgroup discovery algorithm composed of two main
steps: the propositionalization step and the subgroup discovery step. The
output of the propositionalization step can be used also as input to other
propositional learners. RSD effectively produces an exhaustive list of first-
order features that comply with the user-defined mode constraints, similar
to those of Progol [22] and Aleph [30]. Furthermore, RSD features satisfy the
connectivity requirement, which imposes that no feature can be decomposed
into a conjunction of two or more features. Mode declarations define the
algorithm’s syntactic bias, i.e. the space of possible features.

HiFi [17] is a propositionalization approach that constructs first-order features
with hierarchical structure. Due to this feature property, the algorithm per-
forms the transformation in polynomial time of the maximum feature length.
Furthermore, the resulting features are the smallest in their semantic equiv-
alence class. The algorithm is shown to perform several orders of magnitude
faster than RSD for higher feature lengths.

RelF [16] constructs a set of tree-like relational features by combining smaller
conjunctive blocks. The novelty is that RelF preserves the monotonicity of
feature reducibility and redundancy (instead of the typical monotonicity of
frequency), which allows the algorithm to scale far better than other state-
of-the-art propositionalization algorithms.

RELAGGS [15], which stands for relational aggregation, is a proposition-
alization approach that uses the input relational database schema as a
basis for a declarative bias and it aims to use optimization techniques usu-
ally used in relational databases (e.g., indexes). Furthermore, the approach
employs aggregation functions in order to summarize non-target relations
with respect to the individuals in the target table.

Stochastic propositionalization [12] employs a search strategy similar to
random mutation hill-climbing: the algorithm iterates over generations of
individuals, which are added and removed with a probability proportional
to the fitness of individuals, where the fitness function used is based on the
Minimum Description Length (MDL) principle.

Safarii [11] is a commercial multi-relation data mining tool.1 It offers a unique
pattern language that merges ILP-style structural descriptions as well as

1 http://www.kiminkii.com/safarii.html.

http://www.kiminkii.com/safarii.html
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aggregations. Safarii comes with a tool called ProSafarii, which offers several
pre-processing utilities—including propositionalization via aggregation.

Wordification [26,27] is a propositionalization method inspired by text min-
ing, which can be seen as a transformation of a relational database into a
corpus of text documents. Wordification aims at constructing simple, easy
to understand features, acting as words in the transformed Bag-Of-Words
representation.

Extensive description of the experimental evaluation of the available propo-
sitionalization algorithm is presented in [28]. Fully reproducing the experimental
results is outside the scope of this paper. The evaluation of different proposition-
alization approaches was performed on binary classification tasks using seven
datasets from five different relational domains. The Friedman test [8] using
significance level α = 0.05 and the corresponding Nemenyi post-hoc test [24]
were applied. This evaluation approach was used as an alternative to the t-test,
which is proven to be inappropriate for testing multiple algorithms on multiple
datasets [5]. A birds’s eye view of the results is shown in Fig. 1.

Wordification (1.9)

RelF (2.2)

RSD (2.3)

AlephFeaturize (3.6)

CD = 1.77

4 3 2 1

Measure = CA

Wordification (1.0)

AlephFeaturize (2.9)

RSD (3.0)

RelF (3.1)

CD = 1.77

4 3 2 1

Measure = run-time

Fig. 1. Critical distance diagram for the reported classification accuracy (left; not
enough evidence to prove that any algorithm performs better) and run-time (right;
significant differences for α = 0.05) results. The numbers in parentheses are the average
ranks.

The statistical test was first performed using the J48 decision tree learner
for classification accuracy and run-time. For classification accuracy, there is not
enough evidence to prove that any propositionalization algorithm on average
performs better than the others (Fig. 1 left, for significance level α = 0.05), even
though wordification achieves the best results on five out of seven benchmarks.
We repeated the same statistical analysis for the LibSVM results, where the
conclusion ended up the same. For run-time, however, the results are statistically
significant in favor of wordification; see the critical distance diagram in the right
part of Fig. 1. The diagram tells us that the wordification approach performs
statistically significantly faster than other approaches, under the significance
level α = 0.05. Other approaches fall within the same critical distance and no
statistically significant difference was detected.
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2.3 ILP in the ClowdFlows Platform

The ClowdFlows platform [13] is an open-source, web-based data mining plat-
form that supports the construction and execution of scientific workflows. This
web application can be accessed and controlled from anywhere while the process-
ing is performed in a cloud of computing nodes. A public installation of Clowd-
Flows is accessible at http://clowdflows.org. For a developer, the graphical user
interface supports simple operations that enable workflow construction: adding
workflow components (widgets) on a canvas and creating connections between
the components to form an executable workflow, which can be shared by other
users or developers. Upon registration, the user can access, execute, modify, and
store the modified workflows, enabling their sharing and reuse. On the other
hand, by using anonymous login, the user can execute a predefined workflow,
while any workflow modifications would be lost upon logout.

We have extended ClowdFlows with the implementation of an ILP toolkit,
including the popular ILP system Aleph [30] together with its feature construction
component, as well as RSD [36], RelF [16] and Wordification [26] propositional-
ization engines. Construction of RDM workflows is supported by other special-
ized RDM components (e.g., the MySQL package providing access to a relational
database by connecting to a MySQL database server), other data mining compo-
nents (e.g., the Weka [34] classifiers) and other supporting components (including
cross-validation), accessible from other ClowdFlows modules. Each public work-
flow is assigned a unique URL that can be accessed by any user to either repeat
the experiment, or use the workflow as a template to design another workflow.
Consequently, the incorporated RDM algorithms become handy to use in real-life
data analytics, which may therefore contribute to improved accessibility and pop-
ularity of ILP and RDM.

Figure 2 shows some of the implemented ILP workflows using ILP and Weka
module components. The first workflow assumes that the user uploads the files
required by RSD as Prolog programs. Workflows constructed for the other three
propositionalization approaches Aleph, RelF and Wordification, which are also
made publicly available, assume that the training data is read from a MySQL
database.

In terms of workflows reusability, accessible by a single click on a web page
where a workflow is exposed, the implemented propositionalization toolkit is a
significant step towards making the ILP legacy accessible to the research com-
munity in a systematic and user-friendly way. To the best of our knowledge,
this is the only workflow-based implementation of ILP and RDM algorithms in
a platform accessible through a web browser, enabling simple workflow adapta-
tion to the user’s needs. Moreover, the ILP toolkit widgets actually use a Python
library called python-rdm which is available on GitHub2. The authors welcome
extensions and improvements from the community.

2 https://github.com/anzev/rdm/.

http://clowdflows.org
https://github.com/anzev/rdm/
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Fig. 2. First: RSD propositionalization workflow using ILP and Weka components
is available online at http://clowdflows.org/workflow/471/ (the same RSD workflow,
extended by accessing the training data using a MySQL database, is available at
http://clowdflows.org/workflow/611/). Second: Aleph workflow available at http://
clowdflows.org/workflow/2224/. Third: RelF workflow available at http://clowdflows.
org/workflow/2227/. Fourth: Wordification workflow available at http://clowdflows.
org/workflow/2222/.

3 Semantic Data Mining

Rule learning, which was initially focused on building predictive models formed of
sets of classification rules, has recently shifted its focus to descriptive pattern min-
ing. Well-known pattern mining techniques in the literature are based on associa-
tion rule learning [2,29]. While the initial studies in association rule mining have
focused on finding interesting patterns from large datasets in an unsupervised set-
ting, association rules have been used also in a supervised setting, to learn pattern

http://clowdflows.org/workflow/471/
http://clowdflows.org/workflow/611/
http://clowdflows.org/workflow/2224/
http://clowdflows.org/workflow/2224/
http://clowdflows.org/workflow/2227/
http://clowdflows.org/workflow/2227/
http://clowdflows.org/workflow/2222/
http://clowdflows.org/workflow/2222/
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descriptions from class-labeled data [20]. Building on top of the research in classifi-
cation and association rule learning, subgroup discovery has emerged as a popular
data mining methodology for finding patterns in the class-labeled data. Subgroup
discovery aims at finding interesting patterns as sets of individual rules that best
describe the target class [10,35].

Subgroup descriptions in the form of propositional rules are suitable descrip-
tions of groups of instances. However, given the abundance of taxonomies and
ontologies that are readily available, these can also be used to provide higher-level
descriptors and explanations of discovered subgroups. Especially in the domain
of systems biology the GO ontology [3], KEGG orthology [25] and Entrez gene–
gene interaction data [21] are good examples of structured domain knowledge
that can be used as additional higher-level descriptors in the induced rules.

The challenge of incorporating the domain ontologies in data mining was
addressed in recent research on semantic data mining (SDM) [32]. See Fig. 3 for
a diagram of the SDM process.

Fig. 3. The Semantic Data Mining (SDM) process illustration.

In [32] we described and evaluated the SDM toolkit that includes two seman-
tic data mining systems: SDM-SEGS and SDM-Aleph. SDM-SEGS is an exten-
sion of the earlier domain-specific algorithm SEGS [31] which allows for semantic
subgroup discovery in gene expression data. SEGS constructs gene sets as com-
binations of GO ontology [3] terms, KEGG orthology [25] terms, and terms
describing gene–gene interactions obtained from the Entrez database [21]. SDM-
SEGS extends and generalizes this approach by allowing the user to input any set
of ontologies in the OWL ontology specification language and an empirical data
collection which is annotated by domain ontology terms. SDM-SEGS employs
ontologies to constrain and guide the top-down search of a hierarchically struc-
tured space of induced hypotheses. SDM-Aleph, which is built using the popular
inductive logic programming system Aleph [30] does not have the limitations of
SDM-SEGS, imposed by the domain-specific algorithm SEGS, and can accept
any number of OWL ontologies as background knowledge which is then used in
the learning process.
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Based on the lessons learned in [32], we introduced a new system Hedwig
in [33]. The system takes the best from both SDM-SEGS and SDM-Aleph. It
uses a search mechanism tailored to exploit the hierarchical nature of ontologies.
Furthermore, Hedwig can take into account background knowledge in the form
of RDF triplets. Compared to [33], the current version of the system uses better
redundancy pruning and significance tests based on [9]. Furthermore, the new
version also support negations of unary predicates. Apart from the financial
domain in [33], the approach was also applied on a multi-resolution dataset of
chromosome abberrations in [1].

Hedwig is open-source software available on GitHub3 and the authors wel-
come improvements from the community.

4 Conclusions

This paper addresses two lines of research of the authors, the propositionalization
approach and the semantic data mining approach to RDM.

First, ILP and RDM are introduced, together with an overview of popu-
lar propositionalization algorithms. Next, the paper briefly presents the results
of an experimental comparison of several such algorithms on several relational
databases. These approaches have been made available through the web-based
ClowdFlows data mining platform, together with repeatable and reusable work-
flows. The paper concludes by presenting recent advances in Semantic Data Min-
ing, characterized by exploiting relational background knowledge in the form of
domain ontologies in the process of model and pattern construction.

In further work, we will combine ILP and RDM approaches with the
approaches developed in the network mining community, to address open chal-
lenges in linked data and heterogeneous information network analysis.
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ture models through semantic pattern mining and banded matrix visualization.
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13. Kranjc, J., Podpečan, V., Lavrač, N.: ClowdFlows: a cloud based scientific workflow
platform. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012,
Part II. LNCS, vol. 7524, pp. 816–819. Springer, Heidelberg (2012)

14. Krogel, M.-A., Rawles, S., Železný, F., Flach, P.A., Lavrač, N., Wrobel, S.: Compar-
ative evaluation of approaches to propositionalization. In: Horváth, T., Yamamoto,
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Abstract. Answer Set Programming (ASP) is a powerful declarative
programming paradigm that has been successfully applied to many dif-
ferent domains. Recently, ASP has also proved successful for hard opti-
mization problems like course timetabling. In this paper, we approach
another important task, namely, the shift design problem, aiming at an
alignment of a minimum number of shifts in order to meet required
numbers of employees (which typically vary for different time periods)
in such a way that over- and understaffing is minimized. We provide
an ASP encoding of the shift design problem, which, to the best of our
knowledge, has not been addressed by ASP yet.

1 Introduction

Answer Set Programming (ASP) [4] is a declarative formalism for solving hard
computational problems. Thanks to the power of modern ASP technology [8],
ASP was successfully used in various application areas, including product con-
figuration [13], decision support for space shuttle flight controllers [11], team
building and scheduling [12], and bio-informatics [9]. Recently, ASP also proved
successful for optimization problems that had not been amenable to complete
methods before, for instance in the domain of timetabling [2].

In this paper, we investigate the application of ASP to another important
domain, namely, workforce scheduling [3]. Finding appropriate staff schedules
is of great relevance because work schedules influence health, social life, and
motivation of employees at work. Furthermore, organizations in the commercial
and public sector must meet their workforce requirements and ensure the quality
of their services and operations. Such problems appear especially in situations
where the required number of employees fluctuates throughout time periods,
while operations dealing with critical tasks are performed around the clock.
Examples include air traffic control, personnel working in emergency services,
call centers, etc. In fact, the general employee scheduling problem includes several
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subtasks. Usually, in the first stage, the temporal requirements are determined
based on tasks that need to be performed. Further, the total number of employees
is determined and the shifts are designed. In the last phase, the shifts and/or days
off are assigned to the employees. For shift design [10], employee requirements
for a period of time, constraints about the possible start and length of shifts,
and limits for the average number of duties per week are considered. The aim is
to generate solutions consisting of shifts (and the number of employees per shift)
that fulfill all hard constraints, while minimizing the number of distinct shifts as
well as over- and understaffing. This problem has been addressed by local search
techniques, including a min-cost max-flow approach [10] and a hybrid method
combining network flow with local search [6]. These techniques have been used
to successfully solve randomly generated examples and problems arising in real-
world applications. A detailed overview of previous work on shift design is given
in [7].

Although the aforementioned state-of-the-art approaches for the shift design
problem are able to provide optimal solutions in many cases, obtaining opti-
mal solutions for large problems is still a challenging task. Indeed, for several
instances the best solutions are still unknown. Therefore, the application of exact
techniques like ASP is an important research target. More generally, it is inter-
esting to see how far an elaboration-tolerant, general-purpose approach such as
ASP can compete with dedicated methods when tackling industrial problems.
Our ASP solution is based on the first author’s master thesis [1] and relies on
sophisticated modeling and solving techniques, whose application provides best
practice examples for addressing similarly demanding use-cases. In particular,
we demonstrate how order encoding techniques [5] can be used in ASP for mod-
eling complex interval constraints. Experimental results and further details are
provided in the full version1 of this paper.

2 The Shift Design Problem

To begin with, let us introduce the shift design problem. Our problem formula-
tion follows the one in [10]. As input, we are given the following:

– consecutive time slots sharing the same length. Each time slot is associated
with a number of employees that should be present during the slot.

– shift types with associated parameters min-start and max-start, representing
the earliest and latest start, and min-length and max-length, representing the
minimum and maximum length of a shift.

The aim is to generate a collection of k shifts s1, . . . , sk. Each shift si is
completely determined by its start and length, which must belong to some shift
type. Additionally, each shift si is associated with parameters indicating the
number of employees assigned to si during each day of the planning period.
Note that we consider cyclic planning periods where the successor of the last
time slot is equal to the first time slot. An example of employee requirements
and a corresponding (optimal) schedule are shown in Fig. 1.
1 www.dbai.tuwien.ac.at/proj/Rota/ShiftDesignASP.pdf.

www.dbai.tuwien.ac.at/proj/Rota/ShiftDesignASP.pdf
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Fig. 1. Work demands over a day (left) and the unique optimal schedule (right) with
shifts starting at slot 2, 4, or 7, respectively, indicated by different boxes, while other
kinds of shifts are unused

In analogy to [6], we investigate the optimization of the following criteria:
sum of shortages of workers in each time slot during the planning period, sum of
excesses of workers in each time slot during the planning period, and the number
of shifts.2 Traditionally, the objective function is a weighted sum of the three
components (although this kind of aggregation is not mandatory with ASP).

3 Shift Design in ASP

An instance like the one shown in Fig. 1 is specified by facts as in Fig. 2. Facts
of the form time(S, T ) associate each slot S with a day time T . Our instance
includes one day, divided into eight slots denoted by the times 0, . . . , 7. Instances
of next(S′, S) provide predecessor or successor slots, respectively, where S is
usually S′+1, except for the last slot whose successor is 0. (When another day is
added, the slots 8, . . . , 15 would also be mapped to day times 0, . . . , 7, next(7, 0)
would be replaced by next(7, 8), and next(15, 0) would connect the new last
slot to 0 instead.) For each slot S, a fact work(S,N) gives the number N of
desired employees, and exceed(E) as well as shorten(F ) may limit the amount of
employees at duty to at most E+N or at least N−F , respectively. For instance,
we obtain the upper bound 4 and the lower bound 2 for employees engaged
in slot 7. Facts of the form range(S,L, 1), . . . , range(S,L,M) provide potential
amounts of shifts of length L that can start from slot S, where M is the maximum
number of desired employees over all slots within the horizon of the shift. For
shifts starting from slot 7, those of length 2 or 3 stretch to slot 0 or 1, respectively,
and the corresponding maximum number of desired employees is 3 in slot 7 itself;
unlike that, shifts of length 4 also include slot 2 in which 4 employees shall be
at duty.

Moreover, facts opt(shortage, P,W ), opt(excess, P,W ), and opt(select , P,W )
specify optimization criteria in terms of a priority P and a penalty weight W
incurred in case of violations. The priorities in Fig. 2 tell us that the desired
2 In [10], additionally, the average number of duties per week is considered.
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Fig. 2. ASP facts specifying an instance of the shift design problem

number of employees shall be present in the first place, then the amount of
additional employees ought to be minimal, and third the number of utilized
shifts in terms of day time and length should be as small as feasible. Given that
the criteria are already distinguished by priority, the penalty weight of a violation
of either kind is 1, thus counting particular violations to assess schedules.

Fig. 3. ASP encoding of the shift design problem

Our ASP encoding of the shift design problem is shown in Fig. 3. For a slot S,
the intuitive reading of the predicate run(S,L, I) is that at least I shifts includ-
ing S and L−1 or more successor slots are scheduled. This is further refined by
length(S,L, I, J), telling that 1, . . . , J of the scheduled shifts of exact length L
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may start from S, where I−1 shifts that include at least L−1 successor slots are
scheduled in addition. The predicate shift(S,L, J) expresses that at least J of the
scheduled shifts stretch to S and exactly L−1 successor slots, and start(S,L, J)
indicates that the J-th instance of such a shift indeed starts from S. A schedule is
thus characterized by the number of (true) atoms of the form start(S,L, J), yield-
ing the amount of shifts of length L starting from slot S. For example, the sched-
ule displayed in Fig. 1 is described by a stable model containing start(2, 4, 1),
start(2, 4, 2), start(2, 4, 3), start(4, 4, 1), start(4, 4, 2), and start(7, 4, 1). When
further scheduling a shift of length 2 to start from slot 6, it would be indicated
by start(6, 2, 3), as it adds to the two shifts from slot 4 stretching to slot 6 and 7
as well. However, the displayed schedule is the unique optimal solution, given
that it matches the desired employees and uses a minimum number of shifts, viz.
shifts of length 4 starting from slot 2, 4, or 7, respectively.

In more detail, the potential start of an instance I of a shift of length L from
slot S is reflected by the choice rule (1) in Fig. 3. Rule (2) propagates the start
of a shift to its L−1 successor slots, where the residual length is decreased down
to 1 in the last slot of the shift. For shifts with longer residual length L, rule (3)
closes the interval between 1 and L, thus overturning any choice rules for poten-
tial starts of shifts of shorter length. Moreover, this allows for pushing the J-th
instance of a shift stretching to slot S to the position I+J when I instances of
shifts longer than the residual length L are scheduled, as expressed by rule (4).
The integrity constraint (5) asserts that the positions associated with sched-
uled shifts must be ordered by residual length. This condition eliminates guesses
on instances I of starting shifts, and it also provides a shortcut making inter-
connections between positions of scheduled shifts explicit, which turned out as
effective to improve search performance. The additional integrity constraints (6)
and (7) are applicable whenever the deviation from numbers of desired employ-
ees is bounded above or below, respectively. Note that it is sufficient to inspect
atoms of the form run(S, 1, I) for appropriate positions I, given that residual
lengths are propagated via rule (3).

In order to derive the amount of scheduled shifts of exact residual length L,
rule (8) marks positions I, where instances may start, with 1 when the length L
matches. Instances associated with smaller positions then count on by means of
rule (9) unless their positions are occupied by shifts with longer residual length.
By projecting the positions out, rule (10) yields that 1, . . . , J shifts of length L
may start from slot S. In addition, longer shifts whose residual length decreases
to L in S are propagated via rule (11). Finally, rule (12) compares instances that
may start to propagated shifts and indicates the ones that indeed start from S.
As a consequence, a stable model represents a schedule in terms of sequences of
the form start(S,L,m), . . . , start(S,L, n), expressing that n+1−m instances of a
shift of length L start from slot S. It remains to assess the quality of a schedule,
which is accomplished by means of the weak constraints (13), (14), and (15) for
the three optimization criteria at hand. The penalty for deviating from a number
of desired employees is characterized in terms of the priority P and weight W
given in facts, a position I pointing to under- or overstaffing in a slot S, and the
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corresponding keyword shortage or excess, respectively, for avoiding clashes with
penalties due to the utilization of shifts. The latter include the keyword select
and map the slot S of a starting shift of length L to its day time T , so that the
penalty W@P is incurred at most once for a shift with particular parameters,
no matter how many instances are actually utilized.

A prevalent feature of our ASP encoding in Fig. 3 is the use of closed intervals
(starting from 1) to represent quantitative values such as residual lengths or
instances of shifts. The basic idea is similar to the so-called order encoding [5],
which has been successfully applied to solve constraint satisfaction problems by
means of SAT [14]. In our ASP encoding, rule (4), (8), and (9) take particular
advantage of the order encoding approach by referring to one value, viz. L+1,
for testing whether any shift with longer residual length than L is scheduled.
Likewise, the integrity constraints (6) and (7) as well as the weak constraints (13)
and (14) focus on value 1, standing for any residual length, to determine the
amount of employees at duty. That is, the order encoding approach enables
a compact formulation of existence tests and general conditions, which then
propagate to all target values greater or smaller than a certain threshold.

4 Discussion

In this work, we presented a novel approach to tackle the shift design problem by
using ASP. Finding good solutions for shift design problems is of great impor-
tance in different organizations. However, such problems are very challenging
due to the huge search space and conflicting constraints. Our work contributes
to better understanding the strengths of ASP technology in this domain and
extends the state of the art for the shift design problem by providing new opti-
mal solutions for benchmark instances first presented in [6]. Below we summarize
the main observations of our experiments, detailed in the full paper (see Footnote
1), regarding the application of ASP to the shift design problem:

– ASP shows very good results for shift design problems that have solutions
without over- and understaffing. Our proposed ASP approach could provide
optimal solutions for almost all such benchmark instances (DataSet1 and
DataSet2 in [6]).

– The first results for problems that do not have solutions without over- or
understaffing are promising. Although our current approach could not repro-
duce best known solutions for several problems, we were able to provide global
optima for four hard instances (from DataSet3 in [6]), not previously solved
to the optimum.

– Our experimental evaluation indicates that our approach could also be used in
combination with other search techniques. For example, solutions computed
by metaheuristic methods or min-cost max-flow techniques could be further
improved by ASP.

– In general, the computational results show that ASP has the potential to
provide good solutions in this domain. Therefore, our results open up the
area of workforce scheduling, which is indeed challenging for state-of-the-art



38 M. Abseher et al.

ASP solvers. This is most probably caused by the nature of the shift design
problem, as there are few hard constraints involved that could help to restrict
the search space.

Concerning related work, we mention an ASP implementation of a problem
from the domain of workforce management [12], where the focus is on the alloca-
tion of employees of different qualifications to tasks requiring different skills. The
resulting system is tailored to the specific needs of the seaport of Gioia Tauro.
From the conceptual point of view, the main difference to our work is that
the encoded problem of [12] is a classical allocation problem with optimization
towards work balance, while the problem we tackle here aims at an optimal
alignment of shifts.

As future work, we plan to tackle the problem of optimization in shift design
by combining ASP with domain-specific heuristics in order to better guide the
search, but also exploiting off-the-shelf heuristics is a promising target for further
investigation. We are confident that ASP combined with heuristics is a power-
ful tool for tackling problems in the area of workforce scheduling. This fact is
already underlined by significantly improved results obtained for branch-and-
bound based optimization when activating particular off-the-shelf heuristics. By
using customized heuristics, tailored to the specific problem at hand, the chance
for further improvements is thus high.

Acknowledgments. This work was funded by AoF (251170), DFG (550/9), and FWF
(P25607-N23, P24814-N23, Y698-N23).
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Abstract. ASP solvers address several reasoning tasks that go beyond
the mere computation of answer sets. Among them are cautious rea-
soning, for modeling query entailment, and optimum answer set com-
putation, for supporting numerical optimization. This paper reports on
the recent improvements of the solver wasp, and details the algorithms
and the design choices for addressing several reasoning tasks in ASP. An
experimental analysis on publicly available benchmarks shows that the
new version of wasp outperforms the previous one. Comparing with the
state-of-the-art solver clasp, the performance of wasp is competitive in
the overall for number of solved instances and average execution time.

1 Introduction

Answer Set Programming (ASP) [19] is a declarative programming paradigm
which has been proposed in the area of non-monotonic reasoning and logic pro-
gramming. The idea of ASP is to represent a given computational problem by a
logic program whose answer sets correspond to solutions, and then use a solver
to find them. Answer set computation is a hard task, and is usually performed
by adapting techniques introduced for SAT solving, such as learning, restarts,
and conflict-driven heuristics [35].

Modern ASP solvers address several reasoning tasks that go beyond the mere
computation of answer sets. Among them, optimum answer set computation and
cautious reasoning have great impact in applications [1,10,14,26,33]. Optimum
answer set search amounts to finding an answer set that minimizes the violations
of the so-called weak constraints [13]. Cautious reasoning corresponds to the
computation of (a subset of) the certain answers, i.e., those atoms that belong
to all answer sets of a program. These tasks are computationally harder than
the answer set search [16], and require the implementation of specific evaluation
techniques.

This paper reports on the advances in the ASP solver wasp [2], focusing on
the latest extensions and improvements that we have implemented in the 2.1
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version of the system. The new version is a natural evolution of the preliminary
version presented in [5], bringing improvements in the implementation of the
computation of answer sets as well as new algorithms for handling optimum
answer set search and cautious reasoning.

Optimum answer set search is addressed in wasp 2.1 by combining answer
set computation with MaxSAT algorithms [30] such as mgd [31], optsat [34],
pmres [32], and bcd [20]. Another algorithm implemented in wasp 2.1 is
oll [8], introduced by the ASP solver clasp, and successfully applied also to
MaxSAT [29].

Cautious reasoning instead is addressed by implementing a new algorithm [4]
inspired by backbone computation in propositional logic [28]. It is remarkable
that wasp is the first ASP solver approaching this task by means of an anytime
algorithm, i.e., an algorithm producing sound answers during its execution, and
not just at the end. Being anytime is of particular relevance for real world appli-
cations, and in fact a large number of answers are often produced after a few
seconds of computation, even when termination is not affordable in practice [4].

The efficiency of wasp 2.1 is assessed by comparing its performance with
wasp 1.0 [2], the previous version of the solver, and with clasp 3.1.1 [18], the
latest version of the solver that won the 5th ASP Competition. The result high-
lights a substantial improvement w.r.t. the previous version, and a competitive
performance w.r.t. clasp in many cases, with an even superior performance in
cautious reasoning.

2 ASP Language

This section recalls syntax and semantics of propositional ASP programs.

Syntax. Let A be a countable set of propositional atoms. A literal is either
an atom (a positive literal), or an atom preceded by the negation as failure
symbol ∼ (a negative literal). The complement of a literal � is denoted �, i.e.,
a = ∼a and ∼a = a for an atom a. This notation extends to sets of literals, i.e.,
L := {� | � ∈ L} for a set of literals L. A program is a finite multiset of rules of
the following form:

a0 ← a1, . . . , am, ∼am+1, . . . , ∼an (1)

where n ≥ m ≥ 0 and each ai (i = 0, . . . , n) is an atom. The atom a0 is called
head, and the conjunction a1, . . . , am, ∼am+1, . . . , ∼an is referred to as body.
Rule r is said to be regular if H(r) �= ⊥, where ⊥ is a fixed atom in A, and a
constraint otherwise. A constraint is possibly associated with a positive integer
by the partial function weight . Constraints for which function weight is defined
are called weak constraints, while the remaining constraints are referred to as
hard constraints. The multisets of hard and weak constraints in Π are denoted
hard(Π) and weak(Π), respectively, while the multiset of the remaining rules
is denoted by rules(Π). For a rule r of the form (1), the following notation is
also used: H(r) denotes the set containing the head atom a0; B(r) denotes the
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set {a1, . . . , am, ∼am+1, . . . , ∼an} of body literals; B+(r) and B−(r) denote the
set of atoms appearing in positive and negative body literals, respectively, i.e.,
B+(r) is {a1, . . . , am} and B−(r) is {am+1, . . . , an}; C(r) := H(r) ∪ B(r) is the
clause representation of r.

Semantics. An interpretation I is a set of literals, i.e., I ⊆ A ∪ A. Intuitively,
literals in I are true, literals whose complements are in I are false, and all
other literals are undefined. I is total if there are no undefined literals, and I is
inconsistent if ⊥ ∈ I or there is a ∈ A such that {a, ∼a} ⊆ I. An interpretation
I satisfies a rule r, denoted I |= r, if C(r)∩I �= ∅, while I violates r if C(r) ⊆ I.
A consistent, total interpretation I is a model of a program Π, denoted I |= Π,
if I |= r for all r ∈ Π. The semantics of a program Π is given by the set of its
answer sets, or stable models [19]: Let ΠI denote the program reduct obtained
by deleting from Π each rule r such that B−(r)∩I �= ∅, and then by removing all
the negative literals from the remaining rules. An interpretation I is an answer
set for Π if I |= Π and there is no total interpretation J such that J ∩A ⊂ I ∩A
and J |= ΠI . The set of all answer sets of a program Π is denoted SM(Π).

Optimum Answer Sets. Let Π be a program with weak constraints. The cost of
an interpretation I of Π is defined as follows:

costΠ(I) :=
∑

r∈weak(Π):C(r)⊆I

weight(r). (2)

An interpretation I is an optimum answer set of Π if I ∈ SM(Π) and there is
no J ∈ SM(Π) such that costΠ(J) < costΠ(I).

Cautious Consequences. Let Π be a program with no weak constraints. An
atom a ∈ A is a cautious consequence of Π, denoted Π |=c a, if a ∈ I for all
I ∈ SM(Π).

3 Answer Set Computation in WASP 2.1

In this section we review the algorithms implemented in wasp 2.1 for the com-
putation of an answer set. We first detail a transformation step of the input
program performed at the beginning of the computation, and then we focus on
the main strategies employed by wasp 2.1 for computing an answer set. The
presentation is properly simplified to focus on the main principles.

3.1 Completion and Program Simplification

An important property of ASP programs is supportedness, i.e., all answer sets
are supported models. A model I of a program Π is supported if each a ∈
I ∩ A is supported, i.e., there exists a rule r ∈ Π such that H(r) = a, and
B(r) ⊆ I. Supportedness can be enforced according to different strategies [2,18].
wasp 2.1 implements a transformation step, called Clark’s completion, which
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Algorithm 1. ComputeAnswerSet
Input : A program Π and an interpretation I for Π
Output: An answer set for Π or ⊥

1 begin
2 while Propagate(I) do
3 if I is total then return I ;
4 � := ChooseUndefinedLiteral();
5 I ′ := ComputeAnswerSet(I ∪ {�}, Π);
6 if I ′ �= ⊥ then return I ′ ;
7 if there are violated (learned) constraints then return ⊥ ;

8 Π := Π∪ AnalyzeConflictAndCreateConstraints(I);
9 return ⊥;

rewrites the input program Π into a new program Comp(Π) whose classical
models correspond to the supported models of Π [25]. In more detail, given a
rule r ∈ Π, let auxr denote a fresh atom, i.e., an atom not appearing elsewhere,
the completion of Π consists of the following rules:

– ← a, ∼auxr1 , . . . , ∼auxrn
, for each atom a occurring in Π, where r1, . . . , rn

are the rules of Π whose head is a;
– a0 ← auxr and auxr ← a1, . . . , am, ∼am+1, . . . ∼an, for each rule r ∈ Π of the

form (1);
– ← auxr, �, for each r ∈ Π and � ∈ B(r).

After the computation of Clark’s completion, simplification techniques are
applied in the style of satelite [15]. These consist of polynomial-time algo-
rithms for strengthening and removing redundant rules, and also include atom
elimination by means of rule rewriting.

3.2 Main Algorithm

In order to compute an answer set of a given program Π, wasp 2.1 first
replaces Π with its completion Comp(Π). After that, the program is passed
to Algorithm 1, which is similar to the CDCL procedure in SAT solvers. The
algorithm also receives a partial interpretation I, which is initially set to {∼⊥}.
Function Propagate (line 2) extends I with those literals that can be determin-
istically inferred. This function returns false if an inconsistency (or conflict) is
detected, true otherwise. When no inconsistency is detected, interpretation I is
returned if total (line 3). Otherwise, an undefined literal, say �, is chosen accord-
ing to some heuristic criterion (line 5). The computation then proceeds with a
recursive call to ComputeAnswerSet on I ∪ {�} (line 5). In case the recursive
call returns an answer set, the computation ends returning it (line 6). Other-
wise, the algorithm unrolls choices until consistency of I is restored (line 7),
and the computation resumes by propagating the consequences of the constraint
learned by the conflict analysis. Conflicts detected during propagation are ana-
lyzed by procedure AnalyzeConflictAndCreateConstraints, which returns a new
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Function Propagate(I)
1 while UnitPropagation(I) do
2 if not WellFoundedPropagation(I) then return true ;

3 return false;

constraint modeling the found conflict that is then added to Π (line 8). It is
important to note that the main algorithm is usually complemented with some
heuristic techniques that control the number of learned constraints, and possibly
restart the computation to explore different branches of the search tree. More-
over, a crucial role is played by the heuristic criteria used for selecting branching
literals. wasp 2.1 adopts the same branching, restart and deletion heuristics of
the SAT solver glucose [11]. Propagation and constraint learning are described
in more detail in the following.

Propagation. wasp 2.1 implements two deterministic inference rules for prun-
ing the search space during answer set computation. These propagation rules are
named unit and well-founded. Unit propagation is applied first (line 1 of function
Propagate). It returns false if an inconsistency arises. Otherwise, well-founded
propagation is applied (line 2). Function WellFoundedPropagation may infer
the falsity of some atoms, in which case true is returned and unit propagation is
applied. When no new atoms can be inferred by WellFoundedPropagation, func-
tion Propagate returns true to report that no inconsistency has been detected.
In more details, unit propagation is as in SAT solvers: An undefined literal �
is inferred by unit propagation if there is a rule r that can be satisfied only by
�, i.e., r is such that � ∈ C(r) and C(r) \ {�} ⊆ I. Concerning well-founded
propagation, we must first introduce the notion of unfounded sets. A set X of
atoms is unfounded if for each rule r such that H(r) ∩ X �= ∅, at least one of
the following conditions is satisfied: (i) B(r) ∩ I �= ∅; (ii) B+(r) ∩ X �= ∅. Intu-
itively, atoms in X can have support only by themselves. When an unfounded
set X is found, function WellFoundedPropagation imposes the falsity of an atom
in X. The falsity of other atoms in X will be imposed on subsequent calls to
the function, unless an inconsistency arises during unit propagation. In case of
inconsistencies, indeed, the unfounded set X is recomputed.

Conflict Analysis and Learning. Constraint learning acquires information from
conflicts in order to avoid exploring the same search branch several times.
wasp 2.1 adopts a learning schema based on the concept of the first Unique
Implication Point (UIP) [35], which is computed by analyzing the so-called impli-
cation graph. Roughly, the implication graph contains a node for each literal in
I, and arcs from �i to �0 (i = 1, . . . , n; n ≥ 1) if literal �0 is inferred by unit
propagation on constraint ← �0, . . . , �n. Each literal � ∈ I is associated with a
decision level, corresponding to the depth nesting level of the recursive call to
ComputeAnswerSet on which � is added to I. A node n in the implication graph
is a UIP for a decision level d if all paths from the choice of level d to the conflict
literals pass through n. Given a conflict at a level d, the first UIP is the UIP
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Algorithm 2. Optimum Answer Set Search
Input : A program Π
Output: The optimum cost for Π

1 begin
2 lower bound := 0; wmax := max{weight(r) | r ∈ weak(Π)};
3 R := {r ∈ weak(Π) | weight(r) < wmax};
4 lower bound := lower bound + CoreGuidedAlg(Π, R);
5 wmax := max{weight(r) | r ∈ R};
6 if R = ∅ then return lower bound;
7 goto 3;

of level d that is closest to the conflict. The learning schema is as follows: Let
u be the first UIP. Let L be the set of literals different form u occurring in a
path from u to the conflict literals. The learned constraint comprises u and each
literal � such that the decision level of � is lower than the one of u and there is
an arc (�, �′) in the implication graph for some �′ ∈ L.

4 ASP Computational Tasks

wasp 2.1 addresses reasoning tasks that go beyond the mere computation of
answer sets; and in particular optimum answer set computation and cautious
reasoning, which are described in this section.

4.1 Optimum Answer Set Search

The computational problem analyzed in this section is referred to as ASP opti-
mization problem and can be stated as follows: Given a coherent program Π,
compute the optimum cost of Π, defined as the cost of an optimum answer set
of Π. wasp 2.1 implements several strategies for computing an optimum model
of a program, including model-guided and core-guided algorithms [30]. Intu-
itively, model-guided algorithms work by iteratively searching for an answer set
until an optimum solution is found. Core-guided algorithms consider weak con-
straints as hard constraints and then work by iteratively relaxing some of them
until an answer set is found, which eventually results in an optimum solution.
In particular, wasp 2.1 implements the following algorithms:

– opt, an algorithm inspired by optsat [34] and its variant basic.
– mgd [31], a model-guided algorithm introduced for solving MaxSAT.
– oll [8], a core-guided algorithm introduced in the context of ASP and then

successfully ported to MaxSAT [29].
– pmres, a core-guided algorithm implemented in the MaxSAT solver eva [32].
– bcd, a core-guided algorithm implemented in the MaxSAT solver msun-
core [20].

– interleaving, a strategy that combines the algorithms basic and oll.
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Algorithm 3. IterativeCoherenceTesting
Input : A program Π and a set of atoms Q
Output: Atoms in Q that are cautious consequences of Π, or ⊥

1 begin
2 U := ∅; O := Q;
3 I := ComputeAnswerSet(Π, {∼⊥});
4 if I = ⊥ then return ⊥ ;
5 O := O ∩ I;
6 while U �= O do
7 a := OneOf(O \ U);
8 I := ComputeAnswerSet(Π, {∼⊥, ∼a});
9 if I = ⊥ then U := U ∪ {a} ;

10 else O := O ∩ I ;

11 return U ;

Moreover, wasp 2.1 is the first ASP solver that implements the stratification
technique [9]. Stratification refines core-guided algorithms on handling weighted
instances. The idea is to focus at each iteration on weak constraints with higher
weights by properly restricting the set of rules sent to the ASP solver. The effect
is to improve the increment of the lower bound.

Algorithm 2 reports the procedure implemented by wasp 2.1 for
addressing ASP optimization problems via core-guided algorithms [3], where
CoreGuidedAlg denotes one of the core-guided algorithms available in wasp 2.1.
The arguments of this function are passed by reference, so that any change to
Π and R is preserved after the function returns. Algorithm 2 initially sets the
lower bound to zero and variable wmax to the greatest weight of any weak con-
straints of the program. Next, the set R of weak constraints having weight less
than wmax is computed (line 3). Intuitively, weak constraints in weak(Π) \ R
are processed, while the remaining weak constraints, i.e. those in R, are ignored.
Algorithm CoreGuidedAlg is called on Π with the additional argument R and
computes the cost of a solution considering only weak constraints which are not
in R. The computed cost is then added to the lower bound (line 4), and wmax
is set to the greatest weight of any weak constraint in R (line 5). The process
is then repeated until all weak constraints have been considered, i.e., until R is
empty (line 6).

4.2 Cautious Reasoning

Cautious reasoning provides answers to the input query that are witnessed by all
answer sets of the knowledge base. Cautious reasoning has been implemented by
two ASP solvers, dlv [23] and clasp [18], as a variant of their answer set search
algorithms. In a nutshell, cautious reasoning can be obtained by reiterating the
answer set search step according to a specific solving strategy. The procedure
implemented by dlv searches for answer sets and computes their intersection,
which eventually results in the set of cautious consequences of the input program.
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At each step of the computation, the intersection of the identified answer sets
represents an overestimate of the solution, which however is not provided as
output by dlv. The procedure implemented by clasp is similar, but the over-
estimate is showed and used to further constrain the computation. In fact, the
overestimate is considered a constraint of the logic program, so that the next
computed answer set is guaranteed to improve the current overestimate. The pro-
cedure implemented by wasp 2.1, whose pseudo-code is reported in Algorithm 3,
is inspired by an algorithm for computing backbones of propositional formulas
[28]. The algorithm receives as input a program Π, which is the completion of the
input program, and a set of atoms Q representing answer candidates of a query,
and produces as output either the largest subset of Q that only contains cautious
consequences of Π, in case Π is coherent, or ⊥ when Π is incoherent. Initially,
the underestimate U and the overestimate O are set to ∅ and Q, respectively
(line 2). A coherence test of Π is then performed (lines 3) by calling function
ComputeAnswerSet, which actually implements answer set search as described
in Sect. 3. If the program is incoherent then the computation stops returning ⊥.
Otherwise, the first answer set found improves the overestimate (line 5). At this
point, estimates are improved until they are equal (line 6). Then, one cautious
consequence candidate is selected by calling function OneOf (line 7). This can-
didate is then constrained to be false and an answer set is searched (line 8). If
none is found then the underestimate can be increased (lines 9). Otherwise, the
overestimate can be improved (lines 10).

An interesting property of the algorithm implemented by wasp 2.1 is that
underestimates are produced during the computation of the complete solution.
This is important since cautious reasoning is a resource demanding task, which
is often not affordable to complete in reasonable time. The computation can thus
be stopped either when a sufficient number of cautious consequences have been
produced, or when no new answer is produced after a specified amount of time.
Such algorithms are referred to as anytime in the literature. Moreover, wasp 2.1
also includes the algorithm implemented in clasp, which has been modified in
wasp 2.1 for producing cautious consequences during the computation [4]. As
far as we know, wasp 2.1 is the only ASP solver which implements anytime
algorithms for cautious reasoning. The empirical evaluation of these algorithms
highlights that a large percentage (up to 90 % in some cases) of the sound answers
can be provided after few seconds of the computation in several benchmarks [4].

5 Experiment

The performance of wasp 2.1 was compared with wasp 1.0 and clasp 3.1.1.
wasp 2.1 and clasp use gringo [17] as grounder, while a custom version of
the grounder dlv [7] is used by wasp 1.0. clasp and wasp 1.0 have been
executed using the same heuristic settings used in the 5th ASP Competition,
while wasp 2.1 has been executed with its default heuristic which includes the
algorithm oll for programs weak constraints and the algorithm IterativeCoher-
enceTesting for cautious reasoning. We do not include wasp 2.0 presented in [5]
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since that executable was a preliminary version with no support for optimiza-
tion constructs and for queries. Note that wasp 2.1 supports the ASP Core
2.0 [1] standard with limited support of disjunction. (The handling of additional
languages constructs present in ASP Core 2.0 would have had no impact in the
description of wasp 2.1 algorithms provided in this paper.) The experiment com-
prises two parts. The first part concerns a comparison of the solvers on instances
taken from the 4th ASP Competition [1]. We refrain to use the instances from the
5th ASP Competition since it was a rerun of the 4th ASP Competition. The sec-
ond part instead compares wasp 2.1 and clasp on the task of cautious reason-
ing, and in particular in the context of Consistent Query Answering (CQA) [10].
CQA amounts to computing answers of a given query that are true in all repairs
of an inconsistent database, where a repair is a revision of the original database
that is maximal and satisfies its integrity constraints. The experiment was run
on a four core Intel Xeon CPU X3430 2.4 GHz, with 16 GB of physical RAM,
and operating system Debian Linux. Time and memory limits were set to 600 s
and 15 GB, respectively. Performance was measured using the tools pyrunlim
and pyrunner (https://github.com/alviano/python).

Part I: Instances of the 4th ASP Competition. Table 1 summarizes the number
of solved instances and the average running time in seconds for each solver. In
particular, the first two columns report the problems of the 4th ASP Competi-
tion and the total number of instances considered (#); the remaining columns
report the number of solved instances within the time-out (solved), and the run-
ning time averaged over solved instances (time). The first observation is that
wasp 2.1 outperforms wasp 1.0. In fact, wasp 2.1 solved 137 more instances
than wasp 1.0 and it is faster in almost all benchmarks. Moreover, wasp 2.1 is
comparable in performance with clasp, even if the latter solves 7 instances more
than the former. The advantage of clasp with respect to wasp 2.1 is obtained in
two benchmarks, namely GracefulGraphs and GraphColouring, whose instances
show different symmetric solutions. Albeit clasp does not implement any special
technique for handling symmetric solutions, we observe that clasp is consider-
ably better than wasp 2.1 on those benchmarks. Our explanation is that the
heuristic of wasp 2.1 seems to be ineffective on instances with different symmet-
ric solutions. It is important to point out that even if clasp and wasp 2.1 are
comparable in the overall, there are nonetheless differences on specific instances.
In particular, wasp 2.1 solves 11 instances which are not solved by clasp.

For the sake of completeness, we also analyzed the behavior of the solvers by
using a different memory setting. The performance of clasp and wasp 2.1 are
still comparable in case of a lower limit on the usage of memory. Nonetheless,
on the considered benchmarks clasp seems to use a larger amount of memory
compared to wasp, which is due to a different implementation of program sim-
plifications. Indeed, with a memory limit of 3 GB wasp 2.1 solves 359 instances,
i.e., 3 instances more than clasp.

Part II: Cautious Reasoning. Table 2 summarizes the number of solved instances
and the average running time in seconds for each solver. We considered all co-NP

https://github.com/alviano/python
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Table 1. Solved instances and average running time on benchmarks from 4th ASP
Competition.

clasp wasp 1.0 wasp 2.1

Problem # Solved Time solved Time Solved Time

BottleFillingProblem 30 30 7.5 30 64.8 30 6.8

CrossingMinimization 30 23 79.6 0 - 22 110.9

GracefulGraphs 30 15 103.8 9 169.4 10 73.4

GraphColouring 30 13 130.0 8 141.7 8 45.8

HanoiTower 30 28 53.2 15 142.0 30 48.2

IncrementalScheduling 30 3 232.4 0 - 4 262.9

Labyrinth 30 26 48.0 21 114.7 25 99.5

MaximalClique 30 30 64.6 2 549.8 29 151.7

NoMystery 30 9 74.6 5 275.3 7 108.1

PermutationPatternMatching 30 22 49.2 20 152.2 26 57.4

QualitativeSpatialReasoning 30 30 45.6 27 67.8 29 102.8

RicochetRobot 30 30 93.4 7 128.2 30 200.5

Sokoban 30 11 38.4 8 221.2 12 79.0

Solitaire 27 22 14.2 20 21.8 22 10.7

StableMarriage 30 29 282.6 27 189.7 29 220.7

StillLife 10 5 6.5 4 42.2 5 39.3

ValvesLocation 30 3 56.0 1 142.1 4 42.8

VisitAll 30 19 37.5 11 36.6 19 108.0

Weighted-Sequence Problem 30 25 66.1 14 193.0 25 125.3

Total 547 373 75.3 229 122.8 366 102.5

queries taken from [22] on 10 different databases. For each query, two different
encodings have been used, namely BB for the encoding presented by Barceló
and Bertossi in [12] and MRT for the encoding presented by Manna, Ricca, and
Terracina in [27]. The number of solved instances within the time-out (solved),
and the running time averaged over solved instances (time) are reported in the
remaining columns. wasp 1.0 has been excluded from the comparison since it
does not support the computation of cautious consequences. The first observa-
tion is that clasp is competitive also on these benchmarks solving 85 % of the
instances. Nonetheless, wasp 2.1 improves the performance of clasp solving
94 % of the instances, which corresponds to 13 instances solved by wasp 2.1
that are not solved by clasp. In those benchmarks, the algorithm implemented
by wasp 2.1 is particularly effective compared to the one implemented in clasp.
Concerning the two different encodings, we observe that clasp performs signif-
icantly better using the encoding presented in [27], solving 3 and 4 instances
more than the encoding in [12] on the third and sixth queries, respectively. Sim-
ilar considerations hold also for wasp 2.1 which is in general much faster when
executed using the encoding presented in [27].
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Table 2. Solved instances and average running time on consistent query answering [22].

clasp wasp 2.1

Problem # solved time solved time

Query1-BB 10 10 26.0 10 31.0

Query2-BB 10 10 53.9 10 37.1

Query3-BB 10 6 231.0 10 78.5

Query4-BB 10 10 33.0 10 40.7

Query5-BB 10 10 67.2 10 53.1

Query6-BB 10 5 195.4 10 147.5

Query7-BB 10 5 245.2 6 248.6

Query1-MRT 10 10 13.9 10 16.6

Query2-MRT 10 10 31.3 10 24.2

Query3-MRT 10 9 192.9 10 66.7

Query4-MRT 10 10 15.2 10 18.3

Query5-MRT 10 10 15.6 10 18.8

Query6-MRT 10 9 194.8 10 68.8

Query7-MRT 10 5 194.2 6 241.9

Total 140 119 89.2 132 67.8

6 Related Work

During recent years, ASP has obtained growing interest since robust implemen-
tations were available. ASP solver can be classified into based on translation (or
non-native) and native according to the evaluation strategies employed. Non-
native solvers usually perform a translation from ASP to other theories and then
use specific solvers for those theories as black boxes, while native solvers imple-
ment specific algorithms and data structures for dealing with ASP programs.
Among non-native solvers, assat [25], cmodels [24], and lp2sat [21] rewrite
normal ASP programs into propositional formulas and then call an external
SAT solver. wasp 2.1 is a native solver, thus, it adopts a very different solv-
ing approach with respect to non-native solvers. Nonetheless, some similarities
exist. Indeed, wasp 2.1 uses Clark’s completion as implemented by assat [25].
Among the first effective native solvers that were proposed we mention dlv [23]
and smodels [36], which implement a systematic backtracking without learning
and adopt look-ahead heuristics, while wasp 2.1 is based on the CDCL algo-
rithm [35]. wasp 2.1 shares with smodels the algorithm for the computation
of unfounded sets based on source pointers [36], while dlv implements a prun-
ing technique based on finding external supporting rules. Cautious reasoning is
addressed in dlv only by implementing an algorithm based on the enumeration
of answer sets, and dlv does not print any form of estimation of the result dur-
ing the computation. We also note that dlv features brave reasoning, which is
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not currently supported by wasp 2.1. The native solvers that are more similar
to wasp 2.1 are clasp [18] and wasp 1.0 [2].

Comparison with clasp. Both solvers are based on the CDCL algorithm using
source pointers for detecting unfounded sets. There are nonetheless several
technical differences with wasp 2.1 related to data structures and input simpli-
fication. Concerning optimization problems, both clasp and wasp 2.1 imple-
ment algorithms basic, pmres and oll. The latter has been introduced in
unclasp [8], an experimental branch of clasp. However, wasp 2.1 implements
several algorithms introduced for MaxSAT solving that are not implemented
by clasp. Moreover, wasp 2.1 improves the performance of the algorithm oll
on weighted benchmarks by implementing the stratification strategy. Concern-
ing cautious reasoning, the algorithm implemented by clasp is a smart variant
of the algorithm that enumerates answer sets. In particular, an overestimate
of the sound answers is considered as a constraint of the logic program, so that
the next computed answer set is guaranteed to improve the current overestimate.
wasp 2.1 differs from this solver because it is based on an algorithm checking the
coherence of the input program with the complement of a cautious consequence
candidate, for each candidate in the overestimate. A strength of the algorithm
implemented by wasp 2.1 is being anytime, i.e., both underestimates and over-
estimates are produced during the computation, while this is not the case with
the algorithm implemented by clasp, which only prints overestimates during
the computation. We also note that clasp features brave reasoning, which is
not currently supported by wasp 2.1.

Comparison with wasp 1.0. wasp 2.1 is a substantially revised version of
wasp 1.0. Both solvers are based on the CDCL algorithm using source point-
ers for detecting unfounded sets. The most imporant difference is related to
Clark’s completion and program simplification in the style of satelite [15],
which are not applied by wasp 1.0. Clark’s completion brings advantages in
terms of simplifying the implementation of the propagation procedure, which is
more complex in wasp 1.0. In fact, wasp 1.0 implements a specific propagation
procedure for handling supportedness, which requires complex data structures
to achieve efficiency. Concerning optimization problems, both solvers implement
several model-guided and core-guided algorithms, including opt, mgd, oll and
bcd. However, wasp 2.1 implements also pmres and a stratification technique,
which are not implemented by wasp 1.0. Finally, wasp 1.0 has no front-end for
dealing with cautious reasoning.

7 Conclusion

In this paper we reported on the recent improvement of the ASP solver wasp,
and in particular we described the algorithms implemented in the system for
addressing optimum answer set computation and cautious reasoning. The new
solver was compared with both its predecessor and the latest version of clasp.
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In our experiment, wasp 2.1 outperforms wasp 1.0, and it is competitive with
clasp on publicly available benchmarks. Future work concerns the optimization
of the internal data structures, and the reengineering of disjunctive rules in order
to handle programs with unrestricted disjunction efficiently. We also plan to
extend to ASP our recently proposed MaxSAT algorithms [6]. As a final remark,
wasp 2.1 is freely available and the source can be download at https://github.
com/alviano/wasp.git.
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Abstract. In hard real-time systems, where system complexity meets
stringent timing constraints, the task of system-level synthesis has
become more and more challenging. As a remedy, we introduce an SMT-
based system synthesis approach where the Boolean solver determines
a static binding of computational tasks to computing resources and a
routing of messages over the interconnection network while the theory
solver computes a global time-triggered schedule based on the Boolean
solver’s solution. The binding and routing is stated as an optimization
problem in order to refine the solution found by the Boolean solver such
that the theory solver is more likely to find a feasible schedule within
a reasonable amount of time. In this paper, we enhance this approach
by applying domain-specific heuristics to the optimization problem. Our
experiments show that by utilizing domain knowledge we can increase
the number of solved instances significantly.

1 Introduction

Embedded systems surround us in our daily life. Often, we interact or rely
on them without noticing. Embedded systems are typically small application-
specific computing systems that are part of a larger technical context. A com-
puter program executed on a processor of an embedded system usually controls
connected mechanical or electric components. For example, in a car, an embed-
ded system manages the engine of the car while another one corrects over- and
under-steering, e.g., when a driver goes into a bend too quickly.

Today, designing a new embedded system that serves a predefined purpose is
becoming more and more challenging. With increasing system complexity due to
regulatory requirements, customer demands, and migration to integrated archi-
tectures on massively parallel hardware, the task of system-level synthesis has
become increasingly more challenging. During synthesis, the spatial binding of
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computational tasks to processing elements (PEs), the multi-hop routing of mes-
sages, and the scheduling of tasks and messages on shared resources has to be
decided. Computational tasks can be viewed as small computer programs that
realize control functions where messages between tasks are used to exchange
information. In safety critical control application, e.g., the Electronic Stabil-
ity Control (ESP) from the automotive domain, the correct functionality of an
embedded system does not only depend on the correct result of a computation
but also on the time, i.e. the schedule, when the result is available. Such systems
are called (embedded) hard real-time systems.

With increasing complexity and interdependent decisions, system design
demands for compact design space representations and highly efficient automatic
decision engines, resulting in automatic system synthesis approaches. Previously
presented approaches might fail due to the sheer system complexity in context
of guaranteeing the timeliness of hard real-time systems. System synthesis based
on satisfiability modulo theories (SMT) has been shown to solve this problem
by splitting the work among a Boolean solver and a theory solver [1].

In the work at hand, we employed an answer set programming (ASP) solver
to decide the static binding of computational tasks to the PEs of a given hard-
ware architecture. Furthermore, the ASP solver determines for each message
a static routing on the hardware architecture’s network. Based on these deci-
sions, a linear arithmetic solver (T -solver) then computes global time-triggered
schedules for all computational tasks as well as messages. Here, the T -solver’s
solution guarantees the timing constraints of the system by construction. How-
ever, most often the time-triggered scheduling becomes too complex and the T -
solver cannot decide within a reasonable amount of time whether a binding and
routing (B&R) provided by the ASP solver is schedulable or not. As a remedy,
in [2] we introduced a coordinated SMT-based system synthesis approach that
shows a significant better scalability compared to previous SMT-based synthesis
approaches. We will present our proposed approach in detail in Sect. 3.

In [3] we presented a declarative framework for domain-specific heuristics in
answer set solving. The approach allows modifying the heuristic of the solver
directly from the ASP encoding. In this paper we show that the coordinated
SMT-based system synthesis approach is considerably improved by applying
domain-specific heuristics to the ASP solver clasp.

This paper is structured as follows. In Sect. 2 we provide a formal problem
definition of the system synthesis problem for hard real-time systems. Further-
more, a formal system model is introduced. Section 3 explains our approach to
solve the system synthesis problem in detail. In Sect. 4 we provide an intro-
duction of the concepts enabling domain-specific heuristics in clasp along with
the domain-specific heuristics we specified. The experimental results reported in
Sect. 5 show the effectiveness of our heuristics. Section 6 concludes this paper.

2 Problem Formulation and System Model

In this section we introduce a formal system model that will be used in the
remainder of this paper. Furthermore, on basis of our system model, we provide
a problem formulation of the synthesis problem for hard real-time systems.
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Fig. 1. An instance of our system synthesis model consisting of an application graph
(left), a platform graph (right), and bindings of computational tasks to tiles.

In the paper at hand the platform or hardware architecture is modeled as
a directed graph gP = (R,ER), the platform graph. Vertices R represent all
possibly shared resources of a platform whereas the directed edges ER ⊆ R×R
model interconnections between resources (cf. Fig. 1). The shared resources R
can further be partitioned into tiles Rt and routers Rr, with Rt ∪ Rr = R and
Rt ∩ Rr = ∅. A tile t ∈ Rt implements exactly one processing element (PE)
combined with local memory and is able to execute computational tasks. A router
r ∈ Rr is able to transfer messages from one hardware resource to another.
A mesh of interconnected routers form a so-called network-on-chip (NoC). NoCs
are a preferred communication infrastructure as they scale well with a growing
number of tiles that have to be interconnected in massive-parallel hardware
architectures. For the sake of clarity, the remainder of this paper assumes a
homogeneous hardware architecture, i.e., tiles possess the same processing power
and routers forward messages within the same delay.

The applications that have to be executed on a hardware architecture are
modeled by a set of applications A. Each application Ai ∈ A is specified by the
tuple

Ai = (gi
A, P i,Di).

An application in hard real-time systems often controls a mechanical system and
therefore requests to be executed periodically with the period P i. In order to
guarantee stability of a control algorithm, all computations and communication
of an application have to be completed within the constrained relative deadline
Di ≤ P i.

Furthermore, each application Ai ∈ A is modeled as a directed acyclic graph
gi

A = (Ti,Ei
A), the application graph (cf. Fig. 1). The set of nodes Ti = Ti

t∪Ti
m

is the union of the set of computational tasks of an application Ti
t and the set of

messages of an application Ti
m. The directed edges Ei

A ⊆ (Ti
t×Ti

m)∪(Ti
m×Ti

t)
of the graph gi

A specify data dependencies between computational tasks and
messages or vice versa.

With each computational task t ∈ Ti
t a worst-case execution time (WCET)

Ct is associated that holds for all PEs. The workload Wt generated by a task
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t ∈ Ti
t on a PE of tile is computed by Wt = Ct/Pi. Concerning messages

m ∈ Ti
m, the remainder of the paper assumes that a message equals an atomic

entity that is transferred on the resources of the hardware architecture. With
this definition, the worst-case transfer time of a message m ∈ Ti

m on a resource
r ∈ Rr is defined by C(m,r).

Problem Formulation. In the design of time-triggered real-time systems, sys-
tem synthesis is the task of computing a valid implementation I = (B,Rm,S)
consisting of a binding B ⊆

(⋃
Ai∈A Ti

t

)
× Rt, a routing of each message on

a tree of resources Rm ⊆ Rr and a feasible global time-triggered schedule S.
Here, the binding B contains for each computational task t ∈ Ti

t of an appli-
cation Ai ∈ A exactly one tile it is executed on. A routing Rm defines a set
of connected resources of the hardware architecture that are utilized during the
transfer of a message. The time-triggered schedule

S = {s(λ,r)|λ ∈ (Ti
t ∪ Ti

m),Ai ∈ A, r ∈ Rm ∨ (λ, r) ∈ B}

contains the start times s(λ,r), generally in clock cycles, for each computational
task that starts its execution on a tile and the start time of the transfer for each
message on the resources on which the message is routed.

Example. Figure 1 presents an example of the system synthesis problem as
described above. The platform graph gP = (R,ER) defines a regular 2× 2 mesh
with four tiles and four routers. All tiles are exclusively connected to exactly
one router, while all routers are additionally connected to a set of two other
routers. The example consists of only one application A1 with four computational
tasks and three messages. For the sake of clarity, we choose P1 = 10,D1 = 9,
Ct11

= Ct31
= Ct41

= 1, Ct21
= 2 and ∀m ∈ T1

m, ∀r ∈ Rr : C(m,r) = 1. One possible
implementation I = (B,Rm,S) is then given by the following sets:

B = {(t11, r
2
t ), (t21, r

1
t ), (t31, r

4
t ), (t41, r

3
t )}

Rm1
1

= {r2r , r1r}
Rm2

1
= {r1r , r3r , r4r}

Rm3
1

= {r1r , r3r}
S = { s(t11,r2

t )
= 0, s(m1

1,r2
r)

= 1, s(m1
1,r1

r)
= 2, s(t21,r1

t )
= 3,

s(m2
1,r1

r)
= 5, s(m2

1,r3
r)

= 6, s(m2
1,r4

r)
= 7, s(t31,r4

t )
= 8,

s(m3
1,r1

r)
= 6, s(m3

1,r3
r)

= 7, s(t41,r3
t )

= 8 }

3 SMT-Based System Synthesis

In the following section we present our SMT-based approach to solve the system
synthesis problem introduced in the previous section. SMT-based system synthe-
sis approaches, e.g., [1,4,5], gained a lot of attention in domains with complex
system specifications and stringent timing constraints such as the automotive
domain.
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Fig. 2. Overview of the coordinated SMT-based synthesis approach introduced in this
paper. We propose to utilize domain-specific heuristics in order to improve previous
work [2].

In SMT-based system synthesis, the work is split between a Boolean solver
and a theory solver (T -solver) [1] (cf. Fig. 2). Here, the Boolean solver computes
the static bindings of computational tasks to the PEs of a platform graph and
the multi-hop routes of messages on a tree of resource of the platform. In contrast
to related work [1,4,5], our approach implements the answer set solver clasp
instead of a SAT solver, since answer set programming (ASP) has been shown to
scale better in the determination of multi-hop routes for messages in the densely
connected hardware architectures investigated in this paper [6].

3.1 Binding and Routing Using Answer Set Programming (ASP)

The ASP facts based on the formal model of the platform graph gP = (Rt ∪
Rr,ER) and the applications Ai = (gi

A = (Ti
t ∪ Ti

m,Ei
A), P i,Di) ∈ A (cf.

Sect. 2) for a system instance are defined as follows:

{task(t,Wt). | t ∈ Ti
t, A

i ∈ A,Wt = 
1000 · Ct/Pi�} ∪
{send(t,m). | (t,m) ∈ Ei

A, t ∈ Ti
t,m ∈ Ti

m, Ai ∈ A} ∪
{receive(t,m). | (m, t) ∈ Ei

A, t ∈ Ti
t,m ∈ Ti

m, Ai ∈ A} ∪
{tile(t). | t ∈ Rt} ∪

{router(r). | r ∈ Rr} ∪
{edge(r, r̃). | (r, r̃) ∈ ER}.

(1)

The ASP encoding of the binding and routing problem is depicted in Fig. 3. The
rule in Line 1 specifies that every computational task provided in an instance
must be mapped to exactly one tile (PE). Observe that the mapping of com-
putational tasks t to a tile r ∈ Rt is represented by atoms bind(t,r) in an
answer set. This provides the basis for specifying the routing of messages. The
integrity constraint in Line 2 ensures that the workload of every tile does not
exceed its maximal utilization. The routing is carried out by (recursively) con-
structing non-branching acyclic routes from resources of communication targets
back to the resource of a sending task, where the routing stops. Line 4 (resp. 5)



60 B. Andres et al.

Fig. 3. ASP encoding of the binding and routing problem.

identifies the tile the sending (resp. receiving) task is bound to. The choice rule
in Line 6 connects each encountered target resource to exactly one predecessor,
with the only exception that the target resource is not the resource the sender
is bound to. Each connected resource is then identified as new target resource
in Line 7. Finally, the integrity constraint in Line 8 requires that each resource
with a sending task must be a target of the message.

3.2 Time-Triggered Scheduling

Based on the binding and routing decisions by the answer set solver, a time-
triggered scheduling problem in linear arithmetic is formulated and solved by
the T -solver. The workload is splitted since large numbers are involved in time-
triggered scheduling that do not scale well in Boolean solvers. The T -solver
computes the start times for each computational task on a PE and each message
on the resources of the NoC such that all timing constraints are fulfilled. All
constraints in the scheduling formulation are compositions of terms that are
formulated in quantifier-free integer difference logic (QF IDL), i.e., s − s̃ ≤ k,
with s, s̃ ∈ N being a start time variable of a computational task or message
and a constant k ∈ N. Constraints in the scheduling problem ensure for example
that one resource is utilized at most by one computational task or message at the
same time. Furthermore, constraints ensure the integrity of data flows between
computational tasks and/or messages. Due to the limited space of the paper a
detailed description of the scheduling problem and its formulation is omitted,
but can be found in [7]. Our formulation of the scheduling problem is an adapted
version of the one presented in [5].

3.3 Coupling of the Answer Set Solver and T -solver

If the T -solver is able to derive a time-triggered schedule based on the ASP
solvers decision, the synthesis finishes with a valid solution. In contrast, if the
T -solver proves that a feasible schedule based on the binding and routing does
not exist, a conflict analysis is started. Related work has shown that deriving
a minimal reason (unsatisfiable core or irreducible inconsistent subset) why a
schedule cannot be found can significantly increase scalability of SMT-based
system synthesis [4].
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In order to decrease the time for the T -solver to prove that a binding and
routing is not schedulable and to speed up a subsequent conflict analysis, we
implemented a hierarchical scheduling scheme that has been established in pre-
vious work [5]. The T -solver decides feasibility on subproblems before a schedule
is derived for the complete system. Here, deciding feasibility, as well as the sub-
sequent conflict analysis, of smaller subproblems tends to be much faster. Similar
to [2], we apply the following hierarchical scheduling scheme:
1. Schedule the computational tasks on each tile independently (TS).
2. Schedule the computational tasks on each tile including incoming and outgo-

ing messages from the tile independently (CS).
3. Schedule clusters of independent applications independently (AS).

If all scheduling problems in a hierarchical stage can be solved, the T -solver
starts to solve problems of the subsequent stage. In (AS), clusters of independent
applications are specified such that no hardware resource is shared between two
clusters. However, depending on the binding and routing, (AS) may be equivalent
to the problem of scheduling the complete system.

Our approach implements a modified deletion filter [5] and forward filter [8]
to compute a minimal reason why a schedule cannot be found. The deletion filter
is applied on infeasible problems of (TS) whereas the forward filter is applied
in conflict analysis in stages (CS) and (AS). Based on the first minimal reason
from the conflict analysis in a hierarchical stage, the search space of the answer
set solver is pruned via integrity constraints. As a result, further binding and
routing solutions computed by the answer set solver do not lead to the same
infeasibility that has already been observed. Note that the answer set solver is
just halted while the T -solver analyses a binding and routing. We do not restart
the answer set solver repeatedly.

If a conflict has been found in scheduling hierarchy (TS), the deduced minimal
reason only contains computational tasks. The constraint added to the context
of the answer set solver ensures that the same set of conflicting computational
tasks will not be bound to any PE again. In contrast, the result of a conflict
analysis in stage (CS) and (AS) is a set of computational tasks and messages.
Without breaking symmetries, the search space of the answer set solver is pruned
by the concrete binding and routing of the conflicting computational tasks and
messages. Once the search space of the answer set solver has been pruned, a new
binding and routing is computed and subsequently analysed in the T -solver.
This iterative process stops once a feasible time-triggered schedule has been
found or if the answer set solver returns that no further binding and routing can
be derived. In the latter case the SMT-based system synthesis approach proved
that no feasible solution to the synthesis problem exists for the provided problem
specification.

3.4 Coordinated SMT-Based System Synthesis

Up to this point, we introduced our SMT-based system synthesis approach that
is in general applicable to solve the synthesis problem presented in Sect. 2. How-
ever, a major drawback of the synthesis approach described so far lies in the
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Fig. 4. Encoding of the scheduling-aware binding and routing refinement realized as
lexicographical optimization of the maximal utilization of all tiles and the number of
routed messages.

often very time consuming scheduling in the T -solver. In extreme cases, decid-
ing schedulability even of small subproblems can take up hours. This is especially
the case if the workload of a PE is close to the maximum utilization of 100 %. As
a remedy, in [2] we showed that the scalability of SMT-based synthesis can be
improved considerably if the answer set solver and the T -solver are coordinated.
The basic idea of the coordinated SMT-based synthesis is to let the answer set
solver compute bindings and routings where schedulability can be decided within
a reasonable time by the T -solver. This is realized by assigning a constant time
budget to the answer set solver exclusively to refine (optimize) an initial binding
and routing solution. With this scheduling-aware binding and routing refinement
(cf. Fig. 2) the T -solver is expected to decide schedulability within a reasonable
amount of time. Despite the additional time budget for the refinement, the coor-
dinated SMT-based synthesis has been shown to scale significantly better than
SMT-based approaches without coordination [2].

In the coordinated SMT-based synthesis approach of this paper, the
scheduling-aware binding and routing refinement is realized by using a lexico-
graphical optimization in clasp. With the highest priority, the load balancing of
the PEs of the platform is optimized. Figure 4 depicts the encoding that realizes
a simplified load balancing strategy. The basic idea of the strategy is to allow
the solver to successively reduce the maximal utilization of PEs and then maxi-
mize the number of reductions. Beginning with a maximal utilization (maxu) of
1000 (Line 1) the choice rule in Line 2 allows to generate an additional maxu
by reducing an existing one by a predefined amount slice, as long as the new
maxu is greater then the optimal mean utilization omu(Mean). The integrity rule
in Line 3 enforces all maximal utilizations and Line 4 maximizes the number of
generated maxu. Note that we used this simplified strategy instead of a true min-
max optimization due to performance reasons. With the second highest priority
in the lexicographical optimization, we minimize the total number of routed
messages in a system as shown in Line 6. While the coordinated SMT-based
synthesis approach is part of the current state-of-the-art in symbolic system
synthesis, the paper at hand aims on improving the coordinated approach by
utilizing domain-specific heuristics in the answer set solver (cf. green box in
Fig. 2). The following section describes in detail our formulated heuristics and
the implementation details that enable the usage of domain-specific heuristics
in clasp.
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4 Heuristics

ASP provides a rich modelling language together with highly performant yet
general-purpose solving techniques. Often these general-purpose solving capaci-
ties can be boosted by domain-specific heuristics. For this reason, we introduced
a general declarative framework for incorporating domain-specific heuristics into
ASP solving [3]. The rich modelling language is used to specify heuristic infor-
mation, which is exploited by a dedicated Domain heuristic in clasp when it
comes to non-deterministically assigning a truth value to an atom. Although this
bears the risk of search degradation [9], it has already indicated great prospects
by boosting optimization and planning in ASP [3]. In this framework, heuristic
information is represented within a logic program by means of the dedicated
predicate heuristic. For expressing different types of heuristic information,
the following basic modifiers are available: sign, level, init and factor. Here
we explain the first two, that will be applied in our experiments, and refer the
reader to [3] for further details. Modifier sign allows for controlling the truth
value assigned to variables subject to a choice within the solver. With 1 repre-
senting true and -1 false, repectively. For example, given the program

{a}. _heuristic(a,sign ,1).

atom a is chosen with positive sign and the answer set { heuristic(a,sign,
1),a} is produced, while replacing 1 by -1 we obtain { heuristic(a,sign,
-1)}. Modifier level establishes a ranking among atoms such that unassigned
atoms of highest rank are chosen first, with the default rank of 0. Extending the
previous program with

{b}. _heuristic(b,sign , 1).

:- a, b. _heuristic(a,level ,1).

the solver chooses first a (because its level is 1) with a positive sign, and
returns the answer set where a is true and b is false. Adding the fact
heuristic(b,level,2) atom b is chosen first with positive sign, and we obtain
the answer set with b true and a false. Further extending the program with the
fact heuristic(a,level,3) yields once more the solution with a true and b
false. This illustrates the fact that when an atom gets two values for the same
modifier (in the example, 1 and 3 for the level of a), the one with higher
absolute value takes precedence. The modifier true (false) is defined as the
combination of a positive (negative) sign and a level. For instance, in the last
example we could use heuristic(a,true,3) instead of heuristic(a,sign,1)
and heuristic(a,level,3). Note that domain heuristics are dynamic, in the
sense that they depend on the changing partial assignment of the solver. As an
example, consider the following program:

1 _heuristic(a,true , 1). {a;b}.

2 _heuristic(b,sign , 1) :- a.

3 _heuristic(b,sign ,-1) :- not a.

The solver starts setting a to true, then the rule in Line 2 is fired, b is selected
with a positive sign and the answer set with a and b is produced. On the other
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Fig. 5. Domain-specific heuristics used in our system synthesis approach.

hand, replacing modifier true by false we obtain instead a false and b false.
This ability to represent dynamic heuristics is crucial to boost the performance
of our system.

In order to refine the binding and routing provided by clasp to the T -solver,
we defined a number of different domain-specific heuristics. Figure 5 presents
the heuristics that where most successful in increasing the number of solved
instances and reducing the overall synthesis time. Except when one heuristic is
overriden by another (e.g., H1 and H2 by H4) it makes sense to combine the
different heuristics. In fact, our experiments in Sect. 5 show that this is highly
advantageous.

The first heuristic H1 (Line 2–3) places a higher level on binding before
routing, since the routing of messages is highly dependent on the binding of
their corresponding tasks. Analysis of the answer sets provided by clasp shows
that many messages are routed over the whole platform even though shorter
paths exist. This is one of the major causes for failure during scheduling, since
the T -solver has to consider all resources a message is routed over. To reduce
unnecessary detours, the heuristic H2 in Line 5 gives a negative sign to all
reached/3 atoms.

Another technique to reduce the number of routed messages is to bind tasks
exchanging a message with each other onto the same tile. This is stated by the
heuristic H3 (Line 7), provided the sender is already bound to a tile.

The idea of H3 is extended in H4 (Line 10–16) where a task should be bound
preferably onto the same tile as its corresponding communication partner or,
to a lesser degree, to a neighboring tile. Note that only the rules for binding
a receiving task to its sender are shown. The heuristics for encoding that a
sending task should be bound to its receiver are analogous to the ones presented.
Additionally, H4 tries to bind all task of one application before binding any other
task. This allows to cluster tasks of one application onto the same tile before
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its full utilization is reached. The newly used fact neighbor/2 identifies two
neighboring tiles, while belongs(A,T) identifies tasks of the same application A
and provides an ordering of applications. The identifier A is chosen in such a way
that there are no conflicts with the offset of the heuristics in Lines 10 and 12.
Note that both heuristics H3 and H4 are dynamic.

5 Experiments

In the following section we present the experimental results which quantify the
improvement of our domain-specific heuristics from the previous section in coor-
dinated SMT-based system synthesis introduced in Sect. 3.

All experiments were performed on a dual-processor Linux workstation con-
taining two quad-core 2.4 GHz Intel Xeon E5620 and 24 GB RAM. All bench-
mark runs utilized only one CPU core and were carried out sequentially. We
report average values over three independent runs per instance, to reduce the
non-deterministic factors during the synthesis, e.g., through interrupting the
process.

As answer set solver we implemented the python module gringo, contain-
ing clasp (version 3.1.0) with command-line switch --configuration=auto.
In our initial tests unsatisfiable core based strategies (command-line switch
--opt-strategy=usc,4) revealed to be highly efficient for this problem class
and is taken as reference. Due to the algorithmic approach of unsatisfiable core
based optimization, domain-specific heuristics are not working with unsatisfiable
core based optimization strategies. We report results for the domain-specific
heuristics with branch and bound based optimization (command-line switch
--opt-strategy=bb,2). Both optimization strategies were selected as the best
strategies by comparison of the results on test instances.

As T -solver we implemented yices (version 2.3.0, [10]) with command-line
arguments --logic=QF IDL and --arith-solver=floyd-warshall. Addition-
ally, the Z3 theorem prover (version 4.3.2, [11]) in logic QF IDL was used in the
forward filter in conflict analysis.

In our experiments, the overall time limit for a complete system synthesis run
was set to 900 s. After this time, a still running benchmark was interrupted and
documented as unsolved. The time for clingo to refine an initial binding and
routing solution (optimization time) was set to 1 s. Note that in our tests more
optimization time decreased the number of successful synthesised systems. We
conjecture that the additional time spend on optimization reduces the time in
the SMT-based synthesis approach to learn “just enough” infeasible binding and
routing solutions within the overall time limit. However, the chosen optimiza-
tion time is still sufficient to refine solutions such that the T -solver can decide
feasibility within a reasonable amount of time.

Concerning the instances of our experiments, the platform graphs gR =
(R,ER) of all the system synthesis models were set to a regular 5 × 5-mesh
composed of 25 tiles and 25 routers. The characteristics of an application
Ai = (gi

A, Pi,Di) in the system’s application set were generated similar to the
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Table 1. Experimental results of our benchmarks. First two lines are optimization
only, while the lower ones include domain-specific heuristics and optimization (with
–opt-strategy = bb,2).

Strategy/heuristic Solved instances [of 60] Successful Couplings Solving time

Completely Partially Unsolved synthesis B&R Scheduling Total

Usc optimization 4 32 24 35% 118 157.46 83.74 241.20

b&b optimization 0 20 40 13% 199 280.03 154.76 434.79

Structural heuristic 34 8 18 62% 16 241.91 7.05 248.96

H1 12 30 18 44% 115 169.37 89.77 259.14

H1+H2 17 28 15 53% 102 150.86 51.14 202.00

H1+H2+H3 14 38 8 59% 99 145.67 116.73 262.39

H4 34 25 1 79% 40 54.75 56.16 110.90

H2+H4 35 19 6 75% 47 70.68 27.78 98.46

H4+ structural 38 17 5 79% 36 48.00 43.48 91.48

heuristics

ones reported in [2], representing relevant problem instances in the field of system
synthesis. As a difference, the total system utilization in our instances is 70%
whereas the reported instances in [2] utilized only up to 40%. In different tests
we found that a system’s utilization of nearly 70% results in significant harder
instances for the coordinated synthesis approach compared to utilization around
approximately 60%. Overall, we generated 60 different system instances with
the average number of applications per instance being 88 ± 2, a total number of
computational tasks of 391 ± 5 and a total number of messages of 303 ± 5.

Table 1 presents the selected results of our experiments. The first column
presents the strategy and/or heuristic used in the experiment run. “Structural
heuristics” references the commandline switch --dom-mod=5,8, automatically
applying an heuristic with the false modifier to all atoms involved in a mini-
mization statement. Note that all maximization statements are reduced to min-
imization before solving. The combination of multiple heuristics is depicted by
“+”. The next three columns depict the number of instances that where solved
completely, partially or not at all, meaning that all three, some, or none of
the three independent runs per instance were successful. “Successful synthesis”
shows the amount of test runs that finished successfully in percent of overall
180 runs, “couplings” present the average number of couplings needed to solve
one instance run with the respective approach. Note that both the resulting
numbers are rounded up to integer values. The table concludes with the average
time needed to solve the binding and routing (“B&R”), the scheduling and the
complete system synthesis problem (“total”) in seconds without instances that
exceeded the time limit of 900 s. Note that “B&R” includes the time for the
scheduling-aware binding and routing refinement (optimization time of 1 s per
answer set solver call).

Although only a few (most interesting) heuristic combinations are shown, we
conducted tests with over 70 different strategy/heuristic combinations in total.
Many of these combinations yielded average or worse results. Test runs without
optimization, i.e., without coordination of the answer set solver and the T -solver,
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are omitted from the table. None of these synthesis runs were successful (even
with the application of heuristics). Extensive data of our tests accompanied by
the full encoding can be found in the Labs section of [13].

Comparing the result of the different heuristics reveals that dynamic heuris-
tics are useful in practice and that the combination of different heuristics is most
efficient. Note that the heuristic H4 is a stronger reformulation of H1 and H3.

While the structural-based heuristic solves as many instances as the best
domain-specific heuristic H4 completely, a large number of instances were not
solved at all. The structural-based heuristic also has a huge unbalance of work-
load between clasp and yices, with the pure B&R solving time without opti-
mization over one order of magnitude larger than in the other approaches. The
reason for this is that the structural-based heuristic is very aggressive in finding
an optimal solution, with the first solution being very close to it. While this is
very effective in terms of couplings needed, the overall runtime is worse than in
the domain-specific heuristics. We suspect that structural-based heuristic does
not scale well when the number of necessary routings increases. The combina-
tion of H4 and the structural heuristic is controversial. While it solves 4 more
instances completely, the same number of instances were unsolved.

Our experiments show that the application of domain-specific heuristics
yields a significant increase of successful synthesis runs with almost twice as
many compared to the best strategy relying only on the scheduling-aware bind-
ing and routing refinement (using a clasp’s unsatisfiable core based optimization
strategy). At the same time, both the average number of couplings and the total
synthesis time is reduced. Furthermore, and more importantly, the number of
completely solved instances were increased by a factor of 8.

6 Conclusion

In this paper we presented an SMT-based synthesis approach for hard real-time
system synthesis. The approach at hand utilizes the answer set solver clasp for
generating a binding and routing and the linear arithmetic solver yices (T -
solver) for time-triggered scheduling based on clasp’s decisions. We discussed
that a scheduling-aware refinement of the solution provided by clasp is needed
such that the T -solver is able to solve the scheduling problem within a reason-
able amount of time. Based on the optimization-based refinement of [2] we apply
domain-specific heuristics, utilizing a novel technique [3] for specifying heuristics
for clasp. A number of efficient domain-specific heuristics were proposed and
benchmarked against optimization-only approaches, as well as structural heuris-
tics provided by clasp. The results of the benchmark show that our domain-
specific heuristics had a significant positive impact on both instances solved as
well as on the runtime for solved instances. It is expected that the approach of
utilizing domain-specific heuristics for the refinement of the solutions provided
by the Boolean solver can be applied to other applications that combine Boolean
with theory solving as well.

Future work includes the search for additional heuristics/approaches toward
abolishing the need for optimization, currently consuming approximately half of
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the total synthesis time. We would also like to explore the possible advantages of
a tighter integration of the Boolean and the theory solver as described in [8,12].
To the best of our knowledge none support domain-specific heuristics as utilized
in clasp (3.1.0) yet.

Acknowledgments. This work was partly funded by DFG (550/9).
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Abstract. Knowledge representation and reasoning capacities are vital
to cognitive robotics because they provide higher level functionalities for
reasoning about actions, environments, goals, perception, etc. Although
Answer Set Programming (ASP) is well suited for modelling such func-
tions, there was so far no seamless way to use ASP in a robotic setting. We
address this shortcoming and show how a recently developed ASP sys-
tem can be harnessed to provide appropriate reasoning capacities within
a robotic system. To be more precise, we furnish a package integrating
the new version of the ASP solver clingo with the popular open-source
robotic middleware Robot Operating System (ROS). The resulting sys-
tem, ROSoClingo, provides a generic way by which an ASP program can
be used to control the behaviour of a robot and to respond to the results
of the robot’s actions.

1 Introduction

Knowledge representation and reasoning capacities are vital to cognitive robotics
because they provide higher level functionalities for reasoning about actions,
environments, goals, perception, etc. While Answer Set Programming (ASP) is
well suited for modelling high level functionalities, there was so far no seamless
way to use ASP in a robotic setting. This is because ASP solvers were designed
as one-shot problem solvers and thus lacked any reactive capabilities. So, for
instance, each time new information arrived, the solving process had to be re-
started from scratch.

In this paper, we address such shortcomings and show how a recently devel-
oped (multi-shot) ASP system [1] can be harnessed to provide knowledge rep-
resentation and reasoning capabilities within a robotic system. We accomplish
this by integrating a multi-shot ASP approach, where online information can be
incorporated into an operative ASP solving process, into the popular open-source
middleware ROS1 (Robot Operating System; [2]).

T. Schaub—Affiliated with Simon Fraser University, Canada, and IIIS Griffith Uni-
versity, Australia.
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To be more precise, we furnish a ROS package integrating the ASP solver
clingo 4 with the popular open-source ROS robotic middleware. The resulting
system, called ROSoClingo, provides a generic method by which an ASP program
can be used to control the behaviour of a robot and to respond to the results
of the robot’s actions. In this way, the ROSoClingo package plays the central
role of fulfilling the need for high-level knowledge representation and reasoning
in cognitive robotics by making details of integrating a reasoning framework
within a ROS based system transparent to developers. As we detail below, the
robotics developer can encode high-level planning tasks in ASP keeping only the
interface requirements of the underlying behaviour nodes in mind and avoiding
implementation details of their functionality (motion planning for example).

One crucial added value of our integration of reactive ASP framework into
ROS is the facility of encoding adaptive behaviours directly in a declarative
knowledge representation formalism. Additionally, the robot programmer can
handle execution failures directly in the reasoning formalism. This paves the
way for deducing new knowledge about the environment or diagnostic reasoning
in the light of execution failures. The case study in Sect. 4 demonstrates these
advantages of ROSoClingo.

Finally, it is worth mentioning a number of related approaches which utilize
ASP or other declarative formalisms in cognitive robotics. In the work of [3,4]
ASP is used for representing knowledge via a natural language based human
robot interface. Additionally, action language formalisms and ASP have been
used to plan and coordinate multiple robots for fulfilling an overall task [5,6].
ASP has also been used to integrate task and motion planning via external
calls from action formalism to geometric reasoning modules [7]. However, all
these implementations rely on one-shot ASP solvers and thus lack any reactive
capabilities. Hence, they could greatly benefit from the reactive solving that
comes from the usage of ROSoClingo.

In what follows, we provide the architecture and basic functionality of the
ROSoClingo system. We then outline the ASP encoding for an example mail
delivery robot. This example serves to highlight the features of the system but
also serves as a guide for how an ASP encoding could be written for other appli-
cation domains. The operations of the mail delivery robot are illustrated via
a case-study conducted within a 3D simulation environment.2 The features of
ROSoClingo are discussed with reference to this case study and through compar-
isons to alternative approaches. Finally, it should be mentioned that the ROSo-
Clingo system is publicly available [13] and we are committed to submitting the
ROSoClingo package to the public ROS repository.

2 ROSoClingo

In this section, we describe the general architecture and functionality of the
ROSoClingo system. With the help of the reactive ASP solver clingo (ver-
sion 4), ROSoClingo provides high-level knowledge representation and reasoning
2 http://gazebosim.org.

http://gazebosim.org
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Fig. 1. The general architecture and main work flow of ROSoClingo.

capabilities to ROS based autonomous robots. Critically, clingo supports multi-
shot reactive solving, where the solver does not simply terminate after an initial
answer set computation, but instead enters a loop, incrementally incorporating
new information into the solving process. For more extensive background to both
clingo 4 and ROS the interested reader is referred to an extended version of this
paper [8].

Figure 1 depicts the main components and workflow of the ROSoClingo sys-
tem. It consists of a three layered architecture. The first layer consists of the
core ROSoClingo component and the instantiation of a ROS actionlib API. In
essence, this API simply exposes the services provided by ROSoClingo for use by
other processes (i.e., ROS nodes). The package also defines the message structure
for communication between the core ROSoClingo node and the various nodes of
the interface layer. In contrast to the reasoning layer, the interface layer provides
the data translations between what is required by the ROSoClingo node and any
ROS components for which it needs to integrate. This architecture provides for a
clean separation of duties, with the well-defined abstract reasoning tasks handled
by the core node and the integration details handled by the interface nodes.

2.1 The ROSoClingo Core

The main ROSoClingo node is composed of a python module for the answer
set solver clingo controlled by clingoControl, an actionExtractor, and an
inputFeeder. Through its ROS actionlib API, it can receive goal and cancella-
tion requests as well as send result, feedback, and status information back to a
client node (marked by 1 in Fig. 1). The ASP program, encoding the high-level
task planning problem, is given to the ROSoClingo node at system initialization
(marked by 2). During initialization, ROSoClingo grounds the base subprogram
of the ASP encoding and sets the current logical time point as well as the current
horizon to 0. The logical time point identifies which actions of a task plan are to
be executed next, while the horizon identifies the length of the task plan. The
time point is incremented at the end of each cycle.
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Algorithm 1. clingoControl
solveAsynchronous

if clingo returns satisfiable then
task plan ← get answer set from clingo
actionExtractor(task plan)

if clingo returns unsatisfiable then
horizon ← horizon + 1
assignExternal(Fun("horizon",[horizon-1]),False)
ground([("transition",[horizon])])
ground([("query",[horizon])])
assignExternal(Fun("horizon",[horizon]),True)
clingoControl

Fig. 2. Keywords used for communicating between ROSoClingo and clingo.

ROSoClingo’s workflow starts with a goal arriving at the inputFeeder
(marked by 1). If clingo is already in the process of searching for a task plan, the
solving procedure is interrupted and the new goal is added to the solver. The
goal request is transformed into an ASP fact and transmitted to clingo (marked
by 3). Then clingoControl is called to resume the solving process with the
additional goal.

Algorithm 1 presents the pseudo code representation of the clingoControl
procedure. The clingo functions assignExternal as well as ground are explained
in more detail in Sect. 3. It instructs the clingo solver to asynchronously find a
task plan that satisfies all given goals. If clingo is able to find a valid task
plan then the solution is forwarded to the actionExtractor. If no task plan
is found for the current horizon, the horizon is incremented by one time step.
This is realized by assigning False to the external atom that identifies the old
horizon, followed by the grounding of the transition and query subprograms for
the new horizon, and finally, the assignment of True to the external atom that
identifies this new horizon. Note that the keyword Fun represents clingo’s data
type for function terms, here applied to the external horizon atoms. Finally,
clingoControl is called again to find a task plan with the new horizon. If an
interrupt occurs, the solving process is stopped without clingo determining the
(un-)satisfiability of the current program and clingoControl ends.

The actionExtractor identifies actions to be executed during the cur-
rent logical time point and transforms them into ROSoClingo output messages
(marked by 4). These messages are then transmitted via the /ROSoClingo/out
topic3 (marked by 5). It is then the task of the interface layer nodes to trans-

3 Topics are a named publisher-subscriber communications mechanism for message
passing between ROS nodes.
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form them into goal requests for the underlying actionlibs and to compose a
response once the action is executed. The response arrives at the inputFeeder
component of the ROSoClingo node via the /ROSoClingo/in topic (marked by
6). The details of how the ROSoClingo interface layer interacts with existing
ROS components are outlined in Sect. 2.2.

In contrast to goal requests, messages arriving at the inputFeeder com-
ponent via /ROSoClingo/out are transformed into event predicates and then
incorporated into the existing ASP program as external facts and processed by
clingo. The keywords of Fig. 2 encode the protocol for this (internal) communica-
tion between ROSoClingo and clingo. The second column indicates whether the
keyword is an input (in) or part of the output (out) of clingo. The (un)successful
result of an action may generate new knowledge for the robot about the world
(for example, the fact that a doorway is blocked or a new object is sensed).

Once all actions of the current time point report a result the cycle is com-
pleted and a new one is initiated, provided there are still actions left to be
executed in the task plan. If the task plan is completed ROSoClingo waits for
new goal requests to be issued.

Finally, it is worthwhile noting that the ROSoClingo package is able to sup-
port multiple goal requests at a time.

2.2 Integrating with Existing ROS Components

The core ROSoClingo node needs to issue commands to, and receive feedback
from, existing ROS components. The complexity of this interaction is handled
by the nodes at the interface layer (cf. Fig. 1). Unlike the components of the
reasoning layer it is, unfortunately, not possible to define a single ROS interface
to capture all interactions that may need to take place. Firstly, there is a need for
data type conversions between the individual modules. Turning ROS messages
into a suitable set of clingo statements therefore requires data type conversions
that are specific for each action or service type.

A second complicating issue is that the level of abstraction of a ROS action
may not be at the appropriate level required by the ASP program. For example,
the pose goal for moving a robot consists of a Cartesian coordinate and orienta-
tion. However, reasoning about Cartesian coordinates may not be desirable when
navigating between named locations such as corridors, rooms and offices. Instead
one would hope to reason abstractly about these locations and the relationship
between them; for example that the robot should navigate from the kitchen to
the bedroom via the hallway.

While it is not possible to provide a single generic interface to all ROS com-
ponents, it is however possible to outline a common pattern for such integration.
For each existing component that needs to be integrated with ROSoClingo there
must be a corresponding interface component. We therefore adopt a straightfor-
ward message type for messages sent by ROSoClingo. This type consists of an
assigned name for the robot performing the action and the action to be executed.
Note, the addition of robot names allows for the coordination of multiple robots,
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or multiple robot components, within a single ASP program and to identify the
actions performed by each robot or component.

In a similar manner to the ROSoClingo output messages, the input messages
also consist of a straightforward message type. These messages allow for an
interface node to either respond with the success or failure of a ROSoClingo
action, or alternatively to signal the result of some external or sensory input.

In the scope of the work presented in this paper we implemented an inter-
face to the ROS move base actionlib, a standard ROS component for driving
a robot. The interface maps symbolic locations with specific coordinates in the
environment, e.g. kitchen to (12.40,34.56,0.00), and vice versa. The interface
node then tracks the navigation task and reports back to the ROSoClingo core
the success or failure of its task.

3 ASP-based Task Planning in ROSoClingo

The methodology of ROSoClingo’s ASP-based approach to task planning is
composed of two main activities, viz. formalizing the dynamic domain and for-
malizing the task as a planning problem in this domain. Each activity involves
representing different types of knowledge related to the problem.

The basic principles of this methodology are similar to the general guidelines
of representing dynamic domains and solving planning problems in ASP (either
it is a direct ASP encoding [9] or an implementation of an action language
via ASP [10]). However, since ROSoClingo relies upon the multi-shot solving
capacities of the clingo 4 ASP system [1], the resulting encoding should meet
the requirements of the incremental setting, where the whole program is struc-
tured as parametrizable subprograms. Multi-shot ASP solving is concerned with
grounding and the integration of subprograms into the solving process, and is
fully controllable from the procedural side, viz. the scripting language Python in
our case. In explaining this process, we first concentrate on the methodology of
representing various types of knowledge and later explain the way this knowledge
is partitioned into subprograms.

For illustrating the methodology, consider the ASP encoding of a simplified
mail delivery scenario, offering a well-known exemplary illustration of action for-
malisms in robotics [11,12]: A robot is given the task of picking up and delivering
mail packages between offices. Whenever a mail delivery request is received, the
robot has to navigate to the office requesting the delivery, pick up the mail pack-
age, and then navigate and deliver the item at the destination office. In addition,
cancellation requests may happen. If the robot has already picked up the pack-
age, it must then return the package to the originating office. Additionally, some
of the pathways in the environment may be blocked for some time.

We formalize the dynamic domain by representing the following types of
knowledge. Due to space constraints, we provide only representative ASP snip-
pets. One can find the full encoding at [13].
Static Knowledge. Time-independent parts of the domain constitute the static
knowledge. In view of Sect. 4, we assume a world instance from the Willow



Integrating ASP into ROS for Reasoning in Robots 75

Garage office map and encode this map related information as static knowledge.
The following is a snippet from the logic program declaring nodes of waypoints,
which are composed of offices, corridors, and open areas, and connections among
waypoints.
corridor(c1). corridor(c2). open(open1 ). office(o4).

connection(c3 ,o4). connection(c1 ,open1 ). connection(c1 ,c2).

connection(X,Y) :- connection(Y,X). waypoint(X) :- corridor(X).

waypoint(X) :- open(X). waypoint(X) :- office(X).

In contrast to static knowledge, dynamic knowledge is time-dependent. In
the following program snippets we use the parameter t to represent a time
point. It is also used as an argument when declaring clingo 4’s parameterizable
subprograms (such as #program transition(t)). ROSoClingo’s control mod-
ule incrementally grounds and integrates such programs with increasing integer
values for t. For instance, the call ground([("transition",[42])]) grounds
the transition subprogram for planning horizon 42.

In order to specify a state of a dynamic domain, fluents (i.e., properties that
change over time) are used. A state associated with a time point t is characterized
by the fluents captured by atoms of the form holds(F,t) where F is an instance
of a fluent. Figure 3 lists not only the fluents, but also the actions and exogenous
events of the domain. While actions are performed by the robot, events may
occur in the dynamic domain without the control of the robot. Actions and
events occur within a state of the world and lead to some resulting state. We use
the meta-predicates occurs(A,t) and event(E,t) for stating the occurrence of
action A and event E respectively at time point t. We use the following choice
rule to allow any action (extensions of action predicate includes all actions of
the domain) to occur at time point t. The upper bound 1 concisely expresses
that no concurrent task plans are permitted.

Fig. 3. Fluents, actions, and events used to formalize the domain
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{ occurs(A,t) : action(A) } 1.

Within the fluents, actions, or events of the domain, we identify each mail
package delivery with the pair (O,P) consisting of its origin O and destination
P. Although this leads to a simpler encoding, it does limit us to a single delivery
from O to P at a time.

A crucial role in modeling exogenous events is played by clingo’s external
directives [1]. An #external directive allows for, as yet, undefined atoms. To
signal external events to the solver, ROSoClingo relies upon clingo’s library func-
tion assignExternal that allows for manipulating the truth values of external
atoms. For instance, the following rules show how the goal request (based on
the signature given in Fig. 2) is declared as an external atom and projected into
exogenous event request(O,P).
#external event(request ,(ID ,bring(O,P)),t) :- office(O;P), id(ID).

event(request(O,P),t) :- event(request ,(ID ,bring(O,P)),t).

Recall that the first element of the occurs(Robot,Action,T) atom (Fig. 2)
allows for reasoning with concurrent task plans for multi-robot scenarios or for
robots with multiple actuators. However, we use occurs(A,t) in our case study,
since we generate non-concurrent task plans for a single robot. The following
rule adds the actuator name.
occurs(mailbot ,A,t) :- occurs(A,t).

Static Causal Laws. This type of knowledge defines static relations among
fluents. They play a role in representing indirect effects of actions. The following
rule represents that blocked is symmetric and shows how one true blocked
fluent can cause another blocked fluent to be true in a state.
holds(blocked(W,W’),t) :- holds(blocked(W’,W),t).

Dynamic Causal Laws. Direct effects of actions and events are specified by
dynamic causal laws. An action or event occurrence at time t can make its
effect fluent hold at t. Additionally, the occurrence may cancel the perpetuation
of fluents. To this end, we use atoms of the form abnormal(F,t) to express that
fluent F must not persist to time point t. In robotics, however, action execution
failures may occur. Whenever an underlying ROS node fails to perform an action,
ROSoClingo triggers the value(failure) event to signal the execution failure
to the encoding. We use atom executes(A,t) to decouple the occurrence of
action A from its effects taking place.
executes(A,t) :- occurs(A,t), not event(value(failure),t).

This provides us with a concise way of blocking imaginary action effects and
thus avoids inconsistencies between the actual world state and the robot’s world
view. Below are dynamic causal laws for action go(W) and event cancel(O,P).
holds(at(W),t) :- executes(go(W),t).

abnormal(at(W’),t) :- executes(go(W),t), holds(at(W’),t-1).

holds(received(cancel(O,P)),t) :- event(cancel(O,P),t).

abnormal(received(request(O,P)),t) :- event(cancel(O,P),t).

In addition, ASP’s default reasoning capabilities, together with explicit
executes and occurs statements, pave the way for reasoning with execution
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failures. For instance, the following rule enables the robot to conclude that the
connection to a waypoint is blocked whenever the attempt to navigate to that
waypoint fails. (See the third scenario in Sect. 4 for an illustration.)

holds(blocked(W’,W),t) :- occurs(go(W),t), not executes(go(W),t),

holds(at(W’),t-1).

Action Preconditions. Action preconditions provide the executability condi-
tions of an action in a state. We use atom poss(A,t) to state that action A is
possible at t. Below are preconditions of action go(W). The integrity constraint
makes sure that only actions take place whose preconditions are satisfied.
poss(go(W),t) :- holds(at(W’),t-1), connection(W’,W),

not holds(blocked(W’,W),t-1).

:- occurs(A,t), not poss(A,t).

Inertia. The following rule is a concise representation of the frame axiom.
holds(F,t) :- holds(F,t-1), not abnormal(F,t).

This completes the formalization of the dynamic domain. Next, we formalize
the robot’s task as a planning problem.
Initial Situation. The following rules represent the initial situation by stating
the initial position of the robot.
init(at(open3 )).

holds(F,0) :- init(F).

Goal Condition. The following snippet expresses the goal condition. This is
the case whenever the robot has no pending delivery request and is not holding
any package.
goal(t) :- not holds(received(request(_,_)),t),

not holds(holding(_,_),t).

#external horizon(t).

:- not goal(t), horizon(t).

The integrity constraint makes the program unsatisfiable whenever the goal is not
reached at the planning horizon. Clearly, this constraint must be removed when-
ever the horizon is incremented and a new instance with an incremented horizon
is added. To this end, we take advantage of the external atom horizon(t) whose
truth value can be controlled from ROSoClingo as shown in Algorithm 1. The
manipulation of truth values of externals provides an easy mechanism to activate
or deactivate ground rules on demand.

We have mentioned that clingo programs are structured into parame-
trizable subprograms. ROSoClingo relies on three subprograms, viz. base,
transition(t), and query(t). The formalized knowledge is partitioned into
these subprograms as follows: base contains the time-independent knowl-
edge (static knowledge and initial situation), transition(t) contains the time-
dependent knowledge (static and dynamic causal laws, action preconditions, and
inertia), and finally query(t) contains the time-dependent volatile knowledge
(goal condition). (See the full encoding at [13].)
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4 Case Study

We now demonstrate the application of our ROSoClingo package in the mail
delivery setting described in the previous section (Sect. 3). A robot is given the
task of picking up and delivering mail packages between offices. Whenever a mail
delivery request is received, the robot has to navigate to the office requesting
the delivery, pick up the mail package, and then navigate and deliver the item
at the destination office.

While the mailbot task is intrinsically dynamic in nature, a secondary source
of dynamism is the external environment itself. Obstacles and obstructions are a
natural part of a typical office environment, and it is in such cases that the need
for high-level reasoning becomes apparent. Our scenario not only highlights the
operations of a mail delivery robot in responding to new requests but also shows
how such a robot can respond to a changing physical environment.

The office scenario is provided in simulation by the Gazebo 3D simulator
using an openly accessible world model available for the Willow Garage4 offices.
The robot is a TurtleBot equipped with a Microsoft Kinect 3D scanner, which
is a cost-effective and well supported robot suitable for small delivery tasks.

From the office environment a partial map has been generated using standard
mapping software [14]. This static map is then used as the basis for navigation
and robot localization. Furthermore, from this map a topological graph has
been constructed to identify individual offices and waypoints that serve as a
graph representation for logical reasoning and planning. While this graph has
been hand-coded, topological graphs can also be generated through the use of
automated techniques [15].

As previously outlined, ROSoClingo provides a simple mechanism for integra-
tion with other ROS components, including basic navigation. We further allow
for external messages that can be sent to the robot informing it of paths that
have been blocked and cleared. In an office environment this can correspond
to public announcements, such as work being undertaken in a particular area.
Such external messages can also be viewed in the context of the robot receiving
additional sensor data.

Finally, as our robot was not equipped with a robot manipulator, item pickup
and delivery functionality was simulated by a ROSoClingo interface that simply
responds successfully to pickup and deliver action requests.
Scenarios. We consider three scenarios to highlight the behaviour of the mail-
delivery robot when it detects and is informed of paths that have been blocked
and cleared. In all three scenarios,5 the robot is initially in the open area shown
in Fig. 4.

In the first scenario, the robot is told that the corridor is blocked between
points C3 and C4. It is then told to pick up an item from office O9 and deliver it
to office O14. As ROSoClingo is able to plan at an abstract level it is able to know
that it can move to O9 along the optimal route (i.e., via C6) but must return

4 http://www.willowgarage.com.
5 The videos of these scenarios are available at http://goo.gl/g8S5Ky.

http://www.willowgarage.com
http://goo.gl/g8S5Ky
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Fig. 4. (a) An office environment for a mail delivery robot, and (b) scenario showing
delivery from O9 to O14, with a blockage dynamically appearing in the corridor between
C3 and C4.

Fig. 5. (a) Scenario showing an obstruction being cleared allowing re-planning for a
shorter path through C4 and C3, and (b) scenario showing adaptive behaviour where
changes in the physical environment can affect the order in which tasks are performed.

through the open area and travel via the corridor point C2 in order to reach its
destination O14. This path is indicated by the solid blue line in Fig. 4(b).

The second scenario (Fig. 5(a)) extends that of the first. From O9 the robot
knows that the path between C3 and C4 is blocked so it starts to take the long
way around as before. However, by the time it reaches C6 it has been informed
that the blockage has been cleared. This triggers re-planning at the ROSoClingo
level and the robot is turned around and the shorter path taken through C4 and
C3 to the destination O14.

Finally the third scenario shows how dynamic changes to the physical envi-
ronment can affect the order in which tasks are performed. In this scenario
(Fig. 5(b)) the robot is first given a task to deliver an item from the office O7
to O11. While in the vicinity of C6 the robot is given a second task to take an
item from O2 to O3. Since it reasons that it is already close to O7 the robot
continues on with its first delivery task. However, as it progresses past C4 the
robot detects that the path between C4 and C5 is blocked. Consequently, the
robot has to turn around and take the longer route through the open area. But
now offices O2 and O3 are closer to the robot than O7 and O11. This causes a
change in the robot’s task priorities and it swaps the order of tasks, performing
the second delivery task first before continuing on with the original.



80 B. Andres et al.

Discussion. The three mail-delivery scenarios outlined here showcase the adap-
tive behaviour of the ROSoClingo system. The robot is able to respond dynami-
cally to new mail delivery requests while at the same time adapting intelligently
to changes in the physical environment. Furthermore, an important property of
ROSoClingo is that it implicitly performs a form of execution monitoring [16,17].

Execution monitoring is handled implicitly by ROSoClingo because it makes
no assumptions about the successful execution of actions. Rather, the ROSo-
Clingo interface nodes handle the task of monitoring for the successful comple-
tion of actions. This information is then reported back to the reasoner and any
failures are handled appropriately.

In fact, because execution monitoring is incorporated directly into the ASP
reasoner, ROSoClingo can provide for much finer control than is allowed for by
traditional systems such as [16]. In particular because execution monitors are
specifically designed to deal with anomalous situations, such as action failures,
they typically ignore external events that do not result in the failure of the
current plan. At first glance, this may seem reasonable. However, in practice it
can result in unintuitive and sub-optimal behaviour. For example, in the second
mail delivery scenario (Fig. 5(a)) the robot replans on the announcement that
a blockage has been cleared. Importantly, this re-planning is not triggered as a
result of a failure of the current plan, but instead as a recognition of the existence
of a better plan. In contrast, because the longer plan is still valid, a traditional
execution monitoring based robot would ignore the positive information that the
blockage has been cleared and the robot would simply follow the longer route.

Because of ROSoClingo’s ability to immediately adapt to new information
it bears some resemblance to the Teleo-Reactive programming paradigm of [18].
This goal directed approach to reactive systems is based on guarded action rules
which are being constantly monitored and triggered based on the satisfaction of
rule conditions. However, while Teleo-Reactive systems can provide for highly
dynamic behaviour, they typically do not incorporate the complex planning and
reasoning functionality of traditional action languages. Hence, in the same way
that action language formalisms are rarely applied to highly reactive problem
domains, these reactive approaches are rarely applied in problems that require
complex reasoning and planning.

However, in constrast to the dichotomy suggested by the difference between
these two approaches, many practical real-world cognitive robotic problems do
require both highly reactive behaviour and complex action planning. This is
highlighted by our mail delivery scenarios where the robot has to undertake
its mail deliver tasks while still operating in a dynamically changing physical
environment. The successful application of ROSoClingo to this task shows that
it can be seen as a step towards bridging these two approaches. A robot that
incorporates complex reasoning and planning can at the same time adapt to a
highly dynamic external environment.

5 Conclusion

We have developed a ROS package integrating clingo 4, an ASP solver featuring
reactive reasoning, and the robotics middleware ROS. The resulting system,
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called ROSoClingo, fulfils the need for high-level knowledge representation and
reasoning in cognitive robotics by providing a highly expressive and capable
reasoning framework. ROSoClingo also makes details of integrating the ASP
solver transparent for the developer, as it removes the need to deal with the
mechanics of communicating between the solver and external (ROS) components.

Using reactive ASP and ROSoClingo, one can control the behaviour of a
robot within a single framework in a fully declarative manner. This is partic-
ularly important when contrasted against Golog [11] based approaches where
the developer must take care of the implementation (usually in Prolog) details
of the control knowledge, and the underlying action formalism separately. We
illustrated the usage of ROSoClingo via a three-fold case-study conducted with a
ROS-based simulation of a robot delivering mail packages in the Willow Garage
office environment using the Gazebo 3D simulator. We showed that ASP based
robot control via ROSoClingo establishes a principled way of achieving adaptive
behaviour in a highly dynamic environment.

This work on ROSoClingo opens up a number of avenues for future research.
Here we concentrated on the use of ROSoClingo for high-level task planning.
However clingo is a general reasoning tool with applications that extend to other
areas of knowledge representation and reasoning such as diagnosis and hypothesis
formation. Consequently, an important area for future research would be to
consider the use of ROSoClingo in these contexts, such as a robot that makes
and reasons about the causes of observations in its environment. Another line
of future research is to utilize clingo’s optimization statements to find optimal
task plans when costs of actions are not uniform [19].

Acknowledgments. This work was funded by ARC (DP150103034) and DFG
(550/9).
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Abstract. In legal reasoning, different assumptions are often considered
when reaching a final verdict and judgement outcomes strictly depend on
these assumptions. In this paper, we propose an approach for generating
a declarative model of judgements from past legal cases, that expresses
a legal reasoning structure in terms of principle rules and exceptions.
Using a logic-based reasoning technique, we are able to identify from
given past cases different underlying defaults (legal assumptions) and
compute judgements that cover all possible cases (including past cases)
within a given set of relevant factors. The extracted declarative model of
judgements can then be used to make deterministic automated inference
on future judgements, as well as generate explanations of legal decisions.

1 Introduction

In legal reasoning, especially in continental laws, we use written rules to make
a judgement in litigation. In these written rules, principle rules and exceptions
are mentioned. It is related to proof of persuasion where conditions of principle
rules must be proven by the side who claims holding the conclusion of principle
rules, whereas exceptions must be proven by the side who denies the conclusion.
Moreover, some rules are refined by the highest court in a country (the supreme
court in Japan, for example) by adding some exceptions if the current principle
rules or exceptions do not capture the conclusion of the current litigation.

In this paper, we consider the problem of generating a set of case-rules from
previous cases judged by the court. Suppose that the following cases are found
in the conclusion of “depriving the other party of what he (or she) is entitled to
expect under the contract” in commercial litigation.

Case 1: The plaintiff (the buyer) showed that the goods were delivered on time
but he failed to prove that there was a damage of goods. In this case, the
judge decided that the seller did not deprive the buyer of what he expects.

Case 2: The plaintiff showed that the goods were delivered on time but the
goods were damaged. The defendant failed to prove that it is repairable. In
this case, the judge decided that the buyer was deprived of what he expects.

c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 83–96, 2015.
DOI: 10.1007/978-3-319-23264-5 8
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Case 3: The plaintiff showed that the goods were delivered on time but the
goods were damaged. Then, the defendant showed that the damage could
be repaired and the buyer fixed an additional period of time for repair and
the repair was completed in the additional period. In this case, the judge
decided that the seller did not deprive the buyer of what he expects.

Case 4: The plaintiff showed that the goods were not delivered on time. Then,
the defendant showed that the buyer fixed an additional period of time for
the delivery but failed to prove that the goods were delivered in the period. In
this case, the judge decided that the buyer was deprived of what he expects.

Case 5: The plaintiff showed that the goods were not delivered on time. Then,
the defendant (the seller) showed that the buyer fixed an additional period
of time and the goods were delivered in the period. In this case, the judge
decided that the seller did not deprive the buyer of what he expects.

We would like to decide whether the following case satisfies the conclusion
“depriving the other party of what he is entitled to expect under the contract”:

New Case: The plaintiff showed that the goods were delivered on time
but were damaged. The defendant showed that it could be repaired and
showed that the buyer fixed an additional period of time for repair, but
failed to prove that the repair was not completed in the additional period.

We can formalise all the factors mentioned in cases 1–5 as described below.

dot The goods are delivered on time
fad The buyer fixes an additional period for delivering the goods
dia The goods are delivered in the above additional period
ooo The goods are damaged
rpl The goods are repairable
far The buyer fixes an additional period for repair
ria The goods are repaired in the above additional period

Past cases can then be expressed as pairs where the first argument denotes the
factors mentioned in the case and the second argument the positive (+dwe) or
negative (−dwe) conclusion “depriving the other party of what he is entitled to
expect under the contract”. We would like to deterministically infer what the
conclusion would be for the new case, given the past cases:

Case 1 〈{dot}, −dwe〉 Case 4 〈{¬dot, fad}, +dwe〉
Case 2 〈{dot, ooo}, +dwe〉 Case 5 〈{¬dot, fad, dia}, −dwe〉
Case 3 〈{dot, ooo, rpl, far, ria}, −dwe〉
New Case 〈{dot, ooo, rpl, far},??〉

To make a judgement for a new case, the history of judgement revisions in
past cases needs to be taken into account. In our example let us assume that if
no factor is proven, the conclusion dwe will not be approved by judges (−dwe is
a conclusion in an empty case - a case with an empty set of factors). Then, Case
1 has the same conclusion as the initial empty case, so the factor dot is irrel-
evant to the judges. For Case 2 the conclusion (judgement) is reversed. Thus
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the combination of dot and ooo does affect the conclusion and therefore their
simultaneous existence is an exceptional situation. For Case 3 the conclusion is
reversed again into the original judgement. Then, we could say that the combi-
nation of rpl, far, ria is an exception to the exceptional situation in which dot
and ooo exist. For Case 4, the conclusion differs from the initial empty case so
the combination of ¬dot and fad represents an exceptional situation. Lastly for
Case 5 the conclusion is reversed again into the original judgement. Therefore,
dia constitutes an exception for exceptional situation in which ¬dot and fad
exist. Finally, for the new case, given the factors {dot, ooo, rpl, far}, we should
conclude +dwe, since dot and ooo hold in this case (and Case 2 was considered
to be an exceptional situation with these factors), and it cannot be considered
to be an exception for this exception since the only such exception known is the
combination of rpl, far, ria, and in the new case ria does not hold.

In this paper, we aim to formalise the above reasoning and extract a set of
rules that capture the past judgements and allow the automated inference of
judgements for new cases. We view the cases and their judgements as outcomes
of reasoning using an argumentation model [4]. Hence, attacks can be inferred
from past cases that share some common factors but have opposing judgements,
and consequently arguments are inferred from the factors that are uncommon
between the two cases. Then, the purpose of relevant attacks is to identify only
the necessary factors that affect the judgement of a new case. Consider the above
cases. Case 1 does not contain any relevant information for deciding the outcome
of future cases. Similarly, suppose Case 6 exists where the buyer was deprived
of what he expects as the goods are delivered on time, but are damaged and
repairable 〈{dot, ooo, rpl},+dwe〉. This Case 6 will also be deemed irrelevant, due
to the existence of Case 2 which tells us that {dot, ooo} are already sufficient for
overturning the judgement. Thus, by extracting information about the relevant
attacks and their arguments we can define rules reflecting the reasoning applied
by the judge and use this reasoning to infer judgments for unseen cases. A meta-
level representation of these rules is generated using the ASP solver Clingo [5].

The paper is structured as follows. Section 2 provides the formal definition of
our computational model and introduces the notions of relevant attack and pre-
dicted judgement. Section 3 shows how the approach is implemented in Answer
Set Programming (ASP) and illustrates its execution through the legal reasoning
example described above. Sections 4 and 5 present, respectively, the correctness
of the implementation and the evaluation of its scalability. Section 6 discusses
related work and Sect. 7 concludes the paper.

2 Formalisation

In this section we give the formal definition of our computational model. We first
define the formal representation of past cases and related judgements. Using this
representation, we define the concepts of relevant attack and predicted judge-
ments, and formalise the type of legal rules our approach is able to compute.
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Definition 1 (Casebase). Let F be a set of elements called factors. A case is
a subset of F . A case with judgement is a pair cj = 〈c, j〉, where c is a case
and j ∈ {+,−}. The set c is also referred to as the set of factors included in a
case with judgement. Given a case with judgement cj, case(cj) denotes the set
of factors included in cj and judgement(cj)=j denotes the judgement decision
taken in the case. A casebase, denoted with CB, is a set of cases with judgements,
namely a subset of P(F ) × {+,−}, where P(F ) is the powerset of F .

Given a casebase CB we impose the restriction that for every cj1, cj2 ∈ CB,
if case(cj1) = case(cj2) then judgement(cj1) = judgement(cj2). This avoids
inconsistent casebases. We also assume that all casebases contain an element
〈∅, j0〉 representing the empty case and default judgement, the assumed judge-
ment in the absence of any factor, of the casebase.

Definition 2 (Raw Attack). Let CB be a casebase. The raw attack relation
is a set RA ⊆ CB × CB defined as the set of all pairs 〈cj1, cj2〉 such that
〈cj1, cj2〉 ∈ RA if and only if case(cj1) ⊃ case(cj2) and judgement(cj1) �=
judgement(cj2). For every pair 〈cj1, cj2〉 ∈ RA, we say cj1 raw attacks cj2 and
we write cj1 →r cj2.

Example 1. Let us consider the set of factors F given by {a, b, c, d, e, f} and
a casebase CB given by the named cases with judgements {c0 : 〈{}, −〉, c1 :

〈{a}, +〉, c2 : 〈{c}, +〉, c3 : 〈{a, b}, −〉, c4 : 〈{a, b, c}, +〉, c5 : 〈{a, b, c, d}, −〉}
Then, the raw attack relation over CB is given by the following set:

{c1 →r c0, c2 →r c0, c4 →r c0, c3 →r c1, c5 →r c1, c5 →r c2, c4 →r c3, c5 →r c4}.

Definition 3 (Relevant Attack). Let CB be a casebase. The relevant attack
relation AT ⊆ RA is the set of pairs 〈cj1, cj2〉 ∈ RA such that:

– 〈cj1, cj2〉 ∈ AT if case(cj2) = ∅ and there is no cj3 →r cj2 in RA such that
case(cj1) ⊃ case(cj3)

– 〈cj1, cj2〉 ∈ AT if there exists 〈cj2, cj4〉 ∈ AT and there is no cj5 →r cj2 in
RA such that case(cj1) ⊃ case(cj5)

– nothing else is in AT .

Each element 〈cj1, cj2〉 ∈ AT is denoted as cj1 → cj2.

A relevant attack cj1 → cj2 is between a case cj1 that overturns the judge-
ment of another case cj2, with case(cj1) ⊃ case(cj2), and such that either
judgement(cj2) = j0, or cj2 itself is an attacker in another relevant attack
and there isn’t another smaller attack against cj2. Both scenarios imply that
case(cj1) contains the relevant factors for overturning the judgement of cj2. In
summary, for a case to be relevant it must either be the default case, or it must
be involved in a relevant attack against other relevant cases.

It can be observed from Definitions 2 and 3 that each casebase will have a
unique set of raw attacks, and consequently a unique set of relevant attacks.

Example 2. Let us consider the set RA of raw attacks defined in Example 1, The
set of relevant attacks is given by the following subset:

AT = {c1 → c0, c2 → c0, c3 → c1, c4 → c3, c5 → c4, c5 → c2}.
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We can see that not all raw attacks are relevant attacks. Consider for instance
the pair 〈c5, c1〉. This is a raw attack but it is not a relevant attack as there exists
a raw attack c3 →r c1 where case(c3) ⊂ case(c5). For each relevant attack the
set of factors, called argument, responsible for overturning the judgement can be
deduced by comparing the factors in the two cases.

Definition 4 (Argument). Let CB be a casebase and let AT be the set of
relevant attacks with respect to CB. For each pair 〈cj1, cj2〉 ∈ AT , the set
of factors representing the attack from cj1 to cj2 is given by α(cj1, cj2) =
case(cj1) − case(cj2).

When predicting the judgement of a new case, we consider past cases similar
to it. Within the set of similar past cases, only some will be active with respect
to the new case, meaning their ruling has not been overturned by other cases in
the set. Furthermore, those that are overturned cannot themselves overturn the
judgement of other cases. This is similar to the concept of alive and dead nodes
in [14]. We define active case with judgement as follows.

Definition 5 (Active Case with Judgement). Let CB be a casebase, AT be
its corresponding set of relevant attacks, and c be a case. A case with judgement
cj ∈ CB is active with respect to c if and only if case(cj) ⊆ c, and for all
〈cjn, cj〉 ∈ AT , either case(cjn) � c or cjn is not active with respect to c.

We can infer the judgement of future cases from past cases’ relevant attacks.

Definition 6 (Predicted judgement). Let CB be a casebase, AT be the set
of relevant attacks with respect to CB, and c be an unseen case (for all cj ∈ CB,
case(cj) �= c). The unique predicted judgement of c, denoted with pj(c), is equal
to the default judgement j0 if and only if 〈∅, j0〉 is active with respect to c.

The aim of this work is to generate a judgement theory T from a given
casebase CB and default judgement j0 such that, given a new case c it is possible
to predict the judgement of c.

3 Generating Case-Rules by ASP

In this section we describe how we can reason about past cases to generate the
case-rules, namely legal reasoning structures expressed in terms of principle rules
and exceptions. This is done by using Answer Set Programming (ASP) and the
Clingo 3 ASP solver [5]. We begin by describing how relevant attacks can be
inferred from examples of past cases with judgements. Using this we describe
how case-rules can be generated in the form of a meta-level representation.

Our ASP computational framework uses a meta-level representation of the
casebase and the judgement theory. Its reasoning process can be divided into
three main steps: (i) extraction of relevant attacks from the given casebase; (ii)
inference of the factors in the arguments of each relevant attack; (iii) generation
of the judgement theory using the arguments. These steps are shown in Fig. 1,
whose labelled programs are explained further in this section.
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Fig. 1. Work flow for generating case-rules by ASP

3.1 Extracting Relevant Attacks from a Casebase

Each case with judgement can be seen as a definite clause.

Definition 7 (Rule representation of a case with judgement). Let CB
be a casebase. Each cj ∈ CB can be expressed as a definite clause r(cj) called a
rule: judgement(cj) : − f1, . . . , fn. where fi ∈ case(cj), for 1 ≤ i ≤ n.

Inferring relevant attacks and arguments means reasoning about the struc-
ture of the set of rules that express a given casebase. The meta-level representa-
tion of our cases with judgement describes the syntactic structure of each case
in terms of the literals (i.e. factors) that appear in each case.

Definition 8 (Casebase meta-level representation). Let CB be a casebase.
Its meta-level representation, meta(CB), is defined as:

meta(CB) =
⋃

cj∈CB

μ(r(cj)) ∪ τ(CB) ∪ δ(CB)

τ(CB) = {factor(fi)|fi ∈ F}, δ(CB) is the meta-information about the default
case, δ(CB)= {default id(id(r(cj0))), default head(judgement(cj0))}, and
the function μ is defined as follows:

μ(r(cj)) =

⎧
⎨

⎩

cb id(id(r(cj))).
is rule(id(r(cj)), judgement(cj)).
in rule(id(r(cj)), judgement(cj), fi). for each fi ∈ case(cj)

This meta-level representation can be used to express the notion of raw attack
(→r) given in Definition 2. The second and third rules below capture the con-
dition case(cj1) ⊃ case(cj2), where ID1 and ID2 are the IDs of cases with
judgement cj1 and cj2 respectively; the condition H1 �= H2 in the first rule
below captures the condition judgement(cj1) �= judgement(cj2).
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Πraw =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

raw attack(ID1, ID2) : −factor subset(ID2, ID1), is rule(ID1, H1),
is rule(ID2, H2), H1 �= H2.

factor subset(ID1, ID2) : −cb id(ID1), cb id(ID2),
not not factor subset(ID1, ID2).

not factor subset(ID1, ID2) : −cb id(ID1), cb id(ID2), factor(B),
in rule(ID1, H1, B), is rule(ID2, H2), not in rule(ID2, H2, B).

The computation of the relevant attack relation (called attack in the program)
uses ASP’s choice operator (see first rule below) to select from the inferred raw
attacks those relations that satisfy constraints (i) and (ii) given in Definition 3.
They are captured by the second and third rules given below.

Πrev1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 {attack(ID1, ID2)} 1 : −raw attack(ID1, ID2).
: −attack(ID1, ID2), not attackee(ID2).
: −attack(ID1, ID2), raw attack(ID3, ID2), factor subset(ID3, ID1).
attackee(ID) : −default id(ID).
attackee(ID2) : −attack(ID2, ID4).

To generate all relevant attacks in a given casebase, we use the following Clingo
optimisation expression, which guarantees the maximum number of instances of
the attack relation to be computed in a given solution.

Πrev2 = {#maximise{attack(ID1, ID2)}.}

Let Πrev = Πrev1 ∪ Πrev2 , and let ΠCB = meta(CB) ∪ Πraw ∪ Πrev. The
answer set of meta(CB) ∪ Πraw gives the subfactors and raw attacks between
cases in the casebase. This is then used by Πrev to generate all the relevant
attacks AT . Thus the answer set of ΠCB contains the meta-level representation
of the casebase, subfactors, raw attacks, relevant attacks and attackees.

3.2 Generating Meta-Level Information of Case-Rules

Using inferred relevant attacks and the meta-level representation of given cases,
we can compute the set of arguments AR of the relevant attacks:

Πarg =

{
argument(ID1, ID2, Arg) : −attack(ID1, ID2), in rule(ID1, H1, Arg),

is rule(ID2, H2), not in rule(ID2, H2, Arg).

In order to predict the judgement of unseen cases, our judgement theory
reflects the underlying reasoning applied throughout the past judged cases. The
legal reasoning structure is normally composed of exceptions to a given default
assumption (e.g. default judgement) and exceptions to exceptions.
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Definition 9. Given a casebase CB and its relevant attacks AT , the judgement
theory T is the set of rules such that given a new case c, T derives the default
judgement j0 if and only if pj(c) = j0. Let ab(cji → cjj) be the reified atom of
cji → cjj in AT . The following rules are in the judgement theory1

– For empty case with judgement cj0, and cj1 → cj0, . . . , cjn → cj0 ∈ AT
judgement(cj0) : −not ab(cj1 → cj0), . . . , not ab(cjn → cj0).

– For f1, . . . , fm ∈ α(cjx, cjy), and cjx+1 → cjx, . . . , cjx+k → cjx ∈ AT
ab(cjx → cjy) : −f1, . . . , fm, not ab(cjx+1 → cjx), . . . , not ab(cjx+k → cjx).

Our computational approach abduces the above judgement theory in terms of
its equivalent meta-level representation μ(T ). The judgement theory itself is
acquired by applying the inverse transformation μ−1/1. For example, μ−1 applied
to the set of instances {is rule(id, h). in rule(id, h, b1). . . . in rule(id, h, bn).}
gives the rule h : −b1, . . . , bn.

To generate a legal reasoning structure each relevant attack inferred from the
past cases has to be linked to a unique abnormality name. This Skolemisation
is captured using the ASP choice rule given below, which associates the attack
identifier AID of a given attack a(ID1, ID2) with an abnormality name Ab. An
integrity constraint guarantees that attack identifiers are unique.

Πgen1 =

⎧
⎪⎪⎨

⎪⎪⎩

1 {id attack link(AID, a(ID1, ID2)) : abnormal(AID, Ab)} 1

: −attack(ID1, ID2).
: −id attack link(AID1, At), id attack link(AID2, At), AID1 �= AID2.
: −id attack link(AID, At1), id attack link(AID, At2), At1 �= At2.

Abnormality names are defined by the basic types abnormal and negated
abnormal as illustrated below, where the number of relevant attacks can be
obtained from the answer set of ΠCB :

Πgen2 =

⎧
⎨

⎩

gen id(r0).
gen id(ri). abnormal(ri, abi). negated abnormal(ri, not abi).

For 1 ≤ i ≤ n, where n is the number of relevant attacks

Once appropriate links between relevant attacks and abnormal identifiers are
obtained through the choice rule given above, the meta-level representation of
the rules defining these abnormalities can be inferred using the following two
sets of rules. The first rule expresses the fact that the default judgement is the
judgement of an empty factor set, thus it can only be applied on future cases if all
attacks against it cannot be proven to hold. The second rule captures the meta-
level representation of a principle rule of the form j0 ← not ab1, . . . , not abm,
defining the absence of exceptions to the default judgement.

Πgen3 =

⎧
⎨

⎩

is rule(r0, Def) : −default head(Def).
in rule(r0, Def, NAb) : −default head(Def), default id(ID2),

id attack link(AID, a(ID1, ID2)), negated abnormal(AID, NAb).

1 where α/2 represents arguments as described in Definition 4.
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For each abduced link between relevant attack and abnormality names, the fol-
lowing set of rules allows the inference of the meta-level representation of rules
of the form abi ← fi1, . . . , fiki

, not abmi1, . . . , not abp and abq ← fq1, . . . , fqkq
.

Πgen4 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

is rule(AID, Ab) : −id attack link(AID, At), abnormal(AID, Ab).
in rule(AID, H, Arg) : −is rule(AID, H), argument(ID1, ID2, Arg).

id attack link(AID, a(ID1, ID2)),
in rule(AID1, H, NAb) : −is rule(AID1, H), negated abnormal(AID2, NAb),

id attack link(AID1, a(ID2, ID1)), id attack link(AID2, a(ID3, ID2)).

The first two rules allow the inference of the definition of predicate head abnor-
mality name Ab that corresponds to the correct linked attack, for which the
appropriate factors involved in the argument of this attack are inferred to be
conditions in the body of such abnormality rule. The third rule captures the
abnormality identifiers of subsequent attacks that invalidate the current excep-
tion.

Let Πgen = Πgen1 ∪ Πgen2 ∪ Πgen3 ∪ Πgen4 , and let ΠJT = Πgen ∪ AR ∪
{default head(judgement(cj0)), default id(id(r(cj0)))}. The answer set of the
program ΠJT projected over is rule/2 and in rule/2 corresponds to the meta-
level representation of the judgement theory μ(T ).

3.3 Application to Legal Reasoning Example

We show the result of our approach applied to the past cases with judgements
described in Sect. 12. The following meta-level representation of the judgement
theory is generated from Πgen:

is rule(r0,neg dwe). in rule(r4,ab0,not ab2). in rule(r2,ab2,rpl).

in rule(r0,neg dwe,not ab0). is rule(r5,ab1). in rule(r2,ab2,far).

in rule(r0,neg dwe,not ab1). in rule(r5,ab1,neg dot). in rule(r2,ab2,ria).

is rule(r4,ab0). in rule(r5,ab1,fad). is rule(r3,ab3).

in rule(r4,ab0,dot). in rule(r5,ab1,not ab3). in rule(r3,ab3,dia).

in rule(r4,ab0,ooo). is rule(r2,ab2).

This corresponds to the program:
neg dwe :- not ab0, not ab1. ab2 :- far, ria, rpl.

ab0 :- dot, ooo, not ab2. ab3 :- dia. ab1 :- fad, neg dot, not ab3.

4 Correctness of the Generated Program

We provide the correctness of the program through two propositions. Propo-
sition 1 ensures that all relevant attacks of the given casebase are computed,
while Proposition 2 ensures the correct predicted judgement is computed. The
proof of Proposition 1 is divided into four steps (see footnote 2). Lemma 1, estab-
lish the properties of an answer set of ΠCB . Lemma 2 shows that the union of
2 The full example with each ASP program’s output, and proofs for the lemmas and

propositions can be found at http://wp.doc.ic.ac.uk/spike/technical-reports/.

http://wp.doc.ic.ac.uk/spike/technical-reports/
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two answer sets of ΠCB is also an answer set of ΠCB . Lemma 3, shows that
ans(CB,AT ) ∈ AS(ΠCB), where AS(P ) is the set of answer sets of a given
program P .

Definition 10. Let {S} = AS(meta(CB) ∪ Πraw), CB be a casebase, AT its
relevant attacks, and Q = {attack(id(r(cji)), id(r(cjj))), attackee(id(r(cjj))) |
〈cji, cjj〉 ∈ AT}. ans(CB,AT ) is the interpretationS∪Q∪{attackee(id(r(cj0)))}.

Lemma 1. Let S be the unique answer set of meta(CB) ∪ Πraw and let πp(A)
denote the projection of A over p. A set A ∈ AS(ΠCB) iff:

(i) πattack(A) ⊆ πraw attack(A)
(ii) For all cj1 and cj2, if attack(id(r(cj1)), id(r(cj2))) ∈ A then

attackee(id(r(cj2))) ∈ A
(iii) For all cj1 and cj2, if attack(id(r(cj1)), id(r(cj2))) ∈ A then there does not

exists cj3 such that raw attack(id(r(cj3)), id(r(cj2))) ∈ A and
factor subset(id(r(cj3)), id(r(cj1))) ∈ A)

(iv) For all cj, attackee(id(r(cj))∈A if and only if default id(id(r(cj3)) is true
or attack(id(r(cj)), id(r(cjx)))∈A

(v) Let L be the language of meta(CB)∪Πraw, then for all s, s ∈ πL(A) if and
only if s ∈ S

Lemma 2. Given two answer sets A1, A2 ∈ AS(ΠCB), then A1∪A2 ∈ AS(ΠCB).

Lemma 3. Given a casebase CB, its raw attacks RA, and its relevant attack
AT , ans(CB,AT ) ∈ AS(ΠCB).

Proposition 1. Given a casebase CB with relevant attacks AT , ans(CB,AT )
is the unique optimal answer set of ΠCB.

We assume that ΠJT will generate the correct judgement theory as described
by Definition 9. The proof of Proposition 2 is divided into two parts. Lemma 6
shows that the judgement theory T can be partitioned into one part Tc respon-
sible, and another Tex irrelevant for the derivation of j0. Thus Tc can be used to
show that T derives the j0 if and only if it is the predicted judgement.

Lemma 4. Given a casebase CB and associated judgement theory T . Then for
A ∈ AS(ΠJT ), πin rule,is rule(A) = μ(T ).

For rule r ∈ T , let head(r) be its head literal, body(r) be the set of its body
literals, fs(r) be the set of factors in its body literal, and def be a rule where
head(def) = j0. The following property can be derived from Definition 9.

Lemma 5. Given a casebase CB with associated judgement theory T , let c
be a new case, given as a set of factors. From Definition 9 for all abnormal-
ity rules ab in T there exists a sequence of rules not head(ab) ∈ body(abx1), . . . ,
not head(abxn

) ∈ body(def) in T , where n ≥ 0. The union of all its factors
corresponds to a cj ∈ CB, and cj → cjy for some cjy ∈ CB. Abnormalities with
a sequence such that case(cj) ⊆ c is denoted by seq(ab).
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Lemma 6. Given a casebase CB with associated judgement theory T , and a
new case c. Let Tc = {def} ∪ {ab|ab ∈ T, seq(ab)}, and Tex = T \ Tc. Then T
derives j0 iff Tc derives j0.

Proposition 2. Given a casebase CB with associated judgement theory T , and
a new case c. Let {AT } = AS(T ∪ c). Then j0 ∈ AT if and only if pj(c) = j0.

5 Evaluation

To test the performance of the approach we have applied it to randomly gen-
erated (consistent) casebases where the number of cases ranges from 20 to 100,
and the number of factors ranges from 10 to 25. The time taken to generate the
meta-level representation of the judgement theory for each casebase is presented
in Fig. 2. To mitigate the grounding problem, the ASP program is split into
two parts with the first program ΠCB ∪ Πarg used for generating the relevant
attacks and arguments (Fig. 2(a)), which are then added as facts to the second
program Πgen to generate the judgement theory (Fig. 2(b)). Both Figs. 2(a) and
(b) show that the computational time increases with the number of cases, while
the change in the number of factors is less important. It can be seen that the
times in Fig. 2(a) are not significant when compared with those in Fig. 2(b). The
reason for the much larger times in Fig. 2(b) is due to the use of Skolemisation
in Πgen

3. However, the computational time of Π could be greatly decreased by
using an external process to perform the Skolemisation, which would allow the
generation of the judgement theory for casebases with greater than 100 cases.

Fig. 2. Computational time for (a) ΠCB ∪ Πarg to output Aatk,arg; (b) Πgen ∪
πattack,argument,default id,default head(Aatk,arg) applied to randomly generated CB

6 Related Work

In this work we have shown how meta-level reasoning can be used for extract-
ing information from past legal cases for generating case rules for deciding the
3 While we were able to compute the relevant attacks and arguments for casebase with

greater than 100 cases, we were unable to generate the judgement theory from them
using Πgen.
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judgement of future cases. We have used notions of argumentation and ASP for
computation, and while there have been many recent works [15] in representing
argumentation frameworks and computing argumentation extensions using ASP,
we are concerned with the extraction of information about the arguments and
attacks from examples rather than computing extensions of a given framework.

Similar to legislators using past legal cases for creating or revising legislations,
past work in legal reasoning has explored how this can be automated by formally
reasoning reasoning from past cases [10,11], using argumentation [2], or using
boolean function [12]. The system HYPO [1] also analyses factors in the form of
dimensions, where a dimension is a structure containing a factor and the party
it favours, to suggest the arguments and counter examples that plaintiff and
defendant may use to further their objectives. It sorts case relevance using a claim
lattice, a directed acyclic graph of dimensions and cases relevant to the set of
dimensions. This differs from our approach where we sort cases using the relevant
attacks, arranging them according to their ability to overturn judgements of
other cases. Additionally, [9] shows how meta-level representation can be used
for legal reasoning, however this concerns the representation and interpretation
of the rules, and not the generation of rules.

The legal reasoning system PROLEG is used to represent rules and excep-
tions [13]. In fact, there is a correspondence between the representation used in
PROLEG and the rules that we generate. PROLEG rules do not use negation as
failure explicitly; exceptions are expressed by the form exception(H,E) where
H and E are atoms. The generated rule C: −B1, . . . , Bn, not E1, . . . , not Em,
where n ≥ 0, m ≥ 0, is represented in PROLEG as

C ⇐ B1, . . . , Bn. exception(C, E1). . . . exception(C, Em).

For instance, the judgement theory we generated in in Sect. 3.3 can be translated
into the following PROLEG program.

neg dwe<=. ab0 <= dot, ooo. ab1 <= fad,neg dot.

exception(neg dwe, ab0). exception(ab0, ab2). exception(ab1, ab3).

exception(neg dwe, ab1). ab2 <= far, ria, rpl. ab3 <= dia.

Therefore, our approach can also be regarded as generating PROLEG programs.
Inductive learning has often been used for learning such rules, using multiple

learning phases to learn exceptions. For instance in [7] and [8], the learning is
split into two phases, the first phase learns the overly general rules from the
examples, and the second phase specialises the general rules using exceptions.
Our work is similar to the second phase, but with an assumed over-general rule
(default judgement) to be given from the legal specification. Other similar work
(e.g. [3]) uses prioritised logic to express preferences between the default rules.

7 Conclusion

We have presented a method for reasoning and extracting information from past
cases to infer the arguments and attacks present in the decision for the judgement
of a new case. We have defined the notion of minimal attacks for identifying the
factors relevant to the judgements of cases, and describe how ASP can be used
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to generate these minimal attacks as well as how these attacks can be used for
inferring rules for modelling the judgement using meta-level information. While
not shown in this paper, PROLOG could be used instead of ASP, using its list
structure to represent the rules.

For future work, it would be interesting to extend the meta-level representa-
tion and enhancing the reasoning approach for handling more complex casebases.
For instance in [6], a different representation of the casebase is used where a factor
favours either the defendant or plaintiff. Other extensions would be to consider
a casebase with inconsistency and how the approach might handle conflicts, and
how to make revision to an existing judgement theory.
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Abstract. We present an online action language called oBC+, which
extends action language BC+ to handle external events arriving online.
This is done by first extending the concept of online answer set solv-
ing to arbitrary propositional formulas, and then defining the semantics
of oBC+ based on this extension, similar to the way the offline BC+
is defined. The design of oBC+ ensures that any action description in
oBC+ satisfies the syntactic conditions required for the correct compu-
tation of online answer set solving, thereby alleviates the user’s burden
for checking the sophisticated conditions.

1 Introduction

While Answer Set Programming (ASP) is being widely applied to many challeng-
ing problems, most ASP applications are limited to offline usages. Continuous
grounding and solving in view of possible yet unknown future events, such as
the one required for the emerging applications in stream reasoning [1], is one of
the main challenges in applying ASP to real-time dynamic systems.

Recently, there emerged the concept of reactive answer set programming [2],
which is to incrementally ground and compose program slices taking into account
external knowledge acquired asynchronously, thereby avoiding multiple unnec-
essary restarts of the grounding and solving process for each arrival of external
inputs. For this, an online ASP program consists of multiple subprograms of
different roles, and certain syntactic restrictions originating from the module
theorem [3] are imposed to ensure the compositionality of their answer sets.
The work led to an implementation oclingo,1 which extends ASP grounder
gringo and ASP solver clasp in a monolithic way to handle external modules
provided at runtime by a controller. However, checking the syntactic requirement
for sound execution of online answer set solving is quite a complex task for the
user, which significantly limits the usability of online answer set programming.

We address this challenge by introducing an online extension of high level
action language BC+ [4], which we call oBC+. BC+ is a recently proposed action
language whose semantics is defined in terms of propositional formulas under
the stable model semantics. It is shown in [4] that BC+ is expressive enough to
embed other action languages, such as B, C, C+ [5] and BC [6]. Thus oBC+ can
be viewed as online extensions of these languages as well.
1 http://www.cs.uni-potsdam.de/wv/oclingo/.
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Since the semantics of BC+ is based on propositional formulas under the sta-
ble model semantics, we first generalize the result on online answer set solving to
arbitrary propositional formulas, and define oBC+ based on it. We demonstrate
that oBC+ provides a structured input language for online answer set solving,
and thereby alleviates the user’s burden for checking sophisticated conditions
imposed on the input programs.

The paper is organized as follows. Section 2 reviews language BC+ from [4]
and the module theorem from [7]. Section 3 extends the concept of online answer
set solving to propositional theories, based on which Sect. 4 defines the online
extension of BC+, and asserts that the design of the language ensures the syn-
tactic conditions for applying online answer set solving.

2 Preliminaries

2.1 Review: Stable Models of Propositional Formulas

According to [8], stable models of a propositional formula are defined as follows.
The reduct FX of a propositional formula F relative to a set X of atoms is the
formula obtained from F by replacing every maximal subformula that is not
satisfied by X with ⊥. Set X is called a stable model of F if it is a minimal set
of atoms satisfying FX . It is known that propositional logic programs can be
identified with propositional formulas under the stable model semantics in the
form of conjunctions of implications.

Throughout this paper, we consider propositional formulas whose signature σ
consists of atoms of the form c=v,2 where c is called a constant and is associated
with a finite set Dom(c) of cardinality ≥ 2, called the domain, and v is an element
of its domain. If the domain of c is {f , t} then we say that c is Boolean, and
abbreviate c=t as c and c= f as ∼c.

2.2 Review: BC+

Syntax. Language BC+ includes two kinds of constants, fluent constants and
action constants. Fluent constants are further divided into regular and statically
determined.3

A fluent formula is a formula such that all constants occurring in it are
fluent constants. An action formula is a formula that contains at least one action
constant and no fluent constants.

A static law is an expression of the form

caused F if G (1)

2 So c=v is an atom in the propositional signature, and not an equality in first-order
logic.

3 Statically determined fluents are fluents whose values are completely determined by
fluents in the same state, and not by direct effects of actions [5, Sect. 5.5].
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where F and G are fluent formulas. An action dynamic law is an expression
of the form (1) in which F is an action formula and G is a formula. A fluent
dynamic law is an expression of the form

caused F if G after H (2)

where F and G are fluent formulas and H is a formula, provided that F does
not contain statically determined constants. Static laws can be used to talk
about causal dependencies between fluents in the same state. Action dynamic
laws can be used to express causal dependencies between concurrently executed
actions. A more common use of action dynamic laws is to express the assumption
of an action being “exogenous” (the cause of the action is outside the domain
description). Fluent dynamic laws can be used for describing direct effects of
actions.

A causal law is a static law, an action dynamic law, or a fluent dynamic law.
An action description is a finite set of causal laws.

The formula F in a causal law (1) or (2) is called the head, and G and H are
called the bodies.

Semantics of BC+. The semantics of BC+ can be understood in terms of a
“transition system”—a directed graph whose vertices are states of the world
and edges represent transitions between states. For any action description D
with a set σfl of fluent constants and a set σact of action constants, we define
a sequence of propositional formulas PF 0(D),PF 1(D), . . . so that the stable
models of PFm(D) represent paths of length m in the transition system corre-
sponding to D. The signature of PFm(D) consists of atoms of the form i : c=v
such that

– for each fluent constant c of D, i ∈ {0, . . . , m} and v ∈ Dom(c), and
– for each action constant c of D, i ∈ {0, . . . , m−1} and v ∈ Dom(c).

By i :F we denote the result of inserting i : in front of every occurrence of every
constant in formula F .

For any set c of symbols from σfl and σact, by UEC c we denote the con-
junction of

∧

v �=w | v,w∈Dom(c)

¬(c = v ∧ c = w) ∧ ¬¬
∨

v∈Dom(c)

c = v , (3)

for all c ∈ c, which represents the uniqueness and existence of values for the
constants in c.

For any atom c=v, “choice rule” {c=v}ch stands for c=v ∨ ¬(c=v), which,
in the presence of (3), means that by default c is mapped to v [9].
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The translation PFm(D) is the conjunction of

j :F ← j :G for each static law (1) in D

i :F ← i :G for each action dynamic law (1) inD

(i+1):F ← (i+1):G ∧ i :H for each fluent dynamic law (2) inD

{0:c=v}ch for each regular fluent c and every v ∈ Dom(c)
j :UECσfl i :UECσact

(i = 0, . . . , m−1, j = 0, . . . m).

We identify an interpretation I with the set of atoms that are satisfied by this
interpretation. This allows us to represent any interpretation of the signature of
PFm(D) in the form

(0 : s0) ∪ (0 : e0) ∪ (1 : s1) ∪ (1 : e1) ∪ · · · ∪ (m : sm)

where s0, . . . , sm are interpretations of σfl and e0, . . . , em−1 are interpretations
of σact.

States and transitions are defined in terms of stable models of PF 0(D) and
PF 1(D) as follows.

Definition 1 (States and Transitions). For any action description D of sig-
nature σ, a state of D is an interpretation s of σfl such that 0 : s is a stable
model of PF 0(D). A transition of D is a triple 〈s, e, s′〉 where s and s′ are inter-
pretations of σfl and e is an interpretation of σact such that 0:s ∪ 0:e ∪ 1:s′ is
a stable model of PF 1(D).

In view of the uniqueness and existence of value constraints for every state s
and every fluent constant c, there exists exactly one v such that c = v belongs
to s; this v is considered the value of c in state s.

Given these definitions, we define the transition system T (D) represented by
an action description D as follows.

Definition 2 (Transition System). A transition system T (D) represented by
an action description D is a labeled directed graph such that the vertices are the
states of D, and the edges are obtained from the transitions of D as follows: for
every transition 〈s, e, s′〉 of D, an edge labeled e goes from s to s′.

Since the vertices and the edges of a transition system T (D) are identified
with the states and the transitions of D, we simply apply the definitions of a
state and a transition to transition systems: A state of T (D) is a state of D.
A transition of T (D) is a transition of D.

The stable models of PFm(D) represent the paths of length m in the tran-
sition system represented by D [4, Theorem 2].
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2.3 Review: Module Theorem

We review the module theorem from [7] limited to the propositional case.
For any propositional formula F , by At(F ) we denote the set of all atoms

occurring in F . The head atoms of F are defined to be the atoms that has an
occurrence in F that is not in the antecedent of any implication (we understand
¬F as an abbreviation of F → ⊥). By Head(F ) we denote the set of all head
atoms of F .

A module F is a triple (F, I,O), where F is a propositional formula, and I
and O are disjoint sets of atoms such that At(F ) ⊆ (I ∪ O).

Definition 3 (Module Stable Model). We say that an interpretation I is
a (module) stable model of a module F = (F, I,O) if I is a stable model of
F ∧

∧
A∈I{A}ch.

We refer the reader to [10] for the definition of a dependency graph of a propo-
sitional formula F relative to a set A of atoms, which we denote by DG[F ; A].

Definition 4 (Joinability of Modules). Two modules F1 = (F1∧H, I1, O1)
and F2 = (F2 ∧ H, I2, O2) are called joinable if

– O1 ∩ O2 = ∅,
– each strongly connected component of DG[F1 ∧ F2 ∧ H; O1 ∪ O2] is either a

subset of O1 or a subset of O2,
– Head(F1) ∩ O2 = ∅, and Head(F2) ∩ O1 = ∅.

Definition 5 (Join of Modules). For any modules F1 = (F1 ∧ H, I1, O1)
and F2 = (F2 ∧ H, I2, O2) that are joinable, the join of F1 and F2, denoted by
F1�F2, is defined to be the module (F1∧F2∧H, (I1∪I2)\ (O1 ∪O2), O1∪O2).

Given sets of atoms I1, I2, I3, we say that I1 and I2 are I3-compatible if
I1 ∩ I3 = I2 ∩ I3.

Theorem 1 (Module Theorem [7]). Let F1 = (F1, I1,O1) and F2 =
(F2, I2,O2) be modules that are joinable, and let Ii (i = 1, 2) be a subset of
(Ii ∪ Oi) such that I1 and I2 are (I1 ∪ O1) ∩ (I2 ∪ O2)-compatible. Then I1 ∪ I2
is a stable model of F1 �F2 iff I1 is a stable model of F1 and I2 is a stable model
of F2.

3 Online Propositional Theories

We generalize the concept of online answer set solving to arbitrary propositional
formulas as follows. This section inevitably has many notions, all of which are
generalized from those in [2]. The generalization will be used in the next section
in order to extend BC+ to the online setting.

A step-parametrized formula F [t] is a propositional formula which may con-
tain step-parameterized atoms of the form g(t) :a, where t is a variable for nonneg-
ative integers denoting a step counter, and g(t) is some meta-level nonnegative
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integer valued arithmetic function whose only free variable is t. Given such a
formula F [t] and a nonnegative integer k, the step-instantiated formula F [t/k]
(or simply F [k]) is defined to be the propositional formula which is obtained
from F [t] by replacing every occurrence of every step-parametrized atom g(t) : a
with a standard atom v : a, where v is the value of g(k). (Thus, v : a is assumed
to be in the underlying propositional signature.)

We define an incremental theory to be a triple 〈B,P [t], Q[t]〉 such that B is a
propositional formula, and P [t], Q[t] are step-parametrized formulas. Informally,
B is the base component, which describes static knowledge; P [t] is the cumula-
tive component, which contains information regarding every step that should be
accumulated during execution; Q[t] is the volatile component, which contains
constraints or other information regarding the final step.

By an online progression 〈E,F 〉 we denote some sequence of pairs of step-
instantiated formulas (Ei[ei], Fi[fi]) for i ≥ 1 with associated nonnegative inte-
gers ei, fi such that ei ≤ fi. Intuitively, each Ei[ei] and Fi[fi] corresponds to
stable and volatile knowledge acquired during execution, respectively. For each
(Ei[ei], Fi[fi]), ei and fi denote the step for which they are relevant allowing
knowledge to be acquired out of order. For example, E4[3] is the fourth piece of
online input and contains information relevant to step 3.

Given an incremental theory 〈B,P [t], Q[t]〉, an online progression 〈E,F 〉, and
nonnegative integers j, k such that e1, . . . , ej , fj ≤ k, the incremental compo-
nents are

{B,P [t/1], P [t/2], . . . , P [t/k], Q[t/k], E1[e1], E2[e2], . . . , Ej [ej ], Fj [fj ]}. (4)

As in [2], we define the k-expanded propositional formula Rj,k of 〈B,P [t], Q[t]〉
w.r.t. 〈E,F 〉 to be the conjunction of all formulas in (4).

Generalizing the notion of the simplification in [2], given a propositional
formula F , we define the simplification of F onto a set A of atoms (denoted
Simplify(F,A)) to be the formula obtained from F by replacing all occurrences
of atoms p in F such that p �∈ (Head(F ) ∪ A) with ⊥ and performing the
following syntactic transformations recursively until no further transformations
are possible:4

¬⊥ �→ � ¬� �→ ⊥
⊥ ∧ F �→ ⊥ F ∧ ⊥ �→ ⊥ � ∧ F �→ F F ∧ � �→ F
⊥ ∨ F �→ F F ∨ ⊥ �→ F � ∨ F �→ � F ∨ � �→ �
⊥ → F �→ � F → � �→ � � → F �→ F

We define the modular instantiation of F with respect to A, denoted
PM (F,A), to be the module (Simplify(F,A), A, At(Simplify(F,A))\A).5

The idea of the simplification is to reduce the size of the input formulas by
exploiting the fact that some atoms are known not to belong to any stable model.

4 In [2], this process stops only at the second iteration.
5 In practice when F is non-ground, we assume F is grounded first by substituting

every variable with every element in the Herbrand universe.
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However, unlike the offline solving, the values of external atoms in the online
incremental computation are unknown at the time of simplifying the current
module containing them. Thus, following [2], we associate each formula F in (4)
with some designated set of external atoms I(F ) such that Head(F )∩ I(F ) = ∅.
Such atoms represent possible external inputs that may be introduced later by
an online progression, and thus should be exempted from the current program
simplification.

Given a module F = 〈F, I,O〉, Out(F) refers to O.

Definition 6 (Modular Incremental Theories and Online Progression).
We say that an incremental theory 〈B,P [t], Q[t]〉 and an online progression
〈E,F 〉 are modular if the following modules are well-defined for any nonneg-
ative integers j, k such that e1, . . . , ej , fj ≤ k.6

P0 = PM (B, I(B)), E0 = F0 = 〈�, ∅, ∅〉,
Pi = Pi−1 � PM (P [t/i], Out(Pi−1) ∪ I(P [t/i])), (i = 1, . . . , k)
Qi = PM (Q[t/i], Out(Pi) ∪ I(Q[t/i])), (i = 0, . . . , k)
Ei = Ei−1 � PM (Ei[ei], Out(Pei

) ∪ Out(Ei−1) ∪ I(Ei[ei])) (i = 1, . . . , j)
Fi = PM (Fi[fi], Out(Pfi

) ∪ Out(Ei) ∪ I(Fi[fi])) (i = 1, . . . , j)
Rj,k = Pk � Qk � Ej � Fj .

We refer to Rj,k as the incremental composition of the incremental theory
〈B,P [t], Q[t]〉 w.r.t. the online progression 〈E,F 〉. Unlike the k-expanded propo-
sitional formula Rj,k, each component in the incrementally composed module
Rj,k is simplified before being joined.

Given an incremental theory 〈B,P [t], Q[t]〉 and an online progression 〈E,F 〉,
we assume the precedence relation ≺∗ on the set

{B,P [t/1], P [t/2], . . . , P [t/k], E1[e1], E2[e2], . . . , Ej [ej ],
Q[t/0], Q[t/1], . . . , Q[t/k], F1[f1], F2[f2], . . . , Fj [fj ]}

(5)

as the transitive closure of the following relation ≺:

B ≺ P [t/1] ≺ · · · ≺ P [t/k], B ≺ Q[t/0], P [t/i] ≺ Q[t/i] (i ≥ 1)
E1[e1] ≺ · · · ≺ Ej [ej ], Ei[ei] ≺ Fi[fi] (i ≥ 1)
P [t/ei] ≺ Ei[ei], P [t/fi] ≺ Fi[fi] (i ≥ 1).

Additionally, we say that two formulas F and G in (5) coexist if they belong
to (4) for some nonnegative integers j, k. Intuitively, F and G coexist if they are
eventually composed together into some Rj,k. For example, P [t/1] and Q[t/3]
coexist as they are both present in R0,3, whereas Q[t/1] and Q[t/3] do not. In
Fig. 1 the shaded blocks denote coexisting formulas for j = 1, k = 2.

6 For notational simplicity, we define E0[e0] and F0[f0] to be �, e0, f0 to be 0, and
I(E0[e0]) and I(F0[f0]) to be ∅.



104 J. Babb and J. Lee

Fig. 1. Precedence graph of component formulas

Definition 7. We say that an incremental theory 〈B,P [t], Q[t]〉 and an online
progression 〈E,F 〉 are mutually revisable if, for any distinct coexisting formulas
G and H in (5), we have that G ≺∗ H whenever Head(G)∩ (At(H)\ I(H)) �= ∅.

Theorem 2 (Correctness of Incremental Composition). Given an incre-
mental theory 〈B,P [t], Q[t]〉 and an online progression 〈E,F 〉 which are modular
and mutually revisable, and nonnegative integers j, k such that e1, . . . , ej , fj ≤ k,
let Rj,k be the k-expanded propositional formula w.r.t. 〈E,F 〉, and let Rj,k =
(H, I,O) be the incremental composition of 〈B,P [t], Q[t]〉 w.r.t. 〈E,F 〉. Then the
stable models of Rj,k coincide with the stable models of H, the formula of Rj,k.

It turns out that in the event that all explicit inputs (all I(F ) for F ∈ (4))
are empty, i.e., in the offline case, mutual revisability is a stronger condition
than modularity. This means that in the offline case it is sufficient to just check
that an incremental theory is mutually revisable.

Using Theorem 2, it is possible to incrementally ground, simplify, and solve
a traditional ASP incremental theory in order to find the minimum k such that
Rj,k has an answer set without repeating previous work performed. In practice,
this allows for a significant speedup when performing an iterative deepening
search, such as when searching for a minimum length plan to accomplish a goal.
In addition, the system is able to account for specific forms of online input in an
equally efficient manner by allowing external information to be asserted in the
online progression during execution.

Example 1 (Online ASP Solving). Given an incremental theory

〈B,P [t], Q[t]〉 = 〈�, ¬((t−1) :q) ∧ ¬((t−1) :p) → t :p, ¬(t :p) → ⊥〉

such that I(B) = ∅, I(P [t/i]) = {(i−1) : q}, and I(Q[t/i]) = ∅ and an online
progression 〈E,F 〉.

Initially, R0,0 is constructed such that

P0 = 〈�, ∅, ∅〉,
Q0 = PM (Q[t/0],Out(P0) ∪ I(Q[t/0])) = 〈� → ⊥, ∅, ∅〉,

R0,0 = P0 	 Q0 = 〈� → ⊥, ∅, ∅〉.
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Clearly, � → ⊥ has no stable models. As a result, R0,1 is attempted as follows:

P1 = P0 	 PM (P [t/1],Out(P0) ∪ I(P [t/1])) = P0 	 〈¬(0 :q) → 1:p, {0:q}, {1:p}〉
= 〈¬(0 :q) → 1:p, {0:q}, {1:p}〉,

Q1 = PM (Q[t/1],Out(P1) ∪ I(Q[t/1])) = 〈¬(1 :p) → ⊥, {1:p}, ∅〉,
R0,1 = P1 	 Q1 = 〈(¬(0 :q) → 1:p) ∧ (¬(1 :p) → ⊥), {0:q}, {1:p}〉.

Solving is then halted as the formula in R0,1 has one stable model {1 :p}. How-
ever, with the arrival of the external event E1[0] = 0:q and F1[0] = � such that
I(E1[0]) = I(F1[0]) = ∅, we then must consider the construction of R1,k rather
than R0,k. R1,1 is constructed such that

E1 = 〈�, ∅, ∅〉 	 PM (E1[e1],Out(Pe1) ∪ Out(E0) ∪ I(E1[e1])) (e1 is 0)

= 〈�, ∅, ∅〉 	 〈0:q, ∅, {0:q}〉 = 〈0:q, ∅, {0:q}〉,
F1 = PM (F1[f1],Out(Pf1) ∪ Out(E1) ∪ I(F1[f1])) (f1 is 0)

= 〈�, {0:q}, ∅〉,
R1,1 = P1 	 Q1 	 E1 	 F1 = 〈(¬(0 :q) → 1:p) ∧ 0:q ∧ (¬(1 :p) → ⊥), ∅, {0:q, 1:p}〉.
Once again, the formula of R1,1 has no stable models, so the search is deepened
to R1,2 as follows:

P2 = P1 	 PM (P [t/2],Out(P1) ∪ I(P [t/2]))

= P1 	 〈¬(1 :q) ∧ ¬(1 :p) → 2:p, {1:q, 1:p}, {2:p}〉
= 〈(¬(0 :q) → 1:p) ∧ (¬(1 :q) ∧ ¬(1 :p) → 2:p), {0:q, 1:q}, {1:p, 2:p}〉,

Q2 = PM (Q[t/2],Out(P2) ∪ I(Q[t/2])) = 〈¬(2 :p) → ⊥, {1:p, 2:p}, ∅〉,
R1,2 = P2 	 Q2 	 E1 	 F1

= 〈(¬(0 :q) → 1:p) ∧ (¬(1 :q) ∧ ¬(1 :p) → 2:p) ∧ 0:q ∧ (¬(2 :p) → ⊥),

{1:q}, {0:q, 1:p, 2:p}〉.
The formula of R1,2 has a single stable model {0:q, 2:p}.

4 Online Execution of oBC+

Based on the concept of online propositional theories in the previous section, we
define an online extension of BC+, which provides a structured input language
for online answer set solving that ensures the syntactic conditions of modularity
and mutual revisability.

4.1 Syntax

The signature hierarchy of oBC+ is extended from that of (offline) BC+ by adding
new sets of symbols called external fluent constants (denoted σef ) and external
action constants (denoted σea) such that σef ⊆ σfl and σea ⊆ σact (Fig. 2). We
assume that the domain of each external fluent and action constant contains a
special element u, which represents an unknown value. The syntax of causal laws
is defined the same as in Sect. 2.2 except that external constants are allowed in
the bodies but not in the heads.
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Fig. 2. Hierarchy of oBC+ signature

An observation is an expres-
sion of the form

observed c = v at m (6)

where c=v is an atom such that
c is an external constant, v is a
value other than u, and m is a nonnegative integer. An observational constraint
is an expression of the form

constraint F at m (7)

where F is a propositional formula containing no external constants and m is
a nonnegative integer. We say that an observation (6) or observational con-
straint (7) is dynamic if it contains some action constant, otherwise we say it is
static.

An observation stream, denoted On,m̂, is a list O1, . . . On such that

– for each 1 ≤ i ≤ n, Oi is a finite set of observations (6) and observational con-
straints (7), and mi is the maximum of each m among the static observations
and constraints, and m + 1 among the dynamic observations and constraints;

– m̂ is the maximum of each mi (1 ≤ i ≤ n);
– for each external constant c and each m in {1, . . . , m̂}, there is at most one

observation (6) in O1 ∪ · · · ∪ On.

4.2 Semantics

Since any future external constants can take any values arbitrarily, the tran-
sition system in the presence of external constants can be defined straightfor-
wardly by assigning arbitrary values to the external constants. That is, given an
oBC+ description and length m, we extend the propositional formula PFm(D)
in Sect. 2.2 by adding the formulas {i : c = v}ch for every external constant
c, every v ∈ Dom(c), and every i ∈ {0, . . . , m} if c is a fluent constant, and
i ∈ {0, . . . , m−1} if c is an action constant.

On the other hand, it is more meaningful to assume that the external input is
“abnormal” to the system dynamics, and we want to “minimize” their effects. In
other words, rather than arbitrary histories, we are interested in histories which
are “normal” with respect to On,m̂. Intuitively, in a normal history, the exter-
nal constants are mapped to an unknown value unless the external observation
asserts otherwise.

Formally, a history Hk of a transition system of length k is a sequence
〈s0, e0, s1, . . . , ek−1, sk〉 such that each 〈si, ei, si+1〉 (0 ≤ i ≤ k − 1) is a transi-
tion. We say that Hk satisfies i : F where F is a fluent formula (action formula,
respectively) if si |= F (ei |= F , respectively). Given an observation stream On,m̂

and history Hk such that k ≥ m̂, we say that Hk observes On,m̂ if,

– for each observation (6) in On,m̂, history Hk satisfies m :c=v, and
– for each observational constraint (7) in On,m̂, history Hk satisfies m :F .
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Fig. 3. Online faulty switch elaboration in oBC+.

We say that Hk is normal with respect to On,m̂, if it observes On,m̂, and, for each
external fluent constant (action constant, respectively) c and each i ∈ {0, . . . , k}
(i ∈ {0, . . . , k−1}, respectively), Hk satisfies i :c=u when there is no observation
(6) in On,m̂ such that m = i.

Intuitively, observations are non-monotonic observations the agent has made
regarding the defined external actions and fluents. Meanwhile, the observational
constraints serve to further limit past histories according to what the agent
knows, such as what actions the agent has executed.

Example 2. Consider a light switch problem where the light bulb may be burnt
out. In the event this is the case, the light will not turn on until the bulb is
replaced. This problem can be formalized in oBC+ as shown in Fig. 3.7 Intu-
itively, Fault is the agent’s internal model of whether the light is burnt out,
while ExtFault represents the agent’s external observations.

Normally, Fault is governed by inertia. However, in the event the agent gains
additional information (i.e. observes whether there has been a fault) Fault is
updated to reflect this. Performing ReplaceBulb will then reset the agent’s inter-
nal model and the agent once again assumes that the fault has been fixed.

7 It uses several abbreviations of causal laws as defined in [4].
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Fig. 4. A partial transition system of DoBC+
switch

Consider the transition system corresponding to the toggle switch elaboration.
The minimum length history from

S0 = {Switch =off, Light =off, Fault =u, ExtFault =u}

to a state S such that S |= Light =on are 〈S0, E0,S1〉, and 〈S0, E0,S2〉 where

E0 = {Flip =t, ReplaceBulb =f},
S1 = {Switch =on, Light =on, Fault =u, ExtFault =u}, and
S2 = {Switch =on, Light =on, Fault =f, ExtFault =f}.

Intuitively, the difference between S1 and S2 is that in S1 the agent has no
knowledge as to whether a fault has occurred (i.e. the bulb has burnt out) whereas
in S2 the agent knows that the light is fine. Of the two, only 〈S0, E0,S1〉 is normal
with respect to the online progression O0,0 = [ ].

If, following the execution of Flip, the agent observes that a fault did occur,
the knowledge can be added to the online progression producing

O1,1 = [{observed ExtFault =t at 1, constraint Flip =t at 0}].

(The addition of the constraint enforces that the agent has executed Flip = t
and prevents that action from being revised.) The new minimum length history
from S0 to a state S such that S |= Light = on and is normal w.r.t. O1,1 is
〈S0, E0,S3, E1,S1〉 where

S3 = {Switch =on,Light =off,Fault =t,ExtFault =t}, and
E1 = {Flip =f,ReplaceBulb =t}.

This history essentially prescribes that the agent should replace the light bulb in
order to attempt to fix the fault.

A partial specification of the transition system is shown in Fig. 4. The dashed
edges depend on the assertion of an external constant and are not considered for
transitions in normal histories.
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Given an oBC+ action description D, an observation stream On,m̂, and some
incrementally parametrized formula Q[t], we define the corresponding incremen-
tal theory 〈B,P [t], Q[t]〉D,Q[t] and the online progression 〈E,F 〉On,m̂ as follows.

B =
∧

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0:F ← 0:G for each static law (1) in D

0:{f =v}ch for each regular fluent f and each v ∈ Dom(f)

0 :{f =u}ch for each external fluent f

0:UEC
σfl

P [t] =
∧

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

t :F ← t :G for each static law (1) in D

(t−1) :F ← (t−1) :G for each action dynamic law (1) in D

t :F ← t :G ∧ (t−1) :H for each fluent dynamic law (2) in D

t :{f =u}ch for each external fluent f

(t−1) :{a=u}ch for each external action a

t :UEC
σfl

(t−1) :UECσact

Q[t] = ¬¬Q[t]

Ei[mi] =
∧

{

mi :c=v for each observation (6) ∈ Oi

¬¬mi :F for each observational constraint (7) ∈ Oi

Fi[mi] = 	

The stable models of their incremental composition represent histories that
are normal w.r.t. the observation.

Given a oBC+ signature σ we define At(σ) to be the set of atoms c=v where
c ∈ σ and v ∈ Dom(c). Furthermore, we define Atu(σ) to be the set of all such
atoms such that v �= u.

We define the sets of explicit external inputs as follows:

– I(B) = Atu(0 :σef ),
– I(P [t/i]) = Atu(i :σef ∪ (i−1) :σea),
– I(Q[t/i]) = Atu(

⋃
0≤j<i(j :σef ∪ j :σea) ∪ i :σef ), and

– I(Ei) = I(Fi) = ∅.

The following proposition asserts that the translation of an oBC+ description
into propositional formulas ensures modularity and mutual revisability.

Theorem 3 (Modular and Mutually Revisable Construction). Given
an oBC+ action description D and an observation stream On,m̂, and
a step-parameterized formula Q[t], the corresponding incremental theory
〈B,P [t], Q[t]〉D,Q[t] and the corresponding online progression 〈E,F 〉On,m̂ are
modular and mutually revisable.

The next theorem asserts that the stable models of the incremental assembly
represents the histories in the transition system that are normal with respect to
the online stream.

Theorem 4 (Correctness of Incremental Assembly). Given an oBC+
action description D, an observation stream On,m̂, a step-parameterized Q[t],
and some k ≥ m̂, let Rm̂,k = 〈H, I,O〉 be the incremental composition of
〈B,P [t], Q[t]〉D,Q[t] w.r.t. 〈E,F 〉On,m̂ . The stable models of H represent the his-
tories of length k in the transition system described by D which (i) observe On,m̂,
(ii) are normal with respect to On,m̂, and (iii) satisfy Q[t/k].
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5 Conclusion

We extended the concept of online answer set solving to propositional formulas
under the stable model semantics, and based on this, designed a high level online
action language oBC+, whose structure ensures the syntactic conditions that are
required for the correctness of online answer set solving.

Another high level language for oclingo ensuring the modularity condition
of oclingo is Online Agent Logic Programming language from [11]. However,
this is based on Agent Logic Programs, instead of action languages, and lacks
negation.

oBC+ is implemented in Version 3 of cplus2asp. In addition to the static
and the incremental mode already available in Version 2, which invoke clingo
v3.0.5 and iclingo v3.0.5, respectively, newly introduced is the reactive mode,
which invokes oclingo v3.0.92. The “reactive bridge” is a new software compo-
nent, and acts as an intermediary between oclingo and a user-provided agent
controller system. It allows the agent controller system to provide an oBC+
observation stream during execution and receive updated solutions in the form of
transition system histories. We refer the reader to the system homepage (http://
reasoning.eas.asu.edu/cplus2asp) for more details and experiment results.
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supported by the National Science Foundation under Grant IIS-1319794 and South
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Abstract. Encoding finite linear CSPs as Boolean formulas and solving
them by using modern SAT solvers has proven to be highly effective by
the award-winning sugar system. We here develop an alternative app-
roach based on ASP that serves two purposes. First, it provides a library
for solving CSPs as part of an encompassing logic program. Second, it fur-
nishes an ASP-based CP solver similar to sugar. Both tasks are addressed
by using first-order ASP encodings that provide us with a high degree of
flexibility, either for integration within ASP or for easy experimentation
with different implementations. When used as a CP solver, the result-
ing system aspartame re-uses parts of sugar for parsing and normalizing
CSPs. The obtained set of facts is then combined with an ASP encod-
ing that can be grounded and solved by off-the-shelf ASP systems. We
establish the competitiveness of our approach by empirically contrasting
aspartame and sugar.

1 Introduction

Encoding finite linear Constraint Satisfaction Problems (CSPs; [2]) as propo-
sitional formulas and solving them by using modern solvers for Satisfiabil-
ity Testing (SAT; [3]) has proven to be a highly effective approach by the
award-winning sugar1 system. The CP solver sugar reads a CSP instance and
transforms it into a propositional formula in Conjunctive Normal Form (CNF).
The translation relies on the order encoding [4,5], and the resulting CNF formula
can be solved by an off-the-shelf SAT solver.

This paper is a greatly revised version of the workshop paper [1]. The work was
funded by 1AoF (251170), 6DFG (SCHA 550/10-1), 55 × 1000 (UNIFE 2011), and
3JSPS (KAKENHI 15K00099).
T. Schaub–Affiliated with Simon Fraser University, Canada, and IIIS Griffith Uni-
versity, Australia.

1 http://bach.istc.kobe-u.ac.jp/sugar.
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F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 112–126, 2015.
DOI: 10.1007/978-3-319-23264-5 10
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Fig. 1. Architecture of aspartame.

In what follows, we elaborate upon an alternative approach based on Answer
Set Programming (ASP; [6]) and present the resulting aspartame2 framework,
serving two purposes. First, aspartame provides a library for solving CSPs as
part of an encompassing logic program. Second, it constitutes an ASP-based CP
solver similar to sugar. The major difference between sugar and aspartame rests
upon the implementation of the translation of CSPs into Boolean constraint
problems. While sugar implements a translation into CNF in Java, aspartame
starts with a translation into a set of facts.3 When used as a library, this set of
facts (representing the CSP) must be supplied by the user.4 In turn, these facts
are combined with a general-purpose ASP encoding for CP solving (also based
on the order encoding), which is subsequently instantiated by an off-the-shelf
ASP grounder, in our case gringo. The resulting propositional logic program
is then solved by an off-the-shelf ASP solver (here clasp). The architecture of
aspartame is given in Fig. 1.

The high-level approach of ASP has obvious advantages. First, instantiation
is done by general-purpose ASP grounders rather than dedicated implementa-
tions. Second, the elaboration tolerance of ASP allows for easy maintenance and
modifications of encodings. And finally, it is easy to experiment with novel or het-
erogeneous encodings. However, the question is whether the high-level approach
of aspartame matches the performance of the more dedicated sugar system. We
empirically address this question by contrasting the performance of both CP
solvers, while fixing the back-end solver to clasp, used as both a SAT and an
ASP solver.

From an ASP perspective, we gain insights into advanced modeling tech-
niques for solving CSPs. The ASP encoding implementing CP solving with
aspartame has the following features:

– usage of function terms to abbreviate structural subsums
– avoidance of (artificial) intermediate Integer variables (to split sum expres-

sions)
– a collection of encodings for the alldifferent constraint

2 http://www.cs.uni-potsdam.de/aspartame.
3 When used as CP solver, aspartame re-uses sugar ’s front-end for parsing and nor-

malizing (non-linear) CSPs. Also, we extended sugar to produce a fact-based repre-
sentation.

4 This will be integrated into gringo’s input language in the near future.

http://www.cs.uni-potsdam.de/aspartame
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In the sequel, we assume some familiarity with ASP, its semantics as well as
its basic language constructs. A comprehensive treatment of ASP can be found
in [6], one oriented towards ASP solving is given in [7]. Our encodings are given
in the language of gringo 4. Although we provide essential definitions of CSPs in
the next section, we refer the reader to the literature [2] for a broader perspective.

2 Background

A Constraint Satisfaction Problem (CSP) is given by a pair (V, C) consisting of a
set V of variables and a set C of constraint clauses. Every variable x ∈ V has an
associated finite domain D(x) such that either D(x) = {�,⊥} or ∅ ⊂ D(x) ⊆ Z;
x is a Boolean variable if D(x) = {�,⊥}, and an Integer variable otherwise.
We denote the set of Boolean and Integer variables in V by B(V) and I(V),
respectively. A constraint clause C ∈ C is a set of literals, and a literal is of the
form e or e, where e is either a Boolean variable in B(V), a linear inequality, or
an alldifferent constraint. A linear inequality is an expression

∑
1≤i≤n aixi ≤ m

in which m as well as all ai for 1 ≤ i ≤ n are Integer constants and x1, . . . , xn are
Integer variables in I(V). An alldifferent constraint (cf. [8]) applies if a subset
{x1, . . . , xn} of Integer variables in I(V) is assigned to distinct values in their
respective domains.5

Given a CSP (V, C), a variable assignment v is a (total) mapping v : V →⋃
x∈V D(x) such that v(x) ∈ D(x) for every x ∈ V. A Boolean variable x ∈ B(V)

is satisfied wrt v if v(x) = �. Likewise, a linear inequality
∑

1≤i≤n aixi ≤ m
is satisfied wrt v if

∑
1≤i≤n aiv(xi) ≤ m holds. An alldifferent constraint over

subsets {x1, . . . , xn} of I(V) is satisfied wrt v if v(xi) 
= v(xj) for all 1 ≤ i < j ≤
n, respectively. Any Boolean variable, linear inequality, or alldifferent constraint
that is not satisfied wrt v is unsatisfied wrt v. A constraint clause C ∈ C is
satisfied wrt v if there is some literal e ∈ C (or e ∈ C) such that e is satisfied
(or unsatisfied) wrt v. The assignment v is a solution for (V, C) if every C ∈ C
is satisfied wrt v.

For illustration, consider a CSP (V, C) with Boolean and Integer variables
B(V) = {b} and I(V) = {x, y, z}, where D(x) = D(y) = D(z) = {1, 2, 3}, and
constraint clauses C = {C1, C2, C3} as follows:

C1 = {alldifferent(x, y, z)} (1)
C2 = {b, 4x − 3y + z ≤ 0} (2)

C3 =
{
b,−4x + 3y ≤ −6

}
(3)

5 Linear and non-linear inequalities relying on further comparison operators, such as
<, >, ≥, =, and �=, can be converted into the considered format via appropriate
replacements [5]. Moreover, note that we here limit the constraints to the ones that
are directly, i.e., without normalization by sugar, supported in our prototypical ASP
encodings shipped with aspartame.
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The alldifferent constraint in C1 requires values assigned to
x, y, and z to be mutually distinct. Assignments v satisfying
the linear inequality 4x − 3y + z ≤ 0 in C2 include v(x) = 2,
v(y) = 3, and v(z) = 1 or v(x) = 1, v(y) = 3, and v(z) = 2,
while assignments for the constraint −4x + 3y ≤ −6 include
v(x) = 3, v(y) = 2, and v(z) = 1 or v(x) = 3, v(y) = 1,
and v(z) = 2. In view of the Boolean variable b, whose value
allows for “switching” between the constraints in C2 and C3, we obtain the four
solutions v1, . . . , v4 for (V, C) shown alongside.

3 The aspartame Approach

For using aspartame as a CP solver, we extended the front-end of the sugar sys-
tem by an output component representing CSPs in terms of ASP facts. The latter
also constitute the CSP instances when using aspartame as library. As usual, the
resulting facts can then be combined with a first-order encoding processable with
off-the-shelf ASP systems. In what follows, we describe aspartame’s fact format
and we present dedicated ASP encodings utilizing function terms to capture
substructures in CSP instances.
Fact Format. Facts express the variables and constraints of a CSP instance in
the syntax of ASP grounders like gringo. Their format is easiest explained on the
CSP from Sect. 2, whose fact representation is shown in Listing 1. While facts
of the predicate var/2 provide labels of Boolean variables, like b, the predicate
var/3 includes a third argument for declaring the domains of Integer variables,
like x, y, and z. Domain declarations rely on function terms range(l,u), standing
for Integer intervals [l, u]. While one term, range(1,3), suffices for the common
domain {1, 2, 3} of x, y, and z, in general, several intervals can be specified (via
separate facts) to form non-continuous domains. Note that the interval format for
Integer domains offers a compact fact representation of domains; e.g., the single
term range(1,10000) captures a domain of 10000 elements. Furthermore, the
usage of meaningful function terms avoids any need for artificial labels to refer
to domains or parts thereof.

The literals of constraint clauses are also represented by means of function
terms. In fact, the second argument of constraint/2 in Line 3 of Listing 1
stands for alldifferent(x, y, z) from the constraint clause C1 in (1), identified by
the first argument of constraint/2. Since each fact of predicate constraint/2
is supposed to describe a single literal only, constraint clause identifiers establish
the connection between individual literals of a clause. The more complex term
of the form op(le,Σ,m) in Line 5 stands for a linear inequality Σ ≤ m. In
particular, the inequality 4x − 3y + z ≤ 0 from C2 is represented by nested
op(add,Σ,ax) terms whose last argument ax and deepest Σ part are of the form
op(mul,a,x); such nesting corresponds to the precedence (((4 ∗ x) + (−3 ∗ y)) +
(1 ∗ z)) ≤ 0. The representation by function terms captures linear inequalities of
arbitrary arity and, as with Integer intervals, associates (sub)sums with canonical
labels.
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1 var(bool ,b). var(int ,(x;y;z),range (1 ,3)).

3 constraint (1,global(alldifferent ,arg(x,arg(y,arg(z,nil ))))).

4 constraint (2,b).

5 constraint (2,op(le ,op(add ,op(add ,op(mul ,4,x),op(mul ,-3,y)),op(mul ,1,z)) ,0)).

6 constraint (3,op(neg ,b)).

7 constraint (3,op(le ,op(add ,op(mul ,-4,x),op(mul ,3,y)), -6)).

Listing 1. Facts representing the CSP from Sect. 2.

The function term expressing the alldifferent constraint includes an argument
list of the form arg(x1, arg(. . . , arg(xn, nil). . . )), in which x1, . . . , xn refer to
Integer variables. In Line 3 of Listing 1, an alldifferent constraint over argu-
ments x is declared via global(alldifferent,x); at present, alldifferent is
a fixed keyword in facts used by aspartame, but support for other kinds of global
constraints can be added in the future.
First-Order Encoding. In addition to a dedicated output component of sugar
for generating ASP facts, aspartame comes with several alternative first-order
ASP encodings for solving CSP instances. In the following, we first describe a
basic encoding that implements the order encoding techniques [5,9] concisely,
and then present optimizations and extensions for the alldifferent constraints.
We also show that these aspartame encodings can be used as library for solving
CSPs and Constraint Optimization Problems. Due to lack of space, aspartame
encodings presented here are restricted to unary constraint clauses and stripped
off capacities for handling Boolean variables.
Basic Encoding. Listing 2 shows common auxiliary predicates shared by aspar-
tame encodings. Given a CSP instance, for each Integer variable V, the domain
values of the variables are kept in a lua table, and then the lower and upper
bounds of each V are calculated via lua and captured in the second arguments of
lb/2 and ub/2 respectively in Line 1–3. Each literal of a constraint clause is clas-
sified into a alldifferent constraint expressed by alldiff/1 or a linear inequality
by wsum/1 in Line 5–7. The identifier in the first argument of constraint/2 is
removed in Line 6–7, since the aspartame encoding presented here is restricted
to unary constraint clauses. For each linear inequality

∑n
i=1 aixi ≤ c, in Line 6,

Σ is sorted in descending order of |D(xi)| via lua, and then Σ ≤ c is captured in
the argument of predicate wsum/1. Each sum Σ in op( ,Σ, ) is decomposed into
(sub)sums in Line 9–10, and then the lower and upper bounds of them are cal-
culated and captured in the second arguments of inf/2 and sup/2 respectively
in Line 13–19. In Line 11, a predicate unary exp(e) is generated if e is an unary
expression of the form op(mul,ai,xi).

Listing 3 gives our encoding of Integer variables. For each variable V and
each domain value A in D(V), we introduce a predicate p(V, A) expressing that
V ≤ A. The truth-assignments of the instances of p/2 are encoded by the choice
rule in Line 1. The constraints in Line 2 and 3 ensure that each variable V has
exactly one value in D(V). Note that the lua function getDom(V) returns D(V),
and getSimpGT(x,c) = min{d ∈ D(x) | d > c}. For illustration, consider an
Integer variable x ∈ {2, 3, 4, 5, 6} represented by var(int, x, range(2, 6)) as an
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1 var(V) :- var(int ,V,_).
2 lb(V,@getLB(V)) :- var(V).
3 ub(V,@getUB(V)) :- var(V).

5 global(I,global(Func ,Args)) :- constraint(I,global(Func ,Args )).
6 wsum(@sortWsum(L)) :- constraint(I,L), not global(_,L).
7 alldiff(Args) :- global(_,global(alldifferent ,Args )).

9 exp(E) :- wsum(op(_,E,_)).
10 exp(E1;E2) :- exp(op(add ,E1,E2)).
11 unary_exp(op(mul ,A,V)) :- exp(op(mul ,A,V)).

13 inf(op(mul ,A,V),A*LB) :- exp(op(mul ,A,V)), A > 0, lb(V,LB).
14 inf(op(mul ,A,V),A*UB) :- exp(op(mul ,A,V)), A < 0, ub(V,UB).
15 inf(op(add ,E1,E2),A+B) :- exp(op(add ,E1,E2)), inf(E1,A), inf(E2,B).

17 sup(op(mul ,A,V),A*UB) :- exp(op(mul ,A,V)), A > 0, ub(V,UB).
18 sup(op(mul ,A,V),A*LB) :- exp(op(mul ,A,V)), A < 0, lb(V,LB).
19 sup(op(add ,E1,E2),A+B) :- exp(op(add ,E1,E2)), sup(E1,A), sup(E2,B).

Listing 2. Auxiliary predicates

1 { p(V,A) : A = @getDom(V) } :- var(V).
2 :- p(V,A), not p(V,B), B = @getSimpGT(V,A), A < UB, ub(V,UB).
3 :- not p(V,UB), var(V), ub(V,UB).

Listing 3. Encoding of Integer variables

ASP fact. The resulting propositional logic program and its answer sets obtained
by clasp are as follows.

Constraints are encoded into clauses expressing conflict regions instead of
conflict points. Especially, for any linear inequality

∑n
i=1 aixi ≤ c, the following

holds [9].

n∑

i=1

aixi ≤ c ⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x1 ≤ �c/a1�) (n = 1, a1 > 0) (4)
¬(x1 ≤ 	c/a1
 − 1) (n = 1, a1 < 0) (5)
∧

d∈D(xn)

(
(xn ≤ d − 1) ∨

n−1∑

i=1

aixi ≤ c − and
)

(n ≥ 2, an > 0) (6)

∧

d∈D(xn)

(
¬(xn ≤ d) ∨

n−1∑

i=1

aixi ≤ c − and
)

(n ≥ 2, an < 0) (7)

From this mathematical representation, we can define a recursive encoding
procedure by considering

∑n−1
i=1 aixi ≤ c − and as the recursive call and also

replacing the comparison of the form x ≤ c with the translation ‖x ≤ c‖. The
translation ‖x ≤ c‖ is defined as � if c ≥ max(D(x)), ⊥ else if c < min(D(x)),
and otherwise p(x,d) where d = max{d′ ∈ D(x) | d′ ≤ c}.
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1 wsum(op(le,X,K-B*D)) :-
2 not unary(X) : opt_binary == 1;
3 wsum(op(le,op(add ,X,op(mul ,B,Y)),K)),
4 not p(Y,C) : B > 0, C = @getSimpLE(Y,D -1);
5 p(Y,D) : B < 0;
6 D = @getDomOpt(Y,B,K-Sup ,K-Inf), inf(X,Inf), sup(X,Sup).

8 wsum(op(le,op(mul ,B,Y),K-Inf)) :-
9 wsum(op(le,op(add ,X,op(mul ,B,Y)),K)),

10 K-Inf < Sup , inf(X,Inf), sup(op(mul ,B,Y),Sup).

Listing 4. Encoding of
∑n

i=1 aixi ≤ c (n ≥ 2)

1 :- wsum(op(le,op(mul ,A,X),K)), Inf <= K, K < Sup ,
2 inf(op(mul ,A,X),Inf), sup(op(mul ,A,X),Sup),
3 not p(X,B) : A > 0; p(X,B) : A < 0;
4 B = @getLE(X,A,K).

6 :- wsum(op(le,op(mul ,A,X),K)), Inf > K, inf(op(mul ,A,X),Inf).

Listing 5. Encoding of a1x1 ≤ c

This encoding procedure can be optimized by considering the validity and
inconsistency of the recursive part

∑n−1
i=1 aixi ≤ c − and, which can reduce the

number of iterations and clauses. The validity and inconsistency of the recursive
part can be captured by inequalities c − and ≥ sup(

∑n−1
i=1 aixi) and c − and <

inf(
∑n−1

i=1 aixi) respectively, where inf(Σ) and sup(Σ) indicate the lower and
upper bounds of linear expression Σ respectively. When the recursive part is
valid, the clause containing it is unnecessary. When it is inconsistent, the literal
of the recursive part can be removed, and moreover only one such clause is
sufficient. Based on the observations above, we present a recursive ASP encoding
of linear inequalities.

Encoding of
∑n

i=1 aixi ≤ c (n ≥ 2) corresponding to ( refoe:def:case:3)
and ( refoe:def:case:4) is presented in Listing 4. For a given linear inequal-
ity op(le, op(add, X, op(mul, B, Y)), K), in the first rule, a recursive part
wsum(op(le, X, K − B ∗ D)) is generated for every domain value D in D(Y)
calculated via lua such that the recursive part becomes neither valid nor incon-
sistent, if “notp(Y, C)” holds when B > 0 (or p(Y, D) holds when B < 0). Intu-
itively, “notp(Y, C)” expresses Y ≥ D because of getSimpLE(x,c) = max{d ∈
D(x) | d ≤ c}. Note that the conditional literal in Line 2 is ignored, since
the constant opt binary is set to 0 initially. In the second rule, only one
wsum(op(le, op(mul, B, Y), K − Inf)) corresponding to anxn ≤ c− inf(

∑n−1
i=1 aixi)

is generated if there exists at least one domain value in D(Y) such that the
recursive part becomes inconsistent.

Encoding of a1x1 ≤ c corresponding to (6) and (7) is presented in Listing 5.
For a given linear inequality op(le, op(mul, A, X), K), if it is neither valid nor
inconsistent, the first rule calculates a bound B in D(X) via lua and ensures
that p(X, B) holds when A > 0 (or p(X, B) does not hold when A < 0). The
lua function getLE(x,a,c) is defined as getSimpLE(x,�c/a�) if a > 0, oth-
erwise getSimpLE(x,�c/a� − 1). If inconsistent, the second rule ensures that
wsum(op(le, op(mul, A, X), K)) never holds.
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1 :- wsum(op(le ,op(add ,op(mul ,A,X),op(mul ,B,Y)),K)),

2 not p(Y,C) : B > 0 , C = @getSimpLE(Y,D -1);

3 p(Y,D) : B < 0;

4 not p(X,E) : A > 0;

5 p(X,E) : A < 0;

6 D = @getDomOpt(Y,B,K-Sup ,K-Inf), inf(op(mul ,A,X),Inf), sup(op(mul ,A,X),Sup),

7 E = @getLE(X,A,K-B*D).

Listing 6. Encoding of
∑n

i=1 aixi ≤ c (n = 2)

We refer to the encoding of Listings 2–5 as basic encoding. This encoding
can concisely implement CP solving based on the order encoding techniques by
utilizing the feature of function terms. Moreover, it proposes an alternative app-
roach to splitting sum expressions. In fact, the basic encoding splits them by
generating the instances of predicate wsum/1 during recursive encoding, rather
than by introducing intermediate Integer variables during preprocessing like a
sugar ’s CSP-to-CSP translation. It is noted that global constraints such as alld-
ifferent and cumulative are first translated into linear inequalities by sugar ’s
front-end and then encoded by the basic encoding.
Optimizations and Extensions. The basic encoding generates some redun-
dant clauses for linear inequalities of size two. Consider x + y ≤ 7 rep-
resented by a function term op(le,op(add,op(mul,1,x),op(mul,1,y)),7),
where D(x) = D(y) = {2, 3, 4, 5, 6}. The resulting propositional logic program
is as follows.
:- not p(y,5). :- not p(x,5).

wsum(op(le ,op(mul ,1,x),2)) :- not p(y,4). :- wsum(op(le ,op(mul ,1,x),2)),not p(x ,2).

wsum(op(le ,op(mul ,1,x),3)) :- not p(y,3). :- wsum(op(le ,op(mul ,1,x),3)),not p(x ,3).

wsum(op(le ,op(mul ,1,x),4)) :- not p(y,2). :- wsum(op(le ,op(mul ,1,x),4)),not p(x ,4).

The intermediate instances of wsum/1 are redundant and can be removed. This
issue can be fixed by the optimized encoding which is an extension of the basic
encoding by adding only the one rule of Listing 6 and by setting the constant
opt binary to 1. The rule of Listing 6 represents the special case of the first rule
in Listing 4 for

∑n
i=1 aixi ≤ c (n = 2) and does not generate any intermediate

instances of wsum/1. However, we keep generating such intermediate instances
for n > 2 because they can be shared by different linear inequalities and can be
effective in reducing the number of clauses. For the above example, the optimized
encoding generates the following.
:- not p(y,5). :- not p(x,5).

:- not p(y,4), not p(x,2). :- not p(y,3), not p(x,3). :- not p(y,2), not p(x,4).

To extend our approach, we present four different encodings for the alldiffer-
ent constraints: alldiffA, alldiffB, alldiffC, and alldiffD. Listing 7 shows common
auxiliary predicates shared by these encodings. For each variable V and domain
value A in D(V), we introduce a predicate val(V, A) that expresses V = A in Line 2.
For each alldifferent constraint, its argument list is decomposed into a flat rep-
resentation of the variables by alldiffArg/4 in Line 4–5, and then the lower
and upper bounds of the variables are calculated and captured in the second
and third arguments of alldiffRange/3 respectively. Note that, except in alld-
iffD, the alldifferent constraints are encoded by using the predicate val/2 [10].
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1 alldiff :- alldiff(_).
2 val(V,A) :- var(int ,V,_), p(V,A), not p(V,@getSimpLE(V,A-1)), alldiff.

4 alldiffArg(arg(F,A),1,F,A) :- alldiff(arg(arg(F,A),nil)).
5 alldiffArg(N,I+1,F,A) :- alldiffArg(N,I,_,arg(F,A)).

7 alldiffRange(A,LB,UB) :- alldiff(arg(A,nil)),
8 LB = #min {L,V : var(int ,V,range(L,_)), alldiffArg(A,_,V,_)},
9 UB = #max {U,V : var(int ,V,range(_,U)), alldiffArg(A,_,V,_)}.

Listing 7. Auxiliary predicates for the alldifferent constraints

1 :- alldiffRange(CI,LB,UB), X = LB..UB, val(V1,X), val(V2,X),
2 alldiffArg(CI,_,V1,_), alldiffArg(CI,_,V2,_), V1 < V2.

Listing 8. alldiffA encoding

The alldiffA encoding is the simplest one presented in listing 8. It consists of
only one integrity constraint forbidding that two distinct variables have exactly
the same domain value. The alldiffB encoding in listing 9 does exactly the same
as alldiffA, but uses a cardinality constraint. The alldiffC encoding in listing 10
is more mature. We use a fixed ordering of the identifiers of the variables. In
Line 1–2, whenever a variable V has been assigned to a value X, we derive a seen
predicate for every variable whose identifier is less than that of V for the value X.
In Line 3 we forbid that a variable V has the same value as a variable whose
identifier is greater than that of V . The alldiffD encoding, not presented due
to lack of space, uses hall intervals [11]. Therefore, for each variable V and each
interval [A, B], we introduce a Boolean variable p(V, A, B) that is true iff V is in the
interval [A, B]. Moreover, a linear inequality is added to constrain the number of
variables having a value in this interval to B − A. We parametrized the alldiffD
encoding with a maximal interval size.

Using aspartame Encodings as a Library. Let us consider the Two Dimen-
sional Strip Packing (2sp) problems. Given a set of n rectangles and one large
rectangle (called strip), the goal of the 2sp problem is to find the minimum strip
height such that all rectangles are packed into the strip without overlapping.

A 2sp instance is given as a set of facts consisting of width(W ) and r(i,wi,hi)
for 1 ≤ i ≤ n. The fact width(W ) expresses that the width of the strip is W ,
and r(i,wi,hi) expresses the rectangle i with a width of wi and a height of hi.
Using aspartame we introduce a pair of Integer variables (xi, yi) that express the
position of lower left coordinates of each rectangle i, and then enforcing non-
overlapping constraints (xi+wi ≤ xj)∨(xj+wj ≤ xi)∨(yi+hi ≤ yj)∨(yj+hj ≤
yi) for every two different rectangles i and j (i < j). For example, xi + wi ≤ xj

ensures that the rectangles i is located to the lefthand-side of j.
An ASP encoding for solving 2sp problems is shown in Listing 11. The pred-

icates except le/3, width/1, and r/3 are defined in aspartame encodings. The
Integer variable height with an initial range from lb to ub, in Line 3–4, is an
objective variable that we want to minimize. The predicate le(x,c,y) is intended
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1 :- alldiffRange(CI,LB,UB),
2 X = LB..UB, 2{val(V,X) : alldiffArg(CI,_,V,_)}.

Listing 9. alldiffB encoding

1 seen(CI,I-1,X) :- alldiffArg(CI,I,V,_), 1 < I, val(V,X).
2 seen(CI,I-1,X) :- seen(CI,I,X), 1 < I.
3 :- alldiffArg(CI,I,V,_), val(V,X), seen(CI,I,X).

Listing 10. alldiffC encoding

to express x + c ≤ y where x and y are Integer variables and c is an Integer
constant. The non-overlapping constraints can be concisely expressed by using
cardinality constraints. In preliminary experiments (not presented in this paper),
we confirmed that this encoding can be highly competitive in performance to a
SAT-based approach for solving 2sp problems [12].

4 The aspartame System

As mentioned, aspartame re-uses sugar ’s front-end for parsing and normalizing
CSPs. Hence, it accepts the same input formats, viz. XCSP6 and sugar ’s native
CSP format7. For this, we implemented an output hook for sugar that provides
us with the resulting CSP instance in aspartame’s fact format. This format
can also be used for directly representing linear arithmetic constraints within
standard ASP encodings used for Constraint ASP (CASP; [13–16]). In both
cases, the resulting facts are then used for grounding a dedicated ASP encoding
(via the ASP grounder gringo). In turn, the resulting propositional logic program
is passed to the ASP solver clasp that returns an assignment, representing a
solution to the original CSP instance.

Our empirical analysis considers all instances of GLOBAL categories in the
2009 CSP Competition (see footnote 6). We ran them on a cluster of Linux
machines equipped with dual Xeon E5520 quad-core 2.26 GHz processors and
48 GB RAM. We separated grounding and solving times, and imposed on each
a limit of 1800 s and 16GB. While we count a grounding timeout as 1800s, we
penalize unsuccessful solving with 1800 s if either solving or grounding does not
finish in time.

At first, we analyze the difference between the basic encoding and its refine-
ments from the previous section. To this end, Table 1 contrasts the results
obtained from different ASP encodings as well as sugar (2.2.1). The name of
the benchmark class and the number of instances is given in the first column. In
each setting, the trans column shows the average time used for translating CSP
problems into their final propositional format. For this purpose, aspartame uses

6 http://www.cril.univ-artois.fr/CPAI09.
7 http://bach.istc.kobe-u.ac.jp/sugar/package/current/docs/syntax.html.

http://www.cril.univ-artois.fr/CPAI09
http://bach.istc.kobe-u.ac.jp/sugar/package/current/docs/syntax.html
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1 var(int , x(I), range(0,W-X)) :- r(I,X,Y), width(W).

2 var(int , y(I), range(0,ub -Y)) :- r(I,X,Y).

3 var(int , height , range(lb ,ub)).

4 objective(minimize , height ).

6 1 { le(x(I),XI ,x(J)) ; le(x(J),XJ ,x(I)) ; le(y(I),YI ,y(J)) ; le(y(J),YJ ,y(I)) } :-

7 r(I,XI ,YI), r(J,XJ ,YJ), I < J.

8 le(y(I),Y,height) :- r(I,X,Y).

10 wsum(op(le ,op(add ,op(mul ,1,X),op(mul ,-1,Y)),-C)) :- le(X,C,Y).

Listing 11. Encoding of 2sp problems

gringo (4.5), while sugar uses a dedicated implementation resulting in a CNF in
DIMACS format. Analogously, the solve column gives the average time for each
benchmark class, showing the number of translation (tot) and total timeouts
(to). In all cases, we use clasp(3.1.1) as back-end ASP or SAT solver, respec-
tively, in its ASP default configuration tweety. Comparing the basic encoding
with the optimized encoding, we observe that the latter significantly reduces both
solving and grounding timeouts (mainly due to the CabinetStart1 class). Next,
we want to investigate the impact of the recursive structure of our encodings.
For this, we disabled splitting of linear constraints within sugar ’s translation.
This usually leads to an exponential increase in the number of clauses for sugar.
The results are given in column optimizednosplit of Table 1. In fact, disabled
splitting performs as good as the optimized encoding with splitting. In some
cases, it even improves performance. As splitting constraints the right way usu-
ally depends heavily on heuristics, our recursive translation offers a heuristic-
independent solution to this problem. Finally, although aspartame and sugar
are at eye height regarding solving time and timeouts, aspartame falls short by
an order of magnitude when it comes to translating CSPs into propositional
format. Here the dedicated implementation of sugar8 clearly outperforms the
grounder-based approach of aspartame. On the other hand, our declarative app-
roach allows us to easily modify and thus experiment with different encodings.

This flexibility was extremely useful when elaborating upon different encod-
ings. While for the benchmarks used in Table 1 the alldifferent constraints are
translated to linear constraints with the help of sugar, we now want to handle
them by an encoding. To this end, Table 2 compares four alternative encod-
ings for handling alldifferent. While variants A, B, C have already been pre-
sented above, variant D uses a more complex encoding using hall intervals of
size three [11]. Our experiments show however that simple translations using
binary inequalities like A and B are as good as more complex ones like C and
even outperform more sophisticated ones as D. The last column shows the combi-
nation of non-splitting linear constraints (in sugar) and handling the alldifferent
constraint with translation B. This is currently the best performing combination
of encodings and constitutes the default setting of aspartame (2.0.0)9.

8 The timeouts of sugar during translation are always due to insufficient memory.
9 The system is available at http://www.cs.uni-potsdam.de/aspartame/.

http://www.cs.uni-potsdam.de/aspartame/
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Table 1. Experiments comparing different encodings with sugar.

5 Discussion

CASP approaches [13–16] handle constraints in a lazy way by using off-the-
shelf CP solvers either as back-end (ezcsp) or online propagator (clingcon). The
approach in [15] (inca) uses a dedicated propagator to translate constraints (via
the order encoding) during solving. Our approach can be seen as an “early”
approach, translating all constraints before the solving process. As regards pure
CP solving, aspartame’s approach can be seen as a first-order alternative to SAT-
based approaches like sugar [5]. Although the performance of the underlying
SAT solver is crucial, the SAT encoding plays an equally important role [17].
Among them, we find the direct [18,19], support [20,21], log [22,23], order [4,5],
and compact order [24] encoding. The order encoding showed good performance
for a wide range of CSPs [4,12,25–27]. In fact, the SAT-based CP solver sugar
won the GLOBAL category at the 2008 and 2009 CP solver competitions [28].
Also, the SAT-based CP solver BEE [29] and the CLP system B-Prolog [30]
use this encoding. In fact, the order encoding provides a compact translation
of arithmetic constraints, while also maintaining bounds consistency by unit
propagation.

We presented an alternative approach to solving finite linear CSPs based
on ASP. The resulting system aspartame relies on high-level ASP encodings and
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Table 2. Experiments comparing different encodings for alldifferent.

delegates both the grounding and solving tasks to general-purpose ASP systems.
Furthermore, these encodings can be used as a library for solving CSPs as part
of an encompassing logic program, as it is done in the framework of CASP. We
have contrasted aspartame with its SAT-based ancestor sugar, which delegates
only the solving task to off-the-shelf SAT solvers, while using dedicated algo-
rithms for constraint preprocessing. Although aspartame does not fully match
the performance of sugar from a global perspective, the picture is fragmented
and leaves room for further improvements, especially for the translation process.
Experience from aspartame will definitely help to build/improve the current
experimental support for linear constraints in gringo. Despite all this, aspartame
demonstrates that ASP’s general-purpose technology allows to compete with
state-of-the-art constraint solving techniques. In fact, the high-level approach
of ASP facilitates extensions and variations of first-order encodings for dealing
with particular types of constraints. In the future, we thus aim at investigating
alternative encodings, e.g., regarding alldifferent constraints, as well as support
of further global constraints.
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Abstract. We discuss a challenge in developing intelligent agents
(robots) that can collaborate with human in problem solving. Specifi-
cally, we consider situations in which a robot must use natural language
in communicating with human and responding to the human’s commu-
nication appropriately. In the process, we identify three main tasks. The
first task requires the development of planners capable of dealing with
descriptive goals. The second task, called plan failure analysis, demands
the ability to analyze and determine the reason(s) why the planning sys-
tem does not success. The third task focuses on the ability to understand
communications via natural language. We show how the first two tasks
can be accomplished in answer set programming.

1 Introduction

Human-Robot interaction is an important field where humans and robots col-
laborate to achieve tasks. Such interaction is needed, for example, in search and
rescue scenarios where the human may direct the robot to do certain tasks and at
times the robot may have to make its own plan. Although there has been many
works on this topic, there has not been much research on interactive planning
where the human and the robot collaborate in making plans. For such interactive
planning, the human may communicate to the robot about some goals and the
robot may make the plan, or when it is unable it may explain why it is unable and
the human may make further suggestions to overcome the robot’s problem and
this interaction may continue until a plan is made and the robot executes it. The
communication between the robot and the human happens in natural language
as ordinary Search and Rescue officials may not be able to master the Robot’s
formal language to instruct it in situations of duress. Following is an abstract
example of such an interactive planning using natural language communication.

Consider the block world domain in Fig. 1 (see, [1]). The robot has its own
blocks and the human has some blocks as well. The two share a table and some
other blocks as well. Suppose that the human communicates to the robot the
sentence “Add another blue stack of the same height!.” Even if we assume that
the robot is able to recognize the color of the blocks, create, and execute plans
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 127–133, 2015.
DOI: 10.1007/978-3-319-23264-5 11
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Fig. 1. A simplified version of the blocks world Example from the BAA (Color figure
online)

for constructions of stack of blocks, such a communication presents several chal-
lenges to a robot. Specifically, it requires that the robot is capable of under-
standing natural language, i.e., it requires that the robot is able to identify that

– the human refers to stacks of only blue blocks (blue stack);
– the human refers to the height of a stack as the number of blocks on the stack;
– there is a blue stack of the height 2 on the table; and
– it should use its two blue blocks to build a new stack of two blue blocks.

It is easy to see that among the above points, the first three are clearly related to
the research in natural language processing (NLP) and the last one to planning,
i.e., an integration of NLP and planning is needed for solving this problem.
Ideally, given the configuration in Fig. 1 and the reasoning above, the robot
should devise a plan to create a new stack using its two blue blocks and execute
the plan. On the other hand, if the robot has only one blue block, the robot
should realize that it cannot satisfy the goal indicated by the human and it
needs to respond to the human differently, for example, by informing the human
that it does not have enough blue blocks or by asking the human for permission
to use his blue blocks.

As planning in various settings has been considered in answer set program-
ming and there have been attempts to translate NLP into ASP, we would like
to explore the use of ASP and related tools in solving this type of problems.
Our focus in this paper is the interactive planning problem that the robot needs
to solve.

2 ASP Planning for “Add Another Blue Stack
of the Same Height!”

What are the possible responses to the communication from the human “Add
another blue stack of the same height!” for the robot? Assume that the robot
can recognize that it needs to create and execute a plan in responding to the
communication. We next describe an ASP implementation of an ASP planning
module for the robot. Following the literature (e.g., [2]), this module should
consist of the planning domain and the planning problem.
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2.1 The Planning Domain

The block world domain Db can be typically encoded by an ASP-program as
follows:

– blocks are specified by the predicate bl (.);
– actions such as pont (X) or put (X,Y), where X and Y denote blocks, are defined

using ASP-rules;
– properties of the world are described by fluents and encoded using predicates—

similar to the use of predicates in Situation Calculus—whose last parameter
represents the situation term or an time step in ASP. For simplicity, we use
two fluents on(X,Y,T) and ont (X,T) which denote Y is on X or X is on the
table, respectively, at the time point T;

– Rules encoding executability conditions and effects of actions are also
included, for example, to encode the executable condition and effects of the
action pont (X), we use the the rules

executable(pont(X),T):-time(T),action(pont(X)),clear(X,T).

ont(X,T+1):-time(T),occ(pont(X),T).

ont(X,T+1):-time(T),ont(X,T),#count{Z:occ(put(Z,X),T)}==0.

Db can be used for planning [2]. To use Db in planning, we need the following
components: (i) rules for generating action occurrences; (ii) rules encoding the
initial state; and (iii) rules checking for goal satisfaction.

2.2 What are we Planning for? and How do we Plan for it?

Having defined Db, we now need to specify the planning problem. The initial
state can be easily seen from the figure. The question is then what is the goal of
the planning problem. Instead of specifying a formula that should be satisfied in
the goal state, the sentence describes a desirable state. This desirable state has
two properties: (i) it needs to have the second (or a new) blue stack; and (ii) the
new blue stack has the same height as the existing blue stack. In other words,
the goal is descriptive. We will call a planning problem whose goal is descriptive
as a descriptive planning problem.

In the rest of this subsection, we will present an encoding of the planning
problem for “Add another blue stack of the same height!.” First, we need to
represent the goal. Considering that a stack can be represented by the block at
the top, the goal for the problem can be represented by a set of goal conditions
in ASP as follows.

g_c(S,is,stack):-bl(S). g_c(S,type,another):-bl(S).

g_c(S,color,blue):-bl(S). g_c(S,height,same):-bl(S).

These rules state that the goal is to build a stack represented by S, the stack
is blue, has the same height, and it is a new stack. Note that these rules are
still vague in the sense that they contain unspecified concepts, e.g., “what is a
stack?,” “what does it mean to be the same height?,” etc.
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The problem can be solved by adding rules to the block program Db to define
when a goal condition is satisfied. Afterwards, we need to make sure that all goal
conditions are satisfied. As we only need to obtain one new stack, the following
rules do that:

not_sat_goal(S,T):-bl(S),g_c(X,Y,Z), not sat(X,Y,Z,T).

sat_goal(S, T) :-not not_sat_goal(T).

:- X = #count {S : sat_goal(S, n)}, X ==0.

The first two rules define blocks that are considered to satisfy a goal condi-
tion. The last rule ensures that at least one of the blocks satisfies all four goal
conditions.

We now need rules defining when different kinds of goal conditions are sat-
isfied. For simplicity, let us consider stacks to have at least one block. In that
case we have the following rule defining when a block is a stack.

sat(S,is,stack,T):-bl(S),time(T),clear(S,T).

We next define that the color of a stack at time point T is blue if all blocks
in that stack at that time point are blue. The next rule simply says that a stack
is blue if its top is blue and all blocks below the top are also blue.

sat(S,color,blue,T):-bl(S),time(T),color(S,blue),clear(S,T),

#count{U:above(U,S,T), not color(U,blue)}==0.

Defining sat (S,height,same,T) is less straightforward. First, we define a
predicate same height (S,U,T) meaning that in the context of time step T, S and
U have the same height (or two stacks represented by S and U have the same
height). We then use this predicate to define sat (S,height,same,T). Note that
the definition of the predicate sat (S,height,same,T) also enforces the constraint
that the blue stack that is compared to the stack represented by S does not
change.

same_height(S,U,T):-bl(S),bl(U),S!=U,ont(S,T),ont(U,T).

same_height(S,U,T):-bl(S),bl(U),S!=U,on(S1,S,T),on(U1,U,T),

same_height(S1, U1, T).

sat(S,height,same,T):- sat(S,is,stack,T), S!=U,

sat(U,is,stack,T),sat(U,color,blue,T),

unchanged(U,T),clear(S,T),clear(U,T),same_height(S,U,T).

Similarly, defining sat(S, type, another,T) is also not straightforward. Intu-
itively, it means that there is another stack U different from S and U has not
changed over time. We define it using a new predicate unchanged (U,T) which
means that the stack with U at the top has not changed over time (from step 0
to step T).

sat(S,type,another,T):-bl(U),unchanged(U,T),same_height(S,U,T).

unchanged(U,T):- time(T),bl(U),not changed(U,T).

changed(U,T):- time(T),T>0,bl(U),above(V,U,0), not above(V,U,T).

changed(U,T):- time(T), T > 0, bl(U),ont(U,0), not ont(U,T).

changed(U,T):- time(T), T > 0, bl(U),not ont(U,0), ont(U,T).

changed(U,T):- time(T), T > 0, bl(U),not ont(U,0), on(X,U,T).
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Let us denote with Gb the collection of rules developed in this section. To
compute a plan, we will only need to add the initial state and the rules described
above for enforcing that all goal conditions must be satisfied. Initializing the
initial situation as 0 (Fig. 1), the description of who has which blocks and what
is on the table can be expressed through the following facts, denoted with Ib:

has(human,b1,0).color(b1,red).has(human,b2,0). color(b2,brown).

has(human,b3,0).color(b3,brown).has(human,b4,0).color(b4,green).

has(human,b5,0).color(b5,blue). has(robot,b6,0). color(b6,red).

has(robot,b7,0). color(b7,red). has(robot,b8,0). color(b8,blue).

has(robot,b9,0).color(b9,blue).has(robot,b10,0).color(b12,red).

has(robot,b11,0).color(b11,green).ont(b12,0). color(b10,green).

ont(b13,0). color(b13,blue).on(b13,b14,0). color(b14,blue).

It is easy to see that the program Db ∪ Ib ∪Gb with n=2 has two answer sets,
one contains the atoms occ(pont(b8),0), occ(put(b8,b9),1) that corresponds
to a possible plan pont(b8),put(b8,b9) for the robot; the other one corresponds
to the plan pont(b9),put(b9,b8).

2.3 What if Planning Fails?

The previous subsection presents an initial configuration in which the robot can
generate a plan satisfying the request from the human. Obviously, there are
several configurations of the block world in which the planning generation phase
can fail. What should be the robot’s response? What is the ground for such
response? Let us consider one of such situations.

Assuming a different initial configuration in which the robot has only one
blue block, say b8 (or b9). Let Ibf be the new initial situation. Furthermore, we
require that the robot cannot use the block belonging to the human if it does
not get the human’s permission. In this case, the robot will not be able to add
another blue stack of the same height to the table because there is no plan that
can satisfy this goal. More specifically, it is because the robot does not have
enough blue blocks for the task at hand. This is what the robot should respond
back to the human user. We next discuss a possible way for the robot to arrive
at this conclusion.

First, the encoding in the previous subsection must be extended to cover the
requirement that the robot can only use its own blocks or the blocks on the table
in the construction of the new stack. This can be achieved with the following
rules:

available(X, T) :- time(T),bl(X),has(robot,X,T).

available(X, T) :- time(T),bl(X),ont(X, T),clear(X,T).

available(X, T) :- time(T),bl(X),above(Y,X,T),clear(X,T).

:-occ(pont(X),T),not available(X,T).

:-occ(put(Y,X),T),not available(X,T).

Let Dbf be Db unions with the above rules. It is easy to see that, for any
constant n, the program Dbf ∪ Ibf ∪ Gb does not have an answer set. When
the planning fails, the robot should analyze the situation and come up with an



132 C. Baral and T.C. Son

appropriate response. A first reasonable step for the robot is to identify why the
planning fails. As it turns out, the program described in the previous subsection
only needs only minor changes to accomplish this task. First, we need to modify
the goals as follows.

g_c(S,is,stack):-bl(S),ok(1).g_c(S,height,same):-bl(S),ok(3).

g_c(S,color,blue):-bl(S),ok(2).g_c(S,type,another):-bl(S),ok(4).

{ok(1..4)}4.ngoals(X):-X=#count{I:ok(I)}.#maximize {X:ngoals(X)}.

Let Gbf be the new goal, obtained from Gb by replacing the rules defining
g c(.) with the above rules. It is easy to check that every answer set of the
program Dbf ∪ Ibf ∪ Gbf does not contain the atom ok(2) which indicates that
the goal condition g c(S,color,blue) cannot be satisfied. As such, the robot
should use the missing goal condition as a ground for its response. However, the
robot could use this information in different ways. For example, it can tell the
human that it does not have enough blue blocks or it could ask the human for
permission to use the human’s blue blocks to complete the goal. It means that
the robot needs the ability to make assumptions and reason with them. This can
be defined formally as follows.

Definition 1. A planning problem with assumptions is a tuple P =
(D, I,G,AP,AF ) where (D, I,G) is a planning problem, AP is a set of actions,
and AF is a set of fluents. We say that P needs a plan failure analysis if (D, I,G)
has no solution.

Intuitively, AP is the set of actions that the robot could execute and AF is a set of
assumptions that the robot could assume. For example, for our running example,
AP could contain the logic program encoding of an action ask(blue) whose
effect is that the robot can use the blue block from the human; AF could be
{has(robot,bx), color(bx,blue)}. So, a planning problem with assumption for
the robot is Pbf = (Dbf , Ibf , Gb, {ask(blue)}, {has(robot, bx), color(bx, blue)}).

Definition 2. A plan failure analysis for a planning problem with assumptions
P = (D, I,G,AP,AF ) is a pair (A,F ) such that A ⊆ AP , F ⊆ AF , and the
planning problem (D ∪A, I ∪F,G) is solvable. (A,F ) is a preferred plan failure
analysis if there exists no analysis (A′, F ′) such that A′ � A or F ′ � F .

It is easy to see that Pbf = (Dbf , Ibf , Gb, {ask(blue)}, {has(robot, bx), color
(bx, blue)}) has two preferred plan failure analyses; one, (∅, {has(robot,bx),
color(bx,blue)}), tells the robot that it does not have enough blue blocks;
another one ({ask(blue)}, ∅) tells the robot to ask for permission to use the
human’s blue blocks.

To compute a preferred plan failure analysis, we can apply the same method
used in identifying a minimal set of satisfying goal conditions. We assume that
for each action act in AP , AP consists of the rules defines its effects and a
declaration of the form is ap (act). For each fluent l in AF , we assume that
AF contains a declaration is af(l) as well as the rules for describing how l
changes when actions are executed. Let Da be the following set of rules:
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{action(A) : is_ap(A)}. a_assume(A):- action(A),is_ap(A).

{assume(L) : is_af(L)}. L@0:-assume(L).

nl_assume(F):-F=#count{L:assume(L)}.

na_assume(Y):-Y=#coun {A:a_assume(A)}.

#minimize {1@1,F:nl_assume(F)}. #minimize {1@1,A:na_assume(A)}.

The first rule says that the robot can assume any action in AP . Any action
that is assumed will be characterized by the predicate a assume (.) (the second
rule). The third rule says that the robot can assume any fluent in AF . L@0

represents the fact that L is true at the time 0. The rest of the rules minimizes
the number of actions and the number of assumed fluents, independent from
each other. We can show that the new program returns possible preferred plan
failure analyses of the problem.

3 Conclusions and Future Work

We describe two problems related to planning that need to be addressed for an
effective collaboration between an intelligent system and human when commu-
nication via natural language is necessary. We show that ASP based approaches
can be employed to deal with these two problems. Our discussion shows that
ASP can play an important role in the development of intelligent systems that
can interact with human via natural language. Our future goal is to develop fur-
ther applications that integrate various aspects of AI including NLP, Ontologies
and Reasoning by using KParser that has been used to address the Winograd
Schema Challenge [3].
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Abstract. We describe the AIA architecture for intelligent agents
whose behavior is driven by their intentions and who reason about, and
act in, changing environments. The description of the domain includes
both the agent’s environment and the general Theory of Intentions. The
architecture is designed to enable agents to explain unexpected observa-
tions and determine which actions are intended at the present moment.
Reasoning is reduced to computing answer sets of CR-Prolog programs
constructed automatically from the agent’s knowledge.

1 Introduction

This paper presents a new declarative methodology for the design and implemen-
tation of intelligent agents. We limit our attention to a single agent satisfying
the following assumptions:

– the agent’s environment, its mental state, and the effects of occurrences of
actions can be represented by a transition diagram. States of the diagram
contain physical properties of the world as well as mental attitudes of the
agent. Transitions are caused by actions and reflect possible changes in these
states;

– the agent is capable of making correct observations, remembering the domain
history, and correctly recording the results of his attempts to perform actions;

– normally, the agent is capable of observing the occurrence of all relevant exoge-
nous actions (actions not performed by the agent).

Our approach to agent design (referred to as AIA) builds upon earlier work
on the AAA architecture [1]. The main difference between AAA and AIA is
in the organization of the control loop of the agent. In both cases the agent
uses its knowledge about the domain to perform diagnostic and planning tasks.
However, in our approach the loop is centered around the notion of intention,
which is absent in AAA. The use of intentions simplifies and generalizes the loop
and allows the agent to more naturally persist in its commitment to achieve its
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goals. Moreover, it allows an outside observer (including the agent designer) to
reason about agent’s behavior, e.g. to prove that the agent will never perform
any unintended actions.

Our work is obviously related to the BDI agent model [7,9]. Space constraints
prevent a thorough comparison, but we will mention some of the key differences.
The BDI model is usually based on a rather complex logic, e.g. LORA [9], with
multiple modalities that include beliefs, desires, intentions and time, as well as
complex actions obtained from elementary actions by operators such as if, while,
choice. By contrast, AIA is based on simpler, yet expressive logics that are
directly executable. Revisions of beliefs, desires and intentions are also achieved
quite differently in the two approaches, since BDI logics are monotonic, while
AIA is based on non-monotonic logic. Finally, in BDI intentions are considered
on par with beliefs and desires. In our work, on the other hand, intentions are
precisely definable in terms of beliefs and desires. The hierarchical representation
of activities in AIA, which we introduce later in this paper, also paves the way
towards establishing a connection between the flexibility of reasoning of the AIA
architecture and the computational efficiency of HTN planning [8].

The main technical contributions of our work are the introduction of a formal
theory of intentions (T I) and the development of an algorithm which takes the
agent’s knowledge (including the theory of intentions), explains the unexpected
observations and computes an action the agent will intend to perform. (Note,
that when necessary, the second task can require planning).

The T I represents properties of intentions as a collection of statements of
an action theory of AL. This ensures declarativity and allows for seamless inte-
gration of T I with agent’s knowledge about its domain and history. Existence
of a reasoning algorithm ensures that the declarative specification of an agent
can be actually executed. The algorithm is based on the reduction of the task of
explaining observations and finding an intended action to the problem of com-
puting answer sets of a program of CR-Prolog [3] automatically generated from
the agent’s knowledge. As usual answer sets are computed by a general pur-
pose algorithm implemented by a comparatively efficient answer set solver [2].
A prototype implementation of a software called AIA Agent Manager allows
to test this methodology. The following example informally describes the agent
and illustrates its intended behavior by a number of simple (but non-trivial)
scenarios.

Example 1. [Bob and John] Consider an environment that contains our agent
Bob, his colleague John, and a row of four rooms, r1, r2, r3, r4 where consecutive
rooms are connected by doorways, such that either agent may move between
neighboring rooms. The door between r3 and r4 is special and can be locked
and unlocked by both agents. If the door is locked then neither can move between
those two rooms until it is unlocked. Bob and John meet if they are located in
the same room.

Scenario 1: Planning to Achieve the Goal. Initially Bob knows that he is
in r1, John is in r3, and the door between r3 and r4 is unlocked. Suppose that
Bob’s boss requests that he meet with John. This causes Bob to intend to meet
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with John. This type of intention is referred to as an intention to achieve a goal.
Since Bob acts on his intentions, he uses his knowledge of the domain to choose
a plan to achieve his goal. Of course Bob does not waste time and chooses the
shortest plan that he expects to achieve his goal, that is to move from r1 to r2
and then to r3. A pair consisting of a goal and the plan aimed at achieving it
is called an activity. To fulfill his intention, Bob intends to execute the activity
consisting of the goal to meet John and the two step plan to move from r1 to
r3. The process of executing an activity begins with a mental1 action to start
the activity. Assuming there are no interruptions, the process continues with the
execution of each action in the plan (in this case, moving to r2, then to r3). After
meeting John in r3 the process concludes with an action to stop the activity.

Scenario 2: Not Expected to Achieve Goal and Replanning. Suppose
that as Bob is moving from r1 to r2 he observes John moving from r3 to r4. Bob
should recognize that in light of this new observation the continued execution
of his activity is not expected to achieve the goal, i.e. his activity is futile. As
a result, he should stop executing his activity and start executing a new one
(containing a plan to move to r3 and then to r4) that is expected to achieve the
goal.

Scenario 3: Failure to Achieve, Diagnosis, and Replanning. Bob moved
from r1 to r2 and then to r3, but observes that John is not there. Bob must
recognize that his activity failed to achieve the goal. Further analysis should
allow Bob to conclude that, while he was executing his activity, John must have
moved to r4. Bob doesn’t know exactly when John moved, but his intention will
persist, and he will find a new activity (containing a plan to move to r4) to
achieve his goal.

Scenario 4: Failure to Execute, Diagnosis, and Replanning. Believing
that the door is unlocked, Bob attempts to move from r3 to r4, but is unable to
perform the action. This is unexpected, but Bob realizes that John must have
locked the door after moving to r4. Bob’s new activity contains the same goal
to meet John and a plan to unlock the door before moving to r4. �

Despite the comparative simplicity of the tasks illustrated by these scenarios we
are unaware of any systematic declarative methodology which will allow us to
easily build an agent capable of the type of reasoning needed to perform them.

2 The Representation Language

The representation language adopted in this work is an extension of action
language AL [4]. The language is parametrized by a sorted signature con-
taining three special sorts actions, fluents, and statics (properties which can,

1 Actions that directly affect an agent’s mental state are referred to as mental actions,
while those actions that directly affect the state of the environment are referred to
as physical actions.
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resp. cannot, be changed by actions). The fluents are partitioned into two sorts:
inertial and defined. Together, statics and fluents are called domain properties.
A domain literal is a domain property p or its negation ¬p. If domain literal l
is formed by a fluent, we refer to it as a fluent literal; otherwise it is a static
literal. Allowed statements are: causal laws (a causes lin if p0, . . . , pm), state
constraints (l if p0, . . . , pm), and executability conditions (impossible a0, . . . , ak

if p0, . . . , pm), where k ≥ 0, a, ai’s are actions, l is a domain literal (the head),
lin is a literal formed by an inertial fluent, and pi’s are domain literals. More-
over, no negation of a defined fluent can occur in the heads of state constraints.
The collection of state constraints whose head is a defined fluent f is referred to
as the definition of f . As in logic programming, f is true if it follows from the
truth of the body of at least one of its defining rules and is false otherwise. A sys-
tem description of AL is a collection of statements of AL over some (implicitly
defined) signature.

In this paper we expand the syntax of AL by requiring its signature to con-
tain activities, consisting of a goal, a plan aimed at achieving the goal, and a
name. We name activities by natural numbers. For instance we can denote Bob’s
activity from Scenario 1 by 〈1, [move(b, r1, r2),move(b, r2, r3)],meet(b, j)〉.
In AL this will be represented by the statics activity(1), comp(1, 1,move(b,
r1, r2)), comp(1, 2,move(b, r2, r3)), length(1, 2), goal(1,meet(b, j)), where
comp(X,Y,A) states that A is the Y th element of the plan of activity X, and
length(X,N) says that the plan of activity X has length N . In this example both
components of the activity’s plan are actions. In general, they can be other, pre-
viously defined, activities.

Normally, a system description of AL is used together with a recorded history
of the domain, i.e., a collection of agent’s observations. In traditional action
theories such histories determine past trajectories of the system, called models,
the agent believes to be possible. If no such model exists the history is deemed
inconsistent.

Compared to the AAA architecture, the present work also expands the notion
of domain history and modifies the notion of history’s model. The new domain
history includes two more types of statements: attempt(A, I) and ¬hpd(A, I).
The former indicates that the agent attempted to execute action A at step I. If
at that point the preconditions for executability of A are satisfied, then action A
is successful and, therefore, the domain history will contain hpd(A, I); otherwise
it will contain ¬hpd(A, I). The notion of model is modified to allow the agent
to explain unexpected observations by assuming the occurrence of a minimal
collection of occurrences of exogenous actions missed by the agent.

3 Theory of Intentions

The agent’s mental state is primarily described by the two inertial fluents
active goal(g) and status(m, k). The latter holds when k is the index of the
component of m that has most recently been executed, and status(m,−1) holds
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when the agent does not intend to execute m2. The inertial property of these
two fluents elegantly captures the natural persistence of the agent’s intentions.

The two mental actions start(m) and stop(m) directly affect the agent’s men-
tal state by initiating and terminating its intent to execute activity m. Special
exogenous mental actions select(g) and abandon(g), which can be thought of
as being performed by the agent’s controller, initiate and terminate the agent’s
intent to achieve goal g. Special agent action wait, which has no executability
conditions or effects (physical or mental), can be seen as doing nothing. Since
action wait has no effects, it is neither a mental nor physical action. All other
agent and exogenous actions are said to be physical. While the agent’s and exoge-
nous mental actions do not affect the state of the physical environment, some
physical actions may affect the agent’s mental state. The properties of the above
actions and fluents are expressed by a collection of axioms of AL3.

Defined fluent active(M) is true when activity M has a status that is not
equal to −1:

active(M) if ¬status(M,−1). (1)

Action start sets the value of status to 0 and an agent cannot start an active
activity. Similarly action stop deactivates, and an agent cannot stop an inactive
activity.

Defined fluent child(M1,M) is true when M1 is the current component of M :

child(M1,M) if comp(M,K + 1,M1), status(M,K). (2)

Similarly, child goal(G1, G) is true when G and G1 are the goals of M and M1,
and descendant(M1,M) is defined recursively in terms of child. Sub-activities
and sub-goals are represented by defined fluent minor(·). We refer to activities
and goals that are not minor as top-level. Special exogenous action select acti-
vates a goal, and abandon deactivates a goal. A state constraint is also included,
which ensures that top-level goals are no longer active once they have been
achieved.

The next axioms describe the propagation of the intent to achieve a goal to
its child goal. Of course, the parent goal may be a top-level or minor goal.

The first axiom in (3) says that an unachieved minor goal G1 of an activity
M1 becomes active when M1 is the next component of an ongoing activity M .
The second says that a minor goal G1 is no longer active when it is achieved:

active goal(G1) if ¬G1, minor(G1), child goal(G1, G), active goal(G),
goal(M1, G1), status(M1,−1).

¬active goal(G1) if G1, minor(G1), child goal(G1, G), active goal(G).
(3)

Not shown here are the third and forth axioms, which say that a minor goal G1
is no longer active when its parent is no longer active, and that a minor goal G1
of M1 is no longer active when M1 has been executed (i.e. its status is equal to
its length). Defined fluents in progress(M) and in progress(G) are true when
2 The mental state includes statics, which describe activities.
3 For space reasons we omit formal representations of some axioms.
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M and its goal G are both active. Defined fluent next act(M,A) is true if agent
action A is the next action of the ongoing execution of M . For a physical agent
action of M , the axiom is:

next act(M,A) if phys agent act(A), status(M,K),
comp(M,K + 1, A), in progress(M). (4)

Executing the next physical action of M increments the status of M :

A causes status(M,K + 1) if next act(M,A), status(M,K),
comp(M,K + 1, A), phys agent act(A). (5)

Along the same lines, stopping an activity causes its descendants to be
inactive:

stop(M) causes status(M1,−1) if descendant(M1,M). (6)

An intentional system description D consists of a description of the agent’s
physical environment, a collection of activities, and the theory of intentions.
Paths in the transition diagram T (D) correspond to physically possible trajec-
tories of the domain. A state of the trajectory is divided into two parts: physical
and mental consisting of all physical and mental fluent literals respectively.

4 The AIA Control Strategy

In our architecture the agent’s behavior is specified by the following AIA control
loop:

1. interpret observations;
2. find an intended action e;
3. attempt to perform e and update history with a record of the attempt;
4. observe the world, update history with observations, and go to step 1.

In step 1 the agent uses diagnostic reasoning to explain unexpected observations.
The agent explains these observations by hypothesizing that some exogenous
actions occurred unobserved in the past. In step 2 the agent finds an intended
action, i.e.: to continue executing an ongoing activity that is expected to achieve
its goal; to stop an ongoing activity whose goal is no longer active (either achieved
or abandoned); to stop an activity that is no longer expected to achieve its goal;
or to start a chosen activity that is expected to achieve his goal.

In general, a history Γ of the domain defines trajectories in the transition
diagram satisfying Γ . These trajectories define possible pasts of the domain
compatible with observations in Γ and the assumptions about the agent’s obser-
vation strategy and ability. This however does not mean that every action in
such a model is intended by an agent. This is the case, for example, if Bob pro-
crastinates and waits instead of performing the intended action start(1). It can
be shown, however, that this is impossible for histories produced by an agent
executing the AIA control loop. Every agent’s action in every model of such a
history is intended. Such histories are called intentional, and this is exactly what
we require from an intentional agent.
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5 The Reasoning Algorithms

In this section we present a refinement of the AIA control loop in which rea-
soning tasks are reduced to computing answer sets of a CR-Prolog program
constructed from the intentional system description and the domain history.

The program, denoted by Π(D, Γn), consists of: the translation of D into
ASP rules (Π(D)); rules for computing models of Γn (Π(Γn)); and rules for
determining intended actions at n (IA(n)). Construction of Π(D) is based on the
diagnostic module of AAA [6]. In addition to standard axioms, it contains axioms
encoding our domain assumptions and the effects of a record attempt(A, I) and
¬hpd(A, I). A consistency-restoring rule of CR-Prolog allows us to compute
minimal explanations of unexpected observations:

occurs(A, I2) +← phys exog act(A), curr step(I1), I2 < I1.
unobs(A, I) ← I < I1, phys exog act(A), occurs(A, I), not hpd(A, I).

number unobs(N, I) ← curr step(I), N = #count{unobs(EX, IX)}.

The following lemma links the first step and the answer sets of Π(D) ∪ Π(Γn).

Lemma 1. If Γn is an intentional history of D, then Pn is a model of Γn iff
Pn is defined by some answer set A of Π = Π(D) ∪ Π(Γn). Moreover, for
every answer set A of Π, number unobs(x, n) ∈ A iff there are x unobserved
occurrences of exogenous actions in A.

To perform the second step – finding an intended action – we will need program
IA(n). It consists of an atom interpret(x, n) where x is the number of unobserved
exogenous actions in the models of Γn and the collection of rules needed to
compute an intended action. A constraint requires the agent to adhere to the
outcome of the reasoning completed in step 1 by preventing the agent from
assuming additional occurrences of exogenous actions. Next we notice that the
collection of possible histories can be divided in four categories. The categories,
which are uniquely determined by a mental state of the agent, are used in the
rules for computing intended actions.

For example, a history belongs to category 1 if the agent has neither goal
nor activity to commit to. In this case the intended action is to wait. This is
defined by a rule in which literal active goal or activity(I) is true when there is
an active goal or activity at the current step I. Similarly a history is of category
2 if the agent’s top-level activity is active but its goal is not, and in this case the
intended action is to stop the activity. A history is of category 3 if the agent’s
top-level activity and goal are both active. In this situation the intended action
will be the next action of activity M . But there is an exception to this rule —
the agent needs to check that this activity still has a chance achieve his goal.
Other rules cause an atom proj success(M, I) to be part of an answer set if the
next action is intended. If no such answer set exists, then the activity is futile,
and the intended action is to stop. This is achieved by a cr-rule:

futile(M, I) +← interpret(N, I), category 3(M, I),¬proj success(M, I).



A Theory of Intentions for Intelligent Agents 141

Finally, category 4 corresponds to the case in which there is an active goal but
the agent does not yet have a plan to achieve it. In this case an intended action
will begin executing either an activity containing a shortest plan for achieving
this goal or wait if such activity does not exist. The planning task uses cr-rules
similar to those in [5]. The resulting program shows that, by mixing regular ASP
rules with consistency restoring rules, CR-Prolog is capable of expressing rather
non-trivial forms of reasoning. The following lemma ensures that step 2 of the
AIA control loop – finding an intended action – is reduced to computing answer
sets of Π(D, Γn).

Lemma 2. Let Γn be an intentional history and x be the number of unobserved
occurrences of exogenous actions in a model of Γn. Action e is an intended action
of Γn iff some answer set A of Π(D, Γn) ∪ {interpret(x, n).} contains the atom
intended act(e, n).

6 Conclusions

This paper describes the AIA architecture for intelligent agents whose behav-
ior is driven by their intentions and who reason about, and act in, changing
environments. We presented a formal model of an intentional agent and its envi-
ronment that includes the theory of intentions T I. Such a model was capable
of representing activities, goals, and intentions. We presented an algorithm that
takes the agent’s knowledge (including T I), explains unexpected observations,
and computes the agent’s intended action. Both reasoning tasks are reduced to
computing answer sets of CR-prolog programs. A prototype can be found at
http://www.depts.ttu.edu/cs/research/krlab/software-aia.php.
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Abstract. Acyclicity constraints are prevalent in knowledge representa-
tion and, in particular, applications where acyclic data structures such as
DAGs and trees play a role. Recently, such constraints have been consid-
ered in the satisfiability modulo theories (SMT) framework, and in this
paper we carry out an analogous extension to the answer set program-
ming (ASP) paradigm. The resulting formalism, ASP modulo acyclicity,
offers a rich set of primitives to express constraints related with recur-
sive structures. The implementation, obtained as an extension to the
state-of-the-art answer set solver clasp, provides a unique combination
of traditional unfounded set checking with acyclicity propagation.

1 Introduction

Acyclic data structures such as DAGs and trees occur frequently in applica-
tions. For instance, Bayesian [1] and Markov [2] network learning as well as
Circuit layout [3] are based on respective conditions. When logical formalisms
are used for the specification of such structures, dedicated acyclicity constraints
are called for. Recently, such constraints have been introduced in the satisfia-
bility modulo theories (SMT) framework [4] for extending Boolean satisfiability
in terms of graph-theoretic properties [5,6]. The idea of satisfiability modulo
acyclicity [7] is to view Boolean variables as conditionalized edges of a graph
and to require that the graph remains acyclic under variable assignments. More-
over, the respective theory propagators for acyclicity have been implemented in
contemporary CDCL-based SAT solvers, minisat and glucose, which offer a
promising machinery for solving applications involving acyclicity constraints.

In this paper, we consider acyclicity constraints in the context of answer set
programming (ASP) [8], featuring a rule-based language for knowledge represen-
tation. While SAT solvers with explicit acyclicity constraints offer an alternative
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mechanism to implement ASP via appropriate translations [7], the goal of this
paper is different: the idea is to incorporate acyclicity constraints into ASP,
thus accounting for extended rule types as well as reasoning tasks like enumer-
ation and optimization. The resulting formalism, ASP modulo acyclicity, offers
a rich set of primitives to express constraints related with recursive structures.
The implementation, obtained as an extension to the state-of-the-art answer set
solver clasp [9], provides a unique combination of traditional unfounded set [10]
checking and acyclicity propagation [5].

2 Background

We consider logic programs built from rules of the following forms:

a ← b1, . . . , bn, not c1, . . . , not cm. (1)
{a} ← b1, . . . , bn, not c1, . . . , not cm. (2)
a ← k ≤ [b1 = w1, . . . , bn = wn, not c1 = wn+1, . . . , not cm = wn+m]. (3)

Symbols a, b1, . . . , bn, c1, . . . , cm stand for (propositional) atoms, k,w1, . . . , wn+m

for non-negative integers, and not for (default) negation. Atoms like bi and
negated atoms like not ci are called positive and negative literals, respectively.
For a normal (1), choice (2), or weight (3) rule r, we denote its head atom
by head(r) = a and its body by B(r). By B(r)+ = {b1, . . . , bn} and B(r)− =
{c1, . . . , cm}, we refer to the positive and negative body atoms of r. When r is a
weight rule, the respective sequence of weighted literals is denoted by WL(r), and
its restrictions to positive or negative literals by WL(r)+ and WL(r)−. A normal
rule r such that head(r) ∈ B(r)− is called an integrity constraint, and we below
skip head(r) and not head(r) for brevity, where head(r) is an arbitrary atom
occurring in r only. A weight constraint program P , or simply a program, is a
finite set of rules; P is a choice program if it consists of normal and choice rules
only, and a positive program if it involves neither negation nor choice rules.

Given a program P , let head(P ) = {head(r) | r ∈ P} and At(P ) = head(P )∪⋃
r∈P (B(r)+ ∪ B(r)−) denote the sets of head atoms or all atoms, respectively,

occurring in P . The defining rules of an atom a ∈ At(P ) are DefP (a) = {r ∈ P |
head(r) = a}. An interpretation I ⊆ At(P ) satisfies B(r) for a normal or choice
rule r iff B(r)+ ⊆ I and B(r)− ∩ I = ∅. The weighted literals of a weight rule r
evaluate to vI(WL(r)) =

∑
1≤i≤n,bi∈I wi+

∑
1≤i≤m,ci /∈I wn+i; when r is a weight

rule, I satisfies B(r) iff k ≤ vI(WL(r)). For any rule r, we write I |= B(r) iff I
satisfies B(r), and I |= r iff I |= B(r) implies head(r) ∈ I. The supporting rules
of P with respect to I are SRP (I) = {r ∈ P | head(r) ∈ I, I |= B(r)}. Moreover,
I is a model of P , denoted by I |= P , iff I |= r for every r ∈ P such that r
is a normal or weight rule. A model I of P is a supported model of P when
head(SRP (I)) = I. Note that any positive program P possesses a unique least
model, denoted by LM(P ).

For a normal or choice rule r, B(r)I = B(r)+ denotes the reduct of B(r)
with respect to an interpretation I, and B(r)I = (max{0, k − vI(WL(r)−)} ≤
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WL(r)+) is the reduct of B(r) for a weight rule r. The reduct of a program P with
respect to an interpretation I is P I = {head(r) ← B(r)I | r ∈ SRP (I)}. Then,
I is a stable model of P iff I |= P and LM(P I) = I. While any stable model
of P is a supported model of P as well, the converse does not hold in general.
However, the following concept provides a tighter notion of support achieving
such a correspondence.

Definition 1. A model I of a program P is well-supported by a set R ⊆ SRP (I)
of rules iff head(R) = I and there is some ordering r1, . . . , rn of R such that,
for each 1 ≤ i ≤ n, head({r1, . . . , ri−1}) |= B(ri)

I .

In fact, a (supported) model I of a program P is stable iff I is well-supported
by some subset of SRP (I), and several such subsets may exist. The notion of
well-support counteracts circularity in the positive dependency graph DG+(P ) =
〈At(P ),
〉 of P , whose edge relation a 
 b holds for all a, b ∈ At(P ) such that
head(r) = a and b ∈ B(r)+ for some rule r ∈ P . If a 
 b, we also write 〈a, b〉 ∈
DG+(P ).

3 Acyclicity Constraints

In [5], the SAT problem has been extended by explicit acyclicity constraints.
The basic idea is to label edges of a directed graph with dedicated Boolean vari-
ables. While satisfying the clauses of a SAT instance referring to these labeling
variables, also the directed graph consisting of edges whose labeling variables are
true must be kept acyclic. Thus, the graph behind the labeling variables imposes
an additional constraint on satisfying assignments. In what follows, we propose
a similar extension of logic programs subject to stable model semantics.

Definition 2. The acyclicity extension of a logic program P is a pair 〈V, e〉,
where

1. V is a set of nodes and
2. e : At(P ) → V × V is a partial injection that maps atoms of P to edges.

In the sequel, a program P is called an acyclicity program if it has an acyclicity
extension 〈V, e〉. To define the semantics of acyclicity programs, we identify the
graph of the acyclicity check as follows. Given an interpretation I ⊆ At(P ), we
write e(I) for the set of edges e(a) induced by atoms a ∈ I for which e(a) is
defined. For a given acyclicity extension 〈V, e〉, the graph e(At(P )) is the maximal
one that can be obtained under any interpretation and is likely to contain cycles.
If not, then the extension can be neglected altogether as no cycles can arise. To
be precise about the acyclicity condition being imposed, we recall that a graph
〈V,E〉 with the set E ⊆ V 2 of edges has a cycle iff there is a non-trivial directed
path from any node v ∈ V back to itself via the edges in E. An acyclic graph
〈V,E〉 has no cycles of this kind.
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Definition 3. Let P be an acyclicity program with an acyclicity extension 〈V, e〉.
An interpretation M ⊆ At(P ) is a stable (or supported) model of P subject
to 〈V, e〉 iff M is a stable (or supported) model of P such that the graph 〈V, e(M)〉
is acyclic.

Example 1. Consider a directed graph 〈V,E〉 and the task to find a Hamiltonian
cycle through the graph, i.e., a cycle that visits each node of the graph exactly
once. Let us encode the graph by introducing the fact node(v) for each v ∈ V
and the fact edge(v, u) for each 〈v, u〉 ∈ E. Then, it is sufficient (i) to pick
beforehand an arbitrary initial node, say v0, for the cycle, (ii) to select for each
node exactly one outgoing and one incoming edge to be on the cycle, and (iii) to
check that the cycle is not completed before the path spanning along the selected
edges returns to v0. Assuming that a predicate hc is used to represent selected
edges, the following (first-order) rules express (ii):

1{hc(v, u) : edge(v, u)}1 ← node(v).
1{hc(v, u) : edge(v, u)}1 ← node(u).

To enforce (iii), we introduce an acyclicity extension 〈V, e〉, where e maps an
atom hc(v, u) to an edge 〈v, u〉 whenever v and u are different from v0. �

Our next objective is to relate acyclicity programs with ordinary logic pro-
grams in terms of translations. It is well-known that logic programs subject to
stable model semantics can express reachability in graphs, which implies that
also acyclicity is expressible. To this end, we present a translation based on
elimination orderings [11].

Definition 4. Let P be an acyclicity program with an acyclicity extension 〈V, e〉.
The translation TrEL(P, V, e) extends P as follows.

1. For each atom a ∈ At(P ) such that e(a) = 〈v, u〉, the rules:

el(v, u) ← not a. (4)
el(v, u) ← el(u). (5)

2. For each node v ∈ V such that 〈v, u1〉, . . . , 〈v, uk〉 are the edges in e(At(P ))
starting from v:

el(v) ← el(v, u1), . . . , el(v, uk). (6)
← not el(v). (7)

The intuitive reading of the new atom el(v, u) is that the edge 〈v, u〉 ∈
e(At(P )) has been eliminated, meaning that it cannot belong to any cycle. Anal-
ogously, the atom el(v) denotes the elimination of a node v ∈ V . By the rule (4),
an edge 〈v, u〉 is eliminated when the atom a such that e(a) = 〈v, u〉 is false, while
the rule (5) is applicable once the end node u is eliminated. Then, the node v
gets eliminated by the rule (6) if all edges starting from it are eliminated. Finally,
the constraint (7) ensures that all nodes are eliminated. That is, the success of
the acyclicity test presumes that el(v, u) or el(v), respectively, is derivable for
each edge 〈v, u〉 ∈ e(At(P )) and each node v ∈ V .
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Theorem 1. Let P be an acyclicity program with an acyclicity extension 〈V, e〉
and TrEL(P, V, e) its translation into an ordinary logic program.

1. If M is a stable model of P subject to 〈V, e〉, then M ′ = M ∪ {el(v, u) |
〈v, u〉 ∈ e(At(P ))} ∪ {el(v) | v ∈ V } is a stable model of TrEL(P, V, e).

2. If M ′ is a stable model of TrEL(P, V, e), then M = M ′ ∩ At(P ) is a stable
model of P subject to 〈V, e〉.

Transformations in the other direction are of interest as well, i.e., the goal
is to capture stable models by exploiting the acyclicity constraint. While the
existing translation from ASP into SAT modulo acyclicity [7] provides a starting
point for such a transformation, the target syntax is given by rules rather than
clauses.

Definition 5. Let P be a weight constraint program. The acyclicity translation
of P consists of TrACYC(P ) =

⋃
a∈At(P ) TrACYC(P, a) with an acyclicity exten-

sion 〈At(P ), e〉 such that e(dep(a, b)) = 〈a, b〉 for each edge 〈a, b〉 ∈ DG+(P ),
where TrACYC(P, a) extends DefP (a) for each atom a ∈ At(P ) as follows.

1. For each edge 〈a, b〉 ∈ DG+(P ), the choice rule:

{dep(a, b)} ← b. (8)

2. For each defining rule (1) or (2) of a, the rule:

ws(r) ← dep(a, b1), . . . , dep(a, bn), not c1, . . . , not cm. (9)

3. For each defining rule (3) of a, the rule:

ws(r) ← k ≤ [dep(a, b1) =w1, . . . , dep(a, bn) = wn,

not c1 = wn+1, . . . , not cm = wn+m]. (10)

4. For DefP (a) = {r1, . . . , rk}, the constraint:

← a, not ws(r1), . . . , not ws(rk). (11)

The rules (9) and (10) specify when r provides well-support for a, i.e., the
head atom a non-circularly depends on B(r)+ = {b1, . . . , bn}. The constraint
(11) expresses that a ∈ At(P ) must have a well-supporting rule r ∈ DefP (a)
whenever a is true. To this end, respective dependencies have to be established
in terms of the choice rules (8).

Theorem 2. Let P be a weight constraint program and TrACYC(P ) its transla-
tion into an acyclicity program with an acyclicity extension 〈At(P ), e〉.

1. If M is a stable model of P , then there is an ordering r1, . . . , rn of some
R ⊆ SRP (M) such that M ′ = M ∪ {ws(r) | r ∈ R} ∪ {dep(head(ri), b) | 1 ≤
i ≤ n, b ∈ Bi}, where Bi ⊆ B(ri)+ ∩ head({r1, . . . , ri−1}) for each 1 ≤ i ≤ n,
is a supported model of TrACYC(P ) subject to 〈At(P ), e〉.
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2. If M ′ is a supported model of TrACYC(P ) subject to 〈At(P ), e〉, then M =
M ′ ∩ At(P ) is a stable model of P and M is well-supported by R = {r |
ws(r) ∈ M ′}.

It is well-known that supported and stable models coincide for tight logic
programs [12,13]. The following theorem shows that translations produced
by TrACYC possess an analogous property subject to the acyclicity extension
〈At(P ), e〉. This opens up an interesting avenue for investigating the efficiency of
stable model computation—either using unfounded set checking or the acyclicity
constraint, or both.

Theorem 3. Let P be a weight constraint program and TrACYC(P ) its transla-
tion into an acyclicity program with an acyclicity extension 〈At(P ), e〉. Then, M
is a supported model of TrACYC(P ) subject to 〈At(P ), e〉 iff M is a stable model
of TrACYC(P ) subject to 〈At(P ), e〉.

As witnessed by Theorems 2 and 3, the translation TrACYC provides means
to capture stability in terms of the acyclicity constraint. However, the computa-
tional efficiency of the translation can be improved when additional constraints
governing dep(v, u) atoms are introduced. The purpose of these constraints is to
falsify dependencies in settings where they are not truly needed. We first con-
centrate on choice programs and will then extend the consideration to weight
rules below. The following definition adopts the cases from [7] but reformulates
them in terms of rules rather than clauses.

Definition 6. Let P be a choice program. The strong acyclicity translation of
P , denoted by TrACYC+(P ), extends TrACYC(P ) as follows.

1. For each 〈a, b〉 ∈ DG+(P ), the constraint:

← dep(a, b), not a. (12)

2. For each 〈a, b〉 ∈ DG+(P ) and r ∈ DefP (a) such that b /∈ B(r)+, the con-
straint:

← dep(a, b), ws(r). (13)

Intuitively, dependencies from a are not needed if a is false (12). Quite simi-
larly, a particular dependency may be safely preempted (13) if the well-support
for a is provided by a rule r not involving this dependency.

The strong acyclicity translation for weight rules includes additional subpro-
grams.

Definition 7. Let P be a weight constraint program and r ∈ P a weight rule
of the form (3), where head(r) = a, |{b1, . . . , bn}| = n, and w1, . . . , wn are
ordered such that wi−1 ≤ wi for each 1 < i ≤ n. The strong acyclicity translation
TrACYC+(P ) of P is fortified as follows.
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1. For 1 < i ≤ n, the rules:

nxt(r, i) ← dep(a, bi−1). (14)
nxt(r, i) ← nxt(r, i − 1). (15)
chk(r, i) ← nxt(r, i), dep(a, bi). (16)

2. The weight rule:

red(r) ← k ≤ [chk(r, 2) =w2, . . . , chk(r, n) = wn,

not c1 = wn+1, . . . , not cm = wn+m]. (17)

3. For each 〈a, b〉 ∈ DG+(P ) such that b ∈ B(r)+, the constraint:

← dep(a, b), red(r). (18)

The idea is to cancel dependencies 〈a, b〉 ∈ DG+(P ) by the constraint (18)
when the well-support obtained though r can be deemed redundant by the rule
(17). To this end, the rules of the forms (14) and (15) identify an atom among
b1, . . . , bn of smallest weight having an active dependency from a, i.e., dep(a, bi)
is true, provided such an i exists. By the rules of the form (16), any further
dependencies are extracted, and (17) checks whether the remaining literals are
sufficient to reach the bound k. If so, all dependencies from a are viewed as
redundant. This check covers also cases where, e.g., negative literals suffice to
satisfy the body and positive dependencies play no role.

4 Discussion

In this paper, we propose a novel SMT-style extension of ASP by explicit acyclic-
ity constraints in analogy to [5]. These kinds of constraints have not been directly
addressed in previous SMT-style extensions of ASP [14–16]. The new extension,
herein coined ASP modulo acyclicity, offers a unique set of primitives for appli-
cations involving DAGs or tree structures. One interesting application is the
embedding of ASP itself, given that unfounded set checking can be captured
(Theorem 2). The utilized notion of well-supporting rules resembles source point-
ers [17], used in native answer set solvers to record rules justifying true atoms.
In fact, a major contribution of this work is the implementation of new transla-
tions and principles in tools. For instance, clasp [9] features enumeration and
optimization, which are not supported by acycminisat and acycglucose [5].
Thereby, a replication of supported (and stable) models under translations can
be avoided by using the projection capabilities of clasp [18]. Last but not least,
acyclicity programs enrich the variety of modeling primitives available to users.
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Abstract. This paper contains a proposal how goal-directed query eval-
uation for the well-founded semantics WFS (and other negation seman-
tics) can be done based on elementary program transformations. It also
gives a new look at the author’s SLDMagic method, which has several
advantages over the standard magic set method (e.g., for tail recursions).

1 Introduction

The efficient evaluation of queries to logic programs with nonmonotic negation
remains an everlasting problem. Of course, big achievements have been made, but
at the same time problem size and complexity grows, so that any further progress
can increase the practical applicability of logic-based, declarative programming.

In this paper, we consider non-disjunctive Datalog, i.e. pure Prolog without
function symbols, but with unrestricted negation in the body. All rules must
be range-restricted (allowed), i.e. variables appearing in the head or a negative
body literal must also appear in a positive body literal.

We are mainly interested in the well-founded semantics WFS, but since our
method is based on elementary program transformations, it can also be used
as a pre-computation step for other semantics. Of course, it is well-known that
because of odd loops over negation, for the stable model semantics it does not
suffice to follow only the predicate calls from a given goal. But see, e.g. [2,11].

The magic set transformation [1] is the best known method for goal-directed
query evaluation in deductive databases. However, it has a number of problems:

– For tail recursions, magic sets are significantly slower than SLD-resolution
(e.g. a quadratic number of facts derived compared with an SLD-tree con-
taining only a linear number of nodes/literals). This problem applies to all
methods which store literals implicitly proven in the SLD-tree (“lemmas”).

– It sometimes transforms non-recursive programs into recursive ones. In the
same way, a stratified program can be transformed into a non-stratified one.

– It can only pass values for arguments to called predicates, not more general
conditions. Furthermore, optimizations based on the evaluation sequence of
called literals are restricted to the bodies of single rules.

– Quite often, variable bindings are projected away in order to call a predicate,
and are later recovered by a costly join when the predicate succeeded.

c© Springer International Publishing Switzerland 2015
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While some of these problems have been solved with specific optimizations, our
“SLDMagic”-method [3] solved all these problems by simulating SLD-resolution
bottom-up.

Of course, sometimes magic sets are better: If the same literal is called repeat-
edly in different contexts, magic sets proves it only once, whereas SLD resolution
proves it again each time. Therefore, SLDMagic had the possibility to mark pos-
itive body literals with call(. . .), in which case they were proven separately in a
different SLD-tree. I.e. we assume that the programmer or an automatic opti-
mizer marks some of the positive body literals of the rules with the special
keyword “call”. In this way, the best of both methods can be combined. Fur-
thermore, when we want to compute the structure of occurring goals already
at “compile-time” (when the facts/relations for database predicates are not yet
known), we needed to introduce at least one “call” in recursions which are not
tail-recursions. Since call-literals are proven in a subproof (much like negation as
failure), the length of the occurring goals in the SLD-tree became bounded, and
we could encode entire goals as single facts (where the arguments represented
the data values only known at “run time”).

However, SLDMagic could not handle negation. It is the purpose of this
paper to remedy this problem, and to give a different look at the method, which
opens perspectives for further improvements. Whereas earlier, we described the
method by means of partial evaluation of a meta-interpreter, we now combine it
with our work on elementary program transformations.

Together with Jürgen Dix, we investigated ways to characterize non-
monotonic semantics of (disjunctive) logic programs by means of elementary
program transformations [4,5]. We used the notion of conditional facts, intro-
duced by Bry [7] and Dung/Kanchansut [10]. A conditional fact is a ground
rule with only negative body literals. If a nonmonotonic semantics permits cer-
tain simple transformations, in particular the “Generalized Principle of Partial
Evaluation” [9,12] (which is simply unfolding for non-disjunctive programs),
and the elimination of tautologies, any (ground) program can be equivalently
transformed into a set of conditional facts. If we also permit the evaluation of
negative body literals in obvious cases, we can compute a unique normal form
of the program, called the “residual program”. From this, one can directly read
the well-founded model: If A is given as (unconditional) fact, it is true, if there
is no rule with A in the head, it is false, and in all other cases, it is undefined.
The residual program is also equivalent to the original program under the stable
model semantics.

Because the residual program can grow to exponential size in rare cases, we
restricted unfolding and “delayed” also positive body literals until their truth
value became obvious (as for the negative body literals before) [6]. Combined
with magic sets, this resulted in a competitive evaluation procedure for WFS. But
there is further optimization potential if we use ideas from SLDMagic. It is also
nice if the framework is based entirely on elementary program transformations.

This paper contains only some preliminary ideas (it is a “short paper” about
work in progress). A more complete version is being prepared. Progress will be
reported at: http://www.informatik.uni-halle.de/∼brass/negeval/.

http://www.informatik.uni-halle.de/~brass/negeval/
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There are some obvious similarities to SLG-resolution [8,13]. However, when
a tail-recursive predicate is tabled in order to ensure termination, SLG-resolution
has the same problem as magic sets. Furthermore, our approach is explained
based only on rules, whereas SLG-resolution needs more complex data structures.
But much more work has been done on the efficient implementation of SLG-
resolution in the XSB system, whereas our approach is still at the beginning.

2 Goal-Directed Query Evaluation Based on Program
Transformations

We assume that the query is given as a rule answer(X1, . . . ,Xm)←B1 ∧ · · · ∧ Bn,
where the special predicate answer does not otherwise appear in the program.
The body of this query (rule) is the classical query. In this way, we do not have
to track substitutions for the variables from the query while the proof proceeds.
This is automatically done if we compute the instances of the special predicate
answer which are derivable from the program plus this rule.

The method generates rules which must be considered (starting with this
query rule). The rule body is a goal, as would appear in an SLD-tree. The rule
head is the literal which has to be proven. First this is answer(X1, . . . ,Xm), but
as the proof progresses, the answer variables Xi are instantiated. Furthermore,
negative body literals and call-literals cause subqueries to appear.

The occurring rules can be seen as being generated from the given program
(extended by the query rule) using elementary transformations. However, in
contrast to our earlier work, there are two important differences:

– The occurring rules are often not ground. In the theoretical part of our work
on negation semantics, we started with the full ground instantiation of the
given program. Of course, if we now want to use program transformations
as a practical means of computation, we must work with non-ground rules.
They can be understood as a compact representation of the set of their ground
instances. Most modern semantics including WFS do not distinguish between
a rule with variables and its set of ground instances.

– For goal-directed query evaluation, we do not want to consider the entire
program. The “relevance” property of a nonmonotonic semantics [9] ensures
that it is sufficient to look only at ground literals which are reachable from the
query via the call-graph. WFS has the relevance property, the stable model
semantics does not, but see [11]. Note that relevance is applied repeatedly
during the evaluation. When we found that a rule instance is not applicable,
it vanishes from the call graph and might remove large parts of the program.

Of course, we do not first take the entire program, and then delete non-relevant
parts. Instead, we have a “working set” of rules we consider. We apply transfor-
mations on this set until a normal form is reached, i.e. until no further trans-
formation is applicable. We only have to ensure that as long as there still is a
relevant rule instance in the given program, it is considered, i.e. a transformation
remains applicable.
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In order to improve termination, we need to avoid the generation of rules
which differ from an already generated rule only by a renaming of variables.

Definition 1 (Variable Normalization). Let an infinite sequence V1,V2, . . .
of variables be given. A rule A←B1 ∧ · · · ∧ Bn is variable-normalized iff it only
contains variables from the set {V1,V2, . . .} and for each occurrence of Vi, all
variables V1, . . . ,Vi−1 occur to the left. The function std renames the variables
of a rule to V1,V2, . . . in the order of occurrence, i.e. produces a variant of the
given rule which is variable-normalized.

Our method works with a set of rules which is initialized with the query. We
write R for the current rule set to distinguish it from the given logic program P.
We use a second set D of rules for the “deleted” rules. In this way, both sets
R and D can only grow monotonically during the computation, which improves
termination: It is not possible that a rule is added, deleted, and then added again.
However, only the non-deleted rules in R really participate in the computation.

Definition 2 (Computation State). A computation state is a pair (R,D) of
sets of variable-normalized rules such that D ⊆ R. A rule in R − D is called
active, a rule in D is called deleted.

Let the query Q be answer(X1, . . . ,Xm)←B1∧· · ·∧Bn. The initial computation
state is (R0,D0) with R0 := {std(Q)} and D0 := ∅.

2.1 Positive Body Literals

In the following, we use the term “positive body literal” for a body literal without
negation and without “call”. Literals with “call” are “call-literals” (they are never
negated because negation already implies a subproof like “call” does).

Positive body literals are solved with unfolding (an SLD resolution step). If a
rule contains several positive body literals, a selection function restricts unfold-
ing to one of these. We require that a recursive positive body literal can only be
selected last (when there are no other positive body literals). This implies that
there can be only one recursive positive body literal, but this is no restriction:
Other such literals can be made call-literals. The purpose of this condition is to
make the length of the occurring rules bounded (to ensure termination). Neg-
ative body literals which are added during the tail-recursion are no problem if
we eliminate duplicates: They are ground, so the total number is still bounded
(although the bound depends on the data, whereas the bound for the positive
body literals depends only on the program rules). Non-ground call-literals which
are added during the repeated unfolding of a tail-recursive rule cannot be per-
mitted. But again, this is no restriction because we can make the tail-recursive
literal a call-literal, too (at the cost of losing the tail-recursion optimization).

The selection function only restricts the unfolding of positive body literals.
Work on negative body literals and call-literals is not restricted, although an
implementation is free to decide in each step which of several applicable trans-
formations it uses. The reason why we cannot prescribe a single “active” literal
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in each rule is that because of rules like p←¬p, the evaluation of a negative body
literal (in this case, ¬p) can “block”. But there might be another body literal
which would fail (this is similar to the “fairness” requirement of SLD resolution).
The same can happen with call-literals.

The computation steps are relations between computation states. An imple-
mentation can follow any path until no further transformation is possible.

Definition 3 (Unfolding). Let A←B1∧· · ·∧Bn be a rule in R−D, where Bi is
a positive literal selected by the selection function. Let further A′←B′

1 ∧ · · · ∧B′
m

be a variant of a rule in P with fresh variables (i.e. the variables renamed such
that they are disjoint from those occurring in A←B1 ∧ · · · ∧ Bn), such that Bi

and A′ are unifiable with most general unifier θ. Let

R′ := R ∪ {std(θ(A←B1 ∧ · · · ∧ Bi−1 ∧ B′
1 ∧ · · · ∧ B′

m ∧ Bi+1 ∧ · · · ∧ Bn))}

If R′ �= R, we write (R,D) �→U (R′,D).

Note that because R is a set, unfolding with a rule like p(X)←p(X) does not
result in a new rule and therefore cannot lead to non-termination. We need to
assume that the negation semantics permits the deletion of tautologies.

Definition 4 (Deletion After Complete Unfolding). Let A←B1 ∧ · · · ∧Bn

be a rule in R−D, where Bi is a positive literal selected by the selection function.
Let all rules which can be generated from the given rule by unfolding be already
contained in R, and let D′ := D∪{A←B1∧· · ·∧Bn}. If D′ �= D, the transformation
step (R,D) �→D (R,D′) is permitted.

If there is only a single matching rule, or one immediately unfolds with all
matching rules (e.g. in case of set-oriented evaluation with a database predicate),
one can “delete” the rule with the unfolded call immediately. But by separating
the two steps, other evaluation orders are possible, e.g. doing a depth-first search.

2.2 Negative Body Literals

Definition 5 (Complement Call). Let A←B1 ∧ · · · ∧ Bn be a rule in R − D,
and Bi be a negative ground literal. Let A′ be the corresponding positive literal,
i.e. Bi = ¬A′. Let R′ := R ∪ {A′←A′}. If R′ �= R, we write (R,D) �→C (R′,D).

Of course, A′←A′ is a tautology. But it is important because it sets up a
new query. So when we want to work on a negative literal, we try to prove the
corresponding positive literal. This is the same as SLDNF-resolution would do.

The next transformation handles the case where a negative literal is proven
by failure to prove the corresponding positive literal.

Definition 6 (Positive Reduction). Let A←B1 ∧ · · · ∧Bn be a rule in R−D,
where Bi is a negative ground literal. Let A′ be the corresponding positive literal,
i.e. Bi = ¬A′. If R contains A′←A′, but R − D does not contain any rule with
head A′, then (R,D) �→P (R′,D′) with
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R′ := R ∪ {A←B1 ∧ · · · ∧ Bi−1 ∧ Bi+1 ∧ · · · ∧ Bn}
D′ := D ∪ {A←B1 ∧ · · · ∧ Bn}.

(The new rule is variable-normalized since Bi was ground.)

The next transformation handles the case that the selected negative body
literal is obviously false, because the corresponding positive literal was proven:

Definition 7 (Negative Reduction). Let A←B1 ∧· · ·∧Bn be a rule in R−D,
where Bi is a negative ground literal. Let A′ be the corresponding positive literal,
i.e. Bi = ¬A′. If R contains A′ (as a rule with empty body, i.e. a fact), then
(R,D) �→N (R,D′) with D′ := D ∪ {A←B1 ∧ · · · ∧ Bn}.

2.3 Call Literals

The specially marked call-literals are semantically positive literals, but they are
not solved by unfolding. Instead, a subproof is set up (as for negative literals):

Definition 8 (Start of Subproof). Let A←B1 ∧ · · · ∧ Bn be a rule in R − D,
and the literal Bi be of the form call(A′). Let R′ := R ∪ {A′←A′}. If R′ �= R, we
write (R,D) �→S (R′,D).

The following transformation is similar to positive reduction combined with a
very special case of unfolding:

Definition 9 (Return). Let A←B1 ∧· · ·∧Bn be a rule in R−D, and the literal
Bi be of the form call(A′). Suppose further that there is a rule A′′←B′

1 ∧ · · · ∧B′
m

where all body literals are negative (i.e. a conditional fact), such that A′ and A′′

are unifiable with most general unifier θ. Let

R′ := R ∪ {std(θ(A←B1 ∧ · · · ∧ Bi−1 ∧ B′
1 ∧ · · · ∧ B′

m ∧ Bi+1 ∧ · · · ∧ Bn))}

If R′ �= R, we write (R,D) �→R (R′,D).

A call is complete when a kind of small fixpoint is reached in the larger set of
rules constructed. Negative literals can be evaluated later, but for positive body
literals and call-literals, all possible derivations must be done:

Definition 10 (End of Subproof). Let R0 ⊆ R1 ⊆ R be rule sets, such that

– Each rule in R0 contains a call-literal,
– the transformations �→U (Unfolding), �→S (Start of Subproof), �→R (Return)

are not applicable in R1 (i.e. everything derivable is already contained in R1).

If R0 �⊆ D, the “End of Subproof” transformation is applicable:

(R,D) �→E (R,D ∪ R0).

This transformation is relatively complicated because it includes a kind of loop
detection. It must be able to handle cases like:
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p(X) ← call(q(X)).
q(X) ← call(p(X)).

An alternative for the “return” operation is not to unfold, but just ground the
call if it matches the head of an “extended conditional fact”, which is a ground
rule with only negative and call-literals in the body. The call-literal would be
removed only if it matches a fact (without condition). This operation “success”
of [6] (and the converse “failure”) help to avoid a possible exponential blowup.
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Abstract. asprin offers a framework for expressing and evaluating com-
binations of quantitative and qualitative preferences among the stable
models of a logic program. In this paper, we demonstrate the generality
and flexibility of the methodology by showing how easily existing prefer-
ence relations can be implemented in asprin. Moreover, we show how the
computation of optimal stable models can be improved by using declar-
ative heuristics. We empirically evaluate our contributions and contrast
them with dedicated implementations. Finally, we detail key aspects of
asprin’s implementation.

1 Introduction

Preferences are pervasive and often are a key factor in solving real-world applica-
tions. This was realized quite early in Answer Set Programming (ASP; [1]), where
solvers offer optimization statements representing ranked, sum-based objective
functions (viz. #minimize statements or weak constraints [2,3]). On the other
hand, such quantitative ways of optimization are often insufficient for applica-
tions and in stark contrast to the vast literature on qualitative and hybrid means
of optimization [4–8].

This gulf is bridged by the asprin system, which offers a flexible and general
framework for implementing complex combinations of quantitative and qual-
itative preferences. The primary contribution of this paper is to substantiate
this claim by showing how easily selected approaches from the literature can be
realized with asprin. In particular, we detail how answer set optimization [5],
minimization directives [2], strict partially ordered sets [8], and the non-temporal
part of the preference language in [7] can be implemented with asprin. Moreover,
we sketch how the implementations of ordered disjunctions [4] and penalty-based
answer set optimization [6] are obtained. In fact, asprin’s simple interface and
straightforward methodology reduces the implementation of customized pref-
erences to defining whether one model is preferred to another. This also lays
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bare asprin’s expressive power, which is delineated by the ability to express a
preference’s decision problem within ASP. In view of the practical relevance of
preferences, we also investigate the use of ASP’s declarative heuristics for boost-
ing the search for optimal stable models. In particular, we are interested how
the combination of ASP’s two general-purpose frameworks for preferences and
heuristics compares empirically with dedicated implementations.

The paper [9] introduced asprin’s approach and focused on fundamental
aspects. Apart from a formal elaboration of asprin’s propositional language,
it provided semantics and encodings for basic preferences from asprin’s library
(like subset or less(weight)). As well, it empirically contrasted the implemen-
tation of such basic preferences with the dedicated one in clasp and analyzed
asprin’s scalability in view of increasingly nested preference structures. Here,
we build upon this work and focus on engineering aspects. First, we introduce
the actual first-order preference modeling language of asprin, including its safety
properties, and carve out its simple interfaces and easy methodology. Second, we
demonstrate how existing preferences from the literature can be implemented via
asprin. In doing so, we provide best practice examples for preference engineers.
Third, we show how declarative heuristics can be used for boosting the compu-
tation of optimal models. And last but not least, we detail aspects of asprin’s
implementation and contrast it with dedicated ones.

In what follows, we rely upon a basic acquaintance with ASP [1,10].

2 asprin’s Approach at a Glance

asprin allows for declaring and evaluating preference relations among the
stable models of a logic program. Preferences are declared by preference
statements, composed of an identifier s, a type t, and an argument set:
‘#preference(s,t){e1;. . . ;en} : B.’ The identifier names the preference rela-
tion, whereas its type and arguments define the relation; the set B of built-in
or domain predicates is used for instantiation.1 Identifiers and types are rep-
resented by terms, while each argument ej is a preference element. For safety,
variables appearing in s or t must occur in a positive atom of B. Let us consider
an example before delving into further details:

#preference(costs ,less(weight )){C :: activity(A) : cost(A,C)}.

This statement declares a preference relation costs with type less(weight).
Given atoms cost(sauna,40) and cost(dive,70), grounding results in one
of the simplest form of preference elements, namely the weighted literals
40::activity(sauna) and 70::activity(dive). Informally, the resulting pref-
erence relation prefers stable models whose atoms induce the minimum sum of
weights. Hence, models with neither sauna nor dive are preferred over those with
only sauna. Stable models with only dive are still less preferred, while those with
both sauna and dive are least preferred. We refer the reader to [9] on how prefer-
ence statements induce preference relations by applying preference types to pref-
erence elements. And we focus in what follows on asprin’s syntactic features.
1 Just as with bodies, we drop curly braces from such sets.
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Preference elements can be more complex than in the example. In the most
general case, we even admit conditional elements, which are used to capture con-
ditional preferences. Moreover, preference types may refer to other preferences
in their arguments, which is used for preference composition. For instance, the
statement

#preference(all ,pareto ){name(costs),name(temps )}.

defines a preference relation all, which is the Pareto ordering of preference
relations costs and temps.

More formally, a preference element is of the form ‘F 1 > . . . > F m || F :
B’ where each F r is a set of weighted formulas, F is a non-weighted Boolean
formula, and B is as above. We drop ‘>’ if m = 1, and ‘||F ’ and ‘:B’ whenever
F and/or B are empty, respectively. Intuitively, r gives the rank of the respective
set of weighted formulas. This can be made subject to condition F by using the
conditional ‘||’. Preference elements provide a (possible) structure to a set of
weighted formulas by giving a means of conditionalization and a symbolic way
of defining pre-orders.

A set of weighted formulas F r is represented as ‘F1;. . . ;Fm’. We drop the
curly braces if m = 1. And finally, a weighted formula is of the form ‘t::F ’
where t is a term tuple and F is a either a Boolean formula or a naming atom.
We may drop :: and simply write F whenever t is empty. Boolean formulas are
formed from atoms, possibly preceded by strong negation (‘-’), using the con-
nectives not (negation), & (conjunction) and | (disjunction). Parentheses can be
written as usual, and when omitted, negation has precedence over conjunction,
and conjunction over disjunction. Naming atoms of form name(s) refer to the
preference associated with preference statement s (cf [9]). For safety, variables
appearing in a weighted formula must occur in a positive atom of the set B from
either the corresponding preference element or preference statement. Examples
of preference elements include ‘a(X)’, ‘42::b(X)’, ‘{1::name(p);2::name(q)}’,
‘{a(X);b(X)} > {c(X);d(X)}’, and ‘a(X) > b(X) || c(X): dom(X)’.

Since preference statements may only be auxiliary, a preference relation must
be distinguished for optimization. This is done via an optimization statement of
form ‘#optimize(s).’ with the name of the respective preference statement as
argument.

Finally, a preference specification is a set of preference statements along
with an optimization directive. It is valid if grounding results in acyclic and
closed naming dependencies along with a single optimization directive (see [9]
for details).

Once a preference specification is given, the computation of preferred stable
models is done via a branch-and-bound process relying on preference programs.
Such programs, which need to be defined for each preference type, take two reified
stable models and decide whether one is preferred to the other. An optimal one
is computed iteratively by repeated calls to an ASP solver. First, an arbitrary
stable model of the underlying program is generated; then, this stable model is
“fed” to the preference program to produce a better one, etc. Once the preference
program becomes unsatisfiable, the last stable model obtained is an optimal one.
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The basic algorithm is described in [9]; it is implemented via clingo 4 ’s Python
library, providing operative grounder and solver objects.

asprin also provides a library containing a number of predefined, common,
preference types along with the necessary preference programs. Users happy with
what is available in the library can thus use the available types without having
to bother with preference programs at all. However, if the predefined preference
types are insufficient, users may define their own relations. In this case, they
also have to provide the preference programs asprin needs to cope with the new
preference relations.

3 Embedding Existing Approaches

The implementation of customized preference types in asprin boils down to fur-
nishing a preference program for the preference that is subject to optimization.
For the sake of generality, this is usually done for the preference type, which
then gets instantiated to the specific preference relation of interest.

The purpose of a preference program is to decide whether one stable model
is strictly preferred to another wrt the corresponding preference relation. To this
end, we reify stable models and represent them via the unary predicates holds/1
and holds’/1. More formally, we define for a set X of atoms, the following sets
of facts:

H(X) = {holds(a). | a ∈ X} and H ′(X) = {holds’(a). | a ∈ X}

Then, given a preference statement identified by s, the program Ps is a preference
program implementing preference relation �s, if for sets X,Y of atoms, we have

X �s Y iff Ps ∪ H(X) ∪ H ′(Y ) is satisfiable. (1)

See [9] for a formal elaboration of preference programs.
In what follows, we explain asprin’s interfaces and methodology for imple-

menting preference programs.
To begin with, asprin represents preference specifications in a dedicated fact

format. Each optimization directive ‘#optimize(s).’ is represented as a fact
optimize(s).

Next, each preference statement ‘#preference(s,t) {e1;. . . ;en} : B.’ gives
rise to n rules encoding preference elements along with one rule of form

preference(s,t):- B.

In turn, preference elements are represented by several facts, each representing
a comprised weighted formula. Recall that a weighted formula Fk of form ‘t::F ’
occurs in some set F i of form ‘F1;. . . ;Fm’ (or equals F0) of a preference element
ej of form ‘F 1 > . . . > F n || F0 : Bj ’ that belongs itself to a preference statement
s as given above. Given this, the weighted formula Fk is translated into a rule
of the form

preference(s,(j,v),i,for(tF ),t):- Bj , B.
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where j and i are the indices of ej and F i, respectively, v is a term tuple
containing all variables appearing in the rule, and tF is a term representing the
Boolean formula F by using function symbols not/1, and/2, and or/2 in prefix
notation. For example, the formula (not a(X) | b(X)) & c(X) is translated
into and(c(X), or( not(a(X)),b(X))). For representing condition F0, we set
i to 0. A naming atom name(s) is represented analogously, except that for(tF)
is replaced by name(s).

For instance, the earlier preference statement costs is translated as follows.
preference(costs ,(1,(A,C)),1,for(activity(A)),(C)) :- cost(A,C).

preference(costs ,less(weight )).

Grounding the first rule in the presence of cost(sauna,40) and cost(dive,70)
yields two facts, representing the weighted literals 40::activity(sauna) and
70::activity(dive).

Second, asprin extends the basic truth assignment to atoms captured by
holds/1 and holds’/1 to all Boolean formulas occurring in the preference spec-
ification at hand. To this end, formulas are represented as terms as described
above. Hence, for any formula F occurring in the preference specification, asprin
warrants that holds(tF ) is true whenever F is entailed by the stable model X
captured in H(X), where tF is the term representation of F . This is analogous
for holds’/1.

Third, in asprin’s methodology a preference program is defined generically
for the preference type, and consecutively instantiated to the specific preference
in view of its preference elements. Concretely, asprin stipulates that preference
programs define the unary predicate better/1, taking preference identifiers as
arguments. The user’s implementation is required to yield better(s) when-
ever the stable model captured by H(X) is strictly better than that comprised
in H ′(X). For illustration, consider the preference program for asprin’s pre-
fabricated preference type less(weight).
1 better(P) :- preference(P,less(weight)),

2 1 #sum {-W,X: holds(X), preference(P,_,_,for(X),(W));

3 W,X: holds ’(X), preference(P,_,_,for(X),(W))}.

asprin complements this by the generic integrity constraint
:- not better(P), optimize(P).

ensuring that better(P) holds whenever P is subject to optimization and
enforces the fundamental property of preference programs in (1).

All in all, a preference program thus consists of (i) facts representing pref-
erence and optimization statements, (ii) auxiliary rules, extending predicates
holds/1 and holds’/1 to Boolean formulas as well as the above integrity con-
straint, and finally (iii) the definition of the preference type(s). While parts (i)
and (ii) are provided by asprin, only part (iii) must be provided by the “pref-
erence engineer”. Our methodology accounts for this by defining predicate
better/1. However, this is not strictly necessary as long as all three parts con-
stitute a preference program by fulfilling (1).

Additionally, the customization of preferences can draw upon asprin’s library
containing various pre-defined preference types. This includes the primitive
types subset and superset, less(cardinality) and more(cardinality),
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less(weight) and more(weight), along with the composite types neg, and
pareto, and lexico. In fact, for these types, asprin not only provides defi-
nitions of better(s) but also its non-strict, and equal counterparts, namely,
bettereq/1, equal/1, worse/1, and worseeq/1. Such definitions are very use-
ful in defining aggregating preference types such as pareto (see below).

Answer set optimization. For capturing answer set optimization (ASO; [5]),
we consider ASO rules of form

φ1 > · · · > φm ← B (2)

where each φi is a propositional formula for 1 ≤ i ≤ m and B is a rule body.
The semantics of ASO is based on satisfaction degrees for rules as in (2).

The satisfaction degree of such a rule r in a set of atoms X, written vX(r), is 1
if X �|= b for some b ∈ B, or if X |= b for some ∼b ∈ B, or if X �|= φi for every
1 ≤ i ≤ m, and it is min{k | X |= φk, 1 ≤ k ≤ m} otherwise. Then, for sets
X,Y of atoms and a set O of rules of form (2), X 	O Y if for all rules r ∈ O,
vX(r) ≤ vY (r), and X �O Y is defined as X 	O Y but Y �	O X.

In asprin, we can represent an ASO rule r as in (2) as preference statement
of form

#preference(sr,aso){φ1 > . . . > φm || B}.

A set {r1, . . . , rn} of ASO rules is represented by corresponding preference state-
ments sr1 to srn

along with an aggregating pareto preference subject to opti-
mization.

#preference(paraso ,pareto ){name(sr1), . . . name(srn
)}.

#optimize(paraso ).

Note that aggregating preferences other than pareto could be used just as well.
The core implementation of preference type aso is given in Lines 1–23 below.

Predicate one/1 is true whenever an ASO rule has satisfaction degree 1 wrt the
stable model captured by H(X). The same applies to one’/1 but wrt H ′(Y ).
1 one(P) :- preference(P,aso),

2 not holds(F) : preference(P,_,R,for(F),_), R>1.

3 one(P) :- preference(P,aso),

4 holds(F), preference(P,_,1,for(F),_).

5 one(P) :- preference(P,aso),

6 not holds(F), preference(P,_,0,for(F),_).

8 one ’(P) :- preference(P,aso),

9 not holds ’(F) : preference(P,_,R,for(F),_), R>1.

10 one ’(P) :- preference(P,aso),

11 holds ’(F), preference(P,_,1,for(F),_).

12 one ’(P) :- preference(P,aso),

13 not holds ’(F), preference(P,_,0,for(F),_).

With these rules, we derive better(sr) in Line 15 whenever some ASO rule r has
satisfaction degree 1 in X and one greater than 1 in Y . Otherwise, better(sr)
is derivable in Line 16 whenever r has satisfaction degree R in X but none of the
formulas φ1 to φR are true in Y . This is analogous for bettereq/1 in lines 20–23.
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15 better(P) :- preference(P,aso), one(P), not one ’(P).

16 better(P) :- preference(P,aso),

17 preference(P,_,R,for(F),_), holds(F), R > 1, not one ’(P),

18 not holds ’(G) : preference(P,_,R’,for(G),_), 1 < R’,R’ <= R.

20 bettereq(P) :- preference(P,aso), one(P).

21 bettereq(P) :- preference(P,aso),

22 preference(P,_,R,for(F),_), holds(F), R > 1, not one ’(P),

23 not holds ’(G) : preference(P,_,R’,for(G),_), 1 < R’,R’ < R.

The remaining rules implement the composite preference type pareto.
25 better(P) :- preference(P,pareto),

26 better(R), preference(P,_,_,name(R),_),

27 bettereq(Q) : preference(P,_,_,name(Q),_).

Note how pareto makes use of both the strict and non-strict preference types,
viz. better/1 and bettereq/1. In fact, we only list this here for completeness
since the definition could be imported from asprin’s library.

Altogether, the rules in Line 1–27 capture the semantics of ASO. To see this,
consider a set O of ASO rules and the program PO consisting of Line 1–27 along
with the facts for the preference and optimization statements corresponding to O
and the auxiliary rules in (ii) mentioned above. Then, we can show that X �O Y
holds iff PO ∪ H(X) ∪ H ′(Y ) is satisfiable.

asprin also includes an implementation of the ASO extension with penalties
introduced in [6]. Here, each formula φi in (2) is extended with a weight and
further weight-oriented cardinality- and inclusion-based composite preference
types are defined. The implementation in asprin extends the one presented above
by complex weight handling and is thus omitted for brevity. Similarly, logic
programs with ordered disjunction [4] are expressible in asprin via the translation
to ASO described in [5].

Partially Ordered Sets. In [8], qualitative preferences are modeled as a strict
partially ordered set (Φ,<) of literals. The literals in Φ represent propositions
that are preferably satisfied and the strict partial order < on Φ gives their relative
importance. We (slightly) generalize this to sets of Boolean formulas. Then, for
sets X,Y of atoms and a strict partially ordered set (Φ,<), X �(Φ,<) Y if there
exists a formula φ ∈ Φ such that X |= φ and Y �|= φ, and for every formula φ ∈ Φ
such that Y |= φ and X �|= φ, there is a formula φ′ ∈ Φ such that φ′ < φ and
X |= φ′ but Y �|= φ′.

We represent a partially ordered set (Φ,<) by a preference statement s(Φ,<)

of form:
#preference(s(Φ,<),poset) Φ∪ {φ′ > φ | φ′ < φ }.

The preference type poset captures all preference relations �(Φ,<) for all strict
partially ordered sets (Φ,<).

The core implementation of preference type poset is given in Lines 1–13
below. In fact, Line 1 to 4 are only given for convenience to project the compo-
nents of (Φ,<).
1 poset(P,F) :- preference(P,poset),

2 preference(P,_,_,for(F),_).
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3 poset(P,F,G) :- preference(P,poset),

4 preference(P,I,1,for(F),_), preference(P,I,2,for(G),_).

6 better(P,F) :- preference(P,poset),

7 poset(P,F), holds(F), not holds ’(F).

8 notbetter(P) :- preference(P,poset),

9 poset(P,F), not holds(F), holds ’(F),

10 not better(P,G) : poset(P,G,F).

12 better(P) :- preference(P,poset),

13 better(P,_), not notbetter(P).

Given the reification of two sets X,Y in terms of holds/1 and holds’/1,
we derive an instance of better(P,F) whenever X |= φF but Y �|= φF (and F is
the representation of φF). Similarly, we derive notbetter(P) whenever there is
a formula φF such that Y |= φF and X �|= φF but better(P,G) fails to hold for
all φG preferred to φF by the strict partial order <. Finally, these two auxiliary
predicates are combined in Line 12 and 13 to define the preference type poset.

Finally, we sketch how these rules capture the intended semantics. For this,
given a strict partially ordered set (Φ,<), we consider the program P(Φ,<) con-
sisting of the rules in Line 1–13, the facts for the preference and optimize state-
ments corresponding to (Φ,<), and the auxiliary rules (ii) described above.
Then, we can show that for two sets of atoms X and Y , X �(Φ,<) Y holds
iff P(Φ,<) ∪ H(X) ∪ H ′(Y ) is satisfiable.

Son and Pontelli [7] propose a language for specifying preferences in planning
that distinguishes three types of preferences: basic, atomic, and general prefer-
ences. A basic preference is originally expressed by a propositional formula using
Boolean as well as temporal connectives. Given that our focus does not lie on
planning, we restrict basic preferences to Boolean formulas. Then, for sets X,Y
of atoms and a formula φ, [7] defines X �φ Y by if X |= φ and Y �|= φ.

In asprin, such a basic preference is declared by a preference statement sφ of
form

#preference(sφ,basic){ φ }.

And the preference type basic is implemented by the following rule.
better(P) :- preference(P,basic), preference(P,_,_,for(F),_),

holds(F), not holds ’(F).

Interestingly, atomic and general preferences can be captured by composite
preferences pre-defined in asprin’s library. That is, the language constructs !, &,
|, and � directly correspond to neg, and, pareto, and lexico. For brevity, we
refrain from further details and refer the reader to [7,9] for formal definitions.

Optimization Statements. Finally, it is instructive to see how common optimiza-
tion statements are expressed in asprin.2 A #minimize directive is of the form

#minimize{w1@k1, t1 : �1, . . . , wn@kn, tn : �n}

where each wi and ki is an integer, and �i = �i1 , . . . , �ik and ti = ti1 , . . . , tim are
tuples of literals and terms, respectively. For a set X of atoms and an integer k, let
2 The decomposition of weak constraints is analogous, and is omitted for brevity.
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ΣX
k denote the sum of weights wi over all occurrences of elements (wi@ki, ti :�i)

in M such that X |= �i. Then, for sets X,Y of atoms and minimize statement
M as above, X �M Y if ΣX

k < ΣY
k and ΣX

k′ = ΣY
k′ for all k′ > k.

In asprin, a minimize statement M as above can be represented by the fol-
lowing preference specification.

#preference(sM ,lexico ){−k :: name(sk) | (w@k, t : �) ∈ M }.

#preference(sk,less(weight )){w,(t) :: � | (w@k, t : �) ∈ M }.

#optimize(sM ).

The preference type less(weight) is defined as follows.
better(P) :- preference(P,less(weight)),

1 #sum {-W,T,F : holds(F), preference(P,_,_,for(F),(W,T));

W,T,F : holds ’(F), preference(P,_,_,for(F),(W,T))}.

Note that by wrapping tuples t into (t), we only deal with pairs w,(t) rather
than tuples of varying length.

asprin’s separation of preference declarations from optimization directives
not only illustrate how standard optimization statements conflate both con-
cepts but it also explicates the interaction of preference types lexico and
less(weight).

4 Heuristic Support in asprin

Optimization problems are clearly more difficult than decision problems, since
they involve the identification of optimal solutions among all feasible ones. To
this end, it seems advantageous to direct the solving process towards putative
optimal solutions by supplying heuristic information. Although this runs the risk
of search degradation [11], it has already indicated great prospects by improving
regular optimization in ASP [12] as well as qualitative preferences [8]. While
the latter had to be realized by modifications to a SAT solver, in asprin we
draw upon the integration with clingo 4 ’s declarative heuristic framework [12].
Heuristic information is represented in a logic program by means of the dedicated
predicate heuristic. Different types of heuristic information can be controlled
with clingo 4 ’s domain heuristic along with the basic modifiers sign, level,
init, and factor. In brief, sign allows for controlling the truth value assigned
to variables subject to a choice within the solver, while level establishes a
ranking among atoms such that unassigned atoms of highest rank are chosen
first. With init, a value is added to the initial heuristic score of an atom. The
whole search is biased with factor by multiplying heuristic scores by a given
value. Furthermore, modifiers true and false are defined as the combination
of a positive sign and a level, and a negative sign and a level, respectively.
See [12] for a details.

This framework seamlessly integrates into asprin by means of so-called
heuristic programs, where heuristics for concrete preference types may be speci-
fied. For example, consider the following heuristic program for less(weight):

_heuristic(holds(X),false ,1) :- preference(P,less(weight)),

preference(P,_,_,for(X),_).
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This tells the solver to decide first on formulas appearing in preference statements
of type less(weight) and to assign false to them. As another example, we can
replicate the modification of the sign heuristic proposed in [8] for poset as
follows:

_heuristic(holds(X),sign ,1) :- preference(P,poset),

preference(P,_,_,for(X),_).

The idea is to assign true when deciding on formulas of a poset preference
statement. In general, the goal of these heuristic programs is to direct the search
towards optimal solutions in such a way that fewer intermediate solutions have
to be computed.

For activating the domain heuristics, the option --heuristic=Domain must
be supplied. In addition, asprin provides an easy way to modify it from the com-
mand line via option --domain-heuristic=<m>[,<v>]; it turns on the domain
heuristic and applies heuristic modifier m with value v (1 by default) to the
formulas occurring in preference statements. For example, instead of adding
the previous heuristic program for poset, we could have issued the option
--domain-heuristic=sign.

As put forward in [8,13], even domain heuristics alone may be used to com-
pute optimal models by a single call to a solver. In other words, preference types
may actually be implemented by domain heuristics. For example, the prefer-
ence type subset can alternatively be implemented by the following heuristic
program

_heuristic(holds(X),false ,1) :- preference(P,subset),

preference(P,_,_,for(X),_).

which guarantees that the first answer set computed is (already) optimal. Sim-
ilarly, the following heuristic program implements a more sophisticated version
of poset:

_heuristic(holds(F),true ,1) :- preference(P,poset),

preference(P,_,_,for(F),_),

assigned(P,G) : poset(P,G,F).

assigned(P,G) :- poset(P,G,_), holds(G).

assigned(P,G) :- poset(P,G,_), not holds(G).

With poset/3 defined as in Sect. 3, predicate assign/2 represents that a for-
mula is assigned by the solver. Given this heuristic program, the solver prefers
to satisfy formulas whose dominating formulas are already assigned. As shown
in [8], such a heuristic guarantees that the first optimal model computed is opti-
mal. The asprin library includes such heuristic program also for aso. Using them,
there is no need for checking the optimality of a solution. For this case, option
--mode=heuristic tells asprin to avoid the check and activate the domain
heuristic.

5 Using the asprin System

asprin is implemented in Python (2.7) and consists of a parser along with a
solver that uses clingo 4 ’s Python library. This library provides clingo objects
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maintaining a logic program and supporting methods for adding, deleting and
grounding rules, as well as for solving the current logic program. This approach
allows for continuously changing the logic program at hand without any need for
re-grounding rules. Also, it benefits from information learned in earlier solving
steps.

The input of asprin consists of a set of ASP files structured by means
of clingo 4 ’s #program directives into base, preference, and heuristic pro-
grams. Base programs consist typically of a problem instance and encoding,
and may contain a preference specification (just as with #minimize state-
ments).3 Rules common to all types of preference programs are grouped under
program blocks headed by ‘#program preference.’, while type-specific ones
use ‘#program preference(t).’ where t is the preference type. Similarly for
‘#program heuristic.’ and ‘#program heuristic(t).’. Among all the type-
specific preference and heuristic programs in the input files, asprin only loads
those for the preference types appearing in the preference specification of the base
program. On the other hand, for every preference type t of the preference spec-
ification, asprin requires a corresponding preference program ‘preference(t)’,
and when using option --mode=heuristic there must also be a corresponding
heuristic program ‘heuristic(t)’.4 asprin’s implementation relies on the cor-
rectness of preference and heuristic programs. In other words, if the preference
(or heuristic) programs implement correctly the corresponding preference types,
then asprin also functions correctly, as shown in [9].

asprin’s parser starts translating preference and optimization statements as
explained in Sect. 3. Then every atom a appearing in a weighted formula is rei-
fied into holds(a,0) adding a rule of form ‘ holds(a,0) :- a.’ to the base
program. Similar auxiliary rules are added for handling Boolean formulas. The
successive answer sets computed by asprin are reified into atoms of the form
holds(tF,n) where n takes successively increasing integer values starting with
1. Next, preference programs are slightly modified for comparing answer sets
numbered m1 and m2. Atoms of the form holds(t) and holds’(t) are trans-
lated into holds(t,m1) and holds(t,m2), respectively. After parsing, the base
program generated by the parser is solved by clingo. If the program is unsatisfi-
able, then asprin terminates and returns UNSAT. Otherwise, asprin enters a loop,
where the last generated answer set is reified into facts of form holds(tF,n);
the preference program is grounded setting m1 to 0 and m2 to n; and clingo
solves the resulting program. If a new answer set is found, asprin returns to the
beginning of the loop, and otherwise it returns the last answer set found. By
construction, this last answer set is optimal wrt the preference in focus.

asprin can be configured by several command line options. As with standard
ASP solvers, a natural number n tells asprin how many optimal models should
be computed (where 0 initiates the computation of all optimal models). Option
--project allows for projecting the optimal models on the atoms occurring in
3 If no preference specification is given, asprin computes answer sets of the base pro-

gram.
4 In this case, for computing a single optimal model no preference program is needed.
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the preference specification. Options for modifying the underlying clingo solver
can be directly issued from the command line. More options and details are
obtained with asprin’s --help option.

6 Empirical Evaluation of asprin

In [9], we contrasted asprin (1.0) ’s performance with that of clingo 4.4 on
basic weight- and subset-based preferences. We begin with extending this study
to investigate the impact of heuristic information on asprin’s performance. To
this end, we consider in Table 1 the benchmarks from [9] and solve them by
increasing the heuristic influence on asprin’s search. We ran all benchmarks
with asprin 1.1 using clingo 4.5 on a Linux machine with an Intel Dual-Core
Xeon 3.4 GHz processor, imposing a limit of 900 s and 4 GB of memory per run.
A timeout is counted as 900 s. Each entry in Table 1 gives average time and in
parentheses the number of enumerated models and timeouts. The number of
enumerated models reflects how well asprin converges to the optimum. Each
group of four data columns contains results from running asprin in its default
setting and heuristics modifying sign, level and both, viz. false. The first
group deals with weight-based optimization and the second with subset-based
optimization. Overall each heuristic modification improves over the standard in
terms of runtime and convergence. This somewhat holds for timeouts as well,
though certain heuristic settings degenerate on specific classes. Generally, we
observe that the stronger the heuristic influence, the better asprin converges to
the optimum. Interestingly, the best runtime is however obtained with the least
interfering strategy, simply preferring negative signs for preference elements. On
the other hand, classes like Puzzle are resistant to heuristic manipulations and
weight-based optimization is even worse in this case. Here, convergence is imme-
diate and cannot be improved by heuristic means. The bad performance can thus
be explained by the interference of the heuristics with the final UNSAT prob-
lem needed for establishing optimality. Just modifying the sign thus appears as
the best overall compromise, boosting convergence without overly hindering the
final UNSAT proof. Otherwise, the best heuristic modification must be decided
case-by-case.

Table 1. Comparing asprin with different heuristic settings

Benchmark \ System asprinw asprinw+s asprinw+l asprinw+f asprins asprins+s asprins+l asprins+f
Ricochet (30) 20.00 432 ( 8, 4) 407 ( 7,4) 68 ( 1, 0) 71 (1, 0) 365 ( 8,3) 461 ( 7,10) 69 (1, 0) 71 (1, 0)
Timetabling(12)23687.75 345 (285, 3) 255 (202,2) 900 ( 4,12) 6 (1, 0) 217 (144,2) 21 (18, 0) 900 (2, 12) 5 (1, 0)
Puzzle (7) 580.57 82 ( 2, 0) 112 ( 2,0) 136 ( 2, 0) 416 (2, 1) 31 ( 1,0) 32 ( 1, 0) 21 (1, 0) 51 (1, 0)
Crossing (24) 211.92 104 ( 42, 1) 98 ( 35,0) 805 (19,20) 387 (6, 6) 0 ( 6,0) 1 ( 6, 0) 7 (9, 0) 3 (1, 0)
Valves (30) 56.63 69 ( 7, 0) 65 ( 6,0) 460 ( 8,11) 715 (0, 22) 38 ( 4,0) 39 ( 4, 0) 339 (4, 6) 673 (0, 21)
Expansion (30) 7501.87 216 (299, 0) 10 ( 15,0) 38 ( 7, 0) 12 (3, 0) 64 (295,0) 14 (54, 0) 4 (4, 0) 3 (1, 0)
Repair (30) 6750.73 76 ( 48, 0) 15 ( 47,0) 71 ( 3, 2) 8 (2, 0) 8 ( 43,0) 3 (11, 0) 1 (1, 0) 1 (1, 0)
Diagnosis (30) 1669.00 196 (341, 3) 76 ( 66,0) 43 ( 4, 0) 118 (3, 2) 19 (338,0) 2 (39, 0) 0 (1, 0) 0 (1, 0)
∅(∅, Σ) 190 (129,11) 130 ( 48,6) 315 ( 6,45) 217 (2, 31) 93 (105,5) 72 (18,10) 168 (3, 18) 101 (1, 21)
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Our next series of experiments aims at comparing the general-purpose app-
roach of asprin with dedicated implementations of aso [14] and poset [8] pref-
erences. In both cases, we use their benchmark generators and sets to contrast
the approaches. The experimental settings are the same as above.

Table 2. Comparing asprin with aso

n aso asol asprina asprinl+a

350 9 ( 0) 17 ( 0) 4 ( 0) 5 ( 0)
360 14 ( 0) 22 ( 0) 48 ( 0) 50 ( 0)
370 15 ( 0) 25 ( 0) 38 ( 0) 39 ( 0)
380 10 ( 0) 23 ( 0) 8 ( 0) 9 ( 0)
390 59 ( 0) 72 ( 0) 50 ( 1) 52 ( 1)
400 22 ( 0) 33 ( 0) 28 ( 0) 30 ( 0)
410 87 ( 1) 96 ( 1) 124 ( 2) 125 ( 2)
420 97 ( 1) 108 ( 1) 60 ( 0) 62 ( 0)
430 68 ( 0) 79 ( 0) 144 ( 0) 147 ( 0)
440 165 ( 3) 175 ( 3) 165 ( 2) 167 ( 2)
450 45 ( 0) 61 ( 0) 52 ( 0) 54 ( 0)
460 112 ( 1) 125 ( 1) 117 ( 2) 120 ( 2)
470 201 ( 4) 210 ( 4) 161 ( 2) 162 ( 2)
480 152 ( 2) 165 ( 2) 70 ( 1) 72 ( 1)
490 206 ( 2) 218 ( 2) 265 ( 4) 267 ( 4)

∅(Σ) 84 (14) 95 (14) 89 (14) 91 ( 14)

First, we compare asprin with the sys-
tem for aso preferences [14]; it implements
a branch-and-bound approach in C++ and
calls clingo each time from scratch via a
system call. We refer to it as aso. We also
used the benchmark generator from [14]
to generate random 3CNF formulas with
n variables and 4n clauses. For each for-
mula of n variables, it randomly generates
3n preference rules with a > ¬a or ¬a > a
for some a in the head, and 0 to 2 literals in
the body. In addition, the approach han-
dles ranked aso preferences (asol), which
amounts to an aggregation of aso prefer-
ences with lexico in asprin l+a. The gen-
erator accounts for this by assigning a higher rank to half of the aso rules.
The results of comparing both systems on both sets of random benchmarks are
shown in Table 2. Each cell gives average runtime and number of timeouts. We
see that the general-purpose approach of asprin is comparable with the dedi-
cated approach of [14] on their benchmark set. On the other hand, we observed
with asprin a very fast convergence, so that no real difference can be expected
on these benchmarks.

Table 3. Comparing satpref and asprin under different heuristic settings

Benchmark\System satpref satpref+s satpref+H asprinp asprinp+s asprinp+H
0.0 0 ( 29, 0) 0 ( 1, 0) 0 (1, 0) 1 ( 16, 0) 0 ( 2, 0) 0 (1, 0)
0.00621 0 ( 35, 0) 0 ( 1, 0) 90 (1, 6) 1 ( 17, 0) 1 ( 2, 0) 1 (1, 0)
0.01243 1 ( 75, 0) 1 ( 3, 0) 118 (1, 7) 6 ( 26, 0) 2 ( 3, 0) 3 (1, 0)
0.02486 8 ( 388, 0) 6 ( 10, 0) 635 (1, 38) 55 ( 74, 0) 9 ( 8, 0) 64 (1, 4)
0.04972 67 ( 1463, 2) 16 ( 36, 0) 900 (0,100) 318 (203, 16) 26 (17, 0) 176 (1, 14)
1.0 850 (10315,88) 243 (590,10) 177 (1, 12) 856 (323, 92) 174 (96, 0) 280 (1, 24)
∅(∅, Σ) 154 ( 2051,90) 44 (107,10) 320 (1,163) 206 (110,108) 35 (21, 0) 88 (1, 42)
MAXSAT 54 ( 8849, 0) 9 ( 7, 0) 62 (1, 0) 835 (957, 31) 109 (31, 3) 171 (1, 6)
PBO/pbo-mqc-nencdr 5 ( 267, 0) 2 ( 2, 0) 664 (1, 88) 150 (207, 14) 9 ( 2, 0) 244 (1, 20)
PBO/pbo-mqc-nlogencdr 3 ( 228, 0) 1 ( 2, 0) 237 (1, 21) 110 (214, 3) 5 ( 2, 0) 141 (1, 15)
PSEUDO/primes 110 ( 396,18) 110 ( 1,18) 110 (1, 18) 215 (334, 27) 106 ( 5,17) 110 (1, 17)
PSEUDO/routing 346 ( 409, 4) 49 ( 1, 0) 50 (1, 0) 85 (475, 0) 4 ( 1, 0) 86 (1, 1)
Partial-MINONE 14 ( 2, 0) 14 ( 2, 0) 7 (1, 0) 24 ( 2, 0) 24 ( 1, 0) 25 (1, 0)
∅(∅, Σ) 88 ( 1692,22) 31 ( 2,18) 188 (1,127) 236 (365, 75) 43 ( 7,20) 129 (1, 59)

Next, we compare asprin with the system satpref for poset preferences [15].
Interestingly, satpref not only extends the SAT solver minisat with branch-and-
bound-based optimization but also uses heuristic support for boosting optimiza-
tion. Table 3 contains the results of our comparison on benchmarks from [15]. The
first six lines of data stem from 600 random instances (each with 500 variables
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and 1750 clauses), in which an order a > b between variables a and b is generated
with the probabilities given in the left column. The second six lines of data stem
from instances taken from various competitions (cf. [15]). As above, we compare
both systems in their basic setting and with sign-based heuristics. In addition,
we contrast the declarative heuristics from the end of Sect. 4 (asprinp+H) with
its hard-coded counterpart in satpref+H. Such a heuristic ensures that the first
found model is optimal. In fact, as above, the best results with both systems
are obtained with a light sign-based heuristics. The slight edge of satpref over
asprinp is due to additional grounding efforts (given that problems are expressed
in ASP). Despite this, the experiments show that the general-purpose approach
of asprin is overall comparable with the dedicated approach of satpref.

7 Discussion

We have presented asprin, a general and flexible ASP-based system for represent-
ing and evaluating combinations of quantitative and qualitative preferences. We
presented asprin’s first-order modeling language and showed how existing (and
future) preferences can be expressed in asprin. We showed that our general-
purpose approach matches the performance of dedicated systems for aso and
poset preferences. Moreover, we demonstrated how well-chosen heuristics can
boost the optimization process.
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Abstract. Hybrid ASP (H-ASP) is an extension of ASP that allows
users to combine ASP type rules and numerical algorithms. Dynamic
Remarketing Ads is Google’s platform for serving customized ads based
on past interactions with a user. In this paper we will describe the use
of H-ASP to diagnose failures of the automatic whitelisting system for
Dynamic Remarketing Ads. We will show that the diagnosing task is an
instance of a computational pattern that we call the Branching Compu-
tational Pattern (BCP). We will then describe a Python H-ASP library
(H-ASP PL) that allows to perform computations using a BCP, and we
will describe a H-ASP PL program that solves the diagnosing problem.

Past research has demonstrated that logic programming with the answer-set
semantics, known as answer-set programming or ASP, for short, is an expres-
sive knowledge-representation formalism [2,9–13]. The availability of the non-
classical negation operator not allows the user to model incomplete information,
frame axioms, and default assumptions such as normality assumptions and the
closed-world assumption efficiently. Modeling these concepts in classical propo-
sitional logic is less direct [9] and typically requires much larger representations.

A fundamental methodological principle behind ASP, which was identified
in [12], is that to model a problem, one designs a program so that its answer
sets encode or represent problem solutions. Niemelä [13] has argued that logic
programming with the stable-model semantics should be thought of as a language
for representing constraint satisfaction problems. Thought of from this point of
view, ASP systems are ideal logic-based systems to reason about a variety of
types of data and integrate quantitative and qualitative reasoning. ASP systems
allow the users to describe solutions by giving a series of constraints and letting
an ASP solver search for solutions.

To solve many of the real world problems one needs to have an ASP program-
ming environment where one can perform external data searches and bring back
information that can be used in the program. Extensions of ASP that allow such
external data searches include DLV DB system [15] for querying relational data-
bases, V I programs [6] for importing knowledge from external sources, HEX
programs [7] which allow access to external data sources via external atoms,
GRINGO grounder that provides an interface for calling function written in
Lua during the grounding process [8], and Hybrid ASP (H-ASP) introduced by
the authors in [4].
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 173–185, 2015.
DOI: 10.1007/978-3-319-23264-5 16
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In this paper, we will discuss applications of H-ASP which can perform exter-
nal data searches. In particular, we shall discuss an example of problems that
can be solved by processing a connected directed acyclic graph (cDAG for short)
where each vertex of the cDAG contains both logical and non-logical information
in the form of parameters. The cDAG can be generated by following a multi-
step pattern of computation which we will call the Branching Computational
Pattern (BCP for short). At any stage in the computation we are given a set of
vertices. These vertices can either be an initial set of vertices or a set of vertices
produced at the previous step. Then the BCP instance creates multiple new
branches emanating from a particular vertex. For each new branch, the BCP
instance performs a computation using the data from the vertex and possibly
auxiliary data from external repositories to derive new logical information and
parameters at that vertex as well as pass relevant logical information and new
parameters to its children. The result of such computation defines new vertices
of the cDAG. Then new edges from each parent vertex to its children are added
to the cDAG. The resulting cDAG is called a BCP cDAG.

The focus of this paper is the problem of diagnosing failures of the automatic
whitelisting system for Dynamic Remarketing Ads (automatic whitelisting, for
short). Dynamic Remarketing Ads is Google’s platform for delivering ads which
are customized to an individual user based on the user’s past interactions with
the advertiser such as the user’s previously viewed items or abandoned shop-
ping carts. In order for Google to start serving dynamic remarketing ads for a
particular advertiser that advertiser needs to be whitelisted, i.e. the advertiser
has to have been added to a list of advertisers that are known to use Dynamic
Remarketing Ads. Whitelisting is done automatically by a system that detects
whether an advertiser is ready to serve dynamic remarketing ads based on the
logs and the content of ads databases.

There are nine cases when an advertiser can be automatically whitelisted. In
each case there is a set of constraints that need to be satisfied in order for that
case to apply. The technical challenge in using ASP for diagnosing automatic
whitelisting is that in order to check the constraints it is necessary to search data
stored in Google’s various data repositories. The fact that in our application, the
amount of data is quite large and the repository contents change in real time
makes pre-computing impractical. Moreover, data searches in repositories often
depend on the data obtained in the previous steps. Under these circumstances
what is required is an extension of ASP that allows the following: (1) conclusions
to be derived conditional on the results of the external data searches, and (2)
parameter passing between the algorithms that perform data searches. H-ASP
provides this functionality. To solve the problem of diagnosing failures of the
automatic whitelisting system we have implemented a Python library, which
we call H-ASP PL for running H-ASP programs that use a certain subset of
H-ASP rules. We have then created a H-ASP program that runs using H-ASP
PL library. The program was successfully used for several months in the cases
of many advertisers.
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Another problem that can be solved by processing a cDAG is computing an
optimal strategy for an agent acting in a dynamic domain. In [5], the authors
showed how H-ASP programs can be used to combine logical reasoning, continu-
ous parameters, and probabilistic reasoning in the context of computing optimal
strategy using Markov Decision Processes. A feature of the solution in [5] was
that one started with a basic H-ASP program and performed a series of program
transformations so that one could compute a maximal stable model which con-
tains all of the stable models of the original program. That is, according to the
H-ASP semantics, which we will define in a subsequent section, a H-ASP program
can have multiple stable models where some of the stable models can be subsets
of other stable models. In the context of computing an optimal strategy, such
stable models would describe only a part of the evolution tree of the dynamic
domain. Such dynamic domains can be represented as BCP cDAGs. Hence, each
stable model represents a part of the BCP cDAG. However, in order to compute
an optimal strategy, one needs to compute the entire evolution tree of a dynamic
domain. Thus the full BCP cDAG is required.

We have a similar situation in the case of diagnosing automatic whitelisting.
We are also interested in the full BCP cDAG, which in this case will encode all
of the possible whitelisting paths.

There already exists a literature discussing the use of ASP for diagnosing
malfunctioning devices. In [1] Balduccini and Gelfond describe an approach for
diagnosing a malfunctioning device based on the theory of action language AL.
In their approach the underlying diagnostic program explicitly describes the laws
that govern the behavior of the dynamic domain, and the non-monotonicity of
ASP is used to compute all the possible scenarios under which a malfunction
could occur. In the case of diagnosing automatic whitelisting, we use the non-
monotonicity of ASP to compute all the possible scenarios for a malfunction,
however we do not explicitly describe the laws that govern the behavior of the
dynamic domain. The latter is motivated by the relative simplicity of the domain
for the automatic whitelisting, and by the time constraints of the project.

There are two main advantages of using H-ASP rather than a common pro-
gramming language such as Python directly. The first advantage is the efficiency
of representation. Our H-ASP program specifies how automatic whitelisting
occurs and lets the solver report back failures when automatic whitelisting fails.
An equivalent Python program will have to specify both how the automatic
whitelisting occurs and the details of the diagnostic logic. Hence, H-ASP pro-
gram is smaller than one would expect the equivalent Python program to be.
The second advantage is the robustness of the H-ASP program. Because H-ASP
program describes mostly the problem domain, it is easier to update the program
when changes to the automatic whitelisting logic occur. This is important since
the requirements for automatic whitelisting are continually being modified.

The outline of this paper is the following. In Sect. 1, we formally define the
Branching Computational Pattern (BCP). Our problem of diagnosing automatic
whitelisting is a special case of the BCP. In Sect. 2, we give an overview of
H-ASP. In Sect. 3, we discuss the computational pattern as it relates to H-ASP
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and we briefly describe the H-ASP PL library. In Sect. 4, we present a toy exam-
ple to illustrate how the problem of diagnosing automatic whitelisting is solved.
In Sect. 5, we describe the semantics of H-ASP PL, and the Local Algorithm
which is used in H-ASP PL. In Sect. 6, we discuss some of the related work and
give the closing comments.

1 The Branching Computational Pattern (BCP)

Let 〈V,E〉 be a connected directed acyclic graph (cDAG). Let R (V,E) be the set
of vertices with no in-edges. If |R (V,E)| = 1, then we will refer to the unique
vertex r (V,E) ∈ R (V,E) as the root node. If (v, w) ∈ E, we will say that v is a
parent of w and that w is a child of v. If there exists v1, v2, ..., vn such that for all
i ∈ {2, ..., n}, (vi−1, vi) ∈ E and v1 = v and vn = w, then we say that v is an
ancestor of w and w is a descendant of v. It is easy to see that for all v ∈ V such
that v /∈ R (V,E), there exists a vertex in R (V,E) which is an ancestor of v.

Our branching computational patterns allow the user to compute a cDAG
〈V,E〉 where each vertex v ∈ V is a pair (A,p) where A is a set of propositional
atoms and p is a vector of parameter values representable by a computer. We
will refer to such a cDAG as a computational cDAG. If all (A,p) ∈ V , A ⊆ At
and p ∈ S, then we will say that 〈V,E〉 is a computational cDAG over At and
S. At each cDAG vertex (A,p), the computation consists of the two steps:

1. use A and p to choose algorithms (that will possibly access external data
repositories and/or perform computations) to produce the set of next para-
meter value vectors q1, ...,qk and

2. for each qi produced in step 1, derive atoms Bi,1, Bi,2, ..., Bi,mi
.

The set of children of (A,p) will be the pairs ({Bi,1, Bi,2, . . . , Bi,mi
},qi) for

i = 1, . . . , k. To produce the root nodes of the cDAGs, step 2 is applied to the
initial set of parameter values specified as an input. The computation can then
be repeated at each child node.

This computational process is illustrated in Fig. 1. At the node C0, we obtain
data1 from database Database1 and data2 from database Database2. C0 then
creates three new children: ({Ai}, fi(data1, data2)) for i = 1, 2, 3 where fi is
one of the computational algorithms associated with an H-ASP rule that can

Fig. 1. Computational pattern illustration
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be applied at C0. At node C1, we obtain data3 from database Database3. Then
C1, creates two new children: ({Ai}, fi(p1, data3)) for i = 4, 5. This figure illus-
trates the main aspects of the BCP. At each node, external data sources can be
accessed. This new data, the value of the parameters stored at the node, and the
logical information stored at the node are then used to create new children by
passing new parameters and logical information to each child as well as updating
the logic information stored at the node.

The problem of diagnosing failures for automatic whitelisting fits the general
BCP paradigm. There are nine cases for the automatic whitelisting. In order to
help in understanding the types of criteria used, we shall describe one of these
cases.

Case One: An advertiser is whitelisted if the advertiser has installed a Javascript
tag containing the id of one of the advertiser’s products, a user visits advertiser’s
website, and the advertiser has created a dynamic remarketing ad.

Here the initial set of candidate advertisers for whitelisting is obtained from
the table, which we will call T init, containing the information about advertisers
who have installed a Javascript tag. Whether a user has visited advertiser’s
website can be determined by examining a log called L userevents. The id of
each advertiser from the candidate set will be used to search L userevents to
determine whether a user has visited advertiser’s website or not. The remaining
advertiser ids will be used to determine whether the advertiser has created a
dynamic remarketing ad by using an external function GetCreatedAdIds().

The cDAG representing the automatic whitelisting system can be constructed
by making a vertex represent a whitelisting condition that needs to be satisfied.
An edge from a vertex x to a vertex y will be added to indicate that the condition
for y needs to be checked immediately after checking the condition for x. This
may be necessary, for instance if data derived when checking the condition for
x needs to be used to check the condition for y. A root node will have as its
children the first conditions for each of the nine cases. Thus the cDAG will be a
tree with 9 branches.

2 Hybrid ASP

In this section we shall give a brief overview of H-ASP. A H-ASP program P has
an underlying parameter space S and a set of atoms At. Elements of S are of the
form p = (t, x1, . . . , xm) where t is time and xi are parameter values. We shall
let t(p) denote t and xi(p) denote xi for i = 1, . . . , m. We refer to the elements
of S as generalized positions. The universe of P is At × S. For ease of notation,
we will often identify an atom and the string representing an atom.

Let M ⊆ At × S. Define M̂ = {p ∈ S : (∃a ∈ At)((a,p) ∈ M)}. For a
generalized position p ∈ S, define WM (p) = {a ∈ At : (a,p) ∈ M}. A hybrid
state at generalized position p ∈ S is a pair (WM (p) , p). In general, a pair
(A,p) where A ⊆ At and p ∈ S will be referred to as a hybrid state. For a
hybrid state (A,p), we write (A,p) ∈ M if p ∈ M̂ and WM (p) = A.
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A block B is an object of the form B = a1,. . . , an,not b1, . . . ,not bm where
a1,. . . , an,b1,. . . ,bm ∈ At. We let B− = not b1, . . . , not bm. Given M ⊆ At × S,
B = a1,. . . , an,not b1, . . . ,not bm, and p ∈ S, we say that M satisfies B at the
generalized position p, written M |= (B,p), if (ai,p) ∈ M for i = 1, . . . , n and
(bj ,p) /∈ M for j = 1, . . . , m. If B is empty, then M |= (B,p) automatically
holds.

There are two types of rules in H-ASP.

Advancing rules are of the form a ← B1;B2; . . . ;Br : A,O
where A is an algorithm, each Bi is a block, and O ⊆ Sr is such that if
(p1, . . . ,pr) ∈ O, then t(p1) < . . . < t(pr), A (p1, . . . ,pr) ⊆ S, and for all
q ∈ A (p1, . . . ,pr), t(q) > t(pr). Here and in the next rule, we allow n or m
to be equal to 0 for any given i. Moreover, if n = m = 0, then Bi is empty
and we automatically assume that Bi is satisfied by any M ⊆ At × S. We shall
refer to O as the constraint set of the rule and the algorithm A as the advancing
algorithm of the rule. The idea is that if (p1, . . . ,pr) ∈ O and for each i, Bi

is satisfied at the generalized position pi, then the algorithm A can be applied
to (p1, . . . ,pr) to produce a set of generalized positions O′ such that if q ∈ O′,
then t(q) > t(pr) and (a,q) holds.

Stationary rules are of the form a ← B1;B2; . . . ;Br : H,O
where each Bi is a block, O ⊆ Sr is such that if (p1, . . . ,pr) ∈ O, then t(p1) <
· · · < t(pr), and H is a Boolean algorithm defined on O. We shall refer to O as
the constraint set of the rule and the algorithm H as the Boolean algorithm of
the rule. The idea is that if (p1, . . . ,pr) ∈ O and for each i, Bi is satisfied at the
generalized position pi, and H(p1, . . . ,pr) is true, then (a,pr) holds.

A H-ASP Horn program is a H-ASP program which does not contain any
negated atoms in At. Let P be a Horn H-ASP program, let I ∈ S be an initial
condition. Then the one-step provability operator TP,I is defined so that given
M ⊆ At × S, TP,I(M) consists of M together with the set of all (a, J) ∈ At × S
such that

(1) there exists a stationary rule C = a ← B1;B2; . . . ;Br : H,O and

(p1, . . . ,pr) ∈ O ∩
(
M̂ ∪ {I}

)r

such that (a, J) = (a,pr), M |= (Bi,pi) for
i = 1, . . . , r, and H(p1, . . . ,pr) = 1 or

(2) there exists an advancing rule C = a ← B1;B2; . . . ;Br : A,O and

(p1, . . . ,pr) ∈ O ∩
(
M̂ ∪ {I}

)r

such that J ∈ A(p1, . . . ,pr) and M |=
(Bi,pi) for i = 1, . . . , r.

The stable model semantics for H-ASP programs is defined as follows. Let
M ⊆ At×S and I ∈ S. An H-ASP rule C = a ← B1; . . . , Br : A,O is inconsistent
with (M, I) if for all (p1, . . . ,pr) ∈ O ∩

(
M̂ ∪ {I}

)r

, either (i) there is an i such

that M 
|= (B−
i ,pi), (ii) A (p1, . . . ,pr) ∩ M̂ = ∅ if A is an advancing algorithm,

or (iii) A(p1, . . . ,pr) = 0 if A is a Boolean algorithm. Then we form the Gelfond-
Lifschitz reduct of P over M and I, PM,I as follows.
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(1) Eliminate all rules that are inconsistent with (M, I).
(2) If the advancing rule C = a ← B1; . . . , Br : A,O is not eliminated by

(1), then replace it by a ← B+
1 ; . . . , B+

r : A+, O+ where for each i, B+
i

is the result of removing all the negated atoms from Bi, O+ is equal to
the set of all (p1, . . . ,pr) in O ∩

(
M̂ ∪ {I}

)r

such that M |= (B−
i ,pi) for

i = 1, . . . , r and A(p1, . . . ,pr) ∩ M̂ 
= ∅, and A+(p1, . . . ,pr) is defined to be
A(p1, . . . ,pr) ∩ M̂ .

(3) If the stationary rule C = a ← B1; . . . , Br : H,O is not eliminated by (1),
then replace it by a ← B+

1 ; . . . , B+
r : H|O+ , O+ where for each i, B+

i is the
result of removing all the negated atoms from Bi, O+ is equal to the set of
all (p1, . . . ,pr) in O ∩

(
M̂ ∪ {I}

)r

such that M |= (B−
i ,pi) for i = 1, . . . , r

and H(p1, . . . ,pr) = 1.

Then M is a stable model of P with initial condition I if
∞⋃

k=0

T k
PM,I ,I (∅) = M.

We say that M is a single trajectory stable model of P with initial condition I
if M is a stable model of P with initial condition I and for each t ∈ {t(p)|p ∈ S},
there exists at most one p ∈ M̂ ∪ {I} such that t(p) = t.

We say that an advancing algorithm A lets a parameter y be free if the
domain of y is Y and for all generalized positions p and q and all y′ ∈ Y ,
whenever q ∈ A(p), then there exist q′ ∈ A(p) such that y (q′) = y′ and q and
q′ are identical in all the parameter values except possibly y. We say that an
advancing algorithm A fixes a parameter y if A does not let y be free.

The reason for introducing the last two definitions is that we often want to
limit the effects of algorithms to specifying only a subsets of the parameters to
make programs easier to understand. The exact mechanism for doing so will be
discussed in the next section. For now, however we will note that the parameters
that the advancing algorithm will be responsible for producing will correspond to
the fixed parameters of the algorithm. The rest of the parameters will correspond
to the free parameters.

3 H-ASP Library

H-ASP programs can be used to perform the computations for a BCP. In fact,
BCP computations can be carried by by H-ASP programs which use only a
restricted set of H-ASP which we call H-ASP program of order 1. A H-ASP
program P is of order 1 if all its advancing rules are of the form a ← B : A,O,
and all its stationary rules of the form a ← B : H,O. If P is of order 1, then we
will say that p is a child of q (and q is a parent of p) under P, I if there exists a
stable model M of P with the initial condition I and there exists an advancing
rule a ← B : A,O ∈ P such that M |= (B,q) and q ∈ O and p ∈ A (q).

Given an H-ASP program P of order 1 and the initial condition I, we define
the computational cDAG induced by P , I, comp(P, I) = 〈V,E〉, as follows.
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(1) V is the set of all the hybrid states (A,p) such that there exists a stable
model M of P with initial condition I and (A,p) ∈ M.

(2) E is the set of all pairs ((A,p) , (B,q)) ∈ V 2 such that there exists a stable
model M of P initial condition I and (A,p) ∈ M and (B,q) ∈ M and (A,p)
is a parent of (B,q) under P, I.

We can prove the following theorem.

Theorem 1. Let At be a set of propositional atoms and let S be a set of para-
meter values. Let 〈V,E〉 be a computational cDAG over At and S. Then there
exists a H-ASP program P of order 1 and an initial condition I for P such that
comp (P, I) = 〈W,U〉 is isomorphic to 〈V,E〉. Moreover, P can be chosen to have
a maximal stable model M and a parameter space X such that there exists a map
π : X → S so that the isomorphism g from comp (P, I) to 〈V,E〉 is defined by
setting g ((A,p)) = (A ∩ At, π (p)) for (A,p) ∈ W where W is the set of all the
hybrid states of M.

The proof of the theorem consists of construction of a H-ASP program P of
order 1, initial condition I and a simple isomorphism π that satisfy the conditions
of the theorem. The idea is that for every edge ((A,p), (B,q)) ∈ E, P contains a
set of rules with constraint sets that are satisfied only by π (p), and that generate
(B ∩ At, π (q)).

It is also easy to see that for a H-ASP program P of order 1 and the initial
condition I, the computation of a stable model is performed according to the
BCP along the computational cDAG induced by P, I.

Practical applications of BCP’s require either a computer language or a
library. Due to the time constraints of our project, we created a Python library
which allows us to compute the stable models for H-ASP programs of order
1. However, to make the task of programming with the library easier, we have
added one more type of rule beyond those allowed in H-ASP programs of order
1. We will now briefly describe some of the key features of the library and the
programs called H-ASP PL programs that it processes.

Let At be the set of atoms and let S be the parameter space.

1. H-ASP PL programs consists of three types of H-ASP rules: advancing rules
of the form a ← B : A,O, stationary rules of the form a ← B : H,O, and
stationary rules of the form a ← B1;B2 : G,Θ.

2. The parameters in the parameter space S are named. If p is a generalized
position and Q is a parameter, we denote the value of Q at p by p[Q].

3. The time parameter is named TIME and it is assumed that every advancing
algorithm increments the value of TIME by 1. That is, if A is an advancing
algorithm, p is a generalized position, then for all q ∈ A (p), q[TIME] =
p[TIME] + 1. Because of this assumption, the advancing algorithms are not
required to specify the value of the parameter TIME.

4. In [4], the authors suggested an indirect approach by which the advancing
algorithms can specify the values for only some of the parameters. The app-
roach requires extending the Herbrand base of a program P by a set of new
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atoms S1, ..., Sn one for each parameter. Suppose that there is an advancing
algorithm A in a rule a ← B : A,O that specifies parameters with indexes
i1, i2, . . . , ik and lets other parameters be free. Then we add to P rules of
the form Sij ← B : A,O for each j from 1 to k. This is, repeated for every
advancing rule of P . Then if M is a stable model of P and p ∈ M̂ , we will
require that {S1, . . . , Sn} ⊆ WM (p). This will ensure that every parameter
at p is set by some advancing rule. For our library, we assume that this
mechanism is used by any H-ASP program that it will process. This allows
us to implement it implicitly without requiring the H-ASP user to specify
the additional rules.

5. For our application, we would like to have the ability to apply a constraint
to two hybrid states belonging to the same single trajectory stable model
of P . In order to do that in our library, for a stationary rule of the form
a ← B1;B2 : G,Θ, we assume that if G (p,q) = 1, then t (p) + 1 = t (q) and
there exists a single trajectory stable model M of P such that {p,q} ⊆ M̂ .

4 Example

The following example illustrates a typical step of processing performed by the
program for diagnosing automatic whitelisting. The complete diagnosis requires
many steps of this type.

Suppose that a decision is to be made based on a decision tree containing
two branches. In the first branch data repository 1 is searched for the data
D1 relevant for condition C1. If condition C1 is satisfied based on D1, then data
repository 2 is searched for the data D2[D1] which is dependent on D1. Condition
C2 is then evaluated based on D2[D1]. In the second branch, data repository 3
is searched for the data D3. Condition C3 is then evaluated based on D3. If in
neither branch 1 nor branch 2 all of the corresponding constraints are satisfied,
then a negative decision is made (see Fig. 2).

An explanation of a negative decision would have to describe which condition
in each of the two decision branches has failed. The idea is to create a H-ASP
PL program P that will produce a stable model whose computational cDAG
will model the decision tree in that the nodes of the computational cDAG will
correspond to the conditions of the decision tree, the edges will correspond to
the successor relations of the tree.

We will need the following H-ASP PL parameters: DATA - to pass the data
from the state corresponding to C1 to the state corresponding to C2, EXPLA-
NATION - to record the description of the conditions that were not satisfied.

Fig. 2. Decision tree diagram
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The advancing algorithm SetData{i} for i ∈ {1, 2, 3} gets data D{i} and sets
the output parameter DATA. Moreover, the advancing algorithm SetData2 uses
the value of DATA parameter in order to get data D2[D1]. In order to check
condition Ci where i ∈ {1, 2, 3}, the Boolean algorithms CheckCondition{i} for
i ∈ {1, 2, 3} are implemented and return TRUE iff Ci is satisfied. EXPLANA-
TION parameter is set by the advancing algorithms Condition{i}Fails to a string
“condition {i} is not satisfied” for i ∈ {1, 2, 3}. The advancing algorithm SetEx-
planationEmpty sets the value of EXPLANATION to the empty string.

This gives us the following H-ASP PL rules (rule label is in the brackets in
the following format R{branch#}{time that the rule will affect}.{rule index}):
# Initial branching. IsTime0 is a boolean algorithm that returns TRUE iff

# the time of the input generalized position is 0.

[R1.0.1] BRANCH1 :- not BRANCH2: IsTime0

[R2.0.1] BRANCH2 :- not BRANCH1: IsTime0

# Produce generalized position for making decision C1.

[R1.1.1] CHECK_C1 :- BRANCH1: SetData1

[R1.1.2] CHECK_C1 :- BRANCH1: SetExplanationEmpty

# Check condition C1.

[R1.1.3] C1_SAT :- CHECK_C1: CheckCondition1

[R1.1.4] C1_DONE :- CHECK_C1

# If condition C1 is not satisfied then generate an explanation and set

# DATA to empty - branch 1 negative decision is explained.

[R1.2.1] EXPLAINED :- C1_DONE, not C1_SAT: Condition1Fails

[R1.2.2] END :- C1_DONE, not C1_SAT: SetDataEmpty

# If condition C1 is satisfied, then proceed with getting D2[D1]

# Data D1 is the value of DATA for the appropriate generalized position.

[R1.2.3] CHECK_C2 :- C1_SAT: SetData2

[R1.2.4] CHECK_C2 :- C1_SAT: SetExplanationEmpty

# Check condition C2.

[R1.2.5] C2_SAT :- CHECK_C2: CheckCondition2

[R1.2.6] C2_DONE :- CHECK_C2

# If condition C2 is not satisfied then produce an explanation.

[R1.3.1] EXPLAINED :- C2_DONE, not C2_SAT: Condition2Fails

# If condition C2 is satisfied, set EXPLANATION to empty.

[R1.3.2] END :- C2_DONE, C2_SAT: SetExplanationEmpty

# In both cases set DATA to empty.

[R1.3.3] END :- C2_DONE: SetDataEmpty

# Now, for branch 2 - get D3.

[R2.1.1] CHECK_C3 :- BRANCH2: SetData3

[R2.1.2] CHECK_C3 :- BRANCH2: SetExplanationEmpty

# Check condition C3.

[R2.1.3] C3_SAT :- CHECK_C3: CheckCondition3

[R2.1.4] C3_DONE :- CHECK_C3

# If C3 is not satisfied then state that in EXPLANATION, otherwise set

# EXPLANATION to empty.

[R2.2.1] EXPLAINED :- C3_DONE, not C3_SAT: Condition3Fails

[R2.2.2] END :- C3_SAT: SetExplanationEmpty

# In both cases set DATA to empty.

[R2.2.3] END :- C3_DONE: SetDataEmpty
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5 Semantics of H-ASP PL

The semantics for H-ASP PL programs is a variant of the H-ASP stable model
semantics. In order to diagnose failures of automatic whitelisting system, all the
cases for whitelisting will need to be examined. Our H-ASP PL program will
describe all of the whitelisting cases. We will be interested in a stable model of
the underlying H-ASP program that will describe the results of examining each
case. We would like this to be the unique maximal stable model. We will thus
construct the semantics of H-ASP PL so that for a valid H-ASP PL program,
its underlying H-ASP program has a unique maximal stable model, which after
an appropriate transform, will be the stable model of the H-ASP PL program.

The semantics of H-ASP PL programs are defined in two steps. For a
H-ASP PL program W , a transform Tr [PL] is used to produce a H-ASP pro-
gram Tr [PL] (W ). Then the transform Tr introduced in [3] is used to produce
a H-ASP program Tr (Tr [PL] (W )). Tr (Tr [PL] (W )) has the following prop-
erties for an initial condition I of Tr [PL] (W ):

1. There is a bijection between the set of stable models of Tr [PL] (W ) with the
initial condition I and the set of stable models of Tr (Tr [PL] (W )) with the
corresponding initial condition J (I).

2. For the initial condition J (I), Tr (Tr [PL] (W )) has a unique maximal stable
model M ′

max. M ′
max is maximal in a sense that it contains all the stable models

of Tr (Tr [PL] (W )) with the initial condition J (I).

Then we set the stable model of W with initial condition I to be the unique
maximal stable model M ′

max of Tr (Tr [PL] (W )) with initial condition J(I).
The transform Tr [PL] is defined similarly to the transform Tr# introduced

in [3] for transforming valid H-ASP# programs. The definitions of both trans-
forms are omitted due to the space constraints. The following new theorem states
that any computational cDAG representable by a computer can be computed
by a H-ASP PL program.

Theorem 2. Let At be a set of propositional atoms, and let S be a set whose ele-
ments are representable by a computer. Let 〈V,E〉 be a computational cDAG over
At and S. Then there exists a H-ASP PL program P and an initial condition I for
P such that comp (Tr (Tr [PL] (P )) , J (I)) = 〈W,U〉 is isomorphic to 〈V,E〉.

The theorem is proved by constructing an isomorphism based on a H-ASP
PL program P and initial condition I, chosen so that Tr (Tr [PL] (P )) and J (I)
are the H-ASP program and the corresponding initial condition constructed in
the proof of Theorem 1.

For a valid H-ASP PL program W and initial condition I of Tr [PL] (W ),
the maximal stable model M ′

max of Tr (Tr [PL] (W )) with the initial condition
J (I) can be computed by the Local Algorithm [3].

An informal description of the Local Algorithm is as follows. The Local Algo-
rithm is a multi-stage process where the hybrid states derived at stage n are used to
derive hybrid states at stage n+1. Suppose that a hybrid state (V,p) was derived
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by the Local Algorithm at stage n. The Local Algorithm first uses all the advanc-
ing rules applicable at (V,p) to derive a set of the candidate next hybrid states
(Z1,q1), ..., (Zk,qk). For each (Zi,qi) the stationary rules applicable at (Zi,qi)
are then used to form an ASP program D (Zi,qi). Suppose that the stable models
of D (Zi,qi) are Y1, ..., Ym (for each Yj we have that Zi ⊆ Yj). Then the set of the
next hybrid states with the generalized position qi is (Y1,qi), ..., (Ym,qi).

Theorem 3. (Based on theorem 82, [3]) For a valid H-ASP PL program W and
initial condition I of Tr [PL] (W ), the result of the Local Algorithm applied to W
produces M ′

max, which is the unique maximal stable model of Tr (Tr [PL] (W ))
with the initial condition J (I).

6 Conclusion

The extensions of ASP that allow external data searches include DLV DB system
[15], V I programs [6], GRINGO grounder [8]. In [14], however Redl notes that
HEX programs [7] can be viewed as a generalization of these formalisms. We
will thus only describe the relation of our work to HEX programs.

HEX programs are an extension of ASP programs that allow accessing exter-
nal data sources via external atoms. The external atoms admit input and output
variables, which after grounding, take predicate or constant values for the input
variables, and constant values for the output variables. Through the external
atoms and under the relaxed safety conditions, HEX programs can produce con-
stants that don’t appear in the original program. The main similarities with this
approach and our approach are that both H-ASP PL and HEX programs allow
the use of external data sources, and both support mechanisms for passing the
information between external algorithms. The main differences are the following:
(1) in H-ASP PL the information processed by the external algorithms repre-
sents a type of information that is different from the information contained in the
logical atoms, (2) the H-ASP PL programs have a built-in support for producing
BCP cDAGs, and (3) a H-ASP program underlying the H-ASP PL definitions
has a unique maximal stable model under H-ASP stable model semantics. The
latter two properties make the H-ASP PL very convenient for the problem of
diagnosing automatic whitelisting.

A relation of our approach for solving diagnostic problems to that of Bal-
duccini and Gelfond (see [1]) was discussed in the beginning of this paper. We
think that developing an approach similar to that of Balduccini and Gelfond for
H-ASP is an interesting problem for future work.

In this paper we have discussed the use of H-ASP to diagnose failures of
the automatic whitelisting system for Google’s Dynamic Remarketing Ads. The
software, which we discuss in this paper was used to diagnose and fix failures
of the automatic whitelisting for many advertisers over a time interval of sev-
eral months. Whereas the time needed to diagnose a single failure without the
software was 30–60 min, the time needed to diagnose a single failure using the
software was 1–3 min. The declarative nature of the H-ASP PL program made
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it easy to update the software so as to reflect multiple changes to automatic
whitelisting system that occurred over time.
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Abstract. Performance analysis and tuning are well established soft-
ware engineering processes in the realm of imperative programming. This
work is a step towards establishing the standards of performance analysis
in the realm of answer set programming – a prominent constraint pro-
gramming paradigm. We present and study the roles of human tuning
and automatic configuration tools in this process. The case study takes
place in the realm of a real-world answer set programming application
that required several hundred lines of code. Experimental results suggest
that human-tuning of the logic programming encoding and automatic
tuning of the answer set solver are orthogonal (complementary) issues.

1 Introduction

Performance analysis, profiling, and tuning are well established software engi-
neering processes in the realm of imperative programming. Performance analysis
tools – profilers – collect and analyze memory usage, utilization of particular
instructions, or frequency and duration of function calls. This information aids
programmers in the performance optimization of code. Profilers for imperative
programming languages have existed since the early 1970s, and the methodology
of their design as well as their usage is well understood. The situation changes
when we face constraint programming paradigms.

Answer set programming (ASP) [12,13] is a prominent representative of con-
straint programming. In ASP, the tools for processing problem specifications,
or encodings, are called (answer set) solvers. The crucial difference between the
imperative and constraint programming paradigms exemplified by ASP, is that,
in the latter, the connection between the encoding and solver’s execution is very
subtle. Consequently, performance analysis methods that matured within imper-
ative programming are not applicable to constraint programming. In addition,
the following observations apply: (i) specified problems in constraint program-
ming paradigms are often NP complete and commonly result in significant com-
putational effort by solvers, (ii) there are typically a variety of ways to encode the
same problem, (iii) solvers offer different heuristics, expose numerous parameters,
and their running time is sensitive to the configuration used.
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In this work, we undertake a case study towards outlining methodology of
performance analysis in constraint programming. The case study takes place in
the realm of a real-world answer set programming application that required sev-
eral hundred lines of code. To the best of our knowledge, this is the first effort of
its kind. Earlier efforts include the work by Gebser et al. [5] and [3], who present a
careful analysis of performance tuning for the n-queens and ricochet robots prob-
lems, respectively. These problems are typically modeled within a page in ASP.
Parsing is one of the important tasks in natural language processing. Lierler and
Schüller [11] developed an ASP-based natural language parser called aspccgtk.
The focus of this work is the performance tuning process during the development
of aspccgtk. The original design of the parser was based on the observation that
the construction of a parse tree for a given English sentence can be seen as an
instance of a planning problem. System aspccgtk version 0.1 (aspccgtk-0.1)
and aspccgtk version 0.2 (aspccgtk-0.2) vary only in how specifications of
the planning problem are stated, while the constraints of the problem remain
the same. Yet, the performance of aspccgtk-0.1 and aspccgtk-0.2 differs sig-
nificantly for longer sentences. The way from aspccgtk-0.1 to aspccgtk-0.2
comprised 20 encodings, and along that way, grounding size and solving time
were the primary measures directing the changes in the encodings. Rewriting
suggestions by Gebser et al. [5] guided the aspccgtk encodings tuning.

The goal of present paper is threefold. First, this is an effort to reconstruct
and document the “20-encodings” way from aspccgtk-0.1 to aspccgtk-0.2.
Second, by undertaking this effort we will make a solid step toward outlining a
performance analysis methodology for constraint programming. Third, we study
the question of how tuning solver parameters by means of automatic configura-
tion tools [10] effects the performance of the studied encodings. The last question
helps us understand the placement of such tools on the performance analysis map
in constraint programming. Despite the fact that changing a solver’s settings may
substantially influence its performance, it is common to only consider the per-
formance of a solver’s default configuration. Yet, it is unclear whether the best
performing encoding when using a solver’s default configuration would remain
the best with respect to a tuned solver configuration. Silverthorn et al. [14]
performed a case study that estimated the effect of parameter tuning as well
as portfolio solving approach exemplified by claspfolio [6] on performance of
solvers in context of three applications. A part of the current study is a logical
continuation of that effort. In summary, this paper provides experimental evi-
dence to support the validity of a performance tuning approach that first relies
on the default solver settings while browsing the encodings and second tunes the
solver’s parameters on the best encoding to gain a better performing solution.

The outline of the paper follows: We start with a review of basic answer
set programming and modeling concepts. We then present the process of per-
formance tuning undertaken in aspccgtk. We review automatic configuration
and present the details of the experimental analysis performed. Last, we provide
the conclusions based on the experimental and analytic findings of this work.
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2 Answer Set Programming and Modeling Guidelines

Answer set programming [12,13] is a declarative programming formalism based
on the answer set semantics of logic programs [8]. The concept of ASP is to
first represent a given problem by a program whose answer sets correspond to
solutions. Second, a solver is used to generate answer sets for this program.
Unlike imperative programming, where programs specify how to find a solution
from given inputs, an ASP program encodes a specification of the problem itself.
The ASP system comprises two tools: grounder and solver. In this work we use
solver clasp1 [7] and its front-end grounder gringo [4].

Atoms and rules are basic elements of the ASP language, and a typical logic
programming rule has the form of a Prolog rule. For instance, the program

p.
q ← p, not r.

is composed of such rules. This program has one answer set {p, q}. In a rule,
the right hand side of an arrow is called the body of a rule, the left hand side
is called the head. A rule whose body is empty is called a fact. The first rule of
the program above is a fact. Intuitively, facts are always part of any program’s
answer set. In addition to Prolog rules, gringo also accepts rules of other kinds –
“choices”, “constraints” and “aggregates”. For example, rule

{p, q, r}.

is a choice rule. Answer sets of this one-rule program are arbitrary subsets of
the atoms p, q, r. A constraint is a rule with an empty head that encodes a
condition on answer sets. For instance, the constraint ← p, not q. eliminates
answer sets that include p and do not include q.

The grounder gringo allows the user to specify large programs in a com-
pact way, using rules with schematic variables and other abbreviations. gringo
takes a program “with abbreviations” as an input and produces its propositional
(ground) counterpart by using an “intelligent instantiation” procedure to pro-
duce propositional program that preserves the answer sets of original program.
The program is then processed by the solver clasp, which finds its answer sets.
The inference mechanism of clasp is related to propositional satisfiability (SAT)
solvers [7].

We do not expect the reader to be familiar with the concept of an answer
set. For the purpose of this paper, it is sufficient to know that answer sets are
special ground atom subsets of the given logic program.

A common ASP practice is to devise a generic problem encoding that can
be coupled with a specific problem instance to produce a solution. A problem
instance typically consists of facts built from atoms of a particular predicate
signature that we call an input signature. Dedicated predicate symbols in a
generic encoding are meant to encode the solution, and we call the set com-
posed of these predicate symbols an output signature. Sometimes it is important
1 http://potassco.sourceforge.net/.

http://potassco.sourceforge.net/
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to distinguish between logic programs that encode problem specifications and
those that encode a problem instance. In these cases, we refer to the former as
e-programs and the latter as i-programs. To illustrate these ASP concepts, con-
sider sample graph coloring problem:

A 3-coloring of a graph is a labeling of its vertexes with at most 3 colors
such that no two vertexes sharing the same edge have the same color.

An ASP e-program

Πcolor color(1). color(2). color(3).
{c(V, I)} ← vtx(V ), color(I).
← c(V, I), c(V, J), I < J, vtx(V ), color(I), color(J).
← c(V, I), c(W, I), vtx(V ), vtx(W ), color(I), edge(V,W ).
← not c(V, 1), not c(V, 2), not c(V, 3), vtx(V ).

encodes a generic solution to this problem. The first three facts of the encoding
specify that there are three distinct colors: 1, 2 and 3. A choice rule in line
two states that each vertex V may be assigned some colors. The third line says
it is impossible for a vertex to be assigned two colors. The fourth line says
that two adjacent vertexes may not be assigned the same color. The last line
states that every vertex must be assigned a color. Predicate signature {c} is an
output signature of program Πcolor. Predicate signature {edge, vtx} is an input
signature so that an i-program has the following form for a given graph (V,E)

vtx(v). (v ∈ V )
edge(v, w). ({v, w} ∈ E)

The union of any problem instance and program Πcolor will result in a program
whose answer sets encode 3-coloring of a graph.

Gebser et al. [5] outline the “hints on modeling” in ASP that follow:

1. Keep the grounding compact:
(i) If possible, use aggregates; (ii) Try to avoid combinatorial blow-up; (iii)
Project out unused variables; (iv) But don’t remove too many inferences!

2. Add additional constraints to prune the search space:
(i) Consider special cases; (ii) Break symmetries; (iii) Test whether the addi-
tional constraints really help

3. Try different approaches to model the problem
4. It (still) helps to know the systems:

(i) gringo offers options to trace the grounding process; (ii) clasp offers
many options to configure the search

To the best of our knowledge, this is the prime account of guidelines for perfor-
mance tuning in ASP. We call this list Performance Guidelines.
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3 aspccgtk and Human-Driven ASP Performance
Tuning

Lierler and Schüller [11] describe parts of the ASP-based natural language parser
aspccgtk encoding. The aspccgtk website – http://www.kr.tuwien.ac.at/
staff/former staff/ps/aspccgtk/ – contains the complete application code. Ver-
sions aspccgtk-0.1 and aspccgtk-0.2 differ only in how specifications of the
parsing task are stated, but the difference in performance of these encodings is
significant. The way from aspccgtk-0.1 to aspccgtk-0.2 is comprised of 20
manually generated versions. The Performance Guidelines items 1 and 2 guided
the way in considering the various encodings.

We now enumerate the program rewriting techniques that were used to tune
aspccgtk. We start by introducing a concept of “output-equivalent” programs,
which provides an important semantic property to capture a broad class of useful
rewriting techniques. We conjecture that most of the aspccgtk encodings are
output-equivalent. We believe that a future study of output-equivalent rewriting
techniques will allow the rewriting-based tuning process (stemming from items 1
and 2 of Performance Guidelines) to be automated to a large extent. We conclude
this section by presenting the historical aspccgtk encoding tree and the details
of the tuning methodology used in the process. The encoding tree presents the
details on the evolution of the aspccgtk.

Programs Π1 and Π2 are called strongly equivalent if for any program Π,
answer sets of Π ∪ Π1 and Π ∪ Π2 coincide [2]. Strong equivalence was intro-
duced to formalize the semantic properties of techniques that could be used in
optimizing ASP code. In practical settings, the concept of strong equivalence
is rather restrictive. For example, transformations on programs often involve
changing the predicate signature, and strong equivalence is inadequate to cap-
ture such transformations.

We introduce the notion of “output-equivalent” programs to cope with the
shortcomings of strong equivalence. Given a logic program Π, by i(Π) and
o(Π) we denote their input and output signatures respectively. For a set X of
atoms and a set of predicate symbols P , by X|P we denote the subset of X
that contains all atoms in X whose predicate symbol is in P . For instances,
{q(a, b), p(a), p(b), r(X)}{r} = {r(X)}. We say that e-programs Π and Π ′ are
output-equivalent if (i) their input and output signatures coincide and (ii) for
any i-program I in their input signature, any answer set X of I ∪ Π is such
that there is an answer set X ′ of I ∪ Π ′ and X|o(Π) = X ′

|o(Π), and vice versa. In
other words, both e-programs “agree” on the atoms in the output signature with
respect to the same input. Output-equivalence relates to uniform equivalence [2].

We now present the ASP “code-change” classification that is then used to
construct the aspccgtk encoding tree. In aspccgtk tree, each transition is
marked by the kind of rewrite applied to the parent encoding. We conjecture
that all rewriting techniques but one, called “output signature change”, result in
output-equivalent programs. It is a direction of future work to generally describe
the presented rewriting techniques and formally claim that such rewritings are
output-equivalence preserving.

http://www.kr.tuwien.ac.at/staff/former_staff/ps/aspccgtk/
http://www.kr.tuwien.ac.at/staff/former_staff/ps/aspccgtk/
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Concretion (C) replaces overly general rules by their effectively used, partial
instantiations. For example, consider e-program

q(X,Y ) ← p(X), p(Y )
u(X) ← q(X,X), (1)

whose input signature is {p} and output signature is {u}. Using concretion on (1)
will result in program

q(X,X) ← p(X), p(X).
u(X) ← q(X,X).

The latter program will normally result in a smaller grounding.

Projection2 (P) reduces the number of schematic variables in a rule so that a
fewer number of ground instances is produced. Consider e-program

u(X) ← p(X,V ), q(X,Y,Z, 0), r(Z,W ), (2)

whose input signature is {p, q, r} and output signature is {u}. One way to apply
projection to this program results in

u(X) ← p(X,W ), q new(X,Z), r(Z,W ).
q new(X,Z) ← q(X,Y,Z, 0). (3)

Simplification (S) The idea of this technique is to reduce the number of rules,
particularly constraints, by eliminating the rules that are “entailed” by the rest
of a program. For instance, consider e-program

{u(X)} ← p(X).
{v(X)} ← q(X).
← p(X), q(X).
← u(X), v(X),

whose input signature is {p, q} and output signature is {u, v}. By simplification
we may eliminate the last rule of this program.

Equivalence (E) replaces some rules of the program by strongly equivalent
rules. For instance, a program

{u(X,Y )} ← p(X), q(Y )
← u(X,Y ), u(X,Y ′), Y �= Y ′

is strongly equivalent to program {u(X,Y ) : q(Y )}1 ← p(X).

Auxiliary Signature Reduction (A) reduces the program’s signature by
reformulating problem specifications by means of fewer predicates. For instance,
reformulating program (3) as (2) will give us such effect.

Output Signature Change (O) changes the output signature of a program to
allow different sets of predicates to encode the solution.
2 Terms Concretion and Projection were coined by Gebser et al. [5].
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Fig. 1. aspccgtk encodings tree.

Figure 1 presents the relations between the 20 encodings considered on the
way from aspccgtk-0.1 to aspccgtk-0.2. Each node in this tree represents
an aspccgtk encoding and is annotated by five numbers. The first number
is the encoding id and the others are discussed later in the section along with
the tuning methodology used to transition from one encoding to another. An
arrow in the tree suggests that an encoding of a “child” node is a modifica-
tion of its “parent” node encoding. For instance, encodings 2 and 3 are both
modifications of encoding 1. Each arrow is annotated by a tag corresponding
to the technique used to obtain the new encoding. We followed the practice of
making the smallest possible change per revision. For example, when technique
A was used then no more than one auxiliary predicate was eliminated from the
encoding. aspccgtk-0.1 comprises encoding 1. Encoding 19 was identified as
the “winner” and is the designated encoding aspccgtk-0.2.

A set of 30 problem instances, randomly selected from the Penn Treebank3,
was used to benchmark each aspccgtk encoding. Following parameters were
used to evaluate the quality of each encoding: (i) number of time or memory outs
(3000 sec. timeout), (ii) average ground size, (iii) average solving time (default
configuration of clasp v 2.0.2), (iv) average grounding time (default configu-
ration of gringo). In Fig. 1, each encoding id is annotated by four numbers
[o,s:g,z], where o is the total number of timeouts/memory outs, s is the aver-
age solving time (in seconds; on instances that did not timeout/memoryout),
g is the average grounding time (in seconds; on instances that did not time-
out/memoryout)), and z and 105 are factors relating to the average number of
ground rules reported by clasp. The last number provides the relative size of
ground instances produced by gringo. These numbers were obtained in exper-
iments using a Xeon X5355 @ 2.66GHz CPU.

The rules of thumb used in evaluating which encoding is better follow:

1. if number of time or memory outs of encoding E exceeds these of encoding E′

then E′ is a better encoding, otherwise
3 http://www.cis.upenn.edu/∼treebank/.

http://www.cis.upenn.edu/~treebank/
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2. if cumulative average grounding and solving time of E exceeds that of E′

then E′ is a better encoding, otherwise
3. if grounding size of E exceeds that of E′ then E′ is a better encoding.

These rules were followed “softly” during the tuning process. For instance, encod-
ing 19 is deemed to be the best, based on solver performance, even though the
rules above suggest that 12 is the better encoding.

4 Automatic Algorithm Configuration and Tuning

Performance of answer set solvers greatly depends on their parameters-settings.
In automatic algorithm configuration, the tuner evaluates the various parame-
ter settings of the system in question and suggests an optimized configuration.
Formally, the algorithm configuration problem can be formulated as follows:
given a parametrized (target) algorithm A, a set of problem instances (inputs)
I, and a cost metric c, find parameter settings of A that minimize c on I.
A parameter-setting is a name-value pair (p, v), where p is a parameter name
and v is a value. A configuration is a set of parameter-settings. By A(P, I), we
denote an execution of algorithm A on instance I given parameter-settings P.
The cost metric c is often the runtime required to solve a problem instance, yet
other factors such as solution quality maybe included. Various tools for solv-
ing the algorithm configuration problem have been proposed in the literature.
System smac4 [9] is a representative of such tools, and is based on the sequen-
tial model-based algorithm configuration method. Other such systems include
paramils [10] (precursor of smac) and gga [1].

The rules of thumb listed in the end of Sect. 3 intuitively make sense, but
given the disjointness of problem specifications from solving technology, there is
no reason to believe that these rules achieve the best result in practice. Lierler
and Schüller [11] and Silverthorn et al. [14] report that after applying automatic
configuration tool paramils to clasp on the best encoding, the tuned version of
clasp outperformed the default version by a factor of 5. This observation raises
the question: if clasp were tuned on each encoding, would we still find 19 to
be the best performing encoding as we described in Sect. 3? This is the question
that we analyze in the rest of this paper.

We start by using the automatic configuration system smac version 2.06.01
to tune clasp for each aspccgtk encoding. smac is susceptible to over-tuning.
To account for this possibility, smac accepts both a training set of instances
and a validation set. Upon reaching the end of the user-specified training time
limit, smac uses the learned parameterization to execute a solver with found
parameters on each instance of the validation set, and reports slower of the two
execution metrics (one on the training set and another on the validation set) as
its final result. To make final comparison of the performance of tuned versions of
clasp versus its default settings, we used a so-called held-out set of instances.
4 http://www.cs.ubc.ca/labs/beta/Projects/SMAC/.

http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
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To create our pool of problem instances for smac, we classified the Penn Tree-
bank instances (sentences) by word count into five word intervals, and restricted
our selections to sentences having between 6 and 25 words. Our choice of bound-
aries was based on the previous analysis of aspccgtk. The time spent by aspc-
cgtk parsing sentences with less than 6 words was negligible while there was
marked increase in the number of solver timeouts for sentences with more than
25 words. To ensure an even distribution across the instance classes, we randomly
selected an equal number of sentences from each class when creating our three
disjoint test sets: a held-out set of 60 instances, a training set of 300 instances,
and a validation set of 100 instances.

We used smac with its default setting for all but four parameters, whose
values and snippets follow:

– deterministic is set to True. This parameter governs whether or not the target
algorithm A is treated as deterministic. When set to True, smac will never
execute A(P, I) twice for any configuration P and instance I.

– cutoffTime is set to 300 seconds. Thus CPU time limit is 300 seconds for an
individual target algorithm run A(P, I).

– wallclock-limit is set to 480000 seconds (5.56 days). It instructs smac to ter-
minate after using up a given amount of wall-clock time.

– run-obj is set to RUNTIME. It specifies to smac that the objective type that
we are optimizing for is runtime.

Each execution of smac is non-deterministic. To account for this, performing
several parallel runs is recommended by its developers. For each encoding, we
executed ten instances of the smac tuning process and chose the best-performing
configuration. The ten instances were run in parallel on independent CPU cores
of a local resource cluster.

When using smac, the target algorithm is typically executed by way of a
wrapper application. At a minimum, the wrapper implements the smac interface
contract and calls the target algorithm with the specified parameter set, but may
include other useful features such as coordinating parallel executions of smac.
For our experiment we utilized piclasp 1.05, a Python-based, smac-compatible
wrapper for clasp, developed by Marius Lindauer. piclasp is explicitly compat-
ible with the clasp 2.1.x series, and for our experiment we used clasp-2.1.3. To
execute smac against the target algorithm, the algorithm’s configurable para-
meters and their domains must be specified in parameter configuration space
file. Lindauer provides a parameter configuration file for clasp 2.1.x in piclasp
distribution, which we were able to use without modification. We implemented
a small modification to piclasp that allowed the use of separate training and
validation sets, and we also created a benchmarking tool based on the Lindauer’s
clasp wrapper class.

Our benchmarking tool, bencher, uses the clasp wrapper class to con-
veniently invoke clasp for each member of a benchmark set. When appended
to the bencher command line, a clasp parameter string is passed through
5 http://www.cs.uni-potsdam.de/piclasp/.

http://www.cs.uni-potsdam.de/piclasp/
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to the solver, providing an easy way to test smac resultant parameterizations.
If no additional parameters are provided, the solver operates in default mode.
The clasp result for each instance and the average performance is output as
a json file to facilitate additional analysis if desired. Our modified version of
piclasp, bencher, the twenty encodings of aspccgtk, and our three instance
test sets, can be downloaded from the University of Nebraska at Omaha web
server: http://faculty.ist.unomaha.edu/ylierler/projects/smac-aspccg.zip.

Automatic tuning was conducted on a high-performance cluster node, pow-
ered by dual, 6-core, Intel Xeon X5660 2.8 GHz HT processors. Each CPU had
6 physical, hyper-threaded cores providing a total of 24 virtual cores. The node
had a total of 256 GB memory and a 500 GB SAN partition allocated to the
experiment. We had dedicated access to the node during our experiment and
used a local resource management queue to execute parallel smac instances
exclusively on the experimental node. For each of the twenty aspccgtk encod-
ings we tested, we initiated a parallel execution of ten smac instances with each
instance executing on a separate core, with 2GB of allocated memory. Each exe-
cution of the clasp solver was allowed 300 seconds (5 minutes) of CPU time to
complete, and executions exceeding 300 seconds were reported as Timeouts. This
cutoff value was selected based on previous analysis of aspccgtk that showed
the solver was typically able to complete in less than 300 seconds for sentences
having 25 or fewer words. We selected a value that would allow adequate time
for the solver to complete, but would not diminish too greatly the time smac
spent probing the parameter space and formulating solutions.

The smac automatic configuration phase timeout was configured at 5.56
days. We chose this value based on preliminary executions of smac over increas-
ing lengths of time and comparing the benchmark times of the resulting parame-
terizations. We chose encoding with id 8 for the initial trials because its default
benchmark time was adjacent to the median default benchmark time. Initially,
speedup was significant but degraded to marginal improvements over time in
what approximated a logarithmic rate. We chose a time that was clearly within
the region of diminishing returns to allow for variability in the encodings, and
yield more consistent results. In practice, we spent 22 weeks to tune all of the
aspccgtk encodings.

5 Experimental Results

Figure 2 graphs the default and auto-tuned solver execution times of each aspc-
cgtk encoding on the held-out set. The Default series represents average run-
time using the default clasp parameter values, and the SMAC series times were
achieved using the optimized parameter configurations yielded by smac. Recall
that the runtime variations in the default scenario are attributable to human-
tuning efforts. Figure 2 reveals an observable relationship between human-tuned
performance and auto-tuned performance. The results suggest that the perfor-
mance optimization rules of thumb applied along the way from aspccgtk-0.1
to aspccgtk-0.2 remain valid, and automatic configuration of the solver com-
pliments the human efforts as opposed to nullifying or subsuming their effects.

http://faculty.ist.unomaha.edu/ylierler/projects/smac-aspccg.zip
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Fig. 2. Default and SMAC benchmarks

We note that speedup in auto-tuning ranged from 1.53 to 5.40 and averaged
3.26. Generally speedup deviates around the average but remains relatively con-
sistent except in extreme cases. The worst performing encoding resulted in the
least speedup and three of the best performing encodings had above average
speedup. Encoding 18 stands out as a significant outlier, having only the sixth
best Default benchmark but the greatest speedup of 5.4.

Figures 3 and 4 present the results on the following inquiry. We reconsidered
30 problem instances that played the key role in human-tuning described in
Sect. 3. Recall that they were randomly selected without regard to the complexity
of these instances, and substantially differ from the instances in held-out set. This
set of instances includes two sentences of length 42 and 52 words; six and eleven
sentences comprised of 30 and 20 words respectively; and eleven sentences that
range between 9 and 19 words. We collected the following statistics on Intel(R)
Core(TM) i7-3770 CPU @ 3.40 GHz using the 30 afore mentioned instances: (i)
runtime with a default parameterization of clasp-2.1.3, (ii) runtime with the
parameterization of clasp-2.1.3 reported best for the encoding in question, (iii)
runtime of the parameterization of clasp-2.1.3 reported best for encoding 1.
The timeout was set at 3600 seconds.

Figure 3 presents average run times (that also include time spent on ground-
ing) for instances that did not time or memory out on any of the encodings
given any clasp configuration. Figure 4 presents the cumulative number of time
and memory outs. Row Original presents the data stemming from the original
human-tuning process, repeating some of the information presented in Fig. 1.
Row Rerun presents the newly obtained numbers for the default parameteriza-
tion of clasp (note that the machine and clasp version differ from Original).
Row SMAC presents the data for the version of clasp deemed to be best by
smac for the respective encoding. Row SMAC (Enc 1) presents the data for
the version of clasp deemed to be best by smac for encoding 1. Presented data
supports two major observations: (i) 30 random instances versus the instances
of held-out set do not seem to change the outlook on which encoding is the
“winner”; (ii) the parameter settings suggested by smac for the encoding 1 per-
form nearly as well as the encoding-specific smac parameterizations. The latter
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Fig. 3. Original test set runtimes

Fig. 4. Original test set timeouts

observation suggests that it is meaningful to use automatic configuration tuning
early in the human-tuning process as a means to speed up the tuning process.
It also makes sense to perform automatic configuration of parameters on the
“winner”, since the resulting solver optimization is presumably unique to the
encoding in question.

6 Conclusions

Returning to our three stated objectives, we satisfied the first one by recon-
structing and documenting the human effort to optimize the aspccgtk parser
described in Sect. 3. The benchmark results clearly illustrate the effects due to
the progressive application of output-equivalent rewriting techniques along the
way from aspccgtk 0.1 to aspccgtk 0.2. Secondly, by achieving our first objec-
tive, we have validated the principles of ASP performance tuning as suggested
by Gebser et al. [5], and established such a methodology within the context
of a real world application. We believe that this provides a concrete basis for
future work and the development of generally applicable automated ASP code
rewriting-optimization tools. Finally, our efforts help clarify the role of auto-
matic configuration tools within the context of constraint programming and
performance optimization. Our results lead us to conclude that human-tuning
of the ASP implementation and automatic tuning of the solver appear to be
orthogonal issues, with auto-tuning having a linear affect on performance. Fur-
ther, code-based optimization principles seem to take precedence over automatic
configuration.
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1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Proceedings of the CP 2009, pp.
142–157 (2009)

2. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model
semantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238.
Springer, Heidelberg (2003). http://dx.doi.org/10.1007/978-3-540-24599-5 16

3. Gebser, M., Jost, H., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.,
Schneider, M.: Ricochet robots: a transverse ASP benchmark. In: Cabalar,
P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 348–360. Springer,
Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-40564-8 35

4. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele,
S.: A User’s Guide to gringo, clasp, clingo, and iclingo (2010). http://potassco.
sourceforge.net

5. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Challenges in answer set
solving. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Rep-
resentation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 74–90. Springer,
Heidelberg (2011)

6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.:
A portfolio solver for answer set programming: preliminary report. In: Delgrande,
J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 352–357. Springer,
Heidelberg (2011)

7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: Proceedings of 20th International Joint Conference on Artificial Intel-
ligence (IJCAI 2007), pp. 386–392. MIT Press (2007)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of International Logic Programming Conference and Symposium, pp.
1070–1080 (1988)

9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

10. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
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Abstract. In this paper we propose an extension of logic programming
(LP) where each default literal derived from the well-founded model is
associated a justification represented as an algebraic expression. This
expression contains both causal explanations (in the form of proof graphs
built with rule labels) and terms under the scope of negation that stand
for conditions that enable or disable the application of causal rules. Using
some examples, we discuss how these new conditions, we respectively call
enablers and inhibitors, are intimately related to default negation and
have an essentially different nature from regular cause-effect relations.
The most important result is a formal comparison to the recent alge-
braic approaches for justifications in LP: Why-not Provenance (WnP)
and Causal Graphs (CG). We show that the current approach extends
both WnP and CG justifications under the Well-Founded Semantics and,
as a byproduct, we also establish a formal relation between these two
approaches.

1 Introduction

The strong connection between Non-Monotonic Reasoning (NMR) and Logic
Programming (LP) semantics for default negation has made possible that LP
tools became nowadays an important paradigm for Knowledge Representation
(KR) and problem-solving in Artificial Intelligence (AI). In particular, Answer
Set Programming (ASP) [1,2] has raised as a preeminent LP paradigm for prac-
tical NMR with applications in diverse areas of AI including planning, reasoning
about actions, diagnosis, abduction and beyond. The ASP semantics is based on
stable models [3] and is also closely related to the other mainly accepted interpre-
tation for default negation, well-founded semantics (WFS) [4]. One interesting
difference between these two LP semantics and classical models (or even other
NMR approaches) is that true atoms in LP must be founded or justified by a
given derivation. These justifications are not provided in the semantics itself,
but can be syntactically built in some way in terms of the program rules, as
studied in several approaches [5–11].

Rather than manipulating justifications as syntactic objects, two recent
approaches have considered multi-valued extensions of LP where justifica-
tions are treated as algebraic constructions: Why-not Provenance (WnP) [12]
and Causal Graphs (CG) [13]. Although these two approaches present formal
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 199–212, 2015.
DOI: 10.1007/978-3-319-23264-5 18
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similarities, they start from different understandings of the idea of justification.
On the one hand, WnP answers the query of why some literal L might hold
by providing conjunctions of “hypothetical modifications” on the program that
would allow deriving L. These modifications include rule labels, expressions like
not(A) with A an atom, or negations ‘¬’ of the two previous cases. As an exam-
ple, a justification for L like r1 ∧not(p)∧¬r2 ∧¬not(q) means that the presence
of rule r1 and the absence of atom p would allow deriving L if both rule r2 were
removed and atom q were added to the program. If we want to explain why L
actually holds, we have to restrict to justifications without ‘¬’, that is, those
without program modifications (which will be the focus of this paper).

On the other hand, CG-justifications start from identifying program rules as
causal laws so that, for instance, (p ← q) can be read as “event q causes effect
p.” Under this viewpoint, (positive) rules offer a natural way for capturing the
concept of causal production, i.e. a continuous chain of events that has helped
to cause or produce an effect [14,15]. The explanation of a true atom is made in
terms of graphs formed by rule labels that reflect the ordered rule applications
required for deriving that atom. These graphs are obtained by algebraic opera-
tions exclusively applied on the positive part of the program. Default negation
in CG is understood as absence of cause and, consequently, a false atom has no
justification.

The explanation of an atom A in CG is more detailed than in WnP, since the
former contains graphs that correspond to all relevant proofs of A whereas in
WnP we just get conjunctions that do not reflect any particular ordering among
rule applications. However, as explained before, CG does not reflect the effect of
default negation in a given derivation and, sometimes, this information is very
valuable, especially if we want to answer questions of the form “why not.”

To understand the kind of problems we are interested in, consider the fol-
lowing example. A drug d in James Bond’s drink causes his paralysis p provided
that he was not given an antidote a that day. We know that Bond’s enemy, Dr.
No, poured the drug:

p ← d,not a (1)

d (2)

In this case it is obvious that d causes p, whereas the absence of a just enables the
application of the rule. Now, suppose we are said that Bond is daily administered
an antidote by the MI6, unless it is a holiday h:

a ← not h (3)

Adding this rule makes a to become an inhibitor that prevents d to cause p. But
suppose now that we are in a holiday, that is, fact h is added to the program
(1)–(3). Then, the inhibitor a is disabled and d causes p again. However, we do
not consider that the holiday h is a (productive) cause for Bond’s paralysis p
although, indeed, the latter counterfactually depends on the former: “had not
been a holiday h, Bond would have not been paralysed.” We will say that the
fact h, which disables an inhibitor of d, is an enabler of d.
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In this work we propose dealing with these concepts of enablers and inhibitors
by augmenting CG justifications with a new negation operator ‘∼’ in the CG
causal algebra. We show that this new approach, we call Extended Causal Justi-
fications (ECJ) captures WnP justifications under the Well-founded Semantics
and, as a byproduct, we establish a formal relation between WnP and CG.

The rest of the paper is structured as follows. The next section defines the
new approach. Sections 3 and 4 explain through a running example the formal
relations to CG and WnP, respectively. The next section discusses some related
work and, finally, Sect. 6 concludes the paper.

2 Extended Causal Justifications (ECJ)

A signature is a pair 〈At, Lb〉 of sets that respectively represent atoms (or propo-
sitions) and labels. Intuitively, each atom in At will be assigned justifications
built with rule labels from Lb. These justifications will be expressions that com-
bine four different algebraic operators: a product ‘∗’ representing conjunction or
joint causation; a sum ‘+’ representing alternative causes; a non-commutative
product ‘·’ that captures the sequential order that follows from rule applications;
and a non-classical negation ‘∼’ which will precede inhibitors (negated labels)
and enablers (doubly negated labels).

Definition 1 (Term). Given a set of labels Lb, a term, t is recursively defined
as one of the following expressions t :: = l |

∏
S |

∑
S | t1 · t2 | ∼ t1 where

l ∈ Lb, t1, t2 are in their turn terms and S is a (possibly empty and possibly
infinite) set of terms. A term is elementary if it has the form ∼ ∼ l, ∼ l or l
with l ∈ Lb being a label. 	


When S = {t1, . . . , tn} is finite we simply write
∏

S as t1 ∗ · · · ∗ tn and
∑

S
as t1 + · · · + tn. Moreover, when S = ∅, we denote

∏
S by 1 and

∑
S by 0, as

usual, and these will be the identities of the product ‘∗’ and the addition ‘+’,
respectively. We assume that ‘·’ has higher priority than ‘∗’ and, in its turn, ‘∗’
has higher priority than ‘+’.

Definition 2 (Value). A (causal) value is each equivalence class of terms under
axioms for a completely distributive (complete) lattice with meet ‘∗’ and join ‘+’
plus the axioms of Fig. 1. The set of (causal) values is denoted by VLb. 	


Note that 〈VLb,+, ∗,∼ , 0, 1〉 forms a pseudo-complemented, completely distrib-
utive (complete) lattice whose meet and join are, as usual, the product ‘∗’ and
the addition ‘+’. Note also that all three operations, ‘∗’, ‘+’ and ‘·’ are associa-
tive. Product ‘∗’ and addition ‘+’ are also commutative, and they hold the usual
absorption and distributive laws with respect to infinite sums and products of a
completely distributive lattice. We say that a term is in negation normal form
(NNF) if no operators are in the scope of negation ‘∼’. Without loss of generality,
we assume from now on that all terms are in NNF. The lattice order relation is
defined as usual in the following way:

t ≤ u iff (t ∗ u = t) iff (t + u = u)
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Fig. 1. Properties of the ‘∼’ and ‘·’operators (c, d, e are terms without ‘+’ and l is a
label).

Consequently 1 and 0 are respectively the top and bottom elements with respect
to the ≤ order relation.

Definition 3 (Labelled logic program). Given a signature 〈At, Lb〉, a
(labelled logic) program P is a set of rules of the form:

ri : H ← B1, . . . , Bm, not C1, . . . , not Cn (4)

where ri ∈ Lb is a label or ri = 1, H (the head of the rule) is an atom and Bi’s
and Ci’s (the body of the rule) are either atoms or terms. 	


When n = 0 we say that the rule is positive, furthermore, if m = 0 we say that
the rule is a fact and omit the symbol ‘←.’ When ri ∈ Lb we say that the rule
is labelled; otherwise ri = 1 and we omit both ri and ‘:’. By these conventions,
for instance, an unlabelled fact A is actually an abbreviation of (1 : A ←).
A program P is positive when all its rules are positive, i.e. it contains no default
negation. It is uniquely labelled when each rule has a different label or no label
at all. In this paper, we will we assume that programs are uniquely labelled.
Furthermore, for clarity sake, we also assume that, for every atom A ∈ At, there
is an homonymous label A ∈ Lb, and that each fact A in the program actually
stands for the labelled rule (A : A ←). For instance, following these conventions,
a possible labelled version for the James Bond’s program could be program P1

below:

r1 : p ← d,not a

r2 : a ← not h

d

h

where facts d and h stand for rules (d : d ←) and (h : h ←), respectively.
A CP-interpretation is a mapping I : At −→ VLb assigning a value to each

atom. For interpretations I and J we say that I ≤ J when I(A) ≤ J(A) for
each atom A ∈ At. Hence, there is a ≤-bottom interpretation 0 (resp. a ≤-top
interpretation 1) that stands for the interpretation mapping each atom A to 0
(resp. 1). The value assigned to a negative literal not A by an interpretation I,
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denoted as I(not A), is defined as: I(not A) def= ∼ I(A). Similarly, for a term t,
I(t) def= [t] is the equivalence class of t.

Definition 4 (Reduct). Given a program P and an interpretation I we denote
by P I the positive program containing a rule like

ri : H ← B1, . . . , Bm, I(not C1), . . . , I(not Cn) (5)

per each rule of the form (4) in P .

Definition 5 (Model). An interpretation J is a (causal) model of a rule like
(5) iff

(
J(B1) ∗ . . . ∗ J(Bm) ∗ I(not C1) ∗ . . . ∗ I(not Cn)

)
· ri ≤ J(H)

and it is a model of P I , written J |= P I , iff it is a model of all rules in P I .
The operator ΓP (I) returns the least model of the positive program P I .

Program P I is positive and, as happens in standard logic programming, it also
has a least causal model. Furthermore the operator ΓP is anti-monotonic, and
therefore Γ 2

P is monotonic having a least fixpoint LP and a greatest fixpoint
UP

def= ΓP (LP ) that respectively correspond to the justifications for true and for
non-false atoms in the (standard) well-founded model (WFM), we denote WP .
A query literal (q-literal) L is either an atom A, its default negation ‘not A’ or
the expression ‘undef A’ meaning that A is undefined.

Definition 6 (Causal well-founded model). Given a program P , the causal
well-founded model WP is a mapping from q-literals to values s.t.

WP (A) def
= LP (A) WP (not A) def

= ∼UP (A) WP (undef A) def
= ∼WP (A) ∗ ∼WP (not A) �

As we will formalise below, when A is undefined in the standard well-founded
model, LP (A) �= UP (A) and, thus, WP (undef A) �= 0. Continuing with our
running example, the causal WFM of program P1 corresponds to WP1(d) = d,
WP1(h) = h, WP1(a) = ∼ h · r2 and WP1(p) = (∼ ∼h ∗ d) ·r1 + (∼ r2 ∗ d) ·r1.
Intuitively (∼ ∼h ∗ d) ·r1 means that the fact h (double negated label ∼ ∼ h)
has enabled d (non negated label) to produce p by means of rule r1. In its turn,
(∼ r2 ∗d)·r1 means that d·r1 would have been sufficient, had not been present r2.
Furthermore, WP1(a) means that a does not hold because the fact h (negated
label ∼ h) has inhibited rule r2 to produce it. The following definitions formalise
these concepts.

Let l be a label occurrence in a term t in the scope of n ≥ 0 negation ∼
operators. We say that l is a odd or an even occurrence if n is odd or even,
respectively. We further say that it is strictly even if it is even and n > 0.

Definition 7 (Justification). Given a program P and a q-literal L we say that
a term with no sums E is a (sufficient causal) justification for L iff E ≤ WP (L).
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Odd (resp. strictly even) labels1 in E are called inhibitors (resp. enablers) of E.
A justification is said to be inhibited if it contains some inhibitor and it is said
to be enabled otherwise. 	


For instance, in our previous example, there are two justifications, E1 =
(∼ ∼h∗d) ·r1 and E2 = (∼ r2 ∗ d) ·r1, for atom p. Justification E1 is enabled
because it contains no inhibitors (in fact, E1 is the unique real support for p).
Moreover, h is an enabler in E1 because it is strictly even (it is in the scope
of double negation). On the contrary, E2 is disabled because it contains the
inhibitor r2 (because it occurs here in the scope of one negation). Intuitively, r2
has prevented d·r1 to become a justification of p. The next theorem shows that
the literals satisfied by the standard WFM are precisely those ones containing
at least one enabled justification in the causal WFM.

Theorem 1. Let P be a program and WP its (standard) well-founded model. A
q-literal L holds with respect to WP if and only if there is some enabled justification
E of L, that is E ≤ WP (L) and E does not contain (odd) negative labels. 	


Back to our example program P1, as we had seen, atom p had an enabled jus-
tification (∼ ∼h ∗ d)·r1. The same happens for atoms d and h whose respective
justifications are just their own atom labels. Therefore, these three atoms hold
in the standard WFM, WP1 . On the contrary, as we discussed before, the only
justification for a is inhibited by h, and thus, a does not hold in WP1 . We can
further check that a is false in WP1 (it is not undefined) because literal not a
holds, since WP1(not a) = ∼ ∼ h+∼ r2 provides two justifications, being the first
one, ∼ ∼h, enabled (it contains no inhibitors). The interest of an inhibited justi-
fication for a literal is to point out “potential” causes that have been prevented
by some abnormal situation. In our case, the presence of ∼h in WP1(a) = ∼h·r2
points out that an exception h has prevented r2 to cause a. When the exception
is removed, the inhibited justification (after removing the inhibitors) becomes
an enabled justification r2 for a.

Theorem 2. Let E be an inhibited justification of some atom A with respect to
program P . Let Q be the result of removing from P all rules ri whose labels are
inhibitors in E. Similarly, let F be the result of removing those inhibitors ∼ ri
from E. Then F is an enabled justification of A with respect to Q. 	


3 Relation to Causal Graph Justifications

We discuss now the relation between ECJ and CG approaches. Formally, ECJ
extends CG causal terms by the introduction of the new negation operator ‘∼’.
Semantically, however, there are more differences than a simple syntactic exten-
sion. A first minor difference is that ECJ is defined in terms of a WFM, whereas
1 We just mention labels, and not their occurrences because terms are in NNF and
E contains no sums: having odd and even occurrences of a same label would mean
that E = 0.
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CG defines (possibly) several causal stable models. In the case of stratified pro-
grams, this difference is irrelevant, since the WFM is complete and coincides with
the unique stable model. A second, more important difference is that CG exclu-
sively considers productive causes in the justifications, disregarding additional
information like the inhibitors or enablers from ECJ. As a result, a false atom in
CG has no justification – its causal value is 0 because there was no way to derive
the atom. For instance, in program P1, the only CG stable model I just makes
I(a) = 0 and we lose the inhibited justification ∼ h · r2 (default r2 could not be
applied). True atoms like p also lose any information about enablers: I(p) = d·r1
and nothing is said about ∼ ∼h. Another consequence of the CG orientation is
that negative literals not A are never assigned a cause (different from 0 or 1),
since they cannot be “derived” or produced by rules. In the example, we simply
get I(not a) = 1 and I(not p) = 0.

To further illustrate the similitudes and differences between ECJ and CG,
consider the following program P2 capturing a variation of the Yale Shooting
Scenario.

dt+1 : deadt+1 ← shoott , loadedt , not abt
lt+1 : loadedt+1 ← loadt
at+1 : abt+1 ← watert

loaded0

dead0

ab0

load1

water3

shoot8

plus the following rules corresponding inertia axioms

Ft+1 ← Ft, not F t+1 F t+1 ← F t, not Ft+1

for F ∈ {loaded, ab, dead}. Atoms of the form A represent the strong negation
of A and we assume we disregard models satisfying both A and A. Atom dead9
does not hold in the standard WFM of P2, and so there is no CG-justification for
it. Note here the importance of default reasoning. On the one hand, the default
flow of events is that the turkey, Fred, continues to be alive when nothing threats
him. Hence, we do not need a cause to explain why Fred is alive. On the other
hand, shooting a loaded gun would normally kill Fred, being this a cause of its
death. But, in this example, another exceptional situation – water spilled out –
has inhibited this existing threat and allowed the world to flow as if nothing had
happened (that is, following its default behaviour).

In the CG-approach, dead9 is simply false by default and no justification is
provided. However, a gun shooter could be “disappointed” since another con-
flicting default (shooting a loaded gun normally kills) has not worked. Thus, an
expected answer for the shooter’s question “why not dead9?” is that water3 broke
the default, disabling d9. In fact, ECJ yields the following inhibited justification
for dead9:

WP2(dead9) = (∼ water3 ∗ shoot8 ∗ load1 ·l2) · d9 (6)

meaning that dead9 could not be derived because of inhibitor water3 pre-
vented the application of r1 to cause the death of Fred. Moreover, according to
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Theorem 2, if we remove fact water3 (the inhibitor) from P2, then for the new
program P3 we get:

WP3(dead9) = (shoot8 ∗ load1 ·l2) · d9 (7)

which is nothing else but the result of removing ∼ water3 from (6). In fact,
the only CG stable model of P3 makes this same assignment (7) which also
corresponds to the causal graph depicted in Fig. 2. In the general case: CG-
justifications intuitively correspond to enabled justifications after forgetting
all the enablers. We formalise next the correspondence between CG and ECJ
justifications.

Fig. 2. Cause of dead9 in program P2.

Definition 8 (Causal values). A CG term, t is a term with no negation
‘∼’. CG values are the equivalence classes of CG terms under the axioms of
Definition 2. The set of CG values is denoted by CLb. We also define a mapping
λc : VLb −→ CLb from values into CG values in the following recursive way:

λc(t) def=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λc(u) � λc(w) if t = u � v with � ∈ {+, ∗, ·}
1 if t = ∼ ∼ l with l ∈ Lb

0 if t = ∼ l with l ∈ Lb

l if t = l with l ∈ Lb

Note that we have assumed that t is in negation normal form. Otherwise λc(t) def=
λc(u) where u is the equivalent term in negation normal form. 	


Function λc maps every negated label ∼ l to 0 (which is the annihilator of both
product ‘∗’ and application ‘·’ and the identity of addition ‘+’). Hence λc removes
all the inhibited justifications. Furthermore λc maps every doubly negated label
∼ ∼ l to 1 (which is the identity of both product ‘∗’ and application ‘·’). Therefore
λc removes all the enablers (i.e. doubly negated labels ∼ ∼ l) for the remaining
(i.e. enabled) justifications.

Definition 9 (CG stable models). Given a program P , a CG stable model
is a mapping Ĩ : At −→ CLb from atoms to CG values such that there exists a
fixpoint I of the operator Γ 2

P satisfying λc(I(A)) = λc(ΓP (I(A))) and Ĩ(A) def=
λc(I(A)) for every atom A. 	
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Theorem 3. For any program P , the CG values (Definition 8) and the CG sta-
ble models (Definition 9) are exactly the causal values and causal stable models
defined in [13]. 	


Theorem 3 shows that Definition 9 is an alternative definition of CG causal stable
models. Furthermore, it settles that every causal model corresponds to some fix-
point of the operator Γ 2

P . Therefore, for every enabled justification there is a cor-
responding CG-justification common to all stable models. In order to formalise
this idea we just take the definition of causal explanation from [16]. A graph of
labels is a causal graph (c-graph) if it is a directed graph, transitively and reflex-
ively closed. Furthermore we also define a one-to-one correspondence between
c-graphs and causal values.

value(G) def=
∏

{ v1 · v2
∣
∣ (v1, v2) is an edge of G }

Definition 10 (CG-justification). Given an interpretation I we say that a c-
graph G is a (sufficient) CG-justification for an atom A iff value(G) ≤ Ĩ(A). 	


Note that mapping value(·) is a one-to-one correspondence and, thus, we can
define graph(v) def= value−1(v) for all v ∈ CLb.

Theorem 4. Let P be a program. For any enabled justification E of some atom
A w.r.t. WP , i.e. E ≤ WP (A), there is a CG-justification G def= graph(λc(E)) of
A with respect to any stable model Ĩ of P . 	


As happens between the (standard) Well-founded and Stable Model semantics,
the converse of Theorem 4 does not hold in general. For instance, let P4 be the
program consisting on the following rules:

r1 : a ← not b r2 : b ← not a,not c c r3 : c ← a r4 : d ← b,not d

The (standard) WFM of P4 is two-valued and corresponds to the unique (stan-
dard) stable model {a, c}. Furthermore there are two causal explanations of c
with respect to this unique stable model: the fact c and the pair of rules r1 ·r3.
Note that when c is removed {a, c} is still the unique stable model, but all atoms
are undefined in the WFM. Hence, r1 ·r3 is a justification with respect to the
unique stable model of the program, but not with respect to is WFM.

4 Relation to Why-Not Provenance

An evident similarity between ECJ and WnP is the use of an alternating fixpoint
operator [17] which has been actually borrowed from WnP. However there are
some slight differences. A first one is that we have incorporated from CG the non-
commutative operator ‘·’ which allows capturing, not only which rules justify a
given atom, but also the dependencies among these rules. The second is the use
of a non-classical negation ‘∼’ that is crucial to distinguish between productive
causes and enablers, something that cannot be represented with the classical
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negation ‘¬’ in WnP since double negation can always be removed. Apart from
the interpretation of negation in both formalisms, there are other differences too.
As an example, let us compare the justifications we obtain for dead9 in program
P3. While for ECJ we obtained (7) (or graph G2 in Fig. 2), the corresponding
WnP justification has the form:

l2 ∧ d9 ∧ load1 ∧ shoot8 ∧ not(water0) ∧ not(water1) ∧ . . . ∧ not(water7) (8)

A first observation is that the subexpression l2∧d9∧load1∧shoot8 constitutes,
informally speaking, a “flattening” of (7) (or graph G2) where the ordering
among rules has been lost. We get, however, new labels in the form of not(A)
meaning that atom A is required not to be a program fact, something that is not
present in CG-justifications. For instance, (8) points out that water can not be
spilt on the gun along situations 0, . . . , 7. Although this information can be useful
for debugging (the original purpose of WnP) its inclusion in a causal explanation
is obviously inconvenient from a Knowledge Representation perspective, since
it explicitly enumerates all the defaults that were applied (no water was spilt
at any situation) something that may easily blow up the (causally) irrelevant
information in a justification.

An analogous effect happens with the enumeration of exceptions to defaults,
like inertia. Take program P5 obtained from P2 by removing all the performed
actions, i.e., facts load1, water3, and shoot7. As expected, Fred will be alive,
deadt, at any situation t by inertia. ECJ will assign no cause for deadt, not even
any inhibited one, i.e. WP (deadt) = 1 and WP (deadt) = 0 for any t. However,
there are many WnP justifications of deadt corresponding to all the plans for
killing Fred in t steps. For instance, among others, all the following:

d9 ∧ ¬not(load0) ∧ r2 ∧ ¬not(shoot1) ∧ not(water0)

d9 ∧ ¬not(load0) ∧ r2 ∧ ¬not(shoot2) ∧ not(water0) ∧ not(water1)

d9 ∧ ¬not(load1) ∧ r2 ∧ ¬not(shoot3) ∧ not(water0) ∧ not(water1) ∧ not(water2)

. . .

are WnP-justifications for dead9. The intuitive meaning of expressions of the
form ¬not(A) is that dead9 can be justified by adding A as a fact to the program.
For instance, the first conjunction means that it is possible to justify dead9 by
adding the facts load0 and shoot1 and not adding the fact water0. We will call
these justifications, which contain a subterm of the form ¬not(A), hypothetical
in the sense that they involve some hypothetical program modification.

Definition 11 (Provenance values) A provenance term, t is recursively
defined as one of the following expressions t:: = l |

∏
S |

∑
S | ¬t1 where

l ∈ Lb, t1, t2 are in their turn provenance terms and S is a (possibly empty and
possible infinite) set of provenance terms. Provenance values are the equivalence
classes of provenance terms under the equivalences of the Boolean algebra. We
denote by BLb the set of provenance values over Lb. 	


Informally speaking, with respect to ECJ, we have removed the application ‘·’
operator, whereas product ‘∗’ and addition ‘+’ hold the same equivalences as
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in Definition 2 and negation ‘∼’ has been replaced by ‘¬’ from Boolean algebra.
Thus, ‘¬’ is classical and satisfies all the axioms of ‘∼’ plus ¬¬t = t. Note also
that, we have followed the convention from [12] of using the symbols ‘∧’ instead
of ‘∗’ to represent the meet and ‘∨’ instead of ‘+’ to represent the join when
we write provenance formulae. We define a mapping λp : VLb −→ BLb in the
following recursive way:

λp(t) def=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λp(u) � λp(w) if t = u � v with � ∈ {+, ∗}
λp(u) ∗ λp(w) if t = u · v

¬λp(u) if t = ∼u

l if t = l with l ∈ Lb

Definition 12 (Provenance). Given a program P the why-not provenance
program P(P ) def= P ∪ P ′ where P ′ contains a labelled fact of the form of
(∼ not(A) : A) for each atom A ∈ At not occurring in P as a fact. We will
write P instead of P(P ) when the program P is clear by the context. We denote
by WhyP (L) def= λp(WP(L)) the why-not provenance of a q-literal L. 	


Theorem 5. For any program P , the provenance of a literal according to
Definition 12 is equivalent to the provenance defined in [12]. 	


Theorem 5 shows that the provenance of a literal can obtained from replacing
the negation ‘∼’ by ‘¬’ and ‘·’ by ‘∗’ in the causal WFM of the augmented
program P.

Theorem 6. For any program P , a conjunction of literals D is a non-
hypothetical WnP justification of some q-literal L, i.e. D ≤ WhyP (L) iff there
is a justification E, i.e. E ≤ WP (L) s. t. λp(E) is the result of removing labels
of the form ‘not(A)’ from D. 	


Theorem 6 establishes a correspondence between non-hypothetical WnP-
justifications and (flattened) ECJ justifications. In the case of hypothetical jus-
tifications, they are not directly captured by ECJ, but can be obtained using
the augmented program P as stated by Theorem 5. As a byproduct we establish
a formal relation between WnP and CG.

Theorem 7. Let P be a program and D be a non-hypothetical and enabled WnP-
justification of some atom A, i.e. D ≤ WhyP (A). Then, for all CG stable model
Ĩ of P , there is some CG-justification G w.r.t. Ĩ s.t. D contains all the vertices
of G. 	


5 Related Work

There exists a vast literature on causal reasoning in Artificial Intelligence (AI).
Papers on reasoning about actions and change [18–20] have been traditionally
focused on using causal inference to solve representational problems (mostly, the
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frame, ramification and qualification problems) without paying much attention
to the derivation of cause-effect relations. Perhaps the most established AI app-
roach for causality is relying on causal networks [21] (See [22] for an updated
version). In this approach, it is possible to conclude cause-effect relations like
“A has been an actual cause of B” from the behaviour of structural equations
by applying, under some contingency (an alternative model in which some val-
ues are fixed) the counterfactual dependence interpretation from [23]: “had A not
happened, B would not have happened.” Causal networks and ECJ differ in their
final goals. While the former focuses on revealing a unique everyday-concept of
causation (actual causation), the latter tries to provide precise definitions of dif-
ferent concepts of causation, leaving the choice of which concept corresponds to
a particular scenario to the programmer. The approach of actual causation has
also been followed in LP by [24,25].

As has been slightly discussed in the introduction, ECJ is also related to
work by Hall [14,15], who has emphasized the difference between two types of
causal relations: dependence and production. The former relies on the idea “that
counterfactual dependence between wholly distinct events is sufficient for cau-
sation.” The latter is characterised by being transitive, intrinsic (two processes
following the same laws must be both or neither causal) and local (causes must
be connected to their effects via sequences of causal intermediates). In this sense,
WnP is more oriented to dependence while CG is mostly related to production.
ECJ is a combination of the dependence-oriented approach from WnP and the
production-oriented behaviour from CG.

Focusing on LP, our work obviously relates to explanations obtained from
ASP debugging approaches [5–11]. The most important difference of these works
with respect to ECJ, and also WnP and CG, is that the last three provide fully
algebraic semantics in which justifications are embedded into program models.
A formal relation between [11] and WnP was established in [26] and so, using
Theorems 5 and 6, it can be directly extended to ECJ, but at the cost of flattening
the graph information (i.e. losing the order among rules).

6 Conclusions

In this paper we have introduced a unifying approach that combines causal pro-
duction with enablers and inhibitors. We formally capture inhibited justifications
by introducing a “non-classical” negation ‘∼’ in the algebra of causal graphs
(CG). A inhibited justification is nothing else but an expression containing some
negated label. We have also distinguished productive causes from enabling con-
ditions (counterfactual dependences that are not productive causes) by using a
double negation ‘∼ ∼’ for the latter. The existence of enabled justifications is
a sufficient and necessary condition for the truth of a literal. Furthermore, our
justifications capture, under the Well-founded semantics, both Causal Graph
and Why-not Provenance justifications. As a byproduct we established a formal
relation between these two approaches.

Using an example, we have also shown how to capture causal knowledge in the
presence of dynamic defaults – those whose behaviour are not predetermined, but
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rely on some program condition – as for instance the inertia axioms. As pointed
out by [27], causal knowledge is structured by a combination of inertial laws –
how the world would evolve if nothing intervened – and deviations from these
inertial laws. The importance of default knowledge has been widely recognised
as a cornerstone of the problem of actual causation in [28,29] among others.

Interesting issues for future study are incorporating enabled and inhibited
justifications to the stable model semantics and replacing the syntactic definition
in favour of a logical treatment of default negation, as done for instance with the
Equilibrium Logic [30] characterisation of stable models. Other natural steps
would be the consideration of syntactic operators for capturing more specific
knowledge about causal information, like the influence of a particular event or
label in a conclusion, and the representation of non-deterministic causal laws, by
means of disjunctive programs and the incorporation of probabilistic knowledge.
From a KR point of view, another interesting future line of study is to apply our
semantics to other traditional examples of the actual causation literature like
short-circuits and switches [15].
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The Logic Programming Paradigm. Artificial Intelligence, pp. 375–398. Springer,
Heidelberg (1999)

3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In: Logic Programming: Proceedings of the Fifth International Conference and
Symposium, vol. 2 (1988)

4. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. J. ACM (JACM) 38, 619–649 (1991)

5. Specht, G.: Generating explanation trees even for negations in deductive database
systems. In: LPE 1993, pp. 8–13 (1993)

6. Pemmasani, G., Guo, H.-F., Dong, Y., Ramakrishnan, C.R., Ramakrishnan, I.V.:
Online justification for tabled logic programs. In: Kameyama, Y., Stuckey, P.J.
(eds.) FLOPS 2004. LNCS, vol. 2998, pp. 24–38. Springer, Heidelberg (2004)

7. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: Meta-programming technique
for debugging answer-set programs. In: Proceedings of the 23rd Conference on
Artificial Inteligence (AAAI 2008) (2008)

8. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: on debugging non-
ground answer-set programs. Theory Pract. Logic Program. 10, 513–529 (2010)

9. Schulz, C., Toni, F.: ABA-based answer set justification. In: TPLP 13(4-5-Online-
Supplement) (2013)



212 P. Cabalar and J. Fandinno

10. Denecker, M., De Schreye, D.: Justification semantics: a unifiying framework for
the semantics of logic programs. In: Proceedings of the LPNMR Workshop (1993)

11. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under
answer set semantics. Theory Pract. Logic Program. (TPLP) 9, 1–56 (2009)

12. Viegas Damásio, C., Analyti, A., Antoniou, G.: Justifications for logic program-
ming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 530–542.
Springer, Heidelberg (2013)

13. Cabalar, P., Fandinno, J., Fink, M.: Causal graph justifications of logic programs.
TPLP 14, 603–618 (2014)

14. Hall, N.: Two concepts of causation. In: Collins, J., Hall, E.J., Paul, L.A. (eds.)
Causation and Counterfactuals, pp. 225–276. MIT Press, Cambridge (2004)

15. Hall, N.: Structural equations and causation. Philos. Stud. 132, 109–136 (2007)
16. Cabalar, P., Fandinno, J., Fink, M.: A complexity assessment for queries involving

sufficient and necessary causes. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS,
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Abstract. Dynamic programming (DP) on tree decompositions is a well
studied approach for solving hard problems efficiently. Usually, imple-
mentations rely on tables for storing information, and algorithms spec-
ify how tuples are manipulated during traversal of the decomposition.
However, a bottleneck of such table-based algorithms is relatively high
memory consumption. Binary Decision Diagrams (BDDs) and related
concepts have been shown to be very well suited to store information effi-
ciently. While several techniques have been proposed that combine DP
with efficient BDD-based storage for some particular problems, in this
work we present a general approach where DP algorithms are specified
on a logical level in form of set-based formula manipulation operations
that are executed directly on the BDD data structure. In the paper, we
provide several case studies in order to illustrate the method at work,
and report on preliminary experiments. These show promising results,
both with respect to memory and run-time.

1 Introduction

For problems that are known to be intractable, one approach is to exploit struc-
tural properties of the given input. An important parameter of graph-based
instances is “tree-width”, which, roughly speaking, measures the tree-likeness of
the input. Tree-width is defined on so-called tree decompositions [30], where the
instance is split into smaller parts, thereby taking into account its structure. The
problem at hand can then be solved by dynamic programming (DP). Many prob-
lems are fixed-parameter tractable (fpt) with respect to tree-width, i.e., solvable
in time f(k) · nO(1) where k is the tree-width, n is the input size and f is some
computable function. Note that here the explosion in run-time is confined to k
instead of the input size. Courcelle showed that every problem that is definable
in monadic second-order logic (MSO) is fixed-parameter tractable with respect
to tree-width [12]. There, the problem is solved via translation to a finite tree
automaton (FTA). However, the algorithms resulting from such “MSO-to-FTA”
translation are oftentimes impractical due to large constants [29]. One approach
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to overcome this problem is to develop dedicated DP algorithms for the problems
at hand (e.g., [6,21]). Such algorithms typically rely on tables for storing infor-
mation, resulting in a large memory footprint. This problem has been addressed,
e.g., by proposing heuristics [4] or reducing the number of simultaneously stored
tables [2].

In this work we mitigate the problem by developing DP algorithms with
native support for efficient storage. In our approach, Binary Decision Diagrams
(BDDs) [9] serve as the data structure. BDDs have undergone decades of research
and are a well-established concept used, e.g., in model-checking [27], planning [22]
and software verification [5]. Our approach is in line with recent research that stud-
ies the effectiveness of exploiting tree-width by applying decomposition techniques
in combination with decision diagrams. In the area of knowledge compilation, so-
called “Tree-of-BDDs” [19,33] are constructed in an offline phase from a given
CNF, and queried in the online phase to answer questions on this data structure
in linear time. Furthermore, Algebraic Decision Diagrams (ADDs) [3] are used
for compiling Bayesian networks in such a way that the structure of the network
can be exploited in order to compute inference efficiently [11]. Combining DP and
decision diagrams has been proven well-suited also for Constraint Optimization
Problems (COPs) [31]. The key idea is to employ ADDs to store the set of possi-
ble solutions, and the branch-and-bound algorithm is executed on a decomposi-
tion of the COP instance. This was shown to be superior to earlier approaches in
[8], where additionally (no)good recording is applied during computation.

In this work we continue this promising branch of research. However, from a
conceptual perspective, our algorithms are specified on a logical level as formulae.
This gives a compact and exact specification of algorithms, which are executed
directly on the BDDs in form of BDD manipulation operations. In contrast to
table-based DP algorithms, we do not manipulate tuples directly, but modify the
set of models. Furthermore, in the course of this work we develop two different DP
algorithm design paradigms, which we call early decision method (EDM) and late
decision method (LDM). In EDM, information is incorporated in the BDD as soon
as it becomes available when traversing the tree decomposition and is thus sim-
ilar to the approach usually employed in standard table-based implementations.
As we will see, LDM gives rise to novel DP algorithms where the BDD manip-
ulation operations are delayed until just before the information is removed. We
illustrate these concepts by providing several case studies that exemplarily show
how DP algorithms can be implemented following our approach. These prototyp-
ical problems differ in that only fixed information, also changing information or
even connectedness has to be handled appropriately. While we focus here on prob-
lems that are NP-complete, we plan to apply our method also to problems beyond
NP (thus covering applications from the AI and LPNMR domain) with the long-
term goal to extend our way of DP algorithm specification to all MSO-definable
problems. To summarize, the main contributions of this paper are as follows:

– An approach for specifying DP algorithms on tree decompositions via for-
mula manipulation, and two design patterns called early/late decision method
(EDM/LDM).
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– Case studies of 3-Colorability, Stable Extension (from the field of argu-
mentation) and Hamiltonian Cycle to illustrate our method at work.

– A performance analysis that compares memory and time requirements of our
approach with available DP implementations, indicating that our approach
significantly reduces memory requirements and gives advantages in perfor-
mance.1

2 Background

Tree Decompositions. Tree decompositions, introduced in [30], are defined
as follows.

Definition 1. A tree decomposition of an undirected graph G = (V,E) is a pair
(T ,X ) where T = (VT , ET ) is a tree and X : VT → 2V assigns to every node
VT of the tree a set of vertices V from the original graph. The sets of vertices
X = (Xt)t∈VT have to satisfy the following conditions: (a)

⋃
t∈VT Xt = V . (b)

{x, y} ∈ E ⇒ ∃t ∈ VT : {x, y} ⊆ Xt. (c) x ∈ Xt′ ∧ x ∈ Xt′′ ∧ t′′′ ∈ path(t′, t′′) ⇒
x ∈ Xt′′′ .

Xt is also called the bag for the vertex t ∈ VT . The width w of the decom-
position is max t∈VT |Xt| − 1. The tree-width k of a graph is the minimum width
over all its tree decompositions.

Intuitively, this definition guarantees that every vertex of the graph is con-
tained in some bag of the tree decomposition, adjacent vertices appear together
in some bag, and that nodes that contain the same vertex are connected. For
problems on directed graphs, Definition 1 can be naturally extended. We will
denote an edge between two vertices x, y by {x, y}, and directed arcs by (x, y).
Furthermore, for a decomposition node t, we denote by Et = {{x, y} ∈ E |
x, y ∈ Xt} the edges of G induced by the vertices Xt, and analogously by At

the arcs in t. It is well-known that obtaining an optimal decomposition (with
respect to width) is NP-hard [1], but there are heuristics that provide a “good”
decomposition in polynomial time [7,13,14]. For the ease of representation, we
consider a special type of tree decomposition throughout this work.

Definition 2. A tree decomposition T = (VT , ET ) is called normalized if each
t ∈ VT is of one of the following types: (1) Leaf node: t has no child nodes. (2)
Introduction node: t has exactly one child node t′ with Xt′ ⊂ Xt and |Xt′ | =
|Xt| − 1. (3) Removal node: t has exactly one child node t′ with Xt ⊂ Xt′ and
|Xt′ | = |Xt| + 1. (4) Join node: t has exactly two child nodes t′ and t′′ with
Xt = Xt′ = Xt′′ .

Furthermore, without loss of generality, we assume that Xr = ∅ for the root
node r of T . Note that such a normalized decomposition can be obtained in
linear time from an arbitrary one without increasing the tree-width [23].

1 A prototype system, called dynBDD, which is built on top of the BDD library
CUDD [32] is available under http://dbai.tuwien.ac.at/proj/decodyn/dynbdd.

http://dbai.tuwien.ac.at/proj/decodyn/dynbdd
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Example 1. Figure 1 shows an example graph G and a possible (normalized) tree
decomposition T (Tn) of width 2.The tree decompositions are optimal w.r.t.
width.

G: a b c

d e

T : b, c

a, b b, c, d

c, d, e

Tn: ∅
c

b, c

b, c

b

a, b

b, c

b, c, d

c, d

c, d, e

Fig. 1. Graph G and possible (normalized) tree decomposition T (Tn) of G.

(Reduced Ordered) Binary Decision Diagrams. In our approach, Reduced
Ordered Binary Decision Diagrams (ROBDDs) [9] serve as the data structure
for storing information during the traversal of the decomposition.

Definition 3. An Ordered Binary Decision Diagram B = (VB, AB) is a rooted,
connected, directed acyclic graph where VB = VT ∪ VN and AB = A� ∪ A⊥. The
following conditions have to be satisfied:

1. VT may contain the terminal nodes � and ⊥.
2. VN contains the internal nodes, where each v ∈ VN represents a variable v.
3. Each v ∈ VN has exactly one outgoing arc in A� and one in A⊥, represented

by a solid and a dashed arc respectively.
4. For every path from the root to a terminal node, each variable occurs at most

once and in the same order (i.e., we have a strict total order over the vari-
ables).

In Reduced OBDDs (ROBBD), isomorphic nodes are merged into a single
node with several incoming edges. Furthermore, nodes v ∈ VN where both outgo-
ing arcs reach the same node v′ ∈ VB, are removed.

Given an OBDD B, propositional variables VN and an assignment A to VN ,
the corresponding path in B is the unique path from the root node to a terminal
node, such that for every v ∈ VN it includes the outgoing arc in A� (A⊥) iff
A gets assigned true (false) for v. A is a satisfying assignment of the function
represented by B iff the path ends in �. With slight abuse of notation, in the
following we will specify BDDs by giving the function in form of a logic formula.

Example 2. Figure 2 shows an OBBD B and the corresponding ROBBD Bred for
formula (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c). Nodes c1, c2 and c3 represent
the same variable c and have arcs to the same terminal nodes. Hence, these
isomorphic nodes are merged to a single node c. Then, both outgoing arcs of b1
reach c, and b1 is removed. Furthermore, c4 is removed.
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B: a

b1 b2

c1 c2 c3 c4

� ⊥

Bred : a

b

c

� ⊥

Fig. 2. OBBD and ROBBD of formula (a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ b ∧ c).

BDDs support standard logical operators conjunction (∧), disjunction (∨),
negation (¬) and equivalence (↔). Furthermore, for a BDD B, existential quan-
tification over a set of variables V , V ⊆ VN is denoted by ∃V B. Restriction of
a variable v ∈ VN to true (�) or false (⊥) and renaming to a variable v′ is
denoted by B[v/·] where · ∈ {�,⊥, v′}. For sets of variables V ⊆ VN , B[V/·]
with · ∈ {�,⊥, V ′} and V ′ = {v′ | v ∈ V }, denotes restriction or renaming of
each v ∈ V by applying B[v/·].

3 DP on Tree Decompositions with BDDs

Our algorithms follow a general pattern of how the solution is constructed. First,
the graph representation of the input instance is decomposed. Next, the decom-
position is normalized in linear time. The resulting tree decomposition T is
traversed in bottom-up order, and at each node t ∈ VT the associated BDD,
denoted by Bt, is manipulated according to the problem at hand. In the root
node r of the decomposition (where Xr = ∅), either Br = � or Br = ⊥ holds,
representing the solution to the problem.

We present two algorithm design choices, which we call the early decision
method (EDM), where information is incorporated within introduction nodes,
and the late decision method (LDM), where BDD manipulation is delayed until
removal of vertices. For unsatisfiable instances, EDM potentially detects conflicts
earlier during the traversal of the decomposition. However, LDM gives advan-
tages when specifying more involved algorithms (see Sect. 4). Note that EDM
is similar to the approach employed in standard table-based implementations,
while LDM is usually harder to implement on tables.

For the case studies presented in the following, we will specify the manipulation
operations on Bt based on the node type of t, with Bl

t representing the BDD result-
ing from a leaf node operation, Bi

t (introduction node), Br
t (removal node), and Bj

t

(join node). Nodes t′, t′′ denote child nodes, Bt′ ,Bt′′ the BDDs constructed in the
child nodes, and u the introduced or removed vertex (if any). All Bt for t ∈ VT are
required to share the same global variable ordering for efficiency during manipu-
lation. In general, the size of the stored BDDs (i.e., the number of nodes in Bt) is
bounded by O(2wl) where w is the width of T and l the number of variables stored
per bag element (i.e., vertex of the original input graph). However, in practice the
size may be exponentially smaller, in particular in case a “good” variable ordering
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is applied [20]. Since finding an optimal variable ordering is in generalNP-hard [9],
we rely on BDD-internal heuristics for finding such a good ordering [32]. With this,
the BDDs require much less space than an equivalent table representation as used
in state-of-the-art systems (see Sect. 4).

3.1 3-Colorability

The 3-Colorability problem (“Given a graph G, is G 3-colorable?”) is very
well-suited to illustrate how DP algorithms for problems that are FPT with
respect to tree-width can be specified following our approach. As input, the
algorithms expect a simple graph G = (V,E). Furthermore, we define the set
of colors C = {r, g, b}. The following variables are to be used within the BDDs:
For all c ∈ C and x ∈ V , the truth value of variable cx denotes whether vertex
x gets assigned color c.

EDM. The BDD manipulation operations given below are applied at the respec-
tive decomposition nodes. We have to guarantee that every vertex gets assigned
exactly one color, and adjacent vertices do not have the same color. Intuitively,
Bl
t and Bi

t are constructed by adding the respective constraints for introduced
vertices. In Br

t , due to the definition of tree decompositions, we know that all
constraints related to removed vertex u were already taken into account. Hence,
we can abstract away the variables associated with u, thereby keeping the size of
the BDD bound by the width of the decomposition. In join nodes, Bj

t combines
the intermediate results obtained in the child nodes of the decomposition.

Bl
t =
∧

c∈C

∧

{x,y}∈Et

¬(cx ∧ cy) ∧
∧

x∈Xt

(rx ∨ gx ∨ bx)∧
∧

x∈Xt

(
¬(rx ∧ gx) ∧ ¬(rx ∧ bx) ∧ ¬(gx ∧ bx)

)

Bi
t =Bt′ ∧

∧

c∈C

∧

{x,u}∈Et

¬(cx ∧ cu) ∧ (ru ∨ gu ∨ bu)∧

¬(ru ∧ gu) ∧ ¬(ru ∧ bu) ∧ ¬(gu ∧ bu)

Br
t =∃rugubu[Bt′ ] Bj

t = Bt′ ∧ Bt′′

LDM. Another possibility for specifying the algorithm is to incorporate infor-
mation as late as possible, that is, when a vertex is removed from the decompo-
sition. In leaf nodes the BDD Bl

t is initialized with �, and in introduction nodes
the BDD Bi

t corresponds to that of the child nodes. When a vertex u is removed,
one variable of ru, gu, bu is set to true, thereby assigning to the vertex exactly
one color c ∈ C. Furthermore, neighboring vertices x with {x, u} ∈ Et′ must not
get assigned the same color, which is achieved by adding ¬cx to the formula. Br

t

is simply the disjunction over the three BDDs resulting from the choice of the
color. As in EDM, it is sufficient to construct Bj

t via conjunction of the child
BDDs.
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Bl
t =� Bi

t = Bt′ Bj
t = Bt′ ∧ Bt′′

Br
t =
(Bt′ [ru/�, gu/⊥, bu/⊥] ∧

∧

{x,u}∈Et′

¬rx
)∨

(Bt′ [ru/⊥, gu/�, bu/⊥] ∧
∧

{x,u}∈Et′

¬gx
)∨

(Bt′ [ru/⊥, gu/⊥, bu/�] ∧
∧

{x,u}∈Et′

¬bx
)

3.2 Stable Extension

The Stable Extension problem (“Given an argumentation framework AF ,
does there exist a stable extension in AF?”) is a well-known problem from the
area of abstract argumentation [16]. An argumentation framework AF = (V,A)
is a directed graph where the vertices V represent arguments and the arcs A
the so-called attack relation between arguments. A stable extension E of an AF
is a set E ⊆ V that is (i) conflict-free, i.e., for all x, y ∈ E : (x, y) �∈ A holds,
and (ii) all arguments are either in the set or defeated, i.e., for all x ∈ V : x ∈
E ∨ (∃(y, x) ∈ A : y ∈ E) holds. In the area of argumentation, DP algorithms for
various semantics have been studied in [17].

In our BDD-based approach we specify the following variables. For all x ∈
V , the truth value of variable ix denotes whether argument x is in some E .
Furthermore, the assignment of true to variable dx represents that x is defeated.
Additionally, for a node t of the tree decomposition, we denote by Dt = {dx | x ∈
Xt} the defeated arguments in t. Here, ix for x ∈ V are variables with fixed truth
assignment (i.e., containment in an extension is guessed once), while all dx have
a truth assignment that changes during the traversal of the tree decomposition
(an argument may become defeated in a decomposition node).

Bl
t =

∧

(x,y)∈At

(¬ix ∨ ¬iy) ∧
∧

y∈Xt

(
dy ↔

∨

(x,y)∈At

ix
)

Bi
t =∃D′

t′
[
Bt′ [Dt′/D′

t′ ] ∧
∧

{u,y}∈Et

(¬iu ∨ ¬iy) ∧
(
du ↔

∨

(x,u)∈At

ix
)
∧

∧

(u,y)∈At∧
u �=y

(
dy ↔ d′

y ∨ iu
) ∧

∧

y∈Xt∧(u,y) �∈At

(
dy ↔ d′

y

) ]

Br
t =Bt′ [iu/�, du/⊥] ∨ Bt′ [iu/⊥, du/�]

Bj
t =∃D′

t∃D′′
t

[
Bt′ [Dt/D′

t] ∧ Bt′′ [Dt/D′′
t ] ∧

∧

x∈Xt

(
dx ↔ d′

x ∨ d′′
x

) ]

EDM. In leaf nodes, variable dy for arguments y ∈ Xt is true (i.e., defeated) iff
one of its attacking arguments is in the stable extension, and adjacent arguments
can not be both in the extension. In Bi

t, for u the formula is constructed as in leaf



220 G. Charwat and S. Woltran

nodes. In order to update the truth value of defeat variables, for any argument y
we apply a general pattern of ∃y′[Bt′ [y/y′]∧(y ↔ (y′∨cond))], that is, renaming,
potentially adding conditions (cond), and removing the renamed variable y′.
Here, cond contains iu in case u is an incoming neighbor of y. By this, the size
of the BDDs remains bounded by the width of the decomposition. In removal
nodes, u must either be contained in the extension, or it is defeated. Note that
the conflict-free property would be violated in case u is both in the extension and
defeated. In Bj

t , the defeat information is propagated via renaming, equivalence,
and existential quantification.

Bl
t =

∧

x∈Xt

¬dx Bi
t = Bt′ ∧ ¬du

Br
t =φr

t [iu/�, du/⊥] ∨ φr
t [iu/⊥, du/�] with

φr
t =∃D′

t′
[
Bt′ [Dt′/D′

t′ ] ∧
∧

{u,y}∈Et′

(¬iu ∨ ¬iy)∧
∧

y∈Xt

(dy ↔ d′
y ∨(u,y)∈At′ iu) ∧ (du ↔ d′

u ∨
∨

(x,u)∈At′

ix)
]

Bj
t =∃D′

tD
′′
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[
Bt′ [Dt/D′

t] ∧ Bt′′ [Dt/D′′
t ] ∧

∧

x∈Xt

(
dx ↔ d′

x ∨ d′′
x

) ]

LDM. Here, all information is considered when a vertex is removed. Hence,
introduced vertices cannot become defeated in leaf or introduction nodes, and
the corresponding variables are initialized with ⊥. In Br

t , we guess whether the
removed vertex u is in the extension or defeated. Furthermore, we guarantee
conflict-freeness with vertices adjacent to u. A vertex y becomes defeated if it
is attacked by u and u is in the extension, and u is defeated if it is attacked by
some vertex that was already removed, or by an in-vertex on an arc in At′ . Note
that we use a small disjunction symbol with condition whenever there is at most
one disjunction in the instantiated formula, and a large symbol otherwise. Bj

t is
specified as in EDM.

3.3 Hamiltonian Cycle

The Hamiltonian Cycle problem (“Given a graph G = (V,E), does there exist
a Hamiltonian Cycle in G?”) requires a more involved algorithm specification.
Monolithic propositional encodings (where the whole instance is available at
once) allow one to assign a global order over the variables that specifies the
ordering over the vertices in the cycle. However, in our DP-based approach, we
are restricted to information that is available in the current decomposition node.
Hence, we consider a relative ordering as follows. The idea is to first specify
exactly one incoming and one outgoing edge for each vertex. For x ∈ V , the
truth value of variable ix (ox) denotes that it has an outgoing (incoming) edge.
A selected edge {x, y} ∈ E is represented by variable txy. Second, we have to
guarantee that we have a single cycle that covers all vertices. Therefore we select
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a fixed vertex f ∈ V that denotes where the cycle starts and ends. Variable axy
for x, y ∈ V denotes that x lies after y on the path from f to f . For a tree
decomposition node t we have St = {ix, ox, axy | x, y ∈ Xt}. Furthermore, for a
vertex u ∈ Xt, let Tt,u = {txu, tux | {x, u} ∈ Et}. Due to space limitations in the
following we only present the LDM version.

LDM. In leaf and introduction nodes all changing variables are initialized with
⊥. In removal nodes, at least one incoming edge for removed vertex u is selected.
Here, i′u is true iff the incoming neighbor of u was already removed from the bag.
Furthermore, at most one incoming edge from Et′ is selected. Finally, if i′u is true,
we cannot select an additional incoming edge, and the incoming and outgoing
edges for u have to be different. The same construction is used to guarantee
exactly one outgoing edge for u. For vertices x ∈ Xt, ix and ox are updated in
case u was a neighbor of x. Again, at most one incoming (outgoing) edge must be
selected. For x, z ∈ Xt, axz becomes true if u �= f and u lies on the path between
x and z. With this, we keep information on the path (from f to f), restricted
to Xt, where the truth value of txy-variables represents selected edges in Xt and
axy-variables denote that x is before y on the path where intermediate vertices
were already removed. Finally, in case axx for x �= f is true, we know that there
is a cycle that does not cover f , and is therefore no Hamiltonian cycle. In join
nodes, ix, ox and axy variables are propagated as usual. Here, whenever both
i′x and i′′x are true, due to the connectedness condition of tree decompositions
and the fact that these variables are updated when a vertex is removed, x has
different incoming edges and cannot be a solution. The same holds for outgoing
edges.

Bl
t =

∧

x∈Xt

(¬ix ∧ ¬ox) ∧
∧

x,y∈Xt
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∧
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)]

4 Experimental Analysis

The aforementioned algorithms were implemented in the prototype system
dynBDD that utilizes the library CUDD [32] for efficient BDD management
and the HTDECOMP library [14] for constructing the tree decompositions by
applying the “min-degree” heuristics. We compare run-time and memory require-
ments to freely available implementations that also utilize the concept of DP
on tree decompositions, namely SEQUOIA [25] (version 0.9) and D-FLAT [6]
(version 1.0.0). Furthermore, for the area of abstract argumentation, the DP-
based dynPARTIX system [10] (version 2.0) is available. SEQUOIA implements
a game-theoretic approach [24]. As input, SEQUOIA expects the problem to
be formulated as an MSO formula. The instance is decomposed and the DP
algorithm automatically generated and executed. D-FLAT combines DP with
answer-set programming (ASP). In contrast to SEQUOIA, the user specifies an
ASP encoding that is executed at each node of the decomposition, thereby defin-
ing the DP algorithm explicitly. dynPARTIX comprises of implementations of
reasoning tasks relevant to the field of argumentation.

All experiments were performed on a single core of an AMD Opteron 6308
(3.5 GHz) processor running Debian GNU/Linux 7 (kernel 3.2.0-4-amd64). Each
run was limited to 10 min (Timeout) and 4 GB of memory (Memout). Instances
were generated using the random graph model due to Erdös and Rényi [18].
This allows us to compare the implementations on various instances that cover
a broad range of different widths. Below, we denote by n the number of vertices
and by p the edge probability of an instance. Since run-time depends on the
heuristically obtained tree decomposition, we run the algorithms on the same
normalized tree decompositions (if not stated otherwise).

3-Colorability. To analyze the performance, the EDM and LDM versions of the
algorithms were implemented in dynBDD and D-FLAT. For SEQUOIA, the per-
formance of the MSO-based algorithm is measured. Overall, 252 instances with
n between 10 and 1000 and p between 0.001 (very sparse) and 0.2 (dense) were
tested. Figure 3 (upper left) shows the number of solved instances per system
and implementation variant. SEQUOIA implements a pre-check to tell whether
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it is capable of solving the instance. Error denotes the number of times this check
failed. Results show that EDM is by far superior to LDM. Here, we observed
that EDM detects conflicts in unsatisfiable instances earlier than LDM. In fact,
additional analysis showed that for satisfiable instances dynBDD (EDM) per-
formed only marginally better than dynBDD (LDM). In total, 161 instances
were solved by both dynBDD (EDM) and D-FLAT (EDM). Figure 3 (lower
left) gives details on the accumulated run-time and memory usage of the best-
performing systems over these instances. The figure shows how many instances
were solved after a certain amount of time. For example, D-FLAT (EDM) solved
the first 100 instances in approx. 1500 seconds with a total of 4700 MB of mem-
ory usage, whereas dynBDD (EDM) required only 30 seconds and 500 MB. In
total, dynBDD (EDM) required approx. 18 % less time and 47 % less memory
on solved instances, and solved 36 instances more than D-FLAT (EDM). Note
that we omitted dynBDD (LDM) since it solves significantly less instances than
the best systems.

Regarding the width w of the tree decompositions, dynBDD (EDM) solved
satisfiable instances up to w = 48 and unsatisfiable instances up to w = 944.
While unsatisfiable instances of high width may be easily solvable due to early

Fig. 3. Result Overview: System comparison and detailed results for best-performing
systems.
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conflict detection, the measured width for solved satisfiable instances is quite
large. Recall that the size of the BDD (or an equivalent table representation)
may be up to O(2wl) which corresponds to 248·3 ≈ 2.2 · 1043 for w = 48 and 3
variables per bag element.This indicates that BDDs are indeed memory-efficient.

Stable Extension. We compare dynBDD with D-FLAT as well as dynPAR-
TIX. Note that dynPARTIX constructs decompositions on the same heuristics
as used for the other systems, but obtaining the same decomposition can not be
guaranteed. Furthermore, we compare dynBDD to SEQUOIA. However, to the
best of our knowledge, SEQUOIA is incapable of handling directed graphs. To
give an impression on its performance, we decided to show results for the related
Independent Dominating Set problem.

260 instances with n between 10 and 100 and p between 0.001 and 0.1
were tested. Figure 3 (middle column) illustrates the overall number of solved
instances per system. The run-time of the problem-tailored implementation in
dynPARTIX (that implements an approach similar to EDM) is almost the same
as that of dynBDD (EDM). However, the advantage of BDDs becomes evi-
dent with respect to memory, where dynBDD (EDM) requires less than 8 % of
that of dynPARTIX. Although dynBDD (LDM) solves slightly less instances
and requires more memory than dynBDD (EDM), it is by far fastest imple-
mentation over all solved instances. One reason may be that due to the LDM
specification being more compact than the EDM version, less BDD manipula-
tion operations are to be executed. Compared to D-FLAT (restricted to solved
instances), dynBDD (EDM) uses less than 0.6 % of time and 9 % of memory.
dynBDD (LDM) requires less than 0.5 % of time and 14 % of memory compared
to D-FLAT.

Hamiltonian Cycle. In our dynBDD implementation for this problem we
selected the lexicographically smallest vertex as fixed vertex f . A study of how
this selection influences run-time is deferred to future work. We tested 390
instances with n between 10 and 50 and p between 0.01 and 0.25. Here, gen-
erated instances had a width between 1 and 22. As depicted in Fig. 3, dynBDD
(LDM) solved most instances, followed by dynBDD (EDM) and D-FLAT. For
this problem, it becomes apparent that width is crucial for the run-time. Con-
sidering instances solved by the three best-performing systems, we observed that
instances up to width 12 were solved. Note that in this case we have BDDs with
up to 212·(6+4·12) ≈ 1.3 · 1036 nodes since we have 3 · 1 ix, 3 · 1 ox, 12 txy, and
3 · 12 axy-variables per vertex in the bag (including renamed variables).

As also observed for the Stable Extension problem, our results indicate
that for more complex problems the LDM variant pays off, especially for satis-
fiable instances.

5 Conclusion

In this work we showed how classical DP algorithms on tree decompositions
can be reformulated in order to be executed on Binary Decision Diagrams. This
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gives rise to algorithms that are specified on a logical level where - opposed
to manipulation of tuples in a table-based specification - the set of models is
modified by executing operations directly on the BDD. Furthermore, we studied
two algorithm design patterns, namely early (EDM) and late decision method
(LDM), and illustrated the concepts by providing several case studies. The case
studies are exemplary for NP-complete problems that are tractable w.r.t. tree-
width. The corresponding algorithms are specified solely on fixed variables (3-
Colorability), additionally require changing variables (Stable Extension)
and handling of connectedness within the DP algorithm (Hamiltonian Cycle).
From a practical perspective, our work is in line with the freely available systems
D-FLAT [6], SEQUOIA [25] and dynPARTIX [10]. Our preliminary experiments
showed that the implementation of dynBDD indeed mitigates performance and
memory shortcomings of these systems. In particular, results indicate that for
problems which require a more involved algorithm, LDM is superior to EDM.
Note that our system currently does not implement any problem-specific short-
cuts and that the libraries have been employed as black-box tools.

In the future, we want to tighten the integration of BDD handling and the
tree decomposition (in particular, to obtain a good ordering of variables in
the BDD from the structure of the decomposition) and to study how problem-
specific shortcuts can be incorporated. Additionally, our approach natively sup-
ports parallel problem solving (over decomposition branches), which would be a
complementary approach to recent developments on parallel BDD implementa-
tions [15,26]. Finally, our approach can directly be extended to problems that
involve optimization. Here, ADDs as well as Multi-valued Decision Diagrams
(MDDs) (see, e.g., [28]) and related data structures can serve as appropriate
tools. Most importantly, we want to study our approach in the context of prob-
lems that are hard for the second level of the polynomial hierarchy (e.g., Cir-
cumscription, Abduction) and ultimately provide a tool-set for all MSO-definable
problems.
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Abstract. The role of data and knowledge exchange is becoming
increasingly important. The approach of DACMAS [1] proposes a quite
general modeling of Multi-Agent Systems (MAS), including data rep-
resentation in a MAS via DRL-Lite Ontologies. Yet, data/knowledge
acquisition from heterogeneous sources which are not agents and which
are external to the MAS is not provided. In the Knowledge Representa-
tion and Reasoning field, this topic is coped with by mMCSs (Managed
Multi-Context Systems). In this paper, we propose an integration of the
two approaches into DACMACSs. The aim is to obtain an enhanced
integrated flexible framework where non-monotonicity is present: in the
modalities for defining knowledge acquisition; in the conditions for trig-
gering the acquisition and for knowledge exploitation.

1 Introduction

The importance of data and knowledge exchange in Artificial Intelligence appli-
cations is constantly increasing. In many application fields it is particularly
important to comprise and elaborate information provided by multiple sources.
Distributed autonomous evolving applications are the realm of intelligent soft-
ware agents and Multi-Agent Systems (MAS). Many approaches to MAS are
based upon computational logic, where logical agents are able to reason, and to
perform non-monotonic reasoning when needed (cf. the Proceedings of the “Com-
putational Logic in Multi-Agent Systems” (CLIMA) Workshop Series). Logic-
based data management and exchange are therefore important issues in logical
agents. Such agents are required to perform non-monotonic reasoning both in
defining and executing patterns for knowledge exchange and in the modalities
for knowledge exploitation.

DACMAS (Data-Aware Commitment-based Multi-Agent Systems) [1] is a
quite general model of multi-agent systems, which explicitly introduces elements
of knowledge representation in the specification of such systems. Knowledge and
data in DACMASs are in fact represented according to the DRL-Lite Descrip-
tion Logic [2]. A DACMAS always includes an institutional agent which owns a
“global” TBox, specifying the domain in which the MAS operates, whereas each
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 228–241, 2015.
DOI: 10.1007/978-3-319-23264-5 20
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participating agent is equipped with its local ABox. The DACMAS approach is
particularly interesting because, apart from a general specification of data man-
agement and communicative features, it remains very general about an agent
program’s definition, and can be thus specialize to many existing agent-oriented
logic languages.

However, the possibility for agents to interact with components of a different
nature which are part of the agents’ environment is an important aspect which is
lacking in DACMASs. As a matter of fact, even the most comprehensive software
engineering approaches such as, e.g., “Agents and Artifacts” (cf. [3] and the
references therein) assume that external sources can be either “agentified” or
“wrapped”, as in fact, citing the proposers, “An artifact is a computational,
programmable system resource, that can be manipulated by agents, residing
at the same abstraction level of the agent abstraction class”. In a real setting
this may be too strong an assumption, at least concerning external knowledge
bases. What must be necessarily known about such external sources is that
they can be queried and should return certain kinds of information: however,
modification is in general not allowed, and availability of a better description
cannot be taken for granted. Moreover, wrapping a source according to a certain
specification would imply that all agents in a MAS have a uniform view of that
source. This assumption may be reductive under the perspective of knowledge
representation and reasoning: in fact, each agent might in principle interpret,
elaborate, reason upon and incorporate the acquired knowledge in a way which
is especially tailored to its tasks and objectives.

In the Artificial Intelligence and Knowledge Representation field, the Multi-
Context Systems (MCS) approach has been proposed to model information
exchange among heterogeneous sources [4–6]. MCSs are defined so as to drop the
assumption of making such sources in some sense homogeneous: rather, the app-
roach deals explicitly with their different representation languages and seman-
tics. Heterogeneous sources are called “contexts” and in the MCS understanding
they are fundamentally different from agents as they do not have reactive, proac-
tive and social capabilities, but can simply be queried and updated. MCSs have
evolved from the simplest form [4] to managed MCS (mMCS) [7], and reactive
mMCS [6] for dealing with external inputs such as a stream of sensor data.

In this paper we propose to combine DACMAS with mMCS. The aim is
to obtain the formalization of multi-agent systems which are able to flexibly
interact with heterogeneous external information sources, by means of suitable
agent-oriented modalities. In mMCSs, communication among contexts occurs
via special non-monotonic “bridge rules”, which are assumed to be automatically
applied whenever applicable. We allow also agents to be equipped with bridge
rules. However, we devise an entirely new mechanism for bridge-rule activation.
In the proposed approach, that we call DACMACS (Data-Aware Commitment-
based managed Multi-Agent-Context Systems) agents do not mandatorily apply
bridge rules. Rather, being autonomous entities, DACMACS agents are able to
apply bridge rules proactively and non-monotonically, depending upon require-
ments which are specific for each agent.
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The main features of the proposal are the following. (1) Agents can query
(sets of) contexts, but contexts cannot query agents. (2) Agents are equipped with
bridge rules, whose application is however activated via special trigger rules, which
allow a bridge rule to be invoked upon certain conditions and/or according to a
certain timing. (3) The result of a bridge rule is interpreted as an agent-generated
internal event, which is captured by reactive rules which may determine modi-
fications to the agent’s ABox according to suitable reasoning techniques for the
analysis and the incorporation of the newly acquired knowledge.

The integration among DACMASs and mMCSs has been purposedly devised
so as to be smooth, thus requiring as few modifications to the formal machinery
as possible. DACMACS therefore: (i) is based upon the combination of well-
established existing technologies; (ii) provides a uniform representation and a
formal semantics for the resulting class of systems; (iii) preserves most of the
interesting formal properties of both mMCSs and DACMASs that therefore
extend to DACMACS; (iv) introduces however novel agent-oriented interaction
patterns; (v) introduces semantic notions that constitute an enhancement over
both DACMASs and reactive mMCSs.

The paper is organized as follows: in Sects. 2 and 3 we provide the necessary
background notions about mMCSs and DACMASs. In Sect. 4 we present and
illustrate the new approach of DACMACSs, and discuss its properties. In Sect. 5
we present (in a nutshell, for lack of space) an example that we consider as
representative of a potential real-world application domain of DACMACSs.

2 Background: mMCS

Managed Multi-Context systems (mMCS) [5–7]) model the information flow
among multiple possibly heterogeneous data sources. The device for doing so
is constituted by “bridge rules”, which are similar to datalog rules (cf., e.g.,
[8] for a survey about datalog and the references therein for more information)
but allow for knowledge acquisition from external sources, as in each element
of their “body” the “context”, i.e. the source, from which information is to be
obtained is explicitly indicated. In the short summary of mMCS provided below
we basically adopt the formulation of [6], which is simplified w.r.t. [7].

Reporting from [5], a logic L is a triple (KBL;CnL;ACCL), where KBL

is the set of admissible knowledge bases of L, which are sets of KB-elements
(“formulas”); CnL is the set of acceptable sets of consequences, whose elements
are data items or ”facts” (in [5] these sets are called “belief sets”; we adopt
the more neutral terminology of “data sets”); ACCL : KBL → 2CnL is a func-
tion which defines the semantics of L by assigning to each knowledge-base a
set of “acceptable” sets of consequences. A managed Multi-Context System
(mMCS) M = (C1, . . . , Cn) is a heterogeneous collection of contexts where
Ci = (Li; kbi; bri) and Li is a logic, kbi ∈ KBLi

is a knowledge base (below
“knowledge base”) and bri is a set of bridge rules. Each such rule is of the fol-
lowing form, where the left-hand side o(s) is called the head, also denoted as
hd(ρ), the right-hand side is called the body, also denoted as body(ρ), and the
comma stand for conjunction.
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o(s) ← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm).
For each bridge rule included in a context Ci, it is required that kbi ∪ o(s)

belongs to KBLi and, for every k ≤ m, ck is a context included in M , and each
pk belongs to some set in KBLk

. The meaning is that o(s) is added to the conse-
quences of kbi whenever each pr, r ≤ j, belongs to the consequences of context
cr, while instead each pw, j < w ≤ m, does not belong to the consequences
of context cw. While in standard MCSs the head s of a bridge rule is simply
added to the “destination” context’s knowledge base kb, in managed MCS the
kb is subjected to an elaboration w.r.t. s according to a specific operator o and
to its intended semantics. Formula s itself can be elaborated by o, for instance
with the aim of making it compatible with kb’s format, or by performing more
involved elaboration.

If M = (C1, . . . , Cn) is an MCS, a data state (or, equivalently,
belief/knowledge state), is an n-uple S = (S1, . . . , Sn) such that each Si is an
element of Cni. Desirable data states are those where each Si is acceptable
according to ACCi. A bridge rule ρ is applicable in a knowledge state iff for all
1 ≤ i ≤ j : pi ∈ Si and for all j + 1 ≤ k ≤ m : pk �∈ Sk. Let app(S) be the set of
bridge rules which are applicable in data state S.

For a logic L, FL = {s ∈ kb | kb ∈ KBL} is the set of formulas occurring
in one of its knowledge bases. A management base is a set of operation names
(briefly, operations) OP , defining elaborations that can be performed on for-
mulas, e.g., addition of, revision with, etc. For a logic L and a management
base OP , the set of operational statements that can be built from OP and
FL is FOP

L = {o(s) | o ∈ OP, s ∈ FL}. The semantics of such statements is
given by a management function, which maps a set of operational statements
and a knowledge base into a set of modified knowledge bases. In particular, a
management function over a logic L and a management base OP is a function
mng : 2F

OP
L × KBL → 2KBL \ ∅.

Semantics of an mMCS is in terms of equilibria. A data state S = (S1, . . . , Sn)
is an equilibrium for an MCS M = (C1, . . . , Cn) iff, for 1 ≤ i ≤ n, kb′

i = Si ∈
ACCi(mngi(app(S), kbi)).

Thus, an equilibrium is a global data state composed of acceptable data
states, one for each context, encompassing inter-context communication deter-
mined by bridge rules and the elaboration resulting from the operational state-
ments and the management functions. Equilibria may not exist (where conditions
for existence have been studied, and basically require the avoidance of cyclic
bridge-rules application), or may contain inconsistent data sets (local inconsis-
tency, w.r.t. local consistency). A management function is called local consistency
(lc-) preserving iff, for every given management base, kb′ is consistent. It can
be proved that an mMCS where all management functions are lc-preserving is
locally consistent.

Notice that bridge rules are intended to be applied whenever they are applica-
ble, so inter-context communication automatically occurs, though mediated via
the management functions.
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3 Background: DACMAS

We remind the reader that in DLR-Lite Ontologies [2] we have the following. (1)
A TBox is a finite set of assertions specifying: concepts and relations; inclusion
and disjunction among concepts/relations; key assertions for relations. (2) An
ABox is a finite set of assertions concerning concept and relation membership,
defined in accordance with the TBox. In essence, a TBox describes the struc-
ture of the data/knowledge, and the ABox specifies the actual data/knowledge
instance. (3) In DLR-Lite, data can be queried via UCQs (Union of Conjunc-
tive Queries) and ECQs (Existential Conjunctive Queries): the latter are FOL
(First-Order Logic) queries involving negation, conjunction and the existential
quantifier, whose atoms are UCQs.

Knowledge and data in agents composing a DACMAS are in fact represented
in DRL-Lite: a DACMAS always includes an institutional agent which owns a
“global” TBox, specifying properties of the domain in which the MAS operates,
whereas each participating agent is equipped with its local ABox.

Communication among DACMAS agents may occur through simple event-
based reaction, or via commitments, which are a relatively recent though very
well-established general paradigm for agent interaction (cf. [9] and the references
therein). A commitment Cx,y (ant , csq) in particular relates a debtor agent x to
a creditor agent y where x commits to bring about csq whenever ant holds.
Commitment lifecycle (they can be created, fulfilled, canceled, etc.) is managed
by a so-called “commitment machine”.

Formally, a DACMAS (Data-Aware Commitment-based Multi-Agent Sys-
tem) is (from [1]) a tuple 〈T , E ,X , I, C,B〉 where: (i) X is a finite set of agent
specifications; (ii) T is a global DLR-Lite TBox, which is common to all agents
participating in the system; (iii) I is a specification for the “institutional” agent;
(iv) E is a set of predicates denoting events (where the predicate name is the
event type, and the arity determines the content/payload of the event); (v) C
is a contractual specification; (vi) and B is a Commitment Box (CBox). The
global TBox includes the list of the names of all participating agents in connec-
tion to their specifications. Each agent is equipped with a local ABox, consistent
with the global TBox, where however the ABoxes of the various agents are not
required to be mutually consistent. The set consisting of the union of the global
TBox and an agent’s local ABox constitutes the agent’s knowledge base. The
institutional agent is a special agent who is aware of every message exchanged
in the system, and can query all the ABoxes. In addition, it is responsible of
the management of commitments, whose concrete instances are maintained in
the Commitment Box B, and it does so based on the Commitment Rules in C,
which define the commitment machine. An execution semantics for DACMASs
is provided in [1], in terms of a transition system constructed by means of a
suitable algorithm.

Each agent’s specification includes a (possibly empty set of): communica-
tive rules, which proactively determine events to be sent to other agents; update
rules, which are internal reactive rules that update the local ABox upon send-
ing/receiving an event to/from another agent.
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A communicative rule has the form Q(r, x̂) enables EV (x̂) to r where: Q
is an ECQl query, which is an ECQ with location argument l of the form @Ag
to specify the agent to which the query is directed (if omitted, then the agent
queries its own ABox); x̂ is a set of tuples representing the results of the query;
EV (x̂) is an event supported by the system, i.e., predicate EV belongs to E ; r is
a variable, denoting an agent’s name. Whenever the rule is proactively applied,
if query Q evaluates to true (i.e., if the query succeeds) then EV (x̂) and r are
instantiated via one among the answers returned by the query, according to the
agent’s own choice. For instance, an agent can make an enquiry about the name r
of the provider of some service: if several names are returned, only one is chosen.
Then it sends to the selected provider a subscription request (instantiated with
the necessary information x̂) in order to be able to access the service.

Update rules are ECA-like rules1 of the following form, where α is an action,
the other elements are as before, and each rule is to be applied whenever an
event is either sent or received, as specified in the rule itself:
on EV (x̂) to r if Q(r, x̂) then α(r, x̂)(on − send/on − receive)

Update rules may imply the insertion in the agent’s ABox of new data items
not previously present in the system, taken from a countably infinite domain Δ.
For instance, after subscription to a service an agent can receive offers and issue
orders, the latter case determining the creation of a commitment (managed by
the institutional agent).

An agent specification is a tuple 〈sn,Asn, Γ 〉, where sn is the agent specifi-
cation name, Asn the local ABox, and Γ is the set of communicative and update
rules characterizing the agent.

4 DACMACS

Let a logic, a management base and management functions be as specified in
Sect. 2. The definition of a DACMACS (Data-Aware Commitment-based man-
aged Multi-Agent-Contexts Systems) extends that of DACMASs as the set of
participating agents is augmented with a set of contexts, to be understood as
external data/knowledge sources which can be consulted by agents.

The global TBox specifies, as in DACMASs, the ontological specification
shared by all agents in the system. We introduce explicit lists of agents’ and
context’s names. We also introduce a global ABox, not present in DACMAS,
which: links agents’ names with their specification, and contexts’ names with
their roles, where a role specifies the function that a context assumes for agents.
E.g., a context’s name studoff may correspond to context role student office,
and context name poldept to police department . For simplicity, we assume here
that roles are specified as constants. We also assume that context names include
all the information needed for actually posing queries (e.g., context names might
coincide with their URIs). Each DACMACS agent may specify in its local ABox
more information about context roles, or also list additional contexts (with cor-
responding roles) which are specifically known to that agent.
1 As it is well-known, “ECA” rules stands for “Event-Condition-Action” rules, and
specify reaction to events.
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In DACMACS, agents’ specification (seen below) is richer than in DACMAS,
as it may include bridge rules, similar to those of mMCSs, whose activation is
however proactive rather than mandatory. Each agent is equipped with local
management functions.

Definition 1. A DACMACS (Data-Aware Commitment-based managed Multi-
Agent-Context System) is a tuple 〈T , E ,N ,X ,Y, I,A, C,B〉 where T , E ,X , I, C
and B are the same as for DACMASs, and: (i) N is a set of agents’ names,
listing the agents (beyond the institutional agent) which compose the MAS; (ii)
Y is a set of contexts’ names, listing the contexts which are globally known to
the MAS; (iii) A is a global ABox, which is consistent with the global TBox and
with all agents’ local ABoxes.

Context names in the global and local ABoxes might also be linked to the
information about the related query language. However, again for the sake of
simplicity though without loss of generality, we assume that all contexts accept
datalog queries, in particular of the following form.

Definition 2. An agent-to-context datalog query is defined as follows:

Q :-A1, . . . , An, not B1, . . . , not Bm with n + m > 0

where the left-hand-side Q can stand in place of the right-hand-side. The comma
stand for conjunction, and each of the Ais is either an atom or a binary expres-
sion involving connectives such as equality, inequality, comparison, applied to
variables occurring in atoms and to constants. Each atom has a (possibly empty)
tuple of arguments and can be either ground, i.e., all arguments are constants, or
non-ground, i.e., arguments include both constants and variables, to be instan-
tiated to constants in the query results. All variables which occur either in Q or
in the Bis also occur in the Ais.

Intuitively, the conjunction of the Ais selects a set of tuples and the Bis rule
some of them out. Q is essentially a placeholder for the whole query, but also
projects over the wished-for elements of the resulting tuples.

Each context may include bridge rules, of the form specified in Sect. 2, where
however the body refers to contexts only, i.e., contexts cannot query agents. The
novelty of our approach is that also agents may be equipped with bridge rules,
for extracting data from contexts. Agents’ bridge rules are more general than
those in mMCSs, as a bridge rule combines information extracted from a number
of contexts, where each context returns data/knowledge according to a query of
the form defined in Definition 2. As in DACMASs, we assume that the new data
items possibly added to the agent’s ABox belong to the same countably infinite
domain Δ. However, as seen below bridge rules in agents are not automatically
applied as in mMCSs: rather, they are proactively activated by agents upon need.

Definition 3. A bridge rule occurring in an agent’s specification has the follow-
ing form.

A(x̂) determinedby E1, . . . , Ek, not Gk+1, . . . , not Gr
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where A(x̂), called the conclusion of the rule, is an atom over tuple of argu-
ments x̂. The right-hand-side is called the body of the rule, and is a conjunction
of queries on external contexts. Precisely, each of the Eis and each of the Gis
(where k > 0 and r ≥ 0) can be either of the form DQi(x̂i) : ci or of the form
DQi(x̂i) : qi where: DQi is a datalog query (defined according to Definition 2)
over tuple of arguments x̂i; ci is a context listed in the local ABox with its role,
and thus locally known to the agent; qi = Role@inst(rolei) is a context name
obtained by means of a standard query Role@inst to the institutional agent inst
(notation ’@’ is borrowed from standard DACMASs), performed by providing the
context role rolei . We assume that all variables occurring in A(x̂) and in each
of the Gis also occur in the Eis. The comma stands for conjunction. Assuming
(without loss of generality) that all the x̂is have the same arity, when the rule
is triggered (see Definition 4 below) then the Eis may produce a set of tuples,
some of which are discarded by the Gis. Finally, A(x̂) is obtained as a suit-
able projection. Within an agent, different bridge rules have distinct conclusions.
The management operations and function are defined separately (see Definition 5
below).

E.g., Role@inst(student office) returns the name of the context correspond-
ing to the student office. There is, as anticipated before, an important difference
between bridge rules in contexts and bridge rules in agents. Each bridge rule
occurring in a context is meant to be automatically applied whenever the present
data state of the entire DACMACS entails the rule body. The new knowledge
corresponding to the rule head is added (via the management function) to the
context’s knowledge base. Instead, bridge rules in agents are meant to be proac-
tively activated by the agent itself. To this aim, we introduce new kinds of rules
not present in DACMAS.

Definition 4. A (timed) trigger rule is a proactive rule of the form
Q(x̂) enables A(ŷ) [Time | Frequency ]

where: Q is an ECQl query, and x̂ a set of tuples representing the results of
the query; A(ŷ) is the conclusion of exactly one of the agent’s bridge rules. If
query Q evaluates to true, then A(ŷ) is (partially) instantiated via one among
the answers returned by the query, according to the agent’s own choice, and
the corresponding bridge rule is triggered. This means, for a bridge rule of the
form A(x̂) determinedby E1, . . . , Ek, not Gk+1, . . . , not Gr, that the conclusion
A(x̂) is allowed to be derived if the rule is applicable, i.e., if system’s present
data state entails its body. The options in square brackets, if specified, state that
the bridge rule with conclusion A(ŷ) should be triggered either at time instant
Time (according to the system’s own internal measurement), or at a frequency
Frequency, expressed in terms of time instants.

Since agents’ bridge rules are executed neither automatically nor simulta-
neously, we have to revise the definition of management function with respect
to the original definition of Sect. 2. First, notice that for each agent included
in a DACMACS the underlying logic (KBL;CnL;ACCL) is such that: KBL is
composed of the global TBox plus the global ABox and the agent’s local ABox;



236 S. Costantini

ACCL is determined by the DRL-Lite semantics, according to which elements
of CnL are computed. If an agent is equipped with n bridge rules then there
will be n operators in the agent’s management base, one for each bridge rule,
i.e., OP = {op1, . . . , opn}. Each of them may perform any form of reasoning,
though it will at least make the acquired knowledge compatible with the global
TBox, by means of techniques that we do not consider here. FOP

L is defined as in
Sect. 2, but instead of a single management function there will now be n manage-
ment functions mngb1 , . . . ,mngbn , one per each bridge rule. They can however
be factorized within a single agent’s management function with signature (as in
MCSs), for agent i,

mngi : 2F
OP
L × KBL → 2KBL \ ∅

which specializes into the mngbis according to the bridge-rule head. Whenever
a bridge rule is triggered, its result is interpreted as an agent’s generated event
and is reacted to via a special ECA rule:

Definition 5. A bridge-update rule has the form uponA(x̂) then β(x̂) where:
A(x̂) is the conclusion of exactly one bridge rule, and x̂ a set of tuples represent-
ing the results of the application of the bridge rule; β(x̂) specifies the operator,
management function and actions to be applied to x̂.

The definition of β may imply querying the ABoxes of the agent and of
the institutional agent, performing knowledge format conversion, belief revision,
etc., so as to re-elaborate the agent’s ABox. The minimal requirement is that
of keeping the ABox consistent: i.e., in mMCS terms, the management function
specified in β is assumed to be lc-preserving. DACMACS agents’ specification is
therefore augmented w.r.t. that of DACMAS ones:

Definition 6. An agent specification is a tuple 〈sn,Asn, Γ 〉, where sn is the
agent specification name, Asn the local ABox, and Γ is the set of rules charac-
terizing the agent. In particular, Γ = Γcu ∪ Γbtu ∪ Γaux , where Γcu is, like in
DACMAS, the set of communicative and update rules; in addition Γbtu is the
set of bridge, trigger and bridge-update rules, and Γaux the set of the necessary
auxiliary rules (defining the predicates occurring in the body of the former rules).

The definition of data state and of equilibria must be extended with respect
to those provided in Sect. 2, and not only because a data state now includes both
contexts’ and agents’ sets of consequences. As mentioned, in MCSs a bridge rule
is applied whenever it is applicable. This however does not in general imply
that it is applied only once, and that an equilibrium, once reached, lasts forever.
In fact, contexts are in general able to incorporate new data items from the
external environment (which may include, as discussed in [6], the input provided
by sensors). Therefore, a bridge rule is in principle re-evaluated whenever a new
result can be obtained, thus leading to evolving equilibria. In DACMACSs, there
is the additional issue that for a bridge rule to be applied it is not sufficient that
it is applicable in the MCS sense (i.e.-, when its body is true), but it must also
be triggered by a corresponding timed trigger rule.

Similarly to what is done in Linear Time Logic (LTL) we assume a discrete,
linear model of time where each state/time instant can be represented by an
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integer number. States t0, t1, . . . can be seen as time instants in abstract terms, as
we have ti+1−ti = δ, where δ is the actual interval of time after which we assume
a given system to have evolved. In DACMACSs, both agents’ and contexts’
knowledge base contents may change not only in consequence of communication,
but also due to interaction with an external environment. Thus, each agent’s
or context’s knowledge base can be subjected to updates, where an update is
understood as a finite set composed of new facts asserted to be true, and/or new
facts asserted to be false, and/or already-known facts changing their truth value.
Updates are not in general just “blindly” accepted, rather they are incorporated
into the existing knowledge by means of some kind of update operator which
performs knowledge base revision, for which several techniques exist that for
lack of space we are not able to mention here.

In the definitions below, given a DACMACS M , we assume that (C1, . . . , Cj)
are the composing contexts and (Aj+1, . . . , Am) the composing agents, j ≥
0,m > 0; let n = j + m.

Definition 7. Let M be a DACMACS including n = j+m contexts and agents.
Let Π = Π1,Π2, . . . be a sequence of finite updates performed to agents’ and con-
texts’ private knowledge bases at time instants t1, t2, . . ., respectively. Thus, for
i > 0, Πi = 〈ΠiC1 , . . . ΠiCj

,ΠiAj+1 , . . . ΠiAm
〉 is a tuple composed of the updates

performed to each context and agent. Let UE, E ∈ {C1, . . . , Cj , Aj+1, . . . , Am},
be the update operator that each agent or context employs for incorporating the
new information, and let U be the tuple composed of all these operators.

Definition 8. Let M be a DACMACS including n = j+m contexts and agents.
A timed data state of M at time T is a tuple ST = (ST

1 , . . . , ST
n ) such that each

ST
i is an element of Cni at time T . The timed data state S0 is an equilibrium

according to an analogous definition as for mMCSs, i.e. iff, for 1 ≤ i ≤ n, there
exists S0

i ∈ ACCi(mngi(app(S0), kbi)).

Each transition from a timed data state to the next one, and consequently
the definition of an equilibrium, is determined both by the update operators and
by the application of bridge rules, where in a DACMACS a bridge rule is applied
only when it has been triggered, according to the specified timing/frequency.

Definition 9. Let M be a DACMACS, and let ST be a timed data state of M at
time T . A bridge rule ρ occurring in each composing context or agent is potentially
applicable in ST iff ST entails its body. For contexts, entailment is the same as in
MCSs. For agents, entailment implies that all queries in the rule body succeed w.r.t.
ST . A bridge rule is applicable in a context whenever it is potentially applicable.
A bridge rule with head A(ŷ) is applicable in an agent Aj whenever it is potentially
applicable and there exists a trigger rule of the form Q(x̂) enables A(ŷ) in the
specification of Aj such that Cnj |= Q(x̂). If the trigger rule is timed and specifies
an application time T̂ , then it must be T = T̂ . If the trigger rule is timed and
specifies a frequency F̂ , then it must be T = F̂ ∗ N , for some N2. Let app(ST ) be
the set of bridge rules which are applicable in data state ST .
2 To be more precise, T is required to be the nearest approximation for T̂ or respectively
F̂ ∗ N .
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In DACMACSs, bridge rules are applied after performing the update of each
component’s knowledge base. So, data states following the initial one S0 are
equilibria if they are composed of acceptable data sets, considering however
knowledge base update, which is performed before inter-agent-context commu-
nication determined by bridge rules.

Definition 10. Let M be a DACMACS, let Ei, 1 ≤ E ≤ n, be any composing
agent/context, Ui be the corresponding update operator, Π be a given update
sequence and Πi

T be the update performed upon Ei at time T . Let ST be a timed
data state of M at time T ≤ 0. A timed data state of M at time T + 1 a is an
equilibrium iff, for 1 ≤ i ≤ n, ST+1

i ∈ ACCi(mngi(app(ST ),Ui(kbi,Π
i
T ))).

Definition 11. Let M be a DACMACS. A safe evolution trajectory of M w.r.t.
a sequence Π of updates is a sequence S0, S1, . . . where the Sis, i ≥ 0 are timed
data states of M such that ∀T ≥ 0, ST is an equilibrium, and ST+1 is obtained
from ST and Π as specified in Definition 10.

The above-introduced notions of equilibrium and safe evolution trajectory
generalize those defined in [6] for reactive mMCSs, where input from sensor data
is considered, and is coped with by extending bridge rules applicability. In our
case, the introduction of an explicit update operator allows for sensor data incor-
poration, as well as for any other knowledge base manipulation. Updates and
bridge rules application are independent, where at each state either the update
or the set of applicable bridge rules or both can be empty or not. Bridge rules
application is however performed upon the contents of the updated knowledge
bases.

4.1 Properties of DACMACSs

In the terminology of [5], we require all management functions (both those
related to agents and those related to contexts) to be local consistency
(lc-)preserving. We also require the update operators to preserve consistency
of agents’ and contexts’ knowledge bases. We thus obtain the following, which
is the analogous to Proposition 2 stated in [5] for mMCSs:

Proposition 1. Let D be a DACMACS such that all update operators and
management functions associated to the composing agents and contexts are lc-
preserving. Then D is locally consistent.

Global consistency of all data sets in a DACMACS is not required here,
as it is not required in DACMAS in the first place: in fact, incoherences may
reflect agents’ local views. By adopting the A-ILTL (Agent-Oriented Interval
LTL) interval linear temporal logic [10,11], several interesting properties of a
DACMACS can be defined and verified. For instance, for proposition ϕ, it can
be checked whether ϕ holds for agent A included in a DACMACS (i.e., in the
above terminology, A ∈ {Aj+1, . . . , An}) in some equilibrium reached at a certain
time or within some time interval, given sequence Π of updates and a resulting
safe evolution trajectory.
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A simple property that might be interesting to check can be for instance
Fn ϕAv

which specifies that ϕ becomes true in agent Av at some time less than or
equal to n (F standing for “eventually”, or “finally”). Given the above definitions,
this accounts to check whether

(ϕ ∈ S0
v) ∨ (ϕ ∈ Sn

v ) ∨ ∃m where 0 < m < n such that Fm ϕAv

For finite updates this and many other properties are decidable, where the
complexity of check depends upon the complexity of the update operators and
of the management functions. However, to deal with complexity an approach is
proposed in [11] for run-time rather than a-priori checking of such properties.

5 Medical Example

We will now introduce an example (necessarily simple due to lack of space)
inspired to a real-life medical problem. Let us model the situation in DAC-
MACS’s terms, assuming to have an agent called Paula like the patient we
imagine it is designed to care for. Let us assume the agent’s ABox to be defined
as follows (we basically adopt the datalog notation, because it is widely known).
The patient, Paula, is a 78 years old lady. Being 78 implies being elderly, which
is not a disease but nevertheless it is, from the sanitary point of view, a special
condition.

person(paula). age(paula, 78 ).
special condition(X , elderly) :- person(X ), age(X ,A), A > 70.

Let us now assume that this elderly lady has certain health conditions, and takes
certain medicaments in relation to these conditions. In particular, she takes an
anticoagulant (and other medicaments not listed here) for coping with a cardiac
insufficiency.

has disease(paula, cardiac insufficiency).
takes medicament(P , anticoagulant) :- has disease(P , cardiac insufficiency).

Unfortunately, Paula presents some disquieting symptoms, namely extreme
weakness, that can be attributed to low hemoglobin level. Then, it is stated
that hemoglobin level is obtained within a blood test, and that its value is wor-
rying (cannot be explained in a trivial way) if it is less than 10.

has symptom(paula, extreme weakness).
symptom cause(extreme weakness, hemoglobin level).
blood test(hemoglobin level).
anomalous value(P , hemoglobin level) :- person(P), value(P , hemoglobin,V ),V ≤ 10 .

The following trigger rule states that, if a person P has a symptom S
which has a possible cause T detectable as a blood test with value V , then:
the agent has to obtain from the institutional agent inst the specification
name of the context corresponding to the blood test records via the query
Spec@inst(Rec, blood tests records), which returns its result in the variable Rec.
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So, the bridge rule for testing Paula’s hemoglobin level V by querying this con-
text can be proactively activated.

person(P) AND has symptom(P ,S) AND
symptom cause(S ,T ) AND blood test(T ) AND
Spec@inst(Rec, blood tests records) enables blood test result(Paula,T ,V ,Rec).

The bridge rule simply queries Rec for the required value V of parameter T
for person P (assuming that the blood test record context by default returns the
most recent value).

blood test result(P ,T ,V ,Rec) determinedby value(P ,T ,V ) : Rec.

he result is then simply added to the agent’s ABox by a bridge-update rule:

upon value(P ,T ,V ) then add(value(P ,T ,V )).

The following trigger rule states that if a person which has a certain dis-
ease and some special condition has an anomalous value of some factor V , then
the medical diagnosis context Diag (whose name is obtained as before from the
institutional agent) must be consulted in order to obtain the list C of possible
causes.

person(P) AND has disease(P ,D) AND
special condition(P ,S) AND anomalous value(P ,V ) AND
Spec@inst(Diag ,medical diagnosis) enables poss causes(P ,D ,S ,V ,C ,Diag).

A corresponding sample bridge rule can be the following (more realistically how-
ever, several diagnostic knowledge bases might be consulted via more involved
queries).

poss causes(P ,D ,S ,V ,C ,Diag) determinedby poss causes(P ,D ,S ,V ,C ) : Diag.

The related bridge-update rule starts a reasoning process to infer from given
parameters and possible causes C the most plausible cause R.

upon poss causes(P ,D ,S ,V ,C ,Diag) then infer plausible(P ,D ,S ,V ,C ,R).

Actually R was, for Paula, an internal hemorrhage due to the long-termed
use of anticoagulants. So, her life was saved and her relatively good health and
satisfactory quality of life have been restored.

6 Concluding Remarks

In this paper we proposed DACMACS, which is a flexible framework augment-
ing agents with controlled interaction and knowledge exchange with external
heterogeneous data sources. We have defined notions of timed data states and
equilibria. Similarly to what argued for DACMAS, instances of DACMACS are
implementable via publicly available technologies, taking as basis any of the
existing logical agent-oriented programming languages. The execution seman-
tics of a DACMACS can be defined by extending the transition system defined
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for DACMAS in [1]. Thus, results provided in [1] for DACMASs about verifi-
cation using the μ-calculus can be extended to DACMACSs, though we defer
discussion to a future paper.

Among the future directions of this work we may include the possibility
to equip also contexts with ontological descriptions, and cope with ontology
conversions in bridge rules application. We might also consider the aspect, not
tackled in mMCSs either, of actual applicability of bridge rules, which occurs
only if needed contents are delivered within a deadline. The issue of verification
and of the balance among a-priori and run-time verification deserves further
exploration.
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Abstract. The results of the evidence analysis phase in Digital Foren-
sics (DF) provide objective data which however require further elabora-
tion by the investigators: in fact, they must contextualize analysis results
within an investigative environment so as to provide possible hypotheses
that can be proposed as proofs in court, to be evaluated by lawyers and
judges. Aim of our research has been that of exploring the applicability
of Answer Set Programming (ASP) to the automatization of evidence
analysis. This brings many advantages, among which that of making dif-
ferent possible investigative hypotheses explicit, whereas different human
experts working on the case often devise and select, relying on intuition,
discordant interpretations. Very complex investigations for which human
experts can hardly find solutions turn out in fact to be reducible to opti-
mization problems in classes P or NP or not far beyond, that can thus
be expressed in ASP. As a proof of concept, in this paper we present the
formulation of some real investigative cases via simple ASP programs,
and discuss how this leads to the formulation of concrete investigative
hypotheses.

1 Introduction

Digital Forensics (DF) is a branch of criminalistics which deals with the identi-
fication, acquisition, preservation, analysis and presentation of the information
content of computer systems, or in general of digital devices [1,2]. The aim is to
identify digital sources of proofs, and to organize such proofs in order to make
them robust in view of their discussion in court, either in civil or penal trials.
Digital forensics is concerned with the analysis of potential elements of proof
after a crime has been committed (“post-mortem”). Clearly, the development of
digital forensics is highly related to the development of Information and Com-
munication Technologies in the last decades, and to the widespread diffusion
of electronic devices and infrastructures. It involves several disciplines such as
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 242–249, 2015.
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computer science, electronic engineering, various branches of law, investigation
techniques and criminological sciences. Rough evidence must be in fact used to
elicit hypotheses concerning events, actions and facts (or sequences of them)
with the goal to present them in court. Evidence analysis involves examining
fragmented incomplete knowledge, and defining complex scenarios by aggrega-
tion, likely involving time, uncertainty, causality, and alternative possibilities.
No single methodology exists today for digital evidence analysis. The scientific
investigation experts usually proceed by means of their expertise, which results
from a mix of experience and intuition.

As a matter of fact, evidence acquisition is supported by a number of hard-
ware and software tools, either closed- or open- source. These tools are contin-
uously evolving to follow the evolution of the involved technologies and devices.
Evidence analysis is instead much less supported. In evidence analysis, techni-
cians and experts perform the following tasks: (i) collect, categorize and revise
the evidence items retrieved from electronic devices; (ii) examine them so as to
hypothesize the possible existence of a crime and potential crime perpetrators;
(iii) elicit from the evidence possible proofs that support the hypotheses; (iv)
organize and present the proofs in a form which is acceptable by the involved
parties, namely lawyers and judges, which may include to exhibit explicit sup-
porting arguments. Few software tools exist that cover only some partial aspects.
Furthermore, all of them are “black box” tools, i.e., they provide results with-
out motivation or explanation, and without any possibility of verification. Thus,
such results can hardly be presented as reliable proofs to the involved parties.
Moreover, the absence of decision support systems leads to undesirable uncer-
tainty about the outcome of evidence analysis. Often, different technicians ana-
lyzing the same case reach different conclusions, and this may determine different
judge’s decisions in court.

Formal and verifiable artificial intelligence and automated reasoning methods
and techniques for evidence analysis would be very useful for the elicitation of
sources of proof. Several aspects should to be taken into account such as timing
of events and actions, possible (causal) correlations, context in which suspicious
actions occurred, skills of the involved suspects, validity of alibis, etc. Moreover,
given available evidence, different possible underlying scenarios may exist, that
should be identified, examined and evaluated. All the above should be performed
via “white box” techniques, meaning that such techniques should be verifiable
with respect to the results they provide, how such results are generated, and how
the results can be explained. The new wished-for software tools should be reliable
and provide a high level of assurance, in the sense of confidence in the system’s
correct behavior. Computational logic is a suitable candidate to definition and
implementation of such tools, and non-monotonic reasoning is clearly extensively
required.

The long-term objective of this research is to provide law enforcement, inves-
tigators, intelligence agencies, criminologists, public prosecutors, lawyers and
judges with decision-support-systems that can effectively aid them in their activ-
ities. The adoption of such systems can contribute to making legal proceedings
clearer and faster, and also under some respects more reliable. In fact, the choice
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of computational logic as a basis guarantees transparency and verifiability of
tools and results. The objective of the present paper is to provide a proof-of-
concept of the applicability of computational logic and non-monotonic reasoning
to such tasks. To this aim we adopted Answer Set Programming (ASP, cf., among
others, [3–7]), rather than other equally suitable non-monotonic reasoning tools,
because ASP programs are declarative and readable even by the non-expert.

In fact, in order to convince the several parties involved, whatever lim-
ited their computer science expertise might be, we have considered fragments
of some investigative cases and have transposed them into existing and popu-
lar combinatorial problems. We have then represented such problems via sim-
ple self-explanatory answer set programs which provide results which are easy
to understand. However, we have considered fragments of real cases which are
presently being investigated by the Italian Department of Scientific Investiga-
tions of Carabinieri1 as in fact one of the authors of this paper as a member officer
of a DF laboratory. Even though the encodings of the combinatorial problems
are known (and very simple), the mapping of the DF cases to such problems is
novel. The reader may refer to [8] for an extended version of this paper, including
the answer set programming encoding of all the examples, and the answer sets
resulting from the experiments. In the next sections we present three sample
cases, and then conclude.

2 Case 1: Data Recovery and File Sharing Hypotheses

The Investigative Case. The judicial authority requested the digital forensics
laboratory to analyze the contents of an hard disk, in order to check for the
presence of illegal contents files. If so, they requested to check for potential
activities of sharing on Internet of illegal materials.

The hard disk under analysis was physically damaged (as often done by crim-
inals if they suspect capture). Therefore, after a head replacement, the evidence
acquisition phase recovered a large amount of files (of various types: images,
videos, documents, etc.), however without their original name. This because the
damage present on the disk plates disallowed the recovery the information of
the MFT2. For this reason, an arbitrary name has been provisionally assigned
to all the recovered files. Information about the real file names and their original
location in the file system is thus missing.

Elements. By analyzing the recovered files, technicians detected the occur-
rence of: (i) Files with illegal contents. (ii) Various “INDX files”, corresponding
in the NTFS file system to directory files, which contain the follow META-
DATA: filename; physical and logical size of the file; created, accessed, modified
and changed timestamps. (iii) Index related to eMule (which is a widely-used
file-exchange application), including a file containing sharing statistics, whose
original name is “known.met”.
1 The Police branch of the Italian Army http://www.carabinieri.it.
2 Master File Table: structured block table containing the attributes of all files in the

volume of NTFS file systems, which are those used in Windows operating systems.

http://www.carabinieri.it
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Starting from the elements described above, we have been able to reply to the
judicial authority’s question with: reasonably reliable hypotheses of association
of the recovered files to the respective original names; a reasonable certainty that
illegal files were actually exchanged on the Internet. This has been obtained by
modeling the given problem by means of a very simple well-known ASP example.

The Stable Marriage Problem. The Marriage Problem (or SMP - Stable
Marriage Problem) is an NP-hard optimization problem which finds a stable
matching between two sets of elements S1 and S2 (say men and women) given a
set of preferences for each element. A matching is a mapping from the elements
of one set to the elements of the other set which thus creates a set of pairs (A,B)
where A ∈ S1 and B ∈ S2. A matching is stable whenever it is not the case that:
(i) some element Â of the first matched set prefers some given element B̂ of the
second matched set over the element to which Â is already matched, and (ii) B̂
also prefers Â over the element to which B̂ is already matched.

Reduction. The given problem is reducible to SMP as follows. men: defined
as the set of names extracted from directory files “INDX files”; women: defined
as the set of recovered files which have been provisionally assigned arbitrary
names. The preferences list (or relation order) between the men and women
sets is derived from the comparison of the properties of the individual recovered
files (file type, size, etc.) with those identified in “INDX files”. From the answer
sets resulting from the encoding reported in [8], it has been possible to formulate
hypotheses about the original names of the recovered files. Moreover, by com-
paring the file names indexed in the file known.met3, it has also been possible
to make reasonable assumptions about the effective sharing of files with illegal
content.

3 Case 2: Path Verification

The Investigative Case. After a heinous crime, an allegedly suspect has been
arrested. The police sequestered all his mobile devices (smartphone, route navi-
gator, tablet, etc.). The judicial authority requested the DF laboratory to analyze
the digital contents of the mobile devices in order to determine their position
with respect to the crime site during an interval of time which includes the
estimated time when the crime was perpetrated.

Elements. From the analysis of the mobile devices, a set of geographical GPS
coordinates have been extracted, some of them related to the the time interval
under investigation. There are however some gaps, one of them certainly due
to a proven switch off of few minutes around the crime time. To start with, a
list called GPS-LIST is generated, collecting all the positions extracted from the
various devices, grouped and ordered by time unit of interest (seconds, multiple

3 As mentioned, known.met is a file of the widely-used eMule file-exchange application
that stores the statistics of all files that the software shared, all files present in the
download list and downloaded in the past.



246 S. Costantini et al.

of seconds, minutes, etc.). The objective is that of establishing whether the
known GPS coordinates are compatible with some path which locates the given
mobile devices at the crime site during the given time interval. If no such path
exists, then the suspect must be discharged. If some compatible path is found,
then the investigation about the potential perpetrator can proceed. The objective
has been reached via reduction to the following simple game.

Hidato Puzzle (Hidoku). Hidato is a logical puzzle (also known as “Hidoku”)
invented by the Israeli mathematician Dr. Gyora Benedek. The aim of Hidato is
to fill a matrix of numbers, partially filled a priori, using consecutive numbers
connected over a horizontal, vertical or diagonal ideal line. Below we show, as a
simple example, a 6 × 6 initial matrix.

18 0 0 0 26 0

19 0 0 27 0 0

0 14 0 0 23 31

1 0 0 8 33 0

0 0 5 0 0 0

0 0 10 0 36 35

Reduction. It has been possible to perform the reduction of the given investiga-
tion problem to the “Hidato Puzzle” problem, by creating a matrix representing
the geographical area of interest where each element of the matrix represents a
physical zone crossable in a unit of time. The physical size of the individual cell
of the matrix (grid) on the map will be proportionate to both the time unit to
be considered and the hypothetical transfer speed. The matrix has been popu-
lated with the elements of the previously-created LIST-GPS, i.e., with known
positions of the suspect.

Considering the above matrix, assume that the crime has been committed at
location 34, at a time included in the interval with lower bound corresponding to
when the suspect was at location 1 and upper bound corresponding to when the
suspect was at location 36. All devices have been provably switched off between
locations 5 and 10.

The two answer sets resulting from the encoding reported in [8] for the given
example, and shown in the picture below, actually correspond to paths which
are compatible with the hypothesis of the suspect committing the crime. In fact,
location 34 consistently occurs between locations 5 and 10.

4 Case 3: Alibi Verification

The Investigative Case. During an investigation concerning a bloody murder,
it is necessary to check the alibi provided by a suspect. In the questioning, the
suspect has been rather vague about the timing of his movements. However,
he declared what follows: to have left home (place X) at a certain time; to have
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18 20 28 29 26 25

19 17 21 27 30 24

13 14 16 22 23 31

1 12 15 8 33 32

2 11 5 9 7 34

3 4 10 6 36 35

18 20 28 29 26 25

19 17 21 27 30 24

16 14 13 22 23 31

1 15 12 8 33 32

2 11 5 9 7 34

3 4 10 6 36 35

reached the office at place Y where he worked on the computer for a certain time;
to have subsequently reached place Z where, soon after opening the entrance
door, he discovered the body and raised the alarm. In order to verify the suspect’s
alibi, the judicial authority requested the DF laboratory to analyze: the contents
of the smartphone owned by the suspect; the computer confiscated in place Y,
where the suspect says to have worked; a video-surveillance equipment installed
at a post office situated near place Z, as its video-camera surveys the street that
provides access to Z.

Elements. The coroner’s analysis on the body has established the temporal
interval including the time of death. From the forensic analysis of the smarphone
it has been possible to compile a list of GPS positions related to a time interval
including the time of death, denoted by GPS-LIST. The analysis of the computer
allowed the experts to extract the list of accesses on the day of the crime, denoted
by LOGON-LIST. The analysis of the video-surveillance equipment allowed the
experts to isolate some sequences, denoted by VIDEO-LIST, that show a male
subject whose somatic features are compatible with the suspect. All the above
lists have been ordered according to the temporal sequence of their elements.
The investigation case at hand can be modeled as a planning problem where
time is a fundamental element in order to establish whether a sequence of actions
exist that may allow to reach a certain objective within a certain time. Several
approaches to causal and temporal reasoning in ASP exist, that could be usefully
exploited for this kind of problem4. Here, for lack of space and for the sake
of simplicity we model the problem by means of the very famous “Monkey &
Banana” problem, which is the archetype of such kind of problems in artificial
intelligence.

Monkey and Banana. The monkey and banana problem is a well-known toy
problem in artificial intelligence, particularly in logic programming and planning.
The specification of “Monkey & Banana” is the following: A monkey is in a
room. Suspended from the ceiling is a banana, beyond the monkey’s reach. In
the room there is also a chair (in some versions there is a stick, that we do not
consider). The ceiling is just the right height so that a monkey standing on a
chair could knock the banana down (in the more general version by using the
stick, in our version just by hand). The monkey knows how to move around,
carry other things around, reach for the banana. What is the best sequence of
actions for the monkey? The initial conditions are that: the chair is not just
4 For lack of space we cannot provide the pertinent bibliography: please refer to [9]

and to the references therein.
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below the bananas, rather it is in a different location in the room; the monkey
is in a different location with respect to the chair and the bananas.

Reduction. The reduction of the case at hand to the “Monkey & Banana”
problem is the following. Monkey = Suspect. Banana = Body. Eats Banana =
Raise Alarm. Initial Position Monkey = X. Initial Position Chair = Y. Below
Banana = Z. Walks = Walks. Move Chair = Motion to Z. Ascend = Open the
Door. Idle = Unknown Action. Notice the reduction of the “idle” state of the
monkey to unknown actions that the suspect may have performed at that time.

Problem’s constraint are that, at any time, the monkey: may perform only
one action at each time instant among walk, move chair, stand on chair, or stay
idle; if the monkey stands on the chair, it cannot walk, and it cannot climb
further; if the chair is not moved then it stays where it is, and vice versa if it is
moved it changes its position; the monkey is somewhere in the room, where it
remains unless it walks, which implies changing position; the monkey may climb
or move the chair only if it is in the chair’s location; the monkey can reach the
banana only if it has climbed the chair, and the chair is under the banana.

Among the answer sets resulting from the encoding reported in [8] there are
many which suggest suspicious behavior. In particular, one outlines a scenario
where the initial suspect’s actions are unknown. Then he moves to the crime
site where however he has the time and opportunity to commit the crime at
step 4. Even worse is another answer set, where the suspect moves to the crime
site, than moves back to the office, moves a second time to the crime site where
again he has the time and opportunity to commit the crime at step 4. As the
suspect’s presence at the crime site is confirmed by the video-surveillance equip-
ment records, this behavior is suggestive of, e.g., going to meet the victim and
having a discussion, going back to the office (maybe to get a weapon) and then
actually committing the crime.

5 Conclusions

In this paper we have demonstrated the applicability of non-monotonic reasoning
techniques to evidence analysis in digital forensics by mapping some fragments
of real cases to existing simple answer set programs. The application of artificial
intelligence and in particular of non-monotonic reasoning techniques to evidence
analysis is a novelty: in fact, even very influential publications in digital forensics
such as [1,2] are basically a guide for human experts about how to better under-
stand and exploit digital data. Therefore the present work, though preliminary,
opens significant new perspectives.

Future developments include building a toolkit exploiting not only ASP but
also other non-monotonic-reasoning techniques such as abduction, temporal rea-
soning, causal reasoning and others, as elements of decision-support-systems that
can effectively aid investigation activities and support of the production of evi-
dence to be examined in trial. The multidisciplinary future challenge is that of
making such tools formally accepted in court proceedings. From the technical
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point of view, for making such tools acceptable and perceived as reliable it is cru-
cial to develop verification, certification, assurance and explanation techniques.
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Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 76–88. Springer, Heidelberg
(2007)

8. Costantini, S., DeGasperis, G., Olivieri, R.: How answer set programming can help in
digital forensic investigation. In: Ancona, D., Maratea, M., Mascardi, V. (eds.) 30th
Convegno Italiano di Logica Computazionale (Italian Conference on Computational
Logic), CILC2015, Proceedings, University of Genova (2015). To appear on CEUR
Workshop Proceedings. http://cilc2015.dibris.unige.it

9. Cabalar, P.: Causal logic programming. In: Erdem, E., Lee, J., Lierler, Y., Pearce,
D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 102–116. Springer, Heidelberg
(2012)

https://books.google.com/
http://cilc2015.dibris.unige.it


A Formal Theory of Justifications

Marc Denecker1(B), Gerhard Brewka2, and Hannes Strass2

1 Department of Computer Science, K.U. Leuven, 3001 Heverlee, Belgium
marcd@cs.kuleuven.be

2 Computer Science Institute, Leipzig University, Leipzig, Germany

Abstract. We develop an abstract theory of justifications suitable for
describing the semantics of a range of logics in knowledge representa-
tion, computational and mathematical logic. A theory or program in
one of these logics induces a semantical structure called a justification
frame. Such a justification frame defines a class of justifications each of
which embodies a potential reason why its facts are true. By defining
various evaluation functions for these justifications, a range of different
semantics are obtained. By allowing nesting of justification frames, vari-
ous language constructs can be integrated in a seamless way. The theory
provides elegant and compact formalisations of existing and new seman-
tics in logics of various areas, showing unexpected commonalities and
interrelations, and creating opportunities for new expressive knowledge
representation formalisms.

1 Introduction

In this paper we introduce a new semantical framework suitable for describing
semantics of a broad class of existing and new (nonmonotonic) logics. These log-
ics are from the area of knowledge representation, nonmonotonic reasoning and
mathematical logic. The purpose of the framework is four-fold: (1) By providing
a unified semantical account of different semantical principles, it highlights the
differences between different semantics within the same formalism (e.g., various
semantics of logic programs) and (2) it highlights common semantical principles
of different formalisms (e.g. logic programs vs. argumentation frameworks); (3)
for existing formalisms it gives rise to new semantics nobody has thought of
before; (4) last but not least it provides ways for seamless integration of various
expressive language constructs in a single logic.

As for (4), it is a fundamental goal of the field of knowledge representation to
build expressive languages, that is, ones that provide a range of different language
constructs. It is well-known that (certainly for nonmonotonic logics) extending
a logic with new language constructs can be very difficult. An illustration is the
saga of extending logic and answer set programming with aggregates [1,2], a
topic on which many effort-years, several PhD theses and countless papers have
been devoted. Clearly, it would be of great value to have a clean, modular way to
compose (nonmonotonic) logics from existing language constructs. A powerful
such principle is presented here, in the form of nesting.
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 250–264, 2015.
DOI: 10.1007/978-3-319-23264-5 22
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The framework we present is based on so-called justification frames. They
specify a class of defined and parameter facts and include a set of semantic rules
x ← S (x a defined fact, S a set of facts) that provide potential reasons for
defined facts x. Justifications J are graphs obtained by concatenation of such
reasons. In the context of an interpretation A, a justification J may justify a fact
x or not, depending on the branches below x in J . The value of these branches
in A is specified by a mapping from sequences of facts to {t , f }, called a branch
evaluation. A justification system consists of a justification frame together with
a branch evaluation. A supported interpretation of such a system is one in which
true facts x are those with a justification J in which all branches from x evaluate
to t . A very useful feature of the framework is the nesting of justification sys-
tems. This yields a powerful way for meaning-preserving integration of different
language constructs by nesting the justification system of one construct in that
of another.

Several semantical frameworks of a seemingly similar kind already exist. In
particular, our framework is a (substantial) extension of a justification frame-
work for logic programming proposed in [3]. Another framework that comes to
mind is approximation fixpoint theory (AFT) developed by Denecker, Marek
and Truszczyński [4]. We believe that the framework presented here has some
clear advantages over AFT:

– AFT is a more abstract algebraical operator-based approach, whereas the
justification framework rests on a logical notion: a justification as a reason
for a fact to hold. The advantage of AFT’s abstract approach is that it is
applicable to a broader range of logics, (e.g., logic programming, AEL, default
logic). The advantage of the logical approach here is that it is much more
intuitive.

– (Direct) application of AFT induces non-standard ultimate variants of stable
and well-founded semantics [5], whereas the justification framework formalizes
standard versions.

– The justification framework identifies a single source of difference in vari-
ous semantics, namely the way infinite branches are evaluated in justification
graphs.

– The nesting of justification systems is a new technique for seamless integra-
tion of complex language constructs (e.g., aggregates, rule sets) in one logic.
Nesting is a feature derived from μ-calculus [6] and nested fixpoint logics [7].
This feature is not supported by AFT nor in any other semantic frameworks
that we know of.

– Last but not least, justifications are used in the implementation of practical
systems such as clasp [8] and IDP [9].

As a consequence, to the best of our knowledge, no other framework (includ-
ing AFT) is currently capable of formalizing and integrating the logics treated
in this paper. These logics are from mathematical logic and formal methods,
knowledge representation and nonmonotonic reasoning, and include logic pro-
grams and answer set programs under various semantics [10], abstract argumen-
tation [11], inductive definitions, co-inductive logic programming [12] and nested
inductive/coinductive definitions [13].
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2 Justification Frames

Let F be a set and ∼: F → F an involution, that is, a bijection that is its
own inverse (hence for all x ∈ F , ∼∼x = x). We assume F has a partition
{Fp,Fn} such that ∼Fp = Fn (and vice versa). We call elements of F facts,
of Fp positive facts, and of Fn negative facts. We call ∼x the complement of
x. The operator ∼ is called the complementation operator. A good intuition for
the complementation operator is as (classical) negation. We frequently call F a
fact space.

As will become clear, it can be useful to have facts t , u, i ∈ Fp and their
complements ∼t ,∼u,∼i ∈ Fn. We call them logical facts. For convenience, we
denote ∼t as f . They are interpreted facts. They stand respectively for true,
unknown (positive), inconsistent (positive), false, unknown (negative) and incon-
sistent (negative).

Definition 1. An interpretation A is a subset of F such that t , i ,∼i ∈ A and
f , u,∼u �∈ A when present in F . The set of interpretations is denoted I. An
interpretation A is consistent if for every non-logical fact x ∈ F , A contains at
most one of x and ∼x. A is anti-consistent if for every non-logical fact x ∈ F , A
contains at least one of x and ∼x. A is exact if consistent and anti-consistent.

Interpretations as defined above can be viewed as 4-valued interpretations,
consistent interpretations correspond to 3-valued interpretations, exact interpre-
tations to standard 2-valued interpretations. In particular, x is true in A if x ∈ A
and ∼x �∈ A; false if x �∈ A and ∼x ∈ A; unknown if x,∼x �∈ A and inconsistent if
x,∼x ∈ A. Thus, interpretations assign each of t , f , u, i its standard truth value
(if present in F).

Example 1. Let F be the set of literals of a propositional vocabulary Σ. The
positive facts are the atoms (i.e., Fp = Σ), the negative facts are the negative
literals (classical negation) (i.e., Fn = {¬p | p ∈ Σ}. The complementation
operator ∼ is the obvious one. For a, b, c, d ∈ Σ, the set A = {a,¬a, b,¬c} is
a 4-valued interpretation where a is inconsistent, b is true, c is false and d is
unknown.

Using the vocabulary of facts and their negations, we can formulate rules
that can be used to justify the truth of facts.

Definition 2. A justification frame JF is a structure (F ,Fd, R) such that:

– Fd ⊆ F is closed under ∼, that is, ∼Fd = Fd;
– t , f , u,∼u, i ,∼i �∈ Fd;
– R ⊆ Fd × 2F .

We view a tuple (x, S) ∈ R as a rule and present rules as x ← S. We call S a
case of x in JF if (x, S) ∈ R. The set of cases of x in JF is denoted JF(x).
We define the set of parameter facts of JF as F\Fd and denote it as Fo; we
also sometimes write x ← S ∈ JF and mean (x, S) ∈ R.
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A justification frame contains a set of rules. The interpretation varies. We may
view Fd as a set of facts defined by their rules, while Fo is a set of parameter
symbols. Or we might view Fd as endogenous facts in a causal system, while
Fo are exogenous facts. The idea is that the endogenous facts are governed by
causal relationships described by the rules, while exogenous facts are governed
by the external environment (e.g., a human agent or external system). More
interpretations are possible.

It is possible that for some x ∈ Fd, there are no rules with x in the head
(JF(x) = ∅). Then x is never “justified”. It is also possible that x ← ∅ ∈ R,
then x is always “justified”. The role of the parameters is illustrated below.

Example 2. We construct a justification frame for defining the transitive closure
of a graph. Consider a set V of nodes and define Fo = {E(a, b),∼E(a, b) |
a, b ∈ V }. Each exact interpretation of Fo determines a graph G = (V,E). Set
the defined facts to Fd = {Path(a, b),∼Path(a, b) | a, b ∈ V } and all facts to
F = Fd ∪ Fo. The intended interpretation of fact Path(a, b) is that there is a
path from a to b in graph G. The rules R correspond to those of the monotone
inductive definition that Path is the transitive closure of E:

R = {Path(a, b) ← {E(a, b)},Path(a, b) ← {Path(a, c),Path(c, b)} | a, b, c ∈ V }

Later we will see how to derive the rules for negative facts ∼Path(a, b) and
how to determine the interpretation for the defined facts given an arbitrary
interpretation of the parameter facts. Note that the rules define Path for each
choice of edges E but do not constrain G in any way. It is in this respect that
E(a, b) literals are called parameters.

We next associate an operator on interpretations with each justification
frame. This operator is – in essence – like (Fittings 4-valued version of) the
immediate consequence operator TP for logic programs [14,15]. It takes as input
an interpretation and returns an interpretation containing exactly those defined
facts that are justified by the input.

Definition 3. We define the derivation operator of JF as the mapping TJF :
IF → IFd

that maps an interpretation A of F to an interpretation TJF (A) of
Fd such that for each x ∈ Fd, we set x ∈ TJF (A) iff there exists x ← S ∈ JF
such that S ⊆ A.

The framework below will be geared towards systems where each case of fact
x provides a sufficient condition for x while the set of cases of x represent a
necessary condition for x in the sense that if x is true, then at least one case
must apply. Stated more concisely, the framework is geared towards fixpoints
of the operator. However, this is still quite vague (an operator may have many
sorts of fixpoints) and will be refined later (when we define various “branch
evaluations”). This operator can be used to define when two given justification
frames are equivalent.

Definition 4. Two justification frames JF ,JF ′ are equivalent (denoted JF ≡
JF ′) if and only if TJF = TJF ′ .



254 M. Denecker et al.

We call a rule x ← S redundant in R if there is a more general rule x ←
S′ ∈ R such that S′ � S. Redundant rules may always be deleted from the rule
set of a justification frame, as long as the more general rule stays. Formally,
let JF = 〈F ,Fd, R〉 and Re ⊆ R be a set of rules each of which is redundant
in R\Re. Then it is easy to see that JF ′ = 〈F ,Fd, R\Re〉 is equivalent to
JF . However, it is not always possible to remove all redundant rules from a
justification frame.

Example 3. Take the (infinite) justification frame JF with F = {p,∼p, qi,∼qi |
i ∈ N}, Fd = {p,∼p} and R = {p ← {qn, qn+1, . . . } | n ∈ N}}. Every rule of R
is redundant in R. Deleting all of them leads to a justification frame that is not
equivalent to JF .

We will only be concerned with justification frames where every defined fact
has at least one rule, and rule bodies are not empty. We call them proper jus-
tification frames.

Definition 5. A justification frame JF is proper if for all x ∈ Fd, we have
JF(x) �= ∅ and x ← ∅ �∈ JF .

Each justification frame can be translated to an equivalent proper one. For
each JF , we define its proper justification frame as JF ′ with identical sets of
parameter facts and defined facts and the following rules (for x ∈ Fd):

– all rules x ← S ∈ JF such that S �= ∅;
– rule x ← {t} if x ← ∅ ∈ JF ;
– rule x ← {f } if x ∈ Fd and JF(x) = ∅.

Proposition 1. JF ≡ JF ′, that is, TJF and TJF ′ are identical on all inter-
pretations.

We will – for readability – sometimes present justification frames that are not
proper and take them to mean their equivalent proper justification frames.

3 Justifications and Branch Evaluations

Next, we define the central concept of the paper, a justification for a given justi-
fication frame. This will be our first step in defining the semantics of justification
frames.

Definition 6. Let JF = 〈F ,Fd, R〉 be a justification frame. A JF-justification
J is a subset of R containing at most one rule x ← S for each x ∈ Fd. J is
called complete if for each x ∈ Fd there is some x ← S in J . If x ← S ∈ J , we
denote J(x) = S. If J is not complete we call it partial.

Alternatively, a justification J can be seen as a partial function from Fd to 2F

such that x ← J(x) ∈ R if J is defined in x ∈ Fd. If some x ∈ Fd has no rules
x ← S (i.e., if JF(x) = ∅), then no complete justification exists for JF .
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Proper justification systems JF have the interesting property that complete
justifications exist and that justifications J are equivalent to a special class of
directed graphs G on domain F such that if a fact x has children in G, then
x ∈ Fd and the set S of its children is a case of x in JF (that is, x ← S
is a rule of JF). It is easy to see that if JF is proper, there is a one-to-one
correspondence between justifications J and such graphs G. Indeed, given J , we
derive G = {(x, y) | y ∈ J(x)}; vice versa, given G, J is defined in x if x has
children, and then J(x) = {y | (x, y) ∈ G}. Notice that this correspondence is not
one-to-one in case JF is not proper. For example, if x ← ∅ ∈ JF , then if x has no
children in G, it is unclear whether J is undefined in x or whether J(x) = ∅. By
Proposition 1, we may impose (w.l.o.g.) the condition that justification frames
are proper. In examples we will represent and treat justifications as graphs.

Proposition 2. For any proper JF , a complete justification corresponds to a
graph whose leaves are Fo and for each non-leaf x with children S exists a rule
x ← S in JF .

A complete justification J contains for each fact x ∈ Fd a potential reason
(or a justification, or argument, or cause, etc.) for x to be true: this reason is
expressed in the subtree of J below x. Of course, not every such reason is good.
It can be flawed for external reasons (e.g., it is based on a parameter fact y
that is false in the world) or because of intrinsic reasons (e.g., there is a cyclic
argument). In the framework defined here, the support given by J to x in an
interpretation A is determined by evaluating the branches below x in J . With
each branch B we can associate a unique fact, denoted B(B), so that B evaluates
positively in A iff B(B) ∈ A. Thus, J justifies x iff B(B) ∈ A, for all branches
leaving x. Below, we formalize these concepts.

Definition 7. An Fd-branch B (briefly, a branch) of JF for x0 ∈ Fd is an
infinite sequence x0 → x1 → . . . such that xi ∈ Fd or a finite sequence x0 →
. . . → xn such that xi ∈ Fd for i < n and xn ∈ Fo. An infinite branch (compactly,
an ∞-branch) is positive (negative) if it has a tail of positive (negative) facts.
It is mixed if neither positive nor negative. A branch evaluation B is a mapping
from branches to facts.

A branch contains at least two facts. In a mixed ∞-branch, each tail contains
infinitely many positive and negative facts.

Definition 8. A branch of a complete justification J from defined fact x0 is a
maximally long path x0 → x1 → . . . in J . (Hence, xi+1 ∈ J(xi) for all i ≥ 0.)

It is obvious that a branch of a complete J from x is a branch in the sense
of Definition 7. (This property holds for proper justification frames but not in
general).

Example 4. We define four branch evaluations that later will be shown to induce
well-known logic programming semantics. For every branch B = x0 → x1 → . . . ,
we define Bsp(B) = x1. (The subscript refers to “supported” semantics.) Next,
we define three more branch evaluations all of which map B to its leaf xn if B
is a finite branch x0 → . . . → xn. If B is an ∞-branch, we have:
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– (Kripke-Kleene) BKK (B) = u if x0 ∈ Fp and BKK (B) = ∼u if x0 ∈ Fn.
– (stable) Bst(B) = t if B consists of negative facts only; Bst(B) = f if B

consists of positive facts only; otherwise, Bst(B) = xi if xi is the first fact in
B with another sign than x0.

– (well-founded) Bwf (B) = t if B is a negative ∞-branch; Bwf (B) = f if B is a
positive ∞-branch; Bwf (B) = u if B is mixed and x0 ∈ Fp; Bwf (B) = ∼u if
B is mixed and x0 ∈ Fn.

The names suggest a connection to different semantics of logic programs. This
will be explored below.

Definition 9. Given some branch evaluation B, we say that x ∈ Fd is supported
by J in A (under B) if for all branches B = x → . . . in J , we find B(B) ∈ A.
We say that x is supported by JF in A (under B) if there exists a complete
justification J of JF such that x is supported by J in A. We denote the set of
supported facts by SB

JF (A).

Using the specific branch evaluation Bsp allows to express the derivation
operator associated to a justification frame.

Proposition 3. For Bsp we have SBsp

JF (A) = TJF (A).

This property does not hold for other branch evaluations. Each combination of
justification frame JF and branch evaluation B induces an operator SB

JF (·) from
interpretations of F to interpretations of Fd.

Proposition 4. If JF ,JF ′ are equivalent (i.e., they induce the same operator)
then for each branch evaluation B, the operators SB

JF (·) and SB
JF ′(·) are identical.

The meaning of a justification frame is not only specified by the set of its
rules but also by the selected branch evaluation. The same set of rules may have
a different meaning for a different branch evaluation. This is captured in the
next definition, another central concept of the paper: a justification system is a
justification frame extended with a branch evaluation.

Definition 10. A justification system is a structure 〈F ,Fd, R,B〉 with
〈F ,Fd, R〉 a justification frame and B a branch evaluation on that frame.

Again, we can associate an operator with a justification system just like we
did for justification frames. We only have to additionally take into account the
specific branch evaluation at hand.

Definition 11. Let JS = 〈F ,Fd, R,B〉 be a justification system and let JF =
〈F ,Fd, R〉 be its included justification frame. With JS we associate the operator
SB

JF (·) : IF → IFd
and denote the mapping of an interpretation A under this

operator as JS(A). The justified interpretations of a justification system JS are
the fixpoints of SB

JF (·).
The operator SB

JF (·) : IF → IFd
can only be iterated if its domain and co-

domain are identical, that is, if Fo = ∅. There is a simple way to fix this: each
operator O from IF to IFd

has a canonical extension O′ : IF → IF defined as
O′(A) = O(A) ∪ (A ∩ Fo). The extended operator copies the interpretation of
the parameters and can be iterated.
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4 Reconstructions

This section shows how several established knowledge representation formalisms
can be reconstructed within our theory of justifications. Often, formalisms make
implicit semantic assumptions – e.g. in logic programs any atom without a rule
is considered to be false. The next definitions show how our theory makes such
assumptions explicit.

Take a justification frame JF = 〈F ,Fd, R〉 and a fact x ∈ Fd. We can view
the body of a rule x ← S ∈ R as a logical conjunction of literals, δS =

∧
y∈S y.

The set of all cases for x then can be thought of as a (possibly infinite) disjunction
of such conjunctions, γx =

∨
x←S∈R δS . In a sense, γx characterizes the truth

value of x in any given interpretation. Intuitively, our definition of complement
closure below aims to construct the rules that are needed to characterize the
negation of x, the fact ∼x. To obtain these rules we use the negation of γx,
that is, ¬γx = ¬

∨
x←S∈R δS ≡

∧
x←S∈R ¬δS . To get actual rules according to

the definition of a justification system, we consider the DNF of ¬γx, that is, all
possible ways of making all possible cases for x inapplicable.

Definition 12. A selection function for x ∈ Fd is a function S from the set
JF(x) of cases of x to F such that S(S) ∈ S for each S ∈ JF(x). A complement
selection of x ∈ Fd in JF is a set {∼S(S) | S ∈ JF(x)} for some selection
function S for x.

The complement selections of x correspond to the disjuncts in the DNF of ¬γx.
Each selects at least one element from each case of x and adds the negations
of all selected elements in one set. It can be seen that if all elements of this set
are true, then the bodies of all rules of x are false. Vice versa, if the bodies of
all rules of x are false then all elements of at least one complement selection
are true.

Definition 13. Let JF = 〈F ,Fd, R〉 be a justification frame such that either
one of: (1) x ← S ∈ R implies that x ∈ Fp (there are no rules for negative
facts); or (2) x ← S ∈ R implies that x ∈ Fn (there are no rules for positive
facts). The complement closure of JF is the justification frame 〈F ,Fd, R ∪ Rc〉
where Rc consists of all rules ∼x ← S with x ∈ Fd and S a complement selection
of x in JF .

Example 5 (Continuation of Example 2). The complement closure of the
justification frame for transitive closure contains all possible rules of the
form ∼Path(a, b) ← S, where S is any subset of F that contains at least ∼E(a, b)
and for every c ∈ V either the literal ∼Path(a, c) or the literal ∼Path(c, b).

We now look at how existing semantics of existing formalisms can be recon-
structed using justification systems.

Argumentation. Our first reconstruction shows how Dung-style argumentation
frameworks (AFs) [11] give rise to justification frames. Argumentation frame-
works are a simple, popular formalism for representing arguments and attacks
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between these arguments. More precisely, an AF is a pair F = (A,X) where A
is a set of (atomic) arguments and X ⊆ A×A is a binary relation (“attack”) on
arguments. Intuitively, if (a, b) ∈ X, then argument a attacks argument b.

Definition 14. Given an AF F = (A,X), the justification frame associated
with F is JFF = (F ,Fd, R) such that F = Fd = A ∪ ∼A and R =
{∼a ← {b} | (b, a) ∈ X}.

Thus in the resulting fact space F there is a fact a for each argument a ∈ A,
and a fact ∼a for the opposite of each argument a ∈ A. ll of these facts are
(going to be) defined. The rules of JFF for negative ∼a ∈ F encode the mean-
ing of “attack”: an argument a is rejected (that is, its opposite ∼a is true) if
one of its attackers b is accepted (b is true). The complement closure JFc

F will
additionally contain the rules Rc = {a ← {∼b | (b, a) ∈ X} | a ∈ A}. Intuitively,
these derived rules express that for an argument a to be accepted, all its attack-
ers b must be rejected (that is, their opposites ∼b must be true). Using one
and the same branch evaluation, namely Bsp , we can show that justification
systems allow us to reconstruct the major semantics of abstract argumentation
frameworks.

Proposition 5. Let F = (A,X) be an argumentation framework and JFc
F be

the complement closure of its associated justification frame JFF . A consistent
interpretation A

– is an exact fixpoint of TJFc
F

iff it is stable for F ;
– is a fixpoint of TJFc

F
iff it is complete for F ;

– is a ⊆-maximal fixpoint of TJFc
F

iff it is preferred for F ;
– is the ⊆-least fixpoint of TJFc

F
iff it is grounded for F ;

– satisfies A ⊆ TJFc
F
(A) iff it is admissible for F .

Proof (Sketch). Consistent interpretations A can be seen as three-valued inter-
pretations on the set A. It can be shown that TJFF

is (isomorphic to) the
three-valued characteristic operator of the AF F . The claims then follow from
Propositions 4.4 to 4.9 in [16]. �

Four out of five of these types of fact sets correspond to specific sorts of fixpoints
of TJFc

F
. Thus an argument (or its opposite) belongs to such a set iff it is

justified by one of its cases. The exceptions are the admissible sets, which are
only postfixpoints: facts in an admissible set have to be justified by it but not all
facts justified by such a set must belong to the set. Although we technically use
sets, these semantics are three-valued and thus closer to the notion of a labelling
than to that of a set-based extension.

Logic Programming. Justification frames differ from propositional logic pro-
grams in two ways: (a) the presence of a set Fo of parameter literals (whose
interpretation is not defined by the rules), and (b) the presence of rules with
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negation in the head (which via complement closure can be derived from those
for positive literals).1

Definition 15. Let Π be a (propositional) logic program over atoms Σ. The
justification frame associated with Π is the structure JFΠ = (F ,Fd,Π) where
Fd is the set of all literals over Σ, and F\Fd = Fo is the set of logical facts.

We assume without loss of generality that JFΠ is proper, i.e. it contains at
least one rule per non-logical fact (possibly p ← {f }) and rule bodies are non-
empty. While the above definition is about propositional logic programs, the
approach easily generalizes to the predicate case by simply instantiating the
rules using first-order interpretations. We now establish the connection between
branch evaluations and various semantics of logic programs. Since Π contains
only rules for atoms, we apply complement closure.

Theorem 1. Let Π be a logic program and JF be the complement closure of
JFΠ .

– An exact interpretation A is an exact fixpoint of SBsp

JF (·) iff A is a supported
model of Π.

– An interpretation A is a fixpoint of SBKK

JF (·) iff A is the Kripke Kleene model
of Π.

– An interpretation A is an exact fixpoint of SBst

JF (·) iff A is a stable model of Π.
– An interpretation A is a fixpoint of SBwf

JF (·) iff A is the well-founded model
of Π.

For some branch evaluations B, the value of SB
JF (A) depends entirely on the

value of parameter facts in A. This is the case if the branch evaluation maps
every branch to a parameter fact.

Definition 16. A branch evaluation B is parametric if for every branch B, B(B)
is a parameter fact.

Proposition 6. If B is parametric, then for every parameter interpretation
Ap ⊆ Fo, A = SB

JF (Ap) is the unique fixpoint of SB
JF (·) such that A ∩ Fo = Ap.

The branch evaluations BKK and Bwf are parametric. They are used in logic
programming semantics that have a unique model. Bsp and Bst are not paramet-
ric, and thus, supported and stable semantics admit for any number of models.2

1 Negation in the head of (extended) answer set programs is different from the negation
studied here, and the justification semantics defined below is not directly suitable
to compute answer sets of programs with explicit negation. We focus on systems
where the rules for facts and their negations are complementary, hence negation is
classical. In contrast, rules of ASP for negative literals are independent of those for
positive literals.

2 By dropping the constraint that Fo consists of logical facts only, we obtain extensions
of all main semantics for a parameterized variant of logic programming.
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Example 6. Consider the branch evaluation Bcowf (B) defined like Bwf except
that positive ∞-branches are evaluated to t and negative ones to f . The
semantics induced by Bcowf is a sort of well-founded semantics that “prefers”
maximal models. This induces a coinductive semantics as in, for example,
μ-calculus [6] and coinductive logic programming [12]. For an illustration, con-
sider the set D of finite and infinite lists over {A,B} and JF = 〈F ,Fd, R〉
where Fd = {P (s) | s ∈ D} and F the extension of Fd with logical facts and,
using Prolog notation [H|T ] for lists with head H and tail T , the rule set
R =

{
P ([A,B|s]) ← {P (s)} | s ∈ D

}
. After taking the complement closure, an

interpretation A is a fixpoint of SBcowf

JF (·) iff A = {P ([A,B,A,B,A,B, . . . ])}. Had
we used Bwf (“preferring” minimal models), the fixpoint would have been ∅.

5 Nested Justification Systems

Modularity and composition are key properties of knowledge representation lan-
guages. We compose (parametric) justification systems by nesting them. It is
important to note that nesting as presented in this section is restricted to para-
metric justification systems for reasons that will become clear soon.

Definition 17. Let F be a set of facts. A nested justification system on F is a
tuple JS = 〈F ,Fdg,Fdl, R,B, {JS1, . . . ,JSk}〉 where:

– 〈F ,Fdl, R,B〉 is a parametric justification system.
– Each JSi is a nested justification system on fact space F i = (F\Fdg) ∪ F i

dg

with (globally) defined facts F i
dg.

– Fdg is the disjoint union of Fdl and F1
dg, . . . ,Fk

dg.

A nested justification system is a tree-like definition that defines the set Fdg of
globally defined facts. This set is partitioned into k +1 subsets. One subset, Fdl,
consists of facts that are locally defined in the root of the tree by R. The rest
of the facts are defined in one of the k nested subdefinitions JSi of JS. The
branch evaluation of JS is defined for branches of locally defined facts only. The
parameters of subdefinitions JSi are those of JS augmented with the locally
defined facts. In particular, for each JSi, facts defined in siblings JSj with j �= i
are not to appear as parameters of JSi. In leaves of the tree, we have k = 0 and
Fdg = Fdl.

The semantics of nested justification systems is based on two notions: com-
pression and unfolding. We start explaining the latter. Let R1 be a set of rules
defining facts Fd1 ⊆ F , R a second set of rules in fact space F . The unfolding of
R1 on Fd1 in R, denoted UNF(Fd1,R1)(R), is the set of rules that can be obtained
from any x ← S ∈ R by replacing each fact y ∈ S defined in R1, in an arbitrary
way, by the body facts of a rule y ← S′ ∈ R1. E.g., suppose R contains rule
a ← {g, b} and R1 contains the rules b ← {c, d}, b ← {f } for b. Then unfolding
R1 on {b} in R replaces that rule of R by two rules, a ← {g, c, d} and a ← {g, f }.
Compression turns a nested definition into an (equivalent) unnested one.
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Definition 18. Let JS = 〈F ,Fdg,Fdl, R,B, {JS1, . . . ,JSk}〉 be a justification
system. Its compression C(JS) is defined inductively: C(JS) = 〈F ,Fdg, Rc,B〉
where

Rc = Rs ∪ UNF(Fdg\Fdl,Rs)(R)

with Rs = R1
c ∪ · · · ∪ Rk

c and Ri
c is the set of rules x ← S such that x ∈ F i

dg

and S =
{
Bi(B)

∣
∣ B is a branch of x in J

}
for some complete justification J of

JSi.

Notice that in the base case k = 0, justification system JS and its compres-
sion C(JS) are essentially the same. Now we see why all branch evaluations B
used in different nodes must be parametric, and why definitions cannot use facts
defined in nodes not on the path from the root to the current node. Under these
conditions, subdefinitions JSi are translated in an equivalence preserving way
in a set of flat rules x ← S where S contains only parameter facts and locally
defined facts of JS. With the set Rs of all these rules, we eliminate non-locally
defined facts in bodies of the local definition R by unfolding Rs on Fdg\Fdl in R,
thus producing rules that contain only parameter and locally defined bodies of
JS. For the resulting definition Rc, we use Bsp for branches of facts of Fdg\Fdl

and the locally given B for branches of locally defined facts. Hence, the operator
SB

C(JS)(·) is well-defined and its fixpoints define the semantics of JS.

Example 7. We define a nested justification system with JS2 nested in JS1.
Take the list domain D as in Example 6, F1

dl = {P (s) | s ∈ D} and F2
dl =

{Q(s) | s ∈ D}, B1 = Bcowf and B2 = Bwf and finally,

R1 =
{

P (s) ← {Q(s)} | s ∈ D
}

R2 =
{

Q([A|s]) ← {P (s)} | s ∈ D
}

∪
{

Q([B|s]) ← {Q(s)} | s ∈ D
}

After taking the complement closure of JS1 and its compression, the rules defin-
ing positive facts are, for each s ∈ D:

P ([B, . . . , B, A|s]) ← {P (s)} and Q([B, . . . , B, A|s]) ← {P (s)}

In the unique supported interpretation of the compression, both P and Q are
the set of all lists with infinitely many occurrences of A.

In our final example, we show how our justification framework can treat logic
programs with aggregates in rule bodies. In particular, this illustrates the power
of nesting.

Example 8. Consider a logic program rule with a weight constraint, that is,

p ← i ≤ {l1, . . . , ln} ≤ j (1)

with 1 ≤ i ≤ j ≤ n, meaning that p is true if at least i and at most j literals
from the set L = {l1, . . . , ln} are true. An LP rule (1) is translated into the set
of JF rules

Rp =
{
p ← L+ ∪ ∼L− ∣

∣ L+, L− ⊆ L and
∣
∣L+

∣
∣ = i and

∣
∣L−∣

∣ = n − j
}
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Alternatively, we can use nested definitions. A weight-constraint rule (1) appears
in the top-level definition with qi≤{l1,...,ln}≤j a single new atom in the body. Such
new atoms are then defined by a nested definition qi≤{l1,...,ln}≤j ← L+ ∪ ∼L−

with L+ and L− as in Rp above. It is not difficult to see that the compression of
the second approach yields the first. This application further clarifies aggregates,
nesting and compression.

6 Discussion

Justifications as mathematical semantical constructs have appeared in different
ways in different areas. In [17,18], stable and answer set semantics are defined
for programs using justifications similar to ours. Phrased in the terms of our
paper, atoms x are justified by sets S = {Bst(B) | B is a branch of x in J} for
some complete justification J of the program. Tree-shaped justifications were
used in [3] to build a semantical framework for (abductive) logic programming.
[19] present an algebra of tree-shaped justifications for atomic positive facts
for logic programming. [20] propose justification graphs for justifying the truth
value of atoms in answer sets of logic programs. Our study differs on the tech-
nical level and generalizes these works in several dimensions, e.g. by considering
parameters, alternative branch evaluations (e.g. coinduction), nesting and novel
applications (e.g. to argumentation frameworks). Justifications as datastructures
are used in the ASP solver clasp [8] and in the FO(ID) model expander IDP3 [9].
Justifications are underlying provenance systems in the context of databases [21].

The justification framework defined above is of great amplitude and much
uncharted territory lies in front. It covers a remarkable amount of existing seman-
tics in different areas. Here we showed this for argumentation frameworks and
logic programming. The framework also induces new and more general versions of
these formalisms. For example it comprises nested logic programs with negation
and feedback, a new formalism that remains to be studied.3 Alternative branch
evaluations can be introduced. For example, some have argued that in the logic
program {P ← ¬P}, P should be inconsistent while in {P ← ¬Q,Q ← ¬P},
P and Q should be undefined [23]. A refinement of Bwf that would distinguish
between these cases would be the one that assigns i to branches B with comple-
mentary facts x,∼x. This remains to be explored. The justification framework
may be applicable to many other logics as well. We already mentioned coin-
ductive logic programming [12] (as illustrated by Example 6); we expect the
framework to cover other mathematical and knowledge representation logics of
nested induction/coinduction such as μ-calculus [6], FO(LFP) with nesting [7]
and FO(FD) [13]. We believe that our justification theory can also be applied to
assumption-based argumentation [24] and abstract dialectical frameworks [25].
The approach is promising as well for logics of causality such as FO(C) [26]. All
these connections still need to be investigated. As mentioned in Sect. 1, we know
3 This should not be confused with the nested logic programs of [22], where nesting

refers to the expressions inside a logic program rule, and not sets of rules being
nested altogether.
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of only one other approach with a comparable coverage: Approximation Fixpoint
Theory (AFT) [4]. While AFT is defined in a different way (as an algebraical
fixpoint theory of lattice operators), it was used to characterize about the same
semantics for the same logics and the question is if there is a relationship between
both frameworks. Such a relationship would further broaden the application of
our justification framework, for example to autoepistemic logic and default logic.
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4. Denecker, M., Marek, V., Truszczyński, M.: Approximations, stable operators, well-
founded fixpoints and applications in nonmonotonic reasoning. In: Minker, J. (ed.)
Logic-Based Artificial Intelligence, pp. 127–144. Springer, New York (2000)
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Abstract. We present a new approach to evaluate conditionals in
human reasoning. This approach is based on the weak completion seman-
tics which has been successfully applied to adequately model various
other human reasoning tasks in the past. The main idea is to explicitly
consider the case, where the condition of a conditional is unknown with
respect to some background knowledge, and to evaluate it with minimal
revision followed by abduction. We formally compare our approach to a
recent approach by Schulz and demonstrate that our proposal is superior
in that it can handle more human reasoning tasks.

1 Introduction

Conditionals are statements of the form if condition then consequence. Indica-
tive conditionals are conditionals whose condition may or may not be true and,
consequently, whose consequence also may or may not be true; however, the
consequence is asserted to be true if the condition is true. On the contrary, the
condition of a subjunctive or counterfactual conditional needs to be false [21];1

however, in the counterfactual circumstance of the condition being true, the
consequence is asserted to be true. We will distinguish between both types by
expressing them in their indicative or subjunctive mood, respectively. It is gen-
erally accepted that conditionals in natural language do not have the same inter-
pretation as material (or truth functional) conditionals [10]. A lot of approaches
have been proposed but it seems that there is no agreement on a general the-
ory [11]. We briefly discuss a few of them.

Ramsey [32] proposed to test conditionals by assuming the condition
hypothetically and verify whether the consequence follows. This approach is
problematic in case the current state is not consistent with the condition.
Stalknaker [38] extended Ramsey’s approach and suggested minimal revision.
Lewis [22] showed that Stalknaker and Thomason’s counterfactual theory of pos-
sible worlds [39] had some technical problems and developed an approach of max-
imal world-similarity [21,23]. Ginsberg’s possible worlds approach [13] towards

The authors are mentioned in alphabetical order.
1 This and other definitions are controversially discussed within the fields of philosophy

and psychology [14]. Some require, that counterfactuals must be in the subjunctive
mood or can only be evaluated in a state that is different wrt the current one [43].
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F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 265–278, 2015.
DOI: 10.1007/978-3-319-23264-5 23



266 E.-A. Dietz and S. Hölldobler

counterfactuals might be one of the first in the field of AI. It has been improved
by requiring relevancy [28]. Other early approaches have been proposed in [3,35].
The logic programming approaches presented in [1,2,31,41,42] are inspired by
Pearl’s structural theory of counterfactuals in Bayesian networks [26,27]. The
distinction between causal and counterfactual reasoning, based on Pearl’s the-
ory, is been extensively discussed in [37]. Rescher [33,34] presented a systematic
reconstruction of the belief system using principles of saliency and prioritization,
which only requires to consider immediately relevant beliefs.

The question which we shall be discussing in this paper is how to auto-
mate reasoning such that conditionals are evaluated by an automated deduction
system like humans do. This will be done in a context of logic programming
(cf. [24]), weak completion [16], abduction [19], Stenning and van Lambalgen’s
representation of implications as well as their semantic operator [40] and three-
valued �Lukasiewicz logic [25], which has been put together in [9,15–18]. This
approach–which we call WCS for weak completion semantics–has been applied
to adequately model the suppression [7] and the selection tasks [8], the belief-bias
effect [29] as well as contextual abductive reasoning with side-effects [30].

The methodology of the WCS approach applied to reasoning about condi-
tionals differs significantly from methods and techniques applied in well-known
approaches. It is inspired by [27] and we agree with Rescher’s view to concen-
trate on the relevant knowledge and minimally revising the current state. We
evaluate conditionals with respect to some background knowledge and explicitly
treat the case where the conditions of a conditional are unknown. In this case we
apply a monotonic form of minimal revision followed by abduction in order to
satisfy the conditions. We apply the new method to indicative as well as coun-
terfactual conditionals. As a very similar approach has been proposed by Schulz
recently [36], we formally show that the WCS approach is more general. Finally,
we discuss some open questions and point to future research.

2 Preliminaries

We assume the reader to be familiar with logic and logic programming, but recall
basic notions and notations. A (logic) program is a finite set of (program) clauses
of the form A ← �, A ← ⊥ or A ← B1 ∧ . . . ∧ Bn, n > 0, where A is an atom,
Bi, 1 ≤ i ≤ n, are literals and � and ⊥ denote truth and falsehood, resp. A is
called head and �, ⊥ as well as B1∧ . . .∧Bn are called body of the corresponding
clause. Clauses of the form A ← � and A ← ⊥2 are called positive and negative
facts, respectively. We restrict terms to be constants and variables only, i.e., we
consider data logic programs. Throughout this paper, P denotes a program. We
assume for each P that the alphabet consists precisely of the symbols occurring
in P and that non-propositional programs contain at least one constant. When
writing sets of literals we will omit curly brackets if the set has only one element.
2 We consider weak completion semantics and, hence, a clause of the form A ← ⊥ is

turned into A ↔ ⊥ provided that this is the only clause in the definition of A.
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gP denotes the set of all ground instances of clauses occurring in P. A ground
atom A is defined in gP iff gP contains a clause whose head is A; otherwise A
is said to be undefined . def (S,P) = {A ← body ∈ gP | A ∈ S ∨ ¬A ∈ S} is
called definition of S in P, where S is a set of ground literals. S is said to be
consistent iff it does not contain a pair of complementary literals.

For a given P, consider the following transformation: (1) For each defined
atom A, replace all clauses of the form A ← body1, . . . , A ← bodym occurring in
gP by A ← body1 ∨ . . . ∨ bodym. (2) Replace all occurrences of ← by ↔. The
obtained set is called weak completion of P or wcP.3

We consider the three-valued �Lukasiewicz (or �L-) logic [25] and represent each
interpretation I by 〈I�, I⊥〉, where I� = {A | I(A) = �}, I⊥ = {A | I(A) = ⊥},
I� ∩ I⊥ = ∅, and each ground atom A �∈ I� ∪ I⊥ is mapped to U (unknown).
Let 〈I�, I⊥〉 and 〈J�, J⊥〉 be two interpretations. We define:

〈I�, I⊥〉 ⊆ 〈J�, J⊥〉 iff I� ⊆ J� and I⊥ ⊆ J⊥ and
〈I�, I⊥〉 ∪ 〈J�, J⊥〉 = 〈I� ∪ J�, I⊥ ∪ J⊥〉.

It has been shown in [16] that logic programs as well as their weak completions
admit a least model under �L-logic. Moreover, the least �L-model of wcP can be
obtained as the least fixed point of the following semantic operator, which is due
to Stenning and van Lambalgen [40]: ΦP(〈I�, I⊥〉) = 〈J�, J⊥〉, where

J� = {A | A ← body ∈ gP and body is true under 〈I�, I⊥〉},
J⊥ = {A | def(A,P) �= ∅ and

body is false under 〈I�, I⊥〉 for all A ← body ∈ def (A,P)}.

Weak completion semantics (WCS) is the approach to consider weakly com-
pleted logic programs and to reason with respect to the least �L-models of these
programs. We write P |=wcs F iff formula F holds in the least �L-model of wcP.
In the remainder of this paper, MP denotes the least �L-model of wcP.

The ΦP operator differs from the semantic operator defined by Fitting
in [12] in that the additional condition def (A,P) �= ∅ is required in the def-
inition of J⊥. This condition states that A must be defined in order to be
mapped to false, whereas in the Kripke-Kleene-semantics considered by Fitting
an atom is mapped to false if it is undefined. This reflects precisely the difference
between the weak completion and the completion semantics. The Kripke-Kleene-
semantics was also applied in [40]. However, as shown in [16] this semantics is not
only the cause for a technical bug in one theorem of [40], but it does also lead to
a non-adequate model of some human reasoning tasks. Both, the technical bug
as well as the non-adequate modeling, can be avoided by using WCS.

As shown in [9], WCS is related to the well-founded semantics (WFS) as
follows: Let P be a program which does not contain a positive loop and let
P+ = P\{A ← ⊥ | A ← ⊥ ∈ P}. Let u be a new nullary relation symbol not
occurring in P in P∗ = P+ ∪ {B ← u | def (B,P) = ∅} ∪ {u ← ¬u}. Then, the
least �L-model of wcP and the well-founded model for P∗ coincide. The programs
specified in [7,8], which model the suppression and the selection task as well as
3 Note that undefined atoms are not identified with ⊥ as in the completion of P [5].
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the programs presented in the sequel of this paper are acyclic and, thus, tight.
Therefore, our results hold for both, WCS and WFS.

An abductive framework consists of a logic program P, a set of abducibles
AP = {A ← � | def (A,P) = ∅} ∪ {A ← ⊥ | def (A,P) = ∅}, a set of integrity
constraints IC, i.e., expressions of the form ⊥ ← B1∧. . .∧Bn, and the entailment
relation |=wcs . An abductive framework is denoted by 〈P,AP , IC, |=wcs〉.

One should observe that each P and, in particular, each finite set of positive
and negative ground facts has an �L-model. For the latter, this can be obtained by
mapping all heads occurring in this set to true. Thus, in the following definition,
explanations as well as the union of a program and an explanation are satisfiable.

An observation O is a set of ground literals; it is explainable in the framework
〈P,AP , IC, |=wcs〉 iff there exists a (minimal) E ⊆ AP called explanation such
that MP∪E satisfies IC and P ∪ E |=wcs L for each L ∈ O.

3 The Semantic Operator Revisited

Before looking into conditionals, we need to reconsider the ΦP operator and
establish some of its properties. The least fixed point of ΦP can be computed
by iterating the operator starting with the empty interpretation: ΦP ↑0 = 〈∅, ∅〉,
ΦP ↑(n + 1) = ΦP(ΦP ↑n) for all n ∈ N.

Proposition 1

1. ΦP is monotonic.
2. For all n ≥ 0 we find ΦP(ΦP ↑n) ⊇ ΦP ↑n.
3. For all n ≥ 0 we find ΦP ↑(n + 1) = Φ↑n ∪ 〈J�, J⊥〉, where

J� = {A | Φ↑n(A) = U and A ← body ∈ gP and Φ↑n(body) = �},
J⊥ = {A | Φ↑n(A) = U and def (A,P) �= ∅ and

Φ↑n(body) = ⊥ for all A ← body ∈ def (A,P)}.

Proof

1. Has been shown as Proposition 3.21 in [20].
2. The proof is by induction on n: The case n = 0 holds because

ΦP(ΦP ↑0) = ΦP(〈∅, ∅〉) ⊇ 〈∅, ∅〉.

From the induction hypothesis ΦP(ΦP ↑ n) ⊇ ΦP ↑ n we conclude by the
monotonicity of ΦP that ΦP(ΦP(ΦP ↑ n)) ⊇ ΦP(ΦP ↑ n), which is equal to
ΦP(ΦP ↑(n + 1)) ⊇ ΦP ↑(n + 1).

3. Φ↑(n+1) = Φ↑n∪Φ↑(n+1) = Φ↑n∪ (Φ↑(n+1)\Φ↑n) = Φ↑n∪〈J�, J⊥〉.

4 Revision

The first new concept introduced in this paper is a revision operator which revises
a given program with respect to a set of literals. Revision will be needed when
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evaluating counterfactual conditionals in order to revise background knowledge
in the form of a logic program such that a previously false condition is mapped
to true under the revised program. Somehow surprisingly it will turn out that
revision is also needed in the evaluation of indicative conditionals.

Let S be a finite and consistent set of ground literals in

rev(P,S) = (P\def (S,P)) ∪ {A ← � | A ∈ S} ∪ {A ← ⊥ | ¬A ∈ S},

where A denotes an atom. rev(P,S) is called the revision of P with respect to S.

Proposition 2

1. rev is non-monotonic, i.e., there exist P, S and F such that P |=wcs F and
rev(P,S) �|=wcs F .

2. rev is monotonic, i.e., MP ⊆ Mrev(P,S), if MP(L) = U for all L ∈ S.
3. Mrev(P,S)(S) = �.

Proof

1. Let P = {a ← �}, S = {¬a} and F = a. We find MP = 〈a, ∅〉, rev(P,S) =
{a ← ⊥}, Mrev(P,S) = 〈∅, a〉, P |=wcs a and rev(P,S) �|=wcs a.

2. MP and Mrev(P,S) can be computed by iterating ΦP and Φrev(P,S), respec-
tively. By induction on n we can show that for all n ∈ N the relationship
ΦP ↑ n ⊆ Φrev(P,S) ↑ n holds. In case n = 0 we find ΦP ↑ 0 = 〈∅, ∅〉 =
Φrev(P,S) ↑0. We assume that the result holds for n and turn to the induction
step:

ΦP ↑(n + 1) = ΦP(ΦP ↑n) = 〈I�, I⊥〉, (1)

where

I� = {A | A ← body ∈ gP, ΦP ↑n(body) = �}
I⊥ = {A | def (A,P) �= ∅, ΦP ↑n(body) = ⊥ for all A ← body ∈ def (A,P)}

As MP(L) = U for all L ∈ S, we find that atom(L) is neither in I� nor in
I⊥, where atom(L) = L if L is an atom and atom(L) = A if L = ¬A. By the
definition of revision, however, atom(L) is either in J� or in J⊥, where

J� = {A | A ← body ∈ g rev(P,S), Φrev(P,S) ↑n(body) = �}
J⊥ = {A | def (A, rev(P,S)) �= ∅,

Φrev(P,S) ↑n(body) = ⊥ for all A ← body ∈ def (A, rev(P,S))}

As P and rev(P,S) contain identical definitions for atoms not occurring in
S we conclude by the induction hypothesis that I� ⊆ J�, I⊥ ⊆ J⊥ and

〈I�, I⊥〉 ⊆ 〈J�, J⊥〉 = Φrev(P,S)(Φrev(P,S) ↑n) = Φrev(P,S) ↑(n + 1). (2)

The result follows by combining (1) and (2) and the induction theorem.
3. Follows immediately from the definition of revision and Proposition 1.
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5 Indicative Conditionals

Conditions as well as consequences of conditionals are assumed to be finite sets
(or conjunctions) of ground literals. When parsing conditionals we assume that
information concerning the mood of the conditionals has been extracted. In
this section we focus on the indicative mood. In the sequel, let cond(C,D) be a
conditional with condition C and consequence D, both of which are assumed to
be finite and consistent sets of literals.

Conditionals are evaluated with respect to some background information
specified as a program and a set of integrity constraints. More specifically, as
the weak completion of each program admits a least �L-model, conditionals are
evaluated under the least �L-model of a program. In the reminder of this section
let P be a program, IC be a finite set of integrity constraints, and MP be the
least �L-model of wcP such that MP satisfies IC.

In this setting we propose to evaluate indicative conditionals as follows:

1. If MP(C) = � and MP(D) = �, then cond(C,D) is true.
2. If MP(C) = � and MP(D) = ⊥, then cond(C,D) is false.
3. If MP(C) = � and MP(D) = U, then cond(C,D) is unknown.
4. If MP(C) = ⊥, then cond(C,D) is vacuous.
5. If MP(C) = U, then evaluate cond(C,D) with respect to MP′ , where

– MP′ is the least �L-model of wcP ′,
– P ′ = rev(P,S) ∪ E ,
– S is a smallest subset of C and E ⊆ Arev(P,S) is a minimal explanation for

C\S such that MP′(C) = � and MP′ satisfies IC.

In words, if the condition of a conditional is true, then the conditional is
evaluated as implication in �L-logic. If the condition is false, then �L-logic would
assign true to the conditional. However, we believe that such a conditional is
in fact not an indicative but a subjunctive one. For the time being, we assign
vacuous to it and intend to investigate this case more thoroughly in the future.

The novel contribution concerns the case that the condition C of a condi-
tional is unknown. In this case we propose to split C into two disjoint subsets S
and C\S, where the former is treated by revision and the latter by abduction.
In case C contains some literals which are true and some which are unknown
under MP , then the former will be part of C\S because the empty explanation
explains them. As we assume S to be minimal this approach is called minimal
revision followed by abduction (MRFA). Furthermore, because revision as well
as abduction are only applied to literals which are assigned to unknown, the
approach is monotonic.

6 Examples

We will focus on the novel and interesting case in our approach, i.e., the one
where the condition of a conditional is unknown. In particular, we consider the
firing squad example discussed in [26]: If the court orders an execution (exec),
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then the captain will give the signal (sig) upon which riflemen A (rmA ) and B
(rmB) will shoot the prisoner. Consequently, the prisoner will be dead (dead).
We assume that the court’s decision is unknown, that both riflemen are accurate,
alert and law-abiding, and that the prisoner is unlikely to die from any other
cause. This background information can be captured in the following program

P1 = { sig ← exec ∧ ¬ab1, rmA ← sig ∧ ¬ab2, rmB ← sig ∧ ¬ab3,
dead ← rmA ∧ ¬ab4, dead ← rmB ∧ ¬ab5, alive ← ¬dead ∧ ¬ab6 }

∪ { abi ← ⊥ | i ∈ [1, 6] },

where we have presented conditionals by licenses for implications as proposed
in [40].4 We obtain MP1 = 〈∅, {abi | i ∈ [1, 6]}〉. The set AP1 of abducibles
in the abductive framework 〈P1,AP1 , ∅, |=wcs〉 is {exec ← �, exec ← ⊥}. The
explanation E�

1 = {exec ← �} explains {sig , rmA, rmB , dead,¬alive}, whereas
E⊥
1 = {exec ← ⊥} explains {¬sig ,¬rmA,¬rmB ,¬dead, alive}. The observation

{¬sig , rmA} cannot be explained at all because wcAP1 = {exec ↔ � ∨ ⊥} ≡
{exec ↔ �}, where ≡ denotes semantic equivalence. We will now evaluate three
indicative conditionals with respect to MP1 :

1. If the prisoner is alive, then the captain did not signal , i.e. cond(alive,¬sig):
As alive can be explained by E⊥

1 and MP1∪E⊥
1

(¬sig) = �, the conditional is
true. In this case revision is not needed.

2. If rifleman A shot, then rifleman B shot as well , i.e., cond(rmA, rmB): As
rmA can be explained by E�

1 and MP1∪E�
1

(rmB) = �, the conditional is
true. Again, revision is not needed.

3. If the captain gave no signal and rifleman A decides to shoot, then the court
did not order an execution, i.e. cond({¬sig , rmA},¬exec): As {¬sig , rmA}
cannot be explained, P1 must be revised. Let P2 = rev(P1, rmA). We obtain
MP2 = 〈{rmA, dead}, {alive} ∪ {abi | i ∈ [1, 6]}〉. ¬sig is still mapped to
unknown under this model, but it can now be explained by {exec ← ⊥}.
Hence, the conditional is true. In [6] an abstract reduction system for the
evaluation of indicative conditionals has been specified, where separate rules
allow the application of revision and abduction in any order, and it was
shown that there is no other minimal revision followed by abduction for
cond({¬sig , rmA},¬exec).

Note that the results would be different under the well-founded seman-
tics: The well-founded model of P1 is 〈{alive}, {abi | i ∈ [1, 6]} ∪ {exec, sig ,
rmA, rmB , dead}〉. As no atom is unknown in this model, no conditional evalu-
ates to unknown. Accordingly, only revision can be applied for the evaluation of
each conditional.
4 In this section, the abnormality predicates are not needed. We have kept them to be

in line with our general approach to model human reasoning episodes (see e.g. [7])
and to be able to extend the example in the future by, for example, considering the
case that the captain is not law-abiding or that a rifle is malfunctioning.
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7 The Approach by Schulz

Schulz [36] presents another computational logic approach based on �L-logic,
where the ΦP operator is modified such that it allows to evaluate condition-
als. In this section, let S be a finite and consistent set of ground literals. S can
be identified with the interpretation 〈S�,S⊥〉, where S� = {A | A ∈ S} and
S⊥ = {A | ¬A ∈ S} and A denotes a ground atom.

Let I = 〈I�, I⊥〉 be an interpretation. Schulz defines

ΨP(〈I�, I⊥〉) = 〈I�, I⊥〉 ∪ 〈J�, J⊥〉,

where

J� = {A | I(A) = U, A ← body ∈ gP and I(body) = �},
J⊥ = {A | I(A) = U, def (A,P) �= ∅ and I(body) = ⊥ for all A ← body ∈ P}.

In contrast to the ΦP operator, which is iterated starting with the empty
interpretation, the ΨP operator is iterated as follows: ΨP ↑ 0 = 〈S�,S⊥〉 and
ΨP ↑ (n + 1) = ΨP(ΨP ↑ n). As shown in [36], the Ψ operator admits a least
fixed point which shall be denoted by lfp ΨP,S . Moreover, in [36] reasoning is
performed with respect to this fixed point, i.e. P,S |=s F iff lfp ΨP,S(F ) = �.

7.1 Some Properties

Let us identify some general properties of the operators ΦP and ΨP .

Proposition 3. lfp ΦP and lfp ΨP,S exist.

The existence of lfp ΦP and lfp ΨP,S was established in [16] and [36], respec-
tively. The following proposition is an immediate consequence of the definition
of the ΨP operator and corresponds to Proposition 2(3.).

Proposition 4. For all L ∈ S we find P,S |=s L.

7.2 The Correspondence

We show the correspondence between the approach by Schulz and our approach.

Lemma 5. For all n ∈ N, we find Φrev(P,S) ↑n ⊆ ΨP ↑n ⊆ Φrev(P,S) ↑(n + 1).

Proof. To simplify the presentation we will omit the indices of the operators ΨP
and Φrev(P,S) in this proof. The proof is by induction on n. In case n = 0 we find

Φ↑0 = 〈∅, ∅〉 ⊆ 〈S�,S⊥〉 = Ψ ↑0 ⊆ 〈I�, I⊥〉 = Φ↑1,

where

I� = {A | A ← � ∈ rev(P,S)} ⊇ S�,
I⊥ = {A | def (A, rev(P,S)) = {A ← ⊥}} ⊇ S⊥.
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As induction hypothesis we assume that the result holds for n, i.e.,

Φ↑n ⊆ Ψ ↑n ⊆ Φ↑(n + 1). (3)

In the induction step we need to show that the result holds for n + 1. We start
by showing that

Φ↑(n + 1) ⊆ Ψ ↑(n + 1). (4)

By Proposition 1(3.) and the definition of Ψ this corresponds to

Φ↑n ∪ 〈I�, I⊥〉 ⊆ Ψ ↑n ∪ 〈J�, J⊥〉,

where

I� = {A | Φ↑n(A) = U and A ← body ∈ gP and Φ↑n(body) = �},
I⊥ = {A | Φ↑n(A) = U and def (A,P) �= ∅ and

Φ↑n(body) = ⊥ for all A ← body ∈ gP},
J� = {A | Ψ ↑n(A) = U and A ← body ∈ gP and Ψ ↑n(body) = �},
J⊥ = {A | Ψ ↑n(A) = U and def (A,P) �= ∅ and

Ψ ↑n(body) = ⊥ for all A ← body ∈ gP}.

From the induction hypothesis (3) we conclude that

Φ↑n ⊆ Ψ ↑n ∪ 〈J�, J⊥〉. (5)

Now suppose that A ∈ I�. Then, Φ↑n(A) = U and we distinguish two cases:

1. If Ψ ↑n(A) = U, then A ∈ J� because of the induction hypothesis (3).
2. If Ψ ↑ n(A) �= U, then A must already been assigned to either true or false

under Ψ ↑n. By (3), Ψ ↑n ⊆ Φ↑(n + 1) and, hence, Ψ ↑n(A) = �.

Likewise, we find for A ∈ I⊥ that either A ∈ J⊥ or Ψ ↑n(A) = ⊥. Therefore,

〈I�, I⊥〉 ⊆ Ψ ↑n ∪ 〈J�, J⊥〉, (6)

and (4) follows immediately from (5) and (6).
We turn to the proof of

Ψ ↑(n + 1) ⊆ Φ↑(n + 2). (7)

By the definition for Ψ and Proposition 1(3.), this corresponds to

Ψ ↑n ∪ 〈J�, J⊥〉 ⊆ Φ↑(n + 1) ∪ 〈I�, I⊥〉,

where

J� = {A | Ψ ↑n(A) = U and A ← body ∈ gP and Ψ ↑n(body) = �},
J⊥ = {A | Ψ ↑n(A) = U and def (A,P) �= ∅ and

Ψ ↑n(body) = ⊥ for all A ← body ∈ gP},
I� = {A | Φ↑(n + 1)(A) = U and A ← body ∈ gP and Φ↑(n + 1)(body) = �},
I⊥ = {A | Φ↑(n + 1)(A) = U and def (A,P) �= ∅ and

Φ↑(n + 1)(body) = ⊥ for all A ← body ∈ gP}.
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By the induction hypothesis (3) we find

Ψ ↑n ⊆ Φ↑(n + 1) ∪ 〈I�, I⊥〉. (8)

Now suppose that A ∈ J�. Then, Ψ ↑n(A) = U and we distinguish two cases.

1. If Φ↑(n + 1)(A) = U, then A ∈ I� because of the induction hypothesis (3).
2. If Φ↑(n + 1)(A) �= U, then A must already be assigned to either true or false

under Φ↑(n + 1). By (4), Φ↑(n + 1)(A) = �.

Likewise, we find for A ∈ J⊥ that either A ∈ I⊥ or Φ↑(n+1)(A) = ⊥. Therefore,

〈J�, J⊥〉 ⊆ Φ↑(n + 1) ∪ 〈I�, I⊥〉. (9)

and (7) follows immediately from (8) and (9).

We can now prove our main result, the correspondence of the two operators.

Theorem 6. lfp ΦP = lfp ΨP,S .

Proof. The result follows immediately from Proposition 3 and and Lemma 5.

Let us consider an example from [36]: If you drop a wine glass (drop) then the
wine glass breaks (broken). She drops the wine glass. This scenario can be repre-
sented by the program P3 = {broken ← drop ∧ ¬ab, ab ← ⊥, drop ← �}. Now,
consider S = {¬broken}. Then, rev(P3,S) = {ab ← ⊥, drop ← �, broken ← ⊥},
S� = ∅, S⊥ = {broken}, and the two fixed points are computed as follows:

ΨP3 Φrev(P3,S)

↑0 〈∅, {broken}〉 〈∅, ∅〉
↑1 〈{drop}, {ab, broken}〉 〈{drop}, {ab, broken}〉

Coming back to the examples discussed in Sect. 6 we observe that they can
be modeled by Schulz’ approach only if the appropriate initial set S is given.
Schulz does not provide any means to obtain these sets. One should note that
these sets are not simply the unknown conditions of the given conditionals. We
compute the additional assignments by MRFA (as explained in Sect. 5).

8 Counterfactual Conditionals

We now consider counterfactual conditionals, i.e., conditionals whose condition
is false. The following forest fire example is from [4]. The conditional if there had
not been so many dry leaves on the forest floor (¬dl), then the forest fire would
not have occurred (¬ff), cond(¬dl,¬ff), is to be evaluated with respect to

P4 = {ff ← l ∧ ¬ab, l ← �, ab ← ¬dl, dl ← �},

which states that lightning (l) causes fire (ff ) if nothing abnormal is taking
place (¬ab), lightning happened, the absence of dry leaves (¬dl) is an abnormality
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(ab), and dry leaves (dl) are present. We obtain MP4 = 〈{dl, l,ff}, {ab}〉, where
condition ¬dl of the counterfactual is false. Let S = {¬dl}, S� = ∅, S⊥ = {dl},

rev(P4,S) = {ff ← l ∧ ¬ab, l ← �, ab ← ¬dl, dl ← ⊥},

and the fixed points can be computed as follows:

ΨP4 Φrev(P4,S)

↑0 〈∅, {dl}〉 〈∅, ∅〉
↑1 〈{l, ab}, {dl}〉 〈{l}, {dl}〉
↑2 〈{l, ab}, {dl,ff}〉 〈{l, ab}, {dl}〉
↑3 〈{l, ab}, {dl,ff}〉 〈{l, ab}, {dl,ff}〉

As ¬ff is true in the least �L-model, we conclude that the counterfactual is true.
Let us extend the example by adding arson (a) causes a forest fire (ff):

P5 = {ff ← l ∧ ¬ab1, ff ← a ∧ ¬ab2, l ← �, ab1 ← ¬dl, dl ← �, ab2 ← ⊥}.

We find MP5 = 〈{dl, l,ff}, {ab1, ab2}〉 and Mrev(P5,¬dl) = 〈{l, ab1}, {dl, ab2}〉.
cond(¬dl,¬ff) is now unknown, because ff is unknown in the least model. The
results are different under the well-founded semantics: The well-founded model
of rev(P5,¬dl) is 〈{l, ab1}, {dl, ab2, a,ff}〉, accordingly cond(¬dl,¬ff) is true. We
assume that the evaluation according to the weak completion semantics is more
appropriate: The answer to whether cond(¬dl,¬ff) is valid, should be it is
unknown because arson could have been the cause for the forest fire.

The two reasoning episodes exemplify how we intend to evaluate counterfac-
tuals. Let C be the condition of a counterfactual. If C is true, then the coun-
terfactual is vacuous in that it is not a subjunctive but rather an indicative
conditional. If C is false, then (non-monotonic) revision is applied to force C to
be true and the counterfactual is evaluated with respect to the revised program.
Both examples are treated this way. The most interesting case is again where C
is unknown. We have two options:

1. We can apply MRFA to map C to true and evaluate the counterfactual with
respect to the modified program. Note that this program is a monotonic
extension of the original program.

2. We can use MRFA to map C to false and thereafter (non-monotonically)
revise the modified program to force C to be true.

Obviously, both options do not necessarily lead to the same result. Consider

P6 = {ff ← l ∧ ¬ab ∧ ¬rain, l ← �, ab ← ¬dl, dl ← ¬rain}
The last clause states if it doesn’t rain, then the leaves are dry . MP6 = 〈{l}, ∅〉,
where C = {¬dl} is mapped to unknown. For option 1., C is explained by E� =
{rain ← �}, and leads to MP6∪E� = 〈{l, ab, rain}, {ff, dl}〉. For option 2., we
need to make C false first, which is done by abducing E⊥ = {rain ← ⊥}. We
find that MP6∪E⊥ = 〈{l, dl,ff}, {ab, rain}〉, and revise with respect to C:

rev(P6 ∪ E⊥, C) = {ff ← l ∧ ¬ab ∧ ¬rain, l ← �, ab ← ¬dl, dl ← ⊥, rain ← ⊥}
We obtain Mrev(P6∪E⊥,S) = 〈{l, ab}, {ff, dl, rain}〉 which differs from MP6∪E⊥

with respect to rain.
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9 Conclusion

This paper presents a novel computational logic approach for the evaluation of
conditionals. In the case where the condition of a conditional is unknown, we pro-
pose to explain as many literals as possible by abduction, and if necessary, revise
the remaining ones. We formally show the correspondence to Schulz’ approach
and observe that we can handle more human reasoning tasks. In fact, we are
unaware of any computational logic approach which can handle as many human
reasoning episodes as our approach based on the weak completion semantics.
However, there are still many open and interesting questions, some of which will
be mentioned in the sequel.

Similarly to an abductive procedure for the condition of a conditional, we
can extend our approach by introducing abduction for the consequence, in case
the consequence is still unknown. For instance, consider again program P5 in
Sect. 8: After the revision step for C = ¬dl, D = ¬ff is still unknown. There is
a minimal explanation for D, namely E = {a ← ⊥}. Accordingly, we can now
conclude that the counterfactual, cond(C,D) is true, if there is no arson.

Another issue that we need to investigate–and already proposed in [6]–is
to carry out psychological experiments which verify whether our assumption of
MRFA is indeed adequate for human reasoning. Furthermore, as discussed in
the last part of Sect. 8, we need to clarify which of the two options is more
adequate, in case the condition of a counterfactual is unknown.

We also need to look into the revision operator. So far, the operator is quite
simple and straightforward. On the other hand, revision has been intensely stud-
ied in the the field of computational logic and we need to investigate whether
and how these approaches can be adapted to a setting which treats unknown
conditions explicitely and considers the weak completion semantics.

Acknowledgements. We like to thank Lúıs Moniz Pereira, Bob Kowalski and Marco
Ragni for many discussions and comments on earlier drafts of our work.
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Abstract. Answer Set Programming (ASP) is an expressive paradigm
for problem solving. Although the basic syntax of ASP is not particu-
larly difficult, the identification of (even trivial) mistakes may be painful
and absorb a lot of time. The development of programs can be made
faster and comfortable by resorting to an effective program debugger. In
this paper we present a new interactive debugging method for ASP. The
method points to a buggy non-ground rule identified by asking the pro-
grammer a sequence of questions on an expected answer set. The method
has been implemented on top of the WASP solver. The tight integration
with the solver allows to avoid efficiency problems due to the grounding
blowup induced by modern reification-based debuggers.

1 Introduction

Answer Set Programming (ASP) [5] is a declarative problem solving paradigm
proposed in the area of logic programming and non-monotonic reasoning. Com-
putational problems of comparatively high complexity [7] can be solved in ASP,
which provides a clear separation between the specification of a problem and
the computation of its solutions by an ASP solver. The suitability of the ASP
framework for problem solving is witnessed by the large number of applications
that have been developed [2,6,13]. The applications of ASP to real-world prob-
lems outlined several advantages of this paradigm from a software engineering
viewpoint. Namely, ASP programs are flexible, intuitive, extensible and easy to
maintain [13].

Although the basic syntax of ASP is not particularly difficult, the identifi-
cation of (even trivial) faults can be tedious and time consuming. Techniques
and tools, called debuggers, can help the programmer to deal with faults in ASP
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programs, thus, making the development process faster and more comfortable.
In the last few years, a number of tools for debugging ASP programs were pro-
posed [4,11,18,19,22]. Among the most prominent approaches are the ones based
on the notion of meta-programming [11,19] that work by applying ASP itself to
debug a faulty ASP program. The idea is to generate a factual representation of
the faulty program – also called a reification of the program – and combine it
with another ASP program – the debugging program – which models the pos-
sible causes of a fault. Reification-based debuggers have some issues that may
make them either difficult to apply or even inapplicable in some cases. The first
issue was already observed in [19], and consists of the fact that the generated
meta-programs might be unsolvable by the best ASP systems available. The
reason is that prior to computation of answer sets ASP systems compute the
ground instantiation of the input by means of a grounder. The reification used
in meta-programming approach may cause the ground debugging program to be
so large that either the grounder is not able to produce it in a reasonable time
or the solver is not able to elaborate it. This issue is due to the very nature of
the meta-programming approach which requires a ground debugging program to
comprise all possible explanations of all possible faults of the input program.

In this paper we present a new interactive debugging method for non-ground
ASP programs that allows the programmer to find the cause of a problem. The
new method builds a diagnosis identifying a set of non-ground rules that include
the ones causing a bug. The user, upon request, can improve the diagnosis by
interacting with the debugger, which automatically builds queries on the truth
of literals in an expected answer set. The additional knowledge injected in the
system by the user, who answers queries during the debugging session, allows
the debugger to refine the diagnosis up to a point in which the (non-ground)
rules causing a fault are easily identified. The debugging method presented in
this paper is the first one –to the best of our knowledge– that can take profit
of the literal assumption interface and conflict analysis services provided by
modern ASP solvers [1,10]. We have implemented our method on top of the
grounder gringo [10] and the solver wasp [1]. Moreover, we compared our
solution with related approaches, and we report on the results of an experiment
assessing our implementation on benchmarks already used in the literature for
this purpose [21].

Summarizing, the main contributions of this paper are: (i) a new interactive
debugging method for non-ground ASP programs; (ii) a description of the imple-
mentation of the new approach; (iii) the analysis of the result of an experiment
evidencing that our debugger can handle instances that are pragmatically out of
reach for state-of-the-art reification-based debuggers. Indeed, these latter suffer
for the intrinsic grounding blowup that is avoided in our approach that can be
integrated within the solver.

2 Preliminaries

In this section we recall Answer Set Programming (ASP) syntax and semantics
as well as some properties of ASP programs. In the following we assume the
reader familiar with basic logic-programming notions.
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Syntax. A disjunctive logic program (DLP) Π is a finite set of rules of the form

a1 ∨ · · · ∨ am ← l1, . . . , ln (1)

where all a1, . . . , am are atoms and l1, . . . , ln are literals, m,n ≥ 0. A literal
is an atom ai or its negation ∼ai, where ∼ denotes negation as failure. The
complement of a literal l (set of literals L) is denoted l (L), and L:={l | l ∈ L}.
Each atom is an expression of the form p(t1, . . . , tk), where p is a predicate
symbol and t1, . . . , tk are terms, i.e. are either variables or constants. An atom
(literal, rule) is ground if it is variable-free. Rules are required to be safe, i.e.,
variables must occur in at least one positive literal of the body. In each rule r
of the form (1) the set of atoms H(r) = {a1, . . . , am} is called head and the set
of literals B(r) = {l1, . . . , ln} is called body. Moreover, we differentiate between
the disjoint sets B+(r), B−(r) ⊆ B(r) comprising positive and negative body
literals respectively. A rule is called fact if |H(r)| = 1 and B(r) = ∅, constraint
if H(r) = ∅ and normal rule if |H(r)| = 1 and B(r) 	= ∅. The set of all atoms
occurring in Π is denoted At(Π).

Semantics. Let Π be an ASP program. The Herbrand universe UΠ and the
Herbrand base BΠ of Π are defined as usual. The semantics of Π is given in
terms of its ground instantiation ΠG. ΠG is the set of all the ground instances
of rules of Π that can be obtained by substituting variables with constants
from UΠ .

A set L of ground literals is said to be consistent if, for every atom l ∈ L,
its complementary literal l is not contained in L. An interpretation I for ΠG is
a consistent set of ground literals over atoms in BΠ . A ground literal l is true
w.r.t. I if l ∈ I; l is false w.r.t. I if its complementary literal is in I; l is undefined
if it is neither true nor false. An interpretation I is total if, for each atom a in
BΠ , either a or ∼a is in I. A total interpretation M is a model for ΠG if, for
every r ∈ ΠG, at least one atom in the head is true w.r.t. M whenever all literals
in the body are true w.r.t. M . Given two interpretations I1 and I2, I1 ≤+ I2 iff
for each positive literal a ∈ I1 it also holds that a ∈ I2.

Let ΠG be a ground program and I an interpretation. The reduct or Gelfond-
Lifschitz transform [12] of ΠG w.r.t. I is the ground program ΠI

G, obtained from
ΠG by (i) deleting all rules r ∈ ΠG whose negative body is false w.r.t. I and
(ii) deleting the negative body from the remaining rules. An answer set of a
program Π is a model M of ΠG that is ≤+-minimal model of ΠM

G , i.e., there is
no other model M ′ of ΠM

G s.t. M ′ ≤+ M . The set of all answer sets of a program
Π is denoted AS(Π). The program Π is incoherent, if the set of all answer sets
AS(Π) = ∅, and coherent, otherwise.

Properties. We now recall some definition and properties of answer sets that
are useful in the remainder of the paper. Given an interpretation I for a ground
program Π, we say that a ground atom a ∈ I is supported w.r.t. I if there exists a
supporting rule r ∈ ΠG such that B(r) ⊆ I, and (H(r)\{a})∩I = ∅, i.e., all body
literals are true and a is the only true atom in the head. An important property
of answer sets is the so-called supportedness, i.e., all atoms in an answer set are
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supported. Moreover, answer sets are unfounded free, i.e., an answer set contains
no unfounded sets. A set A ⊆ BΠ is unfounded w.r.t. an interpretation I if for
each rule r ∈ ΠG such that H(r) ∩ A 	= ∅ it holds that (a) I ∩ (H(r) \ A) 	= ∅ or
(b) B+(r) ∩ A 	= ∅ or (c) B(r) ∩ I 	= ∅. Intuitively, atoms in A can have support
only by themselves. Given a ground program ΠG, an odd loop is a fragment of a
program in which an atom a ∈ At(ΠG) depends recursively on itself through an
odd number of negative arcs in the dependency graph G(ΠG) = (At(ΠG), E),
where the set of edges E comprises positive {(h, b)+ | r ∈ ΠG, h ∈ H(r), b ∈
B+(r)} and negative {(h, b)− | r ∈ ΠG, h ∈ H(r), b ∈ B−(r)} arcs. Note that,
constraints can be viewed as simple odd loops, since a constraint rc ∈ Π can be
rewritten as a normal rule with an odd loop idrc ← B(rc),∼idrc, where idrc is a
fresh atom. A ground program ΠG is incoherent only if it contains an odd loop.

3 Query-Based ASP Debugging

Debugging is the process of finding bugs in a program, where a bug commonly
indicates an incorrect behavior of a program. In a nutshell, during the devel-
opment of a program, the programmer tests it running a (usually small) set of
problem instances for which he/she already knows an expected solution. Intu-
itively, a bug is revealed in two possible cases: (i) the answer sets computed by
the solver are not compliant with the expected/intended solution; (ii) the tested
program is incoherent but at least one answer set is expected. The combination
of a program with an expected output to be verified is called in jargon a test
case. The practice of defining test cases is common in the development inde-
pendently from the programming paradigm, and can also be intended as part
of the development process if one resorts to a systematic test-driven program-
ming methodology. In ASP, test cases may be defined by using specific testing
languages such as the one supported by aspide [8,9], or can be generated auto-
matically using existing methods [14]. In order to simplify the presentation a
test case is defined as the combination of a program Π (under test) and a set of
literals O. Intuitively, literals in O are expected to be true in an intended answer
set of Π. A test case fails if Π ∪ {← l | l ∈ O} is incoherent. Note that both
cases of bugs mentioned above can be captured by properly specifying a failing
test case. In fact, given a failing test case the debugging process may identify
the rules of the program causing the failure. For this reason, in the following
we assume w.l.o.g. that a debugger takes as input an incoherent program (orig-
inating from a failing test case) and aims at pointing the user the source of the
incorrect behavior. In case the set of rules provided to the user is either too large
then the debugger interacts with the user querying for additional information
about the expected behavior in terms of expected truth of literals. This informa-
tion is used to further narrow the diagnosed set of buggy rules. In the following
we first present the core of the approach that works on an inconsistent debug
program, and then we describe the behavior of our method in specific scenarios
in which some atom expected to be true misses a supporting rule, a case that
may requires an additional step before being possibly re-conducted to the first
case.



Interactive Debugging of Non-ground ASP Programs 283

3.1 Debugging Inconsistency

Debugging an incoherent ASP program is a complex computational task. There-
fore, prior to invoking a debugger, a user may add some of the rules of an
incoherent program Π to the background knowledge, i.e. a set of rules B that
must be considered as correct by a debugger. Defining the background knowl-
edge can simplify the debugging process. In the following examples, we consider
all facts as correct, i.e. B = {r ∈ Π | r is a fact}.

Definition 1 (Debugging Program). Let Π be an incoherent program B ⊆ Π
be a background knowledge. Then, a debugging program Δ is such that Π∩Δ = B
and for each rule r ∈ Π\B there is a rule r′ ∈ Δ such that all the following condi-
tion hold: (i) h(r′) = h(r); (ii) B+(r′) = B+(r) ∪ { debug(idr,vars)}; and (iii)
B−(r′) = B−(r). Here atoms of the form debug(idr,vars) are called debug-
ging atoms, where the tuple of variables vars comprises all variables occurring
in B+(r) and idr is an identifier of the rule r ∈ Π.

In other words given program Π to debug, its associated debugging program
Δ is obtained by Π by adding to each rule that is not a fact an additional
positive body atom that is called debug atom. Given a debugging program Δ a
grounder generates a ground program ΔG. Each rule ri in ΔG is identified by a
unique ground debugging atom, say di. All di appearing in ΔG are collected in
the set of literals Asm.

Basically, the idea used in the following is to solve under the assumption that
literals in Asm belong to answer sets. In practice this is done via the so-called
solving-under-assumptions feature of modern ASP solvers [1,10] that produces,
as a byproduct of conflict analysis [1,10], an unsatisfiable core comprising the
assumptions that cause the inconsistency. In our case the debug atoms di ∈ Asm
corresponding to rules causing the inconsistency are detected.

Definition 2 (Unsatisfiable Core). Let ΔG be a ground debugging program
and D ⊆ At(ΔG) be a set of ground debugging atoms of ΔG. Then an unsatisfi-
able core is a set of atoms C ⊆ D such that if every atom a ∈ C is assumed to
be true, i.e. C ⊆ Asm, the program ΔG is incoherent. An unsatisfiable core C is
minimal iff there is not unsatisfiable core C ′ such that C ′ ⊂ C.

In our setting, the set Asm comprises only debugging atoms of the debug-
ging program ΔG, thus an unsatisfiable core is a set of debugging atoms
{d1, . . . , dk} ⊆ D. Note that, the implemented approaches to core computa-
tion do not guarantee the minimality of returned cores. The minimization of
an unsatisfiable core can be done by algorithms like QuickXplain [15]. Such
divide-and-conquer algorithms allow a solver to compute a minimal unsatisfiable
core using O(|C| log |C′|

|C| + 2|C|) calls to the solving algorithm, where |C ′| and
|C| are the corresponding cardinality of input and minimal unsatisfiable cores,
respectively.

Example 1 ([19]). A conference system is designed to assign papers to reviewers
according to their bids. The latter have values 0 – conflict; 1 – indifference and
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2 – would like to review. In case a bid is not known the default value 1 must be
assumed. The test program L1 defines two papers and two reviewers

L1 = {pc(m1), pc(m2), paper(p1), bid(m1, p1, 2),
r1 : some bid(M,P ) ← bid(M,P,X),
r2 : bid(M,P, 1) ← ∼some bid(M,P ), pc(M), paper(P )}

The program L1 is incoherent because the ground rules {r′
1, r

′
2} ⊆ ΔG contain

an odd loop w.r.t. the atom some bid(m2, p1) under assumption that both debug
atoms are true, i.e. { debug(r1,m2, p1, 1), debug(r2,m2, p1)} ⊆ Asm.

r′
1 : some bid(m2, p1) ← bid(m2, p1, 1), debug(r1,m2, p1, 1),

r′
2 : bid(m2, p1, 1) ← ∼some bid(m2, p1), debug(r2,m2, p1).

The unsatisfiable core C = { debug(r1,m2, p1, 1), debug(r2,m2, p1)}
returned by an ASP solver is minimal and allows a user to consider two pos-
sible assumptions. Assuming that r′

1 is faulty, i.e. replace debug(r1,m2, p1, 1)
with debug(r1,m2, p1, 1) in the set Asm, the solver finds an answer set A1 com-
prising atoms {some bid(m1, p1), bid(m2, p1, 1)}. If the user assumes that r′

2

is faulty, i.e. inverts debug(r2,m2, p1) in Asm, then the answer set A2 com-
prising {some bid(m1, p1)} is returned. Analysis of these two answer sets shows
that they assign different truth values to the atom bid(m2, p1, 1). If the atom
bid(m2, p1, 1) is required in the missing answer set, then the first assumption
is correct and the user has to correct r1. Otherwise, the second assumption
must be selected and the user has to modify the rule r2. Since in our case
the atom bid(m2, p1, 1) is expected the rule r1 must be corrected. One of the
possible modifications would be r1 : some bid(M,P ) ← bid(M,P,X),X 	= 1.
The addition of an X 	= 1 condition to the body allows to exclude the rule
some bid(m2, p1) ← bid(m2, p1, 1) from ΠG and thus solves the problem.

The fault localization in the program L1 can be done automatically by the
debugger. Given an unsatisfiable core C, the debugger can relax the core by
updating the set of assumptions as Asm′ = (Asm \ D) ∪ {di | di ∈ D}, where
D = {d1, . . . , dk} ⊆ C is the set of updated debugging atoms. However, for
the minimal core C the update of one debugging atom, i.e. D = {di} for
some di ∈ C, is sufficient to obtain at least one answer set of L1. The answer
sets obtained by two relaxations of L1, i.e. D1 = { debug(r1,m2, p1, 1)} and
D2 = { debug(r2,m2, p1)}, can be compared by a debugger to find discrepan-
cies between them. Namely, in Example 1 the atom bid(m2, p1, 1) represents this
difference between answer sets A1 and A2. If the debugger gets the information
that the atom bid(m2, p1, 1) must be in the missing answer set of the program, it
will return rule r1 ∈ Π and its grounded version as an explanation of the fault.
Otherwise, the rule r2 ∈ Π is the correct explanation.

Definition 3 (Diagnosis). Let ΔG be a ground debugging program and D ⊆
At(ΔG) be a set of ground debugging atoms of ΔG. Then a diagnosis is a set of
atoms D ⊆ D such that if the set of literals {di | di ∈ D} is assumed to be true,
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i.e. {di | di ∈ D} ⊆ Asm, then the program ΔG is coherent. A diagnosis D is
minimal iff there is no D′ ⊂ D such that D′ is a diagnosis.

In Example 1 there are two diagnoses D1 = { debug(r1,m2, p1, 1)} and
D2 = { debug(r2,m2, p1)} of cardinality 1, i.e. two single faults. However, if a
program comprises multiple faults, i.e. two or more (non-)intersecting unsatisfi-
able cores, then computation of diagnoses of higher cardinality is required. Given
an algorithm for computation of minimal unsatisfiable cores the minimal diag-
noses of arbitrary cardinality can be computed using HS-Tree algorithm [23].
This algorithm uses the property that a minimal diagnosis is a minimal hitting
set of all unsatisfiable cores (see Theorem 4.4 [23]). To find minimal hitting sets
HS-Tree generates a labeled tree in a breadth-first order and applies a pruning
strategy that guarantees the minimality of found diagnoses.

Differentiation between any two minimal diagnoses D1 and D2 can be done
by comparing answer sets of the debugging program ΔG under assumptions
{d | d ∈ D1} and {d | d ∈ D2}. Given any of these assumptions the solver
relaxes the corresponding rules of ΔG thus removing the odd loops. Since a
relaxed program comprises no odd loops, it is coherent and the solver returns at
least one answer set. The focus of the answer set analysis lies on the identification
of an atom q such that q is in every answer set of one relaxed program and is
not in any answer set of another program. Clearly, the atom q allows us to
discriminate between the diagnoses. E.g. let q be in all answer sets of a relaxed
program w.r.t. D1 and not in any answer set of a relaxed program w.r.t. D2. If
some oracle, like a programmer, provides an information that the answer sets
of a correct program must comprise q, then the debugger can accept D1 and
reject D2.

Generally, given a set of diagnoses D, an atom q can be used to a partition
elements of D into three sets DP ,DN and D∅, where (a) answer sets of every
relaxed program w.r.t. a diagnosis of the set DP comprise q; (b) the diagnoses
DN result in relaxed programs which answer sets do not comprise q; and (c)
the set D∅ comprises all diagnoses that cannot be classified neither to DP nor
to DN .

Definition 4 (Query). Let ΔG be a ground debugging program, D ⊆ At(ΔG)
be a set of debugging atoms and D be a set of diagnoses for ΔG. A query is an
atom q ∈ At(ΔG) \D such that the set of diagnoses can be partitioned into three
sets DP ,DN and D∅, where

– ∀D ∈ DP it holds that ∀A ∈ AS(ΔG) : q ∈ A, i.e. ΔG ∪ {← ∼q} is coherent,
under assumption {di | di ∈ D}

– ∀D ∈ DN it holds that ∀A ∈ AS(ΔG) : q /∈ A, i.e. ΔG ∪ {← q} is coherent,
under assumption {di | di ∈ D}

– D∅ = D \ (DP ∪ DN )

Given a set of diagnoses D = {D1, . . . , Dm} a query can be computed as
follows:
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1. Generate a power set P(D) of the set of diagnoses D.
2. Assign to a set DP an element of P(D) and find an intersection V of all

answer sets obtained for ΔG under each of the assumptions {di | di ∈ D},
∀D ∈ DP .

3. If V = ∅, then goto Step 1; otherwise select an atom q ∈ V as a query.
4. Classify the remaining diagnoses Dj ∈ D \DP to the sets DP ,DN and D∅ by

verifying for each Dj conditions given in Definition 4.
5. If DN 	= ∅ then return a query q. Otherwise, remove the set DP selected in

the first step from P(D) and goto Step 1.

Note that in practice the set of all diagnoses is often approximated by a set of k
diagnoses, where k is some small predefined constant. The experimental results
obtained for diagnosis of description logics knowledge bases [25,26] show that
k = 9 allows a debugger to achieve a good balance between query computation
time and the number of queries required to identify the source of a fault.

The query generation algorithm can generate multiple queries for a set of
diagnoses. Therefore, multiple query selection strategies are suggested in the lit-
erature [16]. These strategies can be roughly classified into myopic and look-
ahead ones. The myopic strategies select a query depending on a partition
DP ,DN ,D∅ and do not need any additional information. For instance, a popu-
lar Split-in-half measure prefers queries that partition the set of diagnoses such
that answer sets of a half of diagnoses comprise q and the other half is not, i.e.,
q = arg minq

∣
∣|DP | − |DN |

∣
∣ + |D∅|. The look-ahead strategies [24,25] use addi-

tional information about possible cause of a fault to select the most informative
query. One of the measures that showed good performance is Entropy. Given a
probability p(Di) for each diagnosis Di ∈ D, it selects a query that minimizes
the expected entropy of a set of diagnoses after a user answers a query, i.e. it
selects a query that maximizes the information gain.

3.2 Debugging Unsupported and Unfounded Atoms

An ASP program can also be faulty if an atom is expected to be true but
either there is no supporting rule or it is in an unfounded set. In our setting
such cases are detected when an unsatisfiable core comprises only debug atoms
related to the original test cases or to the previous queries. Let a be one of
such atoms, and Supp(a) = {r | a ∈ H(r)} be the set of rules having a in
the head. The query q in case of unsupported and unfounded atoms is selected
from the set of atoms occurring in some rule having a in the head, i.e., on⋃

r∈Supp(a)(B
+(r) ∪ (H(r) \ {a}) ∪ {a′ | ∼a′ ∈ B−(r)}).

Example 2 ([19]). Consider a similar problem as in Example 1 in which PC
members can give bids from 0 – conflict to 2 – want to review. According to
conference rules assignments of papers to PC members must not be conflicting
(rule r1). A conflict can occur in two situations: (i) a PC member provided a
bid 0 for a paper (rule r2) or (ii) a PC member authored a paper (rule r3). In
the latter case the conflict of interest, i.e. bid 0, must be derived automatically
(rule r4).
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L2 = {pc(m1), paper(p1), bid(m1, p1, 2), assigned(p1, m1), author(p1, m1),

r1 : ← assigned(P, M), bid(M, P, 0),

r2 : conflict(M, P ) ← bid(M, P, 0),

r3 : conflict(M, P ) ← pc(M), paper(P ), author(M, P ),

r4 : bid(M, P, 0) ← pc(M), paper(P ), conflict(M, P )}

Given the fact that p1 authored m1 and the fact that m1 is assigned to p1, the
program L2 is expected to be incoherent. However, a solver finds and returns an
answer set in which p1 gets m1 to review and no conflict is detected. In order
to identify the problem the user adds a test case, which requires L2 to have
an answer set comprising atom conflict(m1, p1). Processed by a debugger the
test case is added to the debugging program ΔG

2 as rule r5: L′
2 = ΔG

2 ∪ {r5 :←
∼conflict(m1, p1), debug(r5,m1, p1)}. Given a grounded debugging program
L′
2 debugger finds an unsatisfiable core C = { debug(r5,m1, p1)}. Therefore,

the only diagnosis D = { debug(r5,m1, p1)} suggests that the test case added
by the user is faulty and the atom conflict(m1, p1) must be false in all answer
sets. Since the diagnosis comprises no other rules, it is possible to infer that atom
conflict(m1, p1) has no supporting rules. Therefore, the debugger to cope with
this scenario determines all rules that are relevant to this atom, i.e. rules having
conflict(m1, p1) in their heads, and offer them to the user as a possible cause of
a bug, since these are not able to support conflict(m1, p1) that was expected to
be true. In particular, rule r2 is not supporting because atom bid(m1, p1, 0) is in
the positive body and it cyclically depends on atom conflict(m1, p1), while r3 is
not supporting conflict(m1, p1) because author(m1, p1) is false. In case the user
is not satisfied by this answer (i.e., supporting rules are correct), the analysis
continues and, in particular, the debugger considers atoms bid(m1, p1, 0) and
author(m1, p1) as query, because they cause missing support of conflict(m1, p1).
For example the query-based debugger may ask for the truth value of the atom
author(m1, p1) (from missing support of rule r3). Now, it is easy to understand
that r3 is faulty because of a different order of variables in the predicate author.

4 Implementation

Our implementation of the debugger consists of two components: the debug-
ging grounder gringo-wrapper and a modified version of the ASP solver
wasp [1] called dwasp. The tools are available under https://github.com/gaste/
gringo-wrapper and https://github.com/gaste/dwasp. Figure 1 illustrates the
interaction of both components to debug a program Π. First, the program Π
is read by gringo-wrapper from either the standard input or several input
files. The debugging grounder internally transforms Π to Δ, passes the result
to gringo [10] and outputs the ground debugging program ΔG to the standard
output. dwasp reads ΔG and starts the interactive debugging session.

Grounding with gringo-wrapper. The task of gringo-wrapper is to obtain
the grounded debugging program ΔG, given an input program Π. First, Π is
translated to the debugging program Δ, as described in Definition 1. All facts of

https://github.com/gaste/gringo-wrapper
https://github.com/gaste/gringo-wrapper
https://github.com/gaste/dwasp
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Fig. 1. Interaction of gringo-wrapper and dwasp in debugging mode.

Π are assumed to be correct, i.e. the background knowledge B comprises all facts
of Π. After this transformation, gringo is used to obtain the ground version
ΔG of Δ. However, gringo performs several optimizations during grounding,
such as deriving new facts from normal rules [10]. Although these optimizations
potentially decrease the time required by the solver, they are counter-productive
when debugging a logic program because wrong facts could be derived from
faulty rules. Moreover, gringo might remove entire non-ground rules that are
missing support. In this case, gringo-wrapper issues a warning message that
highlights the rules that were removed by gringo.

In order to avoid the removal of atoms or simplification of rules done by
gringo during the grounding, rules of the form a(t1, . . . , tm)∨na(t1, . . . , tm) ←
l1(t1), . . . , lm(tm) are initially added to the program for each atom a(t1, . . . , tm)
occurring in the head of a rule whose body is l1(t1), . . . , lm(tm) where
na(t1, . . . , tm) is a fresh atom. In the postprocessing step, the ground instan-
tiations of the added rules are then removed. The same implementation trick is
also applied for preserving debug atoms, but disjunctive rules are not removed in
order to make those atoms irrelevant for the coherence of the processed program
(roughly, so that they can have a supporting rule).

Debugging with dwasp. The query-based debugging approach presented in
Sect. 3 has been implemented in dwasp, which exploits the assumptions inter-
face of the ASP solver wasp [1]. The pseudo-code of dwasp is reported in

Algorithm 1. Debug mode of dwasp

input: An incoherent, ground debugging program ΔG, maximum number of
diagnoses k

1 begin
2 Asm ← {d | d is a debugging atom of ΔG};
3 while user continues debugging session do
4 print non-ground rules inside the minimal core;
5 D ← ComputeDiagnoses(Asm, k);
6 q ← DetermineQuery(Asm, D);
7 if user answers that the atom q should be inside the model then
8 Asm ← Asm ∪ {q};

9 else
10 Asm ← Asm ∪ {q};
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Algorithm 1. First, all debug atoms of ΔG are added to the set Asm (line 2),
which is later used to compute a set of diagnoses D comprising at most k ele-
ments (line 5). The computation diagnoses is done by a HS-Tree algorithm
which, in turn, uses dwasp and QuickXplain [15] to find minimal unsatisfiable
cores. Given a set of diagnoses, the query atom q is computed in a way that
maximizes the Split-in-half measure as described in Sect. 3. That is, we start
from partitions DP such that 2|DP | = |D| and continue until a query is found.
Finally, dwasp asks the user whether q should be true (false) in an expected
answer set and adds the corresponding literal q (q) to the set of assumptions
(lines 7–10). The debugging session continues either until only one diagnosis
remains or a user spots the error.

Example 3 (Debugging of a faulty program). Consider the following program
encoding the graph coloring problem:

r1 : arc(1, 2) ← r2 : arc(2, 3) ← %Define graph by arc predicate

r3 : node(X) ← arc(X,Y ) %Compute nodes from arcs

r4 : node(X) ← arc(Y,X)

r5 : col(X, b) ∨ col(X, r) ∨ col(X, y) ← node(X) % Assign exactly one color to each node

r6 : ← col(X,C1), col(Y,C2), arc(X,Y ) % Different colors to adjacent nodes

The program is grounded using gringo-wrapper and the result is saved in the
file coloring.dbg. dwasp is then started by typing the following command:

wasp --debug=coloring.dbg
The solver then computes the unsatisfiable core and waits until a command is
typed. For instance, in order to view the computed core the following command
is typed:

WDB> show core ground
and the results are the ground rules contained in the unsatisfiable core. Another
option is to use the following command:

WDB> ask
which generates a query on an atom of the input program. The query proposed
by the solver is the following:

Should ’col(2,b)’ be in the model? (y/n/u)
Since node 2 can be colored with blue, the user types yes. Then, dwasp computes
another set of diagnoses and asks the following query:

WDB> ask
Should ’col(1,r)’ be in the model? (y/n/u)

Since node 1 can be colored with red, the user types again yes. Thus, the process
ends up with only one rule inside the core, which is shown by typing the following
command:

WDB> show core nonground
<- col(X, C1), col(Y, C2), arc(X,Y).

{ C1/r, C2/b, X/1, Y/2 }
At this point, it is easy to see that rule r6 is faulty because the check C1=C2 is
missing.



290 C. Dodaro et al.

It is worth mentioning that for simplifying the presentation the example shown
above only focuses on the main commands. Nonetheless, dwasp implements sev-
eral other commands that give to the user the full control on a debug sessioning,
e.g. commands for saving/restoring a debugging session, for retracting previous
answers, etc.

Performance Analysis. We have assessed the performance of our implementa-
tion by comparing it with Ouroboros [19,21] debugger, which is the only
maintained solution able to cope with non-ground programs. In particular we
have employed the same ASP encodings and instances taken from ASP compe-
titions that have been used in [21] for analyzing the performance of a debugger.
For grounding we use gringo (v4.4.0) in both methods. We have measured
both the increase in grounding size w.r.t. the mere execution of the gringo
grounder on the instances (detailed results are reported at https://github.com/
gaste/gringo-wrapper). In our approach the increase in grounding size is due
to the fact that the gringo-wrapper disables the optimizations performed
by gringo, whereas in Ouroboros the grounding of an ASP program model-
ing debugging is required. Considering the instances that were groundable with
gringo within 5 min by our Intel Core i7-3667U machine with 8 GB of RAM, we
report that in our approach the size of the instantiation of the debugging pro-
gram is from 1.5 to 3 times the size of grounding the original program, whereas
the debugging program of Ouroboros generates groundings that are from 50
times up to 9382 times larger than the original program. Note that, the per-
formance of our approach is only limited by the performance of the underlying
solver, whereas in the case of Ouroboros the limit is in the grounding of the
debugging program, which may not be feasible.

5 Related Work

Modern ASP debugging approaches can be separated into integrated and declar-
ative approaches. The first approaches are based on a tight integration with the
solver, whereas the second ones are solver independent and are based on meta-
programming.

The dlv debugger developed in [20] is an example of an integrated approach.
It uses the reason calculus to detect and store the choices made by the solver
during the backtracking phases in a reasons table. The table can be queried
to justify the presence/absence of a literal in an answer set or to explain the
incoherency of the program. This debugging system is however very limited,
since it uses specific features of the dlv system and can only provide a partial
interpretation justifying the lack of a model. ideas [4] is another procedural
approach aiming at two types of problems: (a) why a set of atoms S is in an
answer set A and (b) why S is not in any answer set. Both ideas algorithms are
similar to the ones implemented in ASP solvers and try to decide which rules
are responsible for derivation or non-derivation of atoms in S. The interactivity
of ideas, as well as of all other modern debuggers allows a programmer: (1) to
query a system for an explanation of an observed fault, (2) analyze the obtained

https://github.com/gaste/gringo-wrapper
https://github.com/gaste/gringo-wrapper
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results and (3) reformulate the query to make it more precise. In our approach
we reuse the algorithms implemented in a solver and are able to find required
refinements automatically, thus, making the steps (2) and (3) obsolete.

The declarative debuggers use a program over a meta language – a kind of
ASP solver simulation – to manipulate a program over an object language –
the faulty program. Each answer set of a meta-program comprises a diagnosis,
which is a set of meta-atoms describing the cause why some interpretation of
the faulty program is not its answer set. An approach used in smdebug [27]
addresses debugging of incoherent non-disjunctive ASP programs by adaption
of model-based diagnosis [23]. Similarly to our approach the debugger focuses on
detection of odd loops, but cannot detect problems arising due to unfounded sets.
The spock [11] and Ouroboros [19,21] debuggers extend smdebug by enabling
identification of problems connected with unfounded sets. Both approaches rep-
resent the input program in a reified form allowing application of a debugging
meta-program. In case of spock the debugging can be applied only to grounded
programs, whereas Ouroboros can tackle non-grounded programs as well. The
main problem of meta-programming approaches is that often the grounding of
the debugging meta-program explodes. This is due to the fact that the ground
debugging program has to comprise all atoms explaining all possible faults in an
input faulty program, which is not the case in our approach. Moreover, our app-
roach generalizes the interactive query-based method built on top of spock [24]
by enabling its application to non-ground programs.

There are other approaches enabling faults localization in ASP, but not
directly comparable with dwasp, include Consistency-Restoring Prolog [3],
translation of ASP programs to natural language [17], visualization of justifi-
cations for an answer set [22] as well as stepping thought an ASP program [18].
Combination of these approaches with ideas implemented in dwasp is a part of
our future work.

6 Summary and Future Work

In this paper we presented an interactive debugging method for non-ground ASP
programs, that can be efficiently implemented into any ASP solver supporting
conflict analysis and literal assumption interface. We implemented our debugging
method by extending the ASP solver wasp, and we reported an experiment
demonstrating its applicability on ASP programs that cannot be handled using
alternative debuggers.

As far as future work is concerned, we are working on a graphical debugger
that will be integrated in the aspide [9] IDE for ASP. Moreover we are planning
to extend our methodology to programs featuring optimization constructs.
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Abstract. Integrating knowledge from various sources is a recurring
problem in Artificial Intelligence, often addressed by multi-context
systems (MCSs). Existing MCSs however have limited support for the
open-world semantics of knowledge bases (KBs) expressed in knowledge
representation languages based on first-order logic. To address this prob-
lem we introduce knowledge base networks (KBNs), which consist of
open-world KBs linked by non-monotonic bridge rules under a stable
model semantics. Basic entailment in KBNs is decidable whenever it
is in the individual KBs. This is due to a fundamental representation
theorem, which allows us to derive complexity results, and also gives
a perspective for implementation. In particular, for networks of KBs in
well-known Description Logics (DLs), reasoning is reducible to reasoning
in nonmonotonic dl-programs. As a by product, we obtain an embedding
of a core fragment of Motik and Rosati’s hybrid MKNF KBs, which
amount to a special case of KBNs, to dl-programs. We also show that
reasoning in networks of ontologies in lightweight DLs is not harder than
in answer set programming.

1 Introduction

Integrating information from various knowledge bases (KBs) is a recurring prob-
lem in Artificial Intelligence and a major issue for Knowledge Representation and
Reasoning. Multi-context systems (MCSs) [2,5,12,21] are a well-known approach
to address this challenge. MCSs interlink individual KBs (called contexts) with
bridge rules that enable making inferences across KBs, in a way such that a
global system semantics emerges from the local KBs. While a variety of MCSs
are available with different expressivity of bridge rules and knowledge base lan-
guages, they provide limited support for KBs with model-based semantics under
an open-world view.

Interlinking KBs with open-world semantics is a relevant problem, as such
KBs are becoming increasingly popular, e.g. in the form of various Description
Logic (DL) ontologies or geographic information systems. However, combining
such individual KBs into a more complex hybrid KB is not trivial, e.g. the naive
union of DL KBs may lead to an inconsistency or fall into an undecidable frag-
ment of first-order logic. Employing such open-world KBs in MCSs is not obvi-
ous, especially due to the significant semantic differences and the computational
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 294–308, 2015.
DOI: 10.1007/978-3-319-23264-5 25
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challenges. Specifically, the authors of [21] considered the open-world setting,
but for KBs expressed in propositional logic only. The powerful MCS framework
in [5], being very abstract, is not well-suited for an appealing model-based and
decidable integration of open-world KBs expressed in decidable languages (see
Sect. 5 for a discussion).

To get a feeling of our motivation, consider the following example:

Example 1. Assume we have a pair κ1, κ2 of contexts, where κ1 is an ontology
that describes restaurants and food, and κ2 is a geospatial database. The con-
texts make the open-world assumption and may include disjunctive information
such as: every wine must be assigned a country of origin, which can be arbitrarily
chosen from the set of all countries. The open-world setting intuitively means
that reasoning involves a case-by-case analysis of the possibilities (the possible
worlds) that emerge from the knowledge in contexts. Suppose we would like to
add to the knowledge in κ1 the following. A user should be advised to reserve
the restaurant x in case x is located in Manhattan and is not known to be a
fast food restaurant. In our approach such information would be expressed by a
bridge rule as follows:

1 :BookingAdvised(x) ← 1 :Restaurant(x),
2 : inside(x, “Manhattan”),
1 : not type(x, “Fast Food”).

A natural question to ask the above multi-context system is to retrieve all
restaurants for which reservation is advisable.

Motivated by the above challenges, we introduce a novel kind of MCS called
knowledge base networks (KBNs). A KBN consists of a collection of KBs with
open-world semantics in terms of first-order structures, interlinked by non-
monotonic bridge rules. Such a network is equipped, similar as in [21], with
a stable model semantics inspired by [11], in a way such that the local impact
on KBs is minimal, i.e., the open-world perspective is kept as much as possible.

The new formalism has the following attractive properties.

– KBNs allow one to connect KBs expressed in a wide range of languages. The
only requirement is that they have a model-based semantics which assigns
each KB a set of first-order structures (i.e. the possible worlds). In particular,
all ontology languages based on first-order logic are supported by KBNs.

– Reasoning in KBNs is decidable whenever it is in the comprising KBs. In
particular, this holds for entailment of ground facts in the stable models of a
given KBN. This is due to a fundamental result (Theorem 2) by which stable
models can be represented as knowledge states (finite sets of ground atoms).

– Furthermore, relying on the finite representation of stable models, we obtain
generic algorithms and complexity results for reasoning in KBNs. We instan-
tiate the latter for the case where KBs are formulated in well-known DLs
(e.g. DL-Lite and SHIQ) and show that entailment of facts is often not harder
than in answer set programming (ASP) or in DLs. In particular, for the so-
called lightweight DLs it coincides with the complexity of ASP.



296 T. Eiter and M. Šimkus

– Finally, it has an implementation perspective that leverages on existing
solvers. To wit we provide a translation of KBNs with DL KBs into dl-
programs [10], such that the stable models of the KBN correspond to the
strong answer sets of the resulting dl-program. As a bonus, we obtain an
embedding of a core fragment of hybrid MKNF [20] (corresponding to sin-
gleton KBNs) into dl-programs. As a converse embedding was known, this
establishes a strong connection between hybrid MKNF and dl-programs.

2 Knowledge Base Networks

In this section, we formally define knowledge base networks. To this end, we
first describe KBs that may take part in a network. We aim to be as general as
possible, and thus consider all KBs with semantics in terms of first-order struc-
tures (interpretations). After formally defining interpretations, we introduce the
syntax of bridge rules and the stable model semantics for KBNs.

We assume disjoint sets Const and Rel of constants and relation symbols of
arity ≥ 0, respectively. Usually interpretations in first-order logic (FOL) are
defined for a signature, i.e. a collection of symbols. We consider in this paper
structures that interpret a given finite set σ of constants and, for simplicity, all
relation symbols. Since KBs will be linked by rules based on epistemic queries, we
need to make some assumptions. We assume that σ is part of the interpretation
domain and all c ∈ σ are interpreted as themselves. This is a variant of the
standard name assumption (SNA), which is a common assumption for epistemic
logics based on FOL (see, e.g., [7,20]).

Definition 1. Assume a finite set σ of constants. A σ-interpretation is a tuple
I = (ΔI , ·I), where (i) ΔI �= ∅ is a set such that σ ⊆ ΔI , called the domain of
I, and (ii) ·I is a function that assigns to each n-ary relation symbol R ∈ Rel an
n-ary relation RI ⊆ (ΔI)n. If σ is irrelevant or clear from the context, we call
I an interpretation. We further assume a nullary relation ⊥ such that (⊥)I = ∅
for all interpretations I.

We next give a general notion of KBs. The semantics to each KB is given
by associating to it a possibly infinite set of interpretations (called models or
possible worlds).

Definition 2. Let K denote an infinite set of objects, called knowledge bases
(KBs). We further assume a binary “models” relation |= between interpretations
and KBs. If I |= κ, then I is called a model of the KB κ ∈ K.

In our approach, KBs communicate via rules that involve first-order atoms
over the constants in Const and an additional countably infinite set V of variables.
Positive literals (or, atoms) have the form R(�t), where R ∈Rel is n-ary and �t
is an n-tuple of terms, i.e., of elements from V ∪ Const. Instead of writing ⊥()
we simply write ⊥. Negative literals are expressions not B, where B is an atom.
A (positive or negative) literal is ground, if it has no variables.
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Definition 3. Assume a KB κ ∈ K, a σ-interpretation I, a ground atom B =
R(�t), and a set I of ground atoms. We extend the |= relation as follow s; we
write

– I |= R(�t) if �t ∈ RI and ti ∈ σ for every term ti in �t;
– I |= I if I |= B holds for every B ∈ I;
– κ, I |= B if I |= B for every I such that I |= κ and I |= I;
– κ |= B if κ, ∅ |= B.

We will use “conditional entailment” to refer to the problem of deciding
κ, I |= B, where κ, I and B are as above. Note that conditional entailment
is a generalized version of classical entailment from a KB, i.e. the case when
I = ∅.

We next define bridge rules. They are syntactically similar to the rules in
standard ASP, but employ indexed literals to be able to refer to different KBs
of a KBN.

Definition 4. An indexed literal is an expression k : L, where k ≥ 1 is an
integer and L is a literal; it is positive, if L is positive, and negative otherwise.
A (bridge) rule ρ is an expression of the form

L0 ← L1, . . . , Ln, (1)

where L0, . . . , Ln are indexed literals. head(ρ) = L0 is the head of ρ, while
body(ρ) = {L1, . . . , Ln} is the body of ρ. We denote by V(ρ) the set of variables
that occur in ρ. We assume rules are safe, i.e. each x ∈ V(ρ) occurs in a positive
body literal of ρ. A rule ρ is ground, if V(ρ) = ∅.

We now formally define KBNs. In addition to a specification of KBs and
interconnecting bridge rules, a KBN also specifies a finite set of “shared” con-
stants. Intuitively, knowledge exchange between KBs will be limited to informa-
tion about these constants.

Definition 5. A knowledge base network (KBN) is a tuple N = (�κ,R, σ), where

(i) �κ = 〈κ1, . . . , κn〉 is a tuple of KBs,
(ii) R is a finite set of bridge rules such that k ∈ {1, . . . , n} for every literal

k : L occurring in R, and
(iii) σ ⊆ Const is a finite set of constants.

We require c ∈ σ for every constant c that occurs in R. If “not” does not appear
in R, then R and N are called positive.

Example 2. Consider the following example of a KBN with two KBs, two
bridge rules and two shared constants. More precisely, take a set σ = {c1, c2}
of constants, and a pair κ1, κ2 of KBs. We build the following KBN N =
(〈κ1, κ2〉, {ρ1, ρ2}, σ), where ρ1, ρ2 are bridge rule with a single variable x as
follows:

ρ1 = 1 : A(x)← 2 : D(x), 2 : not E(x),

ρ2 = 2 : F (x)← 1 : B(x).

Intuitively, the rules ensure that the following holds for every shared constant c
in σ:
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– if D(c) is known in κ2 but E(c) is not known in κ2, then A(c) is known in κ1;
– if B(c) is known in κ1, then F (c) is known in κ2.

Semantics. To formalize the semantics of KBNs we will work on sets of inter-
pretations. We use I, I′, I1, I2 and so forth to denote such sets. For two tuples
�I = (I1, . . . , In) and �I′ = (I′1, . . . , I

′
n) of sets of interpretations, we write �I ⊆ �I′ if

I1 ⊆ I
′
1, . . . , In ⊆ I

′
n. We write �I⊂�I′ if �I ⊆�I′ and �I′ �⊆�I.

We give KBNs a semantics in terms of epistemic models. Roughly speaking,
the latter assign every κi in a KBN N a set Ii of models of κi so that each rule
ρ in N is satisfied, where rule satisfaction is defined via epistemic evaluation of
rule literals. Intuitively, such a literal i : R(�t) (resp., i : not R(�t)) has value true,
if it is true in each (resp., false in some) interpretation in Ii. In this way, rules
transfer knowledge between KBs. Intuitively, rules should have minimal effect
on the local KB models, i.e. preserve as much knowledge of individual KBs as
possible. This minimality requirement will eventually lead to stable models.

Definition 6. An epistemic interpretation for a KBN N = (�κ,R, σ) is a |�κ|-
tuple �I= (I1, . . . , I|�κ|), where each Ii of �I is a nonempty set of σ-interpretations.

Our next goal is to formally define epistemic models. We start from the
satisfaction of ground literals and ground rules.

Definition 7. Assume a set I of interpretations and a ground atom B. We
write I |= B if I |= B for all I ∈ I. We write I |= not B if I �|= B, i.e. I � |= B

for some I ∈ I. For an epistemic interpretation �I = (I1, . . . , In) and a literal
k : L, we write �I |= k : L if Ik |= L. For a ground rule (1), we let �I |= ρ if
�I |= L1, . . . ,�I |= Ln implies �I |= L0.

In particular, for each epistemic interpretation �I= (I1, . . . , In) and 1≤ k ≤n,
we have �I � |= k:⊥, as Ik �= ∅, i.e., epistemic interpretations are locally consistent
at each KB.

The satisfaction of rules with variables is defined via grounding.

Definition 8. Given a set σ ⊆ Const, a σ-substitution is any function δ :V→ σ.
By δ(ρ) we denote the rule obtained from a rule ρ by replacing each variable x
of ρ with δ(x). For a set R of rules, we let ground(R, σ) = {δ(ρ) | ρ ∈ R,
δ is a σ-substitution}.

We can now finalize the definition of epistemic models.

Definition 9. Assume a KBN N = (�κ,R, σ) and an epistemic interpretation �I

for N . We write �I |= R, if �I |= ρ for every ρ ∈ ground(R, σ). We write �I |= N
if �I |= R and I |= κi for every 1 ≤ i ≤ |�κ| and I ∈ Ii. If �I |= N , then �I is an
epistemic model of N .

Stable Models. We next define stable models, which intuitively minimize the
knowledge loss by maximally preserving models of individual KBs. In addition,
stable models minimize the truth of atoms that occur negatively in rule bodies,
thus implementing default negation. To this end, we adapt for our purposes the
Gelfond-Lifschitz reduct [11].
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Definition 10. Given a KBN N = (�κ,R, σ) and an epistemic interpretation �I

for N , we denote by R�I the set of rules obtained from ground(R, σ) by deleting

(i) every rule with a body literal k : not B s.t. �I |= k : B;
(ii) every negative literal in the remaining rules.

Then, N�I = (�κ,R�I, σ) is called the reduct of N w.r.t.�I.

We are ready to define stable models of KBNs. Due to the adopted epistemic
approach we maximize sets of models, which contrasts but is equivalent to model
minimization in standard ASP (see the seminal paper [18] for this observation).

Definition 11. An epistemic interpretation �I for a KBN N is a stable model
of N , if (1) �I |= N and (2) there is no �I′ such that �I ⊂�I′ and �I′ |= N�I. We say
N is consistent, if N has a stable model.

Example 3 (Cont’d). We illustrate the above concepts by an example. Let
κ1 have the set of models I = {I1, I2, I3} and κ2 the set of models J =
{J1,J2,J3} with

I1 = {A(c1), B(c1), C(c1)}, J1 = {D(c1), E(c1), F (c1)},

I2 = {A(c1), B(c1)}, J2 = {D(c1), E(c1)},

I3 = {A(c2)}, J3 = {D(c1), F (c1)}.

With a slight abuse of notation each model is given by the ground atoms it
satisfies. Assume the case where I

′ = {I1, I2, I3} and J
′ = {J1,J2}. It can be

easily verified that (I′, J′) is an epistemic model of N . However, it is not a stable
model of N because (I′, J′ ∪{J3}) is an epistemic model of N (I′,J′). An intuitive
reason to discard (I′, J′) as a stable model is that E(t) is epistemically true in
J

′, but this is not “justified” by the bridge rules and the models of κ1 and κ2.
Consider the case where I

′ = {I1, I2} and J
′ = {J1,J3}. One can easily see

that such (I′, J′) is a stable model of N .
In standard ASP, a consistent positive program, i.e. program without an

occurrence of “not”, has a unique stable model. The same holds for any consistent
positive KBN N . This follows from the fact that the component-wise union of
two epistemic models of N is again an epistemic model of N .

Theorem 1. Every positive KBN N has at most one stable model.

Singleton KBNs, i.e. KBNs N = (�κ,R, σ) with |�κ| = 1, remain interesting as
they allow for closed-world reasoning about a KB (we shall see later that hybrid
MKNF KBs can be seen as singleton KBNs). For such KBNs, we drop the unique
prefix “1 : ” from rule literals, and also identify epistemic interpretations�I = (I1)
of N with simply I1. In this case, R is syntactically a regular ASP program; the
connection between singleton KBNs and ASP can be elaborated as follows.

Proposition 1. Assume a regular ASP program P . Let σ be the set of constants
that appear in P , and let � be a KB such that I |= � for any interpretation I.
Then, I is a stable model of P iff the singleton KBN N = (�, P, σ) has a stable
model I such that I = {R(�t) | I |= R(�t) and R(�t) is ground}.



300 T. Eiter and M. Šimkus

3 Reasoning in Knowledge Base Networks

We show in this section that basic inference in KBNs is decidable, provided rea-
soning in individual KBs is decidable. In particular, we consider the task of decid-
ing, given a KBN N and a ground indexed atom k : R(�t), whether �I |= k : R(�t)
holds for every stable model �I of N . We will refer to this problem as “ground
entailment”. We show that this problem is decidable if for each individual KB
of N there is a procedure to check conditional (non-)entailment.

As a stable model may contain infinitely many interpretations of infinite
size, we resort to a finite representation that is similar in spirit to those in [7,20,
22,23]. In particular, stable models will be represented using stable knowledge
states, which are finite sets of ground indexed atoms satisfying certain stability
conditions. To this end, given a KBN N = (�κ,R, σ), we use base(N ) to denote
the set of all indexed atoms that can be built from constants in σ, relations and
indices that occur in R.

Definition 12. Given an epistemic interpretation�I for a KBN N , we let KN (�I)
denote the set of atoms B ∈ base(N ) such that �I |= B.

Observe that KN (�I) is always finite, even if �I is infinite.
For rules over indexed literals, we define the notions of a classical model and

a variation of the Gelfond-Lifschitz reduct.

Definition 13. For a set I of ground indexed atoms and a ground atom B, we
write I |= k : B, if k : B ∈ I and I |= k : not B, if k : B �∈ I. Assuming ρ is a
ground rule L0 ← L1, . . . , Ln, we write I |= ρ in case I |= L1, . . . , I |= Ln

implies I |= L0. Given a set R of ground rules, the rule set RI is obtained from
R by deleting

(a) every rule with a body literal k : not B s.t. k : B ∈ I, and
(b) every negative literal in the remaining rules.

We can now present stable knowledge states; informally, they are knowledge
states that can be justified by the KBs and the bridge rules of the given KBN.
For a set I of ground indexed atoms and i ≥ 1, let I|i = {B | i : B ∈ I}.

Definition 14. Let N = (�κ,R, σ) be a KBN. A set I ⊆ base(N ) is closed w.r.t.
N , if the following holds for every 1 ≤ i ≤ |�κ|:

(i) κi, I|i � |= ⊥, and
(ii) κi, I|i |= B implies i : B ∈ I for every i : B ∈ base(N ).

A set I ⊆ base(N ) is a stable knowledge state of N , if

(A) I is closed w.r.t. N ,
(B) I |= ground(R, σ), and
(C) there exists no J ⊂ I such that (i) J is closed w.r.t. N and (II) J |=

(ground(R, σ))I .
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Algorithm 1. nonEntails
Input: KBN N = (�κ, R, σ), ground indexed atom i : B

Output: true iff N has a stable model �I s.t. �I � |= i : B

1 Guess a set I ⊆ base(N )

2 Compute N I := (�κ, RI , σ)

3 Let J = leastKnowledgeState(N I)
4 return true iff J = I and κi, I|i � |= B

The next theorem draws a strong connection between stable models and
stable knowledge states of a KBN.

Theorem 2 (representation). Assume a KBN N . If �I is a stable model of
N , then KN (�I) is a stable knowledge state of N . Conversely, if I is a stable
knowledge state of N , then N has a stable model �I such that KN (�I) = I.

This theorem implies that stable models of a KBN N can be represented
by finite sets of indexed atoms from base(N ). Observe that for finite R and
σ, there are only finitely many candidate sets I ⊆ base(N ), and for each such
I it is decidable whether it satisfies (B) of Definition 14 and likewise, whether
J satisfies (C.ii). However, checking whether I satisfies (A) or J satisfies (C.i)
relies on the decidability of conditional entailment in the individual KBs of N .

Based on these observations, we give in Algorithm 1 a nondeterministic pro-
cedure for checking nonentailment of ground atoms from KBNs, which uses an
oracle for conditional entailment in individual KBs. It uses Algorithm2 as a sub-
routine that ensures via fix-point computation that I is the least J ⊆ base(N )
that is closed w.r.t. N (note that N and N I share the KBs), which implies that
(A)–(C) hold.

Technically, we say a set L ⊆ K of KBs is decidable, if given κ ∈ L, a set of
atoms I, and a ground atom B, testing κ, I � |= B is decidable. We say a KBN
N is over L, if κ ∈ L for each KB of N . In addition, we say L is in a complexity
class C if testing κ, I � |= B is in C. We say that the data complexity of L is in a
complexity class C if the following problem is in C for every κ ∈ L and ground
atom B: given a set of atoms I, check whether κ, I � |= B. I.e. for data complexity,
the size of KBs and queries is assumed to be fixed.

Theorem 3 (decidability). Assume a decidable set L ⊆ K of KBs. Then
ground entailment from KBNs over L is decidable.

3.1 Complexity

As we have seen, the complexity of ground entailment depends on the complexity
of conditional entailment in the individual KBs. For a set L ⊆ K in C, it is easy
to see that non-entailment from KBNs over L is in the class NExpC . We next
consider this problem more for the important case of bounded predicate arities
in rules.
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Algorithm 2. leastKnowledgeState

Input: A positive KBN N = (�κ, R, σ)
Output: KN (I) for the unique stable model I of N if N is consistent.

1 I ← ∅
2 repeat
3 I ′ ← I
4 foreach ρ ∈ ground(R, σ) s.t. body(ρ) ⊆ I do
5 I ← I ∪ {head(ρ)}
6 foreach i : B ∈ base(N ) s.t.κi, I|i |= B do
7 I ← I ∪ {i : B}
8 until I = I ′

9 if �κ has some κi such that κi, I|i |= ⊥ then
10 return “not exists”

11 return I

Theorem 4. Assume a set L ⊆ K in C, and consider KBNs N = (�κ,R, σ) over
L and where the arity of relations occurring in R is bounded by a constant. Then
deciding N � |= j : B has the following complexity:

(a) For C = NExp, it is in NPNExp; if in addition R is positive, it is in NExp.
(b) For C = Exp, it is in Exp.
(c) For C = Σp

i , it is in Σp
i+1 if i ≥ 1 and in Σp

2 for i = 0.
(d) For C =Σp

i and positive R, it is in Σp
i if i≥ 2, (ii) in PNP if i=1 (i.e. C=NP),

and (iii) in co-NP if i=0 (i.e. C=P).

Intuitively, the results are explained as follows. The guess for I in Algorithm 1
is polynomial due to bounded arities, and if Exp ⊆ C, we can run Algorithm 2
on N I in polynomial time (without explicit grounding), where a C oracle is used
to decide rule applicability in line 4 and conditional entailment in lines 6 and
9. This shows NPNExp and Exp upper bounds in (a) and (b). If C is Σp

i , we
cannot ground R in polynomial time, but we can test rule applicability in R
relative to I using an NP oracle. In case of a positive R, it is sufficient to guess
some I ′ ⊇ I that is closed under N and R such that κi, I

′|i � |= B; such a guess
I ′ can be made and verified in NExp (resp., Σp

i ), if C is NExp (resp., Σp
i , if

i > 1); as checking whether I is closed under R is co-NP-complete, this guessing
approach does not work for C = Σp

1 = NP, but I can be computed there using
an NP oracle in Algorithm 2. For C = Σp

0 , non-entailment amounts in essence to
datalog non-entailment, which is co-NP-complete.

These upper bounds are tight, i.e., for all entries in Theorem 4 one can find
L with complexity in C such that nonentailment in KBNs over L is hard for the
respective class.

3.2 Data Complexity
The above results are on the combined complexity of non-entailment. We next
consider the data complexity of this task, which we measure in the size of facts of
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an input KBN N = (�κ,R, σ), i.e. by assuming that the size of �κ, the combined
size of all rules ρ in R with non-empty bodies and the size of the input query is
fixed by a constant.

Theorem 5. Assume a set L ⊆ K with data complexity in C, and consider only
KBNs N over L. Then deciding N � |= j : B has a data complexity as follows:

(a) For C = Σp
i with i ≥ 0, the data complexity is in Σp

i+1.
(b) For C =Σp

i with i ≥ 0 and positive N , the data complexity is in C.

Different from above, grounding R is always feasible in polynomial time,
which then leads to the upper bounds; in particular, for positive rules, the guess
for I ′ can always be verified in Σp

i . Again, hardness holds in all cases (which
follows easily from the complexity of model checking for second-order logic over
finite structures).

3.3 Ontology Networks

As a concrete showcase, we discuss the complexity of KBNs whose KBs are
ontologies expressed in DLs. We refer to [1] for an introduction to DLs. A
DL ontology O can be simply seen as a theory in first-order logic (FOL)
built using constants (a.k.a. individuals), and unary and binary relation symbols
(a.k.a. concept names and role names, respectively). Various syntax restrictions
on O give rise to a variety of DLs, such as SHOIQ, SHIQ, EL, DL-Lite, etc.
Like for full FOL, the semantics for a DL ontology O can be given in terms of
interpretations as usual.

We consider here ontology networks (ONs), which are KBNs N = (�O,R, σ)
such that �O is a tuple of DL ontologies, and σ is the set of constants in �O
and R. Since σ is determined by �O and R, we will simply write N = (�O,R)
for ONs. Note that relations in R are not restricted to concept and role names,
and thus can have any arity. Table 1 gives some complexity results for reasoning
in ONs with various DLs. The upper bounds follow from Theorems 4 and 5.
Hardness in (†) and (‡) follow from [10] and [20], respectively, and the rest from
the complexity of DLs and ASP (see [8] for bounded predicate arities in ASP).
We note that conditional entailment in DLs reduces to instance checking.

Table 1. Complexity (completeness) of atom non-entailment in ONs with various DLs
(bounded arities / data complexity).

Description Logics Positive KBNs Normal KBNs

DL-Lite, EL co-NP / P ΣP
2 / NP

SHIQ Exp / NP Exp / Σp
2 (‡)

SHOIQ NExp / NP NPNExp (†) / Σp
2 (‡)
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4 Encoding into DL-programs

The finite representation result given in Theorem 2 opens a way to implementing
a procedure for reasoning in KBNs by a translation into (extensions of) answer
set programming. We show here how entailment of ground atoms from a given
ON can be reduced to entailment of atoms in a dl-program [10].

For presentation purposes, we define a variant of dl-programs that supports
only the “addition” operator � but allows queries over multiple ontologies; this
generalization is trivial and available in the dlvhex suite.1

We first recall dl-programs. A dl-atom α is an expression of the form

DL[λ; k : Q](�t), (2)

where k ≥ 1, λ = S1 � R1, . . . , Sn � Rn, n ≥ 0, and (i) Q and every Si is either
a concept or a role name, (ii) if Si is a concept (resp., role) name, then Ri is a
unary (resp., binary) relation symbol, and (iii) |�t| matches the arity of Q.

A positive dl-literal L is a dl-atom α or an atom B, and a negative dl-literal
has the form not L. A dl-rule ρ is an expression L0 ← L1, . . . , Ln, where all Li

are dl-literals. A dl-program is then a pair P = ( �O,R) where �O = O1, . . . , On

are ontologies and R is a set of dl-rules; it is positive, if “not” does not occur in
R. Ground dl-literals and grounding w.r.t. a set of constants are as for bridge
rules in Sect. 2.

The semantics of a dl-program is given by strong answer sets, which are sets
I of ground literals on the rule predicates that satisfy all rules (i.e., are models),
and fulfill a stability condition. We say I satisfies a ground atom B, if B ∈ I. In
addition, I satisfies a dl-atom α of form (2), if Ok ∪ A |= Q(�t), where A is the
DL ABox A = {Si(�c) | Ri(�c) ∈ I, 1 ≤ i ≤ n)}. We write I |= �OL if a literal L (α
or B) is satisfied. Satisfaction I |= �Oβ then naturally extends to ground positive
dl-rules and dl-programs β.

Each ground positive dl-program P = ( �O,R) has a unique least model, which
is the set I of ground atoms such that I |= �OR and J �|= �OR for every J ⊂ I. We
can now define the notion of strong answer set of dl-programs.

Definition 15. Assume a dl-program P = ( �O,R) and a set I of ground atoms.
Let ConstP denote the set of constants occurring in P . We let RI be the rule set
obtained from ground(R,ConstP ) by deleting

(i) every rule with a body literal not L s.t. I |= �OL,
(ii) all negative body literals in the remaining rules.

Then I is a strong answer set of P if I is the least model of the dl-program
P I = ( �O,RI).

Note that strong answer sets involve like stable models of KBNs a Gelfond-
Lifschitz style reduct. In fact, we give a surprisingly simple translation from ONs
into dl-programs.
1 www.kr.tuwien.ac.at/research/systems/dlvhex.

www.kr.tuwien.ac.at/research/systems/dlvhex
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In what follows, we view k : R for R ∈ Rel and k ≥ 1 as an “indexed” version
of predicate symbol R, and identify not k : B with k : not B.

Definition 16. For an ON N = ( �O,R) let PN = ( �O,R ∪ R′), where R′ con-
tains for each 1 ≤ k ≤ | �O| the following rules:

(i) k : Rj(�x) ← DL[R1 � k : R1, . . . , Rm � k : Rm; k : Rj ](�x), and
(ii) f ← not f,DL[R1 � k : R1, . . . , Rm � k : Rm; k : ⊥](x),

where 1 ≤ j ≤ m, �x is a variable tuple, f is a fresh predicate symbol, and
R1, . . . , Rm are the roles and concept names of Ok occurring in R.

Intuitively, the rules in R′ require that a candidate strong answer set I is
closed w.r.t. N , i.e. they capture item (A) of Definition 14. The strong answer set
semantics ensures then items (B) and (C). Thus the encoding generates stable
knowledge states; combined with Theorem 2, we obtain:

Theorem 6. Let N = ( �O,R) be an ON. Then a set I of indexed atoms is a
strong answer set of PN iff N has some stable model �I such that I = KN (�I).

5 Related Work and Conclusion

Information Integration. The first group of related works are formalisms
where the semantics of a “composite” KB is given by a collection of models of the
constituent KBs. In this way, they remain in the open-world setting. Examples
of this kind are works on Distributed DLs [3,4,14], Contextualized Knowledge
Repositories [24], and E-connections [17]. The latter allows to integrate theories
in different logics, but restricted to modal logics. To ensure decidability, the
connections between theories in the above approaches are quite limited compared
to the flexible rules in KBNs.

The second group consists of epistemic approaches. KBNs are closest in spirit
to the multi-context systems of [21], which defined semantics in terms of maxi-
mization of sets of models. This prior work deals only with the propositional set-
ting and does not explore the complexity of reasoning. The first-order setting of
our work is more challenging in terms of computability and complexity. Another
work that employs epistemic principles similar to ours is the work on peer-to-
peer information integration of [6]. In their model, peers exchange knowledge by
posing epistemic queries, possibly involving negation as failure. The semantics
is defined in terms of a specially tailored epistemic multimodal logic. However,
a global knowledge state and stability are not considered.

Donini et al. have introduced DLs with epistemic operators [7]. Such DLs
have been advocated as a suitable tool for closed-world reasoning about OWL
ontologies [13,15].

Relations to MCSs. Knorr et al. have recently shown how ground hybrid
MKNF KBs of [20] can be supported in MCSs of [5] without the need for dedi-
cated hybrid MKNF contexts [16]. In addition, the authors consider MCSs with
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contexts containing general FOL theories and DL ontologies, where acceptable
belief sets are defined as possibly infinite deductively closed sets of formulas.
The infinity of acceptable belief sets makes the decidability and complexity of
reasoning in such MCSs non-obvious.

An encoding of KBNs into MCSs is also not straightforward. E.g., posi-
tive KBNs cannot be readily encoded into MCSs using monotonic contexts and
negation-free rules. Indeed, the latter MCSs always have grounded equilibria,
while a positive KBN may not have a stable model; even if all individual KBs
of a KBN are consistent, negation-free bridge rules may still lead to the non-
existence of a stable model.

Relations to Hybrid MKNF. The connection between KBNs and hybrid
MKNF is strong due to the common roots in ASP. Assume a disjunction-free,
DL-safe or ground hybrid MKNF KB (P,O). We assume that only standard
atoms of the form R(�t) occur in P .2 It is not hard to see that (P,O) can be
viewed as a singleton KBN N = (O, P, σ), where σ are the constants of O and
P . In particular, if O does not use the congruence relation ≈, then (P,O) and
N entail the same ground atoms.3 Together with Theorem 6 this provides an
embedding of DL-safe and ground hybrid MKNF KBs into dl-programs, and
complements the result in [20] that dl-programs without the “−∩” operator can
be embedded into hybrid MKNF. This relationship is somewhat surprising, given
the quite different setup of the formalisms (cf. [20]).

The encoding into a KBN fails in case (P,O) is neither DL-safe nor ground,
witnessed by the undecidability of general hybrid MKNF KBs. The reason for
undecidability can be traced to the requirement that hybrid MKNF interpreta-
tions rigidly interpret an infinite set of constants (note, in addition, that this
enforces infinite interpretations). In contrast, each KBN explicitly states a finite
set σ of constants that have to be interpreted. We believe this is a sensible app-
roach; we expect σ will often be inferred from the KBs and rules of a KBN. In
addition, requiring infinite interpretations as in hybrid MKNF means that one
cannot accommodate expressive KBs whose semantics allows to enforce finite
models (e.g. this applies to SHOIQ, see [19] for a similar observation).

Outlook. We believe that Knowledge Base Networks (KBNs) is a power-
ful formalism for interlinking open-world first-order KBs using nonmonotonic
rules, while still having good decidability properties. We note that KBNs and
Theorem 2 can be easily generalized to support disjunctive bridge rules. Our trans-
lation from hybrid MKNF to dl-programs can then be lifted to inputs with dis-
junctive rules (disjunctive dl-programs of [9] can be used as a target language).
The main challenge for future work is to find ways to include into KBNs also KBs
operating under the closed-world assumption, in addition to the open-world KBs
considered here. Finally, it is important to understand how notions of stratifica-
tion known from ASP can be transferred to KBNs.
2 This was the setting of the initial version of [20]. A so-called generalized atom, i.e. a

complex formula, can be replaced by a standard atom whenever it is expressible in
the considered DL.

3 If ≈ is present in O, then its axiomatization must be added to P to preserve the
correspondence. This is a general way to simulate equality under the SNA.
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Abstract. We present a framework for conceptual blending – a concept
invention method that is advocated in cognitive science as a fundamental,
and uniquely human engine for creative thinking. Herein, we employ the
search capabilities of ASP to find commonalities among input concepts
as part of the blending process, and we show how our approach fits within
a generalised conceptual blending workflow. Specifically, we orchestrate
ASP with imperative Python programming, to query external tools for
theorem proving and colimit computation. We exemplify our approach
with an example of creativity in mathematics.

1 Introduction, Preliminaries and Motivation

Creativity is an inherent human capability, that is crucial for the development
and invention of new ideas and concepts [2]. This paper addresses a kind of cre-
ativity which [2] calls combinational, and which has been studied by Fauconnier
and Turner [4] in their framework of conceptual blending. In brief, conceptual
blending is a process where one combines two input concepts to invent a new
one, called the blend.

As a classical example of blending, consider the concepts house and boat
(e.g. [4,7]): A possible result is the invention of a house-boat concept, where the
medium on which a house is situated (land) becomes the medium on which boat
is situated (water), and the inhabitant of the house becomes the passenger of
the boat. A sub-task of conceptual blending is to find a common ground, called
generic space, between the input concepts [4]. For example, the house-boat blend
has the generic space of a person using an object which is not situated on any
medium. Once the generic space has been identified, one can develop possible
blends by specialising the generic space with elements from the input concepts
in a meaningful way. This is not trivial because the naive ‘union’ of input spaces
can lead to inconsistencies. For example, the medium on which an object is
situated can not be land and water at the same time. Hence, before combining
c© Springer International Publishing Switzerland 2015
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the input concepts, it is necessary to generalise, and to remove at least one
medium assignment.

Finding the generic space of two concepts is a non-monotonic search prob-
lem, and it is well-known that Answer Set Programming (ASP) (see e.g. [5]) is a
successful tool to cope with such problems. In this paper, we present a computa-
tional framework for blending, that addresses the following question: “How can
we use ASP as a non-monotonic search engine to find a generic space of input
concepts, and how can we orchestrate this search process with external tools to
produce meaningful blends within a computationally feasible system?” Towards
this, we use a mixed declarative-imperative amalgams process known from case-
based reasoning [14], which coordinates the generalisation and combination of
input concepts.

Concept Blending as Colimit of Algebraic Specifications. Goguen [7] pro-
poses to model the input concepts of blending as algebraic specifications enriched
by priority information about their elements, which he calls semiotic systems.
This algebraic view on blending suggests to compute the blend of input specifica-
tions as their categorical colimit – a general unification operation for categories,
similar to the union operation for sets. In our case the colimit unifies alge-
braic signatures (see [12,17] for category theoretical details). We represent semi-
otic systems by using the Common Algebraic Specification Language (CASL)
[13]. CASL allows us to state first-order logical specifications, which consists of
four kinds of elements, namely sorts, operators, predicates and first order logical
axioms. Operators are functions that map a list of arguments of a certain sort to
a range sort, and predicates are functions that map arguments to boolean values.
Such a representation language lets us define more than just concepts, namely
full first order theories. As an example, consider the following specifications that
represent the mathematical theories of natural numbers and lists.

spec Nat =
sort Nat p:3
ops zero : Nat ; p:2

s : Nat → Nat p:3
sum : Nat → Nat p:2
qsum : Nat × Nat → Nat p:2
plus : Nat × Nat → Nat p:1

∀ x, y : Nat
(0) . sum(zero) = zero p:2
(1) . sum(s(x)) = plus(s(x), sum(x)) p:2
(2) . qsum(s(x), y) = p:2

qsum(x, plus(s(x), y))
(3) . qsum(zero, x) = x p:2
(4) . plus(zero, x) = x p:1
(5) . plus(s(x), y) = s(plus(x, y)) p:1
(NT). sum(x) = qsum(x, zero) p:3
(NL) . plus(sum(x), y) = qsum(x, y) p:3
end

spec List =
sorts El p:3

L p:3
ops nil : L; p:2

cons : El × L → L; p:3
app : L × L → L; p:2
rev : L → L; p:2
qrev : L × L → L p:2

∀ x, y : L; h : El
(6) . rev(nil) = nil p:2
(7) . rev(cons(h, x)) = p:2

app(rev(x), cons(h, nil))
(8) . qrev(nil, x) = x p:2
(9) . qrev(cons(h, x), y) = p:2

qrev(x, cons(h, y))
(10) . app(nil, x) = x p:1
(11) . app(cons(h, x), y) = p:1

cons(h, app(x, y))
(LT) . rev(x) = qrev(x, nil) p:3
end
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Fig. 1. Amalgamation workflow

For example, in List, the operator cons maps an object of the sort El (ele-
ment) and an object of the sort L (list) to an object of the sort L. That is, cons
constructs lists by appending one element to a list. The rev operator is a recur-
sive reverse function on lists, and the qrev is a tail-recursive version of the reverse
function. Similarly, in Nat, s is a successor function, sum denotes a recursive
function to obtain the cumulative sum of a number (e.g. sum(3) = 1+2+3 = 6),
and qsum is a tail-recursive version of sum. We enrich CASL specifications by
considering priority information for the individual elements. We denote such
specifications as prioritised CASL specifications (PCS). For example, the ‘p:3’
behind the cons operator declaration denotes that cons has a relatively high
priority of 3, and analogously for the other operators, sorts and axioms.

Motivating Example – Discovering Eureka Lemmas by Blending. Of
particular interest in the above theories are (NT) and (LT). These theorems
state that the recursive functions sum and rev are equivalent to the compu-
tationally less expensive tail-recursive quick-functions qsum and qrev . Proving
such theorems by induction is very hard due to the absence of a universally
quantified variable in the second argument of the tail-recursive version [9]. An
expert’s solution here is to use a lemma that generalises the theorem. An exam-
ple of such a generalisation is the eureka lemma (NL) in the naturals, which we
assume to be known in this scenario. Discovering such lemmas is a challenging
well-known problem (see e.g. [10,11]), and we demonstrate how blending is used
to obtain an analogous eureka lemma for lists as an example application.

2 ASP-Driven Blending by Amalgamation

We employ an interleaved declarative-imperative amalgamation process to search
for generalisations of input spaces that produce and evaluate logically consistent
blends.

System Description. The workflow of our system is depicted in Fig. 1. First,
the input PCS s1, s2 are translated into ASP facts. Then, s1, s2 are iteratively
generalised by an iterative ASP solver until a generic space is found. Each gen-
eralisation is represented by a fact exec(γ, s, t), where t is an iterator and γ
is a generalisation operator that, e.g., removes an axiom or renames a sort, as
described below. The execution of generalisation operators is repeated until the
generalised versions of the input specifications have the same sorts, operators,
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predicates and axioms, i.e., until a generic space is found. We write s(t) to denote
the t-th generalisation of s. For example, a first generalisation of the house con-
cept might be the concept of a house that is not situated on any medium. In
order to find consistent blends, we apply the category-theoretical colimit [12]
to compose generalisations of input specifications. The colimit is applied on dif-
ferent combinations of generalisations, and for each result we query a theorem
prover for logical consistency. To eliminate uninteresting blends from our search
process, we consider that the more promising blends require less generalisations.
Consequently, we go from less general generalisations to more general generali-
sations and stop when a consistent colimit is achieved. Thereafter, the result is
evaluated using certain metrics that are inspired by Fauconnier and Turner [4]’s
so-called optimality principles of blending to assess the quality of the blend (due
to lack of space, we refer to the literature for details on those principles). Note
that different stable models, and therefore different generalisations, can be found
by the ASP solver, which lead to different blends.

Modelling Algebraic Specifications in ASP. First, we translate PCS to
ASP facts, with atoms like sort(s, s, t) that denote that s is a sort of the specifi-
cation s at a step t. Operators and predicates are declared similarly. Arguments
of operators are defined by atoms opHasSort(s, o, si, i, t) that denote that an
operator o in a specification s has the sort si as i-th argument. For each element
e in a PCS specification s, we represent its priority vp as a fact priority(s, e, vp).

Formalising Generalisation Operators in ASP. For the generalisation of
PCS, we consider two kinds of generalisation operators. The first kind involves
the removal of an element in a specification, denoted by rm predicates, and the
second kind involves the renaming of an element, denoted by rename predicates.
We represent the execution of a generalisation operator with atoms exec(γ, s, t),
to denote that a generalisation operator γ was applied to s at a step t. Each gen-
eralisation operator is defined via a precondition rule, and, in case of renaming
operations, an effect rule. Preconditions are modelled with a predicate poss/3
that states when it is possible to execute a generalisation operation, and effect
rules model how a generalisation operator changes an input specification. For
example, the preconditions for removing and renaming operators are specified
by the following rules:

poss(rm(e), s, t) ←op(s, e, t), exOtherSpecWithoutElem(s, e, t),

0{ax(s, A, t) : axInvolvesElem(s, A, e, t)}0 (1a)
poss(rename(e, e′, s′), s, t) ←op(s, e, t), op(s′, e′, t), not op(s, e′, t), not op(s′, e, t), (1b)

not opSortsNotEquivalent(s, e, s′, e′, t), s �= s′

For the removal of elements we have a condition exOtherSpecWithout
Elem(s, e, t), which denotes that an element can only be removed if it is not
involved in another specification. Such preconditions are required to allow only
generic spaces that are least general for all input specifications, in the sense that
elements can not be removed if they are contained in all specifications. We also
require operators, predicates and sorts not to be involved in any axiom before
they can be removed (denoted by 0{ax (s, A, t) : axInvolvesElem(s, A, e, t)}0).
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We also need rules to state when elements remain in a specification. This is
expressed via noninertial/3 atoms as follows, where (2c) is an examplary case
of operator elements of a specification.

noninertial(s, e, t) ←exec(rm(e), s, t) (2a)
noninertial(s, e, t) ←exec(rename(e, e′, s′), s, t) (2b)

op(s, e, t + 1) ←not noninertial(s, e, t), op(s, e, t) (2c)

For renaming, we also have effect rules that assign the new name for the respec-
tive element. For example, for renaming operators we have:

op(s, e′, t + 1) ← exec(rename(e, e′, s′), s, t), op(s, e, t) (3)

Generalisation Search Process. ASP is employed to find a generic space, and
generalised versions of the input specifications which lead to a consistent blend.
This is done by successively generating generalisations of the input specifications.
A sequence of generalisation operators defines a generalisation path, which is
generated with the following choice rule:

0{exec(a, s, t) : poss(a, s, t)}1 ← not genericReached(t), spec(s). (4)

Generalisation paths lead from the input specifications to a generic space, which
is a generalised specification that describes the commonalities of the input speci-
fications. genericReached(t) atoms determine if a generic space has been reached.
This is the case if for two specifications s1 and s2, at step t, (i) sorts are equal,
(ii) operator and predicate names are equal, and (iii) argument and range sorts
of operators and predicates are equal, and (iv) axioms are equivalent.

Composition and Evaluation. The next step in the amalgamation process
depicted in Fig. 1 is to compose generalised versions of input specifications to
generate a candidate blend. The key component of this composition process is
the categorical colimit [12] of the generalised specifications and the generic space.
The colimit is then enriched with the priority information, which we compute
as the sum of the priorities of the input elements. The composition is then
evaluated according to several factors that reflect the rather informal optimality
principles proposed by Fauconnier and Turner [4]. Our formal interpretation of
these principles considers logical consistency and the following three evaluation
metrics which are based on Fauconnier and Turner [4]’s informal descriptions of
certain optimality principles for blending:

(a) We support blends that keep as much as possible from their input concepts
by using the priority information of elements in the input concepts. This
corresponds to unpacking, web and integration principles. Towards this, we
compute the amount of information in a blend as the sum of the priorities
of all of its elements.

(b) We support blends that maximise common relations among input concepts
as a means to compress the structure of the input spaces. Relations are
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made common by appropriate renamings of elements in the input specifica-
tion. This corresponds to the vital relations principle. Maximising common
relations raises the compression of structure in a composition, which is com-
puted as the sum of priorities of elements in the composition that have
counterparts in both input specifications. For example, consider the predi-
cate liveIn : Person × House of the House specification and the predicate
ride : Person×Boat of the Boat specification. Both are mapped to the same
element in the composition, i.e., the predicate liveIn : Person ×House. The
liveIn in the composition uses the same symbol as the one in House, but it
carries more information because due to the renaming it now also represents
the ride predicate. We account for this form of compression of information
by adding the priority of liveIn to the compression value.

(c) We support blends where the amount of information from the input specifi-
cations is balanced. This corresponds to the double-scope property of blends,
which is described by Fauconnier and Turner [4] as ‘... what we typically find
in scientific, artistic, and literary discoveries and inventions.’ Towards this, we
consider a balance penalty of a blend, which we define as the difference between
the amount of information from the input specifications as described in a).

Proof of Concept – Lemma Invention for Theorem Proving. To perform
the blend of the theories of naturals and lists discussed in Sect. 1, our system
first generates a generic space, which is achieved with the following generalisation
paths:1

PNat = {exec(rename(Nat, L,List),Nat, 0), exec(rename(zero, nil,List),Nat, 1),

exec(rename(C,El,List),Nat, 2), exec(rename(s, cons,List),Nat, 3), · · ·
exec(rm(1),Nat, 9), exec(rm(2),Nat, 10), exec(rm(c),Nat, 11), exec(rm( NL),Nat, 12)}
PList = {exec(rm(10),List, 0), · · · , exec(rm(7),List, 3)}

With this generalisation path, the sort L is mapped to the sort Nat , the terminal
elements nil and zero are mapped to each other, the construction operator s is
mapped to cons, rev is mapped to sum, qrev is mapped to qsum, and app is
mapped to plus. Note, that the meaning of the List-symbols is now much more
general because they map to both, the List and the Nat theory, and represent
now analogies between both theories. After finding the generic space, our frame-
work iterates over different combinations of generalised input specifications and
computes the colimit. It then checks the colimits consistency and computes the
blend value. In this example, the highest composition value for a consistent col-
imit is 90, where the 4th generalisation of List and the 8th generalisation of Nat
is used as input. The result is a theory of lists with the newly invented lemma
app(rev(x), y) = qrev(x, y) which can be used successfully as a generalisation
lemma to prove (LT).
1 Note that for this example, we extend the unary constructor s(n) in the naturals
by an additional canonical argument c, so that the constructor becomes binary, i.e.,
s(c, n). This is valid when considering a classical set theoretic construction of the
naturals as the cardinality of a set (see [1] for example), where the theory of the
naturals corresponds to a theory of lists of the same element.
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3 Conclusion

We present a computational approach for conceptual blending where ASP plays
a crucial role in finding the generic space and generalised input specifications.
We implement the generalisation of algebraic specifications using a transition
system semantics of preconditions and postconditions within ASP, which allows
us to access generalised versions of the input specifications. These generalised
versions of the input specifications let us find blends which are logically con-
sistent. To the best of our knowledge, there exists currently no other blend-
ing framework that can resolve inconsistencies and automatically find a generic
space, while using a representation language that is similarly expressive as ours.
On top of the ASP-based implementation, we propose metrics to evaluate the
quality of blends, based on the cognitive optimality principles by Fauconnier
and Turner [4]. A number of researchers in the field of computational cre-
ativity have recognised the value of conceptual blending for building creative
systems, and particular implementations of this cognitive theory have been pro-
posed [3,6,8,15,16,18]. They are, however, mostly limited in the expressiveness
of their representation language, and it is in most cases unclear how they deal
with inconsistencies and how the generic space is computed. Furthermore, exist-
ing approaches lack a sophisticated evaluation to determine formally how ‘good’
a blend is. An exception is the very sophisticated framework in [15,16], which
also has optimality criteria based on [4]’s theory. However, the authors do not say
how to find the generic space automatically and how to deal with inconsistencies.

A prototypical implementation of our system can be accessed at https://
github.com/meppe/Amalgamation. It will be a core part of the bigger compu-
tational concept invention framework that is currently being built within the
COINVENT project http://www.coinvent-project.eu.
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(eds.) MICAI 2010, Part I. LNCS, vol. 6437, pp. 348–361. Springer, Heidelberg
(2010)

12. Mossakowski, T.: Colimits of order-sorted specifications. In: Parisi-Presicce, F.
(ed.) WADT 1997. LNCS, vol. 1376, pp. 316–332. Springer, Heidelberg (1998)

13. Mosses, P.D. (ed.): CASL Reference Manual: The Complete Documentation of the
Common Algebraic Specification Language. LNCS, vol. 2960. Springer, Heidelberg
(2004)
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Abstract. We introduce a novel diagnostic reasoning method for
robotic systems with multiple robots, to find the causes of observed
discrepancies relevant for plan execution. Our method proposes (i) a
systematic modification of the robotic action domain description by uti-
lizing defaults, and (ii) algorithms to compute a smallest set of diagnoses
(e.g., broken robots) by means of hypothetical reasoning over the mod-
ified formalism. The proposed method is applied over various robotic
scenarios in cognitive factories.

Keywords: Diagnostic reasoning · Action languages · Answer set pro-
gramming

1 Introduction

For the fault-awareness and reliability of robotic systems (e.g., in cognitive facto-
ries or service robotics), it is essential that the robots have cognitive skills, such
as planning their own actions, identifying discrepancies between the expected
states and the observed states during plan execution, checking whether these
discrepancies would lead to a plan failure, diagnosing possible causes of relevant
discrepancies, learning from earlier diagnoses, and finding new plans to reach
their goals. In this paper, we focus on diagnostic reasoning for robotics.

Consider, for instance, a cognitive factory [11,32]. In a typical cognitive fac-
tory, each workspace is medium sized with 3–12 heterogeneous robots; there may
be many workspaces, each focusing on a different task. On the other hand, each
of these robots has many components, failure of which may cause abnormalities
in the manufacturing process. Factory shut-downs for diagnosis and repairs are
very costly; hence, it is required that diagnosis is performed accurately and fast.
Furthermore, it is essential that the monitoring agent(s) have the capability of
identifying further details on diagnosis (broken robot components, actions that
could not be executed due to broken robots/components), and learning from
earlier diagnoses and failures.

Z.G. Saribatur’s work was carried out during her graduate studies at Sabancı
University.
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With these motivations, we introduce a diagnostic reasoning method to find a
smallest set of broken robots (and their components) that cause the relevant dis-
crepancies observed during plan execution. Our method starts with the robotic
action domain description used to compute a plan, the part of the plan executed
from the initial state until the current state, and a set of observations about
the current state. The robotic domain description is represented in an action
description language [16], like C+ [18]. Then, our method (i) applies a system-
atic modification of the robotic action domain description by utilizing defaults,
and (ii) computes a smallest set of diagnoses by means of hypothetical reasoning
over the modified formalism.

The modification of the domain description is essential to be able to generate
possible causes of the observed discrepancies that would lead to plan failures. The
use of defaults help generation of possible causes for discrepancies (such as broken
robots), as well as generation of further information (such as which actions are
prevented from execution due to these causes). We have proven that our proposed
modification conservatively extends the planning domain description, which is
important for generating such further information.

The computation of smallest sets of diagnoses is done by means of “diagnostic
queries” expressed in an action query language, like Q [16], and by using efficient
automated reasoners, such as SAT solvers and ASP solvers. Two algorithms are
proposed for this computation: one of them relies more on hypothetical reasoning
and can be used in conjunction with both sorts of reasoners; the other algorithm
relies on aggregates and optimization statements of answer set programming
(ASP) [3,22–24,27].

Both algorithms synergistically integrate diagnostic reasoning with learning
from earlier experiences and probabilistic geometric reasoning. As demonstrated
by our experiments, learning improves the computational efficiency and quality
of diagnoses, since it allows robots to utilize their previous experiences (e.g.,
which robots or robot components are more probable to be broken). As shown
by examples, geometric reasoning improves accuracy of diagnoses by considering
feasibility of robotic actions.

2 Preliminaries

We model dynamic domains like cognitive factories as transition diagrams –
directed graphs where the nodes characterize world states and the edges rep-
resent transitions between states caused by (non)occurrences of actions. We
represent transition diagrams formally in the nonmonotonic logic-based action
description language C+ [18].

Various sorts of reasoning tasks can be performed over transition diagrams,
such as planning and prediction. We describe reasoning tasks by means of formu-
las in an action query language Q [16], and utilize SAT/ASP solvers to compute
a solution.

This logic-based reasoning framework allows integration of low-level fea-
sibility checks (e.g., collision checks for robots) performed externally by the
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state-of-the-art geometric reasoners. In this section, we will briefly describe these
preliminaries over a cognitive toy factory scenario.

2.1 A Cognitive Toy Factory

As a running example, we consider the cognitive toy factory workspace of [12],
where a team of multiple robots collectively works toward completion of an
assigned manufacturing task. In particular, the team manufactures nutcracker
toy soldiers through the sequential stages of cutting, carving and assembling.
The workspace contains an assembly line to move the toys and a pit stop area
where the worker robots can change their end-effectors. It also includes static
obstacles.

The team is heterogeneous, composed of two types of robots with different
capabilities. Worker robots operate on toys, they can configure themselves for
different stages of processes; charger robots maintain the batteries of workers
and monitor team’s plan. All robots can move from any grid cell to another one
following straight paths.

2.2 Representation of a Robotic Domain

The signature of an action domain description in C+ consists of two sorts of
multi-valued propositional constants, fluent constants F and action constants
A, along with a nonempty set Dom(c) of possible values for each constant c.
Atoms are of the form c = v where c is a constant and v is a value in Dom(c). If
c is a boolean constant then we adopt the notations c and ¬c. We assume that
action constants are boolean.

Transition diagrams modeling dynamic domains can be described by “causal
laws” over such a signature. For instance, the following causal law describes a
direct effect of a robot r moving in the Right direction by u units from a location
x on the x-axis: the location of the robot becomes x + u at the next state after
the execution of this action.

move(r ,Right , u) causes xpos(r)= x + u if xpos(r)= x . (1)

The causal law below describes a precondition of this action: a worker robot w
cannot move u units in any direction d since its battery lasts for only bl <u units
of movement:

nonexecutable move(w , d , u) if battery(w)= bl (bl < u). (2)

Similarly, causal laws can represent [18] ramifications of actions, noconcurrency
constraints, state/transition constraints, the commonsense law of inertia.

We understand an action domain description as a finite set of definite causal
laws.



320 E. Erdem et al.

2.3 Reasoning About a Robotic Domain

A query in Q [16] is a propositional combination of atomic queries of the two
forms, F holds at t or A occurs at t, where F is a fluent formula, A is an
action formula, and t is a time step.

The meaning of a query is defined in terms of histories. A history of an action
domain description D is an alternating sequence s0, A0, s1, . . . , sn−1, An−1, sn
(n ≥ 0) of states and actions, denoting a path in the transition diagram described
by D. States (resp. actions) can be considered as functions from fluent constants
(resp. action constants) to their relevant domains of values. Then each state
(resp. action) can be denoted by a set of fluent (resp. action) atoms.

A query Q of the form F holds at t (resp. A occurs at t) is satisfied by
such a history if st satisfies F (resp. if At satisfies A). For non-atomic queries,
satisfaction is defined by truth tables of propositional logic. A query Q is satisfied
by an action description D, if there is a history of D that satisfies Q.

Let F and G be fluent formulas representing an initial state and goal condi-
tions. We can describe the problem of finding a plan of length k, with a query
of the form F holds at 0 ∧ G holds at k. Similarly, we can describe the prob-
lem of predicting the resulting state after an execution of an action sequence
A0, . . . , An−1 at a state described by a fluent formula F , with a query of the form

F holds at 0 ∧ ∧iAi occurs at i. (3)

It is shown [18] that an action description in C+ can be transformed into a
propositional theory and into an ASP program. Based on these sound and com-
plete transformations, the software systems CCalc [18,25] and cplus2asp [5]
turn an action domain and a given query into the input languages of a SAT
solver and an ASP solver.

2.4 Hybrid Robotic Planning

Geometric reasoning, such as motion planning and collision checks, can be inte-
grated into an action description in C+ by means of “external atoms” [9] (in the
spirit of semantic attachments in theorem proving [31]). The idea is to compute
the truth values of external atoms externally, and utilize these results, as needed,
while computing plans.

For instance, consider an external atom & collision[r, x1, y1, x2, y2] that
returns true if a robot r collides with some static obstacles while moving from
(x1, y1) to (x2, y2). This atom can be evaluated by a program implemented in
C++ utilizing a motion planner. With this atom, we can describe a precondition
of a diagonal move action (“the robot can move diagonally if it does not collide
with any static obstacles”):

nonexecutable move(w ,Right , u1 ) ∧ move(w ,Up, u2 )

if xpos(w)= x1 ∧ ypos(w)= y1 where & collision[w , x1 , y1 , x1+u1 , y1+u2 ].

Further explanations and examples of the use of external atoms in robotic
action domain descriptions, and a systematic analysis of various forms of inte-
gration of feasibility checks with planning can be found in [4,10,13].
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3 Diagnostic Reasoning

To predict failures as early as possible and to recover from failures, values of
some fluents can be monitored by an agent. If during the execution of a plan,
a discrepancy is detected between the observed values of monitored fluents and
the expected values of monitored fluents, then the monitoring agent can check
whether the detected discrepancy might lead to any failures during the execution
of the rest of the plan. If the discrepancy is relevant for the rest of the plan, then
the monitoring agent has to make some decisions (e.g., replanning) to reach
the goals. We propose the use of diagnostic reasoning to identify the cause of a
discrepancy (e.g., robots may be broken), and then find a relevant recovery with
the possibility of repairs.

3.1 Discrepancies

Let D be a domain description. Let P = 〈A0, A1, . . . , An−1〉 be a plan that
is being executed from an initial state s0. We denote by Pt the sequence
A0, A1, . . . , At−1 of actions in the plan P executed until step t. Let ot be an
observed state of the world at step t, where the observed values of fluents can
be obtained by sensors. The expected state et of the world at step t can be
computed by a prediction query of the form (3) with the initial state s0 and the
sequence Pt of actions.

We say that there is a discrepancy at step t if the observed state and the
expected state are different, ot �= et. A discrepancy is relevant to the rest of
the plan if the rest of the plan can not be executed from the observed state or
does not reach a goal state. This definition coincides with weakly k-irrelevant
discrepancies when k = 1 [8] and with the definition of relevancy as in [17].

3.2 Diagnosis: Identifying Broken Robots

In a cognitive factory setting, a diagnosis for a discrepancy can be identified by
a set of broken robots. To be able to find such a diagnosis, we first modify the
action domain description to be able to perform diagnostic reasoning. Then, we
define diagnosis and diagnostic queries to compute diagnoses over the modified
domain description.

Modifying the Domain Description for Diagnosis. Let R denote the set
of robots in a cognitive factory, that may get broken. Let disables : 2R × A × F
be a relation to describe which actions are affected and how, if a set of robots
were broken: disables(X, a, F ) expresses that if the set X of robots is broken,
then the effect of action a ∈ A performed by some robots in X on a fluent F is
disabled. Note that disables can be obtained automatically from the causal laws
that describe effects of actions.

To find a diagnosis for the observed relevant discrepancies, we modify the
domain description D in three stages as follows, and obtain a new domain
description Db.
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Step 1: To indicate whether a robot r ∈ R is broken or not, we introduce a
simple fluent constant of the form broken(r).

By default, the robots in R are assumed to be not broken. We express this
for every robot r ∈ R, with a causal law:

default¬broken(r). (4)

Meanwhile, every robot r may get broken at any time:

caused broken(r) if broken(r) after ¬broken(r) (5)

and if a robot r becomes broken it remains broken:

caused broken(r) after broken(r). (6)

For every r ∈ R, we add the causal laws (4)–(6) to the domain description D.
It is important to emphasize the usefulness of the nonmonotonicity of C+,

which allows us to represent defaults (4) as well as nondeterminism (5), and thus
does not necessitate introduction of non-robotic actions like break.

Step 2: If a robot is broken, then it may affect preconditions and effects of
the actions in the executed plan. It is good to know which actions could not
be executed due to which sort of broken robots, so that we can learn/infer some
new knowledge that might be used later for more accurate diagnoses and more
effective repairs.

For that, for each (concurrent) action A = {a0, ..., an}, we introduce a simple
boolean fluent constant pre({a0, ..., an}) to express whether or not its precondi-
tions hold; brackets are dropped when |A| = 1. The values of these fluents are
considered as true by default; so we add to D the causal laws:

default pre({a0 , ..., an}). (7)

We then describe under which conditions an action’s preconditions are vio-
lated, by replacing every causal law

nonexecutable
∧

ai ∈A

ai if G

in D, where G is a fluent formula, with the causal law

caused ¬pre({a0 , ..., an}) if G . (8)

For instance, the causal laws (2) are replaced by the causal laws:

caused ¬pre(move(w , d , u)) if battery(w)= bl (bl<u).

We then modify the causal laws describing the effects of actions, to express
that they can be observed under the additional condition that the preconditions
of these actions are satisfied. For that, we replace every causal law of the form

a causes F if G (9)
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in D, where F and G are fluent formulas, with the dynamic causal law

a causes F if G ∧ pre(a). (10)

For instance, the causal laws (1) describing some effects of the move action
are replaced by the following:

move(r ,Right , u) causes xpos(r)= x + u if xpos(r)= x ∧ pre(move(r ,Right , u)).

Step 3: For every action a, let aR denote the robots in R that take part in the
execution of a. We reflect the influence of broken robots on direct effects of
actions by replacing every causal law (9) in D such that disables(aR, a, F ) holds,
with the causal law

a causes F if G ∧
∧

r ∈ aR

¬broken(r), (11)

which expresses that the direct effects of actions are observed as expected only
if the relevant robots are not broken.

In our cognitive factory scenario, a charger robot cannot dock to a worker
robot w if the worker robot is broken, i.e., disables({w}, attach(w), attached(w))
(the direct effect of attach(w) action on the fluent attached(w) is not observed
if the worker robot w is broken). Then, the causal law

attach(w) causes attached(w) if pre(attach(w))

obtained after Step 2 is replaced by the causal law

attach(w) causes attached(w) if pre(attach(w)) ∧ ¬broken(w).

The following proposition shows that if a query is satisfied by D then it is also
satisfied by Db; but not vice-versa. In that sense, Db “conservatively extends”
D. This is particularly important to be able to reason about executions of a plan
(earlier computed with D) with respect to Db to find diagnoses.

Proposition 1. Every query satisfied by D is satisfied by Db.

The proof of the proposition requires the following lemmas. Suppose that D is
defined over a set F of fluent constants and a set A of boolean action constants.
Let M be the set of all fluent constants of the forms broken(r) and pre(A) that
are introduced to the signature of D, to transform D into Db. Then, every state
s′ of Db is a function mapping every constant c in F ∪ M to a value in Dom(c).

Lemma 1. For every state s of D, there are states sb of Db such that (i) sb|F =
s, (ii) sb maps every fluent constant broken(r) to false, and (iii) for every causal
law (8), sb satisfies G ⊃ ¬pre({a0, . . . , an}).

Lemma 2. For every transition 〈s,A, s′〉 of D, there are transitions 〈sb, A, s′
b〉

of Db such that (i) sb|F = s, (ii) s′
b|F = s′, (iii) both sb and s′

b map every
fluent constant broken(r) to false, and (iv) sb maps every fluent constant pre(Z)
(Z⊆A) to true.
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Diagnosis. Let us characterize a state s by the conjunction Fs of atoms in s;
and an action A by the conjunction EA of atoms in A.

Intuitively, a diagnosis for a discrepancy detected at time step t of a plan
P is a set of robots that, when broken, provides a possible execution of the
plan from the initial state to the observed state (i.e., they do not lead to an
“inconsistency”). Formally:

Definition 1. A diagnosis problem, DP , is characterized by a tuple 〈Db, R, s0,
Pt, ot〉 where t is the time step when a discrepancy is detected, Pt = 〈A0, . . . ,
At−1〉 is the sequence of actions assumed to be executed at an initial state s0
until time step t, and ot is the observed state at time step t. A solution of DP
is a set X ⊆ R of broken robots such that Db satisfies the query

Fs0 holds at 0 ∧
∧

Ai ∈Pt

EAi
occurs at i ∧ Fotholds at t ∧

∧

r ∈X

broken(r) holds at t ∧
∧

r ∈R−X

¬broken(r) holds at t. (12)

We also say that X is a diagnosis of the discrepancy detected at time t.

Note that further information about which actions’ preconditions are violated
can be obtained from the history of Db that satisfies the query, since atoms of
the form ¬pre(A) are part of the state information.

The query (12) checks if the observed state ot can be reached from the initial
state s0 by only executing the plan Pt, if the robots in X were broken. Note that,
by the definition of a discrepancy, we know that (12) will not be satisfied by Db

if X = ∅, since the observed state is different from the state that is expected to
be reached from s0 by Pt.

Generally, there will be more than one diagnosis for a discrepancy according
to the definition above. On the other hand, in practice, a discrepancy is caused
by a small set of broken robots. Therefore, it is reasonable to find as few broken
instances as possible to explain the discrepancy.

Definition 2. A diagnosis X is a minimum-cardinality diagnosis if there does
not exist any other diagnosis X ′ such that |X ′| < |X|.

3.3 Finding a Minimum-Cardinality Diagnosis

We introduce two algorithms to find minimum-cardinality diagnoses by means
of diagnostic queries as described above, using SAT solvers or ASP solvers.

In the first algorithm, to find a minimum-cardinality diagnosis for a diagnosis
problem DP = 〈Db, R, s0, Pt, o

M
t 〉, for each X ⊆ R with increasing cardinalities,

we iteratively check whether X is a solution for DP , i.e., whether Db satisfies
(12). We can utilize this algorithm with both SAT solvers and ASP solvers,
thanks to the sound and complete transformations and software systems men-
tioned in the preliminaries.
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The second algorithm is applicable with ASP solvers only, thanks to the pos-
sibility of representing aggregates and optimization statements. For instance, the
following optimization statement minimizes the total number of broken robots:

#minimize [broken(r) : robot(r)]. (13)

4 Geometric Reasoning for Diagnosis

Embedding geometric reasoning in the domain description D (and thus Db)
by means of external atoms, allows us to integrate diagnostic reasoning with
geometric reasoning. Let us show the importance of such an integration over an
example, as in [12]. Consider the execution of some part of a plan from a given
state as in Fig. 2, and the observed state of the world at step 3 as in Fig. 1.
There is a discrepancy at step 3. To find a diagnosis for this discrepancy, we ask
diagnostic queries (12). To check whether the charger is broken, we ask “is it
possible to reach from the initial state to the observed state by executing the
plan, if the charger were broken?”

Without consideration of geometric reasoning, the answer to this question
is “no” since the goal is not reachable when the plan is executed as shown in
Fig. 3. However, such an execution is not feasible in the real world because the
worker robot cannot move diagonally over the charger robot at Step 1 (due
to collisions). On the other hand, with consideration of geometric reasoning,
the answer to the diagnostic query is “yes” since the goal is reachable when
the plan is executed as shown in Fig. 4. Note that, due to collisions, the pre-
conditions of the action of the worker robot moving diagonally is not possible,
i.e., ¬pre({move(w,Up, 2),move(w,Right, 2)}) holds. Therefore, the detected
discrepancy is correctly diagnosed with hybrid diagnostic reasoning and false
negatives are avoided.

Fig. 1. Observed state of the world at step 3.

Fig. 2. Expected execution of a plan until step 3.
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Fig. 3. Diagnostic reasoning without geometric reasoning

Fig. 4. Diagnostic reasoning with geometric reasoning

5 Extensions of Our Method

Further Diagnoses: Broken Robotic Parts. Usually robots are broken if
some of their components are broken. Moreover, each broken component may
play a role on the preconditions/effects of different actions. To extend diagnostic
reasoning to robotic components, we modify the first and third steps of our
procedure to obtain Db from D, as well as the algorithms to compute smallest
diagnoses. The definition of a diagnosis remains the same.

For these modifications, we define Rp as the set of pairs (r, i) where
r ∈ R and i is a component of r that may be broken. For instance, for
a cognitive toy factory scenario with one worker robot w and with one
charger robot c, Rp = {(w,Arm), (w, Inlet), (c, P lug), (w,Base), (c,Base)}.
We extend the disables relation: disablesp : 2Rp × A × F . For instance,
disablesp({(w, Inlet)}, charge(c), battery(w)) expresses that, if the inlet of the
worker robot is broken then the effect of charging will not be observed as expected
on its battery level. In the representation Db, (i) we introduce new fluent con-
stants of the form brokeni(r) for every (r, i) ∈ Rp and add relevant causal laws
for them, and (ii) we modify the causal laws (11) according to disablesp. The
algorithms are modified to ensure that the computed smallest diagnosis con-
tains minimum number of broken components. Details are omitted for space
restrictions.

Learning from Previous Diagnoses. If a discrepancy detected in a plan exe-
cution is associated with several robots, there may be more than one potential
diagnosis for the discrepancy. If the computed diagnosis cannot be verified (by
an agent) as correct, then a different diagnosis can be computed by modifying
the diagnostic query with a constraint. This process goes on until a correct diag-
nosis. As in [12], we reduce the number of such uninformed iterations due to
incorrect diagnoses, by utilizing learning from earlier correct diagnoses of the
discrepancies. The idea is to maintain and update information about the likeli-
hood of robots’/components’ failures according to computed correct diagnoses;
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and if there is a robot/component which has a history of being broken more
often, then to consider it as part of a potential diagnosis before the others.

To describe how often a robot r (resp. a component i of a robot r) is diag-
nosed correctly as broken, we introduce atoms of the form weight(r, w) (resp.
weight(r, i, w)) where w is a number, which can store the number of times that r
(resp. i of r) was correctly diagnosed to be broken, or the probability of r (resp.
i of r) being diagnosed correctly so far. To find the most probable diagnosis, in
the first algorithm proposed for finding a smallest diagnosis, we consider subsets
of robots/components with larger weights before the others. In the second algo-
rithm, we add a new optimization statement to the ASP program, which tries
to maximize the total weight of broken components. This statement is added
after the minimization statement (13), to maximize the total weight of broken
components among the minimum-cardinality ones.

Extending the experimental evaluations of [12], we performed several exper-
iments over various cognitive toy factory scenarios to show the usefulness of
learning in the first algorithm for finding a minimum-cardinality diagnosis by
using the SAT solver MiniSAT (Version 2.0) [7], and in the second algorithm
by using the ASP solver Clasp (Version 2.1.3) [14]. Experiments are based on
dynamic simulations, where kinematic and geometric constraints of robots are
considered. For geometric reasoning, we use probabilistic motion planners and
collision checkers available in open-source frameworks, like OpenRave [6]. In
each scenario, we first performed the experiments without learning. Based on
the computed diagnoses, we assigned the weights for robots/components, and
then performed the experiments with learning. For each instance, the CPU time
in seconds, and the number of iterations to compute the correct diagnosis with
correct set of broken components are illustrated in Table 1 (which extends the
results in Table 1 of [12]). The results are obtained on a Linux server with 16
Intel E5-2665 CPU cores (2.4 GHz) and 64 GB memory.

As in [12], we observe (1) in both algorithms, the number of iterations to
find a correct diagnosis significantly decreases as learning is utilized; (2) as the
size of the team and the cardinality of the diagnosis increase, the computation
time to find a correct diagnosis increases. In addition to the observations of [12]:
(3) The number of iterations in ASP is less than the number of iterations with
SAT solver, since the optimization statement of ASP is effective in decreasing
number of iterations to find a correct diagnosis.

Behavioral Modes. A further extension of our approach can be by behav-
ioral modes [20]. Since our approach is based on representing actions and change
in the environment (unlike the related work), behaviors of the robotic system
are already modeled. We suppose each robot has three modes of behavior: nor-
mal mode (functions as expected), broken mode (does not function at all), or
unknown mode. The broken modes are depicted by disables relation; the behav-
iors are described by causal laws. In the normal mode, the behavior (i.e., expected
effects of relevant actions) is described by laws like (1). In the broken mode, the
behavior (i.e., by default nothing changes) is described by the commonsense
law of inertia. In the unknown mode, we assume by default nothing changes.
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Table 1. Experimental evaluation of learning

Scenario Number of iterations and CPU time [s]

ASP SAT

w/o learning w/ learning w/o learning w/ learning

1 charger, 1 wet, 2 dry 2 1 9 4

Discrepancy at Step 12, Diagnosis cardinality= 1 6.51 s 3.21 s 52.24 s 26.49 s

1 charger, 1 wet, 2 dry 2 1 21 11

Discrepancy at Step 8, Diagnosis cardinality= 2 4.14 s 2.06 s 67.43 s 39.85 s

1 charger, 1 wet, 2 dry 2 1 25 23

Discrepancy at Step 10, Diagnosis cardinality= 3 4.28 s 2.14 s 85.88 s 84.16 s

1 charger, 2 wet, 2 dry 2 1 7 4

Discrepancy at Step 8, Diagnosis cardinality= 1 7.66 s 3.85 s 83.70 s 42.97 s

1 charger, 2 wet, 2 dry 2 1 24 12

Discrepancy at Step 12, Diagnosis cardinality= 2 9.10 s 4.56 s 142.18 s 80.35 s

1 charger, 2 wet, 2 dry 2 1 39 25

Discrepancy at Step 13, Diagnosis cardinality= 3 9.86 s 4.93 s 197.01 s 127.25 s

2 charger, 2 wet, 2 dry 2 1 8 4

Discrepancy at Step 6, Diagnosis cardinality= 1 6.27 s 3.13 s 97.00 s 49.30 s

2 charger, 2 wet, 2 dry 2 1 31 13

Discrepancy at Step 14, Diagnosis cardinality= 2 13.29 s 6.63 s 195.17 s 102.48 s

2 charger, 2 wet, 2 dry 2 1 49 30

Discrepancy at Step 12, Diagnosis cardinality= 3 11.57 s 5.78 s 240.90 s 154.85 s

Considering failures of robotic components leads to more number of behavioral
modes. The broken modes are specified by disablesp relation, and behaviors are
described by causal laws. Therefore, associating diagnoses explicitly with such
behavioral modes may be possible; it is left as a future work.

6 Related Work

Our work on diagnosis is similar to conflict-based model-based diagnosis [21,28]:
the diagnostic query checks whether broken robots would lead to an inconsis-
tency with respect to the observations or not. It is also different in several ways.
First, we consider dynamic domains with actions and change, rather than a sta-
tic system like circuits. Second, our logical framework is nonmonotonic and thus
the definition of a diagnosis is different from the existing definitions. Third, moti-
vated by robotics applications, our approach to diagnostic reasoning is integrated
with geometric reasoning and learning.

Later, the model-based diagnosis approach of [21,28] is extended to dynamic
domains, using the logic-based action languages, such as situation calcu-
lus [19,26] and fluent calculus [30], and utilizing planning [29]. Our work is differ-
ent from these approaches not only because of differences between the underlying
formalisms but also due to diagnosis definition (faulty actions vs. components),
assumptions (faulty components/actions may indirectly prevent execution of the
rest of the plan, or not; our method is applicable in either case), methods (intro-
ducing abnormality predicates and utilizing nonmonotonicity by minimizing its
extension, vs. expressing defaults; introducing further transformations to domain
description beyond abnormality predicates).
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A more closely related line of research is diagnostic reasoning in answer set
programming and action languages [1,2,8,11,15,33] due to the common underly-
ing formalisms. Our approach is different from these works in several ways. Eiter
et al. [8] define a diagnosis as a “point of failure” which describes at which state
and when the plan diverges from its expected evolution; we consider a diagnosis
as a set of broken robots/components. Thanks to the modified domain descrip-
tion D, we can identify which action has failed and when, as part of an answer
to the diagnostic query. Balduccini and Gelfond [1], Baral et al. [2], and Gelfond
and Kahl [15] (like [26]) define a diagnosis as a set of broken components; they
introduce a “break” action to define what might be “broken”. In C+, no such
non-robotic action is necessary; the causal laws (5) are sufficient. Gelfond and
Kahl also suggest using consistency-restoring rules [1] to find minimal diagnoses.
Erdem et al. [11] define a diagnosis as a set of broken robots, but their method
does not generalize to scenarios where broken robots prevent the execution of
an action in the rest of the plan and does not provide further information about
broken components or failed actions. Zhang et al. [33] generate explanations
for discrepancies in terms of exceptions to the defaults that hold at the initial
state.

Our approach to diagnostic reasoning can be extended with repair planning
by introducing “repair” actions into the robotic domain description D as in [1,2].
Such repairs can reduce the number of replanning needed to recover from plan
failures. Extending our method with repairs is not discussed due to page limit.

7 Conclusion

We have introduced a diagnostic reasoning method which utilizes expressive
formalisms of action languages and answer set programming, and efficient auto-
mated reasoners (SAT solvers and ASP solvers). This method integrates geomet-
ric reasoning (for feasibility checks of robotic actions), to eliminate false negatives
and improve accuracy of diagnosis. It utilizes learning from earlier diagnoses and
failures to improve the computation time required to find a correct diagnosis.
Furthermore, causality-based hybrid planning/prediction is utilized for finding
minimum-cardinality diagnoses.

In an accompanying work [12], we integrate our approach to diagnostic rea-
soning into a plan execution and monitoring framework, and perform further
analysis to show the usefulness of diagnostic reasoning and repairs for replan-
ning. We use the ASP formulation of the robotic domain, an ASP-based modifi-
cation of the planning domain description for diagnosis, and the ASP solvers for
hybrid planning and diagnosis. In that sense, the presented work complements
the results in [12] by describing the formulations and transformations in action
description languages, by performing reasoning tasks in action query languages
with the possibility of using SAT solvers, by extending the experimental eval-
uations to SAT solvers, and by providing some theoretical guarantees over the
proposed transformation of the robotic domain description.
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Abstract. Most of contemporary software systems are implemented
using an object-oriented approach. Modeling phases – during which soft-
ware engineers analyze requirements to the future system using some
modeling language – are an important part of the development process,
since modeling errors are often hard to recognize and correct.

In this paper we present a framework which allows the integration
of Answer Set Programming into the object-oriented software develop-
ment process. OOASP supports reasoning about object-oriented software
models and their instantiations. Preliminary results of the OOASP appli-
cation in CSL Studio, which is a Siemens internal modeling environment
for product configurators, show that it can be used as a lightweight app-
roach to verify, create and transform instantiations of object models at
runtime and to support the software development process during design
and testing.

Keywords: Object-oriented modeling · Answer set programming ·
Product configuration · Software systems

1 Introduction

Object-oriented programming languages is de facto a standard approach to soft-
ware development. Many systems are modeled and implemented using it. In prac-
tice of Siemens the object-oriented approach is also used in many domains among
which development of product configurators is one of the prominent examples.
A configurator is a software system that enables design of complex technical
systems or services based on a predefined set of components. In modern con-
figuration systems domain knowledge - comprising configuration requirements
(product variability) and customer requirements - is expressed in terms of com-
ponent types and relations between them. Each type is characterized by a set
of attributes which specify functional and technical properties of real-world and
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abstract components of a configurable product. An attribute takes values from
a predefined domain. Furthermore, components are related/connected to each
other in various ways.

Development of object-oriented configurators is a challenging task due to
several important issues such as acquisition of configuration knowledge from
domain experts, modeling of this knowledge, model verification and mainte-
nance. Different types of errors might occur, for example, due to the complexity
of configuration models or procedural approach of object-oriented languages.
Moreover, a variety of problems arises when configurable products or services
have a long life-span and requirements are not stable, but change over time - for
instance, if some components of a product are not produced any more or if a
new functionality has to be added to a system. Some typical challenges occurring
when a configuration is changed are discussed in [6]. Configuration technologies
which address these tasks enable efficient production processes and thus can help
reduce the overall production costs.

Logic programming frameworks, such as Answer Set Programming (ASP),
can improve the speed and quality of object-oriented development. These frame-
works provide expressive and easily understandable knowledge representation
language allowing declarative encodings of complex problems. Equipped with
powerful solving algorithms the logic programming frameworks showed their
applicability in both product configuration as well as software development
domains. For instance, important practical and theoretical aspects of formaliz-
ing real-world (re)configuration scenarios using a logic-based formalism are dis-
cussed in [8]. The authors of [5] show how to support testing object-oriented and
constraint-based configurators by automatically generating positive and negative
test cases using ASP. A commercial ASP-based software for verification which
makes the development of software easier and faster is suggested in [14].

In this paper we present an OOASP framework that uses a generic object-
oriented configurator to encode its knowledge base and ASP for the computation
of configurations. OOASP was implemented as an evaluation prototype for an
extension to CSL Studio, an authoring environment for Configuration Specifi-
cation Language (CSL) [3]. It aims at the improvement of the software devel-
opment process during design and testing. We illustrate the mapping from an
object-oriented formalism (UML) to logical descriptions using a simplified real-
world example from Siemens. Additionally, the paper provides different insights
on (re)configuration tasks such as validation, completion and reconciliation of a
configuration which can be accomplished by our system.

The remainder of this paper is organized as follows. After a short ASP
overview in Sect. 2, we describe in Sect. 3 how object-oriented knowledge bases
can be specified using ASP within OOASP framework. In Sect. 4 we introduce
CSL Studio and discuss various product (re)configuration scenarios. Finally, in
Sect. 5 we conclude and discuss the future work.

2 Preliminaries

Answer set programming (ASP) is an approach to declarative problem solv-
ing which has its roots in logic programming and deductive databases. It is a
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decidable fragment of first-order logic interpreted under stable model seman-
tics [11] and extended with default negation, aggregation, and optimization [15].
ASP allows modeling of a variety of (combinatorial) search and optimization
problems in a declarative way using model-based problem specification method-
ology (see e.g. [1,4] for details).

An ASP program Π is a finite set of normal rules of the form:

h : - b1, . . . , bm,not bm+1, . . . ,not bn. (1)

where ‘not’ denotes default negation, bi (0 ≤ i) and h are atoms. An atom is an
expression of the form p(t), where p is a predicate and t is a vector of terms, i.e.
constants, variables or uninterpreted function symbols [9]. Extensions of ASP [15]
allow specific forms of atoms. Thus, a cardinality constraint is an atom of the
form l{h1, . . . , hk}u, where h1, . . . , hk are atoms and l, u are non-negative inte-
gers. A literal is either an atom a or its negation not a. In rule (1) the set
of atoms H(r) = {h} is called head, whereas the sets B(r)+ = {b1, . . . , bm}
and B(r)− = {bm+1, . . . , bn} are positive body and negative body, respectively.
A fact is a rule r with B(r)+∪B(r)− = ∅; an integrity constraint is a rule r with
H(r) = ∅; and a choice rule has a cardinality constraint as the head h. A literal,
rule or program is ground, if it is variable-free. A non-ground program Π can be
grounded by substituting variables with constants appearing in Π.

Semantics of a ground normal program Π is defined in terms of Gelfond-
Lifschitz reduct. Let A(Π) be a set of atoms appearing in Π, then I ⊆ A(Π)
is an interpretation. A Gelfond-Lifschitz reduct [11] of a program Π wrt. an
interpretation I is defined as ΠI = {H(r) ← B+(r) | r ∈ Π, I ∩ B−(r) = ∅}.
An interpretation I is an answer set of Π, if I is a minimal model of ΠI . The
semantics of a ground program Π with cardinality constraint atoms is defined
similarly, since each rule with such atoms can be translated into a set of normal
rules [15]. Informally, semantics of a cardinality constraint requires at least l and
at most u atoms hi to be in an answer set.

Moreover, ASP allows finding of preferred answer sets. The preferences are
defined by weak constraints – a specific type of integrity constraints that can be
violated. Each violation is penalized by a weight associated with a constraint.
Given a program with weak constraints an ASP solver returns an answer set
minimizing the sum of penalties.

3 OOASP Framework

The development of a object-oriented software is a complex and error-prone
activity that requires careful modeling of an underlying problem. Siemens expe-
rience in the development of industrial applications shows that quite often
incorrect models are responsible for faults in software artifacts that are hard
to identify and debug. In this section we present the OOASP approach which
allows to analyze object-oriented software models and their instances by means
of ASP. In particular, we consider those models that can be described by a
modeling language corresponding to a UML class diagram [13]. The latter is a
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language allowing a software developer to specify an object model and additional
constraints that each valid instantiation of an object model must satisfy.

In order to reason about a software model, OOASP framework uses a meta-
programming approach [17] which was successfully applied in a similar way,
for instance, to debugging of ASP programs [10,12]. In our meta-programming
approach an ASP program over a meta-language manipulates an ASP pro-
gram describing a software model in terms of the Domain Description Language
(DDL). In case of OOASP, all concepts of one or multiple software models as
well as their instantiations are represented in OOASP-DDL as a set of rules of
the form (1). Then, a meta-program, designed to accomplish a specific reasoning
task, is applied to a program in OOASP-DDL. In a standard implementation of
OOASP we provide meta-programs accomplishing the following tasks1:

Validation. Given an OOASP-DDL program describing an object-oriented
model and its instantiation, a validation meta-program verifies whether
all integrity and domain-specific constraints hold. The integrity constraints
encode model requirements to relations between objects of an instantiation
and are derived from the given model automatically. The domain-specific
constraints ensure that some specific requirements to an instantiation of
a model are satisfied. They can either be directly specified in the meta-
program or imported from other languages. For instance, one could import
domain-specific constraints defined in Object Constraint Language2 (OCL),
for which transformations to SAT [16] and constraints programming [2] exist.

Completion. Given an OOASP-DDL program describing an object-oriented
model and its (partial) instantiation, the completion task is to find an exten-
sion of the instantiation that satisfies all constraints or to show that such
extension does not exist. The latter may occur due to two main reasons: (i)
the object-oriented model or the given (partial) instantiation are inconsis-
tent and do not have a completion – an empty instantiation can be seen as
a special case for the completion; and (ii) the extension of the given instan-
tiation requires the creation of a number of objects that exceeds the given
upper bounds for object instances.

Reconciliation. Given an OOASP-DDL program describing a legacy instanti-
ation of an outdated object-oriented model, a new up-to-date model and a
set of transformation rules, the goal of the reconciliation is to find a possibly
preferred set of changes required to transform the legacy instantiation to
a valid instantiation of the new model. The preferences in OOASP can be
defined with domain-specific costs that assess the costs of required changes
such as creation, reuse or disposal (deletion) of object instances.

If advanced features such as multiple inheritance, symmetry breaking, etc., are
required, the default ASP encodings of reasoning tasks, outlined in this paper,
must be replaced with alternative encodings, whereas the OOASP-DDL program
remains the same.
1 OOASP code and encodings are available upon request from the first author.
2 OCL specification is available from http://www.omg.org/spec/OCL/2.4/PDF/.

http://www.omg.org/spec/OCL/2.4/PDF/
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Table 1. OOASP-DDL definitions for the encoding of models

ooasp class(IdM , IdC ) a class C is defined in a model M

ooasp subclass(IdM , IdC , IdSC ) defines a subclass relation between a class C
and a super class CS in a model M

ooasp assoc(IdM , IdA, IdC1 ,MinC1 ,
MaxC1 , IdC2 ,MinC2 ,MaxC2)

defines an association relation A between
classes C1 and C2 with the given
cardinalities, e.g. for every instance of the
class C1 at least MinC2 and at most MaxC2

instances of the class C2 must be associated

ooasp attribute(IdM , IdC , IdAT ,
{“string”,“integer”,“boolean”})

an attribute AT of a class C is defined to have
one of the three possible types

ooasp attribute minInclusive(IdM ,
IdC , IdAT ,MinV )

provides an optional minimum value MinV for
an integer attribute AT

ooasp attribute maxInclusive(IdM ,
IdC , IdAT ,MaxV )

provides an optional maximum MaxV for an
integer attribute AT

ooasp attribute enum(IdM ,
IdC , IdAT ,Val)

defines a possible value Val for a string
attribute AT

Table 2. OOASP-DDL definitions for the encoding of instantiations

ooasp instantiation(IdM , Id I ) defines an instantiation I of a
model M

ooasp isa(Id I , IdC , IdO) declares that an object O is an
instance of the class C

ooasp associated(Id I , IdA,
IdO1 , IdO2 )

objects O1 and O2 are associated by
the association relation A

ooasp attribute value(Id I , IdAT ,
IdO ,Val)

assigns a value Val to an attribute AT
of an object O

3.1 OOASP Domain Description Language

OOASP-DDL allows a software developer to define all standard concepts of
object-oriented models such as classes, attributes and associations. Each concept
of the model is translated to a corresponding OOASP-DDL atom, where each
term Id∗ is an identifier of a model, class, attribute, etc. In OOASP identifiers
of models are globally unique, whereas all other identifiers are unique within a
model. In the current version OOASP-DDL supports the definitions presented in
Table 1. These definitions are sufficient to describe a subset of the object-oriented
model of programming languages such as C++, Java, etc. Many features that
can additionally be found in object-oriented models, e.g. initial values, constants,
multi-valued attributes, ordered associations, etc., are currently not supported
by the framework. This is because our main purpose was to provide a lightweight
approach that, however, is able to capture most of the features commonly used
in practice. The definition of an instantiation of an object-oriented model is done
using OOASP-DDL in a similar way as the definition of the model. In particular,
our language allows the definitions shown in Table 2.
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Note that, OOASP-DDL is designed in a way to allow the definition of mul-
tiple models and their instantiation in one ASP program. This provides the
necessary support for reconciliation and similar reasoning tasks that are applied
to many models and/or their instantiations at once.

3.2 Definition of Constraints

Constraints allow a software developer to ensure that models and their instan-
tiations are valid. In OOASP we support two types of constraints: integrity
constraints and domain-specific constraints. The latter are used to verify some
specific properties of a model and/or its instantiations. The definition of domain-
specific constraints can be done by a developer directly in OOASP-DDL or
by importing them from the input model, e.g. OCL constraints from a UML
model. The integrity constraints, however, are included in the default OOASP
implementation and capture the requirements of the input object-oriented model
such as cardinality restrictions, typing, etc. For instance, in order to ensure that
a minimal cardinality requirement of an association relation holds in a given
instantiation, OOASP framework comprises the following rule3:

1 ooasp_cv(I,mincardviolated(O1,A)) :-

2 {ooasp_associated(I,A,O1,O2): ooasp_isa(I,C2,O2)} C2MIN-1, C2MIN>0,

3 ooasp_assoc(M,A,C1,C1MIN,C1MAX,C2,C2MIN,C2MAX),

4 ooasp_instantiation(M,I),

5 ooasp_isa(I,C1,O1).

The presence of an atom over ooasp cv predicate in an answer set of an OOASP
program indicates that a corresponding integrity constraint is violated by the
given instantiation. In the sample rule above, the error atom is derived when-
ever less objects of type C2 are associated with object O1 than required by the
cardinality restriction of the association.

4 System Description

OOASP was implemented as a potential extension to any object-oriented mod-
eling environment and its practicability was evaluated together with CSL Stu-
dio [3]. The latter is a Siemens internal tool for the design of product config-
urators as Generative Constraints Satisfaction Problems (GCSPs) [7,18]. CSL
(Configuration Specification Language) is a formal modeling language based on
a standard object-oriented meta-model similar to Ecore4 or MOF5. It provides
all state-of-the-art features such as packages, interfaces, enumerations, classes
3 In our examples we use the gringo [9] dialect of ASP that also allows usage of
uninterpreted function symbols such as mincardviolated.

4 Eclipse Modeling Framework https://www.eclipse.org/modeling/emf/.
5 MetaObject Facility http://www.omg.org/mof/.

https://www.eclipse.org/modeling/emf/
http://www.omg.org/mof/
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Fig. 1. CSL screenshot for the modules example

with attributes of various types, associations between classes, inheritance and
aggregation relations. In addition, it offers reasoning methods such as rules and
constraints which are not covered in this work. The reason is that they are not
(yet) translated into OOASP domain-specific constraints.

A screenshot of CSL Studio, presented in Fig. 1, shows an example of a sim-
ple hardware configuration problem. A configuration problem corresponds to a
composition activity in which a desired configurable product is assembled by
relating individual components of predefined types. The components and rela-
tions between them are usually subject to constraints expressing their possible
combinations allowed by the system’s design. The types of the components,
relations between them as well as additional constraints on sets of related com-
ponents constitute configuration requirements. Many of those constraints can be
expressed in an object-oriented model as cardinalities of association and aggre-
gation relations.

The sample model shown in Fig. 1 describes a product configuration problem
as a UML class diagram. In this problem the hardware product consists of a
number of Frames. Each frame contains up to five Modules of types ModuleA or
ModuleB, where each module occupies exactly one of the 5 positions in a frame.
Moreover, each module has exactly one Element assigned to it. All elements are
of one of two types ElementA or ElementB. The corresponding OOASP-DDL
encoding for this example is automatically generated by CSL Studio. A part of
the encoding excluding integrity constraints is shown in Listing 1.

Additionally to the integrity constraints, implied by the cardinalities of asso-
ciations shown on the UML diagram, there are the following domain-specific
constraints:
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– Elements of type ElementA require a module of type ModuleA
– Elements of type ElementB require a module of type ModuleB
– Modules must occupy different positions in a frame

These constraints can easily be implemented in OOASP. For instance, the first
and the third can be formulated as shown in Listing 2.

1 % modules example kb "v1"

2 % classes

3 ooasp_class("v1","HwObject").

4 ooasp_class("v1","Frame").

5 ooasp_class("v1","Module").

6 ooasp_class("v1","ModuleA"). ooasp_class("v1","ModuleB").

7 ooasp_class("v1","Element").

8 ooasp_class("v1","ElementA"). ooasp_class("v1","ElementB").

9 % class inheritance

10 ooasp_subclass("v1","Frame","HwObject").

11 ooasp_subclass("v1","Module","HwObject").

12 ooasp_subclass("v1","Element","HwObject").

13 ooasp_subclass("v1","ElementA","Element").

14 ooasp_subclass("v1","ElementB","Element").

15 ooasp_subclass("v1","ModuleA","Module").

16 ooasp_subclass("v1","ModuleB","Module").

17 % attributes and associations

18 % class Frame

19 ooasp_assoc("v1","Frame_modules","Frame",1,1,"Module",0,5).

20 % class Module

21 ooasp_attribute("v1","Module","position","integer").

22 ooasp_attribute_minInclusive("v1","Module","position",1).

23 ooasp_attribute_maxInclusive("v1","Module","position",5).

24 % class Element

25 ooasp_assoc("v1","Element_module","Element",1,1,"Module",1,1).

Listing 1. OOASP-DDL encoding of the Modules example shown in Fig. 1

A typical workflow of the product configurator development process in CSL
Studio and OOASP is depicted in Fig. 2. The development starts with a creation
of an initial configuration model in CSL. Then, the model can be exported to
OOASP and extended by the definition of domain-specific constraints. Finally,
the consistency of the developed model can be verified by execution of differ-
ent reasoning tasks. For instance, the existence of model instantiations can be
checked by running a completion task with an empty instantiation. The valida-
tion task can be used to test whether some of the known valid product configura-
tions are instantiations of the model. Moreover, OOASP can be used during the



340 A.A. Falkner et al.

implementation phase. Thus, CSL Studio allows a software developer to export
a created model to a preferred object-oriented language as a set of classes. These
generated classes must then be extended with the implementation of domain-
specific constraints as well as additional methods and fields required for correct
functionality of the software. In order to ensure that the software is implemented
correctly, the software developer can export a (partial) instantiation generated
by an object-oriented program to OOASP. In this case the completion reason-
ing task allows to test whether the obtained partial solution can be extended
to a complete one, e.g. by creating missing modules for the elements as well
as by adding missing frames and assigning the modules to them. In addition,
if the software developer (tester) manipulates a completed configuration, for
instance, by adding or removing elements, the configurator can restore consis-
tency through reconciliation. The latter finds a set of changes that keep as much
of the existing structure of the configured system as possible. In the following
subsections we describe some use cases exemplifying OOASP applications during
the development of configurators.

1 ooasp_cv(I,module_element_violated(M1,E1)) :-

2 ooasp_instantiation(M,I),

3 ooasp_associated(I,"Element_module",M1,E1),

4 ooasp_isa(I,"ElementA",E1),

5 not ooasp_isa(I,"ModuleA",M1).

6 ooasp_cv(I,alldiffviolated(M1,M2,F)) :-

7 ooasp_instantiation(M,I),

8 ooasp_isa(I,"Module",M1),

9 ooasp_isa(I,"Module",M2),

10 ooasp_attribute_value(I,"position",M1,P),

11 ooasp_attribute_value(I,"position",M2,P),

12 ooasp_associated(I,"Frame_modules",F,M1),

13 ooasp_associated(I,"Frame_modules",F,M2),

14 M1 != M2.

Listing 2. Sample domain-specific constraints in OOASP

4.1 Validation of a Configuration

The implementation of an object-oriented software requires continuous testing
in order to identify and resolve faults early. The validation reasoning task pro-
vided by OOASP allows a software developer to verify whether an instantiation
generated by the object-oriented code is consistent. Especially, the validation is
important in the context of CSL Studio or similar systems while testing domain-
specific constraints. Thus, in CSL Studio an instantiation of the object model
provided by the software developer is automatically exported to OOASP and
the validation meta-program is executed. The obtained answer set is then used
to highlight the parts of the instantiation that violate requirements to a valid
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Fig. 2. Integration of OOASP in development of product configurators

configuration. Using this information, the developer can identify the faults in
the software in a shorter period of time.

For instance, assume a software developer implemented a model designed in
CSL Studio and the resulting program outputs an instantiation c2 comprising
only one element of type ElementA. CSL Studio forwards this instantiation to
OOASP which translates it to the OOASP-DDL program:

ooasp isa("c2","ElementA",10).

For this input, execution of the validation task returns an answer set comprising:

ooasp cv("c2",mincardviolated(10,"Element module"))

This atom indicates that cardinality restrictions of the association between Ele-
ment and Module classes are violated. The reason is that for the object with
identifier 10 there is no corresponding object of the Module type.

Note that in the current OOASP prototype domain-specific constraints must
be coded by a software developer manually and are not generated from the CSL
(constraint language). However, this behavior was found to be advantageous
in practice, since it provides a mechanism for the diverse redundancy [5]. The
latter refers to the engineering principle that suggests application of two or more
systems. These systems are built using different algorithms, design methodology,
etc., to perform the same task. The main benefit of the diverse redundancy is that
it allows software developers to find hidden faults caused by design flaws which
are usually hard to detect. Generally, we found that software developers are
able to formulate domain-specific constraints in OOASP after a short training.
However, existence of ASP development environments supporting debugging and
testing of ASP programs would greatly simplify this process.

4.2 Completion of an Instantiation

The completion task is often applied in situations when a software developer
needs to generate a test case for a software that outputs an invalid instantiation.
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Thus, the completion task allows a developer to detect two types of problems:
(i) invalid partial instantiation and (ii) incomplete partial instantiation. In the
last case, the partial instantiation returned by a configurator is consistent, but
some required objects are missing. This indicates that the already implemented
software works correctly, at least for the given input, but it is incomplete. The
developer can export the obtained solution and use it as a test case during
subsequent implementation of the software. If the problem of the first type is
found, then we have to differentiate between two causes of this problem: (a) the
model designed in the CSL Studio is inconsistent; and (b) the software returned
a partial instantiation that is faulty. The first cause can easily be detected by
running a completion task with an empty instantiation. If the model is consistent,
then the implemented part software is faulty and the software developer has to
correct it.

In order to execute the completion task the CSL Studio exports an instantia-
tion obtained by an object-oriented system to OOASP-DDL. Then, this instanti-
ation together with a corresponding meta-program is provided to an ASP solver.
The returned answer sets are visualized by the system to the software devel-
oper. If needed, the developer can export the found complete instantiation to an
instantiation of the object-oriented system. This translation is straight-forward
due to the one-to-one correspondence between instances on the OOASP-level
and the object-oriented system.

Consider an example in which a partially implemented configuration system
returns an instantiation containing three instances of ElementA and two instances
of ElementB.

1 % Partial configuration

2 ooasp_instantiation("v1","c1").

3 ooasp_isa("c3","ElementA",10). ooasp_isa("c3","ElementA",11).

4 ooasp_isa("c3","ElementA",12).

5 ooasp_isa("c3","ElementB",13). ooasp_isa("c3","ElementB",14).

In this case the completion task returns a solution visualized in Fig. 3. This
solution comprises the existing objects with identifiers 10–14 as well as the new
objects corresponding to a frame with object identifier 30 and five modules 20–24.

4.3 Reconciliation of an Inconsistent Instantiation

The reconciliation task deals with restoring consistency of an inconsistent (par-
tial) instantiation given as an input. The problem arises in three scenarios:
(1) the validation task finds an instantiation inconsistent; (2) the completion
task detects that a model is consistent, but the given partial instantiation can-
not be extended; and (3) the model is changed due to new requirements to a
configurable product. In order to restore the consistency of an instantiation the
reconciliation task comprises two meta-programs. One meta-program converts
the input OOASP-DDL program into a reified form. This program comprises
rules of the form:
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Fig. 3. Complete instantiation for the Modules example. The objects existing in the
input instantiation are shown in gray.

fact(ooasp(t)) : - ooasp(t).

where ooasp(t) stands for one of the OOASP-DDL atoms listed in Table 2. The
second meta-program takes the output of the first one as an input and outputs
a consistent instantiation as well as a set of changes applied to obtain it. The
set of changes is obtained by the application of deletion/reuse rules of the form:

1{reuse(ooasp(t)), delete(ooasp(t))}1 : - fact(ooasp(t)).
ooasp(t) : - reuse(ooasp(t)).

A preferred solution can be found if a developer provides costs for reuse/delete
actions performed by the reconciliation task.

For example, suppose that the developer created a configuration system that
does not implement a domain-specific constraint preventing overheating of the
system. Namely, this constraint avoids overheating by disallowing putting two
modules of type ModuleA next to each other.

1 % do not put 2 modules of type ModuleA next to each other

2 ooasp_cv(IID,moduleANextToOther(M1,M2,P1,P2)):-

3 ooasp_instantiation("v2",IID),

4 ooasp_associated(IID,"Frame_modules",F,M1),

5 ooasp_associated(IID,"Frame_modules",F,M2),

6 ooasp_attribute_value(IID,"position",M1,P1),

7 ooasp_attribute_value(IID,"position",M2,P2),

8 M1!=M2,

9 ooasp_isa(IID,"ModuleA",M1),

10 ooasp_isa(IID,"ModuleA",M2),

11 P2=P1+1.

Due to the added constraint, the instantiation in Fig. 3 is no longer valid. The
reconciliation task finds a required change by modifying the positions of modules
with identifiers 21 and 24. The result of the reconciliation can be presented to a
developer by OOASP framework as shown in Fig. 4.
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Fig. 4. Reconciled configuration for the Modules example

5 Conclusions

This paper demonstrates OOASP which integrates ASP into the object-oriented
software development process using an industrial product configurator as an eval-
uation example. Our preliminary results are very encouraging and open a number
of new directions for a tighter integration of object-oriented programming and
ASP. Thus, our experiments with OOASP showed that checking constraints with
respect to a given object-oriented model can be done efficiently by modern ASP
solvers. However, execution of the reconciliation task still remains a challenge for
large-scale instantiations [8]. It appears that the main obstacle for the approach
based on ASP meta-programming is the explosion of grounding. In addition, the
completion of large-scale instantiations indicated that a computation time for a
solution can be improved by the application of domain-specific heuristics. The
latter are often hard to implement for software developers, since they do not
have enough experience in ASP. In our future work we are going to investigate
these questions in more details.
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7. Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., Stumptner, M.: Con-
figuring large systems using generative constraint satisfaction. IEEE Intell. Syst.
13(4), 59–68 (1998)



OOASP: Connecting Object-Oriented and Logic Programming 345

8. Friedrich, G., Ryabokon, A., Falkner, A.A., Haselböck, A., Schenner, G., Schreiner,
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Abstract. Forest Logic Programs (FoLP) are a decidable fragment of
Open Answer Set Programming (OASP) which have the forest model
property. OASP extends Answer Set Programming (ASP) with open
domains—a feature which makes it possible for FoLPs to simulate rea-
soning with the description logic SHOQ. In the past, several tableau
algorithms have been devised to reason with FoLPs, the most recent
of which established a NExpTime upper bound for reasoning with the
fragment. While known to be ExpTime-hard, the exact complexity char-
acterization of reasoning with FoLPs was still unknown. In this paper
we settle this open question by a reduction of reasoning with FoLPs to
emptiness checking of fully enriched automata which are known to be
ExpTime-complete.

1 Introduction

Open Answer Set Programming (OASP) [8] extends (function-free) Answer Set
Programming (ASP) [5] with an open domain semantics: programs are inter-
preted with respect to arbitrary domains that might contain individuals which
do not occur explicitly in the program. This enables to state generic knowledge
using OASP; at the same time, OASP inherits from ASP the negation under the
stable model semantics.

While OASP is undecidable in general, several decidable fragments have been
found by restricting the shape of the rules. One such fragment are Forest Logic
Programs (FoLP), which enjoy the forest model property: a unary predicate is
satisfiable iff it is satisfied by a model representable as a labeled forest. FoLPs
are quite expressive; e.g., one can simulate satisfiability testing of an ontology
in the Description Logic (DL) SHOQ by them [4]. This led to f-hybrid KBs,
which combine rules and ontologies distinctly from other approaches like dl-safe
rules [9], r-hybrid knowledge bases [10], or MKNF+ knowledge bases, as the
interaction between the signatures of the two components is not restricted.

The simulation of SHOQ implies that reasoning with FoLPs is EXPTIME-
hard; however, the exact complexity was open. A tableau-based algorithm in [4]

Work supported by the EPSRC grants Score! and DBOnto and the FWF grant
P24090.

c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 346–353, 2015.
DOI: 10.1007/978-3-319-23264-5 29



Reasoning with Forest Logic Programs Using Fully Enriched Automata 347

gave an 2NEXPTIME upper bound, which an improved algorithm in [2] low-
ered to NEXPTIME. In this paper, we close this gap and show that deciding
satisfiability of unary predicates w.r.t. FoLPs is EXPTIME-complete, by reduc-
ing emptiness checking of Fully Enriched Automata (FEAs) to this problem;
hence, adding FoLP rules to SHOQ ontologies does not make reasoning harder.
An extended version of the paper can be found at http://www.kr.tuwien.ac.at/
research/reports/rr1502.pdf.

2 Preliminaries

We assume countably infinite disjoint sets of constants, variables, and predicate
symbols of positive arity. Terms and atoms are as usual. Atoms p(�t) are unary
(resp. binary) if p is unary (resp. binary). A literal is an atom a or a negated
atom not a. Inequality literals are of form s �= t, where s and t are terms; all
other literals are regular. For a set S of literals or (possibly negated) predicates,
S+ = {a | a ∈ S} and S− = {a | not a ∈ S}. If S is a set of (possibly negated)
predicates of arity n and �t are terms, then S(�t) = {l(�t) | l ∈ S}. For a set S
of atoms, not S = {not a | a ∈ S}. A program is a countable set P of rules
r : α ← β, where α is a finite set of regular literals and β is a finite set of literals.
We denote as head(r) the set α, where α stands for a disjunction, and as body(r)
the set β, where β stands for a conjunction.

For R a rule, program, etc., let vars(R), preds(R), and cts(R) be the sets of
variables, predicates, and constants that occur in R, resp. A universe U for a
program P is a non-empty countable set U ⊇ cts(P ). We let PU be the grounding
of P with U and let BP be the set of regular atoms that can be formed from a
ground program P .

An interpretation of a ground, i.e. variable free, program P is a subset I of
BP . We write I |= p(�t) if p(�t) ∈ I and I |= not p(�t) if I �|= p(�t). For ground terms
s, t, we write I |= s �= t if s �= t. For a set of ground literals L, I |= L if I |= l for
every l ∈ L. A ground rule r : α ← β is satisfied w.r.t. I, denoted I |= r, if I |= l
for some l ∈ α whenever I |= β. An interpretation I of a positive (i.e. not -free)
ground program P is a model of P if I satisfies every rule in P ; it is an answer
set of P if it is a ⊆- minimal model of P . For ground programs P with not , I is
an answer set of P iff I is an answer set of P I = {α+ ← β+ | α ← β ∈ P, I |=
not β−, I |= α−}.

An open interpretation of a program P is a pair (U,M) where U is a universe
for P and M is an interpretation of PU . An open answer set of P is an open
interpretation (U,M) of P , with M an answer set of PU .

Trees and Forests. Let N
+ be the set of positive integers, and let 〈N+〉 be the

set of all sequences over N
+, where ε is the empty sequence: for a sequence of

constants and/or natural numbers s, s · ε = c, where · is concatenation; also, by
convention, s · c ·−1 = s · c, where c is a natural number, and ε ·−1 is undefined.
A tree T with root c, also denoted as Tc, is a set of nodes, where each node is a
sequence c · s, where s ∈ 〈N+〉, and for every x · d ∈ Tc, d ∈ N

+, x ∈ Tc. If c is
irrelevant, we refer to Tc as T . Given a tree T , its arc set is AT = {(x, y) | x, y ∈

http://www.kr.tuwien.ac.at/research/reports/rr1502.pdf
http://www.kr.tuwien.ac.at/research/reports/rr1502.pdf
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T,∃n ∈ N
+.y = x · n}. We denote with succT (x) = {y ∈ T | y = x · i, i ∈ N+}

the successors of a node x in T and with precT (x) = y, where x = y · i ∈ T , its
predecessor.

A forest F is a set of trees {Tc | c ∈ C}, where C is a finite set of arbitrary
constants. Its node set is NF = ∪T∈F T and its arc set is AF = ∪T∈F AT . For a
node x ∈ NF , succF (x) = succT (x), and precF (x) = precT (x), where x ∈ T
and T ∈ F . For a node y = x · i ∈ T and T ∈ F , precF (y) = precT (y) = x. An
interconnected forest EF is a tuple (F,ES ), where F = {Tc | c ∈ C} is a forest and
ES ⊆ NF ×C. Its set of nodes is NEF = NF , and its set of arcs is AEF = AF ∪ES .
A Σ-labelled forest is a tuple (F, f) where F is an interconnected forest/tree and
f : NF → Σ is a labelling function, where Σ is any set of symbols.

3 Forest Logic Programs

Forest Logic Programs (FoLPs) are a fragment of OASP which have the forest
model property. They allow only for unary and binary predicates and tree-shaped
rules.
Definition 1. A forest logic program (FoLP) is an OASP with only unary and
binary predicates, s.t. a rule is either:

– a free rule: a(s) ∨ not a(s) ← (1) or f (s, t) ∨ not f (s, t) ← (2)
– a unary rule: a(s) ← β(s), γ1 (s, t1 ), . . . , γm(s, tm), δ1 (t1 ), . . . , δm(tm), ψ (3),

with ψ ⊆ {ti �= tj |1 ≤ i < j ≤ m} and m ∈ N,
– or a binary rule: f (s, t) ← β(s), γ(s, t), δ(t) (4),

where a is a unary predicate, and f is a binary predicate; s, t, and ti-s are distinct
terms; β, δ, and δi-s are sets of (possibly negated) unary predicates; γ, and γi-s
are sets of (possibly negated) binary predicates; inequality does not appear in γ
and γi; γ+

i �= ∅, if ti is a variable, for every 1 ≤ i ≤ m, and γ+ �= ∅, if t is a
variable.

A predicate q in a FoLP P is free if it occurs in a free rule in P . We denote
with upr(P ), and bpr(P ) (resp. urul(P ), and brul(P )), the sets of unary and
binary predicates (resp. unary and binary rules) which occur in P . The degree
of a unary rule r of type (3), denoted degree(r), is the number k of successor
variables appearing in r. The degree of a free rule is 0. The degree of a FoLP
P is degree(P ) =

∑
p∈upr(P ) degree(p), where degree(p) = max{degree(r) | p ∈

preds(head(r))}.
A forest model of an OASP P that satisfies a unary predicate p is a forest

which contains for each constant in P a tree having the constant as root, and
possibly one more tree with an anonymous root; the predicate p is in the label
of some root node.

Definition 2. Let P be a program. A predicate p ∈ upr(P ) is forest satisfiable
w.r.t. P if there exist an open answer set (U,M) of P ; an interconnected forest
EF = ({Tρ} ∪ {Ta | a ∈ cts(P )},ES ), where ρ is a constant, possibly from
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cts(P ); and a labelling function ef : {Tρ} ∪ {Ta | a ∈ cts(P )} ∪ AEF → 2preds(P )

s. t. p ∈ ef(ρ); U = NEF ; ef(x) ∈ 2upr(P ), when x ∈ Tρ ∪ {Ta | a ∈ cts(P )};
ef(x) ∈ 2bpr(P ), when x ∈ ATρ

; M = {p(x) | x ∈ NEF , p ∈ ef(x)} ∪ {f(x, y) |
(x, y) ∈ AEF , f ∈ ef(x, y)}; and for every (z, z · i) ∈ AEF : ef(z, z · i) �= ∅. We
call such a pair (U,M) a forest model.

P has the forest model property if every unary predicate p that is satisfiable
w.r.t. P , is forest satisfiable w.r.t. P ; FoLPs enjoy this property [7].

4 Fully Enriched Automata

Fully enriched automata (FEAs) were introduced in [1] as a tool to reason in
hybrid graded μ-calculus. They accept forests as input. We describe them fol-
lowing [1].

For a set Y , we denote with B+(Y ) the set of positive Boolean formulas over
Y , where true and false are also allowed and where ∧ has precedence over ∨.
For a set X ⊆ Y and a formula θ ∈ B+(Y ), we say that X satisfies θ iff assigning
true to elements in X and assigning false to elements in Y \X makes θ true. For
b > 0, let Db = {〈0〉, 〈1〉, . . . , 〈b〉} ∪ {[0], [1], . . . , [b]} ∪ {−1, ε, 〈root〉, [root]}.

A fully enriched automaton (FEA) is a tuple A = 〈Σ, b,Q, δ, q0, F〉, where Σ
is a finite input alphabet, b > 0 is a counting bound, Q is a finite set of states,
δ : Q × Σ → B+(Db × Q) is a transition function, q0 ∈ Q is an initial state, and
F = {F1,F2, . . . ,Fk}, where F1 ⊆ F2 ⊆ . . . ⊆ Fk = Q is a parity acceptance
condition. The number k of sets in F is the index of the automaton.

A run of a FEA on a labeled forest (F, V ) is an NF × Q-labeled tree (Tc, r)
s.t. r(c) = (d, q0), for some root d in F , and for all y ∈ Tc with r(y) = (x, q) and
δ(q, V (x)) = θ, there is a (possibly empty) set S ⊆ Db × Q such that S satisfies
θ and for all (d, s) ∈ S, the following hold: (i) if d ∈ {−1, ε}, then x ·d is defined
and there is j ∈ N

+ such that y · j ∈ Tc and r(y · j) = (x · d, s); (ii) if d = 〈n〉,
then there is a set M ⊆ succF (x) of cardinality n + 1 s.t. for all z ∈ M , there
is j ∈ N

+ s.t. y · j ∈ Tc and r(y · j) = (z, s); (iii) if d = [n], then there is a set
M ⊆ succF (x) of cardinality n s.t. for all z ∈ succF (x) \ M , there is j ∈ N

+ s.t.
y · j ∈ Tc and r(y · j) = (z, s); (iv) if d = 〈root〉 (d = [root]), then for some (all)
root(s) c ∈ F there exists j ∈ N

+ s.t. y · j ∈ Tc and r(y · j) = (c, s);
If θ above is true, then y does not need to have successors. Moreover, since

no set S satisfies θ = false, there cannot be any run that takes a transition
with θ = false. A run is accepting if each of its infinite paths π is accepting,
that is if the minimum i for which Inf(π) ∩ Fi �= ∅, where Inf(π) is the set of
states occurring infinitely often in π, is even. The automaton accepts a forest iff
there exists an accepting run of the automaton on the forest. The language of A,
denoted L(A), is the set of forests accepted by A. We say that A is non-empty
if L(A) �= ∅.

Theorem 1 (Corollary 4.3 [1]). Given a FEA A = 〈Σ, b,Q, δ, q0, F〉
with n states and index k, deciding whether L(A) = ∅ is possible in time
(b + 2)O(n3·k2·log k·log b2).
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5 From Forest Logic Programs to Fully Enriched
Automata

In this section we reduce satisfiability checking of unary predicates w.r.t. FoLPs
to emptiness checking for FEAs. For a FoLP P and a unary predicate p, we
introduce a class of FEAs Ap,P

ρ,θ , where ρ is one of cts(P ) or a new anonymous
individual and θ : cts(P ) ∪ {ρ} → 2upr(P )∪cts(P )∪{ρ} is s.t. oi ∈ θ(oi), and
oj /∈ θ(oi), for every oi, oj ∈ cts(P ) ∪ {ρ}, s.t. oi �= oj . Furthermore, p ∈ θ(c),
where c is one of cts(P ) ∪ {ρ} and c is ρ if ρ /∈ cts(P ). Intuitively, Ap,P

ρ,θ accepts
forest models of p w.r.t. P encoded in a certain fashion: for every root in the
forest model, the root node will appear in its own label; function θ fixes a content
for the label of each root of accepted forest models.

Let d = degree(P ) and let PatP = {∗} ∪ cts(P ) be the set of term patterns,
where ∗ stands for a generic anonymous individual: a term t matches a term
pattern pt, written t �→ pt, iff t = pt, when t is a constant; if t is not a constant,
the match trivially holds. We use term patterns as a unification mechanism: a
variable matches with a constant or an anonymous individual, but a constant
matches only with itself. Ap,P

ρ,θ will run on forests labelled using the following
alphabet: Σ = 2S , where S = upr(P ) ∪ {1, . . . , d} ∪ cts(P ) ∪ {ρ} ∪ {↑o

f | f ∈
bpr(P )} ∪ {↓t

f | f ∈ bpr(P ), t ∈ PatP }.
Unlike forest models, arcs of forests accepted by FEAs are not labelled: as

such, binary predicates occur in the label of nodes in an adorned form. These
adorned predicates are of form ↓t

f , in which case they represent an f -link between
the predecessor of the labelled node, which has term pattern t and the node itself,
or of form ↑o

f , in which case the current node is linked to a constant o from
P via the binary predicate f . Besides unary predicates, labels might contain
natural numbers and constants, which will be used as an addressing mechanism
for successors of a given node and nodes which stand for constants in accepted
forests, resp. The set of states of the automaton are as follows: Q = Qi∪Q+∪Q−,
with:

– Qi = {q0, q1} ∪ {qo | o ∈ cts(P ) ∪ {ρ}} ∪ {q¬k | 1 ≤ k ≤ d},
– Q+ = {qt,a, qt,ra

, qt1,t2,u, qt1,t2,rf
, qk,t,∗,u | t, t1, t2 ∈ PatP , a ∈ upr(P ), f ∈

bpr(P ), u is of form a, f,not a or not f, 1 ≤ k ≤ d, ra ∈ urul(P ), rf ∈
brul(P )},

– Q− = {qt,a, qt,ra
, qt1,t2,u, qt1,t2,rf

, qk,t,∗,u | t1, t2, t, a, f, u, k, ra, rf as above}.

Positive states in Q+ (resp. negative states in Q−) are used to motivate the
presence (resp. absence) of atoms in an open answer set. Qi contains q0,
the initial state, q1, a state which will be visited recursively in every node
of the forest, qo, a state corresponding to the initial visit of each constant node,
and q¬k, a state which asserts that for every node in an accepted forest there
must be at most one successor which has k in the label.

We next describe the transition function of Ap,P
ρ,θ . The initial transition pre-

scribes that the automaton visits a root of the forest in state qo, for every
o ∈ cts(P ) ∪ {ρ}:
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δ(q0, σ) =
∧

o∈cts(P )∪{ρ}(〈root〉, qo) (5)

In every such state qo, it should hold that o and only o is part of the label.
Furthermore, the automaton justifies the presence and absence of each unary
predicate a and adorned upward binary predicate in the label1 by entering states
qo,a, qo,o′,f , qo,a, and qo,o′,f resp. At the same time every successor of the constant
node is visited in state q1:

δ(qo, σ) =o ∈ σ ∧
∧

o′∈cts(P )∪{ρ}\{o} o′ /∈ σ ∧
∧

a∈θ(o)
(ε, qo,a) ∧

∧

a/∈θ(o)
(ε, qo,a)

∧
∧

↑o′
f ∈θ(o)

(ε, qo,o′,f ) ∧
∧

↑o′
f /∈θ(o)

(ε, qo,o′,f ) ∧ ([0], q1) (6)

Whenever the automaton finds itself in state q1 it tries to motivate the presence
and absence of each unary and each adorned binary predicate in its label and
then it recursively enters the same state into each successor of the current node:

δ(q1, σ) =
∧

a∈σ
(ε, q∗,a) ∧

∧

a/∈σ
(ε, q∗,a) ∧

∧

↓t
f

∈σ
(ε, qt,∗,f ) ∧

∧

↓t
f

/∈σ
(ε, qt,∗,f )∧

∧

↑o′
f

∈σ
(ε, q∗,o′,f ) ∧

∧

↑o′
f

/∈σ
(ε, q∗,o′,f ) ∧ ([0], q1) ∧

∧

1≤k≤d
([1], q¬k) (7)

It also ensures that for each integer 1 ≤ k ≤ d, the labels of each but one
successor do not contain k:

δ(q¬k, σ) = k /∈ σ (8)

To motivate a predicate in a node label, the automaton checks whether it
is free (using a test free(.)) or finds a supporting rule. We distinguish between
unary and binary predicates and the term pattern for the node where the pred-
icate has to hold. For unary predicates holding at a constant node, a first check
is that we are at the right node - this is needed as later the automaton will visit
all roots in this state. For binary predicates, depending on the term pattern, the
label is checked for different types of adorned binary atoms.

δ(q∗,a, σ) = a ∈ σ ∧
(
free(a) ∨

∨

ra:a(s)←β∈P

(ε, q∗,ra
)
)

(9)

δ(qo,a, σ) = o /∈ σ ∨ a ∈ θ(o) ∧
(
free(a) ∨

∨

ra:a(s)←β∈P,s 	→o

(ε, qo,ra
)
)

(10)

δ(qt,∗,f , σ) = ↓t
f∈ σ ∧

(
free(f) ∨

∨

rf :f(s,v)←β∈P,s 	→t,v 	→∗
(ε, qv,∗,rf

)
)

(11)

δ(qt,o,f , σ) = ↑o
f∈ σ ∧

(
free(f) ∨

∨

rf :f(s,v)←β∈P,s 	→t,v 	→o

(ε, qt,o,rf
)
)

(12)

1 Constants have no predecessors, hence there are no adorned downward predicates in
the label.
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Let ra : a(s) ← β(s), (γi(s, vi), δi(vi))1≤i≤m, ψ be a unary rule. Then, we denote
with Jra

a multiset {ji | 1 ≤ i ≤ m, ji ∈ {1, . . . , d} ∪ cts(P )} such that for every
ji ∈ Jra

, vi ∈ cts(P ) implies ji = vi, and for every ji, jl ∈ Jra
, vi �= vl ∈ ψ

implies ji �= jl. A multiset provides a way to satisfy the successor part of a
unary rule in a forest model by identifying the successor terms of the rule with
successors of the current element in the model or constants in the program. Let
MJ be the set of all such multisets. The following transition describes how the
body of such a rule is checked to be satisfiable:

δ(qt,ra
, σ) =

∧

u∈β

(ε, q∗,t,u) ∧
∨

Jra∈MJ

( d∧

k=1

∧

ji=k,ji∈Jra

∧

u∈γi∪δi

(〈0〉, qk,t,∗,u)∧

∧

o∈cts(P )

∧

ji=o,ji∈Jra

∧

u∈γi∪δi

(ε, qt,o,u)
) (13)

State qk,t,∗,u checks that the (possibly negated) unary or adorned binary predi-
cate u is (is not) part of the label of the k-th successor of a given node:

δ(qk,t1,t2,u, σ) = k ∈ σ ∧
∧

j �=k

j /∈ σ ∧ (ε, qt1,t2,u) (14)

State qt1,t2,u can be seen as a multi-state with different transitions depending on
its arguments (two transitions have already been introduced as rules (11) and
(12) above): if t2 = ∗, one has the justify the presence/absence of u in the label
of the current node; otherwise, when t2 = o, one has to justify it from the label
of the root node corresponding to constant o: note that, as it is not possible to
jump directly to a given root node in the forest, nor to enforce that there will
be a single root node corresponding to each constant, in transition (17) we visit
each root node in state qo,a:

δ(qt1,t2,u, σ) =
(ε, q∗,a), if t2 = ∗ ∧ u = a (15) a /∈ θ(o), if t2 = o ∧ u = not a (16)

([root], qo,a), if t2 = o ∧ u = a (17) ↓t
f /∈ σ, if t2 = ∗ ∧ u = not f (18)

a /∈ σ, if t2 = ∗ ∧ u = not a (19) ↑o
f /∈ θ(o), if t2 = o ∧ u = not f (20)

For binary rules: rf : f(s, v) ← β(s), γ(s, v), δ(v), where v is grounded using
an anonymous individual, we also look at the predecessor node to see if the local
part of the rule is satisfied. When v is grounded using a constant, the local part
of the rule is checked at the current node and the successor part at the respective
constant.

δ(qt,∗,rf
, σ) =

∧

u∈β

(−1, q∗,t,u) ∧
∧

u∈γ∪δ

(ε, qt,∗,u) (21)

δ(qt,o,rf
, σ) =

∧

u∈β

(ε, q∗,t,u) ∧
∧

u∈γ∪δ

(ε, qt,o,u) (22)

The transitions of the automaton in the negative states can be seen as dual
versions of the ones for the counterpart positive states. They are presented in
the technical report.

Finally we specify the parity acceptance condition. The index of the automa-
ton is 2, with F1 = {qt,a, qt1,t2,f | a ∈ upr(P ), f ∈ bpr(P ), t, t1, t2 ∈ PatP } and
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F2 = Q. Intuitively, paths in a run of the automaton correspond to dependen-
cies of literals in the accepted model and by disallowing the infinite occurrence
on a path of states associated to atoms in the model we ensure that only well-
supported models are accepted.

Theorem 2. Let P be a FoLP and p be a unary predicate symbol. Then, p is
satisfiable w.r.t. P iff there exists an automaton Ap,P

ρ,θ such that L(Ap,P
ρ,θ ) �= ∅.

Theorem 3. Satisfiability checking of unary predicates w.r.t. FoLPs is
ExpTime-complete.

6 Discussion and Conclusion

We have described a reduction of the satisfiability checking task of unary predi-
cates w.r.t. FoLPs to emptiness checking of FEAs. This enabled us to establish a
tight complexity bound on this reasoning task for FoLPs. Other reasoning tasks
like consistency checking of FoLPs and skeptical and brave entailment of ground
atoms can be polynomially reduced to satisfiability checking of unary predicates
[6]; thus, the complexity result applies to those tasks as well. Also, by virtue of
the translation from fKBs to FoLPs, the result applies to fKBs as well: satis-
fiability checking of unary predicates w.r.t. fKBs is ExpTime-complete. Thus,
reasoning with FoLP rules and SHOQ ontologies is not harder than reasoning
with SHOQ ontologies themselves.

Finally, as our result shows that FoLPs have the same complexity as CoLPs,
we plan to further investigate the extension of the deterministic AND/OR
tableau algorithm for CoLPs [3] to FoLPs. As explained in [3], such an extension
is far from trivial.
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Abstract. Over the last years, Answer Set Programming has signif-
icantly extended its range of applicability, and moved beyond solving
static problems to dynamic ones, even in online environments. However,
its nonmonotonic nature as well as its upstream instantiation process
impede a seamless integration of new objects into its reasoning process,
which is crucial in dynamic domains such as logistics or robotics. We
address this problem and introduce a simple approach to successively
incorporating new information into ASP systems. Our approach rests
upon a translation of logic programs and thus refrains from any ded-
icated algorithms. We prove its modularity as regards the addition of
new information and show its soundness and completeness. We apply our
methodology to two domains of the Fifth ASP Competition and evaluate
traditional one-shot and incremental multi-shot solving approaches.

1 Introduction

Answer Set Programming (ASP; [1]) is deeply rooted in the paradigm of non-
monotonic reasoning. That is, conclusions can be invalidated upon the arrival of
new information.Unfortunately, this carries over to computationally relevant char-
acterizations, involving completion and loop formulas, and thus extends to the data
structures capturing“nonmonotonicity” inmodernASPsolvers.Hence,when solv-
ing indynamicdomains like logistics or robotics, the emergence of newproperties or
evennewobjects cannot be accounted for in amodularway, since the existing struc-
tures become invalidated. This is different from monotonic (instantiation-based)
approaches, like the original DPLL procedure [2], where new objects can be modu-
larly incorporated by adding the instantiations involving them. In fact, incremen-
tal satisfiability solving has been successfully applied in domains like finite model
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finding [3], model checking [4], and planning [5], yet relying on application-specific
instantiators rather than general-purpose grounding.

Incremental instantiation was so far neglected in ASP since traditional sys-
tems were designed for one-shot solving and thus needed to be relaunched when-
ever the problem specification changed. This is clearly disadvantageous in highly
dynamic domains like logistics or robotics. Although new generation ASP sys-
tems, like clingo 4 [6], allow for multi-shot solving and thus abolish the need for
relaunching, there is yet no principled way of modularly extending a problem
specification upon the arrival of new objects.

In what follows, we address a rather general variant of this problem by allow-
ing new information to successively expand the (Herbrand) universe. Our app-
roach rests upon a simple translation of logic programs and thus refrains from
dedicated algorithms (though it is only meaningful in the context of multi-shot
ASP solving). We prove the modularity of our approach as regards the addition
of new information and show its soundness and completeness. Finally, we illus-
trate our methodology, evaluate the resulting performance of solving approaches,
and discuss related work.

2 Background

A signature (P, C,V) consists of a set P of predicate symbols, a set C of con-
stant symbols, also called Herbrand universe, and a set V of variable symbols;
we usually omit the designation “symbol” for simplicity. The members of C ∪ V
are terms. Given a predicate p ∈ P of arity n, also denoted as p/n, along with
terms t1, . . . , tn, p(t1, . . . , tn) is an atom over p/n. An atom a and ∼a are (posi-
tive or negative, respectively) literals, where ‘∼’ stands for default negation; we
sometimes (ab)use the same terminology for classical literals a and ¬a. Given
a set B = {a1, . . . , am,∼am+1, . . . ,∼an} of literals, B+ = {a1, . . . , am} and
B− = {am+1, . . . , an} denote the atoms occurring positively or negatively in B.
A logic program R over (P, C,V) is a set of rules r = a ← B, where a is an
atom and B is a set of literals; if B = ∅, r is also called a fact. By head(r) = a
and body(r) = B, we refer to the head or body of r, respectively. We extend this
notation to R by letting head(R) = {head(r) | r ∈ R}.

We denote the set of variables occurring in an atom a by var(a). The variables
in a rule r are var(r) = var(head(r)) ∪

⋃
a∈body(r)+∪body(r)− var(a). An atom,

rule, or program is non-ground if it includes some variable, and ground otherwise.
By atom(P, C) = {p(c1, . . . , cn) | p/n ∈ P, c1 ∈ C, . . . , cn ∈ C}, we refer to the
collection of ground atoms over predicates in P. A ground substitution for a
set V of variables is a mapping σ : V → C, and Σ(V, C) denotes the set of all
ground substitutions for V . The instance aσ (or rσ) of an atom a (or a rule r)
is obtained by substituting occurrences of variables in V according to σ. The
ground instantiation of a program R is the set grd(R, C) = {rσ | r ∈ R, σ ∈
Σ(var(r), C)} of ground rules.

An interpretation I ⊆ atom(P, C) is a supported model [7] of a program R if
I = {head(r) | r ∈ grd(R, C), body(r)+ ⊆ I, body(r)− ∩ I = ∅}. Moreover, I is a
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stablemodel [8] ofR if I is a⊆-minimal (supported)model of the reduct{head(r) ←
body(r)+ | r ∈ grd(R, C), body(r)− ∩ I = ∅}. Any stable model of R is a supported
model of R as well, while the converse does not hold in general [9].

Supported and stable models can also be characterized in terms of classical
models. To this end, given a set B of literals, let bf (B) = (

∧
a∈B+ a)∧ (

∧
a∈B− ¬a)

denote the body formula for B. Moreover, let rf (r) = bf (body(r)) → head(r) be
the rule formula for a rule r. Then, we associate a ground logic program R with the
setRF (R) = {rf (r) | r ∈ R} of rule formulas.Given some ground atom a, the com-
pletion formula for a relative to R is cf (R, a) = a →

∨
r∈R,head(r)=a bf (body(r)).

For a set A of ground atoms, CF (R,A) = {cf (R, a) | a ∈ A} denotes the cor-
responding set of completion formulas. The theory RF (R) ∪ CF (R, atom(P, C))
is also known as Clark’s completion [10], and its classical models coincide with
the supported models of R. In order to extend the correspondence to stable mod-
els, for a set L of ground atoms, let supp(R,L) = {body(r) | r ∈ R, head(r) ∈
L, body(r)+ ∩ L = ∅} denote the external supports for L [11]. Then, lf (R, a, L) =
a →

∨
B∈supp(R,L) bf (B) is the loop formula fora ∈ L relative toR [12].Furtherdis-

tinguishing two sets A and B of ground atoms, we let LF (R,A,B) = {lf (R, a, L) |
L ⊆ A ∪ B, a ∈ L ∩ A} be the corresponding set of loop formulas. Note that
LF (R, atom(P, C), ∅) |= CF (R, atom(P, C)), and as shown in [11,12], the classi-
cal models of RF (R) ∪ LF (R, atom(P, C), ∅) match the stable models of R. Thus,
when A = atom(P, C) and B = ∅, LF (R,A,B) yields the same as corresponding
concepts from the literature, but we use A and B below to control the set A of atoms
whose derivability is expressed by particular loop formulas.

3 Expanding Logic Programs

As in Datalog [13], we consider signatures (PE∪PI , C,V) such that PE∩PI = ∅.
The part PE includes extensional predicates provided by facts, while the inten-
sional predicates in PI are defined by rules. We thus deal with programs F ∪ R
composed of (ground) facts F over (PE , C, ∅) and (non-ground) rules R over
(PE ∪ PI , ∅,V) such that {p/n | p(X1, . . . , Xn) ∈ head(R)} ⊆ PI .

Example 1. For PE = {cs/1, st/1, in/2} (for courses and students) and PI =
{ok/1, ko/1}, the following non-ground rules R define the intensional predicates
in PI :

ok(C) ← cs(C), st(S), in(S,C) (1)
ko(C) ← cs(C),∼ok(C) (2)

Moreover, consider facts F over the extensional predicates in PE and C =
{c1, c2, s1, s2} as follows:

cs(c1), st(s1), in(s1, c1),
cs(c2), st(s2), in(s2, c1).

The atoms over intensional predicates in PI in the (unique) stable model of F ∪R
are ok(c1) and ko(c2). �
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To characterize supported and stable models in terms of classical models rela-
tive to facts F over (PE , C, ∅), let E(F,PE , C) = F ∪{¬a | a ∈ atom(PE , C) \F}
denote the set of literals fixing atoms over extensional predicates. Then, sup-
ported models of F ∪R match classical models of RF (R′)∪CF (R′, atom(PI , C))∪
E(F,PE , C), where R′ = grd(R, C). Similarly, the latter theory augmented with
LF (R′, atom(PI , C), ∅) captures stable models of F ∪ R.

For expressing the gradual expansion of an (infinite) Herbrand universe C,
we consider sequences over constants in C.

Definition 1. A constant stream over C is a sequence (ci)i≥1 such that ci+1 ∈
C \ Ci for i ≥ 0 and Ci = {cj | 1 ≤ j ≤ i}.

Note that Ci \ Ci−1 = {ci} for i ≥ 1 and a constant ci ∈ C. Furthermore,
given a set R of (non-ground) rules, each Ci yields a finite ground instantia-
tion grd(R, Ci). While ground rules can simply be accumulated when the set of
constants grows, completion (and loop) formulas cannot.

Example 2. Reconsider the rules R and facts F from Example 1. Relative to the
constant stream (c1, s1, s2, c2, . . . ), the ground instantiations of R for C1 = {c1}
and C2 = {c1, s1}, R1 = grd(R, C1) and R2 = grd(R, C2), are:

R1 =
{
ok(c1) ← cs(c1), st(c1), in(c1, c1) ko(c1) ← cs(c1),∼ok(c1)

}

R2 =

⎧
⎪⎪⎨

⎪⎪⎩

ok(c1) ← cs(c1), st(c1), in(c1, c1) ko(c1) ← cs(c1),∼ok(c1)
ok(c1) ← cs(c1), st(s1), in(s1, c1) ko(s1) ← cs(s1),∼ok(s1)
ok(s1) ← cs(s1), st(c1), in(c1, s1)
ok(s1) ← cs(s1), st(s1), in(s1, s1)

⎫
⎪⎪⎬

⎪⎪⎭

Relative to R1, we obtain

cf (R1, ok(c1)) = ok(c1) → (cs(c1) ∧ st(c1) ∧ in(c1, c1)).

Along with

E1 = E({cs(c1)},PE , C1) = {cs(c1),¬st(c1),¬in(c1, c1)}

and in view of ((cs(c1) ∧ ¬ok(c1)) → ko(c1)) ∈ RF (R1), RF (R1) ∪
CF (R1, {ok(c1), ko(c1)}) ∪ E1 entails ¬ok(c1) and ko(c1). Turning to R2 ⊇ R1,
we have that RF (R1) ⊆ RF (R2). However, the rules defining ok(c1) yield

cf (R2, ok(c1)) = ok(c1) → ((cs(c1) ∧ st(c1) ∧ in(c1, c1))
∨ (cs(c1) ∧ st(s1) ∧ in(s1, c1))),

so that cf (R2, ok(c1)) �= cf (R1, ok(c1)). Moreover,

E2 = E({cs(c1), st(s1), in(s1, c1)},PE , C2)

= E1 ∪ {st(s1), in(s1, c1),¬cs(s1),¬in(c1, s1),¬in(s1, s1)}

and ((cs(c1) ∧ st(s1) ∧ in(s1, c1)) → ok(c1)) ∈ RF (R2) entail ok(c1). Thus,
RF (R2) ∪ CF (R1, {ok(c1), ko(c1)}) ∪ E2 is unsatisfiable, and cf (R1, ok(c1))
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must be replaced by cf (R2, ok(c1)) to obtain a (unique) model of RF (R2) ∪
CF (R2, {ok(c1), ko(c1), ok(s1), ko(s1)})∪E2, providing ok(c1), ¬ko(c1), ¬ok(s1),
and ¬ko(s1) as conclusions. �

In incremental CDCL-based Boolean constraint solvers (cf. [14]), a replace-
ment as above amounts to the withdrawal of all conflict information relying on
invalidated completion (and loop) formulas, essentially restricting the “memory”
of an incremental solver to direct consequences of rules or rule formulas, respec-
tively. In order to resolve this problem, we in the following provide a translation
approach on the first-order level, leading to ground instantiations such that
corresponding completion and loop formulas can be accumulated, even when
expanding the underlying Herbrand universe.

Our translation approach successively extends the signature of (non-ground)
rules. To this end, given a set PI of intensional predicates, we let Pk

I = {pk/n |
p/n ∈ PI} be a corresponding set of new predicates labeled with k. For an
atom p(X1, . . . , Xn), we denote its labeled counterpart by p(X1, . . . , Xn)k =
pk(X1, . . . , Xn). Modifying the head of a rule r in this way yields rk = head(r)k ←
body(r).

The label k (or k+1) of a predicate serves as place holder for integers. Given
i ≥ 0, let pk[i] = pi (or pk+1[i] = pi+1) if pk ∈ Pk

I (or pk+1 ∈ Pk+1
I ) is labeled,

while p[i] = p for unlabeled predicates p ∈ PE ∪ PI . We extend this notation to
sets P of predicates and to atoms p(X1, . . . , Xn) by letting P[i] = {p[i] | p ∈ P}
and p(X1, . . . , Xn)[i] = p[i](X1, . . . , Xn). For a set R of rules, R[i] = {r[i] | r ∈
R}, where r[i] = head(r)[i] ← {a[i] | a ∈ body(r)+} ∪ {∼a | a ∈ body(r)−}.

Definition 2. For a set R of rules over (PE ∪ PI , ∅,V), we define the sets Φ(R),
Π(PI), and Δ(PI) of rules as follows:

Φ(R) = {rk | r ∈ R},

Π(PI) = {p(X1,. . . , Xn) ← pk(X1,. . . , Xn) | p/n ∈ PI},

Δ(PI) = {pk(X1,. . . , Xn) ← pk+1(X1,. . . , Xn) | p/n ∈ PI}.

Example 3. Labeling the heads of the rules in (1) and (2) leads to the following rules
(without negative literals over labeled predicates) in Φ(R) for R from Example 1:

okk(C) ← cs(C), st(S), in(S,C)

kok(C) ← cs(C),∼ok(C)

In view of PI = {ok/1, ko/1}, Π(PI) consists of the rules:

ok(C) ← okk(C) ko(C) ← kok(C)

Moreover, the rules in Δ(PI) prepare definition expansions:

okk(C) ← okk+1(C) kok(C) ← kok+1(C) �
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Given a constant stream (ci)i≥1, we aim at successive ground instantiations
of Φ(R), Π(PI), and Δ(PI) capturing the supported as well as the stable models
of F ∪ R relative to each universe Ci and arbitrary facts F over (PE , Ci, ∅). To
this end, we denote the ground substitutions and atoms that are particular to
some i ≥ 0 by Σ(V, Ci, i) = {σ ∈ Σ(V, Ci) | max{j | (X �→ cj) ∈ σ} = i}
and atom(P, Ci, i) = {p(X1, . . . , Xn)σ | p/n ∈ P, σ ∈ Σ({X1, . . . , Xn}, Ci, i)}.1

The resulting partition of substitutions (and atoms) forms the base for a selective
instantiation of Φ(R), Π(PI), and Δ(PI) relative to (ci)i≥1.

Definition 3. For a set R of rules over (PE ∪ PI , ∅,V) and a constant stream
(ci)i≥1 over C, we define the expansible instantiation of R for j ≥ 0 as exp(R, j) =
⋃j

i=0 Ri, where

Ri = {(r[i])σ | r ∈ Φ(R) ∪ Π(PI), σ ∈ Σ(var(r), Ci, i)}
∪ {(r[i])σ | r ∈ Δ(PI), σ ∈ Σ(var(r), Ci)}.

Example 4. Starting with C0 = ∅, the rules Φ(R), Π(PI), and Δ(PI) from
Example 3 yield exp(R, 0) = R0 = ∅ because each of them contains some
variable. For C1 = {c1}, however, we obtain the following set R1 of ground rules:

R1 =

⎧
⎪⎪⎨

⎪⎪⎩

ok1(c1) ← cs(c1), st(c1), in(c1, c1)
ko1(c1) ← cs(c1),∼ok(c1)
ok(c1) ← ok1(c1) ko(c1) ← ko1(c1)
ok1(c1) ← ok2(c1) ko1(c1) ← ko2(c1)

⎫
⎪⎪⎬

⎪⎪⎭

Observe that, beyond substituting variables with c1, the label k (or k+1) is
replaced by 1 (or 2). Also note that the atom ok(c1) over the original predicate
ok/1 is derivable from ok1(c1), an atom over the new predicate ok1/1. Unlike the
completion formula cf (R1, ok(c1)) from Example 2,

cf (R1, ok1(c1)) = ok1(c1) → ((cs(c1) ∧ st(c1) ∧ in(c1, c1)) ∨ ok2(c1))

includes the yet undefined atom ok2(c1) to represent derivations becoming avail-
able when another constant is added. In fact, such an additional derivation is con-
tained in R2, consisting of new ground rules relative to C2 = {c1, s1}:

R2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ok2(c1) ← cs(c1), st(s1), in(s1, c1)
ok2(s1) ← cs(s1), st(c1), in(c1, s1)
ok2(s1) ← cs(s1), st(s1), in(s1, s1)
ko2(s1) ← cs(s1),∼ok(s1)
ok(s1) ← ok2(s1) ko(s1) ← ko2(s1)
ok2(c1) ← ok3(c1) ko2(c1) ← ko3(c1)
ok2(s1) ← ok3(s1) ko2(s1) ← ko3(s1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

While the first six ground rules in R2, stemming from Φ(R) and Π(PI), include
the second constant, viz. s1, two of the four instances of rules in Δ(PI) mention
c1 only. �
1 Letting max ∅=0, since C0=∅, we get Σ(∅, C0, 0)=Σ(∅, ∅)={∅}, and atom(P, ∅, 0) =

{p | p/0 ∈ P} consists of atomic propositions.
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Intuitively, the substitutions applied to Φ(R) (and Π(PI)) aim at new rule
instances mentioning the constant ci at stream position i, and the replacement
of labels k by i makes sure that the defined predicates are new. Via instances of
rules in Π(PI), the new predicates are mapped back to the original ones in PI ,
at position i concentrating on ground atoms including ci. The purpose of Δ(PI),
on the other hand, is to keep the definitions of atoms in atom(PI , Ci) expansible,
and the rules with yet undefined body atoms provide an interface for connecting
additional derivations.

For each i ≥ 0 and Ri as in Definition 3, we have that head(Ri) =
atom(PI , Ci, i) ∪ atom(Pk

I [i], Ci). In view of distinct constants in arguments or
different predicate names, respectively, head(Ri) ∩ head(Rj) = ∅ for i > j ≥ 0.
Hence, letting head(exp(R,−1)) = ∅, it also holds that

RF (Ri) ∩ RF (Rj) = ∅,

CF (Ri, head(Ri)) ∩ CF (Rj , head(Rj)) = ∅,

LF (exp(R, i), head(Ri), head(exp(R, i−1)))

∩ LF (exp(R, j), head(Rj), head(exp(R, j−1))) = ∅.

As a consequence, the theories

RF i(R) =
⋃i

j=0
RF (Rj),

CF i(R) =
⋃i

j=0
CF (Rj , head(Rj)),

LF i(R) =
⋃i

j=0
LF (exp(R, j), head(Rj), head(exp(R, j−1)))

constitute disjoint unions. As shown next, they reproduce corresponding concepts
for exp(R, i) in a modular fashion.

Proposition 1. Given a set R of rules over (PE ∪PI , ∅,V) and a constant stream
(ci)i≥1 over C, we have for j ≥ 0:

RF j(R) = RF (exp(R, j)),

CF j(R) = CF (exp(R, j), head(exp(R, j))),

LF j(R) ≡ LF (exp(R, j), head(exp(R, j)), ∅).

We now turn to the correspondence between supported as well as stable mod-
els of F ∪ R and F ∪ exp(R, i) for i ≥ 0 and arbitrary facts F over (PE , Ci, ∅).
To this end, we denote the expansion atoms over new predicates in exp(R, i) by
expatom(PI , i) =

⋃i
j=0 atom(Pk

I [j], Cj). For some a ∈ atom(P, C), by ‖a‖ =
min{j ≥ 0 | a ∈ atom(P, Cj)}, we refer to the (unique) least j such that
a ∈ atom(P, Cj , j). Similarly, ‖r‖ = max{‖a‖ | a ∈ {head(r)} ∪ body(r)+ ∪
body(r)−} denotes the smallest j such that all atoms in a ground rule r are con-
tained in atom(P, Cj). Moreover, we map any interpretation I ⊆ atom(P, Ci) to
an extended interpretation I∗ ⊆ atom(P, Ci) ∪ expatom(PI , i) as follows:

I∗ = I ∪ {head(r)k[j] | r ∈ grd(R, Ci), I |= bf (body(r)), ‖head(r)‖ ≤ j ≤ ‖r‖}.
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That is, I∗ augments a given I with expansion atoms for the heads of rules r
whose bodies hold wrt I, where the label k is replaced by the integers from
‖head(r)‖ to ‖r‖. Note that the expansion atoms in atom(Pk+1

I [i], Ci), which have
no derivations in exp(R, i), are fixed to false in I∗ and any other interpretation
I ′ ⊆ atom(P, Ci) ∪ expatom(PI , i).

The following result shows that our translation approach yields the intended
semantics, viz. supported or stable models of a program F ∪ R, relative to each
universe Ci for i ≥ 0.

Theorem 1. Given a set R of rules over (PE ∪ PI , ∅,V) and a constant stream
(ci)i≥1 over C, we have for j ≥ 0:

1. If I ⊆ atom(P, Cj) is a supported (or stable) model of (I ∩ atom(PE , Cj)) ∪ R,
then I∗ is a supported (or stable) model of (I ∩ atom(PE , Cj)) ∪ exp(R, j).

2. If I ′ ⊆ atom(P, Cj) ∪ expatom(PI , j) is a supported (or stable) model of (I ′ ∩
atom(PE , Cj)) ∪ exp(R, j), then I ′ = I∗ for the supported (or stable) model
I = I ′ ∩ atom(P, Cj) of (I ′ ∩ atom(PE , Cj)) ∪ R.

Example 5. The ground rules R1 and R2 from Example 4 yield completion formu-
las C1 = CF (R1, head(R1)) and C2 = CF (R2, head(R2)) as follows:

C1 =

⎧
⎨

⎩

ok1(c1) → ((cs(c1) ∧ st(c1) ∧ in(c1, c1)) ∨ ok2(c1))
ko1(c1) → ((cs(c1) ∧ ¬ok(c1)) ∨ ko2(c1))
ok(c1) → ok1(c1) ko(c1) → ko1(c1)

⎫
⎬

⎭

C2 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ok2(c1) → ((cs(c1) ∧ st(s1) ∧ in(s1, c1)) ∨ ok3(c1))
ok2(s1) → ((cs(s1) ∧ st(c1) ∧ in(c1, s1))

∨ (cs(s1) ∧ st(s1) ∧ in(s1, s1)) ∨ ok3(s1))
ko2(c1) → ko3(c1)
ko2(s1) → ((cs(s1) ∧ ¬ok(s1)) ∨ ko3(s1))
ok(s1) → ok2(s1) ko(s1) → ko2(s1)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Along with literals E1 and E2 as in Example 2, fixing atoms over extensional
predicates, we obtain (supported) models I∗

1 = {cs(c1), ko(c1), ko1(c1)} and
I∗
2 = {cs(c1), st(s1), in(s1, c1), ok(c1), ok1(c1), ok2(c1)} of RF (R1) ∪ C1 ∪ E1 or
RF (R1) ∪ RF (R2) ∪ C1 ∪ C2 ∪ E2, respectively. In the transition from I∗

1 to
I∗
2 , ko(c1) is withdrawn and exchanged with ok(c1), as with R1 and R2 from

Example 2. In contrast to the latter, however, the completion formulas C2 do not
invalidate C1, but rather their (disjoint) union can be used. �

The benefit of expansible instantiation, exp(R, i), in comparison to plain
instantiation, grd(R, Ci), is that completion (and loop) formulas remain intact
and can, like ground rules, be accumulated during the successive evolvement
of a Herbrand universe. On the other hand, the downside is that, beyond the
O(|grd(R, Ci)|) ground rules stemming from Φ(R) and Π(PI), additional O(i ×
|atom(PI , Ci)|) instances of rules in Δ(PI) are introduced for propagating deriva-
tions via expansion atoms. However, for an intensional predicate p/n ∈ PI such
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that var(r) = var(head(r)) for all r ∈ R with head(r) = p(X1, . . . , Xn), def-
initions of atoms over p/n stay local because rule instances relying on a new
constant ci only provide derivations for atoms including ci. In view of this, the
introduction of a respective labeled predicate and corresponding rules in Φ(R),
Π(PI), and Δ(PI) is unnecessary, and the original rule(s), such as (2) for ko/1 in
Example 1, can be instantiated (like members of Φ(R) ∪ Π(PI)) instead.

Example 6. Consider the following non-ground rules R over PE = {arc/2, vtx/1,
init/1} and PI = {cycle/2, other/2, reach/1}, aiming at directed Hamiltonian
cycles:

R =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cycle(X,Y ) ← arc(X,Y ),∼other(X,Y )
other(X,Y ) ← arc(X,Y ), cycle(X,Z), Y �= Z

reach(Y ) ← cycle(X,Y ), init(X)
reach(Y ) ← cycle(X,Y ), reach(X)
reach(Y ) ← vtx (Y ),∼reach(Y )

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Since the variables X and Y occur in the head cycle(X,Y ) of the first rule, expan-
sion atoms for cycle/2 and respective rules can be omitted. Keeping the original
rule, a simplified set R1 of ground rules is obtained relative to C1 = {v1}:2

R1 ∼=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cycle(v1, v1) ← arc(v1, v1),∼other(v1, v1)
reach1(v1) ← cycle(v1, v1), init(v1)
reach1(v1) ← cycle(v1, v1), reach(v1)
reach1(v1) ← vtx (v1),∼reach(v1)

other(v1, v1) ← other1(v1, v1)
reach(v1) ← reach1(v1)

other1(v1, v1) ← other2(v1, v1)
reach1(v1) ← reach2(v1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Given F1 = {arc(v1, v1), vtx (v1)}, F1 ∪ R1 has I∗
1 = F1 ∪ {cycle(v1, v1),

reach(v1), reach1(v1)} as supported model that is not stable because, for L1 =
{reach(v1), reach1(v1)},

lf (R1, reach(v1), L1) = reach(v1) → (reach2(v1) ∨
(cycle(v1, v1) ∧ init(v1)) ∨ (vtx (v1) ∧ ¬reach(v1)))

belongs to LF (R1, head(R1), ∅). While I∗
1 |= RF (R1)∪CF (R1, head(R1)), there

is no model I ′ of RF (R1) ∪ LF (R1, head(R1), ∅) such that F1 ⊆ I ′ ⊆ F1 ∪
head(R1).

Letting R2
1 = R1∪R2, where R2 is the set of new ground rules for C2 = {v1, v2},

along with F2 = F1 ∪ {arc(v1, v2), arc(v2, v1), vtx (v2)}, F2 ∪ R2
1 yields the sup-

ported model

I∗
2 = F2 ∪ {cycle(v1, v2), cycle(v2, v1), other(v1, v1), other1(v1, v1), other2(v1, v1),

reach(v1), reach(v2), reach1(v1), reach2(v1), reach2(v2)},

2 The condition Y �= Z filters admissible ground substitutions.
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which is not stable either. For L2 = {reach(v1), reach(v2), reach1(v1), reach2(v1),
reach2(v2)}, since the loop formula

lf (R2
1, reach(v2), L2) = reach(v2) → ((

∨2

i=1
reach3(vi)) ∨

(cycle(v1, v1) ∧ init(v1)) ∨ (cycle(v2, v1) ∧ init(v2)) ∨
(cycle(v1, v2) ∧ init(v1)) ∨ (cycle(v2, v2) ∧ init(v2)) ∨

(vtx (v1) ∧ ¬reach(v1)) ∨ (vtx (v2) ∧ ¬reach(v2)))

is contained in LF (R2
1, head(R2), head(R1)), I∗

2 � |= LF (R2
1, head(R2), head(R1)).

However, when considering loop formulas for atoms defined by R1 and R2 in iso-
lation, one can check that I∗

2 |= LF (R1, head(R1), ∅) ∪ LF (R2, head(R2), ∅). In
fact, positive dependencies between the atoms in L2 involve rules from both R1 and
R2. That is, R1 and R2 are not mutually independent in the sense of [15,16]. �

4 Solving Expansible Programs

For an empirical evaluation of our translation approach, we modeled two bench-
mark domains, Graph Coloring and Partner Units, of the Fifth ASP Competition
[17] by expansible programs in the language of clingo 4 [6]. Starting from an empty
graph and no colors, the expansible program for Graph Coloring allows for a suc-
cessive incorporation of vertices, arcs, and colors. While the addition of vertices
and arcs constrains admissible colorings, colors serve as resources that must be
increased whenever a coloring task turns out to be unsatisfiable. In Partner Units,
pairwisely connected zones and sensors need to be mapped to units, where two
units are partners if the zone of a connected pair is mapped to one of them and the
corresponding sensor to the other. Moreover, at most two zones and two sensors
may share a unit, and the number of partners per unit must not exceed a given
threshold, varying between two and four in problem instances of the Fifth ASP
Competition. That is, the demand for units increases whenever the capacities are
exceeded upon the successive addition of zones and sensors.

For both benchmark domains, the idea is to gradually expand and solve
instances over arbitrarily many objects by introducing the objects, along with
respective data, one after the other. Similarly, resources such as colors or units
are increased on demand, rather than fixing and thus limiting them a priori. For
instance, the following sequence of facts induces four successive Graph Coloring
tasks: F1 = {vtx (v1, 1)}, F2 = {col(n1, 2)}, F3 = {vtx (v2, 3), arc(v1, v2, 3)}, and
F4 = {col(n2, 4)}. While introducing the first vertex v1 in F1 yields an unsat-
isfiable task, a coloring is obtained after supplying color n1 in F2. However, one
color is no longer sufficient when adding the second vertex v2 and an arc to v1
in F3. Thus, F4 provides another color n2, leading to colorings mapping v1 to n1

(or n2) and v2 to n2 (or n1). Note that each of the above facts includes as last
argument the maximum position of mentioned vertices or colors in the constant
stream (v1, n1, v2, n2, . . . ). For one, this enables a reuse of constants for referring
to vertices and colors, and w.l.o.g. we may assume that colors are denoted by con-
secutive integers starting with 1, viz. n1 = 1, n2 = 2, and so on. For another, the
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arguments indicating stream positions can be explored to distinguish correspond-
ing rules in a parametrized clingo 4 program as follows:

col(C) ← col(C, k) (3)
vtx (X) ← vtx (X, k) (4)

arc(X,Y ) ← arc(X,Y, k) (5)
new(X,C, k) ← vtx (X, k), col(C) (6)
new(X,C, k) ← vtx (X), col(C, k) (7)
{map(X,C)} ← new(X,C, k) (8)

← map(X,C),map(Y,C), arc(X,Y, k), col(C) (9)
← map(X,C),map(Y,C), arc(X,Y ), col(C, k) (10)

has(X,C) ← new(X,C, k),map(X,C) (11)
has(X,C) ← new(X,C, k), has(X,C+1) (12)

← new(X,C, k),map(X,C−1), has(X,C) (13)
← vtx (X, k),∼has(X, 1) (14)

Assuming that the program parameter k is successively replaced by the stream
positions of objects in supplied facts, the rules in (3)–(5) provide projections drop-
ping the positions from respective colors, vertices, or arcs. The auxiliary predicate
new/3, defined in (6) and (7), indicates pairs of vertices and colors such that either
of them is introduced at a stream position substituted for parameter k. Given this,
applicable instances of the choice rule (cf. [18]) in (8) have distinct heads at dif-
ferent positions, so that expansion atoms can be omitted for map/2. The integrity
constraints (i.e., rules with false heads) in (9) and (10) deny choices of the same
color for adjacent vertices, where the body atoms arc(X,Y, k) or col(C, k) confine
applicable instances to new arcs or colors, respectively. The purpose of atoms of the
form has(v, n) is to indicate that a vertex v is mapped to some color m ≥ n. When
either v or n is introduced at a stream position, the rule in (11) captures the case
that v is mapped to n, while colors added later on are addressed by the rule in (12).
Making use of the convention that colors are denoted by consecutive integers, the
latter includes expansion atoms of the form has(v, n+1), rather than hask+1(v, n)
or a corresponding clingo 4 representation has(v, n, k+1), respectively. Note that,
by saving an argument for the predicate label, the number of introduced expan-
sion atoms remains linear, thus avoiding a quadratic blow-up as discussed below
Example 5.The integrity constraints in (13) and (14) further investigate atomsover
has/2 to make sure that each vertex is mapped to exactly one color. Finally, to keep
clingo 4 off discarding body atoms that are not necessarily defined when instances
of (12) and (14) are introduced, the program in (3)–(14) has to be accompanied
by #external has(X,C+1) : new(X,C, k) and #external has(X, 1) : vtx (X, k).
Without going into details, we note thatPartner Units can be modeled in a similar
way, where zones and sensors amount to vertices and units to colors.

Table 1(a) and (b) provide experimental results of running clingo 4 (version
4.4.0) on the Graph Coloring and Partner Units instances of the Fifth ASP Com-
petition. In particular, we used the Python interface of clingo 4 to successively
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Table 1. One- vs. multi-shot: (a) Graph Coloring and (b) Partner Units

introduce objects, viz. vertices or zones and sensors, and instantiate respective
rules in (parametrized) expansible programs.3 Whenever this leads to an unsatis-
fiable task, another color or unit is added in turn, thus obtaining sequences of sat-
isfiable as well as unsatisfiable tasks of gradually increasing size. With sequential
runtimes restricted to 10 min per instance on a Linux PC equipped with 2.4 GHz
processors, columns headed by #S and ∅S report the number of solved satisfi-
able tasks along with the corresponding average runtime in seconds, and columns
headed by #U and ∅U provide the same information for unsatisfiable tasks. We
compare the performance of clingo 4 in two operation modes: one-shot solving,
in which each task is processed independently from scratch, and multi-shot solv-
ing, where rule instances are successively accumulated and conflict information
can be carried over between tasks. Experimental results with one-shot solving are
given in the middle parts of Table 1(a) and (b), followed by multi-shot solving on
the right. Notably, as instantiation times are negligible, the comparison primarily
contrasts the search performance in solving successive tasks either independently
or incrementally.

Given the combinatorial nature of the benchmark domains, one- and multi-
shot solving scale up to tasks of similar size, leading to the same number of
solved tasks. The gap between both solving approaches turns out to be small on
the instances of Graph Coloring, where instance 32 yields an exceptionally hard
unsatisfiable task that can still be solved in time. On the Partner Units instances
in Table 1(b), however, we observe that multi-shot solving consistently reduces
the runtime for rather easy satisfiable tasks. Except for two instances (091 and
127), it also yields shorter runtimes for unsatisfiable tasks, even by an order of
magnitude in several cases (026, 100, 175, and 188). Comparing the numbers of
conflicts revealed that, in these cases, multi-shot solving indeed encounters an

3 http://svn.code.sf.net/p/potassco/code/trunk/gringo/examples/.

http://svn.code.sf.net/p/potassco/code/trunk/gringo/examples/
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order of magnitude fewer conflicts, viz. about 200,000 vs. 2,000,000 on average
with one-shot solving. The other way round, the difference amounts to a maximum
factor of 2 (roughly 250,000 vs. 500,000 conflicts) between single- and multi-shot
solving on instance 091. This indicates an increased robustness due to the reuse
of conflict information in multi-shot solving.

5 Discussion

We introduced a simple approach to successively incorporating new objects into
(multi-shot) ASP solving. Our approach rests upon a translation and refrains from
dedicated algorithms. Also, it is modular and thus allows for adding new infor-
mation without altering the existing ground program or underlying constraints,
respectively. Hence, our approach enables incremental finite model finding [19],
even under nonmonotonicity faced with supported or stable instead of classical
models. Technically, it employs a less restrictive notion of modularity than [15,16]:
Proposition 1 applies to successive ground programs of an expansible instantia-
tion (according to Definition 3) for the rules in Example 6, although the ground
programs are not mutually independent. In view of a lacking theoretical elabora-
tion, incremental ASP systems like clingo 4 do not yet provide automatic support
for expanding the definitions of atoms or handling mutual positive dependencies
between successive ground programs. Our work thus outlines potential future sys-
tem refinements in these regards.

A related approach is dlvhex [20] using external sources for value invention.
This is accomplished by dedicated grounding algorithms incorporating external
objects. Once grounding is completed, no further objects are taken into account.
Unlike this, ASP systems relying on lazy grounding, like asperix [21], gasp [22], and
omiga [23], aim at instantiating variables on demand. However, all of them rely
on a fixed Herbrand universe and use dedicated grounding and solving algorithms,
whose performance does not match that of modern ASP systems. Although the
lazy grounding approach in [24] is tailored for query answering, interestingly, it
introduces so-called Tseitin variables resembling ground expansion atoms in par-
tial instantiations.
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Abstract. We describe the novel functionalities comprised in clasp’s
series 3. This includes parallel solving of disjunctive logic programs,
parallel optimization with orthogonal strategies, declarative support for
specifying domain heuristics, a portfolio of prefabricated expert configu-
rations, and an application programming interface for library integration.
This is complemented by experiments evaluating clasp 3’s optimization
capacities as well as the impact of domain heuristics.

1 Introduction

The success of Answer Set Programming (ASP; [1]) is largely due to the availabil-
ity of effective solvers. Early ASP solvers smodels [2] and dlv [3] were followed by
SAT-based ones, such as assat [4] and cmodels [5], before genuine conflict-driven
ASP solvers like clasp [6] and wasp [7] emerged. In addition, there is a continued
interest in mapping ASP onto solving technology in neighboring fields [8,9].

In what follows, we provide a comprehensive description of clasp’s series 3
(along with some yet unpublished features already in clasp 2). Historically, clasp
series 1 [6] constitutes the first genuine conflict-driven ASP solver, featuring
conflict-driven learning and back-jumping. clasp series 2 [10] supports parallel
search via shared memory multi-threading. clasp series 3 further extends its
predecessors by integrating various advanced reasoning techniques in a uniform
parallel setting. The salient features of clasp 3 include parallel solving of disjunc-
tive logic programs, parallel optimization with orthogonal strategies, declarative
support for specifying domain heuristics, a portfolio of prefabricated expert con-
figurations, and an application programming interface for library integration.
We detail these functionalities in Sects. 2–6 from a system- and user-oriented
viewpoint. Section 7 is dedicated to an empirical study comparing the various
optimization strategies of clasp 3. Also, we demonstrate the impact of domain
heuristics and contrast their performance to using disjunctive logic programs
when enumerating inclusion minimal answer sets.

We refer the interested reader to [11] for the formal foundations and basic
algorithms underlying conflict-driven ASP solving as used in clasp. This includes
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basic concepts like completion and loop nogoods as well as algorithmic ones
related to conflict-driven constraint learning (CDCL).

2 Disjunctive Solving

Solving disjunctive logic programs leads to an elevated level of complexity [12]
because unfounded-set checking becomes a co-NP-complete problem [13]. As a
consequence, corresponding systems combine a solver generating solution can-
didates with another testing them for unfounded-freeness. For instance, dlv [3]
carries out the latter using a SAT solver [14], claspD [15] uses clasp for both
purposes. Common to both is that search is driven by the generating solver and
that the testing solver is merely re-invoked on demand. Such repeated invocations
bear a great amount of redundancy, in particular, when using conflict-learning
solvers because learned information is lost.

Unlike this, clasp 3 enables an equitable interplay between generating and
testing solvers. Solver units are launched initially with their respective Boolean
constraint problems, and they subsequently communicate in a bidirectional way.
Constraints relevant for the unfounded set check are enabled using clasp’s inter-
face for solving under assumptions (cf. Sect. 6). This allows both units to benefit
from conflict-driven learning over whole runs. The theoretical foundations for
this approach are laid in [16].1

clasp 3 decomposes the unfounded set problem based on the strongly con-
nected components (SCCs) of the program’s positive dependency graph. Head
cycle components (SCCs sharing two head atoms of a rule) are associated with
testing solvers responsible for complex unfounded set checks. Head cycle free
components are checked using clasp’s tractable unfounded set checking proce-
dure for normal programs. The generator combines propagation via completion
nogoods with these unfounded set checks. Tractable unfounded set checks are
performed once at each decision level. Because complex unfounded set checks are
expensive, their frequency is limited by default (this is configurable using option
--partial-check); only checks for total assignments are mandatory before a
model is accepted. Finally, it is worth mentioning that clasp 3 propagates top-
level assignments from generators to testers. That is, whenever a variable’s truth
value is determined by the generator, it is also fixed in the tester.

Building on clasp’s multi-threaded architecture, the assembly of generating
and testing solvers is reproduced to obtain n threads running in parallel. This
results in n generating and k × n testing solvers (given k head cycle compo-
nents), all of which can be separately configured, for instance, by specifying
portfolios of search strategies for model generation and/or unfounded set check-
ing (cf. Sect. 5). Notably, different generators as well as testers solving the same
unfounded set sub-problem share common data, rather than copying it n times.
The testing solver can be configured via option --tester, accepting a string of
clasp options. The individual performance of the k× n solvers and their respec-
tive problem statistics can be inspected by option --stats=2.
1 [16] also contains experiments done with an early and restricted prototype of clasp 3.
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Another advance in clasp 3 is its extension of preprocessing to disjunctive
ASP. Preprocessing starts with the identification of equivalences and resulting
simplifications on the original program (controlled by option --eq). This extends
the techniques from [17] to disjunctive logic programs. A subsequent depen-
dency analysis of the program results in the aforementioned decomposition in
head cycle components. This is followed by a translation of recursive weight con-
straints. In contrast to previous approaches, clasp 3 restricts this translation to
weight constraints belonging to some head cycle component. Finally, represen-
tations for completion nogoods and unfounded set nogoods for each head cycle
component are created (according to [16]). Notably, clasp 3’s preprocessor can
be decoupled with option --pre, providing a mapping between two disjunctive
logic programs in smodels format. In this way, it can be used as a preprocessor
for other ASP solvers for (disjunctive) logic programs relying on smodels format.
For example, the program
a ; b. c :- a. a :- c. d :- not c.

is translated by calling ‘clasp --pre’ (and conversion to human-readable form)
into
a :- not b. b :- not a. c :- a. d :- not a.

Here, clasp 3’s preprocessor turns the disjunction ‘a ; b’ into two normal rules
due to a missing head cycle and identifies the equivalence between a and c.

3 Optimization

Lexicographic optimization of linear objective functions is an established com-
ponent of ASP solvers, manifested by #minimize statements [2] and weak
constraints [3]. Traditionally, optimization is implemented in ASP solvers via
branch-and-bound search. As argued in [18], this constitutes a model-guided
approach that aims at successively producing models of descending costs until
an optimal model is found (by establishing the unsatisfiability of the problem
with a lower cost). Since series 2, clasp features several corresponding strate-
gies and heuristics [19], including strategies that allow for non-uniform descents
during optimization. For instance, in multi-criteria optimization, this enables
clasp to optimize criteria in the order of significance, rather than pursuing a
rigid lexicographical descent. clasp 3 complements this with so-called core-guided
optimization techniques originating in the area of MaxSAT [14]. Core-guided
approaches rely on successively identifying and relaxing unsatisfiable cores until
a model is obtained. The implementation in clasp 3 seamlessly integrates the
core-guided optimization algorithms oll2 [20] and pmres [21]. Both algorithms
can be (optionally) combined with disjoint core preprocessing [22], which calcu-
lates an initial set of unsatisfiable cores to initialize the algorithms, and as a side
effect provides an approximation of the optimal solution. Furthermore, when-
ever an algorithm relaxes an unsatisfiable core, constraints have to be added
to the solver. These constraints can be represented using either equivalences or

2 [20] contains experiments with an early prototype called unclasp.
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implications. The former offers a slightly stronger propagation at the expense of
adding more constraints.

The specific optimization strategy is configured in clasp 3 via option
--opt-strategy. While its first argument distinguishes between model- and
core-guided optimization, the second one handles the aforementioned refine-
ments.

Building on clasp’s multi-threaded architecture, model- and core-guided
optimization techniques can be combined. As detailed in Sect. 5, clasp 3 sup-
ports optimization portfolios for running several threads in parallel with differ-
ent approaches, strategies, and heuristics, exchanging lower and upper bounds
of objective functions (in addition to conflict nogoods). This combination of
model- and core-guided optimization makes the overall optimization process
more robust, as we empirically show in Sect. 7.

Moreover, clasp 3 adds a new reasoning mode for enumerating optimal mod-
els via option --opt-mode=optN. As usual, the number of optimal answer sets
can be restricted by adding an integer to the command line. Interestingly, this
option can also be combined with the intersection and union of answer sets
(cf. option --enum-mode), respectively. This is of great practical relevance when-
ever it comes to identifying atoms being true or false in all optimal answer sets.

Finally, it is worth mentioning that clasp 3’s optimization capacities can
also be used for solving PB and (weighted/partial) MaxSAT problems. In fact,
clasp 3 won the second place in the Unweighted Max-SAT - Industrial category
by using its core-guided optimization in the Max-SAT Evaluation in 2014.

4 Heuristics

In many domains, general-purpose solving capacities can be boosted by domain-
specific heuristics. To this end, clasp 3 provides a general declarative framework
for incorporating such heuristics into ASP solving. The heuristic information
is exploited by a dedicated domain heuristic in clasp when it comes to non-
deterministically assigning a truth value to an atom. In fact, clasp’s decision
heuristic is modifiable from within a logic program as well as from the command
line. This allows for specifying context-dependent activation of heuristic biases
interacting with a problem’s encoding. This approach was formally introduced
in [23]3 and extended in clasp 3 as described below. On the other hand, clasp 3’s
command line options allow us to directly refer to structural components of the
program (optimization statements, strongly connected components, etc.) and do
not require any additional grounding. The domain heuristic is enabled by set-
ting option --heuristic to domain, which extends clasp’s activity-based vsids
heuristic.

Heuristic information is represented by means of the predicate heuristic.
The ternary version of this predicate takes a reified atom, a heuristic modifier,
and an integer to quantify a heuristic modification. There are four primitive
3 [23] also contains experiments done with an early and restricted prototype, called
hclasp.
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heuristic modifiers, viz. sign, level, init, and factor. The modifier sign allows
for controlling the truth value assigned to variables subject to a choice. For
example, the program
{a}. _heuristic(a,sign ,1).

produces the answer set containing a first. The modifier level allows for using
integers to rank atoms. Atoms at higher levels are decided before atoms with
lower level. The default level for each atom is 0. Atoms sharing the same level
are decided by their vsids score. Modifiers true and false are defined in terms
of level and sign.
_heuristic(X,level ,Y) :- _heuristic(X,true ,Y).
_heuristic(X,sign ,1) :- _heuristic(X,true ,Y).
_heuristic(X,level ,Y) :- _heuristic(X,false ,Y).
_heuristic(X,sign ,-1) :- _heuristic(X,false ,Y).

The modifiers init and factor allow us to modify the scores of the underlying
vsids heuristic. Unlike level, they only bias the search without establishing a
strict ranking among atoms. The modifier init allows us to add a value to the
initial heuristic score of an atom that decays as any vsids score, while factor
allows us to multiply the vsids scores of atoms by a given value. For example,
the following rule biases the solver to choosing p(T-1) whenever p(T) is true.
_heuristic(p(T-1),factor ,2) :- p(T).

clasp 3’s structure-oriented heuristics are supplied via the command line.
Apart from supplying --heuristic=domain, the heuristic modifications are
specified by option --dom-mod=m, p, where m ranges from 0 to 5 and spec-
ifies the modifier:

m Modifier m Modifier m Modifier
0 None 1 level 2 sign (positive)
3 true 4 sign (negative) 5 false

and p specifies bit-wisely the atoms to which the modification is applied:

0 Atoms only
1 Atoms that belong to strongly connected components
2 Atoms that belong to head cycle components
4 Atoms that appear in disjunctions
8 Atoms that appear in optimization statements

16 Atoms that are shown

Whenever m equals 1, 3, or 5, the level of the selected atoms depends on p.
For example, with option --dom-mod=2,8, we apply a positive sign to atoms
appearing in optimization statements, and with option --dom-mod=1,20, we
apply modifier level to both atoms appearing in disjunctions as well as shown
atoms. In this case, atoms satisfying both conditions are assigned a higher level
than those that are only shown, and these get a higher level than those only
appearing in disjunctions.

Compared to programmed heuristics, the command line heuristics do not
allow for applying modifiers init or factor and cannot represent dynamic
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heuristics. But they allow us to directly refer to structural components of the
program and do not require any additional grounding. When both methods are
combined, the choices modified by the heuristic predicate are not affected by
the command line heuristics. When launched with option --stat, clasp 3 prints
the number of modified choices.

Apart from boosting solver performance, domain specific heuristics can be
used for computing inclusion minimal answer sets [24,25]. This can be achieved
by ranking choices over shown atoms highest and setting their sign modifier to
false. As an example, consider the following program
1 {a(1..3)}. a(2) :- a(3). a(3) :- a(2). {b(1)}. #show a/1.

Both the command line option ‘--dom-mod=5,16’ as well as the addition of the
heuristic fact ‘ _heuristic(a(1..3),false,1).’ guarantee that the first answer
set produced is inclusion minimal wrt. the atoms of predicate a/1. Moreover,
both allow for enumerating all inclusion minimal solutions in conjunction with
option --enum-mod=domRec. In our example, we obtain the answer sets {a(1)}
and {a(2), a(3)}. Note that this enumeration mode relies on solution recording
and is thus prone to an exponential blow-up in space. However, this often turns
out to be superior to enumerating inclusion minimal model via disjunctive logic
programs, which is guaranteed to run in polynomial space. We underpin this
empirically in Sect. 7.

Independent of the above domain-specific apparatus, clasp provides means for
configuring the sign heuristics, fixing which truth values get assigned to which
type of variables. In general, clasp selects signs based on a given sign heuris-
tics. For instance, this can be progress saving (--save-progress; [26]) or an
optimization-oriented heuristic (--opt-heuristic). Also, each decision heuris-
tic in clasp implements a sign heuristic. For example, clasp’s vsids heuristic
prefers the sign of a variable according to the frequency of the corresponding
literal in learned nogoods. Whenever no sign heuristic applies, e.g. in case of
ties, the setting of option --sign-def determines the sign; by default, it assigns
atoms to false and bodies to true. Other options are 1 (assign true), 2 (assign
false), 3 (assign randomly), and 4 (assign bodies and atoms in disjunctions true).
Finally, the option --sign-fix permits to disable all sign heuristics and enforce
the setting of --sign-def.

5 Configuration

Just as any modern conflict-driven ASP, PB, or SAT solver, clasp is sensitive
to search configurations. In order to relieve users from extensive parameter tun-
ing, clasp offers a variety of prefabricated configurations that have shown to be
effective in different settings. A specific configuration is selected by means of
option --configuration, taking one of the following arguments:
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frumpy Use conservative defaults similar to those used in earlier clasp versions
jumpy Use more aggressive defaults (than frumpy)

tweety Use defaults geared towards typical ASP problems
trendy Use defaults geared towards industrial problems
crafty Use defaults geared towards crafted problems
handy Use defaults geared towards large problems

<file> Use configuration file to configure solver(s)

The terms ‘industrial’ and ‘crafted’ refer to the respective categories at SAT com-
petitions; ‘aggressive defaults’ restart search and erase learned nogoods quite fre-
quently. Unlike previous clasp series relying on the default configuration frumpy
aiming at highest robustness, the one of clasp 3, viz. tweety, was automati-
cally identified by piclasp4 (a configurator for clasp based on smac [27]) and
manually smoothened afterwards. Such an automatic approach is unavoidable
in view of clasp 3’s huge space of 1060 configurations composed of more than 90
parameters.

Note that using a configuration file enables freely customizable solver port-
folios in parallel solving. We rely on this for tackling optimization problems
in Sect. 7 by running complementary optimization strategies in parallel. For
an example of such a portfolio, call clasp with option --print-portfolio.
The result constitutes a portfolio of complementary default configura-
tions for parallel ASP solving. This also extends to the disjunctive case,
where the configuration of testing solvers can be configured by option
‘--tester=--configuration=<file>’ to apply the portfolio in <file> to the
tester. Options given on the command-line are added to all configurations in
a configuration file. If an option is given both on the command-line and in a
configuration file, the one from the command-line takes precedence.

When solving in parallel, the configurations in the portfolio are assigned to
threads in a round-robin fashion. That is, clasp runs with the configuration
from the first line in thread 0, with the one from the second line in thread 1,
etc., until all threads are (circularly) assigned configurations from the portfolio.
The mapping of portfolios to threads is used for providing thread-specific solver
statistics. That is, launching clasp 3 with --stats=2 does not only provide
statistics aggregated over all threads but also for each individual one. Moreover,
the winning thread5 is identified by this mapping (and printed after ‘Winner:’).

Furthermore, clasp’s multi-threaded architecture was extended to handle
more complex forms of nogood exchange. In addition to the global distribu-
tion scheme described in [10], clasp 3 implements a new thread-local scheme.
The scheme can be configured by option --dist-mode. In the new scheme, each
thread has a (lock-free) multi-producer/single-consumer queue. For distribut-
ing nogoods, threads push “interesting” nogoods onto the queues of their peers.
For integrating nogoods, threads pop nogoods from their local queues. On the
4 http://www.cs.uni-potsdam.de/piclasp.
5 The winning thread either exhausts the search space or produces the last model if

no complete search space traversal is necessary.

http://www.cs.uni-potsdam.de/piclasp
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other hand, clasp 3 now supports topology-based nogood exchange. To this end,
option --integrate allows for exchanging nogoods among all peers or those
connected in the form of a ring, hyper cube, or extended hyper cube (cubex).
With the global scheme, nogoods are distributed among all threads but only
integrated by threads from their peers (via a peer check upon receive). With the
thread-local scheme, threads distribute nogoods only to peers (via a peer check
upon send). Hence, the thread-local scheme is more suited for a topology-based
exchange.

6 Library

While clasp is a versatile stand-alone system, it can also be integrated as a
library. To this end, clasp 3 provides various interfaces for starting and control-
ling operative solving processes. This includes interfaces for incremental solving,
updating a logic program, managing solver configurations, and for (asynchronous
as well as iterative) solving under assumptions. Furthermore, recorded nogoods,
heuristic values, and other dynamic information can either be kept or removed
after each solving step.

Fig. 1. Class diagram for excerpt of clasp’s C++ library

Figure 1 illustrates clasp’s C++ library. At its center is the ClaspFacade
class, which provides a simplified interface to the various classes used for solving.
The typical workflow for using the clasp library is as follows.

1. Construct a ClaspFacade and a ClaspConfig object.
2. Configure search, preprocessing, etc. options in the configuration object.
3. Obtain a LogicProgram object by calling startAsp with the respective con-

figuration object.
4. Add (ground) rules to the logic program by calling addRule.
5. Call prepare for performing preprocessing and necessary initialization tasks,

like creating and configuring solver objects.
6. Finally, call solve to start searching for models.
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This workflow covers a single-shot solving process. For multi-shot solving,
method update has to be called, which allows for continuing the above process at
step 4. This is especially interesting when combined with solving under assump-
tions (second parameter of solve). For example, planning problems typically
require an a priori unknown horizon to find a solution. With the above workflow,
the horizon can be extended at each step and assumptions can be used to check
the goal situation at the current horizon. Also note that the configuration object
can be updated at each step; the changes are propagated when calling the update
method. For example, clasp 3 allows us to control the information kept between
successive calls via attribute solver(i).forgetSet of ClaspConfig, which can
be configured for each solver thread i individually. This includes heuristic scores,
nogood activities, signs, and learnt nogoods.6 For instance, re-assigning previous
truth values by keeping heuristic scores and signs usually makes the solver
stay in similar areas of the search space.

Another interesting feature is asynchronous solving, using method
solveAsync. This allows for starting a search in the background, which can
be interrupted at any time. Use cases for this are applications that require to
react to external events, as in assisted living or robotics scenarios.

Furthermore, the solve and solveAsync methods take an event handler as
argument. This handler receives events at specific parts of the search, like the
beginning and end of the search, as well as when a model is found. A model
event is reported along with a reference to the underlying Enumerator object.
At this point, it is possible to use the enumerator to add clauses over internal
solver literals7 to the current search. This is rather effective because it avoids
program updates and preprocessing. And it is often sufficient for synthesizing a
constraint, for instance, from the last obtained model.

Paired with corresponding interfaces of gringo 4, the extended low level inter-
face of clasp 3 has led to clingo 4’s higher level application programming inter-
faces (API) in lua and python [28].8 Further applications using the clasp libray
include the hybrid solvers clingcon [29] and dlvhex [30].

A final detail worth mentioning is that clasp 3 supports changing optimiza-
tion statements between successive solving steps. This includes the extension
and contraction of objective functions by adding or deleting weighted atoms
from them. This is, for instance, relevant in planning domains whenever the
horizon is extended.

7 Experiments

For studying the interplay of the various techniques discussed above, we con-
duct an empirical study on optimization problems. Despite their great practical
relevance, only few such studies exist in ASP [7,19]. Moreover, optimization
problems are not only more complex than their underlying decision problems,
6 In fact, these parameters are also controllable in clingo by option --forget-on-step.
7 The LogicProgram class provides methods to map atoms to solver literals.
8 The API reference can be found at http://potassco.sourceforge.net/gringo.html.

http://potassco.sourceforge.net/gringo.html
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but they also present quite an algorithmic challenge since solving them requires
solving a multitude of SAT and UNSAT problems. More specifically, we carry out
two series of experiments, one on sum-based optimization problems and another
on inclusion minimality-based problems. In the first series, we investigate differ-
ent optimization strategies, including core- and model-guided strategies as well
as the impact of domain heuristics and multi-threading. The second series com-
pares the use of domain heuristics with that of disjunctive logic programs for
computing inclusion minimal stable models.

All experiments were run with clasp 3.1.2 on a Linux machine with two Intel
Quad-Core Xeon E5520 2.27 GHz processors, imposing a limit of 600 s wall-
clock time and 6 GB of memory per run. A timeout is counted as 600 s. For
capturing not only the successful solution of an optimization process but also
its convergence, we regard the quality of solutions too. To be more precise, we
extend the scoring used in the 2014 ASP competition by considering runtime
whenever two solvers yield the same solution quality (see (iii) below). Let m be
the number of participant systems, then the score s of a solver for an instance i in
a domain p featuring n instances is computed as s(p, i) = ms(i)·100

m·n where ms(i)
is (i) 0, if s does neither provide a solution, nor report unsatisfiability, or (ii)
the number of solvers that do not provide a strictly better result than s, where
a confirmed optimum solution is considered strictly better than an unconfirmed
one. Furthermore, (iii) for two equally good solutions, one is considered strictly
better, if it is computed at least 30 s faster than the other one.

Accordingly, each entry in Table 1 gives average time, number of time-
outs, and score wrt the considered set of instances (except for column multi).
The benchmark classes are given in the first column, which also includes
the number of instances and their source. Also, we indicate via superscripts
mn and w, whether a class comprises a multi-objective optimization prob-
lem with n objectives and whether its functions are weight-based. The body
of Table 1 gives the results obtained by evaluating clasp’s optimization strate-
gies on 636 benchmark instances from various sources.9 The first three data
columns give the results obtained for model-, core-, and heuristic-guided strate-
gies relying on clasp’s default configuration tweety, viz. plain model-guided
optimization (--opt-strategy=bb), core-guided optimization using the oll algo-
rithm (--opt-strategy=usc), and model-guided optimization using heuristics
preferring minimized atoms and assigning them to false (--opt-strategy=bb
--dom-mod=5,8).10 The starred columns reflect the best configurations obtained
for each optimization strategy, viz. model-guided optimization with exponen-
tially increasing steps (--opt-strategy=bb,2) using configuration trendy, core-
guided optimization algorithm oll, disjoint core pre-processing, and problem
relaxation (cf. Sect. 3; --opt-strategy=usc,3) using crafty, and hierarchic
model-guided optimization with heuristics preferring to assign false to mini-
mized atoms (cf. Sect. 4; --opt-strategy=bb,1 --dom-mod=4,8) using trendy.

9 The benchmark set is available at http://www.cs.uni-potsdam.de/clasp/?page=
experiments.

10 Combining core-guided optimization with domain heuristics deteriorates results.

http://www.cs.uni-potsdam.de/clasp/?page=experiments
http://www.cs.uni-potsdam.de/clasp/?page=experiments
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And the last column shows results obtained with multi-threading. Scores are only
computed among single-threaded configurations.

First of all, we observe that core-guided optimization solves the highest num-
ber of optimization problems. The fact that core∗ solves more problems than
core is due to crafty’s slow restart strategy that is advantageous when solving
UNSAT problems, which are numerous in core-guided optimization.11 While the
latter seems to have an edge over the model-guided strategy whenever the opti-
mum can be established, it is vacuous when the optimum is out of reach since
it lacks the anytime behavior of model-guided search. This is nicely reflected by
the score of 0 obtained by core on TSP, where no model at all is outputted.
The best anytime behavior is obtained by boosting model-guided search with
heuristics. Although no variant proves any optimum for TSP, the two heuristic
strategies give the highest scores for TSP, reflecting the best solution quality.
Interestingly, the less manipulative strategy of heuristic∗ yields a better score.
In fact, heuristic-guided search procedures show the best convergence to the
optimum but often fall short in establishing its optimality. Otherwise, model-
guided optimization appears to benefit from faster restart strategies, as com-
prised in trendy, since it involves solving several SAT problems. All in all, we
observe that core-guided strategies dominate in terms of solved problems, while
heuristic-guided ones yield the best solution quality. To have the cake and eat
it, too, we can take advantage of clasp’s multi-threading capacities. To this end,
we combined the three starred configurations with one running core-guided opti-
mization with disjoint core pre-processing using jumpy.12 The results are given
in column multi and reflect a significant edge over each individual configuration.
Interestingly, the number of timeouts is less than that of taking the ones of the
respective best solver, viz. 106, and also surpasses this virtually best solver (tak-
ing 2785 seconds) as regards runtime.13 In fact, the multi configuration performs
at least as good as the other configurations on all but two benchmark classes. We
trace this superior behavior back to exchanging bounds and constraints among
the threads.

Our second series of experiments contrasts the usage of domain heuristics
with that of disjunctive logic programs for computing inclusion-minimal stable
models. All results are based upon clasp’s default configuration tweety and given
in Table 2. The standard technique for encoding inclusion minimality in ASP is
to use saturation-based, disjunctive encodings (cf. [12]). We generate the result-
ing programs automatically from the respective benchmarks with the metasp
system [31] and solve them with the disjunctive solving techniques described in
Sect. 2. The results are given in the columns headed by meta. The first three
data columns give average time and number of timeouts for computing one
inclusion-minimal answer set. The column headed heuristic accomplishes this
via the heuristic approach described in Sect. 4, viz. option --dom-mod=5,16. We

11 In fact, using trendy with crafty’s restart strategy performs even slightly better.
12 This provides us with an approximate solution and complements core∗ due to fast

restarts.
13 Running the four best configurations from Table 1 yields 2668/108.
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see that this is an order of magnitude better than the disjunctive approach in
terms of both runtime and timeouts. Clearly, this is because the former deals
with normal programs only, while the latter involves intractable unfounded set
tests. Although the frequency of such tests can be reduced by guiding the gen-
erating solver by the same heuristics, it fails to catch up with a purely heuristic
approach (see column meta-heur.). The picture changes slightly when it comes
to enumerating inclusion-minimal answer sets. Here, heuristic faces an expo-
nential space complexity, while meta runs in polynomial space.14 The remaining
columns summarize enumeration results, and add the score as an indicative mea-
sure by taking as objective value the number of enumerated models. Although
the differences are smaller, heuristic still outperforms all variants of meta. Again,
adding heuristic support improves the performance of meta. More surprisingly,
the best meta configuration is obtained by abolishing polynomial space guaran-
tees and using clasp’s solution recording for enumeration, viz. meta-heur.-rec.
In fact, the added (negated) solutions further focus the search of the generator
and thus lead to fewer unfounded set tests.

8 Discussion

We presented distinguishing features of the clasp 3 series. And we evaluated
their interplay by an empirical analysis on optimization problems. Comparative
studies contrasting clasp with other systems can be found in the ASP com-
petition series. Many of clasp’s features can be found in one form or another
in other ASP, SAT, or PB solvers. For instance, dlv features several dedicated
interfaces, wasp [18] also implements core- and model-guided optimization, Rin-
tanen uses heuristics in [32] to improve SAT planning, etc. However, the truly
unique aspect of clasp 3 is its wide variety of features combined in a single frame-
work. We demonstrated the resulting added value by the combinations in our
experiments.

Acknowledgments. This work was funded by AoF (251170) and DFG (SCHA 550/8
and 550/9).
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Abstract. This paper describes an abstract problem derived from a
combination of Siemens product configuration problems encountered in
practice. Often isolated parts of configuration problems can be solved
by mapping them to well-studied problems for which efficient heuristics
exist (graph coloring, bin-packing, etc.). Unfortunately, these heuristics
may fail to work when applied to a problem that combines two or more
subproblems. In the paper we show how to formulate a combined con-
figuration problem in Answer Set Programming (ASP) and to solve it
using heuristics à la hclasp. In addition, we present a novel method for
heuristic generation based on a combination of greedy search with ASP
that allows to improve the performance of an ASP solver.

Keywords: Configuration problem · Heuristics · Answer Set Program-
ming

1 Introduction

Configuration is a design activity aiming at creation of an artifact from given
components such that a set of requirements reflecting individual needs of a cus-
tomer and compatibility of the system’s structures are satisfied. Configuration
is a fully or partly automated approach supported by a knowledge-based infor-
mation system called configurator. Originally configurators appeared because
configurable products were expensive and very complex. They were developed
by a significant number of highly qualified workers by order and single-copy.
Emerging research on expert systems in the 1980s resulted in a number of
approaches to knowledge-based configuration, such as McDermott’s R1/XCON
‘configurer’ [13]. Since then many companies such as ConfigIt, Oracle, SAP,
Siemens or Tacton have developed configurators for large complex systems reduc-
ing the production costs significantly. With the lapse of time the focus has been
shifted more in the direction of mass customization. Currently configurators
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cover a wide range of customers and can be found in practically every price
segment. One can configure a car, a computer, skis and even a forage for a dog.

Researchers in academia and industry have tried different approaches to con-
figuration knowledge representation and reasoning, including production rules,
constraints languages, heuristic search, description logics, etc.; see [10,17,19]
for surveys. Although constraint-based methods remain de facto standard, ASP
has gained much attention over the last years because of its expressive high-
level representation abilities. Normal rules as well as rules including weight and
cardinality atoms were used in the first application of ASP to configuration
problems [18]. Regarding knowledge representation, [21] suggests a high-level
object-oriented modeling language and a web-based graphical user interface to
simplify the modeling of requirements.

In [5] important aspects for formalizing and tackling real-world configuration
scenarios with ASP are discussed. Recently a framework for describing object-
oriented knowledge bases was presented in [15]. The authors suggested a general
mapping from an object-oriented formalism to ASP for S’UPREME based con-
figurators. S’UPREME is a configuration engine of Siemens AG, which is applied
to configure complex large-scale technical systems such as railway safety systems
within Siemens. In fact, more than 30 applications are based on this system [9].

As evaluation shows ASP is a compact and expressive method to capture con-
figuration problems [10], i.e. it can represent configuration knowledge consisting
of component types, associations, attributes, and additional constraints. The
declarative semantics of ASP programs allows a knowledge engineer to freely
choose the order in which rules are written in a program, i.e. the knowledge
about types, attributes, etc. can be easily grouped in one place and modularized.
Sound and complete solving algorithms allow to check a configuration model and
support evolution tasks such as reconfiguration. However, empirical assessments
indicate that ASP has limitations when applied to large-scale product configu-
ration instances [1,5]. The best results in terms of runtime and solution quality
were achieved when domain-specific heuristics were used [14,20].

In this paper we introduce a combined configuration problem that reflects
typical requirements frequently occurring in practice of Siemens. The parts of
this problem correspond (to some extent) to classical computer science problems
for which there already exist some well-known heuristics and algorithms that can
be applied to speed up computations and/or improve the quality of solutions.

As the main contribution, we present a novel approach on how problem-
specific heuristics generated by a greedy solver can be incorporated in an ASP
program to improve computation time (and obtain better solutions). The appli-
cation of domain-specific knowledge formulated succinctly in an ASP heuristic
language [8] allows for better solutions within a shorter solving time, but it
strongly deteriorates the search when additional requirements (conflicting with
the formulated heuristics) are included. On the other hand, the formulation of
complex heuristics might be cumbersome using greedy methods. Therefore, we
exploit a combination of greedy methods with ASP for the generation of heuris-
tics and integrate them to accelerate an ASP solver. We evaluate the method
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on a set of instances derived from configuration scenarios encountered by us in
practice and in general. Our evaluation shows that solutions for three sets of
instances can be found an order of magnitude faster than compared to a plain
ASP encoding.

In the following, Sect. 2 introduces a combined configuration problem (CCP)
which is exemplified in Sect. 3. Its ASP encoding is shown in Sect. 4. Section 5
discusses heuristics for solving the CCP problem and we present our evaluation
results in Sect. 6. Finally, in Sect. 7 we conclude and discuss future work.

2 Combined Configuration Problem

The Combined Configuration Problem (CCP) is an abstract problem derived
from a combination of several problems encountered in Siemens practice (railway
interlocking systems, automation systems, etc.). A CCP instance is defined by
a directed acyclic graph (DAG). Each vertex of the DAG has a type and each
type of the vertices has a particular size. In addition, each instance comprises two
sets of vertices specifying two vertex-disjoint paths in the DAG. Furthermore, an
instance contains a set of areas, sets of vertices defining possible border elements
of each area and a maximal number of border elements per area. Finally, a
number of available colors as well as a number of available bins and their capacity
are given.

Given a CCP instance, the goal is to find a solution that satisfies a set
of requirements. All system requirements are separated into the corresponding
subproblems which must be solved together or in particular combinations:

– P1 Coloring. Every vertex must have exactly one color.
– P2 Bin-Packing. For every color a Bin-Packing problem must be solved,

where the same number of bins are available for each color. Every vertex must
be assigned to exactly one bin of its color and for every bin, the sum of sizes
must be smaller or equal to the bin capacity.

– P3 Disjoint Paths. Vertices of different paths cannot be colored in the same
color.

– P4 Matching. Each border element must be assigned to exactly one area
such that the number of selected border elements of an area does not exceed
the maximal number of border elements and all selected border elements of an
area have the same color.

– P5 Connectedness. Two vertices with the same color must be connected
via a path that contains only vertices of that color.

Origin of the Problem. The considered CCP originates in the railway domain.
The given DAG represents a track layout of a railway line. A coloring P1 can
then be thought as an assignment of resources (e.g. computers) to the elements
of the railway line. In real-world scenarios different infrastructure elements may
require different amounts of a resource that is summarized in P2. This may
be hardware requirements (e.g. a signal requiring a certain number of hardware
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Fig. 1. Input CCP graph and a trivial solution of Coloring (P1)

parts) or software requirements (e.g. an infrastructural element requiring a spe-
cific processing time). The requirements of P1 and P2 are frequently used in
configuration problems during an assignment of entities of one type to entities of
another type [5,12]. The constraint of P3 increases availability, i.e. in case one
resource fails it should still be possible to get from a source vertex (no incoming
edges) of the DAG to a target vertex (no outgoing edges) of the DAG. In the gen-
eral version of this problem one has to find n paths that maximize availability.
The CCP uses the simplified problem where 2 vertex-disjoint paths are given.
P4 stems from detecting which elements of the graph are occupied. The border
elements function as detectors for an object leaving or entering an area. The
PUP problem [1,2] is a more elaborate version of this problem. P5 arises in dif-
ferent scenarios. For example, if communication between elements controlled by
different resources is more costly, then neighboring elements should be assigned
to the same resource whenever possible.

3 Example

Figure 1 shows a sample input CCP graph. In this section we illustrate how
particular requirements can influence a solution. Namely, we add the constraints
of each subproblem one by one. If only P1 is active, any graph corresponds to
a trivial solution of P1 where all vertices are colored white.

Let us consider the input graph as a Bin-Packing problem instance with four
colors and three bins per color of a capacity equal to five. The vertices of type b,
e, s and p have the sizes 1, 2, 3 and 4 respectively. A sample solution of Coloring
and Bin-Packing (P1-P2) is presented in Figs. 2 and 3.

Fig. 2. Used colors in a solution of the Coloring and Bin-Packing problems (P1-P2)
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Fig. 3. Used bins in a solution of the Coloring and Bin-Packing problems (P1-P2)

Fig. 4. Solution of the Coloring, Bin-Packing and Disjoint Paths problems (P1-P3)

Fig. 5. A sample input and solution graphs for P4. The selected edges of the input
graph are highlighted with solid lines.

For instance, when activating the Disjoint Paths constraint (P3), two vertex-
disjoint paths path1 = {b1, s1, p1, b2, p2, b3, p3, s2, b4} as well as path2 =
{b7, s3, p4, b8, p5, b9, p6, s4, b10} may be declared. Consequently, in this case the
solution shown in Fig. 2 violates the constraint and must be modified as dis-
played in Fig. 4, where the vertices of different paths are colored with different
colors (path1 with dark grey and grey whereas white and light grey are used for
path2).

Figure 5 shows a Matching example (P4). There are seven areas in the match-
ing input graph, each corresponding to a subgraph surrounded with border ele-
ments (Fig. 1). For example, area a1 represents the subgraph {b1, s1, p1, b2, b5}
and area a2 the subgraph {b5, e1, b6}. The corresponding border elements are
{b1, b2, b5} and {b5, b6} (Fig. 5).

Assume that an area can have at most 2 border elements assigned to it. In the
resulting matching (Fig. 5) b1, b2 are assigned to a1 whereas b5, b6 are assigned
to a2. Note that the sample selected matching shown in Fig. 5 is not valid with
the coloring presented previously, because, for example, b5 and b6 are assigned to
the same area a2 although they are colored differently. In addition, the coloring
solution shown in Fig. 4 violates the Connectedness constraint (P5). Therefore,
the previous solutions must be updated to take the additional requirements into
account. Figure 6 shows a valid coloring of the given graph that satisfies all
problem conditions (P1-P5).
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b1 s1 p1 b2 p2 b3 p3 s2 b4
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Fig. 6. A valid solution for P1-P5

4 ASP Encoding of the Combined Configuration Problem

A CCP instance is defined using the following atoms. An edge between two
vertices in the DAG is defined by edge(Vertex1,Vertex2). For each vertex,
type(Vertex ,Type) and size(Vertex , Size) are declared. pathN (Vertex ) expresses
that a vertex belongs to a particular path. In addition, each border element must
be connected to one of the possible areas given by edge matching(Area,Vertex )
whereas each area can control at most maxborder(C) border elements. The num-
ber of colors and bins are defined using nrofcolors(Color) and nrofbins(Bin).
Finally, the capacity of a bin is fixed by maxbinsize(Capacity).

Our ASP encoding for the CCP is shown in Listing 1. Line 1-5 implements
Coloring (P1), assigning colors to vertices. The atoms vertex color(Vertex ,
Color) and usedcolor(Color) express that a Vertex is connected to a Color ,
i.e. used in a solution via usedcolor(Color). An assignment of a Vertex to a
Bin, i.e. Bin-Packing problem (P2), is accomplished using Line 6-10, where the
atoms vertex bin(Vertex ,Bin) and usedbin(Bin) represent a solution. Further,
the atoms bin(Color ,Bin,Vertex ) represent a combined solution for P1 and
P2. The Disjoint paths constraint (P3) is stated in Line 11. In accordance with
Matching (P4), i.e. Line 12-17, one has to find a matching between areas and
border elements using edge matching selected(Area,Vertex ) atoms. Finally, the
Connectedness requirement (P5) is ensured in line 18-24.

1 vertex(V):-type(V,_). vertex(V):-size(V,_). % P1

2 vertex(V):-edge(V,_). vertex(V):-edge(_,V).

3 color(1..MaxC):-nrofcolors(MaxC).

4 1{vertex_color(V,C):color(C)}1:-vertex(V).

5 usedcolor(C):-vertex_color(V,C).

6 1{vertex_bin(V,B):B=1..K}1 :- vertex(V), nrofbins(K). % P2

7 bin(C,B,V):-vertex_color(V,C),vertex_bin(V,B).

8 :-color(C),nrofbins(K),maxbinsize(MaxS), B=1..K,

9 MaxS+1 #sum{S,V:bin(C,B,V),size(V,S)}.

10 usedbin(B):-bin(C,B,V).

11 :-path1(V1),path2(V2),vertex_color(V1,C),vertex_color(V2,C).%P3

12 area(A):-edge_matching(A,B). % P4

13 borderelement(B):-edge_matching(A,B).
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14 1{edge_matching_selected(A,B):edge_matching(A,B)}1 :- borderelement(B).

15 :-area(A),maxborder(MaxB),MaxB+1{edge_matching_selected(A,B)}.

16 edge_matching_color(A,C):-edge_matching_selected(A,B),vertex_color(B,C).

17 :-area(A), 2{edge_matching_color(A,C)}.

18 e(X,Y):-edge(X,Y). e(X,Y):-edge(Y,X). % P5

19 pred(V1,V2):-vertex(V1;V2),V1 < V2,V <= V1:vertex(V),V<V2.

20 first(C,V2):-color(C), pred(V1,V2),

21 not vertex_color(V1,C),first(C,V1):pred(V,V1).

22 reach_col(C,V1):-color(C),vertex(V1),first(C,V1):pred(V,V1).

23 reach_col(C,V2):-reach_col(C,V1),e(V1,V2),vertex_color(V1,C).

24 :-vertex_color(V,C),not reach_col(C,V).

Listing 1. ASP encoding for the Combined Configuration Problem

5 Combining Heuristics for Configuration Problems

To formulate a heuristic within ASP we use the declarative heuristic framework
developed by Gebser et al. [8]. In this formalism the heuristics are expressed
using atoms heuristic(a,m, v, p), where a denotes an atom for which a heuris-
tic value is defined, m is one of four modifiers (init, factor, level and sign),
and v, p are integers denoting a value and a priority, respectively, of the def-
inition. A number of shortcuts are available, e.g. heuristic(a, v, l), where a
is an atom, v is its truth value and l is a level. The heuristic atoms mod-
ify the behavior of the VSIDS heuristic [11]. Thus, if a heuristic atom is
true in some interpretation, then the corresponding atom a might be preferred
by the ASP solver at the next decision point. For instance, given the choice
rule 1{vertex color(V,C) : color(C)}1 :- vertex(V ). and adding only the atom
heuristic(vertex color(‘b1’, 1), true, 1)) to a program, the solver prefers the

atom vertex color(‘b1’, 1) over all other atoms vertex color(‘b1’,X) for X �= 1.
If several atoms vertex color/2 are provided, the atom with the higher level l is
preferred.

There are different ways to incorporate heuristics in a program. The standard
approach [8] requires an implementation of a heuristic at hand using a pure
ASP encoding, whereas the idea of our method is to delegate the (expensive)
generation of a heuristic to an external tool and then to extend the program with
generated heuristic atoms to accelerate the ASP search. Below we exemplify how
both approaches can be applied.

5.1 Standard Generation of Heuristics in ASP

Several heuristics can be used for the problems that compose the CCP, e.g. for
the coloring of vertices (P1) we seek to use as few colors as possible by the
following rule:
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1 _heuristic(vertex_color(V,C),true,MC-C) :- vertex(V), color(C),

nrofcolors(MC).

Listing 2. Heuristic for an assignment of colors to vertices

Additionally, we can apply well-known Bin-Packing heuristics for the placement
of colored vertices into the bins of specified capacity (P2). The Bin-Packing
problem is known to be an NP-hard combinatorial problem. However, there is a
number of approximation algorithms (construction heuristics) that allow efficient
computation of good approximations of a solution [6], e.g. Best/First/Next-Fit
heuristics. They can, of course, be used as heuristics for the CCP. As shown in
Listing 3, given a (decreasing) order of vertices using order(V,O) atoms, we can
force the solver to place vertex Vi into the lowest-indexed bin for which the size
of already placed vertices does not exceed the capacity, i.e. in a first-fit bin:

1 binDomain(1..NB) :- nrofbins(NB). offset(NB+1) :- nrofbins(NB).

2 _heuristic(vertex_bin(V,B),true,M+O*NB-B) :- binDomain(B), nrofbins(NB),

order(V,O), offset(M).

Listing 3. First-Fit heuristic for an assignment of vertices to bins

The heuristic never uses a new bin until all the non-empty bins are full and
it can be expressed by rules that generate always a higher level for the bins
with smaller number. It is also possible (with an intense effort) to express other
heuristics for P1-P5 that guide the search appropriately and allow to speed up
the computation of solutions if we solve these problems separately. However, as
our experiments show, the inclusion of heuristics for different problem at the
same time might drastically deteriorate the performance for real-world CCP
instances.

5.2 Greedy Search

From our observations in the context of product configuration, it is relatively
easy to devise a greedy algorithm to solve a part of a configuration problem.
This is often the case in practice, because products are typically designed to be
easily configurable. The hard configuration instances usually occur when new
constraints arise due to the combination of existing products and technologies.

The same can be said for the CCP problem. Whereas it is easy to develop
greedy search algorithms for the individual subproblems, it becomes increas-
ingly difficult to come up with an algorithm that solves the combined problem.
Algorithm 1 shows a greedy method that solves the Matching problem of the
CCP (P4). For every vertex v it finds a related area a with the fewest assigned
vertices so far and matches v with a. The algorithm assumes that all bor-
der elements are colored with one color, as it trivially satisfies the coloring
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Algorithm 1. GreedyMatching
Input: A bipartite graph GA = (BE , A, E), where BE is a set of border

elements, A is a set of areas and E ⊆ BE × A is a set of edges
Output: A matching set M

1 M ← ∅;
2 foreach v ∈ BE do

// Select areas with the minimum number of matched elements
3 A′ ← arg mina∈A |{v′ | v′ ∈ BE , (v′, a) ∈ M, (v, a) ∈ E}|;
4 a ← pop(A′);
5 M ← M ∪ {(v, a)};

6 return M ;

Algorithm 2. GreedyColoringBinPackingConnectedness
Input: A graph G = (V, E), a maximum number of bins K for each color and a

bin capacity C
Output: A set B that comprises all bins of a solution

1 B ← ∅; color ← 1; Q ← ∅;
2 while V �= ∅ do
3 q ← pop(V ); Q ← {q};
4 while Q �= ∅ do
5 v ← pop(Q);
6 labelVertexWithColor(v, color);
7 B ← assignVertexToBin(B, v, C, K); // v is ignored, if it does not fit
8 if ∃b ∈ B (v ∈ b) then
9 V ← V \ {v};

10 Q ← Q ∪ popNeigbours(v, G);

11 color ← color + 1;

12 return B;

requirement of the matching problem. Algorithm2 shows a greedy approach
to solving the CCP wrt. Coloring, Bin-Packing and Connectedness (P1, P2
and P5). Every call to pop returns and removes the first element v of the set
V and all corresponding edges. Then, the vertex v is assigned a color and is
put into a bin according to some heuristic Bin-Packing algorithm. For instance,
one can use classic heuristics as First-Fit or Best-Fit [6]. Our implementation of
assignVertexToBin puts vertices of only one color into a bin. If the number of
bins K is not enough to pack a vertex, then the set of bins B is not modified
and the vertex is ignored. In case the vertex was placed into a bin, Algorithm2
retrieves and removes from G all vertices adjacent to v. The loop continues until
all vertices that can be reached from v are colored and assigned to some bin.
Finally, the number of colors is increased and the algorithm colors and removes
another subgraph of G until no vertices in G are left.
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Suppose one wants to combine these two algorithms. One strategy would be to
run greedy Matching and then solve the Bin-Packing problem taking matchings
into account. Thus, a combined algorithm first calls Algorithm1 and gets a set
of matchings M = {(v1, a1), . . . , (vn, am)}. Then, for each vertex vi of the input
graph G the algorithm (i) assigns a new color to vi, if vi has no assigned color, and
(ii) puts vi into a bin, as in Algorithm2. In case vi is a border element, the combined
algorithm retrieves an area aj that matches vi in M and colors all vertices of this
area in the same color as vi.

The combined algorithm might violate the Connectedness property, because
it colors all border vertices assigned to an area with the same color. However,
these vertices are not necessarily connected. That is, there might be a solution
with a different matching, but the greedy algorithm tests only one of all possible
matchings. Moreover, there is no obvious way how to create an algorithm solving
all 3 problems efficiently. This is a clear disadvantage of using ad-hoc algorithms
in contrast to the usage a logic-based formalism like ASP, where the addition
of constraints is just a matter of adding some rules to an encoding. On the
other hand, domain-specific algorithms are typically faster and scale better
than ASP-based or SAT-based approaches that cannot be used for very large
instances. For instance, the memory demand of the greedy Algorithm2 is almost
independent of graph size.

5.3 Combining Greedy Search and ASP

One way to let a complete ASP solver and a greedy search algorithm benefit
from each other is to use the greedy algorithm to compute upper bounds for
the problem to solve. The tighter upper bound usually means smaller grounding
size and shorter solving time because the greedy solver being domain-specific
usually outperforms ASP for the relaxed version of the problem. For instance,
running the greedy algorithm for the Bin-Packing problem and Matching prob-
lem gives upper bounds for the maximal number of colors, i.e. number of differ-
ent Bin-Packing problems to solve. The same applies to the Matching problem.
This kind of application of greedy algorithms has a long tradition in branch
and bound search algorithms, where greedy algorithms are used to compute the
upper bound of a problem. For an example see [22], where a greedy coloring
algorithm is used to find an upper bound for the clique size in a graph in order
to compute maximum cliques. In this paper we investigate a novel way to com-
bine greedy algorithms and ASP (Algortihm3). Given all required inputs, first, a
greedy algorithm is used to solve the Matching and Bin-Packing problems. The
greedy algorithm typically solves a relaxed version of the problem, therefore,
the solution found by the greedy algorithm may not be a consistent solution for
ASP. This solution is converted into a heuristic for an ASP solver by giving the
atoms of the solution a higher heuristic value.

As an example for solving the complete CCP problem, we can, first, find
an unconnected solution for the combination of Coloring, Bin-Packing, Disjoint
paths and Matching problems (P1-P4), and then, use the ASP solver to fix
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Algorithm 3. Greedy & ASP
Input: A problem P , an ASP program Π solving the problem P
Output: A solution S

1 GreedySolution ← solveGreedy(P );
2 H ← generateHeuristic(GreedySolution);
3 return solveWithASP(Π, H);

the Connectedness property (P5). The idea of combining local search with a
complete solver is also found in large neighborhood search [4].

6 Experimental Results

Experiment1. In our evaluation we compared a plain ASP encoding of the
CCP with an ASP encoding extended with domain-specific knowledge. The
Bin-Packing problem (P2) of the CCP corresponds to the classic Bin-Packing
problem and the same heuristics can be applied. We implemented several Bin-
Packing heuristics such as First/Best/Next-Fit (Decreasing) heuristics using
ASP as shown in Sect. 5.1. For the evaluation we took 37 publicly available Bin-
Packing problem instances1, for which the optimal number of bins optnrofbins
is known, and translated them to CCP instances. The biggest instance of the
set includes 500 vertices and 736 bins of the capacity 100. In the experiment,
the maximal number of colors was set to 1 and the maximal number of bins was
set to 2 · optnrofbins . All instances were solved by both approaches2. For a plain
ASP encoding the solver required at most 27 s to find a solution whereas for
the heuristic ASP program solving took at most 6 s, which is 4.5 times faster.
The best results for the heuristic approach were obtained using the First-Fit
heuristic with the decreasing order of vertices. Corresponding solutions utilized
less bins then the ones obtained with the plain ASP program. Moreover, using
First-Fit heuristic, for 23 from 37 instances a solution with optimal number of
bins was found and for 13 other instances at most 4 bins more were required.
The plain ASP encoding resulted in solutions that used on average 4 bins more
than corresponding solutions of the heuristic approach. Only for 1 instance the
heuristic program generated a worse solution than the plain ASP encoding.

Experiment2. In the next experiment we tested the same Bin-Packing heuristics
implemented in ASP for the combined CCP, i.e. when all subproblems P1-P5 are
active, on 100 real-world test instances of moderate size (maximally 500 vertices
in an input). The instances in this experiment were derived from a number of

1 The instances were taken from: http://www.wiwi.uni-jena.de/Entscheidung/binpp/
index.htm.

2 The evaluation was performed using clingo version 4.3.0 from the Potassco ASP
collection [7] on a system with Intel i7-3030K CPU (3.20 GHz) and 64 GB of RAM,
running Ubuntu 11.10.

http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm
http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm
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Fig. 7. Evaluation results using Plain ASP and Greedy & ASP

real-world configurations. Neither the plain program nor the heuristic programs
were able to improve runtime/quality of solutions. Moreover, our greedy method
described in Sect. 5.2 also failed to find a connected solution, i.e. when P5 is
active. For this reason, we investigated the combined approach (Greedy & ASP)
described in Sect. 5.3. This approach uses the greedy method to generate a partial
solution ignoring the Connectedness constraint and provides this solution as
heuristic atoms to the ASP solver. Our experiments show (see Fig. 7a) that

the combined approach can solve all 100 benchmarks from the mentioned set,
whereas the plain encoding presented in Sect. 4 solves only 54 instances (the
time frame was set to 900 s in this and the next experiment). Moreover, for
those instances which were solved using both approaches, the quality of solutions
measured in terms of used bins and colors was the same. However, the runtime
of the combined approach was 18 times faster on average and required at most
24 s instead of 848 s needed for the plain ASP encoding.

Experiment3. In addition, we tested more complex real-world instances (max-
imally 1004 vertices in an input)3 which we have also submitted to the ASP
competition 2015. Similarly to Experiment2 we compared the plain ASP encod-
ing from Sect. 4 to the combined approach in Sect. 5.3. Again, regarding the
quality of solutions, both approaches are comparable, i.e. they use on aver-
age the same number of colors and bins, with the combined approach having
a slight edge. Generally, from 48 instances considered in this experiment, 36/38
instances were solved using the plain/combined encoding, respectively. On aver-
age/maximally the plain encoding needed 69/887 s to find a solution whereas
the combined method took 14/196 s, respectively, which is about 5 times faster.
Figure 7b shows the influence of heuristics on the performance for the instances
from Experiment3 that were solved by both approaches within 900 s. Although
the grounding time is not presented for both experiments, we note that it requires
about 10 s using both approaches for the biggest instance when all subproblems
P1-P5 are active.

3 The instances are available at: http://isbi.aau.at/hint/problems.

http://isbi.aau.at/hint/problems
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7 Discussion

Choosing the right domain-specific heuristics for simple backtrack-based solvers
is essential for finding a solution at all, especially for large and/or complex prob-
lems. The role of domain-specific heuristics in a conflict-driven nogood learning
ASP solver seems to be less important when it comes to solving time. Here the
size of the grounding and finding the right encoding is often the limiting factor.
Nevertheless, domain-specific heuristics are very important to control the order
in which answer sets are found and are an alternative to optimization state-
ments. The latter hinder the computation of solutions for many configuration
problem instances in a time which is reasonable for the application domain [1,5].
As we have shown, domain-specific heuristics also provide a mechanism to com-
bine greedy algorithms with ASP solvers, which opens up the possibility to use
ASP in a meta-heuristic setting. However, the possible applications go beyond
this. The same approach could be used to repair an infeasible assignment using
an ASP solver. This is currently a field of active research for us and has applica-
tions in the context of product reconfiguration. Reconfiguration occurs when a
configuration problem is not solved from scratch, but some parts of an existing
configuration have to be taken into account.

An open question is how to combine heuristics for different subproblems in
a modular manner without the adaptation of every domain-specific heuristic.
Here approaches like search combinators [16] from the constraint programming
community might be useful. Another interesting topic for future research would
be how to learn heuristics from an ASP solver, i.e. to investigate the variable/-
value order chosen by an ASP solver for medium size problem instances and use
them as heuristics in a backtrack solver for larger instances that are out of scope
of an ASP solver due to the grounding size. Some aspects of this topic were
discussed in [3]. Moreover, it is worthwhile to investigate how our method can
be generalized to other application domains and whether we will be generally
able to gain better performance if more heuristics are combined.
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Abstract. Strong equivalence of logic programs is an important con-
cept in the theory of answer set programming. Equilibrium logic was
used to show that propositional formulas are strongly equivalent if and
only if they are equivalent in the logic of here-and-there. We extend
equilibrium logic to formulas with infinitely long conjunctions and dis-
junctions, define and axiomatize an infinitary counterpart to the logic of
here-and-there, and show that the theorem on strong equivalence holds
in the infinitary case as well.

1 Introduction

The original definition of a stable model [3] is restricted to Prolog-style rules—
implications with a conjunction of literals in the antecedent and an atom in the
consequent. Extending it to arbitrary propositional formulas has been accom-
plished by two equivalent constructions: using equilibrium logic [13] and using
modified reducts [2]. Equilibrium logic served as the basis for the characteriza-
tion of strong equivalence of logic programs [10] in terms of the logic of Kripke
models with two worlds, “the logic of here-and-there.” The first axiomatization
of that logic was given without proof by �Lukasiewicz [11]: add the axiom schema

(¬F → G) → (((G → F ) → G) → G)) (1)

to propositional intuitionistic logic. This axiomatization was rediscovered and
proved complete by Thomas [15]. (In the notation of that paper, axiom schema
(1) is 3′′

2 .) A few years earlier, Umezawa [17] had proposed a simpler axiom
schema

F ∨ (F → G) ∨ ¬G (2)

that can be used to axiomatize the logic of here-and-there instead of (1). The
completeness of this axiomatization was proved by Hosoi [6].

The definition of a stable model for propositional formulas [2] was extended to
formulas with infinitely long conjunctions and disjunctions by Truszczynski [16].
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 398–410, 2015.
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Harrison et al. [4] introduced a deductive system that includes an infinitary
counterpart of axiom schema (2) and proved that if two infinitary formulas
are equivalent in that system then they are strongly equivalent. Whether the
converse holds is posed in that paper as an open question.

In this note, our goals are

(i) to define the infinitary version of the logic of here-and-there,
(ii) to define its nonmonotonic counterpart—the infinitary version of equilib-

rium logic,
(iii) to verify that stable models of infinitary formulas in the sense of Truszczyn-

ski can be characterized in terms of infinitary equilibrium logic,
(iv) to verify that infinitary propositional formulas are strongly equivalent to

each other iff they are equivalent in the infinitary logic of here-and-there,
(v) to find an axiomatization of that logic.

The results of this note give a positive answer to the open question mentioned
above. Moreover, they show that some axiom schemas introduced by Harrison
et al. are redundant.

We will see in Sects. 2–5 that achieving goals (i)–(iv) is straightforward,
given the work done earlier for finite formulas. Goal (v) is more challenging;
see Sects. 6, 7. Early work on deductive systems of infinitary propositional for-
mulas [8,14] was restricted to classical logic. Infinitary intuitionistic logic was
studied by Nadel [12]. We are not aware of published work on extending interme-
diate systems, such as the logic of here-and-there, to infinitary formulas. Addi-
tional difficulties arise in connection with the fact that we allow uncountable
conjunctions and disjunctions, not covered by Nadel’s work.

The main reason why we are interested in stable models of infinitary propo-
sitional formulas is that they can be used to define the semantics of the input
language of the ASP grounder gringo. Consider, for instance, the aggregate
expression

#count{X:p(X)}==1.

Intuitively, it says that the cardinality of the set {X | p(X)} is 1. If there are
infinitely many possible values for X (for instance, if the program uses integers or
terms containing function symbols) then this meaning cannot be expressed using
a propositional formula. Aggregate expressions like this can be represented by
first-order formulas [9], but that method has significant limitations. For example,
it is not clear how to apply it to the expression

#count{X:p(X)}==Y.

Such expressions are included, however, in the subset of the input language of
gringo studied by Harrison et al. [5], who approached the problem of defining
the semantics of that language using infinitary propositional formulas. That
direction of research shows that the study of strong equivalence of infinitary
propositional formulas may be essential for answer set programming.

A preliminary version of this paper was presented at the 2014 Workshop on
Answer Set Programming and Other Computing Paradigms.
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2 Review: Infinitary Formulas and Their Stable Models

Let σ be a propositional signature, that is, a set of propositional atoms. For
every nonnegative integer r, (infinitary propositional) formulas (over σ)of rank
r are defined recursively, as follows:

– every atom from σ is a formula of rank 0,
– if H is a set of formulas, and r is the smallest nonnegative integer that is

greater than the ranks of all elements of H, then H∧ and H∨ are formulas of
rank r,

– if F and G are formulas, and r is the smallest nonnegative integer that is
greater than the ranks of F and G, then F → G is a formula of rank r.

We will write {F,G}∧ as F ∧ G, and {F,G}∨ as F ∨ G. The symbols � and ⊥
will be understood as abbreviations for ∅∧ and ∅∨ respectively; ¬F stands for
F → ⊥, and F ↔ G stands for (F → G) ∧ (G → F ). These conventions allow
us to view finite propositional formulas over σ as a special case of infinitary
formulas.

A set or family of formulas is bounded if the ranks of its members are bounded
from above. For any bounded family (Fα)α∈A of formulas, we denote the formula
{Fα : α ∈ A}∧ by

∧
α∈A Fα, and similarly for disjunctions.

Subsets of a signature σ will be also called interpretations of σ. The satisfac-
tion relation between an interpretation and a formula is defined recursively, as
follows:

– For every atom p from σ, I |= p if p ∈ I.
– I |= H∧ if for every formula F in H, I |= F .
– I |= H∨ if there is a formula F in H such that I |= F .
– I |= F → G if I 
 |= F or I |= G.

The reduct F I of a formula F w.r.t. an interpretation I is defined recursively,
as follows:

– For every atom p from σ, pI is p if p ∈ I, and ⊥ otherwise.
– (H∧)I = {GI | G ∈ H}∧.
– (H∨)I = {GI | G ∈ H}∨.
– (G → H)I is GI → HI if I |= G → H, and ⊥ otherwise.

An interpretation I is a stable model of a set H of formulas if it is minimal
w.r.t. set inclusion among the interpretations satisfying the reducts F I of all
formulas F from H.

3 Infinitary Logic of Here-and-There

An HT-interpretation of σ is an ordered pair 〈I, J〉 of interpretations of σ such
that I ⊆ J . Intuitively, such a pair describes “two worlds”: the atoms in I are
true “here” (“in the world H”), and the atoms in J are true “there” (“in the
world T”).
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The satisfaction relation between an HT-interpretation and a formula is
defined recursively, as follows:

– For every atom p from σ, 〈I, J〉 |= p if p ∈ I.
– 〈I, J〉 |= H∧ if for every formula F in H, 〈I, J〉 |= F .
– 〈I, J〉 |= H∨ if there is a formula F in H such that 〈I, J〉 |= F .
– 〈I, J〉 |= F → G if

(i) 〈I, J〉 
 |= F or 〈I, J〉 |= G, and
(ii) J |= F → G.

An HT-model of a set H of infinitary formulas is an HT-interpretation that
satisfies all formulas in H.

About a formula F we say that it is forced in the world H of an HT-
interpretation 〈I, J〉 if it is satisfied by 〈I, J〉; we will say that it is forced in
the world T if it is satisfied by J . The set of worlds in which F is forced will be
called the truth value of F with respect to 〈I, J〉. It is easy to check by induc-
tion on the rank that every formula that is forced in H is forced in T as well.
Consequently, the only possible truth values of a formula are ∅, {T}, and {H,T}.

4 Equilibrium Models

An HT-interpretation 〈I, J〉 is total if I = J . It is clear that a total HT-
interpretation 〈J, J〉 satisfies F iff J satisfies F .

An equilibrium model of a set H of infinitary formulas is a total HT-model
〈J, J〉 of H such that for every proper subset I of J , 〈I, J〉 is not an HT-model
of H.

The following proposition is similar to Theorem 1 from [2].

Theorem 1. An interpretation J is a stable model of a set H of infinitary
formulas iff 〈J, J〉 is an equilibrium model of H.

Lemma 1. For any infinitary formula F and any HT-interpretation 〈I, J〉,

I |= F J iff 〈I, J〉 |= F.

The lemma can be proved by strong induction on the rank of F .

Proof of Theorem 1. It follows from the lemma that a total HT-interpretation
〈J, J〉 is an equilibrium model of H iff

– J satisfies all formulas from H, and
– there is no proper subset I of J such that I satisfies the reducts F J of all

formulas F from H.

This condition expresses that J is a stable model of H.
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5 Strong Equivalence

About sets H1, H2 of infinitary formulas we say that they are strongly equivalent
to each other if, for every set H of infinitary formulas, the sets H1∪H and H2∪H
have the same stable models. About formulas F and G we say that they are
strongly equivalent if the singleton sets {F} and {G} are strongly equivalent.

A unary formula is an atom or a formula of the form p → q, where p and q
are atoms. The following theorem is similar to the main theorem from [10].

Theorem 2. For any sets H1, H2 of infinitary formulas, the following condi-
tions are equivalent:

(i) H1 is strongly equivalent to H2,
(ii) for every set H of unary formulas, sets H1 ∪ H and H2 ∪ H have the same

stable models;
(iii) sets H1 and H2 have the same HT-models.

Proof. Clearly, (i) implies (ii). To see that (iii) implies (i), observe that if sets
H1 and H2 have the same HT-models then H1 ∪ H and H2 ∪ H have the same
HT-models, and consequently have the same equilibrium models. It follows by
Theorem 1 that H1 ∪ H and H2 ∪ H have the same stable models.

It remains to check that (ii) implies (iii). Suppose 〈I, J〉 is an HT-model of H1

but not an HT-model of H2. We will show how to find a set H of unary formulas
such that 〈J, J〉 is an equilibrium model of one of the sets H1 ∪ H,H2 ∪ H but
not the other. It will follow that the interpretation J is a stable model of one
but not the other.

Case 1: 〈J, J〉 is not an HT-model of H2. Since 〈I, J〉 is an HT-model of H1, it
is easy to see that 〈J, J〉 must be an HT-model of H1 as well. Then we can take
H = J . Indeed, it is clear that 〈J, J〉 is an HT-model of H1 ∪ J . Furthermore,
for any I that is a proper subset of J , 〈I, J〉 cannot be an HT-model of H1 ∪ J ,
so that 〈J, J〉 is an equilibrium model of H1 ∪J . On the other hand, since 〈J, J〉
is not a HT-model of H2, it cannot be an HT-model of H2 ∪ J .

Case 2: 〈J, J〉 is an HT-model of H2. Let H be the set

I ∪ {p → q | p, q ∈ J \ I}.

Since 〈J, J〉 satisfies every formula in H, it is an HT-model of H2∪H. To see that
it is an equilibrium model, consider any HT-model 〈K,J〉 of H2 ∪H. Clearly, K
must contain I. But it cannot be equal to I, since 〈I, J〉 is not an HT-model of
H2. Thus I ⊂ K ⊂ J . Consider an atom p in K \ I and an atom q in J \ K. For
these atoms, p → q belongs to H. But 〈K,J〉 does not satisfy this implication,
contrary to the assumption that it is an HT-model of H2 ∪H. We may conclude
that 〈J, J〉 is an equilibrium model of H2 ∪ H. Finally, we will check that 〈J, J〉
is not an equilibrium model of H1 ∪ H. Consider the HT-model 〈I, J〉 of H1.
Clearly, it is an HT-model of I. Moreover, it satisfies each implication p → q
in H: 〈I, J〉 does not satisfy p because p 
∈ I, and J satisfies q because q ∈ J .
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We see that 〈I, J〉 satisfies all formulas in H, so that it is an HT-model of H1∪H.
Furthermore, I is different from J since 〈J, J〉 is an HT-model of H2 and 〈I, J〉
is not. Consequently, I is a proper subset of J , and we may conclude that 〈J, J〉
is not an equilibrium model of H1 ∪ H.

A part of any formula can be replaced with a strongly equivalent formula
without changing the set of stable models. For instance, it is easy to check that
the formulas p ∧ ¬p and ⊥ are strongly equivalent to each other; it follows that
the formulas

F ∧ (q → (p ∧ ¬p)) and F ∧ ¬q (3)

have the same stable models. Corollary 1 expresses a more general fact: several
parts (even infinitely many) can be simultaneously replaced by strongly equiv-
alent formulas. Its statement uses the following definitions [4]. Let σ and σ′ be
disjoint signatures. A substitution is a bounded family of formulas over σ with
index set σ′. For any substitution φ and any formula F over the signature σ∪σ′,
φF stands for the formula over σ formed as follows:

– If F ∈ σ then φF = F .
– If F ∈ σ′ then φF = φF .
– If F is H∧ then φF = {φG | G ∈ H}∧.
– If F is H∨ then φF = {φG | G ∈ H}∨.
– If F is G → H then φF = φG → φH.

For instance, if σ′ = {r}, φr = p ∧ ¬p, and ψr = ⊥, then φ(F ∧ (q → r)) and
ψ(F ∧ (q → r)) are the formulas (3).

Corollary 1. Let φ and ψ be substitutions such that for all p ∈ σ′, φp is strongly
equivalent to ψp. Then for any formula F , φF is strongly equivalent to ψF , so
that φF and ψF have the same stable models.

Proof. By Theorem 2, the assertion of the corollary can be stated as follows: if
for all p ∈ σ′, φp and ψp are satisfied by the same HT-interpretations, then for
any formula F , φF and ψF are satisfied by the same HT-interpretations. This
is easy to check by induction on the rank of F .

6 An Axiomatization of the Infinitary Logic
of Here-and-There

We present an axiomatization HT∞ of the infinitary logic of here-and-there.
The derivable objects in HT∞ are (infinitary) sequents—expressions of the form
Γ ⇒ F , where F is an infinitary formula, and Γ is a finite set of infinitary
formulas (“F under assumptions Γ”). To simplify notation, we will write Γ as
a list. We will identify a sequent of the form ⇒ F with the formula F .
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The inference rules are the introduction and elimination rules for the propo-
sitional connectives

(∧I) Γ ⇒ H for all H ∈ H
Γ ⇒ H∧ (∧E) Γ ⇒ H∧

Γ ⇒ H (H ∈ H)

(∨I) Γ ⇒ H
Γ ⇒ H∨ (H ∈ H) (∨E) Γ ⇒ H∨ Δ,H ⇒ F for all H ∈ H

Γ,Δ ⇒ F

(→I) Γ, F ⇒ G
Γ ⇒ F → G (→E) Γ ⇒ F Δ ⇒ F → G

Γ,Δ ⇒ G ,

where H is a bounded set of formulas, and the weakening rule

(W ) Γ ⇒ F
Γ,Δ ⇒ F .

The set of axioms in HT∞ is a subset of the set of axioms introduced in
the extended system of natural deduction from [4]. HT∞ includes three axiom
schemas:

F ⇒ F,

F ∨ (F → G) ∨ ¬G, (4)

and ∧

α∈A

∨

F∈Hα

F →
∨

(Fα)α∈A

∧

α∈A

Fα (5)

for every non-empty family (Hα)α∈A of sets of formulas such that its union
is bounded; the disjunction in the consequent of (5) extends over all elements
(Fα)α∈A of the Cartesian product of the family (Hα)α∈A. Axiom schema (4) was
mentioned in the introduction in connection with the problem of axiomatizing
the logic of here-and-there in the finite case, but now F and G can be infinitary
formulas. Axiom schema (5) generalizes (one direction of) the distributivity of
conjunction over disjunction to infinitary formulas: if A = {1, 2}, H1 = {F1, G1},
and H2 = {F2, G2}, then (5) turns into

(F1 ∨ G1) ∧ (F2 ∨ G2) → (F1 ∧ F2) ∨ (F1 ∧ G2) ∨ (G1 ∧ F2) ∨ (G1 ∧ G2).

The set of theorems of HT∞ is the smallest set of sequents that includes the
axioms of the system and is closed under the application of its inference rules.
We say that formulas F and G are equivalent in HT∞ if F ↔ G is a theorem
of HT∞.

The following theorem expresses the soundness and completeness of HT∞.

Theorem 3. An infinitary formula F is a theorem of HT∞ iff it is satisfied by
all HT-interpretations.

The proof of soundness is straightforward. The proof of completeness given
in the next section is analogous to the proof of completeness for classical propo-
sitional logic from [7].

From Theorems 2 and 3 we conclude:

Corollary 2. Bounded sets H1, H2 of infinitary formulas are strongly equiva-
lent iff H∧

1 is equivalent to H∧
2 in HT∞.
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7 Proof of Completeness

In the proof of completeness, we use the following construction, due to Cabalar
and Ferraris [1, Section 5]. Let 〈I, J〉 be an HT-interpretation. We define the set
MIJ to be

I ∪ {¬¬p | p ∈ J} ∪ {¬p | p ∈ σ \ J} ∪ {p → q | p, q ∈ J \ I}

(recall that σ is the set of all atoms). By vIJ(F ) we denote the truth value of F
with respect to 〈I, J〉 (see Sect. 3). We will omit the subscripts I, J in MIJ and
vIJ(F ) when it is clear which HT-interpretation we refer to.

Lemma 2. For any infinitary formula F and HT-interpretation 〈I, J〉,
(i) if v(F ) = ∅ then M∧ ⇒ ¬F is a theorem of HT∞;
(ii) if v(F ) = {T} then for every atom q in J \ I, M∧ ⇒ F ↔ q is a theorem

of HT∞;
(iii) if v(F ) = {H,T} then M∧ ⇒ F is a theorem of HT∞.

Proof. We will prove the claim by strong induction on the rank of F . We assume
the claim holds for all formulas with rank less than n and show that it holds for
a formula F of rank n. We consider cases corresponding to the different possible
forms of F and truth values v(F ). Note that if v(F ) is {T} then the set J \ I is
non-empty. Indeed, if I = J then the truth value of any formula is either ∅ or
{H,T}.

Case 1: F is an atom.
Case 1.1: v(F ) = ∅. Then F ∈ σ \ J , and ¬F ∈ M .
Case 1.2: v(F ) = {T}. Then F ∈ J \ I, and for every atom q in J \ I, the
implications F → q and q → F are in M .
Case 1.3: v(F ) = {H,T}. Then F ∈ M .

Case 2: F is of the form H∧. The induction hypothesis is then applicable to all
formulas in H.
Case 2.1: v(F ) = ∅. Then there exists a formula G in H such that v(G) is ∅. By
the induction hypothesis, M∧ ⇒ ¬G is a theorem of HT∞. From this we can
derive M∧ ⇒ ¬(H∧).
Case 2.2: v(F ) = {T}. Let H1 be the set of all formulas in H with truth value
{T}, and H2 be the set of all formulas in H with truth value {H,T}. It is clear
that H1 ∪ H2 = H and that H1 is non-empty. Consider an arbitrary element q
of J \ I. By the induction hypothesis M∧ ⇒ G ↔ q is a theorem for every G
in H1, and M∧ ⇒ G is a theorem for every G in H2. From these we can derive
M∧ ⇒ H∧

1 ↔ q and M∧ ⇒ H∧
2 . Then we can derive M∧ ⇒ H∧ ↔ q.

Case 2.3: v(F ) = {H,T}. Then for each element G in H, v(G) = {H,T}, and
by the induction hypothesis M∧ ⇒ G is a theorem. From these sequents we can
derive M∧ ⇒ H∧.

Case 3: F is of the form H∨. The induction hypothesis is then applicable to all
formulas in H.
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Case 3.1: v(F ) = ∅. Then for each element G in H, v(G) = ∅, and by the
induction hypothesis M∧ ⇒ ¬G is a theorem. From these sequents we can
derive M∧ ⇒ ¬(H∨).
Case 3.2: v(F ) = {T}. Let H1 be the set of all formulas in H with truth value
{T}, and H2 be the set of all formulas in H with truth value ∅. It is clear that
H1 ∪ H2 = H and that H1 is non-empty. Consider an arbitrary element q of
J \ I. By the induction hypothesis M∧ ⇒ G ↔ q is a theorem for every G in
H1, and M∧ ⇒ ¬G is a theorem for every G in H2. From these we can derive
M∧ ⇒ H∨

1 ↔ q and M∧ ⇒ ¬(H∨
2 ). Then we can derive M∧ ⇒ H∨ ↔ q.

Case 3.3: v(F ) = {H,T}. Then there exists a formula G in H such that v(G) is
{H,T}. By the induction hypothesis, M∧ ⇒ G is a theorem. From this we can
derive M∧ ⇒ H∨.

Case 4: F is of the form F1 → F2. The induction hypothesis is then applicable
to F1 and F2.
Case 4.1: v(F ) = ∅. Then v(F1) is non-empty and v(F2) is empty.
Case 4.1.1: v(F1) = {T}. By the induction hypothesis M∧ ⇒ ¬F2 is a theorem,
as is M∧ ⇒ F1 ↔ q for any q in J \ I. Consider an atom q in J \ I. By the
construction of M , we know that ¬¬q is an element of M . From the sequents
M∧ ⇒ F1 ↔ q, M∧ ⇒ ¬F2, and M∧ ⇒ ¬¬q, we can derive M∧ ⇒ ¬(F1 → F2).
Case 4.1.2: v(F1) = {H,T}. By the induction hypothesis, both M∧ ⇒ F1 and
M∧ ⇒ ¬F2 are theorems. From these sequents we can derive M∧ ⇒ ¬(F1 → F2).
Case 4.2: v(F ) = {T}. Then v(F1) = {H,T} and v(F2) = {T}. By the induction
hypothesis M∧ ⇒ F2 ↔ q is a theorem for any q ∈ J \ I, and M∧ ⇒ F1 is a
theorem as well. From these two sequents we can derive M∧ ⇒ (F1 → F2) ↔ q.
Case 4.3: v(F ) = {H,T}.
Case 4.3.1: v(F1) = ∅. Then by the induction hypothesis M∧ ⇒ ¬F1 is a theo-
rem. From this we can derive M∧ ⇒ F1 → F2.
Case 4.3.2: v(F2) = {H,T}. Then by the induction hypothesis M∧ ⇒ F2 is a
theorem. From this we can derive M∧ ⇒ F1 → F2.
Case 4.3.3: v(F1) 
= ∅ and v(F2) 
= {H,T}. Since v(F ) is {H,T}, v(F1) is
different from {H,T} and therefore must be equal to {T}. It follows that v(F2)
is different from ∅, and therefore must be {T} also. Consider an element q in
J \ I. By the induction hypothesis both M∧ ⇒ F1 ↔ q and M∧ ⇒ F2 ↔ q are
theorems. From these two sequents we can derive M∧ ⇒ F1 → F2.

Note that in the proof of the lemma we did not refer to axiom schemas
(4) and (5); the assertion of the lemma would hold even if those axioms were
removed from HT∞.

Lemma 3. The disjunction of the formulas M∧
IJ over all HT-interpretations

〈I, J〉 is a theorem of HT∞.

Proof. Let Q stand for the set of disjunctions

p ∨ (p → q) ∨ ¬q, (6)
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¬p ∨ ¬¬p (7)

for all p, q from σ. Let (HD)D∈Q be the following family of sets:

HD = {p, p → q,¬q} if D = p ∨ (p → q) ∨ ¬q;
HD = {¬p,¬¬p} if D = ¬p ∨ ¬¬p.

Then the formula ∧

D∈Q

∨

S∈HD

S →
∨

(SD)D∈Q

∧

D∈Q

SD,

(where the disjunction in the consequent extends over all elements (SD)D∈Q

of the Cartesian product of the family (HD)D∈Q) is an instance of axiom
schema (5). Since the antecedent of this implication is the conjunction of all
formulas in Q, it is a theorem of HT∞. It follows that the consequent is a
theorem as well. To complete the proof it is sufficient to show that for every
disjunctive term ∧

D∈Q

SD (8)

of the consequent there exists an HT-interpretation 〈I, J〉 such that the sequent
∧

D∈Q

SD ⇒ M∧
IJ (9)

is a theorem.

Consider one of the conjunctions (8), and let C be set of its conjunctive
terms. The elements of C are formulas of the forms

p, ¬p, ¬¬p, p → q.

If C contains both a formula and its negation then (9) is a theorem for every
〈I, J〉. Otherwise, let I denote the set of all atoms in C, and J denote the set of
all atoms p such that ¬¬p is in C. Let us check that I ⊆ J . Assume p ∈ I so that
p ∈ C. Since C is consistent, it does not contain ¬p, and since it contains a term
from each disjunction (7), it contains ¬¬p. So 〈I, J〉 is an HT-interpretation.

We will show that every formula from MIJ belongs to C. By the choice of I,
I ⊆ C. By the choice of J , {¬¬p | p ∈ J} ⊆ C. Consequently {¬p | p ∈ σ\J} ⊆ C,
because C contains one term from each disjunction (7). Finally, we need to check
that {p → q | p, q ∈ J \ I} ⊆ C. Consider a pair of atoms p, q that occur in J
but not in I. By the choice of I, p is not in C, and by the choice of J , ¬q is not
in C. Since C contains one term from each of the disjunctions (6) and contains
neither p nor ¬q, C must contain p → q.

Proof of Completeness. Let F be an infinitary formula over signature σ that is
satisfied by all HT-interpretations of σ. By Lemma 2(iii), MIJ ⇒ F is a theorem
of HT∞ for all HT-interpretations 〈I, J〉. By Lemma 3, it follows that F is a
theorem also.

It is clear from the proof that HT∞ will remain complete if we require that
formulas F and G in axiom schema (4) must be literals, and that the sets Hi in
axiom schema (5) must be finite.
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8 Example: Infinitary De Morgan’s Law

As observed in Sect. 6, the set of axioms in HT∞ is a subset of the set of axioms
introduced in the extended system of natural deduction from [4]. From the results
presented in this note it is clear that the other axioms in the extended system
are redundant. The infinitary De Morgan’s law,

¬
∧

F∈H
F →

∨

F∈H
¬F, (10)

is one of these redundant axioms. In this section, we show directly, without a
reference to the general completeness theorem, how to prove (10) in HT∞.

Let Q stand for the set of disjunctions

F ∨ (F → G) ∨ ¬G, (11)

for all formulas F,G from H. Let (HD)D∈Q be the following family of sets:

HD = {F, F → G,¬G}.

Then the formula ∧

D∈Q

∨

S∈HD

S →
∨

(SD)D∈Q

∧

D∈Q

SD, (12)

(where the disjunction in the consequent extends over all elements (SD)D∈Q

of the Cartesian product of the family (HD)D∈Q) is an instance of axiom
schema (5). Since the antecedent of this implication is the conjunction of all
formulas in Q, it is a theorem of HT∞. It follows that the consequent is a
theorem as well. To complete the proof it is sufficient to show that from the
antecedent of (10) and any disjunctive term

∧

D∈Q

SD (13)

of the consequent of (12), we can derive the consequent of (10). Consider one of
the conjunctions (13), and let C be set of its conjunctive terms. The elements of
C are formulas of the forms

F, F → G, ¬G.

If C contains ¬F for some formula F then the consequent of (10) follows imme-
diately. Otherwise, we will show that assuming C∧ and any element F of H we
can derive ∧

F∈H
F, (14)

contradicting the antecedent of (10), and allowing us to derive ¬F from C∧

and the antecedent of (10). If C contains every formula F in H then (14) is
immediate. Otherwise, there is some G from H which is not in C. Assume G.
Since G is not in C and C does not contain the negation of any formula, we may
conclude that C contains G → F for all formulas F from H. It follows that from
G and C∧ we can derive (14).
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9 Conclusion

Under the stable model semantics, two sets of propositional formulas are strongly
equivalent if and only if they are equivalent in the logic of here-and-there. This
theorem was originally proved using equilibrium logic in [10]. In this paper, we
extended equilibrium logic to infinitary formulas; we defined an infinitary coun-
terpart to the logic of here-and-there and introduced an axiomatization, HT∞,
of that system; finally, we showed that bounded sets of infinitary propositional
formulas are strongly equivalent if and only if they are equivalent in HT∞.

Acknowledgements. Thanks to Pedro Cabalar and Yuliya Lierler, and to the anony-
mous referees for helpful comments. The first two authors were partially supported by
the National Science Foundation under Grant IIS-1422455.
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Action Languages: A Translation from MAD
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Abstract. Modular action languages MAD and ALM share the goal of
providing means for the reuse of knowledge in order to facilitate the cre-
ation of libraries of knowledge. They differ substantially in their underly-
ing assumptions (Causality Principle for MAD, Inertia Axiom for ALM)
and in the constructs that enable the reuse of knowledge, especially the
mechanisms used to declare actions in terms of already described actions.
In this paper, we investigate the relationship between the two action lan-
guages by providing a translation from MAD into ALM. We specify a
condition that ensures that, for a specific class of MAD action descrip-
tions, our translation produces a transition diagram isomorphic to the
original one, modulo the common vocabulary.

1 Introduction

This paper investigates the relationship between two action languages, MAD
and ALM, by providing a translation from MAD into ALM. Action languages
[6] are high-level declarative languages dedicated to the concise and elegant
representation of dynamic systems. By a dynamic system we mean a system
that can be represented by a transition diagram whose nodes correspond to
possible states of the system and arcs are labeled by actions.

Currently, several action languages exist (e.g., [6,8,9,12,14]), which address
significant problems from the field of reasoning about actions and change.
A next challenge seems to be the creation of libraries of commonsense knowledge
and large knowledge bases about dynamic domains, an effort that can contribute
greatly to automating reasoning tasks such as natural language understanding.
Traditional action languages do not provide the means for addressing this issue,
given that they do not address the structuring and reuse of knowledge. Action
languages MAD [2,13] and ALM [4,10,11] were designed to target this problem.

Both of these languages use modularity to facilitate organization and reuse,
where a module is a coherent and reusable piece of knowledge on a specific
theme. However, the actual reuse of knowledge is achieved using different means.
In ALM (Action Language with Modules), objects of the domain, including
actions, are grouped into sorts organized in a sort hierarchy. This is defined
using the specialization construct, whose semantics specifies that sorts inherit
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 411–424, 2015.
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attributes (i.e., intrinsic properties) and behavior (i.e., axioms) from supersorts.
This allows describing, for example, action carry in terms of move, a common
practice in natural language where carry is defined as to move while holding.

In MAD (Modular Action Description), the concept of a sort also exists,
but it does not apply to actions – there is a built-in sort action, but it has
no further subsorts. The reuse of knowledge is achieved via import statements
possibly containing renaming clauses, a construct similar to that of bridge rules
[2] in action language C+ [8]. Sorts, properties of the domain, and actions can be
renamed. For instance, an action walk can be defined by importing the module
containing the declaration of action move and renaming move as walk.

Given the similar goals of ALM and MAD, it is important to study the
relationship between the two languages and especially between their mechanisms
for the reuse of knowledge. This will allow knowledge engineers to incorporate
knowledge modules written in one language when creating system descriptions
in the other. Thus, our work has intentions similar to, and relies on, the work of
Gelfond and Lifschitz on the common core of B and C [7].

In this paper, we approach this topic by proposing a translation from MAD
into ALM. We review the syntax and semantics of the two languages. We illus-
trate our translation via examples first and then introduce it formally. Finally,
we define a class of MAD action descriptions for which our translation produces
transition diagrams isomorphic to the original, modulo the common signature.

2 Language ALM

A dynamic system is represented in ALM by a system description that consists
of two parts: a general theory (i.e., a collection of modules with a common theme
organized in a hierarchy) and a structure (i.e., an interpretation of some of the
symbols in the theory). A module is a collection of declarations of sorts and
functions together with a set of axioms. The purpose of a module is to allow the
organization of knowledge into smaller reusable pieces of code. Modules serve a
similar role to that of procedures in procedural languages and can be organized
in a hierarchy (a DAG) such that, if module M1 depends on module M , then
the declarations and axioms of M are implicitly part of M1. We briefly illustrate
the syntax of ALM via some examples. Boldface symbols denote keywords of the
language; identifiers starting with a lowercase letter denote constant symbols;
and identifiers starting with an uppercase letter denote variables.

Sorts (i.e., types, classes) are organized in a hierarchy with root universe. The
hierarchy contains pre-defined sorts actions and booleans. The sort hierarchy is
specified in ALM via the specialization construct “::”. For instance, we say that
points and things are subsorts of universe and agents is a subsort of things by:

points, things :: universe
agents :: things

We use the same construct to define action classes as special cases of other action
classes. For instance, the statements:
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move :: actions
attributes

actor : agents
origin, dest : points

carry :: move
attributes

carried thing : carriables

define action move as having three attributes (i.e., three intrinsic properties) –
actor, origin, and dest – that are (possibly partial) functions mapping elements
of move into elements of sorts agents, points, and points respectively; carry is
a special case of move, meaning that it inherits the attributes of move and has
an additional attribute, carried thing, mapping elements of carry into a new
sort carriables assumed to be declared in the same module. The axioms written
for move will apply to actions of sort carry as well, as all instances of carry are
also instances of move. For example, in the axiom (dynamic causal law):

occurs(X) causes loc in(A) = D if instance(X,move),
actor(X) = A, dest(X) = D.

the variable X will be replaced by objects defined in the structure that belong
to the interpretation of sort move, which includes instances of carry.

Properties of objects of a dynamic system are represented using functions.
Functions are partitioned in ALM into fluents (those that can be changed by
actions) and statics (those that cannot); each of these two sets are further divided
into basic and defined, where defined functions can be viewed just as a means to
facilitate knowledge encoding. Basic fluents are subject to the law of inertia.

The second part of a system description is its structure, which represents
information about a specific domain: instances of sorts (including actions) and
values of statics. For example, a domain that is about John and Bob, and their
movements between two points, London and Paris, may be described as follows:

john, bob in agents
london, paris in points

go(A,P ) in move
actor = A
dest = P

Action go(A,P ) is an instance schema that stands for all actions of this form
obtained by replacing A and P with instances of agents and points, respectively.

The semantics of ALM is given by defining the states and transitions of
the transition diagram defined by a system description. For that purpose, we
encode statements of the system description into a logic program of ASP{f} [1],
an extension of Answer Set Prolog [5] by non-Herbrand functions. The states
and transitions of the corresponding transition diagram are determined by parts
of the answer sets of this logic program. As an example, the dynamic causal law
about actions of the type move shown above is encoded as the ASP{f} rule:
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loc in(A, I + 1) = D ← instance(X,move), occurs(X, I),
actor(X) = A, dest(X) = D.

The structure is encoded using statements like:

is a(john, agents).
is a(go(john, london),move). actor(go(john, london)) = john. . . . .

where the function instance is pre-defined as the transitive closure of is a.

3 Language MAD

Dynamic systems are described in MAD by action descriptions, which consist of
declarations of sorts and their subsort relations, followed by one or more modules.
A module contains the declarations of objects, actions, fluents (which correspond
to functions of ALM), and variables; import statements; and axioms. Actions
are represented using terms and, while there is a built-in sort action, special case
actions are not sorts. Import statements allow the renaming of sorts, fluents, and
actions. Conventionally, identifiers used for variables start with a lowercase letter
while those for constants start with an uppercase letter, the opposite of ALM.

We illustrate the syntax of MAD on an action description, MBP , extracted
from the encoding of the Monkey and Bananas Problem in [3]. We only represent
the monkey’s action of walking to a desired location. MBP includes two library
modules, ASSIGN and MOV E, and starts with the section declaring sorts.

1 sorts Domain; Range; Thing; Place;

Module ASSIGN shown next defines an action Assign with two parameters
ranging over sorts Domain and Range. The action is exogenous (i.e., it does not
need a cause to occur) and may change the fluent V alue that maps elements of
sort Domain into elements of Range. Line 7 says that the law of inertia, not
part of the semantics of MAD by default, applies to this fluent. Note that in
MAD the sort of a variable is explicitly given, whereas in ALM the sort of a
variable is inferred from the literals in which it appears, for each axiom.

2 module ASSIGN ;
3 actions Assign(Domain,Range);
4 fluents V alue(Domain) : simple(Range);
5 variables x : Domain; y : Range;
6 axioms
7 inertial V alue(x);
8 exogenous Assign(x, y);
9 Assign(x, y) causes V alue(x) = y;

Next is the module MOV E, containing a new action, fluent, and axiom,
and an import statement for module ASSIGN with several renaming clauses.
These clauses should be seen as directives indicating that, when the module is
imported, occurrences of sort Domain are to be replaced by Thing, and Range
by Place; fluent V alue is equivalent to Location and action Assign to Move.
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10 module MOV E;
11 actions Move(Thing, P lace);
12 fluents Location(Thing) : simple(Place);
13 variables x : Thing; y : Place;
14 import ASSIGN ;
15 Domain is Thing;
16 Range is Place;
17 V alue(x) is Location(x);
18 Assign(x, p) is Move(x, p);
19 axioms
20 nonexecutable Move(x, p) if Location(x) = p;

A final module, MB, defines objects Monkey of sort Thing and P1, P2 of
sort Place, and declares a new action, Walk. Module MOV E is imported here
to say that Walk(p) is equivalent to Monkey moving to place p.

21 module MB;
22 objects Monkey : Thing; P1, P2 : Place;
23 actions Walk(Place);
24 variables p : Place;
25 import MOV E;
26 Move(Monkey, p) is Walk(p);

The semantics of a MAD action description is given by first flattening it,
which means eliminating import statements and producing a uni-module action
description. Afterward, the semantics is given via a translation into C+. In the
flattening process, names of renamed sorts are replaced by their new names; vari-
ables, renamed fluents and actions receive a prefix of the type “In.” (where n is
the smallest positive natural number not yet used); and axioms are added to cap-
ture the renaming of fluents and actions. For instance, the flat version of module
MB will contain actions I2.I1.Assign(Thing, P lace), I2.Move(Thing, P lace),
and Walk(Place); inertial fluents I1.V alue and Location, mapping Things into
Places; and the following axioms:

I2.I1.Assign(I2.I1.x, I2.I1.y) causes I1.V alue(I2.I1.x) = I2.I1.y;
I1.V alue(I2.x) ≡ Location(I2.x);
I2.I1.Assign(I2.x, I2.p) ≡ I2.Move(I2.x, I2.p);
I2.Move(Monkey, p) ≡ Walk(p);

4 Informal Translation

We illustrate our translation from MAD into ALM on the action description
MBP from Sect. 3. An action description of MAD corresponds to a system
description of ALM. We call mbp1 the system description resulting from MBP
and use the same name for its theory:
1 Recall the difference in the capitalization of identifiers between ALM and MAD.
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system description mbp
theory mbp

In ALM, sorts are always declared within the module in which they are used.
Thus, we ignore for now the sort declarations in lines 1–2 of MBP and skip to
the translation of the first module, ASSIGN . Our ALM theory, mbp, will now
contain a new module, assign, that starts with the declarations of those sorts
that are referenced in the MAD module. The MAD action description contains
no information about subsort relationships, but in ALM all user-defined sorts
are expected to be subsorts of the pre-defined sort universe:

module assign
sort declarations

domain, range :: universe

We continue with action Assign(Domain,Range). In ALM, actions are not
described using terms like in MAD, but by using action classes (i.e., subsorts of
the pre-defined sort actions) and instances of action classes; attributes are used
to describe the intrinsic properties of action classes. For that reason, we add two
attributes to the ALM action class assign, one for each parameter of the term.

assign : actions
attributes

attr1 assign : domain
attr2 assign : range

Next, we focus on the inertial fluent V alue(Domain) : simple(Range).
Simple inertial fluents of MAD correspond to basic fluents of ALM; rigid fluents
to basic statics, and statically determined fluents to defined fluents. Therefore,
we declare V alue as a basic fluent in ALM:

function declarations
fluents basic total value : domain → range

Finally, we translate the axioms of module ASSIGN . The axiom on line 7 is
covered by the semantics of basic fluents in ALM. The axiom on line 8 does not
need to be translated, as all actions are exogenous in ALM (they do not need
a cause in order to be executed). We translate the axiom on line 9 as follows:

axioms
occurs(A) causes value(X) = Y if instance(A, assign),

attr1 assign(A) = X,
attr2 assign(A) = Y.

Note that, in ALM, we distinguish between the occurrence of an action
and the action’s name by using the expression occurs(a) in the former case;
MAD does not make this distinction – action terms are used in both cases. As
we translated parameters of a MAD action via attributes, we needed to match
variables X and Y in value(X) = Y with the correct attributes of the action,
attr1 assign and attr2 assign respectively. This concludes the translation of
module ASSIGN .



On the Relationship Between Two Modular Action Languages 417

To translate module MOV E, we begin by addressing its import statement.
In ALM, we say that module move depends on module assign, i.e., all the
declarations and axioms from the latter are implicitly part of the former.

module move
depends on assign

The MAD import statement says that sorts Domain and Thing are syn-
onyms; also Range and Place. There is no direct translation for this in ALM.
The ALM feature that could mimic synonymy is the specialization construct
for describing subsort relations. We cannot declare Domain as a special case of
Thing and vice-versa, as the sort hierarchy would no longer be a DAG. Thus,
we only declare Thing as a subsort of Domain (similarly for Place and Range),
which will result in all axioms defined on instances of Domain to be applicable
to Things as well, including the axiom about the direct effect of action assign.

sort declarations
thing :: domain
place :: range

Action Move is defined as equivalent to action Assign in the MAD import
statement, with the goal to reuse the axioms of Assign for Move. The same goal
is achieved in ALM by declaring move as a special case of action assign:

move :: assign

Actions of sort move will inherit the attributes of the supersort assign. However,
the sorts of these attributes do not match exactly the sorts of the MAD action
Move(Thing, P lace); in our translation, they are supersorts of the corresponding
sorts thing and place. Rather than restricting the range of attributes to the
appropriate sorts via axioms, which hides details from the declaration of move,
we add two new attributes to move, as follows:

attributes
attr1 move : thing
attr2 move : place

and add two axioms to the appropriate section of the move module to connect
the new attributes to the attributes inherited from assign:

attr1 assign(A) = X if instance(A,move), attr1 move(A) = X.
attr2 assign(A) = X if instance(A,move), attr2 move(A) = X.

This allows axioms for action assign to apply as expected to instances of move.
Fluent Location is translated next, similarly to V alue:

function declarations
fluents basic total location : thing → place

In the import statement, Location is declared as equivalent to V alue from mod-
ule ASSIGN . MAD fluent renaming clauses cannot be translated using the
specialization construct of ALM, which only applies to sorts. Instead, we add
axioms to say that fluents location and value must have the same values in every
state of the transition diagram, and then translate the axiom on line 20:
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axioms
location(X1) = X2 if value(X1) = X2.
value(X1) = X2 if location(X1) = X2.

impossible occurs(A) if instance(A,move),
attr1 move(A) = X, attr2 move(A) = P,
location(X) = P.

Finally, we translate module MB. As it contains object constants that do not
appear in any axiom, we translate it as the structure of our system description,
called mbp, in which the objects are defined as instances of the appropriate sorts:

structure mbp
instances

monkey in thing
p1, p2 in place

Action Walk and its definition as equivalent to Move(Monkey, p) in the
action renaming clause of the import statement for module MOV E are trans-
lated by defining an instance walk(P ) of action class move with attribute
attr1 move mapped into monkey and attr2 move into variable P ranging over
places.

walk(P ) in move
attr1 move = monkey
attr2 move = P

This concludes the translation of action description MBP .
The translation does not cover a couple of situations that we describe next.

We propose changes to the translation to accommodate these issues.

Issue 1: Imagine that module MB also contained an object Box of sort Thing
and an action PushBox(Place) defined in terms of action Move [3] as:

import MOV E;
Move(Monkey, p) is PushBox(p);

import MOV E;
Move(Box, p) is PushBox(p);

According to our solution, pushbox (the translation of PushBox) belongs to the
structure; both the monkey and the box should be values of its attr1 move, which
is impossible as attributes are functions. To remedy this problem, we expand
the declaration of attribute attr1 move by turning it into a boolean function
attr1 move : place → booleans and we expand literals in axioms accordingly.
The attribute definitions for pushbox will now contain attr1 move(monkey) =
true and attr1 move(box) = true. Similarly for other attributes.

Issue 2: Assume that module MB contained an additional sort Supporter that
is a supersort of Thing; a new fluent Support(Thing) : simple(Supporter); and a
new action Mount(Thing, Supporter). Moreover, imagine that the module MB
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imported module ASSIGN and defined fluent Support as equivalent to V alue
and action Mount as equivalent to Assign (see [3]) as follows:

import ASSIGN ;
Domain is Thing; Range is Supporter;
V alue(t) is Support(t); Assign(t, s) is Mount(t, s);

where variable t ranges over Things and s over Supporters. Given our transla-
tion, the ALM system description would contain axioms

location(X1) = X2 if value(X1) = X2.
value(X1) = X2 if location(X1) = X2.
support(X1) = X2 if value(X1) = X2.
value(X1) = X2 if support(X1) = X2.

where variable X1 ranges over things; X2 ranges over places in the first two
axioms and over supporters in the last two. This leads to inconsistency as value
is a function but it may have two conflicting values for the same thing, one
representing the thing’s location, and the other one its support.

To solve the problem, in our ALM translation we replace every renamed
function f : s1 ×· · ·×sn → sn+1 by the expanded boolean function f : s1 ×· · ·×
sn×sn+1 → booleans and change literals in axioms accordingly. In our example,
function value would be expanded, but not location nor support as they do not
appear on the left-hand side of renaming clauses.

If the interpretations of sorts place and supporter are disjoint, this transfor-
mation can be seen as partitioning the domain of function value into two: for
pairs of things and places it has the same meaning as location and its value may
be affected by occurrences of action move; for pairs of things and supporters it
has the same meaning as support and its value may be affected by occurrences of
action mount. This is equivalent to what is achieved in MAD by adding prefixes
of the form “In.” when flattening modules. If sorts place and supporter do not
have disjoint interpretations, the occurrence of a move action may unintention-
ally change the value of fluent support.

5 Formal Translation

We limit ourselves to action descriptions of MAD in which:

– Each action is exogenous and declared explicitly in a single module.
– Each simple fluent is inertial and is defined in a single module, in terms of at

most one fluent. Each statically determined fluent is boolean.
– Axioms do not contain object constants and are of the type “a causes

l if cond;” “l if cond;” or “nonexecutable a if cond” (where a is an action
term, l is a fluent atom, and cond is a collection of fluent literals).

– Renaming clauses do not contain “case” clauses.
– Terms on the two sides of “is” in a renaming clause contain the same variables;

fluent terms have the same arity and do not contain object constants.
– Fluents are either renamed with every import of their module, or not at all.
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– An action may appear in axioms only if none of the renaming clauses in which
it appears on the right-hand side of “is” contains object constants.

– Variables appearing on the right-hand side of “is” in a fluent or action renam-
ing clause range over the whole sort of the corresponding parameter.

Most of these limitations are not serious and are meant to simplify presentation.
We introduce some notation for syntactic transformations: α(x) is the string

obtained by converting x to uppercase if x is a variable, and to lowercase other-
wise (e.g., α(p) =def P ; α(V alue) =def value; α(MB) =def mb). If x is a string
and n is a number, γ(x, n) is the string obtained by concatenating “attr”, “n”,
“ ”, and α(x) (e.g., γ(Move, 1) =def attr1 move).

Let AD be an action description of MAD consisting of modules M1, . . . , Mn.
The translation of AD into an ALM system description α(AD) is defined as:

Step 1: Create the system description α(AD) with a theory and a structure with
the same name. Create section instances for the structure. For each module Mk

of AD, where 1 ≤ k ≤ n, add to α(AD) a module called α(Mk) with sections
sort declarations, function declarations, and axioms.

Step 2: Translate the sorts and inclusions sections of AD: For every sort s,
every inclusion statement of the type s << s1 and every module Mk in which s
is used, add to the sort declaration section of module α(Mk) the statement

α(s) :: α(s1).

If there are no inclusion statements of this type, add the statement

α(s) :: universe.

Step 3: For every module Mk, translate its various parts:

(a) Objects. For every object declaration o : s, add to the instances part of the
structure a statement

α(o) in α(s)

(b) Actions. The translation of an action declaration a(s1, . . . , sn) belongs
to the theory of α(AD) if there are axioms about this action or the action
appears on the right-hand side of a renaming clause that does not contain object
constants (e.g., Assign, Move in MBP ). Otherwise, (given the restrictions we
placed on actions) the translation belongs to the structure (e.g., PushBox in
MBP ).

Case 1: The translation belongs to the theory.

If a is not defined as a special case of some other action, then add to sort
declarations of module α(Mk):

α(a) :: actions
attributes

γ(a, 1) : α(s1) → booleans
. . .
γ(a, n) : α(sn) → booleans



On the Relationship Between Two Modular Action Languages 421

If a is defined in terms of action b(z1, . . . , zm) via a renaming clause of the form
b(y1, . . . , ym) is a(x1, . . . , xn), then replace the supersort actions by α(b) in the
action declaration above. Also, for every xi = yj in the action renaming clause,
where 1 ≤ i ≤ n and 1 ≤ j ≤ m, add the following axioms to module α(Mk):

γ(b, j)(A,X) if instance(A,α(a)), γ(a, i)(A,X).

Case 2: The translation belongs to the structure.

If a does not appear on the right-hand side of any action renaming clause, add
to the structure of α(AD) the instance definition (where β(sk) is the string
obtained by appending the index k to the string sk, for 1 ≤ k ≤ n):

α(a)( β(s1), . . . , β(sn) ) in actions
γ(a, 1) ( β(s1) ) = true
. . .
γ(a, n) ( β(sn) ) = true

If a appears on the right-hand side of an action renaming clause of the form
b(y1, . . . , ym) is a(x1, . . . , xn), then add the instance definition:

α(a)(α(x1), . . . , α(xn)) in α(b)
γ(b, 1) (α(y1)) = true
. . .
γ(b,m) (α(ym)) = true

(Given our restrictions, for 1 ≤ j ≤ m, either yj is an object constant or ∃i, 1 ≤
i ≤ n such that yj = xi.) If there are multiple such renaming clauses, add to
α(b) the names of the other actions that appear on the left-hand side of is in
the renaming clauses, and add more definitions of attributes, if needed.

(c) Fluents. For every fluent declaration f(s1, . . . , sn) : 〈type〉 (sn+1), if the
fluent does not appear on the left-hand side of any fluent renaming clause in any
of the modules of AD, then translate it as:

total α(f) : α(s1) × · · · × α(sn) → sn+1

Otherwise, translate it as

α(f) : α(s1) × · · · × α(sn) × α(sn+1) → booleans

We call expanded the functions in this second category and the literals built with
them. Add the declaration to the appropriate part of the function declarations of
module α(Mk), where α(f) is a basic fluent if 〈type〉 = simple, a defined fluent
if 〈type〉 = staticallyDetermined, and a basic static if 〈type〉 = rigid.
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(d) Import Statements. For every module Mi imported in Mk, add to α(Mk)

depends on α(Mi)

Sort and action renaming clauses were handled when translating the sort and
inclusions sections and the action section of AD, respectively. For every fluent
renaming clause g(y1, . . . , yn) is f(x1, . . . , xn) in Mk, if f is not an expanded
function ranging over sort s, then add to the axioms of α(Mk):

α(g)(α(y1), . . . , α(yn), V ) if α(f)(α(x1), . . . , α(xn)) = V.
α(f)(α(x1), . . . , α(xn)) = V if α(g)(α(y1), . . . , α(yn), V ).

¬α(g)(X1, . . . , Xn, V ) if α(f)(X1, . . . , Xn) 	= V.
¬α(g)(X1, . . . , Xn, V1) if α(g)(X1, . . . , Xn, V2), V1 	= V2,

instance(V1, α(s)), instance(V2, α(s)).
(1)

If f is expanded, expand the corresponding literals and omit the last axiom.

(e) Axioms. If r is an axiom of AD, then by vars(r) we denote the collection
of atoms of the type instance(α(x), α(s)) for every variable x in r defined as
x : s. If l is a fluent atom of AD of the form f(x1, . . . , xn) = xn+1, then by
α(l) we denote α(f)(α(x1), . . . , α(xn)) = α(xn+1) if f is not an expanded fluent,
and α(f)(α(x1), . . . , α(xn), α(xn+1)) otherwise. We extend the notation α to
arithmetic comparisons, literals, and collections of literals in a natural way. For
every axiom r in Mk, add to the axioms of α(Mk):

(i) If r is a dynamic causal law of the form a(x1, . . . , xn) causes l if cond:

occurs(A) causes α(l) if instance(A,α(a)), α(cond), vars(r),
γ(a, 1)(A,α(x1)), . . . , γ(a, n)(A,α(xn)).

(ii) If r is a state constraint of the form l if cond:

α(l) if α(cond), vars(r).

(iii) If r is an executability constraint nonexecutable a(x1, . . . , xn) if cond:

impossible occurs(A) if instance(A,α(a)), α(cond), vars(r),
γ(a, 1)(A,α(x1)), . . . , γ(a, n)(A,α(xn)).

where A is a variable such that α(A) does not appear in r.

Step 4: Add to α(AD) a module main that depends on all other modules. For
every expanded function f : s1 × · · · × sn+1 → booleans of α(AD) and every
combination (z1, . . . , zn+1) of leaves of the sort hierarchy of α(AD) such that no
function that is a renaming of f is defined on it, add to the axioms of main:

¬domf (X1, . . . , Xn+1) if instance(X1, z1), . . . , instance(Xn+1, zn+1). (2)
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6 Properties of the Translation

Given the translation described in Sect. 5, we are interested in determining a
class of MAD action descriptions that have transition diagrams isomorphic to
those of their ALM counterparts, modulo the common vocabulary. Specifically,
problems may result from our solution for translating sort and fluent renaming
clauses, which allows actions to cause unintended changes to unrelated fluents,
as in the example at the end of Sect. 4. In MAD, this is prevented by adding a
prefix of the type “In.” in front of the name of renamed fluents. To mimic this
behavior, we restrict ourselves to action descriptions in which the domains of
the special cases of every fluent are disjoint. We start with some definitions.

Let AD be a MAD action description that meets the restrictions described at
the beginning of Sect. 5, and let α(AD) be its translation into ALM. Let τm and
τa denote the transition diagrams described by AD and α(AD), respectively.

Definition 1 (Well-defined Function). A function f(s1, . . . , sn) : 〈type〉
(sn+1) in AD is well-defined if for every interpretation I of α(AD)
and every pair of functions g(z1, . . . , zn) : 〈type〉(zn+1) and h(c1, . . . , cn) :
〈type〉(cn+1) of AD, such that both g and h are special cases of f , ∃k, 1 ≤ k ≤
n + 1, such that I(zk) ∩ I(ck) = ∅.
Definition 2 (Basic Action Description). AD is a basic action description
if (i) every function of α(AD) is well-defined; (ii) the values of all defined fluents
in α(AD) are fully determined by the values of basic statics and basic fluents
(i.e., α(AD) is well-founded - see Definition 16 in [11]); and (iii) all instances
belong to leaves of the sort hierarchy of α(AD).

We formally define what we mean here by isomorphic transition diagrams:

Definition 3 (MA-Isomorphic Transition Diagrams). Transition dia-
grams τm and τa are ma-isomorphic if their states and transitions only differ
as follows:

1. If we removed prefixes of the type “In.” from MAD-fluent literals in τm and
considered that some fluents were expanded during the translation, states
would only differ by the additional static atoms derived from ALM’s pre-
defined functions (is a, instance, subsort, etc.).

2. For each action a labeling an arc in τa and for each action b in AD that is
renamed as a (i.e., a is a special case of b), the corresponding arc in τm is
labeled by b as well, where b is preceded by prefix(es) of the type “In.”.

Now we can formulate our proposition:

Proposition 1. If AD is a basic action description, τm and τa are ma-
isomorphic.

Sketch: The requirement on well-defined functions prevents actions from having
unintended effects on unrelated fluents. Axioms (1) and (2) ensure that there
are no additional atoms constructed from renamed functions in states of τa. We
also rely on results on the common core of languages B and C from [7].
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7 Conclusions

In this paper we have investigated the relationship between modular action lan-
guages MAD and ALM by introducing a translation from MAD into ALM.
We have proposed that this translation produces isomorphic transition dia-
grams, modulo the common vocabulary, for a particular class of MAD action
descriptions. This is an important result, as it allows for libraries of knowledge
developed in MAD (e.g., [3]) to be seamlessly combined with knowledge modules
written in ALM, thus facilitating the knowledge representation task. The cur-
rent translation focused on understanding the correspondence between the MAD
and ALMconstructs for the reuse of knowledge and the description of actions as
special cases of other actions (import statements and renaming clauses in MAD
vs. specialization construct and instances of sorts in ALM). Future work will
address other constructs of MAD that our translation did not cover.
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Abstract. Knowledge compilation converts Boolean formulae for which
some inference tasks are computationally expensive into a representation
where the same tasks are tractable. ProbLog is a state-of-the-art Prob-
abilistic Logic Programming system that uses knowledge compilation
to reduce the expensive probabilistic inference to an efficient weighted
model counting. Motivated to improve ProbLog’s performance we present
an approach that optimizes Boolean formulae in order to speed-up knowl-
edge compilation. We identify 7 Boolean subformulae patterns that can
be used to re-write Boolean formulae. We implemented an algorithm with
polynomial complexity which detects and compacts 6 of these patterns.
We employ our method in the inference pipeline of ProbLog and conduct
extensive experiments. We show that our compaction method improves
knowledge compilation and consecutively the overall inference perfor-
mance. Furthermore, using compaction reduces the number of time-outs,
allowing us to solve previously unsolvable problems.

1 Introduction

Knowledge compilation [6] encompasses a set of methods to compile a Boolean
formula for which some inference tasks are computationally expensive into a
Negation Normal Form (NNF) with special properties that allow to solve the
same tasks efficiently. Knowledge compilation finds application in planning [21],
computer-aided design [20], probabilistic reasoning [6,8]. Even if solving those
problems on the compiled Boolean formulae is efficient, knowledge compilation
itself is an #P-complete problem [27].

State-of-the-art Probabilistic Logic Programming systems like ProbLog [7,11]
use knowledge compilation approaches to reduce the expensive inference task to a
weighted model counting (WMC) problem. Motivated to solve larger problems in
ProbLog, in this paper we present an optimization method that compacts Boolean
formulae in order to speed-up knowledge compilation. While we implemented our
approach in the scope of ProbLog and used common ProbLog problems to evaluate
its effectiveness our approach is more general and any application using Boolean
formulae to represent knowledge could benefit from it.
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Our first contribution is the identification of seven Boolean subformulae pat-
terns that can be detected and used to re-write Boolean formulae in order to
improve knowledge compilation. Our detected patterns fall into two types: one
type that retains equivalence with the input Boolean formulae and a second
type that reduces the number of Boolean variables contained in the formulae.
The latter type patterns correspond to AND/OR clusters [16]. While they do
not preserve the equivalence directly, an application specific equivalence can be
defined and computed. In the context of ProbLog we preserve the weighted model
count of the Boolean formulae.

Our second contribution is the implementation of an efficient algorithm that
detects and compacts the presented patterns. Our implementation is independent
from any ProbLog system. We incorporated it in two different implementations of
ProbLog: MetaProbLog [17] and ProbLog2 [8] and evaluated it extensively with
7 different benchmarks. Further than the empirical evaluation of our approach we
also provide a complexity analysis that shows that our algorithm is polynomial.

This paper builds on and extends the work presented in [25]. We introduced
two new patterns, namely the minimal proof and OR-Cluster II; we improved
the performance of the implementation; allowed it to work with multiple queries
and evidence; and performed extensive experiments within the scope of ProbLog.

The paper is structured as follows: in Sect. 2 we present background and
discuss related work; Sect. 3 describes the patterns while Sect. 4 gives an overview
of the algorithm we implemented to detect and compact them; in Sect. 5 we
analyze the effects of our compaction on inference with ProbLog; finally, we
present our conclusions in Sect. 7.

2 Background

2.1 The Probabilistic Logic Programming Language ProbLog

ProbLog [7,11] is a general purpose Probabilistic Logic Programming (PLP) lan-
guage. It extends Prolog with probabilistic facts which encode uncertain knowl-
edge. Probabilistic facts have the form pi :: fi, where pi is the probability label of
the fact fi. Prolog rules define the logic consequences of the probabilistic facts.
No probabilistic fact can unify with a head of a rule in a ProbLog program. A
simple ProbLog program is shown in Example 1.

Example 1. The following ProbLog program encodes a probabilistic graph. The
predicate e/2 encodes a probabilistic edge between two nodes; the predicate p/2
defines a path between nodes.

0.6::e(a, b). 0.3::e(a, d). 0.8::e(b, c). 0.2::e(e, f). p(X, Y):- e(X, Y).

0.7::e(c, d). 0.4::e(d, f). 0.4::e(d, e). p(X, Y):- e(X, X1), p(X1, Y).

For a ProbLog program L each ground probabilistic fact1 fi can be true
with probability pi or false with probability (1− pi). A particular decision d on
1 Probabilistic facts can be ground or non-ground. [11] proves that finitely many

groundings of non-ground probabilistic facts are sufficient to compute probabilities.
That is why we restrict our discussion to programs with ground probabilistic facts.
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the truth values of all probabilistic facts determines a unique logic program Ld.
For N probabilistic facts there exist 2N such logic programs. Each probabilistic
fact can be seen as an independent random variable. ProbLog then defines a
distribution over the logic programs Ld as:

P (Ld) =
∏

fi∈Ld

pi
∏

fi∈L\Ld

(1 − pi) (1)

ProbLog systems2 provide a wide choice of inference and learning algorithms,
which are used in applications like system prognostics and diagnostics [28], link
and node prediction in biological data [10], robotics [19]. ProbLog focuses on two
main inference tasks: (a) computing the probability that a query is true for a given
ProbLog program, namely the marginal (MARG) probability of a query; and (b)
computing the conditional probability (COND) of a query for a ProbLog program
given some evidence, i.e. a set of facts for which the truth values have been decided.

Computing the MARG task boils down to determining all logic programs Ld

which entail the query and summing their probabilities as computed by Eq. 1. Sim-
ilar, for the COND task ProbLog needs to determine the logic programs Ld which
entail the query but also the evidence. An exhaustive enumeration of these pro-
grams is infeasible but for the tiniest problems. That is why ProbLog’s inference
mechanism employs a step-wise procedure called an inference pipeline [26] that
reduces the inference task into a WMC problem. First, given a ProbLog program
L, a set of queries and evidence, ProbLog uses SLD [12] or SLG [4] resolution on the
logical part of L, that is, ignoring the label of probabilistic facts, in order to deter-
mine the ground logic program relevant to the queries and the evidence (Ground
LP) [8]. Then, the Ground LP is converted to an equivalent with respect to the
WMCBoolean formula.During this process any cycles that occur in theGroundLP
are handled. We use theProof-Based approach [15] for this. Next, using knowledge
compilation the Boolean formula is compiled into a negation normal form (NNF)
with special properties which allows efficient WMC. Two target compilation lan-
guages have been considered so far: ROBDDs [3] and sd-DNNFs [6]. The NNF is
then associated with the probabilities of L and used for WMC.

2.2 AND-OR Graphs

We represent Boolean formulae as AND-OR graphs. An AND-OR graph is a
directed graph composed by AND and OR nodes. An AND node indicates that
all child nodes must be true, while an OR node indicates that at least one
of the child nodes must be true. An AND-OR graph is a suitable represen-
tation for a ground logic program relative to a query q. The different clauses
(qi∈1..m:- ri,1, ..., ri,n.) of the predicate q are processed as follows: for each clause
qi all literals ri,j in the body are grouped as children of an AND node. The differ-
ent AND nodes then are grouped as children of an OR node labeled with q. Next,

2 When it is clear from the context we use the term ProbLog to refer to either the
language or the system. Otherwise we state it explicitly.
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each literal ri,j is treated as a new query. An AND-OR graph of a query has the
following characteristics: cycles that appear in the logic program also appear in
the AND-OR graph; for each subgoal g there is only one OR node; an OR-node
has multiple parents if the subgoal is repeated and goals proven as facts are
represented by special OR nodes without children, called terminal nodes. The
edge from a child node to a parent node states that the parent depends on the
child node.

Definition 1. An AND-OR graph for a query q is a directed graph G =
(Vand, Vor, Vterm, E) with Vand a set of AND nodes, Vor a set of labeled OR
nodes, Vterm ⊂ Vor a set of terminal nodes, Vnonterm = Vor \Vterm and E ⊆ R a
set of directed edges, where R = (Vand×Vor)∪(Vnonterm×Vand)∪(Vnonterm×Vor).
The root of the graph is an OR node labeled with q.

Example 2. For the ProbLog program in Example 1 and the query p(a, f).
the corresponding AND-OR graph is:

{e(d, f); 0.4}

{e(c, d); 0.7}

{e(b, c); 0.8}

{e(a, b); 0.6}

{e(e, f); 0.2}

{e(d, e); 0.4}

{e(a, d); 0.3}

p(a, f)

AND

AND

p(d, f)

AND

p(e, f)

ANDp(c, f)

ANDp(b, f)

Ellipses depict OR nodes, diamonds depict AND nodes and rectangles ter-
minal nodes. OR nodes are labeled with the goal they prove. Note that in the
context of ProbLog terminal nodes have attached probabilities.

3 Compactable Patterns

We identify 7 patterns that appear in AND-OR graphs and present how we use
them in order to compact the graph. The patterns we identify and their com-
pacted form are illustrated in Table 1. Patterns 1 to 4 maintain the Boolean for-
mulae equivalence. The compaction of patterns 5 to 7 removes Boolean variables
and introduces a new Boolean variable to represent them. These compactions
do not directly maintain the equivalence of the Boolean formulae. Application
specific problems require a special calculation for the introduced representative
Boolean variable. For correct ProbLog inference we need to maintain the WMC.
That requires to calculate the probability of the representative Boolean variable.
Proof of correctness for these compactions appears in [16].

1. Single Variable: There are an OR node A and a terminal node B, such that
A depends only on B. Compaction: Node A and the edge from B to A are
deleted. The edges starting from A now start from B.

2. Single Branch I: There are a node A, an OR node B and an AND node C,
such that B depends only on C and A depends on B. Compaction: If A is
an OR node then node B and the edge from C to B are deleted. A new edge
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from C to A is created. If A is an AND node then nodes B and C are deleted
together with the edge from C to B. All children of C are connected to A.

3. Single Branch II: There are two OR nodes A and B, such that A depends
on B and no other node depends on B. Compaction: Node B and the edge
from B to A are deleted. All children of B are connected to A.

4. Minimal Proof: There are an OR node A, two AND nodes B1 with a set of
children ChB1 and B2 with a set of children ChB2 such that ChB1 ⊆ ChB2 .
Compaction: Node B2 and all edges from the child nodes in ChB2 to B2

are deleted. The edge from B2 to A is deleted as well.
5. AND-Cluster: There are an AND node A, a set of nodes Ch′

A ⊆ ChA,
where ChA are all terminal nodes A depends on, such that Ch′

A = ChA \
{C|∃B,B �= A,B depends on C}. Compaction: All terminal nodes Ci ∈
Ch′

A are deleted, together with the edges from Ci to A. A new terminal
node Ct is created together with an edge from Ct to A. A joint probability
pt =

∏

Ci∈Ch′
A

pi, where Ci is a terminal node with probabilistic label pi is

calculated. The probabilistic label pt is attached to node Ct.
6. OR-Cluster I: There are an OR node A, a set of nodes Ch′

A ⊆ ChA, where
ChA are all terminal nodes A depends on, such that Ch′

A = ChA\{C|∃B,B �=
A,B depends on C}. Compaction: All terminal nodes Ci ∈ Ch′

A are
deleted, together with the edges from Ci to A. A new terminal node Ct is
created together with an edge from Ct to A. A joint probability pt is calcu-
lated as pt = (..((p1 ∗ (1 − p2) + p2) ∗ (1 − p3) + p3).. + pn), where pi is the
probability labeled in Ci ∈ Ch′

A, i = 1..|Ch′
A|. The probability pt is attached

to node Ct.
7. OR-Cluster II: There are an OR node A, that depends on n AND nodes

B1...Bn that each has exactly one different terminal child node Ch1...Chn

and all the rest child nodes (denoted as node C) are common. Compaction:
All AND nodes B1...Bn and all terminal nodes Ch1...Chn are deleted.
A new terminal node Ch is created. A joint probability pt is calculated as
pt = (..((p1 ∗ (1 − p2) + p2) ∗ (1 − p3) + p3).. + pn), where pi is probabilistic
part of the label of Chi, i = 1..n. The probabilistic label pt is attached to
node Ch. A new AND node B that contains Ch,C is created, finally, an edge
from B to A is created.

4 Algorithm

Our algorithm iterates over patterns 1 to 6 in the order presented in Table 1.
As soon as a pattern is detected the corresponding compaction is applied.
According to the order we choose the detection and compaction of one pattern
allows the detection and compaction of the next one in the same iteration. This
ensures the minimum number of iterations required to compact a graph. Our
algorithm terminates once no patterns can be detected. Algorithm 1 presents
the pseudo-code for detecting patterns 1 to 6.
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Table 1. AND-OR graph patterns and the compacting transformations. We denote
with “...” multiple possible nodes to/from which exists an edge. With octagons we
represent nodes that can be of any type (terminal, AND or OR).

Pattern Compaction

1.

... A

...

–B; p˝

...

–B; p˝

...

2.

... A1

... ...

... A2 ...

...

...

Ch1

Ch2

Ch3

B C

... A1

...

...

...

... A2

... ...

Ch1

Ch2

Ch3C

3.

... A

...

...

Ch1

...
Ch2

...

...

B ... A ...

... Ch1

... Ch2

...

...

4.

... A

...

...

...

...

Ch1

Ch2

Ch3

B1

B2 ... A

...

...

...

Ch1

Ch2

B1

... A

... ...

–Ch1; p1˝

–Ch2; p2˝

pt = p1 · p2

5.
... A

... ...

–and(Ch1, Ch2); pt˝

... A

... ...

–Ch1; p1˝

–Ch2; p2˝

pt = p1 · (1 − p2) + p2

6.
... A

... ...

–or(Ch1, Ch2); pt˝

... A ...C

–Ch1; p2˝

–Ch2; p3˝

B1

B2

pt = p1 · (1 − p2) + p2

7.

... A

...C

–or(Ch1, Ch2); pt˝

B

Completeness: Our algorithm does neither detect nor compact pattern 7. We
are also confident that there exist more patterns which we do not consider. Thus,
AND-OR graphs which include at least one of these patterns will not be fully
compacted. Therefore, our algorithm is not complete.
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Data: An AND-OR graph
Result: Detected Node, Nodes to be compacted
detect single variable(NodeA, Terminal) ← detect and cluster(RefChilds) ←

or edge(NodeA, Terminal), and edge(NodeA, ),
is terminal(Terminal), all(Terminal, (
� ∃ and edge(NodeA, ), and edge(NodeA, Terminal),
� ∃ (or edge(NodeA, Any), Terminal �= Any). is terminal(Terminal),

detect single branch1(NodeB, NodeC) ← � ∃ or edge( , Terminal)
or edge(NodeB, NodeC), ), Childs),
and edge(NodeC, ), get all and edge sets(ChildSets),
� ∃ and edge(NodeB, ), refine cluster(ChildSets, Childs, RefChilds),
� ∃ (or edge(NodeB, Any), NodeC �= Any). RefChilds �= ∅.

detect single branch2(NodeA, NodeB) ← detect or cluster1(RefChilds) ←
or edge(NodeA, NodeB), or edge(NodeA, ),
or edge(NodeB, ), all(Terminal, (
� ∃ and edge( , NodeB), or edge(NodeA, Terminal),
� ∃ (or edge(Any, NodeB), NodeA �= Any). is terminal(Terminal),

detect minimal proof(NodeB1, NodeB2) ← � ∃ and edge( , Terminal)
or edge(NodeA, NodeB1), ), Childs),
and edge(NodeB1, ), get all or edge sets(ChildSets),
or edge(NodeA, NodeB2), refine cluster(ChildSets, Childs, RefChilds),
and edge(NodeB2, ), RefChilds �= ∅.
NodeB1 �= NodeB2, refine cluster([], RefChilds, RefChilds)
all(Child, and edge(NodeB1, Child), refine cluster([Set|ChildSets], Childs,

ChildsB1), RefChilds) ←
all(Child, and edge(NodeB2, Child), NewChilds = Set ∧ Childs ,

ChildsB2), refine cluster(ChildSets, NewChilds,
ChildsB1 ⊆ ChildsB2. RefChilds).

Algorithm 1: The 6 pattern detection algorithms.

Complexity:3 The compaction operations are very efficient (O(N) with N the
number of edges affected). Detecting and verifying a pattern is computationally
expensive and deserves a thorough analysis.

For an arbitrary AND-OR graph G we denote with Nor the number of OR
edges, with Nand the number of AND edges and with Nterm the number of
terminal nodes. We assume that a node always contains Nterm children; this is
a high upper bound assumption but does not affect the complexity class.

The complexity for detecting and verifying all patterns 1 to 3 in an AND-OR
graph is O(Nor · (log(Nor) + log(Nand))); for all patterns 4 the complexity is
O(Nor · (log(Nor) + log(Nand) + Nterm)); for all patterns 5 the complexity is
O(N2

and · Nterm); finally, for all patterns 6 the complexity is O(N2
or · Nterm).

We illustrate the steps taken when applying our compaction algorithm to an
AND-OR graph derived from the ProbLog program in Example 3.

Example 3. We apply our compaction algorithm on the graph in Example 2.
In the 1st iteration it detects 1 Single Variable of p(e, f) and 2 Single Branch
I of p(b, f) and p(c, f) resulting in Graph 1 in the following table; and 2 AND-
Clusters resulting in Graph 2. In the 2nd iteration 1 OR-Cluster I and 1
Single Variable of p(d, f) are detected resulting in Graph 3 and Graph 4
accordingly.

3 More details for the algorithm and the full complexity analysis can be found at:
https://lirias.kuleuven.be/bitstream/123456789/500398/5/appendix.pdf.

https://lirias.kuleuven.be/bitstream/123456789/500398/5/appendix.pdf
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2hparG1hparG

{e(d, f); 0.4}

{e(b, c); 0.8}

{e(c, d); 0.7}

{e(a, b); 0.6}

{e(d, e); 0.4}

{e(e, f); 0.2}{e(a, d); 0.3}

p(a, f)

AND

AND p(d, f)

AND

{e(d, f); 0.4}

{e(a, d); 0.3} {and(e(d, e), e(e, f)); 0.08}

{and(e(a, b), e(b, c), e(c, d));
 0.336}

p(a, f)

AND

AND

p(d, f)

.hparglanfi–4hparG3hparG

{e(a, d); 0.3}

{or(e(d, f), and(e(d, e), e(e, f)));
 0.448}

{and(e(a, b), e(b, c), e(c, d));
 0.336}

p(a, f)

AND

AND

p(d, f)

{e(a, d); 0.3}

{or(e(d, f), and(e(d, e), e(e, f))); 0.448}

{and(e(a, b), e(b, c), e(c, d)); 0.336}

p(a, f)

AND

AND

The final AND-OR graph forms 1 OR-Cluster II pattern. If we detected and
compacted OR-Cluster II patterns, it would enable a final AND-Cluster com-
paction to fully compact the AND-OR graph into a single terminal node con-
taining the probability of the query.

The implementation neither detects nor compacts pattern 7; pattern 7 may
correspond to complex subgraphs with unreasonably high detection cost. By
using indexing we decreased the complexity of our previous implementation [25]
from O(N2) to O(N · log(N)) for several tasks. We also added support for mul-
tiple queries and evidence. The implementation of the detection/compaction
algorithm is a stand-alone Prolog program.

5 Compacting ProbLog Programs

Section 2.1 presents the general scheme of a ProbLog inference pipeline. We focus
on 4 particular ProbLog pipelines, based on two mainstream ProbLog implemen-
tations – MetaProbLog [17] and ProbLog2 [8]. These inference pipelines differ
with respect to (a) representation of the Ground LP and the Boolean formu-
lae: ProbLog2 uses AND-OR graphs and CNF DIMACS, while MetaProbLog
uses Nested Tries [15] and BDD scripts [14]; (b) ways of preprocessing the
Boolean formulae: ProbLog2 uses Boolean subformulae repetition detection and
MetaProbLog uses the recursive node merging method presented in [18]; and (c)
in the knowledge compilation method: ProbLog2 uses the sd-DNNF compiler
c2d [5] and MetaProbLog uses the SimpleCUDD [14] compiler for ROBDDs. The
4 pipelines we use for our experiments are listed in Table 2. The pipeline imple-
mentations of ProbLog allow us to employ our detection/compaction algorithm
(a) before and (b) after the cycle handling processing of the Boolean formula
in any ProbLog pipeline. In (a), called the prior compaction, the Ground LP
is represented as an AND-OR graph and then processed by our algorithm. In
ProbLog2 the loop-breaking mechanism applies directly on the AND-OR graph
and generates a loop-free AND-OR graph. In MetaProbLog the loop-breaking
operates on the nested trie structure and produces a BDD Script which is easily
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rewritten as an AND-OR graph. This allows (b), that is, to invoke the com-
paction algorithm again and attempt a further optimization of the AND-OR
graph before the knowledge compilation step. We call this the post compaction.
Furthermore, we can invoke the prior and post compactions in the same pipeline;
we refer to this compaction setting as both.

Table 2. ProbLog pipelines.

Pipeline Ground LP

representation

Cycle handling Boolean formulae

representation

Compilation

language

ProbLog2/sd-DNNFa AND-OR Proof-Based AND-OR→CNF DIMACS sd-DNNF

ProbLog2/ROBDD AND-OR Proof-Based AND-OR→BDD script ROBDD

MetaProbLog/sd-DNNF Nested Tries Proof-Based+ [18] BDD script→CNF DIMACS sd-DNNF

MetaProbLog/ROBDDb Nested Tries Proof-Based+ [18] BDD script ROBDD

aProbLog2 and bMetaProbLog default pipelines.

5.1 Experimental Set-Up

We experiment with 7 benchmark sets with a total of 738 programs. These
benchmark sets have been previously used for testing the performance of differ-
ent ProbLog implementations. The variety of these benchmarks and the different
inference tasks ensure a realistic estimate of the gain or the loss in the perfor-
mance of ProbLog pipelines due to our compaction algorithm.

In order to present our data in a more comprehensive way, we divide our
benchmarks in three groups: 387 easy programs which consume less than 10 s;
99 medium programs which consume between 10 and 60 s and 150 hard pro-
grams which consume more than 60 s. To classify a program we use the total run
time for the MetaProbLog/ROBDD pipeline without compaction – the default
MetaProbLog pipeline.

Each program is executed with the 4 ProbLog pipelines and the 4 compaction
settings – none, prior, post and both. Their combination results in 16 different
ProbLog pipelines to run each benchmark program with. We chose a time-out of
540 s for each test run. We managed to solve 636 out of the 738 programs within
the 540 s time-out with at least one of the 16 pipelines.

The c2d compiler is non-deterministic [5], meaning that for the same CNF
the compiled sd-DNNFs may differ. That is why we run each test invoking c2d
5 times (8 pipelines use c2d). Then we report the average time consumed by
the test. From previous experiments we have determined this number to give a
reliable estimate of the performance of c2d.

We run our experiments on 17 computers with Intel� quad-core 64-bit CPU
at 2.83GHz, 8GBs of RAM running Ubuntu 12.04 LTS (under normal load). The
chosen time-out ensured our experiments to terminate within at most 14 days.

5.2 Experimental Results

In our experiments we collect the total run time for executing a benchmark
program (including the compaction time). We use the time results to determine
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Fig. 1. Relative time gain due to a specific compaction.

the compaction setting which leads to (a) the lowest run times; and (b) to the
lowest number of time-outs for each of the pipelines and each benchmark set.

For each ProbLog pipeline and each compaction c ∈ {prior, post, both} we
sum (a) the gain in the total run time for each benchmark compared with the
run time of no compaction (c = none) when the compaction performs better:
T g
C (this is the total gain for compaction); (b) the gain in the total run time

when no compaction performs better: T g
N (this is the total loss for compaction).

We normalize each gain by dividing by the total number of programs within a
benchmark set to compensate for the fact that some of them contain more pro-
grams. For example, consider a particular benchmark with programs {b1, b2, b3}
each with run times: with compaction 20, 30 and 40 s and with no compaction
10, 25, 70 s. Then T g

C = 70−40 = 30 and T g
N = (20−10)+(30−25) = 15 showing

that in total the gain with compaction exceeds the loss due to compaction. We
exclude programs for which both inference with compaction and with no com-
paction times out. We chose this measurement because it shows the overall gain
in run time due to compaction. We present the gain due to compaction relative
to the total gain T g

C

T g
C+T g

N
in Fig. 1 as percentage. Detailed results are given in our

online appendix. We base our conclusions on all the results.

5.3 Experimental Conclusions

First, our algorithm improves the knowledge compilation time for the majority of
the benchmarks, between 75% to 85% for ROBDDs and between 55% to 65%
for sd-DNNFs. Our intuition is that ROBDDs benefit more than sd-DNNFs
because ROBDDs use a general Boolean formula for input while sd-DNNFs
require a conversion to a CNF Boolean formula. Compaction is beneficial for
most of the medium and hard problems but not that much for the easy problems.
It was expected that the time spend to perform our algorithm would not be
compensated from the gain in knowledge compilation for small problems.

Second, regarding the used pipelines from Fig. 1 we conclude that the highest
gain from our algorithm was for the ProbLog2/ROBDD pipeline having an almost
100% gain for all compaction settings (on medium problems). Using compaction
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is preferable to no compaction for the MetaProbLog/ROBDD, MetaProbLog/
sd-DNNF and ProbLog2/ROBDD pipelines and complex problems. We also
note that the ProbLog2/sd-DNNF pipeline in overall does not benefit from our
approach.

Third, none of the compaction settings (i.e. the prior, post or both) out-
performs the other compaction settings. For MetaProbLog/ROBDD the both
compaction is preferable; for MetaProbLog/sd-DNNF and ProbLog2/ROBDD
pipelines preferable is the post compaction; for ProbLog2/sd-DNNF the prior
compaction. The post and both compactions often yield the same Boolean formu-
lae. In such cases both spends unnecessary extra time for prior compaction. We
also note that the actual cost to perform detection and compaction is generally
small. In particular, compacting AND-OR graphs generated from a Ground LP
consumed at most 18.25 s for a program with total run time of 264.27 s; com-
pacting AND-OR graphs generated from Nested Tries consumed at most 64.95 s
for a program with total run time of 297.79 s.

Fourth, compaction allowed us to solve significantly more problems that
would otherwise timeout. Particularly, in the best case, MetaProbLog/ROBDD
with both compaction, we can solve 38% more programs; ProbLog2/ROBDD
with post compaction can solve 37% more programs. The two pipelines which use
compilation to sd-DNNF benefit less from compaction, MetaProbLog/sd-DNNF
with post compaction can solve 6% more programs while for ProbLog2/sd-
DNNF compaction introduces up to 12% more timeouts. The extra time-outs
occur for benchmarks that contain multiple queries and evidence. Often the
query and evidence atoms appear also as subgoals. Queries and evidence are
required for the final step of WMC thus they should not be removed from the
Boolean formula. Therefore there are less patterns that can be compacted in
the case of COND with respect to MARG tasks. For the other benchmarks
compaction reduces the overall amount of time-outs.

Finally, following from all our results, we must indicate that there is not
one best performing pipeline over all benchmarks. On average, the pipeline with
the least timeouts was ProbLog2/ROBDD with post compaction. The gain due
to compaction (prior, post or both) on the hard problems and the decrease of
timeouts indicate that our approach improves the performance of the system at
problems that it was poor before.

6 Related Work

Rewriting a Boolean formula to improve the performance of knowledge compila-
tion in the scope of ProbLog had first been investigated in [18]. [18] shows that
feeding a rewritten Boolean formulae instead of a non optimized one reduces
the operations needed by the knowledge compilation step and consequently the
knowledge compilation run time. The work we present in this paper, focuses on
optimizing even further the Boolean formula and works in parallel with these
Boolean formulae rewrites. Boolean formulae rewriting, in the scope of assessing
the Probability of a Sum-of-Products, has been investigated also in [24].
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Detecting regularities such as AND/OR-Clusters on a Boolean formula in
normal form (e.g., DNF), has been investigated in [16]. Our approach performs
similar transformations on an AND-OR graph instead of a Boolean formula in
normal form. [16] proves completeness of detecting AND/OR-Clusters in Boolean
formulae but faces some practical limitations. The most important of which
is that ProbLog using tabling and cycle handling as presented in [15] would
generate a Boolean formula that is not in normal form.

Hintsanen [9] argues that structural properties are important for finding the
most reliable subgraph. He calculates the probability of subgraphs connecting
two nodes and searching for the subgraph with the maximum probability. The
paper identifies as a special case the series-parallel subgraphs for which they
can compute the probability polynomially. These series-parallel subgraphs have
similarities with the AND/OR-Clusters.

Our work is also similar to [13] which presents a preprocessing of propositional
formulae to optimize model counting. Their approach optimizes CNF Boolean
formulae by using seven preprocessing methods. Similar to our work, some of
their preprocessing methods maintain equivalence and others not. In contrast to
our approach some of their methods increase the size of the Boolean formulae
which is an interesting point for us to look upon. There exist several other related
works from other fields such as variable ordering approaches for BDDs [22,23]
or preprocessing methods used in SAT solving [1,2].

7 Conclusion and Future Work

This paper presented a pattern-based approach for compacting Boolean formu-
lae. It detects and compacts 6 (out of 7 identified) patterns – 4 that preserve
logic equivalence and 2 that preserve equivalence with respect to the weighted
model count. Our approach aims to improve probabilistic inference that uses
knowledge compilation and weighted model counting. It targets but is not lim-
ited to the probabilistic logic programming system ProbLog and its underlying
implementations.

We performed experiments with 4 different ProbLog pipelines and 3 com-
paction settings on 7 benchmark sets with 738 benchmarks in total. Our results
show that compaction improves knowledge compilation to ROBDDs as well as to
sd-DNNFs. The gain in the total run time due to compaction is most salient for
harder problems. The decreased amount of time-outs proves that our approach
enables inference on problems unsolved before (i.e. without compaction).

In the future we want to investigate also non-compacting transformations
that could aid (thus improve) the knowledge compilation. In addition, we plan
to extend our algorithm to handle problems outside the domain of ProbLog. We
aim to test it on benchmarks from [13] in order to determine its general effects.
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Abstract. Automated algorithm selection techniques have been applied
successfully to Answer Set Programming (ASP) solvers. ASP compu-
tation includes two levels of computation: variable substitution, called
grounding, and propositional answer set search, called solving. In this
paper we present me-aspML, an extended ASP system applying algo-
rithm selection techniques to both levels of computation in order to
choose the most promising solving strategy. Experiments conducted
on benchmarks and solvers of the Fifth ASP Competition shows that
me-aspML is able to solve more instances than state-of-the-art systems.

1 Introduction

Answer Set Programming (ASP) [8,13] is a declarative programming paradigm
developed in the area of logic programming and non-monotonic reasoning. The
evaluation of ASP programs usually includes two levels of computation, called
grounding and solving. At the first level, a propositional program is obtained
from a non-ground specification by applying intelligent techniques that eliminate
variables; then, at the second level, the propositional program is fed to an ASP
solver to produce answer sets.

Automated algorithm selection techniques have been applied in ASP to obtain
evaluation of programs in reasonable time. The idea is to automatically select the
“best” computation strategy on the basis of features computed on a training set of
instances. In the literature there are several different proposals, and among them
we mention the portfolio solver claspfolio ver. 1 [11], which then evolved into a
framework combining different approaches in claspfolio ver. 2 [15], the multi-
engine approach implemented inme-asp [19], the techniques for learning heuristic
orders presented in [3], and the work in [14,21] that employs parameters tuning
and/or design a solvers schedule. However, to the best of our knowledge, in ASP
the application of automated selection techniques is typically limited to the eval-
uation of propositional programs, thus the choice of algorithms has been limited
to the solving level. A preliminary contribution that exploits the features of non-
ground programs was presented in [18], but also in this case the application was
limited to only one level, namely the choice of the most promising grounding tool.
c© Springer International Publishing Switzerland 2015
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In this paper we present me-aspML, an extension of the multi-engine ASP
system me-asp, that applies algorithm selection techniques to before each level
of computation of answer sets, with the goal of selecting the most promising com-
putation strategy. me-aspML supports the new standard ASPCore 2.0 [5] and
selects among the systems that participated to the Fifth ASP Competition [6].

The new architecture of me-aspML takes advantage from the extraction of
syntactic features of non-ground programs at the first level, so to identify a
number of classes of non-ground programs. Then, me-aspML (possibly) applies
to each class identified at the first level an additional phase of algorithm selec-
tion, which exploits the features of ground programs measured after running
the grounder GrinGo [12]. A key-enabler in achieving good performance in
me-aspML is the extraction of cheap-to-compute features. These can be obtained
at the price of a minimum overhead also in case of large input programs. The
features employed at the first level are able to characterize a program w.r.t. rel-
evant subclasses of programs (featuring different complexity of the evaluation),
and can even identify a class of programs where a specific grounder is the most
promising (as done in [18]). The algorithm selection approach of me-asp [19]
is then applied in the second level to the classes of programs identified in the
first level, allowing for a more accurate selection of the solver to be employed,
given that different classes of programs are usually characterized by different
sets of meaningful features. Notably, the set of features used in the second level
of me-aspML is a strict superset of the ones employed in me-asp [19], extended
to deal with ASPCore 2.0 [5] programs.

An experimental analysis conducted on benchmarks and solvers of the Fifth
ASP Competition shows that me-aspML is able to solve more instances than:
(i) any solver that participated to the competition, (ii) the mere update of the
(single-level) me-asp [19] system, and (iii) the state-of-the-art system clasp-
folio ver. 2.2. The results hold also considering separately each track of the
competition. Such analysis, thus, suggests that the application of a multi-level
algorithm selection strategy, also exploiting the features of non-ground programs,
can lead to a performance that cannot be matched by any existing system apply-
ing algorithm selection only to propositional programs.

2 Architecture and Implementation

Architecture. Figure 1 presents the architecture of me-aspML (available for
download at www.mat.unical.it/ricca/downloads/measpml.tar.gz). Looking at
the figure, we can see that me-aspML is composed of six main modules. NGFE
(Non-Ground Feature Extractor) aims at computing features from the input
(non-ground) program that are “pragmatically” cheap-to-compute, such as the
number of Head-Cycle Free components, presence of queries, and stratification
property. Such features are passed to NON-GROUND MANAGER, that is devoted to
identify the class of the input ASP program. GROUNDER takes as input the non-
ground ASP program and returns the related grounded instance. The next mod-
ule, namely GFE (Ground Feature Extractor), aims at computing the syntactic

www.mat.unical.it/ricca/downloads/measpml.tar.gz
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Fig. 1. The architecture of me-aspML. Solid boxes represent the modules, while arrows
denote functional connections between them.

features of the input ground program. We used the features detailed in [19], with
the addition of some ASPCore 2.0 specific features such as the number of choice
rules, number of aggregates, and number of weak constraints. GROUND MANAGER
is devoted to the prediction of the solver to run. It contains the inductive mod-
els related to the considered classes. Its working process can be divided in two
steps, i.e., (i) given the input received by NON-GROUND MANAGER, it selects the
proper inductive model; and (ii) given the features computed in GFE, it outputs
to SOLVER MANAGER the name of the predicted solver. Finally, SOLVER MANAGER
manages the interaction with the engines. At the end of the engine computation,
SOLVER MANAGER returns as output the result given by the solver.

Implementation. In me-aspML, algorithm selection is implemented by means
of multinomial classification. In a few words, given a set of patterns, i.e., input
vectors X = {x1, . . . xk} with xi ∈ R

n, and a corresponding set of labels, i.e.,
output values Y ∈ {1, . . . ,m}, where Y is composed of values representing the m
classes of the multinomial classification problem, in our modeling, the m classes
are m ASP solvers. Given a set of patterns X and a corresponding set of labels
Y , the task of a multinomial classifier c is to construct c from X and Y so that
when we are given some x� ∈ X we should ensure that c(x�) is equal to f(x�),
which is the unknown function we are extrapolating. This task is called training,
and the pair (X,Y ) is called the training set. Concerning the training set, we
selected instances and encodings involved in the Fifth ASP Competition [6].
The considered pool of benchmarks is composed of 26 domains organized into
tracks, which are based on both complexity issues and language constructs of
ASPCore 2.0. Starting from a total amount of 8572 instances, we pragmatically
randomly split the amount of instances in each domain, using 50 % of the total
amount for training purpose, and the remaining ones for testing – the full list is
available at www.mat.unical.it/ricca/downloads/measpmlts.tar.gz. Concerning
the NON-GROUND MANAGER (see Fig. 1), we used a list of if-then-else rules obtained
running the PART decision list generator [9] on the training instances. About

www.mat.unical.it/ricca/downloads/measpmlts.tar.gz
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Table 1. Considered ASP solvers that entered the Single Processor category of the
Fifth ASP Competition. The first column contains the solvers, while the remaining
four columns are related to the inductive models. A “�” indicates that the solver has
been selected as me-aspML engine. An empty cell means that the related solver has
been evaluated but it is not included in me-aspML. Finally, a “–” indicates that the
related solver can not compete on the program class.

Solver T1 T2 T3 T4 Q

clasp [7] � � � � –

lp2bv2+boolector [20] � – – –

lp2graph [10] � – – –

lp2maxsat+clasp [4] � – –

lp2normal2+clasp [4] � � � � –

lp2sat3+glucose [16] – – –

lp2sat3+lingeling [16] – – –

wasp1 [1] �
wasp1.5 [1] �
wasp2 [1] � � – –

the labels, we considered five program classes, namely the queries (Q) and ASP
competition tracks names (in the following, for short, Ti, i ∈ {1, . . . , 4}). Notice
that this module goes beyond selection of the grounder as done in [18], but in
principle the approach of [18] can be implemented in our architecture.

Considering GROUNDER module, it is actually implemented using GrinGo ver.
4. Regarding GROUND MANAGER, in the current version of me-aspML is composed
of four different inductive models, i.e., models obtained training a classifier.
Models are related to the program classes T1, . . . , T4 and are computed using
the training sets mentioned above. The pattern comprised in the training set
is composed of the values related to the same features as computed in GFE,
while the label corresponds to the best solver – in terms of CPU time – on
the given instance. In Table 1 we show the solvers that could be used as engine
of me-aspML. (We have not considered lp2mip2 given that we did not receive
the license of cplex on time.) Considering that using all the solvers altogether
increases the probability of getting a bad prediction because of aliasing, for each
Ti we chosen different subsets of them as follows. First, we computed the total
amount of training instances solved by the state-of-the-art solver (SOTA), i.e.,
given an instance, the oracle that always fares the best among all the solvers.
Second, we calculated the minimum number of solvers such that the total amount
of instances solved by the pool is at least 90 % of the SOTA solver on the training
instances.

Looking at Table 1, we can see the results of this process, as well as the
involved solvers considering each Ti. Notice that in the case of Q (i.e., the class of
query problems) we had only one “label”, namely wasp1.5, which internally calls
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Table 2. Results of the experiments grouped according to 5th competition Tracks. The
first column contains the various solvers considered, plus me-aspML. The remaining
four columns contain the results for Track 1 to Track 4. Each of these columns is then
divided into two subcolumns, containing the number of solved instances within the
time limit, and the sum of their CPU times in seconds, respectively. If, for a track,
both subcolumns contain “–”, this means that the related solver can not compete on
the track. Note that query problems are included in their original track.

Solver Track 1 Track 2 Track 3 Track 4

# Time # Time # Time # Time

clasp 362 12318 1241 41049 154 4578 503 8078

lp2bv2+boolector 205 19396 822 43124 – – – –

lp2graph 324 23592 1030 50341 – – – –

lp2maxsat+clasp 264 18537 1066 60185 74 5548 – –

lp2normal2+clasp 342 18263 1252 60031 119 9379 496 12921

lp2sat3+glucose 278 25149 1027 50170 – – – –

lp2sat3+lingeling 256 23682 1108 80465 – – – –

wasp1 268 15155 719 52260 88 3558 238 18951

wasp1.5 242 3782 1042 32159 23 754 238 19285

wasp2 317 13622 1146 41140 24 750 – –

me-aspML 376 15391 1341 46143 231 5632 532 8960

DLV with magic sets. Finally, the multinomial classification algorithm employed
was k-Nearest Neighbors.

3 Experiments and Conclusion

We assessed the performance of me-aspML on the Fifth ASP Competition
benchmarks. All the experiments run on a cluster of Intel Xeon E31245 PCs at
3.30 GHz equipped with 64 bit Ubuntu 12.04, granting 600 seconds of CPU time
and 2GB of memory to each solver.

The results of the analysis are presented in Table 2. We first note that me-
aspML can solve more instances than all its engines in all tracks, followed by
clasp in Tracks 1, 3 and 4, and by lp2normal+clasp in Track 2. In sum,
me-aspML solves 2480 instances, while the second overall best, which is clasp,
solves a total of 2260 instances.

An aggregate picture of the performance of competing systems is presented
in the cactus plot of Fig. 2. This plot also includes me-asp and claspfolio ver.
2.21 for a direct comparison with approaches of algorithm selection that only

1 claspfolio has been run with its default setting, and with clasp ver. 3 as a back-
end solver. This improved version has been provided by Marius Lindauer, who is
thanked.
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Fig. 2. Results of the solvers in Table 2, plus me-asp and claspfolio ver. 2.2, showed
with a cactus plot. In the x-axis it is shown the total amount of solved instances, while
the y-axis reports the CPU time in seconds.

exploit ground features. From the figure we can see that me-aspML solves more
instances also in comparison with its previous version me-asp and the state-
of-the-art system claspfolio ver. 2.2, other than all its engines. In particular,
claspfolio solves 358, 1148, 118 e 471 instances on the four tracks, respectively.
We can note that, consistently with the information provided in the claspfolio
web page, claspfolio performance are not optimized on Track 3: indeed, this
is the track where it shows the biggest performance gap (as percentage of solved
instances) w.r.t. me-aspML.

To sum up, the extended approach implemented in me-aspML, which applies
algorithm selection to both levels of computation, performs very well, being able
to solve more instances than (i) its engines, (ii) its previous version me-asp,
and (iii) claspfolio ver. 2.2, in all tracks of the Fifth ASP Competition.

References

1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: a native ASP
solver based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013.
LNCS, vol. 8148, pp. 54–66. Springer, Heidelberg (2013)

2. Alviano, M., Faber, W., Greco, G., Leone, N.: Magic sets for disjunctive datalog
programs. Artif. Intell. 187, 156–192 (2012)

3. Balduccini, M.: Learning and using domain-specific heuristics in ASP solvers. AI
Commun. 24(2), 147–164 (2011)

4. Bomanson, J., Janhunen, T.: Normalizing cardinality rules using merging and sort-
ing constructions. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148,
pp. 187–199. Springer, Heidelberg (2013)

5. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F., Schaub, T.: Asp-core-2 input language format (since 2013).
https://www.mat.unical.it/aspcomp2013/ASPStandardization

6. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: The design of the fifth
answer set programming competition. ICLP 2014 TC abs/1405.3710 (2014).
http://arxiv.org/abs/1405.3710

https://www.mat.unical.it/aspcomp2013/ASPStandardization
http://arxiv.org/abs/1405.3710


Multi-level Algorithm Selection for ASP 445

7. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M.,
Schaub, T.: Conflict-driven disjunctive answer set solving. In: Proceedings of KR
2008, pp. 422–432. AAAI Press (2008)

8. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM TODS 22(3), 364–
418 (1997)

9. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.
In: ICML 1998, p. 144. Morgan Kaufmann Publisher (1998)

10. Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as sat modulo
acyclicity. In: Proceedings of ECAI 2014, FAIA, vol. 263, pp. 351–356. IOS Press
(2014)

11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.:
A portfolio solver for answer set programming: preliminary report. In: Delgrande,
J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 352–357. Springer,
Heidelberg (2011)

12. Gebser, M., Schaub, T., Thiele, S.: GrinGo: a new grounder for answer set program-
ming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 266–271. Springer, Heidelberg (2007)

13. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. NGC 9, 365–385 (1991)

14. Hoos, H., Kaminski, R., Lindauer, M.T., Schaub, T.: ASPeed: solver scheduling
via answer set programming. TPLP 15(1), 117–142 (2015)

15. Hoos, H., Lindauer, M.T., Schaub, T.: claspfolio 2: Advances in algorithm selection
for answer set programming. TPLP 14(4–5), 569–585 (2014)

16. Janhunen, T.: Some (in)translatability results for normal logic programs and
propositional theories. J. Appl. Non Class. Logics 16, 35–86 (2006)

17. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM TOCL 7(3),
499–562 (2006)

18. Maratea, M., Pulina, L., Ricca, F.: Automated selection of grounding algorithm in
answer set programming. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R.
(eds.) AI*IA 2013. LNCS, vol. 8249, pp. 73–84. Springer, Heidelberg (2013)

19. Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set pro-
gramming. TPLP 14(6), 841–868 (2014)
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Abstract. We present an algorithm, CDCL-AMS, for solving Modular
Systems consisting of a set of modules where, for each module, we have
a simple “black-box” solver. The algorithm is based on the Conflict-
Directed Clause Learning algorithm for SAT, and communicates asyn-
chronously with the black-box solvers to accommodate high variability
in response latencies.

1 Introduction

In many modern contexts, finding a solution to a problem amounts to solving
a combinatorial search problem where the constraints are implicit in a collec-
tion of more-or-less independent modules, each of which is a knowledge base
or problem-solving system in its own right, and typically presented via network
connections. The conflict-directed clause learning (CDCL) algorithm [5] is the
basis of SAT solvers with impressive performance on many constraint problems.
However, in the multi-module context we consider here, it is often undesirable
or even impossible to transform each module into a set of explicit constraints.
In this context, each module is a black box which answers queries, for exam-
ple of the form “do you have a solution consistent with partial solution X?”
In many settings, the response latencies for modules will be substantial, highly
variable, and largely un-correlated. The main purpose of this paper is to present
a CDCL-based algorithm suited to this context.

Modular Systems. A general logic-based formalization of problem solving in a
multi-module context is provided by the notion of Modular Systems, as defined
in [8]. This generalizes the formalization of a decision problem as a class of
structures, or of a search problem as model expansion [6]. Formally, a module
is a class of structures for a fixed vocabulary. Modular systems are defined by
combining primitive modules with an algebra of modular systems. The algebra is
similar to Codd’s relational algebra, but defined on classes of structures rather
than on relational tables. The operations are Sequential Composition, Union,
Complementation, Projection and Feedback.

In this short paper, we restrict our attention to systems which are conjunc-
tions of “primitive” modules. In the context of solving a particular problem
instance. The algorithm is based on the idea of querying modules with a par-
tial structures, which for a particular problem instance are on a fixed universe.
c© Springer International Publishing Switzerland 2015
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In this setting, queries are essentially propositional, so for simplicity we present
our algorithms in purely propositional form. Our setting is as follows.

1. Each module Mi is a set of truth assignments for propositional vocabulary
σi. We say assignment α satisfies Mi if α ∈ Mi, and we say module Mi

implies clause C iff every assignment in Mi satisfies C.
2. Modular System M is a conjunction of modules. Its vocabulary is the union

of those of its modules. M is satisfiable if there is a truth assignment for σ
which satisfies every module. M implies clause C if every satisfying assign-
ment for M satisfies C.

3. For each module Mi, we have a solver Si that answers queries in the form of
partial truth assignments for σi. We consider only solvers which are propa-
gators, that is, when queried with partial assignment α for σi, in finite time
return one of:
(a) 〈Reject,Reason〉, where Reason is a set of clauses which are implied by

Mi and false in α.
(b) 〈Accept,Advice〉, where Advice is a set of clauses implied by Mi, with

exactly one literal not defined by α and all other literals false in α.

Remark 1. It is possible for Advice or Reason to be empty. In particular, a solver
Si for which Advice and Reason are always empty is simply verifier for Mi. It
follows that any verifier can be wrapped as a (not very helpful) propagator.

The CDCL Algorithm. We assume the reader is familiar with CDCL, but
review some aspects here, and also fix some notation. Given CNF formula Γ ,
the algorithm incrementally constructs a sequence of literals α (the “assignment
stack”) which defines a partial truth assignment for Γ . (We henceforth gloss
over the distinction between assignments and sequences of literals.) The algo-
rithm alternately adds an unassigned literal l to α (called a “decision”), and
then extends α with any literals newly determined by unit propagation. The
sub-sequence of α consisting of only decision literals is the “decision sequence”
corresponding to α, and will be denoted δ. Each literal l of α that is not a
decision is labelled with the clause that the unit propagation engine used to set
it true, called the “reason for l”. This guess-propagate process continues until
either α |= Γ , in which case the algorithm halts, or the unit propagation engine
determines that a literal l must be true, but ¬l is already in α, called a “conflict”.

For clause set Γ and set δ of literals, we write l ∈ UP(Γ, δ) if setting the
literals of δ true and running unit propagation on Γ results in l being set true,
and C ∈ UP(Γ, δ) if C is obtained from a clause of Γ when, for every literal
l ∈ UP(Γ, δ) we delete from δ any clause containing l, and delete from each
clause of δ any occurrence of ¬l. Notice that, if α is an assignment stack, and
δ the corresponding decision sequence then α = UP(Γ, δ). Also, we denote the
empty clause by �, so � ∈ UP(Γ, δ) that executing unit propagation from Γ
and δ produces a conflict.

Upon a conflict, CDCL derives a clause C by resolution, using the reasons
labelling α. The clause C is used to determine a proper prefix α′ of α, which
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replaces α as the current assignment stack (called “back-jumping”), and C is
added to Γ (it is called a “learned” clause). The clause C and assignment stack
α bear a particular relationship: C is an “asserting clause” α′ and Γ , as defined
next.

A clause C is a conflict clause for decision sequence δ and clause set Γ iff:
(1) � ∈ UP(Γ,C), and (2) For each literal l ∈ C, l ∈ UP(Γ, δ). C is an asserting
clause for Γ and δ if it is a conflict clause and also satisfies: (3) For exactly one
literal l ∈ C, l �∈ UP (Γ, δ−), where δ− is δ with its last element removed.

Observe that, when C is a conflict clause for α and Γ , UP(Γ ∪ {C}, δ) con-
tains at least one literal not in α, so immediately after back-jumping, the new
assignment stack is extended by unit propagation, which could in turn lead to
a new conflict. If a state is reached where this does not happen, the algorithm
returns to extending α with decisions.

Synchronous CDCL for Sets of Modules. We can make a version of CDCL
for sets of modules very simply, provided we query them synchronously and
the response times are sufficiently fast. To do this, we simply query each solver
every time we extend the current assignment stack, adding all reasons and advice
returned by the solvers to Γ . However, we are interested in the case when these
properties do not hold, in which case it is unreasonable to make so many queries,
and unreasonable to have the algorithm wait for all solvers to respond to a given
query before proceeding.

2 Asynchronous CDCL for Modular Systems

Our asynchronous clause-learning algorithm, which we call CDCL-AMS, has
three processes (not including the solvers): The CDCL Engine, the Query Han-
dler and the Response Handler. These communicate via four data objects: clause
set Γ ; set QUERIES of available solver queries; set HOLD decision sequences
corresponding to pending queries; and set CONTINUE of query responses wait-
ing to be handled by the Engine. The Engine is a CDCL solver that tries to
decide satisfiability of M. It generates models of Γ , which become queries to
solvers. Each query is extended until either it is rejected by a solver, at which
time at least one clause is added to Γ , or is accepted by all solvers. The other
processes handle the communication between the Engine and the solvers.

Γ is initially empty, and is extended by clauses obtained from solvers in
response to queries, and by the standard clause learning mechanism. The algo-
rithm proceeds as in standard CDCL, extending its assignment stack until either
a conflict or a satisfying assignment for Γ is obtained. Upon conflict, learned
clause derivation and back-jumping are carried out. This process is identical
to standard CDCL, except for the role of HOLD, which is discussed below.
If α |= Γ , α becomes a query to send to a solver, and the Engine:

1. Adds α to QUERIES;
2. Adds δ, the decision sequence corresponding to α, to HOLD;
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3. Replaces δ with some proper subsequence, and modifies α accordingly. (This
is back-jumping in the absence of a true conflict. Correctness requires only
that the back-jump is proper, i.e., removes at least one decision from α.)

When a solver S becomes available, the Query Handler selects and removes an
appropriate query from QUERIES and submits it to S. (A query is appropriate
for S if S could reject it. Slightly more precisely: the vocabulary of α, less any
prefix of α that has previously been accepted by S, has non-empty intersection
with the vocabulary of S.) When S responds to query α, the Response Handler:

1. Adds all clauses in the returned Reasons or Advice to Γ . If the response
is Reject, but Reasons is empty, it adds to Γ the clause consisting of the
disjunction of the negations of the literals in δ;

2. Marks α to indicate that S has accepted it;
3. Removes the δ corresponding to α from HOLD.

A solution to M is an assignment that has been accepted by every solver.
In the algorithm, a query is sent only to one solver before being returned to
the main engine (via CONTINUE). This keeps all reasoning in one algorithm,
and also ensures that information obtained by the main engine is exploited as
soon as possible, avoiding, for example, submitting a query to a solver when
clauses returned by other solvers already imply its rejection. To keep track of
which solvers have accepted a query, each assignment stack has a mark for each
solver indicating its largest prefix which has been accepted by that solver. When
a query is returned to the main engine, via CONTINUE, it may be extended,
both by unit propagation involving new clauses and by new decisions, and these
marks are maintained.

The purpose of the HOLD set is to ensure that, while a response to a query
based on decision sequence δ is pending (in QUERIES, or being handled by a
solver), the engine does not generate any query which is “no better than” δ (i.e.,
is a superset of δ). To this end, each decision sequence δ in HOLD is treated by
the unit propagation engine as the clause δ, the disjunction of complements of
literals in δ.

The clauses in HOLD cannot be used as “reasons” for the purpose of asserting
clause derivation because they are guesses and might not be implied by M. In
the derivation, any literal set by unit propagation by using a clause of HOLD
must be treated as a decision literal. The standard methods for asserting clause
derivation ensure every learned clauses is unique. This now fails, and it is possible
that an execution of the body of the main loop of the Engine fails to generate
a new query or add a new clause. Loop iterations which are essentially “wheel-
spinning” may result.While undesirable, it seems that this cannot entirely be
avoided: If solvers take sufficiently long to respond to queries, the main engine
will generate all possible resolvents and all possible queries based on Γ , and can
make no further progress until some further query response arrives.

The CDCL-AMS Engine is given by Algorithm 1.
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Algorithm 1. CDCL-AMS Engine
Input: Vocabulary σ
Output: SAT or UNSAT

1 δ ← any non-empty decision sequence
2 repeat
3 if CONTINUE �= ∅ then
4 Remove one query γ from CONTINUE
5 if γ satisfied all modules then
6 return SAT
7 end
8 Remove γ from HOLD
9 δ ← γ

10 end
11 δ ← ExtendAndLearn-AMS(δ, Γ )
12 if δ = 〈〉 then
13 return UNSAT
14 end
15 if UP (Γ, δ) |= Γ then
16 Add δ to HOLD
17 Add δ to QUERIES
18 δ ← a proper sub-sequence of δ

19 end
20 end

Algorithm 1 is described in terms of decision sequences (δ and γ), but the
corresponding assignment stack, labelled with both reasons and marks from
accepting solvers, is implicitly maintained, and is in fact what is being operated
on. (For example, in adding δ to QUERIES, it is clear that the labelled assign-
ment stack must be intended. The exception is line 16, where it is indeed just
the decision sequence δ that is added to HOLD.)

In line 11, ExtendAndLearn-AMS(δ, Γ ) carries out the process of extend-
ing decision sequence δ until either it satisfies Γ , or generates a conflict. In the
latter case, it may generate multiple conflicts (and learned clauses), eventually
returning a decision sequence δ such that either UP (Γ, δ) |= Γ or computing
UP(Γ, δ) does not generate a conflict. (This may correspond to many iterations
of the main loop of CDCL as it is usually presented.) At line 12, if δ = 〈〉, the
last learned clause was �.

Remark 2. If at any point Γ becomes unsatisfiable, the algorithm essentially
becomes a standard CDCL solver. In particular, it generates no new queries, and
once existing contents of QUERIES have been exhausted, and their responses
all handled, the algorithm becomes CDCL proving unsatisfiability of Γ .

In Line 5, “γ satisfied all modules” means that every solver S accepted (some
previous version of) γ at a time when it was (already) total for the vocabulary
of S.
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Correctness. If the algorithm returns SAT, then some assignment is total
for, and accepted by, every solver, so M is satisfiable. If the algorithm returns
UNSAT, it is because the empty clause has been derived from Γ . Since M |= Γ ,
M is unsatisfiable. It remains to establish termination.

Observe that the main engine is simply a CDCL engine which generates all
satisfying assignments for Γ . (Γ grows monotonically, so some generated satisfy-
ing assignments later are not satisfying, but this does not affect the argument.)
To see that the algorithm makes progress, we observe that every assignment α
generated by the engine is eventually extended until it either becomes a satisfy-
ing assignment for M, or is “killed” by generation of a clause which is implied
by M, but is false in α. We need to see that, in each iteration of the Engine
main loop, progress is made either by δ being killed by a new clause added to Γ ,
or by “getting closer” to satisfying every module. For the moment, set aside the
question of the “wheel-spinning” iterations mentioned above. Consider line 11,
where δ is re-assigned by the call to ExtendAndLearn-AMS(δ, Γ ). To avoid
ambiguity, let’s write β for the new value of δ. If at line 3 CONTINUE was
empty, then the standard CDCL process will ensure that either β is a proper
extension of δ, or that a clause that “kills” δ was added to Γ , and β is new. So
we have progress. If CONTINUE was not empty, δ could be killed either because
the response for δ was Reject (in which case a killing clause was added to Γ ),
or because unit propagation from δ produced a conflict based on other clauses
that have been added to Γ since δ was generated as a query. If δ does not get
killed, and is not total, then β is set to a proper extension of δ. If δ is not killed
and is total, then there is some solver S which has accepted a larger prefix of
α than the previous time this query was in QUERIES, and α is marked with
this information. In each case, we have made progress. It remains to verify that
every query is eventually responded to, and that “wheel-spinning” iterations
do not prevent eventual progress. There are finitely many possible queries, and
each solver responds to each query in finite time, so each query is eventually
responded to by a solver. Wheel-spinning iterations are only possible if HOLD
is not empty, and since every query is eventually responded to, every element of
HOLD is eventually deleted, at which point progress is ensured.

3 Discussion

Related Work. Many related algorithms have been presented in the literature.
These include propagation via lazy clause generation [7], algorithms used in used
in “lazy” SMT solvers, methods for supporting external constraints in SMT and
ASP solvers [1–3], and distributed and parallel CSP and SAT algorithms [4]. An
abstract algorithmic scheme for Modular System solvers was given in [8]. We
will give detailed comparisons in a longer paper.

Future Work. A number of details of this algorithm warrant more careful
discussion, and there are many refinements and heuristics to consider when con-
templating implementation, even without taking into account the practical com-
plexity of interacting with real on-line solvers. We will discuss some of these in
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a longer paper. In future work, we intend to examine the extension of these
algorithms to the full algebra of modular systems; develop versions for use with
solvers which are more than just propagators; study the relationship between
problem structure and algorithm complexity; develop versions which make use
of FO vocabulary of modules as classes of structures; attend more closely to
issues that need to be addressed for implementability; and develop versions for
use in distributed and many-core computational environments.

References

1. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

2. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Conflict-driven ASP solving with
external sources. Theory Pract. Logic Program. 12(4–5), 659–679 (2012)

3. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill, P.M.,
Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer, Heidelberg
(2009)

4. Manthey, N.: Towards Next Generation Sequential and Parallel SAT Solvers. Ph.D.
thesis, TU Dresden (2014)

5. Marques-Silva, J.P., Sakallah, K.A.: Grasp: a search algorithm for propositional
satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

6. Mitchell, D.G., Ternovska, E.: A framework for representing and solving NP search
problems. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings The Twenti-
eth National Conference on Artificial Intelligence and the Seventeenth Innova-
tive Applications of Artificial Intelligence Conference, 9–13 July, 2005, Pittsburgh,
Pennsylvania, USA, pp. 430–435. AAAI Press/The MIT Press (2005)

7. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation.
In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg
(2007)

8. Tasharrofi, S., Ternovska, E.: A semantic account for modularity in multi-language
modelling of search problems. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.)
FroCoS 2011. LNCS, vol. 6989, pp. 259–274. Springer, Heidelberg (2011)



Solving Disjunctive Fuzzy Answer Set Programs

Mushthofa Mushthofa1,3(B), Steven Schockaert2, and Martine De Cock1,4

1 Department of Applied Mathematics, Computer Science and Statistics,
Ghent University, Ghent, Belgium

{Mushthofa.Mushthofa,Martine.DeCock}@UGent.be
2 School of Computer Science and Informatics, Cardiff University, Cardiff, UK

SchockaertS1@cardiff.ac.uk
3 Department of Computer Science, Bogor Agricultural University, Bogor, Indonesia

mush@ipb.ac.id
4 Center for Data Science, University of Washington Tacoma, Tacoma, USA

mdecock@uw.edu

Abstract. Fuzzy Answer Set Programming (FASP) is an extension of
the popular Answer Set Programming (ASP) paradigm which is tailored
for continuous domains. Despite the existence of several prototype imple-
mentations, none of the existing solvers can handle disjunctive rules in
a sound and efficient manner. We first show that a large class of dis-
junctive FASP programs called the self-reinforcing cycle-free (SRCF)
programs can be polynomially reduced to normal FASP programs. We
then introduce a general method for solving disjunctive FASP programs,
which combines the proposed reduction with the use of mixed integer
programming for minimality checking. We also report the result of the
experimental benchmark of this method.

1 Introduction

Answer Set Programming (ASP) is one of the most popular and well-studied
declarative programming paradigms [2,11]. Based on the stable model semantics
[15], ASP allows an intuitive encoding of combinatorial search and optimization
problems [20]. Due to the availability of fast and efficient solvers, such as clasp [14]
and DLV [19], ASP found practical applications in many fields [11,13]. However,
because of the fact that it relies on Boolean logic, ASP is not directly suitable
for encoding problems in continuous domains.

Fuzzy Answer Set Programming (FASP) [30] is a form of declarative pro-
gramming that extends classical ASP by allowing graded truth values in atomic
propositions and extending classical Boolean operators to fuzzy logic connectives.
Althoughworkhasdone on the theoretical aspects ofFASP, e.g., [5,6,18,22–24,28],
progress on the development of FASP solvers has not yet reached the maturity level
of ASP solvers. Several notable results about FASP are: (1) the development of a
reduction method for FASP into bilevel linear programming [5], (2) a FASP solver
based on answer set approximation operators [1] and (3) a solver for FASP based on
a reduction to classical ASP [25]. The prototype solver developed in [1] only deals
with normal rules and does not allow disjunctions at all. The method proposed
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 453–466, 2015.
DOI: 10.1007/978-3-319-23264-5 38
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by [5] only allows disjunctions in the head, while the evaluation method described
in [25] only allows disjunctions in the body. No evaluation method/solver for FASP
currently allows disjunctions in the body and the head of the rules.

Allowing disjunctions both in the head and the body of FASP rules enables
us to represent and solve a broader class of problems. As an example, consider
the following fuzzy graph colorability problem: given a graph G = 〈V,E〉 with
weighted edges, can we color each node with a fuzzy color (intuitively, a grey
level value between fully black and fully white) such that connected nodes are
colored with sufficiently differing colors? Formally, let V be the set of the nodes
and E : V × V → [0, 1] be the set of fuzzy edges. We want to find functions
fb : V → [0, 1] and fw : V → [0, 1] such that: (i) fb(x) ⊕ fw(x) = 1,∀x ∈ V and
(ii) f(x) ⊗ f(y) ⊗ e(x, y) = 0,∀x, y ∈ V, f ∈ {fb, fw}, where ⊕ and ⊗ represent
disjunction and conjunction in �Lukasiewicz logic, respectively (see Sect. 2). Given
the input graph as facts of the form node(x) ← 1 and edge(x, y) ← c for c ∈
[0, 1]1, the following FASP program solves the problem (see Sect. 2 for formal
definitions):

b(X) ⊕ w(X) ← node(X)
edge(X,Y ) ← edge(Y,X)

0 ← b(X) ⊗ b(Y ) ⊗ edge(X,Y )

0 ← w(X) ⊗ w(Y ) ⊗ edge(X,Y )

Suppose we further require that for some subset S ⊆ V of the nodes, the color
assigned must be either fully black or fully white (i.e., either fw(v) = 1 or
fb(v) = 1 for v ∈ S). We can encode this requirement by adding the so-called
saturation rules {b(v) ← b(v) ⊕ b(v), w(v) ← w(v) ⊕ w(v) | v ∈ S}, which force
the atoms b(v) and b(w) to be Boolean. In this example, we see how disjunctions
in the head and in the body of the rules appear naturally in the problem’s
representation.

It is well known that the presence of disjunctions in (F)ASP programs can
increase the computational complexity of various reasoning tasks. In [5], the
complexity of answer set existence, set-membership and set-entailment in vari-
ous classes of FASP under the �Lukasiewicz semantics was studied. Interestingly,
it was shown that for the class of strict FASP programs, where only the conjunc-
tion, maximum and negation operators are allowed in the body, disjunctions in
the head do not increase the complexity of the reasoning tasks, which are still
within the first level of the Polynomial Hierarchy (PH), even for disjunctive
strict FASP. However, when disjunctions are allowed in the head as well as in
the body, the complexity increases to the second level of PH.

In classical ASP, allowing disjunctions in the head has been shown to increase
the complexity of the reasoning tasks, from NP-complete and coNP-complete for
brave and cautious reasoning, respectively, to ΣP

2 and ΠP
2 (see e.g., [7]). However,

[3] has shown that the semantics of a large class of disjunctive ASP programs,
called the head-cycle free (HCF) programs, can be efficiently expressed in non-
disjunctive propositional logic, effectively reducing their complexity to the first
1 The symbol c for a numeric value c represents a truth-value constant in a program.
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level of PH. Furthermore, by a sequence of applications of the so-called shift
operators described in [8], one can reduce any HCF disjunctive ASP program
into an equivalent normal program.

In this paper, we show that a large class of disjunctive FASP programs can
be similarly reduced to normal programs. Unlike in classical ASP, however, the
reduction is not based on head-cycle freeness, but rather on the concept we
define as self-reinforcing cycle freeness, which covers a much larger subclass
of disjunctive FASP programs. More specifically, we will show that the shifting
method for HCF disjunctive programs as being used in classical ASP also applies
for FASP programs. However, the class of disjunctive FASP programs that can
be shifted is strictly larger than the class of HCF programs. In fact, we can show
that every disjunctive strict FASP program can be reduced to a normal FASP
program, even if head cycles occur. Subsequently, we introduce a general method
for finding answer sets of disjunctive FASP programs (allowing disjunctions in
the body, as well), which combines the proposed reduction with an additional
minimality check based on mixed integer programming.

2 Preliminaries

2.1 Fuzzy Answer Set Programming

We follow the definition of FASP syntax as described in [5] and consider only the
�Lukasiewicz operators and semantics. As is the case in classical ASP, the syntax
of a FASP program P is based on atoms drawn from either a propositional or
a first-order Herbrand base BP . For simplicity, in this paper we consider only
propositional atoms. A (classical) literal is either an atom a or a classical negation
literal ¬a. An extended literal is a classical literal a or a NAF literal not a.
A head/body expression is a formula defined recursively as follows:

– a constant c, c ∈ [0, 1] ∩ Q, and a classical literal a are head expressions.
– a constant c, c ∈ [0, 1] ∩ Q, and an extended literal a are body expressions.
– if α and β are head/body expressions, then α ⊗ β, α ⊕ β, α � β and α � β are

also head/body expressions, respectively.

We denote by Lit(E) the set of classical literals appearing in an expression E.
A FASP program is a finite set of rules, where a rule r is of the form α ← β. Here,
α is a head expression (called the head of r) and β is a body expression (called
the body of r). We also write Head(r) and Body(r) to denote the head and body
of a rule r, respectively. A FASP rule of the form a ← c for an atom a and a
constant c is called a fact. A FASP rule of the form c ← β is called a constraint.
A rule which does not contain any application of the operator not is called a
positive rule. A rule which only has one literal in the head is called a normal rule.
A rule which contains the application of the operator ⊕ in the head is called a
disjunctive rule. A FASP program is called [positive, normal ] iff it contains only
[positive, normal] rules, respectively. A FASP program which contains disjunctive
rules is called a disjunctive program. A FASP program whose only connectives



456 M. Mushthofa et al.

in the body are not, ⊗ and �, and has only disjunctions in the head is called
a strict FASP program. Intuitively, the class of strict FASP programs contains
those programs whose syntax corresponds to that of classical ASP programs. In
this paper, we restrict the discussion to FASP syntax that allows only disjunction
in the head (but no restrictions for the connectives in the body). Furthermore,
following the rule rewriting technique described in [25], we may assume w.l.o.g.
that the rules in a FASP program only contain at most one application of the
�Lukasiewicz connectives, either in the body or in the head of the rules.

The semantics of FASP is traditionally defined on a complete truth lattice
L = 〈L,≤L〉 [4]. In this paper, we consider two types of truth-lattice: the infinite-
valued lattice L∞ = 〈[0, 1],≤〉 and the finite-valued lattices Lk = 〈Qk,≤〉, where
Qk = { i

k | 0 ≤ i ≤ k}, and k ≥ 1 is a positive integer such that c ∈ Qk for every
constant c in the program. An interpretation of a FASP program P is a function
I : BP → L2, which can be extended to expressions and rules as follows:

– I(c) = c, for any constant c in the program.
– I(α ⊗ β) = max(I(α) + I(β) − 1, 0).
– I(α ⊕ β) = min(I(α) + I(β), 1).
– I(α � β) = max(I(α), I(β)).
– I(α � β) = min(I(α), I(β)).
– I(not α) = 1 − I(α).
– I(α ← β) = min(1 − I(β) + I(α), 1).

for appropriate expressions α and β. Here, the operators not, ⊗,⊕,�,� and ←
denote the �Lukasiewicz negation, t-norm (conjunction), t-conorm (disjunction),
maximum, minimum and implication, respectively.

An interpretation I is consistent iff I(l) + I(¬l) ≤ 1 for each l ∈ BP . We
say that a consistent interpretation I of P satisfies a FASP rule r iff I(r) = 1.
This condition is equivalent to I(Head(r)) ≥ I(Body(r)). An interpretation is a
model of a program P iff it satisfies every rule in P. For interpretations I1, I2,
we write I1 ≤ I2 iff I1(l) ≤ I2(l) for each l ∈ BP , and I1 < I2 iff I1 ≤ I2 and
I1 �= I2. We call a model I of P a minimal model if there is no other model J
of P such that J < I.

For a positive FASP program P, a model I of P is called an answer set of P iff
it is a minimal model of P. For a non-positive FASP program P, a generalization
of the so-called Gelfond-Lifschitz reduct is defined in [23] as follows: the reduct of
a rule r w.r.t. an interpretation I is the positive rule rI obtained by replacing each
occurrence of not a by the constant I(not a). The reduct of a FASP program
P w.r.t. an interpretation I is then defined as the positive program PI = {rI |
r ∈ P}. A model I of P is called an answer set of P iff I is an answer set of PI .
We say that an answer set I is k-valued if I(a) ∈ Lk for every literal a; we say
that an answer set is finite valued if it is k-valued for some k ∈ N.

Example 1. Consider the disjunctive FASP program P1 which has the following
rules:

{a ← not c, b ← not c, c ← a ⊕ b, d ⊕ e ← c}
2 Note that by L here, we mean the “set” part of the lattice L.
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One can check that under both the truth-lattices L3 and L∞, the interpretation
Ix = {(a, 1

3 ), (b, 1
3 ), (c, 2

3 ), (d, 2
3 − x), (e, x)} is a minimal model of PIx

1 for any
0 ≤ x ≤ 2

3 , and hence it is an answer set of P1. However, P1 has no answer sets
under any Lk where k is not a multiple of 3.

2.2 Finite-Valued Evaluation of FASP Programs

We briefly recall the method from [25] to evaluate FASP programs based on
a reduction to classical ASP. The method relies on a procedure Tr(·, k) that
translates a FASP program into a classical ASP program whose answer sets
correspond to the k-valued answer sets of the original FASP program. For normal
programs, every k-valued answer set of the program can be found by using
the translation. Furthermore, any answer set obtained from the translation is
guaranteed to be a k-valued answer set of the original FASP program.

For disjunctive FASP programs, however, the result does not necessarily hold,
as illustrated in the next example.

Example 2. Program P2 has the following rules: {a ⊕ b ← 1, a ← b, b ← a}.
The finite-valued answer set obtained by applying the translation method to P2

using k = 1 is A1 = {(a, 1), (b, 1)}. However, A1 is not an answer set of P2 in
L∞. In fact, the only answer set of P2 in L∞ is A2 = {(a, 0.5), (b, 0.5)}, which
is obtained using the translation method when k = 2.

To ensure that each k-valued answer set obtained is indeed an answer set of the
FASP program, [25] suggested conducting an extra minimality check, which can
however be costly. In this paper, we show how to reduce a large class of disjunc-
tive FASP programs into normal programs, allowing us to avoid the minimality
check.

3 Evaluating Disjunctive Rules

In this section we will identify a large fragment of the class of disjunctive FASP
programs which can be reduced in polynomial time to a normal FASP program.
Subsequently, we will show how this reduction can be used to develop a sound
method for finding answer sets of general disjunctive FASP programs.

Following [3], the head-cycle free (HCF) ASP programs are programs whose
positive dependency graphs (see Sect. 3.3) do not contain cycles that go through
two literals occurring in the head of a rule. In [8], it was shown that any HCF
program can be reduced to an equivalent program using the shift operator.
Briefly, the shift operator replaces any rule a1 ∨ . . . ∨ an ← B with the set of
rules R = {ai ← B ∧ NBi | 1 ≤ i ≤ n}, where NBi =

∧
1≤j≤n,j �=i not aj .

For example, the program {a ∨ b ←} can be reduced to the equivalent program
{a ← not b, b ← not a}. However, when we introduce head cycles, such as in
the program P3 = {a ∨ b ←, a ← b, b ← a}, shifting is no longer guaranteed
to produce an equivalent normal program. Interestingly, in the case of FASP
programs, the syntactically similar program P4 = {a ⊕ b ← 1, a ← b, b ← a} is
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equivalent to the shifted version: P ′
4 = {a ← not b, b ← not a, a ← b, b ← a}. In

fact, we will show that any strict disjunctive FASP program can be reduced to
an equivalent normal FASP program in this way. This explains the observation
in [5] that allowing disjunction in the head does not affect the computational
complexity of strict FASP programs. For programs with disjunction in the body,
shifting does not always yield an equivalent FASP program, for e.g., P4 ∪ {a ←
a ⊕ a} is not equivalent to P ′

4 ∪ {a ← a ⊕ a}. Intuitively, we can safely shift
disjunctive rules if there is no interaction between disjunctions in the body and
a head cycle. We will now formalize this idea based on the notion of a self-
reinforcing cycle.

3.1 SRCF Programs

We first extend the notion of proof for classical disjunctive programs as defined
in [3]. Let 0 denotes the interpretation that assigns zeros to all atoms. Let I be an
interpretation of a program P, and let a be any atom such that I(a) > 0. Then,
a support of a in P w.r.t. I is defined as a sequence of rules r1, r2, . . . , rn ∈ PI

such that:

1. 0(Body(r1)) > 0
2. a ∈ Head(rn)
3.

∑
a∈Lit(Head(ri))

I(a) = I(Body(ri)) for all 1 ≤ i ≤ n

4. For every x ∈ Lit(Body(ri)) there exists a j < i such that x ∈ Lit(Head(rj))

We characterize the non-existence of self-reinforcing cyclic rules in a program
using the following definition: for a FASP program P, we say that P is self-
reinforcing cycle free (SRCF) w.r.t. an atom a, iff we can find a stratification
function f : BP → N, such that for every rule r ∈ P which contains a, it holds
that:

1. f(x) ≥ f(y) for every x ∈ Lit(Head(r)) and y ∈ Lit(Body(r))
2. If r ≡ x ← y ⊕ z, then f(x) > f(y) and f(x) > f(z).

Intuitively, we can see that a program P is SRCF w.r.t. atom a iff the dependency
graph does not contain any cycle which goes through a and involves at least one
rule with disjunction in the body. We say that a program P is SRCF iff it is
SRCF w.r.t every atom a ∈ BP . The following theorem characterizes the notion
of support for SRCF programs.

Theorem 1 (Support). Let P be an SRCF program and let I be a consistent
interpretation. Then I is an answer set of P iff:

1. I is a model of P.
2. Every a ∈ {x | I(x) > 0} has a support in P w.r.t. I.

The proof runs parallel to the proof of Theorem 2.3 in [3] by noting that support
plays a similar role for the answer sets of SRCF FASP programs as proof does
for HCF ASP programs. Due to space constraints, we omit the details.
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Example 3. Consider program P5 = {a ⊕ b ← 1, c ← b ⊗ not a, c ← a}. It is
clear that I = {(a, 0.3), (b, 0.7), (c, 0.4)} is an answer set of P5. In accordance
with Theorem 1, for each of a, b and c, we can take r1 = a⊕ b ← 1, r2 = c ← b⊗
0.7 as the support of these atoms in P5 w.r.t. I. Furthermore, any J > I obtained
by increasing the truth value of a, b or c will not have a support for that atom. On
the other hand, the non-SRCF program P6 = {a⊕b ← 1, a ← b, b ← a, a ← a⊕a}
has only one answer set, namely I = {(a, 1), (b, 1)}. One can check that there is
no support for each of a and b in P6 w.r.t. I, since in this case, I(a) + I(b) > 1.

The following lemma holds in both classical and fuzzy ASP.

Lemma 1 (Locality). Let P ′ be any subset of a program P. If I is an answer set
of P ′ and it satisfies all the rules in P − P ′, then I is also an answer set of P.

Proof. Since I is an answer set of P ′ and I satisfies every rule of P − P ′, I also
satisfies every rule in P. Then clearly, I satisfies PI as well. Suppose that I is
not the minimal model of PI , i.e., that there is another model J < I of PI .
Since P ′ ⊆ P (and hence P ′I ⊆ PI), it must also be the case that J satisfies
P ′I . But this means that I is not the minimal model of P ′I , contradicting the
assumption that I is an answer set of P ′.

We now present the main result for this section.

Theorem 2. Let P1 = P ∪ {a ⊕ b ← c} be any SRCF program w.r.t. a, b and
c. Then, an interpretation I is an answer set of P1 iff it is also an answer set
of P2 = P ∪ {a ← c ⊗ not b, b ← c ⊗ not a}.

Proof. (a) “If”-part: Let I be an answer set of P2. Then I is a minimal model of
PI ∪{a ← c⊗ (1 − I(b)), b ← c⊗ (1 − I(a))}. Clearly, we have I(a)+ I(b) ≥
I(c). We consider two cases:
(i) I(a) + I(b) = I(c). Let p ∈ {x | I(x) > 0}. By Theorem 1, there is a

support Rp of p in P2 w.r.t I. If {a ← c⊗(1 − I(b)), b ← c⊗(1 − I(a))}∩
Rp = ∅, then we must have Rp ⊆ PI . This means that Rp is a support
for p in P w.r.t I. On the other hand, if any (or both) of {a ← c ⊗
(1 − I(b)), b ← c ⊗ (1 − I(a))} occurs in Rp, we can replace it (them)
with the rule a⊕b ← c, to obtain the set R′

p which can serve as a support
for p in P1 w.r.t. I. In any case, each support Rp in P2 can be replaced
with a support for p in P1. By Theorem 1, this means that every answer
set of P2 is also an answer set of P1.

(ii) I(a) + I(b) > I(c). In this case, we have that {a ← c ⊗ (1 − I(b)), b ←
c ⊗ (1 − I(a))} �⊆ Rp for any support Rp of any p ∈ {x | I(x) > 0},
since it does not satisfy the first condition in the definition of support.
Therefore, we have that Rp ⊆ P for any p, which, by Theorem 1 means
that I is also an answer set of P. Since I definitely satisfies a ⊕ b ← c,
by Lemma 1, I is also an answer set of P1.

(b) “Only if”-part: Similar to the previous part, let I be an answer set of P1.
Then I is a minimal model of PI ∪ {a ⊕ b ← c}, and also I(a) + I(b) ≥ I(c).
As before, we consider two cases:
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(i) I(a) + I(b) = I(c). Let p ∈ {x | I(x) > 0}. By Theorem 1, there is a
support Rp of p in P2 w.r.t I. If a ⊕ b ← c �∈ Rp, then we must have
Rp ⊆ PI , which means that Rp is a support for p w.r.t. P. On the other
hand, if a ⊕ b ← c ∈ Rp, we can replace it with the two rules {a ←
c ⊗ 1 − I(b), b ← c ⊗ 1 − I(a)} to obtain the set R′

p which can serve as a
support for p in P2 w.r.t I. In any case, each support Rp in P1 w.r.t. I
can be replaced with a support for p in P2 w.r.t I. By Theorem 1, this
means that every answer set of P1 is also an answer set of P2.

(ii) I(a)+I(b) > I(c). Similar to case (a)(ii), here we have that a⊕b ← c �∈ Rp

for any support Rp of any p ∈ {x | I(x) > 0}. Again, using Theorem 1,
we get that every answer set of P1 is also an answer set of P2.

This result allows us to reduce an SRCF disjunctive FASP program to an equiv-
alent normal program by performing the shifting operations, thus allowing the
use of evaluation methods geared towards normal programs.

Example 4. The program P5 with the following rules:

{a ⊕ b ← 1, c ← b, c ← d ⊕ e}

is SRCF, since we can assign the stratification function f(a) = f(b) = f(d) =
f(e) = 1 and f(c) = 2. Hence, by Theorem 2, it is equivalent to the normal
program:

{a ← not b, b ← not a, c ← b, c ← d ⊕ e}

However, program P5 ∪ {d ← c} is not SRCF, and the shifting method does not
work.

As a corollary of Theorem 2, any strict disjunctive FASP program can be
reduced to a normal FASP program by shifting.

Example 5. Consider program P2 from Example 2. It is a strict disjunctive
FASP program, and hence it can be reduced to the equivalent normal program
{a ← not b, b ← not a, a ← b, b ← a}.

3.2 Non-SRCF Programs

For non-SRCF programs, finding an answer set in L∞ requires finding an answer
set I in Lk for some k ≥ 1, and checking whether I is also an answer set for
L∞. We show in this section how the last step can be implemented using Mixed
Integer Programming (MIP). For some background on MIP, one can consult,
e.g., [17,29].

In [16], a representation of infinitely-valued �Lukasiewicz logic using MIP was
proposed by defining a translation of each of the �Lukasiewicz expressions x ⊕ y,
x ⊗ y and ¬x into a set of MIP inequality constraints characterizing the value
of each of the expressions. Given a FASP program P and an interpretation I,
we can use the MIP representation of P (denoted as MIP (P)) based on the
representations proposed by [16] to check whether I is the minimal model of PI ,
as follows:



Solving Disjunctive Fuzzy Answer Set Programs 461

1. For each atom a in PI , we use a MIP variable va ∈ [0, 1] in MIP (P) to
express the truth value that a can take.

2. For any expression e ∈ {a ⊕ b, a ⊗ b, a � b, a � b} in any rule of PI , we cre-
ate the appropriate set of constraints in MIP to represent the value of the
expression, as suggested in [16]. For example, for a⊕ b, we have the following
MIP constraints:

va + vb + za⊕b ≥va⊕b

va + vb − za⊕b ≤va⊕b

va + vb − za⊕b ≥0
va + vb − za⊕b ≤1

va⊕b ≥za⊕b

In each case, ze is a 0–1 variable and ve is a variable representing the value
of the expression e.

3. For each rule α ← β ∈ PI , we add the constraint vα ≥ vβ , where vα and vβ

are the variables corresponding to the values of the atoms/expressions α and
β, respectively.

4. For each atom a, we add the constraint va ≤ I(a).
5. We set the objective function of the MIP program to minimise the value∑

a∈BP va.

Theorem 3. The interpretation I is the minimal model of PI iff the solution
returned in MIP (P) is equal to I.

3.3 Incorporating Program Decomposition

While in practical applications FASP programs will not always be SRCF, often it
will be possible to decompose programs such that many of the resulting compo-
nents are SRCF. In this section, we show how we can apply the reduction from
Sect. 3.1 to these individual components, and thus efficiently solve the overall
program.

Program modularity and decomposition using dependency analysis have
been extensively studied and implemented in classical ASP. In [21], the con-
cept of splitting sets for decomposing an ASP program was introduced. Depen-
dency analysis and program decomposition using strongly connected components
(SCC) was described in [10,27], and has been used as a framework for efficient
evaluation of logic programs, such as in [9,12,26]. In this section, we build on
this idea to develop a more efficient evaluation framework for FASP programs
by exploiting the program’s modularity/decomposability.

For a (ground) FASP program P, consider a directed graph GP = 〈V,E〉,
called the dependency graph of P, defined as follows: (i) V = BP and (ii) (a, b) ∈
E iff there exists a rule r ∈ P s.t. a ∈ Lit(Body(r)) and b ∈ Lit(Head(r)). By
SCC analysis, we can decompose GP into SCCs C1, . . . , Cn. With each SCC Ci,
we associate a program component PCi ⊆ P, defined as the maximal set of rules
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such that for every r ∈ PCi, the literals in PCi are contained in Ci. The set
of all program components of P is denoted as PC(P). We define dependency
between program components PCi and PCj as follows: PCi depends on PCj iff
there is an atom a in PCi and atom b in PCj such that a depends on b in GP .
The program component graph C = 〈PC(P), EC〉 is defined according to the
dependency relation between the program components.

Similar to the case in classical ASP, the program component graph of a FASP
program allows us to decompose the program into “modular components” that
can be separately evaluated. For non-disjunctive components, the evaluation
method described in [25] can be directly used. For SRCF disjunctive compo-
nents, we can perform the shifting method as described in Sect. 3.1 to reduce
the component into a normal program, and again use the evaluation method for
normal programs. For non-SRCF disjunctive components, an extra minimality
check as defined in Sect. 3.2 is needed after finding a k-answer set. Evaluation
proceeds along the program components according to the topological sorting of
the components in the program component graph, feeding the “partial answer
sets” obtained from one component into the next. If a “complete answer set” is
found, we stop. Otherwise, we backtrack to the previous component(s), obtaining
k-answer sets for the next values of k until the stopping criterion is met.

Proposition 1. Label an edge in GP with the symbol ⊕ if the edge corresponds
to a rule containing a disjunction in the body. A component is non-SRCF w.r.t.
the atoms in that component iff there is a cycle in the component containing a
labelled edge.

Example 6. Consider the program P6 containing the rules:

{a ← b ⊕ c, b ← a ⊗ 0.5, c ← 0.7, d ⊕ e ← a}

Program P6 is not SRCF, hence we cannot directly use Theorem 2 to perform
shifting. However, using SCC program decomposition, we obtain three compo-
nents PC1 = {a ← b⊕c, b ← a⊗0.5}, PC2 = {c ← 0.7} and PC3 = {d⊕e ← a}.
PC1 only depends on PC2, PC2 has no dependencies, while PC3 depends only on
PC1. Proceeding according to the topological order of the program components,
we start by evaluating PC2 and obtain the partial answer set {(c, 0.7)}. We feed
this partial answer set into the next component PC1. This program is normal
and hence requires no minimality check associated to disjunctive programs. We
obtain the partial answer set {(a, 1), (b, 0.5), (c, 0.7)}. The last component PC3

is disjunctive, but it is also SRCF w.r.t. its atoms, and hence we can perform
shifting to obtain the normal program {d ← a ⊗ not e, e ← a ⊗ not d}, which
again can be evaluated without using minimality checks.

4 Experimental Benchmark

In this section, we experimentally evaluate the effectiveness of the proposed
method. We implemented our method on top of the solver developed in [25]3.
3 https://github.com/mushthofa/ffasp.

https://github.com/mushthofa/ffasp
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We used clingo from the Potassco project [14] as the underlying ASP solver for
finding k-answer sets, and the Coin-OR Cbc4 solver as the MIP program solver
for minimality checking.

For this benchmark, we used two problems: (1) the fuzzy graph colorability
as given in the introduction, and (2) the fuzzy set covering problem, which is a
generalization of the classical set covering problem, defined as follows: A fuzzy
set F is defined as a function F : U → [0, 1], where U is the universe of discourse,
and F (u) for u ∈ U is the degree of membership of u in F . A fuzzy subset S
of F is a fuzzy set such that S(u) ≤ F (u),∀u ∈ U . Given a fuzzy set F and
a collection of subsets C = {S1, . . . , Sn} of F , the problem asks whether we
can find a fuzzy sub-collection of C, such that every member of F is covered
sufficiently by the subsets selected from C, and that the degree to which a
subset Si is selected is below a given threshold. We encode the problem in FASP
as follows: the fuzzy set F is given by a set of facts of the form f(x) ← a, the
subsets Si given by facts of the form subset(si) and their membership degrees by
member(si, x) ← b. The maximum degree to which a subset Si can be selected
is denoted by a constraint c ← in(si). The following FASP program encodes the
problem goal and constraints:

in(S) ⊕ out(S) ← subset(S)
covered(X) ← (in(s1) ⊗ member(s1,X)) ⊕ . . . ⊕ (in(sn) ⊗ member(sn,X))

0 ← f(X) ⊗ not covered(X)

For both benchmark problems, instances are generated randomly with no
attempt to produce “hard” instances. Constant truth values for fuzzy facts (e.g.,
for edge weights) are drawn randomly from the set Q10. Two types of instances
are considered: (1) where no saturation rules are present, which means that the
program is an SRCF program, and (2) where the saturation rules are added
randomly with a 0.1 probability for each b(x) and w(x) atoms (in the graph
coloring problem instances) and each in(x) atoms (in the set covering problem
instances). Since fuzzy answer set evaluation using finite-valued translation such
as the one used in [25] cannot, in principle, be used to prove inconsistency, we
opted to generate only instances that are known to be satisfiable.

To be able to see the advantage of applying our approach, we run the solver
on all instances both with and without employing SRCF detection and shifting
to reduce to normal programs. When SRCF detection is not employed, a mini-
mality check has to be performed to verify that the answer sets obtained in any
disjunctive component of the program are indeed minimal. Thus, our experiment
will be useful to see the effectiveness of the proposed reduction over the baseline
method of computing answer sets and checking for minimality.

The experiment was conducted on a Macbook with OS X version 10.8.5
running on Intel Core i5 2.4 GHz with 4 GB of memory. Execution time for
each instance is limited to 2 min, while memory usage is limited to 1 GB. Table 1
presents the results of the experiment. Each value is an average over ten repeats.

4 https://projects.coin-or.org/Cbc.

https://projects.coin-or.org/Cbc
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Table 1. Values in the cells indicate average execution times (over ten instances) in
seconds for the non-timed-out executions. Cells labeled with ‘(TO)’ indicates that all
executions of corresponding instances exceeded time/memory limit.

Problem Fuzzy graph coloring Fuzzy set cover

Saturation no yes no yes

Method δ σ δ σ δ σ δ σ

1 n = 20 2.9 1.7 2.7 1.8 n = 10 7.9 5.2 8.2 7.9

2 n = 30 6.6 3.8 6.1 3.8 n = 15 13.4 6.5 17.3 17.1

3 n = 40 10.6 5.7 10.7 6.1 n = 20 18.2 9.6 17.4 17.3

4 n = 50 19.8 11.5 23.0 11.0 n = 25 29.8 13.4 30.1 29.9

5 n = 60 34.8 17.7 36.0 20.4 n = 30 71.4 17.6 71.4 70.6

6 n = 70 53.4 25.4 55.3 28.2 n = 35 (TO) 22.3 (TO) (TO)

7 n = 80 74.8 33.9 76.1 41.1 n = 40 (TO) 27.8 (TO) (TO)

δ = no shifting, σ = with shifting applied

From the result, we can see that when SRCF detection and shifting are used,
execution times are generally lower than when only minimality checks are used,
even when saturation rules are present. This is especially true for the instances of
the fuzzy graph coloring problem. The use of program decomposition/modularity
analysis to separate program components that are SRCF from those that are non-
SRCF can be beneficial since this means we can isolate the need for minimality
checks to only those non-SRCF components, while the rest can be evaluated as
normal programs after performing the shifting operation. For the set covering
problem, we see no significant improvement in the running time when using the
shifting operator for instances with saturation, one of the reasons being that the
instances are such that minimality checks are needed regardless of what method
is used (due to the fact that most components are non-SRCF). However, for
the non-saturated instances, again we still see a clear advantage of using SRCF
detection and shifting.

5 Conclusion

In this paper, we have identified a large class of disjunctive FASP programs,
called SRCF programs, which can be efficiently evaluated by reducing them to
equivalent normal FASP programs. We also proposed a method to perform a
minimality check to determine the answer sets of non-SRCF programs based
on a MIP formulation, and we showed how we can decompose FASP programs
to further increase the applicability of our approach. We have implemented our
approach on top of a current FASP solver, and integrated a MIP solver into
the system to allow efficient minimality checking. To the best of our knowledge,
our implementation represents the first FASP solver to allow evaluation rules
with disjunctions in the body and/or in the head. We have also performed a
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benchmark testing of the proposed methods to measure their computational
efficiency. Our result indicates that identifying SRCF components of a FASP
program allows us to evaluate the program more efficiently.
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Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 326–339. Springer, Heidelberg
(2014)

19. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Logic 7(3), 499–562 (2006)

20. Lifschitz, V.: What is answer set programming? In: Proceedings of the 23rd AAAI
Conference in Artificial Intelligence, vol. 8, pp. 1594–1597 (2008)

21. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th
International Conference on Logic Programming, pp. 23–37 (1994)

22. Loyer, Y., Straccia, U.: Epistemic foundation of stable model semantics. Theor.
Pract. Logic Program. 6(4), 355–393 (2006)

23. Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs
under the answer set semantics for the semantic web. In: Marchiori, M., Pan, J.Z.,
Marie, C.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg
(2007)

24. Madrid, N., Ojeda-Aciego, M.: Measuring inconsistency in fuzzy answer set seman-
tics. IEEE Trans. Fuzzy Syst. 19(4), 605–622 (2011)

25. Mushthofa, M., Schockaert, S., De Cock, M.: A finite-valued solver for disjunctive
fuzzy answer set programs. In: Proceedings of European Conference in Artificial
Intelligence 2014, pp. 645–650 (2014)

26. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model
semantics for smodels programs. Theor. Pract. Logic Program. 8(5–6), 717–761
(2008)

27. Ross, K.A.: Modular stratification and magic sets for datalog programs with nega-
tion. In: Proceedings of the 9th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pp. 161–171 (1990)

28. Schockaert, S., Janssen, J., Vermeir, D.: Fuzzy equilibrium logic: declarative prob-
lem solving in continuous domains. ACM Trans. Comput. Logic 13(4), 33:1–33:39
(2012)

29. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998)
30. Van Nieuwenborgh, D., De Cock, M., Hadavandi, E.: Fuzzy answer set program-

ming. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006.
LNCS (LNAI), vol. 4160, pp. 359–372. Springer, Heidelberg (2006)



Characterising and Explaining Inconsistency
in Logic Programs

Claudia Schulz1(B), Ken Satoh2, and Francesca Toni1

1 Department of Computing, Imperial College London, London SW7 2AZ, UK
{claudia.schulz,f.toni}@imperial.ac.uk

2 National Institute of Informatics, Tokyo 101-8430, Japan
ksatoh@nii.ac.jp

Abstract. A logic program under the answer set semantics can be
inconsistent because its only answer set is the set of all literals, or because
it does not have any answer sets. In both cases, the reason for the incon-
sistency may be (1) only explicit negation, (2) only negation as failure,
or (3) the interplay between these two kinds of negation. Overall, we
identify four different inconsistency cases, and show how the respective
reason can be further characterised by a set of culprits using semantics
which are weaker than the answer set semantics. We also provide a tech-
nique for explaining the set of culprits in terms of trees whose nodes are
derivations. This can be seen as an important first step towards debug-
ging inconsistent logic programs.

Keywords: Logic programming · Inconsistency · Explanation

1 Introduction

A logic program represents knowledge in the form of rules made of statements
which can be negated in two ways: using explicit negation, expressing that the
statement does not hold, or negation as failure (NAF), expressing that the state-
ment cannot be proven to hold. If no negation of either kind is present, a logic
program will always be consistent under the answer set semantics [8]. However,
if negation is used in a logic program, inconsistency may arise in one of two
different ways: either the only answer set of the logic program is the set of all
literals, or the logic program has no answer sets at all.

Efficient solvers have been developed for computing the answer sets of a given
logic program [6,10,11]. However, in the case of an inconsistent logic program
these solvers do not provide any classification of the inconsistency, or explana-
tion thereof. Especially when dealing with a large inconsistent logic program or
if the inconsistency is unexpected, understanding why the inconsistency arises
and which part of the logic program is responsible for it is an important first
step towards debugging the logic program in order to restore consistency. Vari-
ous approaches have been developed for finding the source of inconsistency and
even for suggesting ways of debugging the logic program. In particular, [7,12,17]
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feed the inconsistent logic program into a meta logic program whose answer set
describes the structure of and potential mistakes in the original logic program.
In another recent approach [13], the user assigns truth values to literals in the
inconsistent logic program step-by-step until encountering a conflict.

These debugging approaches assume explicitly or implicitly the existence of
an intended answer set. We propose a new method for identifying the reason
of inconsistency in a logic program without the need of an intended answer
set, based on the well-founded [19] and M-stable [3] model semantics. These
semantics are “weaker” than answer sets in that they are 3-valued rather than
2-valued. In contrast to some previous approaches [1,7,17], we consider logic
programs that may comprise both explicit negation and NAF. We prove that
the two ways in which a logic program may be inconsistent are further divided
into four inconsistency cases which have different reasons for the inconsistency:
one where only explicit negation is responsible and the only answer set is the
set of all literals, one where only NAF is responsible and the logic program has
no answer sets, and two where an interplay of explicit negation and NAF is
responsible and the logic program has no answer sets. We show how in each
of these inconsistency cases the reason of the inconsistency can be refined to a
characteristic set of “culprits”. These “culprits” can then be used to construct
trees whose nodes hold derivations. These trees explain why the inconsistency
arises and which part of the logic program is responsible. Furthermore, we show
how the inconsistency case and the respective set of culprits can be determined
using the aforementioned “weaker” semantics.

2 Background

A logic program P is a (finite) set of ground clauses1 of the form l0 ← l1, . . . , lm,
not lm+1, . . . , not lm+n with m,n ≥ 0. All li (1 ≤ i ≤ m) and all lj (m+1 ≤ j ≤
m+n) are classical literals, i.e. atoms a or explicitly negated atoms ¬a, and not lj
are negation as failure (NAF) literals. We will use the following notion of depen-
dency inspired by [20]: l0 is positively dependent on li and negatively dependent
on lj . A dependency path is a chain of positively or negatively dependent literals.
A negative dependency path is obtained from a dependency path by deleting all
literals l in the path such that some k in the path is positively dependent on l,
e.g. if p, q, r is a dependency path where p is positively dependent on q, and q is
negatively dependent on r then p, r is a negative dependency path.

HBP is the Herbrand Base of P, i.e. the set of all ground atoms of P, and
LitP = HBP ∪ {¬a | a ∈ HBP} consists of all classical literals of P. NAFHBP =
{not a | a ∈ HBP} consists of all NAF literals of atoms of P and NAFLitP =
{not l | l ∈ LitP} of all NAF literals of classical literals of P. An atom a and the
explicitly negated atom ¬a are called complementary literals.

�MP denotes derivability using modus ponens on ← as the only inference
rule, treating l← as l← true, where P �MP true for any P. For a logic program
1 Clauses containing variables are used as shorthand for all their ground instances over

the Herbrand Universe of the logic program.
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P and Δ ⊆ NAFLitP , P ∪ Δ denotes P ∪ {not l ← |not l ∈ Δ}. When used on
such P∪ Δ, �MP treats NAF literals syntactically as in [4] and thus P∪Δ can
be seen as a logic program. l ∈ LitP is strictly derivable from P iff P �MP l,
and defeasibly derivable from P iff P �MP l and ∃Δ ⊆ NAFLitP such that
P∪Δ �MP l. l is derivable from P iff l is strictly or defeasibly derivable from P.

Answer Sets [8]. Let P be a logic program without NAF literals. The answer
set of P, denoted AS(P), is the smallest set S ⊆ LitP such that:

(1) for any clause l0 ← l1, . . . , lm in P: if l1, . . . , lm ∈ S then l0 ∈ S; and
(2) S = LitP if S contains complementary literals.

For a logic program P, possibly with NAF literals, and any S ⊆ LitP , the reduct
PS is obtained from P by deleting:

– all clauses containing not l where l ∈ S, and
– all NAF literals in the remaining clauses.

Then S is an answer set of P if it is the answer set of the reduct PS , i.e. if
S = AS(PS). P is inconsistent if it has no answer sets or if its only answer set
is LitP , else it is consistent.

3-Valued Models [15]. Let P be a logic program with no explicitly negated atoms.
A 3-valued interpretation of P is a pair 〈T ,F〉, where T ,F ⊆ HBP , T ∩ F = ∅,
and U = HBP\(T ∪F). The truth value of a ∈ HBP and not a ∈ NAFHBP with
respect to 〈T ,F〉 is:
val(a) = T , if a ∈ T ; val(not a) = T , if a ∈ F ;
val(a) = F , if a ∈ F ; val(not a) = F , if a ∈ T ;
val(a) = U , if a ∈ U ; val(not a) = U , if a ∈ U ;
The truth values are ordered by T > U > F and naturally val(T ) = T , val(F ) =
F , and val(U) = U . A 3-valued interpretation 〈T ,F〉 satisfies a clause a0 ←
a1, . . . , am, not am+1, . . . , not am+n if val(a0) ≥ min{val(a1), . . . , val(am+n)}.
〈T ,F〉 satisfies a0 ← if val(a0) = T . The partial reduct P

〈T ,F〉 of P with respect
to a 3-valued interpretation 〈T ,F〉 is obtained by replacing each NAF literal in
every clause of P by its respective truth value.

– A 3-valued interpretation 〈T ,F〉 of P is a 3-valued model of P iff 〈T ,F〉
satisfies every clause in P.

– A 3-valued model 〈T ,F〉 of P is a 3-valued stable model of P iff it is a minimal
3-valued model of P

〈T ,F〉 , i.e. if �〈T1,F1〉 which is a 3-valued model of P
〈T ,F〉

such that T1 ⊆ T and F1 ⊇ F and T �= T1 or F �= F1.
– A 3-valued stable model 〈T ,F〉 of P is the well-founded model of P if U is

maximal (w.r.t. ⊆) among all 3-valued stable models of P. The well-founded
model always exists for logic programs without explicitly negated atoms.

– A 3-valued stable model 〈T ,F〉 of P is a 3-valued M-stable model (Maximal-
stable) of P if �〈T1,F1〉 which is a 3-valued stable model of P such that
T ⊆ T1 and F ⊆ F1 and T �= T1 or F �= F1 [3].
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The translated logic program P ′ of a logic program P is obtained by substi-
tuting every explicitly negated atom ¬a in P with a new atom a′ /∈ HBP [8,15].
Then a′ (resp. a) is the translated literal of the original literal ¬a (resp. a).
The 3-valued stable models of a logic program P, possibly containing explicitly
negated atoms, are defined in terms of the 3-valued stable models of P ′ [15].
For every 3-valued stable model 〈T ′,F ′〉 of P ′ the corresponding 3-valued stable
model 〈T ,F〉 of P is obtained from 〈T ′,F ′〉 by replacing every translated literal
by its original literal. The 3-valued stable models of P are those correspond-
ing 3-valued stable models where T does not contain complementary literals.
Note that P ′ always has a well-founded model but that P might not have a
well-founded model. Furthermore, note that a 3-valued stable model of P is an
answer set of P iff U = ∅.

From here onwards, and if not stated otherwise, we assume as given an incon-
sistent logic program P and the translated logic program P ′, where a′, a′

i, a are
the translated literals of ¬a, ¬ai, and a, respectively.

3 Characterising the Type of Inconsistency

We first show how to identify in which way a logic program is inconsistent, i.e. if
its only answer set is the set of all literals or if it has no answer sets at all, assuming
that we only know what an answer set solver gives us, i.e. that the logic program is
inconsistent. This identification is based on whether or not the logic program has
a well-founded model, which can be computed in polynomial time [19]. Our results
show that even though a logic program can only be inconsistent in two ways, in fact
there are three different inconsistency cases which arise due to different reasons
(see Sect. 4). The three inconsistency cases are:

– P has no well-founded model and:
(1) the only answer set of P is LitP ;
(2) P has no answer sets.

– P has a well-founded model and

(3) P has no answer sets.

In the following, we prove that these three cases are the only ones, and charac-
terise them in more detail.

Example 1. Let P1 be the following logic program:
p ← q

u ← not t

q ← r, s

t ← not u

r ←
¬p ←

s ←

P1 has no well-founded model and its only answer set is LitP1 , so P1 falls into
inconsistency case 1. The reason that the only answer set is LitP1 is that for any
S ⊆ LitP1 satisfying the conditions of an answer set, s, r,¬p ∈ S, then q, p ∈ S,
and thus S contains the complementary literals p and ¬p. Note that NAF liter-
als do not play any role in the inconsistency of P1; an atom and its explicitly
negated atom, both strictly derivable, are responsible for the inconsistency.
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The observations in Example 1 agree with a well-known result about logic
programs whose only answer set it the set of all literals (Proposition 6.7 in [9]).

Lemma 1. The only answer set of P is LitP iff ∃a ∈ HBP such that P �MP a
and P �MP ¬a.

Example 2. Let P2 be the following logic program:
q ← not r ¬q ← ¬s, not p r ← not ¬t ¬s ← ¬t ←

P2 has no well-founded model and no answer sets, so P2 falls into inconsistency
case 2. The reason that P2 has no answer sets is an interplay of explicit nega-
tion and NAF: for any S ⊆ LitP2 satisfying the conditions of an answer set,
¬t,¬s ∈ S, and thus r ← not ¬t is always deleted in P2

S and both q ← and
¬q ← ¬s are always part of P2

S . Consequently, for any such S it holds that
q,¬q ∈ AS(P2

S), meaning that the only possible answer set is LitP2 . However,
since r, p,¬t ∈ LitP2 the reduct will only consist of ¬t ← and ¬s ←, so that
AS(P2

LitP2 ) = {¬t,¬s} which does not contain complementary literals. Con-
sequently, P2 has no answer sets at all. Even though both here and in P1 the
inconsistency arises due to complementary literals, the difference lies in their
derivations: here the complementary literals are defeasibly derivable, i.e. not
only explicit negation but also NAF involved in the derivation is responsible for
the inconsistency.

The following Theorem characterises inconsistency cases 1 and 2 illustrated
in Examples 1 and 2.

Theorem 1. If P has no well-founded model then

1. the only answer set of P is LitP iff ∃a ∈ HBP such that P �MP a and
P �MP ¬a;

2. P has no answer sets iff �a ∈ HBP such that P �MP a and P �MP ¬a.

Proof. From Lemma 1.

Example 3. Let P3 be the following logic program:
r ← not s

s ← not r

q ← not s

¬q ← not s

p ← not r

¬p ← not r
The well-founded model of P3 is 〈∅, ∅〉 but P3 has no answer sets, so it falls into
inconsistency case 3. The reason that P3 has no answer sets is an interplay of
explicit negation and NAF similar to Example 2. From the first two clauses, it
follows that any potential answer set S ⊆ LitP3 cannot contain both s and r.
If r /∈ S then p,¬p ∈ S; if s /∈ S then q,¬q ∈ S, and thus the only possible
answer set is LitP3 . However, P3

LitP3 is empty, so AS(P3
LitP3 ) = ∅, which

does not contain complementary literals. Thus, P3 has no answer sets. As in
Example 2, the inconsistency is due to an atom and its explicitly negated atom
being defeasibly derivable, but in contrast to P2 here the derivations of the
complementary literals involve NAF literals which form an even-length negative
dependency loop, namely s and r.

Theorem 2 characterises inconsistency case 3, illustrated in Example 3.
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Theorem 2. If P has a well-founded model then P has no answer sets.

Proof. Assume that ∃a ∈ HBP s.t. P �MP a and P �MP ¬a. Then a and a′

are in the well-founded model of P ′ (by the alternating fixpoint definition of
well-founded models [18]) and thus a and ¬a are contained in the corresponding
well-founded model of P, so P has no well-founded model (contradiction). Thus,
�a ∈ HBP s.t. P �MP a and P �MP ¬a, so by Lemma 1 it is not the case that
the only answer set of P is LitP . Consequently, P has no answer sets.

In summary, if P has no well-founded model then its only answer set is LitP
– caused by explicit negation – or it has no answer sets – caused by the interplay
of explicit negation and NAF. If P has a well-founded model then it definitely
has no answer sets – caused by the interplay of explicit negation and NAF.

4 Characterising Culprits

In the examples in Sect. 3, we already briefly discussed that the reasons for the
inconsistency are different in the three inconsistency cases: either only explicit
negation or the interplay of explicit negation and NAF. In this section, we show
that inconsistency case 3 can in fact be further split into two sub-cases: one where
the interplay of explicit negation and NAF is responsible as seen in Example 3
(case 3a), and one where only NAF is responsible for the inconsistency (case
3b). Furthermore, we characterise the different reasons of inconsistency in more
detail in terms of “culprit” sets, which are sets of literals included in the well-
founded (cases 1,2) or 3-valued M-stable (case 3b) model of P, or in the answer
sets of P ′ (case 3a). In other words, culprits can be found in “weaker” models.

Definition 1 (culprit sets). Let P, 〈T ′
w,F ′

w〉 be the well-founded model of P ′,
S′
1, . . . , S

′
n (n ≥ 0) its answer sets, and 〈T ′

M ,F ′
M 〉 one of its 3-valued M-stable

models with U ′
M the set of undefined atoms.

– If P has no well-founded model then
• {a,¬a} is a culprit set of P iff a, a′ ∈ T ′

w and a and a′ are strictly
derivable from P ′ (case 1).

• {a,¬a} is a culprit set of P iff a, a′ ∈ T ′
w and one of them is defeasibly

derivable from P ′ and the other one is derivable from P ′ (case 2).
– If P has a well-founded model and

• P ′ has n answer sets (n ≥ 1), then {a1,¬a1, . . . , an,¬an} is a culprit
set of P iff ∀ai,¬ai (1 ≤ i ≤ n): ai, a

′
i ∈ S′

i and one of them is defeasibly
derivable from P ′ and the other one is derivable from P ′ (case 3a).

• P ′ has no answer sets, then C is a culprit set of P iff for some a1 ∈ U ′
M

there exists a negative dependency path a1, . . . , am, b1, . . . , bo (m, o ≥ 1),
in P ′ such that all ah (1 ≤ h ≤ m) and bj (1 ≤ j ≤ o) are in U ′

M , o
is odd, am = bo, and C consists of the original literals of the translated
literals b1, . . . , bo (case 3b).

We now show that for every inconsistency case at least one culprit set exists.
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Example 4. The well-founded model of the translated logic program P1
′

(see P1 in Example 1) is 〈{p, p′, q, r, s}, ∅〉. p, p′ ∈ T ′
w and both of them are

strictly derivable from P ′. Thus, {p,¬p} is a culprit set of P1, which confirms
our observation that LitP1 is the only answer set of P1 because every potential
answer set contains both p and ¬p (see Example 1). Note that it is not only
the literals in the culprit set which characterise this inconsistency case, it is the
derivation of the literals, i.e. that both are strictly derivable.

Theorem 3 states the existence of a culprit set in inconsistency case 1.

Theorem 3. Let P have no well-founded model and let its only answer set be
LitP . Then P has a case 1 culprit set {a,¬a}.

Proof. By Lemma 1, ∃a, a′ ∈ HBP′ s.t. P ′ �MP a and P ′ �MP a′. By definition
of well-founded model (as an alternating fixpoint [18]), a, a′ ∈ T ′

w where 〈T ′
w,F ′

w〉
is the well-founded model of P ′. By Definition 1, {a,¬a} is a case 1 culprit set.

Example 5. The well-founded model of P ′
2 (see P2 in Example 2) is 〈{q, q′, s′,

t′}, {p, r}〉. q, q′ ∈ T ′
w and here even both of them are defeasibly derivable. Thus,

{q,¬q} is a culprit set of P2 which confirms our observation that the reason
for the inconsistency of P2 is that every potential answer set contains both q
and ¬q, but LitP2 is not an answer set due to the NAF literals involved in the
derivations of q and ¬q. Note that even though the culprit sets of P1 and P2 are
very similar – both consist of complementary literals – the difference lies in the
derivations of the literals in the culprit set: here the literals are not both strictly
derivable, so the reason of the inconsistency is both that complementary literals
are derivable (explicit negation) and that their derivations involve NAF literals.

Theorem 4 proves the existence of a culprit set in inconsistency case 2.

Theorem 4. Let P have no well-founded model and no answer sets. Then P
has a case 2 culprit set {a,¬a}.

Proof. Let 〈T ′
w,F ′

w〉 be the well-founded model of P ′. Since P has no well-
founded model, T ′

w must contain some a, a′. Since every answer set is a superset
of the well-founded model (Corollary 5.7 in [19]), every potential answer set of
P contains a and ¬a, meaning that the only possible answer set is LitP . From
the assumption that P has no answer sets, we can conclude that AS(PLitP )
does not contain a and ¬a. Thus, all of the rules needed for the derivation of
either a or ¬a are deleted in PLitP , meaning that a or ¬a is defeasibly derivable.
Trivially, the other literal is also derivable as a, a′ ∈ T ′

w. Then by Definition 1,
{a,¬a} is a case 2 culprit set of P.

Example 6. P ′
3 (see P3 in Example 3) has two answer sets S′

1 = {q, q′, r} and
S′
2 = {p, p′, s}, so P3 falls into inconsistency case 3a. q, q′, p, p′ are all defeasibly

derivable from P3
′ and thus {q,¬q, p,¬p} is a culprit set of P3. This confirms

our observation that the reason for the inconsistency of P3 is that the two poten-
tial answer sets both contain complementary literals but that LitP3 is not an
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answer set due to the NAF literals involved in the derivations of the complemen-
tary literals. Thus, as in Example 5 the inconsistency is due to the interplay of
explicit negation and NAF with the difference of the even-length loop described
in Example 2. Due to this difference in the derivations, here the well-founded
model of the translated logic program does not provide any information about
culprits, but the answer sets do.

Theorem 5 states the existence of a culprit set in inconsistency case 3a.

Theorem 5. Let P have a well-founded model and let P ′ have n ≥ 1 answer
sets. Then, P has a case 3a culprit set {a1,¬a1, . . . , an,¬an}.

Proof. By Theorem 2, P has no answer sets, so all Si ⊆ LitP with Si = AS(PSi)
contain complementary literals ai and ¬ai, but AS(PLitP ) does not contain
complementary literals. Thus, all S′

i with S′
i = AS(P ′Si

′
) contain ai and a′

i, so
ai and a′

i must be derivable from P ′. Assume that P ′ �MP ai and P ′ �MP a′
i.

Then by Lemma 1 the only answer set of P is LitP (contradiction). Thus, at
least one of ai and a′

i is defeasibly derivable from P ′. Then by Definition 1,
{a1,¬a1, . . . , an,¬an} is a case 3a culprit set of P.

Example 7. Let P4 be the following logic program:
s ← w

¬u ← not v

w ← not t

v ← not t, not x

t ← ¬x

x ←
¬x ← not ¬u

y ← not x
P4 has a well-founded model and P ′

4 has no answer sets, so P4 falls into inconsis-
tency case 3b. The only 3-valued M-stable model of P ′

4 is 〈{x}, {y}〉, where U ′
M =

{s, t, u′, v, w, x′}. For s ∈ U ′
M there exists a negative dependency path s, t, u′, v, t

of atoms in U ′
M , where u′, v, t is an odd-length loop. Thus, C = {¬u, v, t} is

a culprit set of P4. Note that this culprit set is found no matter with which
atom in U ′

M the negative dependency path is started. This example shows that
in inconsistency case 3b the inconsistency is due to NAF on its own; explicit
negation plays no role.

Theorem 6 states not only the existence of a culprit set in inconsistency
case 3b, but also characterises how to find a culprit set. This extends the results
of [20] about odd-length loops.

Theorem 6. Let P have a well-founded model and let P ′ have no answer sets.
Let 〈T ′

M ,F ′
M 〉 be a 3-valued M-stable model of P ′ with U ′

M the set of unde-
fined atoms. Then, for any a1 ∈ U ′

M there exists a negative dependency path
a1, . . . , an, b1, . . . , bm such that the set C consisting of the original literals of the
translated literals b1, . . . , bm is a case 3b culprit set of P.

Proof (Sketch). By definition of 3-valued stable models any undefined atom is
negatively dependent on an undefined atom. Thus, there is a negative depen-
dency path of undefined atoms a1, . . . , an, which must lead to a negative
dependency loop an, b1, . . . , bm (an = bm) where no bj is part of another negative-
dependency path containing literals other than the ones in the loop. Assuming
that the negative-dependency loop and all sub-loops are of even length, the loop
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on its own has a 2-valued stable model. We can show (omitted for lack of space)
that it is possible to change the truth values of atoms not in the loop and in
U ′
M to T or F in such a way that if combined with the new truth values of the

loop, a 3-valued stable model 〈T ′,F ′〉 of P ′ is created. Clearly T ′
M ⊂ T ′ and

F ′
M ⊂ F ′, so 〈T ′

M ,F ′
M 〉 is not a 3-valued M-stable model. Contradiction.

Note that in each of the three inconsistency cases discussed in Sect. 3, the
translated logic program P ′ might or might not have answer sets. However,
regarding culprit sets this distinction only makes a difference in inconsistency
case 3.

It follows directly from the previous theorems that the culprit sets we identi-
fied are indeed responsible for the inconsistency, i.e. if no culprit sets exist then
the logic program is not inconsistent, which is an essential first step for a user
to understand what causes the inconsistency in a logic program.

Corollary 1. Let P be a (possibly consistent) logic program. If there exists no
culprit set of inconsistency cases 1, 2, 3a, or 3b of P, then P is consistent.

5 Explaining Culprits

As pointed out in the previous sections, even though we identify culprits as
sets of literals, the reason of the inconsistency is mostly the way in which these
literals are derivable from the logic program. In order to make the reason of
the inconsistency more understandable for the user, we now show how explana-
tions of the inconsistency can be constructed in terms of trees whose nodes are
derivations. For this purpose, we define derivations with respect to a 3-valued
interpretation 〈T ,F〉. We call a derivation true with respect to 〈T ,F〉 if all NAF
literals not k used in the derivation are true with respect to the interpretation,
i.e. the literals k are false in the interpretation. We call a derivation false with
respect to 〈T ,F〉 if there exists a NAF literal not k used in the derivation which
is false with respect to the interpretation, i.e. k is true in the interpretation.

Definition 2 (true/false derivation). Let 〈T ,F〉 be a 3-valued interpretation
of P, l ∈ LitP , and Δ ⊆ NAFLitP .

1. P ∪ Δ �MP l is a true derivation of l w.r.t. 〈T ,F〉 if ∀not k ∈ Δ : k ∈ F .
2. P ∪ Δ �MP l is a false derivation of l w.r.t. 〈T ,F〉 if ∃not k ∈ Δ : k ∈ T .

Example 8. Consider P4 from Example 7. P4 ∪ {not t, not x} �MP v is a true
derivation w.r.t. 〈{s}, {t, x}〉, a false derivation w.r.t 〈{s, t}, {x}〉, and neither a
true nor a false derivation w.r.t. 〈{s}, {x}〉.

An explanation of inconsistency cases 1–3a illustrates why the literals in a
culprit set are contained in the respective 3-valued stable model 〈T ,F〉 used
to identify this culprit set, which is due to the literals’ derivations. Thus, an
explanation starts with a true derivation of a literal in the culprit set with
respect to 〈T ,F〉. The explanation then indicates why this derivation is true,
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i.e. why all NAF literals not k are true with respect to 〈T ,F〉. The reason why
not k is true is that some derivation of k is false, i.e. a NAF literal not m in a
derivation of k is false with respect to 〈T ,F〉. This in turn is explained in terms
of why m is the true with respect to 〈T ,F〉, and so on.

Definition 3 (explanation). Let 〈T ,F〉 be a 3-valued stable model of P and
let l ∈ LitP . An explanation of l w.r.t. 〈T ,F〉 is a tree such that:

1. Every node holds either a true or a false derivation w.r.t. 〈T ,F〉.
2. The root holds a true derivation of l w.r.t. 〈T ,F〉.
3. For every node N holding a true derivation P ∪ Δ �MP k w.r.t. 〈T ,F〉 and

for every not m ∈ Δ: every false derivation of m w.r.t. 〈T ,F〉 is held by a
child of N .

4. For every node N holding a false derivation P ∪ Δ �MP k w.r.t. 〈T ,F〉: N
has exactly one child holding a true derivation of some m w.r.t. 〈T ,F〉 such
that not m ∈ Δ.

5. There are no other nodes except those given in 1–4.

Since culprit sets are determined with respect to different 3-valued stable models
in the different inconsistency cases, explanations are constructed with respect to
these different models, too.

Definition 4 (inconsistency explanation - cases 1,2). Let P have no well-
founded model and let 〈T ′

w,F ′
w〉 be the well-founded model of P ′. Let {a,¬a} be

a culprit set of P. A translated inconsistency explanation of P consists of an
explanation of a w.r.t. 〈T ′

w,F ′
w〉 and an explanation of a′ w.r.t. 〈T ′

w,F ′
w〉. An

inconsistency explanation of P is derived by replacing every translated literal in
the translated inconsistency explanation by its respective original literal.

Since explanations are trees, they can be easily visualised, as shown for P2

(see Examples 2 and 5) in Fig. 1.

Definition 5 (inconsistency explanation - case 3a). Let P have a well-
founded model and let S′

1, . . . , S
′
n (n ≥ 1) be the answer sets of P ′. Let {a1,¬a1,

. . . , an,¬an} be a culprit set of P. A translated inconsistency explanation of P
consists of an explanation of all ai and a′

i (1 ≤ i ≤ n) w.r.t. 〈S′
i, (HBP′\S′

i)〉.
An inconsistency explanation of P is derived by replacing every translated literal
in the translated inconsistency explanation by its respective original literal.

Fig. 1. The inconsistency explanation of P2 (Examples 2, 5).
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Fig. 2. Part of the inconsistency explanation of P3 explaining q and ¬q. The full
inconsistency explanation also comprises similar explanations for p and ¬p.

Figure 2 shows part of the inconsistency explanation of P3 (see Examples 3
and 6). It also illustrates the difference between the reasons of inconsistency in
P2 and P3, namely the negative dependency loop of s and r in P3.

For inconsistency case 3b, where the literals in a culprit set form an odd-
length negative dependency loop, the inconsistency explanation is a tree whose
nodes hold derivations. However, since all literals in a culprit set are undefined
with respect to a 3-valued M-stable model, an explanation is constructed with
respect to the set of undefined atoms U rather than T and F . In particular, the
reason that a literal is undefined is that its derivation contains a NAF literal not k
which is undefined. Then k ∈ U which again is due to the derivation containing
some undefined NAF literal, and so on. Thus, an explanation of inconsistency
case 3b is a tree of negative derivations with respect to U .

Definition 6 (inconsistency explanation - case 3b). Let P have a well-
founded model and let P ′ have no answer sets. Let 〈T ′

M ,F ′
M 〉 be a 3-valued

M-stable model of P ′ with U ′
M the set of undefined atoms. Let C be a culprit set

of P and a ∈ C. A translated inconsistency explanation of P is a tree such that:

1. Every node holds a false derivation w.r.t. 〈U ′
M , ∅〉.

2. The root holds a false derivation of a w.r.t. 〈U ′
M , ∅〉.

3. For every node N holding a false derivation P ∪ Δ �MP b w.r.t. 〈U ′
M , ∅〉: N

has exactly one child node holding a false derivation of some m w.r.t. 〈U ′
M , ∅〉

such that not m ∈ Δ and m ∈ C.
4. There are no other nodes except those given in 1–3.

An inconsistency explanation of P is derived by replacing every translated literal
in the translated inconsistency explanation by its respective original literal.

Figure 3 illustrates the inconsistency explanation of P4 (see Example 7),
showing the responsible odd-length loop. It also illustrates how the derivations
in an inconsistency explanation can be expanded to derivation trees, which can
also be done for cases 1–3a.

Note that in all our examples, the culprit set is unique. However, in general a
logic program may have various culprit sets (from the same inconsistency case)
resulting in various inconsistency explanations. Moreover, there may be various
inconsistency explanations for a given culprit set.
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Fig. 3. The inconsistency explanation of P4 (left) and the version where derivations
are expanded to trees (right).

6 Conclusion

We showed that the two ways in which a logic program may be inconsistent
– it has no answer sets or its only answer set is the set of all literals – can be
determined using the well-founded model semantics and further divided into four
inconsistency cases: one where only explicit negation is responsible, one where
only NAF is responsible, and two where the interplay of explicit negation and
NAF is responsible for the inconsistency. Each of these cases is characterised
by a different type of culprit set, containing literals which are responsible for
the inconsistency due to the way in which they are derivable. These culprit sets
can be identified using “weaker” semantics than answer sets and can be used to
explain the inconsistency in terms of trees whose nodes are derivations.

Our approach is related to early work on characterising logic programs with
respect to the existence of answer sets [2,5,20]. However, none of these considers
the properties of explicit negation in addition to NAF. It should also be pointed
out that our explanations are related to the graphs used in [14,16] for explaining
answer sets. In comparison to debugging approaches [1,7,12,13,17], our approach
detects reasons for the inconsistency in terms of culprit sets, which is independent
of an intended answer set. This naturally leads to the questions how to perform
debugging based on the culprit sets, as well as how to deal with of multiple
culprit sets for a logic program, which will be addressed in the future.

Since answer set programming for real-world applications often involves more
complicated language constructs, e.g. constraints or aggregates, future work
involves the extension of our approach to characterising inconsistency in logic
programs using these constructs.
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Abstract. This paper presents an implementation of a general frame-
work for consistency-based belief change using Answer Set Programming
(ASP). We describe Equibel, a software system for working with belief
change operations on arbitrary graph topologies. The system has an ASP
component that performs a core maximization procedure, and a Python
component that performs additional processing on the output of the
ASP solver. The Python component also provides an interactive inter-
face that allows users to create a graph, set formulas at nodes, perform
belief change operations, and query the resulting graph.

Keywords: Belief change · Belief merging · Answer set programming ·
Python

1 Introduction

We present an implementation of the consistency-based framework for multi-
agent belief change discussed in [2]. In a network of connected agents, each with
a set of beliefs, it is important to determine how the beliefs of the agents change
as a result of incorporating information from other agents. We represent such
a network by an undirected graph G = 〈V,E〉, where vertices represent agents
and edges represent communication links by which agents share information.
Associated with each agent is a belief base expressed as a propositional for-
mula. Beliefs are shared among agents via a maximization procedure, wherein
each agent incorporates as much information as consistently possible from other
agents.

Before delving into the implementation, we introduce a motivating example:

Example 1. Consider a group of drones searching for missing people in a build-
ing. Each of the drones has some initial beliefs regarding where the missing
people might be. Drone 1 believes that there is a person in the bookstore, as
well as one in the atrium; drone 2 believes that there cannot be missing people in
both the atrium and the bookstore; drone 3 just believes that there is a person
in the cafeteria. The drones communicate with one another, and each is willing
to incorporate new information that does not conflict with its initial beliefs. Our
goal is to determine what each drone will believe following the communication.
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 480–487, 2015.
DOI: 10.1007/978-3-319-23264-5 40
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We have developed a software system called Equibel that can be used to
simulate the above scenario, and determine where each drone would look for the
missing people. More generally, Equibel allows for experimentation with belief
sharing in arbitrary networks of agents. It uses Answer Set Programming (ASP)
to perform the maximization step, and Python to manage the solving process
and provide programmatic and interactive interfaces. The software is available
online at www.github.com/asteroidhouse/equibel.

2 Related Work

Many methods have been proposed to deal with belief change involving multiple
sources of information. Classical approaches to belief merging, such as [6] and [7],
start with a set of belief bases and produce a single, merged belief base. Our
approach differs in that we update multiple belief bases simultaneously.

The BReLS system [8] implements a framework for integrating informa-
tion from multiple sources. In BReLS, pieces of information may have different
degrees of reliability and may be believed at different discrete time points. Revi-
sion, update, and merging operations are each restrictions of the full semantics.
The REV!GIS system [10] deals with belief revision in the context of geographic
information systems, using information in a certain region to revise adjacent
regions. There have been many approaches to iterative multi-agent belief shar-
ing, including the iterated merging conciliation operators introduced in [4], and
Belief Revision Games (BRGs) introduced in [9]. BRGs are ways to study the
evolution of beliefs in a network of agents over time. While sharing a graph-
based model, our framework differs from BRGs in two ways. First, we use a
consistency-based approach, which is distinct from any of the revision policies
in [9]. Second, we describe a “one-shot” method for belief sharing, rather than
an iterated method.

The consistency-based framework we employ here has been developed in a
series of papers, including [1–3].

3 The Consistency-Based Belief Change Framework

We work with a propositional language LP , defined over an alphabet P =
{p, q, r, . . . } of propositional atoms, using the connectives ¬,∧,∨,→ and ≡ to
construct formulas in the standard way. For i ≥ 0, we define Pi =

{
pi | p ∈ P

}

containing superscripted versions of the atoms in P, and define Li to be the cor-
responding language. We denote the original, non-superscripted language by L0.
We denote formulas by Greek letters α, β, etc. Given a formula αi ∈ Li, αj ∈ Lj

is the formula obtained by replacing all occurrences of pi ∈ Pi by pj ∈ Pj . For
example, if α1 = (p1 ∧ ¬q1) → r1, then α2 = (p2 ∧ ¬q2) → r2.

Our implementation uses the maximization approach to belief sharing
described in [2]; here we recall the terminology and notation for maximal equiv-
alence sets, and we refer the reader to [2] for more details.

www.github.com/asteroidhouse/equibel
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Definition 1 (G-scenario). Let G = 〈V,E〉 be a graph with |V | =
{1, 2, . . . , n}. A G-scenario ΣG is a vector of formulas 〈ϕ1, . . . , ϕn〉. The nota-
tion ΣG[i] denotes the ith component, ϕi.

An agent starts with some initial beliefs that she does not want to give up, and
then “includes” as much information as consistently possible from other agents.
This is done as follows. Each agent expresses her beliefs in a distinct language,
such that the languages used by any two agents are isomorphic. Specifically,
agent i expresses her beliefs as formulas of the language Li. Because the agents’
languages are disjoint,

⋃
1≤i≤n ϕi

i is trivially consistent. For each agent, we want
to find out what “pieces” of beliefs from other agents she can incorporate. To do
this, we assert that the languages of adjacent agents agree on the truth values of
corresponding atoms as much as consistently possible. The equivalences between
the atoms of agents i and j tell us what those agents can and cannot agree on,
and provide a means to “translate” formulas between those agents’ languages.
If agents i and j cannot agree on the truth value of p, then we can translate
formulas from Li to Lj by replacing pi by ¬pj . This process is formalized below.

Definition 2 (Equivalence sets, Fits, Maximal fits). Let G = 〈V,E〉 be a
graph and P be an alphabet.

– An equivalence set EQ is a subset of {pi ≡ pj | 〈{i, j}, p〉 ∈ E × P}.
– Given a G-scenario ΣG = 〈ϕ1, . . . , ϕn〉, a fit for ΣG is an equivalence set EQ

such that EQ ∪
⋃n

i=1 ϕi
i is consistent.

– A maximal fit for ΣG is a fit EQ such that for all fits EQ′ ⊃ EQ, we have
that EQ′ ∪

⋃n
i=1 ϕi

i is inconsistent.

Let ΣG = 〈ϕ1, . . . , ϕn〉 be a G-scenario and F be the set of maximal fits for
ΣG. Informally, the completion of ΣG, denoted Θ(ΣG), is a G-scenario Σ′

G =
〈ϕ′

1, . . . , ϕ
′
n〉 consisting of updated formulas for each agent following a belief

sharing procedure. [2] gives both semantic and syntactic characterizations of the
completion. Here we state the syntactic characterization, based on translation.

Definition 3 (Substitution function). Let G = 〈V,E〉 be a graph, and EQ
be an equivalence set. Let R∗ denote the transitive closure of a binary relation
R. Then, for i, j ∈ V , we define a substitution function sEQ

i,j : Pi → {l(pj) |
pj ∈ Pj}, where l(pj) is either pj or ¬pj, as follows:

sEQ
i,j (pi) =

{
pj : (pi ≡ pj) ∈ EQ

¬pj : {i, j} ∈ E∗, (pi ≡ pj) /∈ EQ

Given a formula αi, sEQ
i,j (αi) is the formula that results from replacing each

atom pi in αi by its unique counterpart sEQ
i,j (pi). Thus, sEQ

i,j (αi) is a translation
of αi into the language of agent j, that is consistent with agent j’s initial beliefs.
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Proposition 1. Let G = 〈V,E〉 be a graph and ΣG = 〈ϕ1, . . . , ϕn〉 be a G-
scenario. Let Θ(ΣG) = 〈ϕ′

1, . . . , ϕ
′
n〉 be the completion of ΣG , and let F be the

set of maximal fits of ΣG. Then, we find ϕ′
j, for j ∈ {1, . . . , n}, as follows:

ϕ′
j ≡

∨

EQ∈F

( ∧

{i,j}∈E∗(sEQ
i,j (ϕi

i))
0
)

4 System Design

Equibel is split into two architectural layers: an ASP layer, which performs
the core maximization procedure, and a Python layer, which performs post-
processing of answer sets and provides programmatic and interactive user inter-
faces to experiment with belief sharing on custom graphs. Equibel provides a
Python package (equibel) that allows users to perform belief change opera-
tions in programs, and a user-friendly command-line interface (CLI) that allows
for real-time experimentation. The CLI allows users to enter commands to cre-
ate agents, edges, and formulas, execute belief change operations and query the
resulting graph. A query might ask what a particular agent believes, or what
the common knowledge is (the disjunction of all agents’ beliefs).

There are three major stages to computing the completion of a G-scenario:
(1) finding maximal sets of equivalences between atoms of adjacent agents; (2)
translating beliefs between the languages of adjacent agents; and (3) combining
beliefs that result from different maximal equivalence sets. The first two steps
are done in ASP, while the third is done in Python.

The ASP layer consists of a set of logic programs that can be combined
in different ways to achieve different functionality. The core of Equibel is the
eq sets.lp logic program that finds maximal sets of equivalences of the form
pi ≡ pj between atoms at neighbouring agents i and j. We use the logic program
translate.lp to translate formulas between the languages of connected agents
based on the equivalence sets. Each optimal answer set gives the new information
incorporated by each agent, based on a specific maximal EQ set. We use the ASP
grounder/solver clingo, from the Potsdam Answer Set Solving Collection [5].

The Python component combines formulas that occur in different answer sets.
The Python clingo interface also manages the solving state, by loading specific
combinations of logic modules. This allows the system to find either cardinality-
or containment-maximal EQ sets, and potentially perform iterated belief sharing.
We also designed a file format for specifying belief change problems, called the
Belief Change Format (BCF). This is an extension of the DIMACS graph format,
and is a standard for communication within our system.

5 ASP Implementation

Encoding Graphs. Encoding a graph involves creating agents, assigning formulas
to the agents, and setting up connections between the agents. We declare agents
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using the node/1 predicate, and declare edges using edge/2. We assign formulas
to agents using formula/2, where the first argument is a formula built using the
function symbols and/2, or/2, implies/2, iff/2, and neg/1, and the second
argument is an integer identifying an agent. For example, we can assign the
formula (p ∧ q) ∨ ¬r to agent 1 with formula(or(and(p,q),neg(r)),1).

Finding Maximal EQ Sets. Maximal equivalence sets are found by eq sets.lp,
which: (1) generates candidate equivalence sets; (2) tests the equivalence sets by
attempting to find a truth assignment, constrained by the equivalences, that sat-
isfies all agents’ initial beliefs; and (3) optimizes the results to find containment-
or cardinality-maximal sets.

In order to check whether a truth assignment is satisfying, we first break each
formula down into its subformulas. After truth values have been assigned to the
atoms, an agent’s beliefs are built back up from its subformulas; this allows us
to determine whether an assignment models the original beliefs of each agent.
We classify each subformula as either a compound or an atomic proposition:

atom(P,X) :- subform(P,X), not compound_prop(P,X).

atom(P) :- atom(P,_).

Candidate EQ sets are generated by:

{ eq(P,X,Y) : atom(P), edge(X,Y), X < Y }.

The predicate eq(P,X,Y) expresses that PX ≡ PY . The condition X < Y
halves the search space over edges; this is justified because edges are undirected.
After we generate a candidate EQ set, we check whether it is possible to assign
truth values to all atoms, restricted by the equivalences, such that the agents’
original formulas are satisfied. We assign a truth value to each atom, with the
constraint that atoms linked by an equivalence must have the same truth value:

1 { truth_value(P,X,true), truth_value(P,X,false) } 1 :-

atom(P), node(X).

:- eq(P,X,Y), truth_value(P,X,V), truth_value(P,Y,W), V != W.

Now we build up the original formulas from their subformulas, to see if the
assignment is satisfying. A sample of the code used to build up the original
formulas starting from the atoms is shown below:

sat(F,X) :- F = and(A,B), sat(A,X), sat(B,X),

subform(F,X), subform(A,X), subform(B,X).

For an EQ set to be acceptable, it must be possible to find a truth assignment
that satisfies all the original formulas. Thus, we introduce the constraint:

:- formula(F,X), not sat(F,X).

There are two types of maximality, each requiring a different program state-
ment and solving configuration. The standard #maximize statement in clingo
finds EQ sets that are maximal with respect to cardinality. To find containment-
maximal EQ sets, however, we use a domain-specific heuristic:

_heuristic(eq(P,X,Y), true , 1) :- atom(P), edge(X,Y), X < Y.
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The true heuristic modifier tells the solver to decide first on eq atoms, and
to set them to true. The solver initially makes all eq atoms true, and then
“whittles down” the set, producing containment-maximal sets.

For our one-shot approach to belief sharing, we take the transitive clo-
sure of the eq/3 predicates. This allows for an agent to learn from other
agents throughout the graph, not just from its immediate neighbours. The
module translate.lp translates formulas between the languages of connected
agents, and outputs new formula/2 predicates that indicate the new information
obtained by an agent from its neighbours.

Consider an equivalence set EQ and an agent i. The new belief of i, based
on EQ, is the conjunction of translated beliefs from all agents connected to i.
But we may have multiple maximal equivalence sets, each of which represents an
equally plausible way to share information. Thus, we combine beliefs that result
from different equivalence sets by taking their disjunction. Both of these steps
are performed in Python, using the output of translate.lp.

We now look at how the system works on our opening example. Let the
atomic propositions a, b, and c denote the facts that there are missing people
in the atrium, bookstore, and cafeteria, respectively. The network of drones is
represented by a complete graph on three nodes, numbered 1 to 3, and the
associated G-scenario is ΣG = 〈a ∧ b,¬a ∨ ¬b, c〉. Solving with eq sets.lp, we
find four maximal EQ sets. Based on the first set, {a1 ≡ a2, a1 ≡ a3, a2 ≡
a3, b1 ≡ b3, c1 ≡ c2, c1 ≡ c3, c2 ≡ c3}, the new beliefs of the drones would be
〈a ∧ b ∧ c, a ∧ ¬b ∧ c, a ∧ b ∧ c〉. Taking the disjunction of formulas obtained from
different EQ sets, the final beliefs of the drones are 〈a∧b∧c, (a ≡ ¬b)∧c, (a∨b)∧c〉.

6 Expressing Revision and Merging

The equibel Python module allows users to perform belief change operations
such as revision and merging, without explicitly creating graph topologies. For
these operations, the user only needs to specify formulas representing belief bases
to be operated on, and the system constructs an implicit graph topology, finds
the completion, and returns either a formula of a specific agent in the completion,
or the invariant knowledge. In this section, we show how belief revision and two
types of merging are expressed in our framework.

For belief revision, we need to consistently introduce a new belief α into
a belief base K, while retaining as much of K as possible. Belief revision can
be modeled as a two-agent graph G = 〈V,E〉, with V = {1, 2}, E = {{1, 2}},
and ΣG = 〈K,α〉. Through belief sharing, agent 2 will incorporate as much
information from agent 1 as possible, while maintaining consistency with α. The
belief of agent 2 in the completion, Θ(ΣG)[2], is the result of the revision, K ∗α.
This corresponds to consistency-based revision, as defined in [1].

Turning to belief merging, multiple, potentially mutually inconsistent, bodies
of knowledge need to be combined into a coherent whole. Two approaches to
merging are described in [3]. The first approach is a generalization of belief
revision called projection. Given a multiset K = 〈K1, . . . , Kn〉 and a constraint
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μ, the contents of each belief base Ki are projected onto a distinguished belief
base which initially contains just μ. This is expressed in our framework using a
star graph, such that the central agent initially believes μ, and incorporates as
much information as possible from each of its neighbours. Formally, G = 〈V,E〉,
where V = {0, 1, . . . , n}, E = {{0, i} | i ∈ V \ {0}}, and Σ = 〈μ,K1, . . . , Kn〉.
The merged belief base Δµ(K) is the belief of the central agent in the completion,
Θ(Σ)[0]. The second approach to merging, called consensus merging, involves
“pooling” together information from the belief bases. Let G be a complete graph
and let Σ be a G-scenario. Information is pooled by taking the invariant of the
completion Θ(Σ) = 〈ϕ′

1, . . . , ϕ
′
n〉, so that Δ(K) =

∨n
i=1 ϕ′

i.

7 Conclusion

In this paper, we introduce Equibel, a software system for experimenting with
consistency-based multi-agent belief sharing. We model networks of communi-
cating agents using arbitrary undirected graphs, where each node is associated
with a belief base represented by a propositional formula. Each agent shares
information with its neighbours, and learns as much as possible from connected
agents, while not giving up her initial beliefs. Belief sharing is carried out via
a global procedure that maximizes similarities between belief bases of adjacent
agents. We describe Equibel’s architecture, examine how maximal equivalence
sets are found using ASP, and look at how Equibel handles belief revision and
merging by constructing implicit graph topologies. Other operations, such as
belief extrapolation, can also be expressed within this framework. We are work-
ing on expanding the system to support iterated change and agent expertise.
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Abstract. The systematic modelling of dynamic spatial systems [9] is a
key requirement in a wide range of application areas such as comonsense
cognitive robotics, computer-aided architecture design, dynamic geo-
graphic information systems. We present ASPMT(QS), a novel approach
and fully-implemented prototype for non-monotonic spatial reasoning —
a crucial requirement within dynamic spatial systems– based on Answer
Set Programming Modulo Theories (ASPMT). ASPMT(QS) consists of a
(qualitative) spatial representation module (QS) and a method for turn-
ing tight ASPMT instances into Sat Modulo Theories (SMT) instances in
order to compute stable models by means of SMT solvers. We formalise
and implement concepts of default spatial reasoning and spatial frame
axioms using choice formulas. Spatial reasoning is performed by encod-
ing spatial relations as systems of polynomial constraints, and solving
via SMT with the theory of real nonlinear arithmetic. We empirically
evaluate ASPMT(QS) in comparison with other prominent contempo-
rary spatial reasoning systems. Our results show that ASPMT(QS) is
the only existing system that is capable of reasoning about indirect spa-
tial effects (i.e. addressing the ramification problem), and integrating
geometric and qualitative spatial information within a non-monotonic
spatial reasoning context.

Keywords: Non-monotonic spatial reasoning · Answer set program-
ming modulo theories · Declarative spatial reasoning

1 Introduction

Non-monotonicity is characteristic of commonsense reasoning patterns concerned
with, for instance, making default assumptions (e.g., about spatial inertia), coun-
terfactual reasoning with hypotheticals (e.g., what-if scenarios), knowledge inter-
polation, explanation & diagnosis (e.g., filling the gaps, causal links), belief revi-
sion. Such reasoning patterns, and therefore non-monotonicity, acquires a special
significance in the context of spatio-temporal dynamics, or computational com-
monsense reasoning about space, actions, and change as applicable within areas
as disparate as geospatial dynamics, computer-aided design, cognitive vision,
commonsense cognitive robotics [6]. Dynamic spatial systems are characterised
c© Springer International Publishing Switzerland 2015
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by scenarios where spatial configurations of objects undergo a change as the
result of interactions within a physical environment [9]; this requires explicitly
identifying and formalising relevant actions and events at both an ontological and
(qualitative and geometric) spatial level, e.g. formalising desertification and pop-
ulation displacement based on spatial theories about appearance, disappearance,
splitting, motion, and growth of regions [10]. This calls for a deep integration of
spatial reasoning within KR-based non-monotonic reasoning frameworks [7].

We select aspects of a theory of dynamic spatial systems—pertaining to (spa-
tial) inertia, ramifications, causal explanation— that are inherent to a broad
category of dynamic spatio-temporal phenomena, and require non-monotonic
reasoning [5,9]. For these aspects, we provide an operational semantics and a
computational framework for realising fundamental non-monotonic spatial rea-
soning capabilities based on Answer Set Programming Modulo Theories [3];
ASPMT is extended to the qualitative spatial (QS) domain resulting in the
non-monotonic spatial reasoning system ASPMT(QS). Spatial reasoning is per-
formed in an analytic manner (e.g. as with reasoners such as CLP(QS) [8]),
where spatial relations are encoded as systems of polynomial constraints; the
task of determining whether a spatial graph G is consistent is now equivalent
to determining whether the system of polynomial constraints is satisfiable, i.e.
Satisfiability Modulo Theories (SMT) with real nonlinear arithmetic, and can
be accomplished in a sound and complete manner. Thus, ASPMT(QS) consists
of a (qualitative) spatial representation module and a method for turning tight
ASPMT instances into Sat Modulo Theories (SMT) instances in order to com-
pute stable models by means of SMT solvers.

In the following sections we present the relevant foundations of stable model
semantics and ASPMT, and then extend this to ASPMT(QS) by defining a
(qualitative) spatial representations module, and formalising spatial default rea-
soning and spatial frame axioms using choice formulas. We empirically evaluate
ASPMT(QS) in comparison with other existing spatial reasoning systems. We
conclude that ASMPT(QS) is the only system, to the best of our knowledge,
that operationalises dynamic spatial reasoning within a KR-based framework.

2 Preliminaries

2.1 Bartholomew – Lee Stable Models Semantics

We adopt a definition of stable models based on syntactic transformations [2]
which is a generalization of the previous definitions from [13,14,19]. For predicate
symbols (constants or variables) u and c, expression u ≤ c is defined as shorthand
for ∀x(u(x) → c(x)). Expression u = c is defined as ∀x(u(x) ≡ c(x)) if u and
c are predicate symbols, and ∀x(u(x) = c(x)) if they are function symbols.
For lists of symbols u = (u1, . . . , un) and c = (c1, . . . , cn), expression u ≤ c
is defined as (u1 ≤ c1) ∧ · · · ∧ (un ≤ cn), and similarly, expression u = c is
defined as (u1 = c1) ∧ · · · ∧ (un = cn). Let c be a list of distinct predicate
and function constants, and let ĉ be a list of distinct predicate and function
variables corresponding to c. By cpred (cfunc , respectively) we mean the list
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of all predicate constants (function constants, respectively) in c, and by ĉpred

(ĉfunc , respectively) the list of the corresponding predicate variables (function
variables, respectively) in ĉ. In what follows, we refer to function constants and
predicate constants of arity 0 as object constants and propositional constants,
respectively.

Definition 1 (Stable model operator SM). For any formula F and any list
of predicate and function constants c (called intensional constants), SM[F ;c] is
defined as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)), (1)

where ĉ < c is a shorthand for (ĉpred ≤ cpred) ∧ ¬(ĉ = c) and F ∗(ĉ) is defined
recursively as follows:

– for atomic formula F , F ∗ ≡ F ′ ∧F , where F ′ is obtained from F by replacing
all intensional constants c with corresponding variables from ĉ,

– (G ∧ H)∗ = G∗ ∧ H∗, (G ∨ H)∗ = G∗ ∨ H∗,
– (G → H)∗ = (G∗ → H∗) ∧ (G → H),
– (∀xG)∗ = ∀xG∗, (∃xG)∗ = ∃xG∗.

¬F is a shorthand for F → ⊥, 
 for ¬⊥ and F ≡ G for (F → G) ∧ (G → F ).

Definition 2 (Stable model). For any sentence F , a stable model of F on c
is an interpretation I of underlying signature such that I |=SM[F ;c].

2.2 Turning ASPMT into SMT

It is shown in [3] that a tight part of ASPMT instances can be turned into SMT
instances and, as a result, off-the-shelf SMT solvers (e.g. Z3 for arithmetic over
reals) may be used to compute stable models of ASP, based on the notions of
Clark normal form, Clark completion.

Definition 3 (Clark normal form). Formula F is in Clark normal form
(relative to the list c of intensional constants) if it is a conjunction of sentences
of the form (2) and (3).

∀x(G → p(x)) (2) ∀xy(G → f(x) = y) (3)

one for each intensional predicate p and each intensional function f , where x is
a list of distinct object variables, y is an object variable, and G is an arbitrary
formula that has no free variables other than those in x and y.

Definition 4 (Clark completion). The completion of a formula F in Clark
normal form (relative to c), denoted by Compc[F ] is obtained from F by replac-
ing each conjunctive term of the form (2) and (3) with (4) and (5) respectively

∀x(G ≡ p(x)) (4) ∀xy(G ≡ f(x) = y). (5)

Definition 5 (Dependency graph). The dependency graph of a formula F
(relative to c) is a directed graph DGc[F ] = (V,E) such that:
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1. V consists of members of c,
2. for each c, d ∈ V , (c, d) ∈ E whenever there exists a strictly positive occur-

rence of G → H in F , such that c has a strictly positive occurrence in H and
d has a strictly positive occurrence in G,

where an occurrence of a symbol or a subformula in F is called strictly positive
in F if that occurrence is not in the antecedent of any implication in F .

Definition 6 (Tight formula). Formula F is tight (on c) if DGc[F ] is
acyclic.

Theorem 1 (Bartholomew, Lee). For any sentence F in Clark normal form
that is tight on c, an interpretation I that satisfies ∃xy(x = y) is a model of
SM[F ;c] iff I is a model of Compc[F ] relative to c.

3 ASPMT with Qualitative Space – ASPMT(QS)

In this section we present our spatial extension of ASPMT, and formalise spatial
default rules and spatial frame axioms.

3.1 The Qualitative Spatial Domain QS
Qualitative spatial calculi can be classified into two groups: topological and
positional calculi. With topological calculi such as the Region Connection Cal-
culus (RCC) [25], the primitive entities are spatially extended regions of space,
and could possibly even be 4D spatio-temporal histories, e.g., for motion-pattern
analyses. Alternatively, within a dynamic domain involving translational motion,
point-based abstractions with orientation calculi could suffice. Examples of ori-
entation calculi include: the Oriented-Point Relation Algebra (OPRAm) [22], the
Double-Cross Calculus [16]. The qualitative spatial domain (QS) that we con-
sider in the formal framework of this paper encompasses the following ontology:

QS1. Domain Entities in QS. Domain entities in QSinclude circles, trian-
gles, points and segments. While our method is applicable to a wide range of 2D
and 3D spatial objects and qualitative relations, for brevity and clarity we pri-
marily focus on a 2D spatial domain. Our method is readily applicable to other
2D and 3D spatial domains and qualitative relations, for example, as defined in
[8,11,12,23,24,26,27].

– a point is a pair of reals x, y
– a line segment is a pair of end points p1, p2 (p1 �= p2)
– a circle is a centre point p and a real radius r (0 < r)
– a triangle is a triple of vertices (points) p1, p2, p3 such that p3 is left of segment

p1, p2.

QS2. Spatial Relations in QS. We define a range of spatial relations with the
corresponding polynomial encodings. Examples of spatial relations in QS include:

Relative Orientation. Left, right, collinear orientation relations between points
and segments, and parallel, perpendicular relations between segments [21].

Mereotopology. Part-whole and contact relations between regions [25,28].
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3.2 Spatial Representations in ASPMT(QS)

Spatial representations in ASPMT(QS) are based on parametric functions and
qualitative relations, defined as follows.

Definition 7 (Parametric function). A parametric function is an n–ary
function fn : D1 × D2 × · · · × Dn → R such that for any i ∈ {1 . . . n}, Di is a
type of spatial object, e.g., Points, Circles, Polygons, etc.

Example 1. Consider following parametric functions x : Circles → R, y :
Circles → R, r : Circles → R which return the position values x, y of a circle’s
centre and its radius r, respectively. Then, circle c ∈ Cirlces may be described by
means of parametric functions as follows: x(c) = 1.23 ∧ y(c) = −0.13 ∧ r(c) = 2.

Definition 8 (Qualitative spatial relation). A qualitative spatial relation
is an n-ary predicate Qn ⊆ D1 × D2 × · · · × Dn such that for any i ∈ {1 . . . n},
Di is a type of spatial object. For each Qn there is a corresponding formula of
the form

∀d1 ∈ D1 . . . ∀dn ∈ Dn

(

Qn(d1, . . . , dn) ← p1(d1, . . . , dn) ∧ · · · ∧ pm(d1, . . . , dn)

)

(6)

where m ∈ N and for any i ∈ {1 . . . n}, pi is a polynomial equation or inequality.

Proposition 1. Each qualitative spatial relation according to Definition 8 may
be represented as a tight formula in Clark normal form.

Proof. Follows directly from Definitions 3 and 8.

Thus, qualitative spatial relations belong to a part of ASPMT that may be
turned into SMT instances by transforming the implications in the correspond-
ing formulas into equivalences (Clark completion). The obtained equivalence
between polynomial expressions and predicates enables us to compute relations
whenever parametric information is given, and vice versa, i.e. computing possible
parametric values when only the qualitative spatial relations are known.

Many relations from existing qualitative calculi may be represented in
ASPMT(QS) according to Definition 8; our system can express the polyno-
mial encodings presented in e.g. [8,11,12,23,24]. Here we give some illustrative
examples.

Proposition 2. Each relation of Interval Algebra (IA) [1] and Rectangle Alge-
bra (RA) [20] may be defined in ASPMT(QS).

Proof. Each IA relation may be described as a set of equalities and inequalities
between interval endpoints (see Fig. 1 in [1]), which is a conjunction of polyno-
mial expressions. RA makes use of IA relations in 2 and 3 dimensions. Hence,
each relation is a conjunction of polynomial expressions [27].

Proposition 3. Each relation of RCC–5 in the domain of convex polygons with
a finite maximum number of vertices may be defined in ASPMT(QS).
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Proof. Each RCC–5 relation may be described by means of relations P (a, b)
and O(a, b). In the domain of convex polygons, P (a, b) is true whenever all
vertices of a are in the interior (inside) or on the boundary of b, and O(a, b)
is true if there exists a point p that is inside both a and b. Relations of a
point being inside, outside or on the boundary of a polygon can be described
by polynomial expressions e.g. [8]. Hence, all RCC–5 relations may be described
with polynomials, given a finite upper limit on the number of vertices a convex
polygon can have.

Proposition 4. Each relation of Cardinal Direction Calculus (CDC) [15] may
be defined in ASPMT(QS).

Proof. CDC relations are obtained by dividing space with 4 lines into 9 regions.
Since halfplanes and their intersections may be described with polynomial
expressions, then each of the 9 regions may be encoded with polynomials. A
polygon object is in one or more of the 9 cardinal regions by the topological
overlaps relation between polygons, which can be encoded with polynomials
(i.e. by the existence of a shared point) [8].

3.3 Choice Formulas in ASPMT(QS)

A choice formula [14] is defined for a predicate constant p as Choice(p) ≡
∀x(p(x) ∨ ¬p(x)) and for function constant f as Choice(f) ≡ ∀x(f(x) =
y ∨ ¬f(x) = y), where x is a list of distinct object variables and y is an
object variable distinct from x. We use the following notation: {F} for F ∨ ¬F ,
∀xy{f(x) = y} for Choice(f) and ∀x{p(x)} for Choice(p). Then, {t = t′}, where
t contains an intentional function constant and t′ does not, represents the default
rule stating that t has a value of t′ if there is no other rule requiring t to take
some other value.

Definition 9 (Spatial choice formula). The spatial choice formula is a rule
of the form (8) or (7):

{fn(d1, . . . , dn) = x} ← α1 ∧ α2 ∧ · · · ∧ αk, (7)

{Qn(d1, . . . , dn)} ← α1 ∧ α2 ∧ · · · ∧ αk. (8)

where fn is a parametric function, x ∈ R, Qn is a qualitative spatial relation,
and for each i ∈ {1, . . . , k}, αi is a qualitative spatial relation or expression of
a form {fr(dk, . . . , dm) = y} or a polynomial equation or inequality, whereas
di ∈ Di is an object of spatial type Di.

Definition 10 (Spatial frame axiom). The spatial frame axiom is a special
case of a spatial choice formula which states that, by default, a spatial property
remains the same in the next step of a simulation. It takes the form (9) or (10):

{fn(d1, . . . , dn−1, s + 1) = x} ← fn(d1, . . . , dn−1, s) = x, (9)

{Qn(d1, . . . , dn−1, s + 1)} ← Qn(d1, . . . , dn−1, s). (10)

where fn is a parametric function, x ∈ R, Qn is a qualitative spatial relation,
and s ∈ N represents a step in the simulation.
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Corollary 1. One spatial frame axiom for each parametric function and quali-
tative spatial relation is enough to formalise the intuition that spatial properties,
by default, do not change over time.

The combination of spatial reasoning with stable model semantics and arithmetic
over the reals enables the operationalisation of a range of novel features within
the context of dynamic spatial reasoning. We present concrete examples of such
features in Sect. 5.

4 System Implementation

We present our implementation of ASPMT(QS) that builds on aspmt2smt [4] –
a compiler translating a tight fragment of ASPMT into SMT instances. Our
system consists of an additional module for spatial reasoning and Z3 as the SMT
solver. As our system operates on a tight fragment of ASPMT, input programs
need to fulfil certain requirements, described in the following section. As output,
our system either produces the stable models of the input programs, or states
that no such model exists.

4.1 Syntax of Input Programs

The input program to our system needs to be f -plain to use Theorem 1
from [2].

Definition 11 (f-plain formula). Let f be a function constant. A first–order
formula is called f-plain if each atomic formula:

– does not contain f , or
– is of the form f(t) = u, where t is a tuple of terms not containing f , and u

is a term not containing f .

Additionally, the input program needs to be av-separated, i.e. no variable occur-
ring in an argument of an uninterpreted function is related to the value variable
of another uninterpreted function via equality [4]. The input program is divided
into declarations of:

– sorts (data types);
– objects (particular elements of given types);
– constants (functions);
– variables (variables associated with declared types).

The second part of the program consists of clauses. ASPMT(QS) supports:

– connectives: &, |, not, ->, <-, and
– arithmetic operators: <, <=, >=, >, =, !=, +, =, *, with their usual meaning.

Additionally, ASPMT(QS) supports the following as native / first-class entities:
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– sorts for geometric objects types, e.g., point, segment, circle, triangle;
– parametric functions describing objects parameters e.g., x(point), r(circle);
– qualitative relations, e.g., rccEC(circle, circle), coincident(point, circle).

� Example 1: combining topology and size. Consider a program describing
three circles a, b, c such that a is discrete from b, b is discrete from c, and a is a
proper part of c, declared as follows:

ASPMT(QS) checks if the spatial relations are satisfiable. In the case of a positive
answer, a parametric model and computation time are presented. The output of
the above mentioned program is:

This example demonstrates that ASPMT(QS) is capable of computing compo-
sition tables, in this case the RCC–5 table for circles [25]. Now, consider the
addition of a further constraint to the program stating that circles a, b, c have
the same radius:

This new program is an example of combining different types of qualitative
information, namely topology and size, which is a non-trivial research topic
within the relation algebraic spatial reasoning community; relation algebraic-
based solvers such as GQR [17,29] will not correctly determine inconsistencies
in general for arbitrary combinations of different types of relations (orientation,
shape, distance, etc.). In this case, ASPMT(QS) correctly determines that the
spatial constraints are inconsistent:

� Example 2: combining topology and relative orientation. Given three
circles a, b, c let a be proper part of b, b discrete from c, and a in contact
with c, declared as follows:
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a
b c

(a)

a
b c

(b)

Fig. 1. Reasoning about consistent and refinement by combining topology and relative
orientation.

Given this basic qualitative information, ASPMT(QS) is able to refine the topo-
logical relations to infer that (Fig. 1a): (i) a must be a tangential proper part of
b (ii) both a and b must be externally connected to c.

We then add an additional constraint that the centre of a is left of the segment
between the centres b to c.

ASPMT(QS) determines that this is inconsistent, i.e., the centres must be
collinear (Fig. 1b).

5 Empirical Evaluation and Examples

In this section we present an empirical evaluation of ASPMT(QS) in comparison
with other existing spatial reasoning systems. The range of problems demon-
strate the unique, non-monotonic spatial reasoning features that ASPMT(QS)
provides beyond what is possible using other currently available systems. Table 1
presents run times obtained by Clingo – an ASP grounder and solver [18],
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Table 1. Cumulative results of performed tests. “—” indicates that the problem can
not be formalised, “I” indicates that indirect effects can not be formalised, “D” indi-
cates that default rules can not be formalised.

Problem Clingo GQR CLP(QS) ASPMT(QS)

Growth 0.004sI 0.014sI,D 1.623sD 0.396s

Motion 0.004sI 0.013sI,D 0.449sD 15.386s

Attach I 0.008sI — 3.139sD 0.395s

Attach II — — 2.789sD 0.642s

GQR – a binary constraint calculi reasoner [17], CLP(QS) – a declarative
spatial reasoning system [8] and our ASPMT(QS) implementation. Tests were
performed on an Intel Core 2 Duo 2.00 GHZ CPU with 4 GB RAM running
Ubuntu 14.04. The polynomial encodings of the topological relations have not
been included here for space considerations.

5.1 Ramification Problem

Fig. 2. Indirect effects of growth(a, 0) and
motion(a, 0) events.

The following two problems, Growth
and Motion, were introduced in [5].
Consider the initial situation S0 pre-
sented in Fig. 2, consisting of three
cells: a, b, c, such that a is a non-tang-
ential proper part of b: rccNTPP(a, b, 0),
and b is externally connected to c:
rccEC(b, c, 0).

� Growth. Let a grow in step S0;
the event growth(a, 0) occurs and leads to a successor situation S1.
The direct effect of growth(a, 0) is a change of a relation between
a and b from rccNTPP(a, b, 0) to rccEQ(a, b, 1) (i.e. a is equal to b).
No change of the relation between a and c is directly stated, and thus we must
derive the relation rccEC(a, c, 1) as an indirect effect.

� Motion. Let a move in step S0; the event motion(a, 0) leads to a successor
situation S1. The direct effect is a change of the relation rccNTPP(a, b, 0) to
rccTPP(a, b, 1) (a is a tangential proper part of b). In the successor situation
S1 we must determine that the relation between a and c can only be either
rccDC(a, c, 1) or rccEC(a, c, 1).

GQR provides no support for domain-specific reasoning, and thus we encoded
the problem as two distinct qualitative constraint networks (one for each simu-
lation step) and solved them independently i.e. with no definition of growth and
motion. Thus, GQR is not able to produce any additional information about
indirect effects. As Clingo lacks any mechanism for analytic geometry, we imple-
mented the RCC8 composition table and thus it inherits the incompleteness of
relation algebraic reasoning. While CLP(QS) facilitates the modelling of domain
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rules such as growth, there is no native support for default reasoning and thus
we forced b and c to remain unchanged between simulation steps, otherwise all
combinations of spatially consistent actions on b and c are produced without any
preference (i.e. leading to the frame problem).

In contrast, ASPMT(QS) can express spatial inertia, and derives indirect
effects directly from spatial reasoning: in the Growth problem ASPMT(QS)
abduces that a has to be concentric with b in S0 (otherwise a move event would
also need to occur). Checking global consistency of scenarios that contain inter-
dependent spatial relations is a crucial feature that is enabled by a support
polynomial encodings and is provided only by CLP(QS) and ASPMT(QS).

5.2 Geometric Reasoning and the Frame Problem

In problems Attachment I and Attachment II the initial situation S0 consists
of three objects (circles), namely car, trailer and garage as presented in Fig. 3.
Initially, the trailer is attached to the car: rccEC(car, trailer, 0), attached(car,
trailer, 0). The successor situation S1 is described by rccTPP(car, garage, 1). The
task is to infer the possible relations between the trailer and the garage, and the
necessary actions that would need to occur in each scenario.

There are two domain-specific actions: the car can move, move(car,X), and
the trailer can be detached, detach(car, trailer,X) in simulation step X. When-
ever the trailer is attached to the car, they remain rccEC. The car and the trailer
may be either completely outside or completely inside the garage.

Fig. 3. Non-monotonic reasoning
with additional geometric informa-
tion.

� Attachment I. Given the available topolog-
ical information, we must infer that there are
two possible solutions (Fig. 3); (a) the car was
detached from the trailer and then moved
into the garage: (b) the car, together with the
trailer attached to it, moved into the garage:

� Attachment II. We are given additional geo-
metric information about the objects’ size:
r(car) = 2, r(trailer) = 2 and r(garage) =
3. Case (b) is now inconsistent, and we must
determine that the only possible solution
is (a).

These domain-specific rules require
default reasoning: “typically the trailer
remains in the same position” and “typically the trailer remains attached to
the car”. The later default rule is formalised in ASPMT(QS) by means of the
spatial defaul.: The formalisation of such rules addresses the frame problem.
GQR is not capable of expressing the domain-specific rules for detachment and
attachment in Attachment I and Attachment II. Neither GQR nor Clingo are
capable of reasoning with a combination of topological and numerical informa-
tion, as required in Attachment II. As CLP(QS) cannot express default rules,
we can not capture the notion that, for example, the trailer should typically
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remain in the same position unless we have some explicit reason for determining
that it moved; once again this leads to an exhaustive enumeration of all possible
scenarios without being able to specify preferences, i.e. the frame problem, and
thus CLP(QS) will not scale in larger scenarios.

The results of the empirical evaluation show that ASPMT(QS) is the only
system that is capable of (a) non-monotonic spatial reasoning, (b) expressing
domain-specific rules that also have spatial aspects, and (c) integrating both
qualitative and numerical information. Regarding the greater execution times in
comparison to CLP(QS), we have not yet implemented any optimisations with
respect to spatial reasoning; this is one of the directions of future work.

6 Conclusions

We have presented ASPMT(QS), a novel approach for reasoning about spatial
change within a KR paradigm. By integrating dynamic spatial reasoning within
a KR framework, namely answer set programming (modulo theories), our system
can be used to model behaviour patterns that characterise high-level processes,
events, and activities as identifiable with respect to a general characterisation
of commonsense reasoning about space, actions, and change [6,9]. ASPMT(QS)
is capable of sound and complete spatial reasoning, and combining qualitative
and quantitative spatial information when reasoning non-monotonically; this is
due to the approach of encoding spatial relations as polynomial constraints, and
solving using SMT solvers with the theory of real nonlinear arithmetic. We have
demonstrated that no other existing spatial reasoning system is capable of sup-
porting the key non-monotonic spatial reasoning features (e.g., spatial inertia,
ramification) provided by ASPMT(QS) in the context of a mainstream knowl-
edge representation and reasoning method, namely, answer set programming.
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SMT solvers. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp.
529–542. Springer, Heidelberg (2014)

http://www.design-space.org


500 P.A. Wa�l ↪ega et al.

5. Bhatt, M.: (Some) Default and non-monotonic aspects of qualitative spatial rea-
soning. In: AAAI 2008 Technical reports, Workshop on Spatial and Temporal Rea-
soning, pp. 1–6 (2008)

6. Bhatt, M.: Reasoning about space, actions and change: a paradigm for applications
of spatial reasoning. In: Qualitative Spatial Representation and Reasoning: Trends
and Future Directions. IGI Global, USA (2012)

7. Bhatt, M., Guesgen, H., Wölfl, S., Hazarika, S.: Qualitative spatial and tempo-
ral reasoning: emerging applications, trends, and directions. Spat. Cogn. Comput.
11(1), 1–14 (2011)

8. Bhatt, M., Lee, J.H., Schultz, C.: CLP(QS): a declarative spatial reasoning frame-
work. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011.
LNCS, vol. 6899, pp. 210–230. Springer, Heidelberg (2011)

9. Bhatt, M., Loke, S.: Modelling dynamic spatial systems in the situation calculus.
Spat. Cogn. Comput. 8(1), 86–130 (2008)

10. Bhatt, M., Wallgrün, J.O.: Geospatial narratives and their spatio-temporal dynam-
ics: commonsense reasoning for high-level analyses in geographic information sys-
tems. ISPRS Int. J. Geo-Inf. 3(1), 166–205 (2014)

11. Bouhineau, D.: Solving geometrical constraint systems using CLP based on linear
constraint solver. In: Pfalzgraf, J., Calmet, J., Campbell, J. (eds.) AISMC 1996.
LNCS, vol. 1138. Springer, Heidelberg (1996)

12. Bouhineau, D., Trilling, L., Cohen, J.: An application of CLP: checking the cor-
rectness of theorems in geometry. Constraints 4(4), 383–405 (1999)

13. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005)

14. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intell.
175(1), 236–263 (2011)

15. Frank, A.U.: Qualitative spatial reasoning with cardinal directions. In: Kaindl,
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Abstract. Planning in real-world environments can be challenging for
intelligent robots due to incomplete domain knowledge that results from
unpredictable domain dynamism, and due to lack of global observability.
Action language BC can be used for planning by formalizing the pre-
conditions and (direct and indirect) effects of actions, and is especially
suited for planning in robotic domains by incorporating defaults with
the incomplete domain knowledge. However, planning with BC is very
computationally expensive, especially when action costs are considered.
We introduce algorithm PlanHG for formalizing BC domains at different
abstraction levels in order to trade optimality for significant efficiency
improvement when aiming to minimize overall plan cost. We observe
orders of magnitude improvement in efficiency compared to a standard
“flat” planning approach.

1 Introduction

To operate in real-world environments, intelligent robots need to represent and
reason with a large amount of domain knowledge about robot actions and envi-
ronments. However, domain knowledge given to the robot is usually incomplete
(due to unpredictable domain dynamism) and defeasible (i.e., usually true but
not always). From STRIPS [4] to PDDL [17], many action languages (and their
extensions) have been developed to support automated plan generation by for-
malizing action preconditions and effects. While some action languages support
reasoning about the knowledge not directly related to actions, e.g., PDDL has
semantics to reason with axioms [25], most action languages lack a strong capa-
bility of reasoning with incomplete knowledge in dynamic domains, making it
difficult to embrace rich domain knowledge into planning scenarios. Action lan-
guage BC can be used for planning with guaranteed soundness by formalizing
the preconditions and (direct and indirect) effects of actions [14]. BC inherits
the knowledge representation and reasoning (KRR) advantages from action lan-
guages B [9] and C+ [10], and is especially suited for planning in robotic domains.

Unfortunately, in robotic domains where action costs need to be consid-
ered, planning with action language BC is very computationally expensive.
c© Springer International Publishing Switzerland 2015
F. Calimeri et al. (Eds.): LPNMR 2015, LNAI 9345, pp. 502–516, 2015.
DOI: 10.1007/978-3-319-23264-5 42
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For instance, in the office domain presented in [13], generating the optimal plan
to visit three people in different rooms takes more than 5 min on a powerful desk-
top machine (details in Sect. 5), where the optimal plan has about 30 actions.
Such long planning time prevents the robot from being deemed useful in real-
world environments.

Hierarchical planning has been studied for years and people have developed
many algorithms including Hierarchical Task Network (HTN) [3] and Hierarchi-
cal Planning in the Now (HPN) [12]. Different from existing work on hierarchical
planning that aims to reduce the amount of search with guaranteed optimality
(e.g., [16]), we trade optimality for significant improvements in efficiency (similar
to HPN). We adapt the idea of describing task domains at different abstraction
levels [6] and propose an algorithm to enable hierarchical planning with action
language BC in real-world robotic domains.

This algorithm has been fully implemented in simulation and on a physi-
cal robot. Experiments on a mail collection problem show 2 orders of magnitude
improvements of efficiency with a 11.25 % loss in optimality, compared to a base-
line algorithm that plans with a non-hierarchical domain description in BC [13].
To the best of our knowledge, this is the first work that combines the KRR
advantages of a modern action language and the efficiency of hierarchical plan-
ning to enable mobile robots to compute provably sound plans in real-world
environments.

2 Related Work

This work is closely related to research areas including action languages and
hierarchical planning. We select representative research on these topics.

Action Languages: The planning domain definition language (PDDL) has been
widely applied to planning problems [17]. One of the most appealing advan-
tages of (the official versions of) PDDL is its syntax, which despite being sim-
ple supports important features of STRIPS [4], ADL [20], and other features
such as conditional action effects (PDDL1.2) and numeric fluents (PDDL2.1).
Furthermore, advanced planning algorithms such as Fast-Foward [19] and Fast-
Downward [11] have been implemented in existing planning systems supporting
PDDL.

While PDDL is strong in efficient plan generation, the official versions of
PDDL do not focus on reasoning with default knowledge, which is important
for robots to plan with incomplete knowledge in dynamic environments. Action
language C+ supports the representation and reasoning with defaults [10], but
does not allow recursively defined fluents that are frequently needed in robotic
domains (action language B does), as will be shown in Sect. 3. BC, an action
language recently developed based on answer set semantics [8], can be used to
compute provably sound plans while supporting representation of and reasoning
with defaults with exceptions at different levels [14].

Recently, a two-level architecture has been developed for KRR in robot-
ics [26], where the high level uses action language AL for symbolic planning and
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the low level uses probabilistic algorithms for modeling uncertainties. In that
work, each default is associated with a consistency-restoring rule for restoring
consistency in history. In contrast, we intentionally make our robots memoryless
to avoid reasoning about history, i.e., whenever robot observations have conflicts
with defaults, our robot starts over by replanning with defaults and the observed
“facts”.

Hierarchical Planning: In existing research on hierarchical planning, the hier-
archy is frequently constructed through setting up connections either between
actions or between states. For instance, macro-actions (also called complex or
composite actions) are described as a sequence of primitive actions and possibly
some imperative constructs, e.g., hierarchical task network [3], planning with
composite actions [1], planning with complex actions [18], ordered task decom-
position [2], and hierarchical planning in the now [12]. These macro-actions are
either directly expanded after a plan is generated, or expanded in the reasoning
process using a predefined structure. These macro-actions limit the flexibility of
reducing plan costs at a finer abstraction level.

Another way of constructing the hierarchy is to describe the domain at dif-
ferent abstraction levels through setting up connections between states, where
a state at a coarser (higher) level includes a set of states at a finer (lower)
level [6,23,24]. Planning in such systems happens in a top-down manner and
constraints extracted from coarser levels help improve the efficiency in comput-
ing plans at finer levels. This mechanism allows more flexibility in planning at
finer levels, compared to macro-based hierarchical planning algorithms. In this
paper, we introduce action costs to such abstraction-based hierarchical planning
algorithms and implement the algorithm using action language BC on a real
robot system.

3 Abstraction Hierarchy Formalization

A BC action description D denotes a transition system T (D), which is a digraph
whose vertices are states, which is a set of atoms, and whose edges are actions.
A transition in T (D) is of the form 〈s, a, s′〉, where a is an action constant, and
s and s′ are states before and after executing a. A path P (n) of length n in the
transition system is of the form:

〈s0, a0, . . . , sn−1, an−1, sn〉

where si (0 ≤ i ≤ n) are states and ai (0 ≤ i ≤ n−1) are actions. We use Len(P )
to denote the length of a path. P s(i) denotes state si and P a(i) denotes action ai.
We use f(D) to represent the set of fluents occurring in D, and a(D) to represent
the set of actions occurring in D. To define the notion of abstraction hierarchy,
we first define the cost function C that maps a tuple (s, a) to an integer C(s, a)
that denotes the cost of executing action a at state s. Furthermore, cost

(
P(n)

)

is the cost of path P (n):

cost
(
P(n)

)
= Σ0≤i<nC (si , ai) (1)
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Given an action description D and a cost function C, its abstraction hierarchy
H is a tuple (D,L): D is a list of action descriptions D1,D2, . . . , Dd such that
f(Di) ⊆ f(Dj) for 1 ≤ i < j ≤ d, where Dd = D and d is the depth of H; and
L is the step bound estimation function.

L(a) = max
〈s, a, s′〉 ∈ T (Di)

(
Len

(
P̂(s, s ′)

))
(2)

Given an action constant a ∈ a(Di), L maps a to an integer L(a) repre-
senting the minimum number of steps needed to ensure that the effect of a can
be optimally achieved using actions in a(Di+1) as shown in Eq. 2, where L is
independent of s and s′, and is precomputed to reduce the planning time1. P̂
represents the path of the plan that leads the transition from s to s′ with mini-
mum plan cost. If we use A(s) to represent the set of literals that specify state
s, P̂ (s, s′) can be computed by:

P̂ (s, s′) = arg min
P (n) ∈ T (Di+1), n ∈ N,

A
(

Ps(0)
) ⊆ A(s),A

(

Ps(n)
) ⊆ A(s′)

(
cost

(
P(n)

))
(3)

Note that states s and s′ and action a are at level i while path P is at level
i + 1. Intuitively, the abstraction hierarchy H contains a set of action descrip-
tions where each description formalizes the same dynamic domain at a different
granularity. The hierarchy is organized from the most coarse description D1 to
the most concrete description Dd. Different from existing work on hierarchical
planning using macro actions, we use function L to provide step bounds in the
search for plans at lower levels. This is an important criterion of our approach
as it provides flexibility in reducing overall plan costs in lower levels. As an
example, we next apply this hierarchy to a real-world robot planning problem
in BC.

Fig. 1. Example floor plan.

Mail Collection Problem: A mobile robot
drops by offices at 2 pm every day to col-
lect outgoing mail from the residents. How-
ever, some people may not be in their offices
at that time, so they can pass their outgo-
ing mail to colleagues in other offices, and
send this information to the robot. When the
robot collects the mail, it should obtain it
while only visiting people as necessary. An
example floor plan is shown in Fig. 1. We will use meta-variables E, E1, E2, . . .
to denote people (alice, bob, carol, daniel and erin), R, R1, R2, . . . to denote
rooms, and K, K1, K2, . . . to denote doors. Specifically, o1, o2, o3, o4 are offices,
lab1 is a lab and cor is a room, where offices and labs are sub-sorts of room.

1 As a preprocessing step, computing L does not affect the runtime efficiency, so we
leave the discussion of its complexity to future work.
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This example domain has been formulated at three levels of abstraction. The
fluents at the most abstract level primarily describe how mail is passed from one
person to another and if mail has been collected from each person. At the middle
level, we add fluents to describe the connections of rooms through doors, but still
disregard the details about the robot’s more refined position in a room and if
the doors are open or not. Finally, all domain details are added into the bottom
level. An action in the bottom level must be primitive (i.e., can be physically
executed by the robot) and currently this hierarchy is manually constructed.

Action Description D1: In D1, we use passto(E1, E2) to describe E1’s mail has
been passed to E2. The current locations of the robot and a person E are
described by loc=R and inside(E,R) respectively. Whether the robot has col-
lected mail from person E is represented by mailcollected(E). For instance, the
static law below states: if E1’s mail has been passed to E2 and that the robot
has collected mail from E2, then E1’s mail has been collected as well using a
recursive definition of fluent mailcollected:

mailcollected(E1) if mailcollected(E2), passto(E1 ,E2).

The two laws below state that person E cannot be in two different rooms at
the same time and that by default E’s location does not change over time (a
commonsense law of inertia), where inside is an inertial fluent.

∼inside(E ,R2) if inside(E ,R1) (R1 �= R2).
inertial inside(E ,R).

Action serve in D1 states that serving person E in room R causes
mailcollected(E) to be true and the robot to be in R.

serve(E) causes mailcollected(E).
serve(E) causes loc = R if inside(E ,R).

Action Description D2: D2 inherits all fluents and corresponding non-action
rules from D1 (actions of D1 are discarded) and further adds fluents to describe
whether a room has a door using hasdoor(R,K) and whether two adjacent rooms
are connected through a door using acc(R1 ,K ,R2). The static laws below state
that if two rooms share the same door, then they are accessible to each other
through the door and that acc is symmetric.

acc(R1,K ,R2) if hasdoor(R1,K ), hasdoor(R2,K ).
acc(R1,K ,R2) if acc(R2,K ,R1).

We add defaults to reason with incomplete knowledge. For instance, rooms R1

and R2 are not accessible through door K by default. This default value can be
reverted if there is evidence supporting the opposite.

default ∼acc(R1,K ,R2).

Using the fluents in D2, we can formalize action collectmail(E) that is similar to
action serve in D1, and action cross(K) that allows the robot to cross door K
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to move from room R1 to room R2, if R2 is accessible from R1 through door K.
There is a restriction on the executability of cross(K): the robot cannot cross a
door if that door is not accessible from the robot’s current location.

cross(K ) causes loc = R2 if loc = R1, acc(R1,K ,R2).
nonexecutable cross(K ) if loc = R,∼hasdoor(R,K ).

Action Description D3: D3 inherits all fluents and corresponding non-action rules
from D2 (actions of D2 are discarded) and further introduces fluents beside(K) to
describe whether the robot is beside door K, facing(K) to describe whether the
robot is beside and facing door K, and open(K) to describe if door K is open. We
use Monte Carlo Localization [5] to estimate the robot’s exact position (includ-
ing orientation) in physical environments. Using an occupancy-grid map with
manually added semantic labels, this exact position specifies the values of loc,
beside and facing and is also used for path planning. Using the fluents in D3, we
can formalize the primitive actions approach(K), opendoor(K), gothrough(K),
and collectmail(E). D3 corresponds to the “flat” action description presented
in previous work [13].

Action descriptions D1, D2 and D3 together determine D, the first element
of the abstraction hierarchy H. The other element is the step bound estimation
function L, which is partially decided by the cost function C, as presented Eq. 1.
The value of C(s, a) is assigned empirically based on robot experiments using
existing approach [13]. As an illustrative example, let us consider the calculation
of L(serve) using Eqs. 2 and 3. Since serve is an action in D1, we first collect
all possible 〈s, serve, s′〉 ∈ T (D1). The longest path in D2 that can be used to
achieve the same effect as a serve action in D1 occurs when loc = o3 ∈ s and
mailcollected(alice) ∈ s′. The corresponding path P2(5) includes the following
actions in the order of execution:

cross(d3), cross(d6), cross(d5), cross(d1), collectmail(alice).

Consequently, L(serve) = 5. Similarly, L(cross) = 3.

4 Planning Using an Abstraction Hierarchy

In this section, we formally define two planning problems that aim to minimize
the plan length (Type-I) and plan cost (Type-II) respectively, where the first is
a special case of the second. Then we propose two algorithms to solve Type-II
problems using an abstraction hierarchy.

Type-I Problem: A Type-I planning problem aims at minimizing the plan length
(i.e., the number of actions), and is defined as a tuple (D,S,G). D is an action
description; S is a state constraint set including state constraints of the form
i :Ai, where i is an integer denoting the timestamp at which Ai (a set of fluent
atoms) needs to be met; and G is a list of fluent atoms Gi, which are goals. The
initial system state is specified as a part of the state constraint set as 0:A0 ∈ S.
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Given (D,S,G), a satisfactory path is a path P (n) (defined in Sect. 3) of the
transition system T (D) such that Ai ⊂ si for every i : Ai ⊂ S, and Gi ∈ sn
for every Gi ∈G. The satisfactory plan is the list (a0, · · · , an−1) obtained from
P (n). A satisfactory plan is a shortest plan if the length of the satisfactory path
is minimal among all satisfactory paths. Algorithms that solve this problem do
not consider the overall cost of plans. To find the shortest-length plan in a Type-I
problem, we incrementally increase the plan length in solvers until a satisfactory
plan is found.

Type-II Problem: A Type-II problem aims at minimizing overall plan cost, and
can be defined as a tuple (D,S,G,C), where C is the cost function of actions.
Given an optimizing planning problem, an optimal path P (n) is a satisfactory
path of the satisfactory planning problem (D,S,G) such that the overall cost
of the path, cost

(
P (n)

)
, is minimal among all satisfactory paths of (D,S,G).

Incrementally lengthening the plan length will not necessarily lead to the optimal
plan because a very long plan could have the lowest cost. Algorithms that solve
this problem compute plans toward minimizing the overall cost of the plan.

Without concurrent actions, a Type-I problem can be reduced to a Type-II
problem by using unit cost for any (s, a) in function C. Therefore, we will focus
on applying the abstraction hierarchy to Type-II problems.

4.1 PlanHG: The Proposed Planning Algorithm

Given a Type-II problem (D,S,G,C) and hierarchy H = (D,L), for a state P s(i)
in a path P (n), we define its shifted timestamp in Eq. 4. The shifted timestamp for
state P s(i) is the timestamp when this state constraint needs to be achieved when
P (n) is further elaborated at the next level i + 1. State constraint sh(i) : P s(i)
is functionally a “bottleneck” that guides the solution path in the next level of
hierarchy by reducing the search space.

sh(i) =
∑

aj ∈P(n), j<i

L
(
Pa(j )

)
− 1 (4)

Furthermore, we impose the restriction that the only constraint contained in S
is the initial state that can be sensed by the robot. This restriction allows us to
easily project S and G on to each level of the hierarchy as Si and Gi, respec-
tively. As a result, we obtain an optimizing planning problem at each abstraction
level: (D1, S1, G1, C), (D2, S2, G2, C), . . ., (Dd, Sd, Gd, C). For a Type-II prob-
lem (Di, Si, Gi, C) at the ith level, let the path obtained from level i − 1 be
Pi−1(n). We define the extended state constraint set at the ith level, S′

i, in Eq. 5.
Therefore, a guided Type-II problem (Di, S

′
i, Gi, C) is formed at the ith level

using (Di, Si, Gi, C) and state constraints extracted from level i − 1. We call
it a “guided”problem because the state constraints reduce the search space in
planning at the ith level.

S′
i = Si ∪

⋃

1≤j≤n−1

sh(j ) :P s
i−1 (j ). (5)
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Algorithm 1. PlanHG: Planning using H while applying L globally

Input: Type-II problem (D,S,G,C), and abstraction hierarchy H = (D,L), where
D = (D1, . . . , Dd), and Dd = D

1: create a list of problems (Di, Si, Gi, C), 1 ≤ i ≤ d using (D,S,G,C) and D
2: generate path P1 for (D1, S1, G1, C)
3: for level i ∈ {2, . . . , d} do
4: compute S′

i based on Si and Pi−1, using Eq. (5)
5: generate path Pi for (Di, S

′
i, Gi, C)

6: end for
7: return the plan obtained from Pd

Solving Type-II problems directly using the optimization function of answer
set solvers may require prohibitively long time. Using an abstraction hierarchy,
we can obtain a list of guided Type-II problems. In practice, each level has action
noop(I) of zero cost representing no operation at timestamp I. The optimal path
generated at a higher level is passed down as “bottlenecks” such that the Type-II
problem at a lower level becomes a guided Type-II problem, until the bottom
level is reached. This approach guarantees the soundness of generated plans but
may lead to sub-optimal results. We present Algorithm1 that solves Type-II
problems using an abstraction hierarchy H = (D,L). We call this algorithm
PlanHG to identify the use of the hierarchy and global minimization of plan
costs at each level.

In the mail collection domain, the robot can obtain the initial state constraint
from its internal knowledge base and sensor readings. For instance, initially the
robot can perceive that it is located in cor and beside d4. Such information is
used to automatically create a state constraint set S:

{0: loc = cor , 0 : ibeside(d4 ), 0 :∼facing(D)}.
Given a goal G of mailcollected(erin), at level 1 the projection S1 becomes

{0: loc = cor} and the goal G1 = G. The solver returns the optimal path:

〈s0={loc=cor ,∼mailcollected(erin)}, a0 ={serve(erin)},
s1={loc= lab1 ,mailcollected(erin)}〉

Now, we can compute the shifted timestamps for s0 and s1 given L(serve) = 5
(Sect. 3) and we obtain the guided state constraint set S′

2:

0 : loc = cor , 0 :∼mailcollected(erin),
5: loc = lab1 , 5 :mailcollected(erin).

The guided Type-II problem (D2, S
′
2, G2, C) aims to find an optimal plan

such that at time 0 the robot is in cor, at time 5 the robot is in lab1
and Erin’s mail is collected, and the goal of Erin’s mail being collected is
achieved. Indeed, the optimal plan generated at this level consists of two actions:
cross(d7), collectmail(erin). Note that cross(d7) is selected because it has a
lower cost than cross(d5) and cross(d6). Using this plan, we can generate the
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Algorithm 2. PlanHL: Planning using H while applying L locally

Input: Type-II problem (D,S,G,C), and abstraction hierarchy H = (D,L), where D =
(D1, . . . , Dd), and Dd = D

1: generate path P ′ for (Di, S,G,C), where, in a top-down manner, i = 1 at the first call.
2: if P ′ includes only primitive actions then
3: return P ′

4: end if
5: generate a list of optimizing planning problems using P ′ and (D,L): (Di, jk : sk, sk+1, C),

where k ∈ {1, . . . , l − 1}, and l is the length of P ′

6: for k ∈ {1, . . . , l − 1} do
7: call Algorithm 2 to solve (Di+1, jk : sk, sk+1, C), and compute P ′

k
8: end for
9: return P = (P ′

1, . . . , P
′
l−1)

next level of state constraints that require the robot to be in lab1. At level
3, the robot will execute approach(d6), open(d6), gothrough(d6) instead of
going through d7 because this plan meets the state constraint requirements,
but is cheaper due to the robot’s current position (beside d4). This flexibility is
attributed to the strategy that instead of expanding macro-actions, we generate
plans for the same problem described at different abstraction levels and meet
the requirement of state constraints.

We will use PlanFG to represent a special form of algorithm PlanHG that
does not pass state constraints to lower levels but simply plans at the bottom
level. PlanFG is a “flat” planning algorithm as presented in [13].

4.2 PlanHL: A Baseline Planning Algorithm

Alternatively, instead of satisfying all state constraints simultaneously, we can
treat each pair of consecutive state constraints as a specification of a sub-
problem. In this case, the step bound estimation function L is used for find-
ing local optimal plans. Following this idea, a guided Type-II problem at the
ith level, (Di, S

′
i, Gi, C), can be split into a sequence of Type-II subprob-

lems (Di, jk : sk, sk+1, C) for 0 ≤ k ≤ l − 1, where S′
i is of the form:

{j0 : s0, . . . , jl : sl}, where j1 < j2 < . . . < jl.
The optimal paths of these problems are then joined to obtain the solution to

the original Type-II problem. This algorithm is presented in Algorithm 2, where
the implementation uses depth-first search to recursively call itself until reaching
the bottom level. We name this algorithm PlanHL to identify the use of H and
local minimization of plan costs using function L at each level. In comparison to
PlanHL, algorithm PlanHG (proposed) does not decompose the original problem
to subproblems at each level. Instead, it generates paths for the original problem
to simultaneously satisfy all state constraints (by applying step bound estimation
function L globally) at each level, toward minimizing the overall plan cost. Since
both the algorithms are sacrificing plan quality for efficiency in solving Type-II
problem, neither of the algorithms can guarantee the optimality (i.e. minimal
cost) of generated plans, but the provably sound semantics of action language
BC ensures the soundness of PlanHG (and PlanHL).
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5 Experiments

The abstraction hierarchy H (Sect. 3) and the planning algorithms (Sect. 4) have
been fully implemented in simulation and on a real robot using the mail collec-
tion problem domain. This section describes the results of experiments evalu-
ating the efficiency, solution quality, and scalability of the proposed algorithm.
Generally, a planning algorithm’s quality can be measured by optimality and effi-
ciency. Since we trade optimality for significant efficiency improvement in this
work, our hypotheses are: 1) PlanHG can solve planning problems that existing
“flat” algorithms cannot solve in reasonable time (PlanHG vs. PlanFG); and 2)
PlanHG can generate better-quality plans than the ones generated by existing
hierarchical algorithms (PlanHG vs. PlanHL).

5.1 Experiments in Simulation

The simulated domain used in experiments consists of 10 people, 20 rooms and
25 doors in an office environment, where mail needs to be collected from everyone
inside the building. No two people are in the same room. We vary how mail is
passed between people such that the number of people that need to be visited
to collect all the mail varies from 1 to 10. Initially, the robot is placed in the
corridor beside a randomly-selected door. Each data point is an average of 1000
trials. If the trials take more than 5 h, we terminate the trials and take the
average over the available data. Action descriptions in BC are translated into
logic programming, and the algorithms are implemented natively in clingo
4.3 [7]. Unless otherwise stated, experiments were conducted on a 32-bit laptop
machine with 4 G memory and 2.0 GHz Dual Core processor.

PlanHG vs. PlanFG on Type-I Problems: We first compared PlanHG against
PlanFG on the efficiency of solving Type-I problems that aim at minimizing
the length of plans. The approach of applying PlanFG on Type-I problems was
presented in previous research [15]. The planning time is plotted in Fig. 2a. Not
surprisingly, PlanHG leads to significantly reduced planning time over PlanFG
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Fig. 2. (a) PlanHG vs. PlanFG in efficiency on the Type-I problems (i.e., minimiz-
ing plan length); and (b) PlanHG vs. PlanFG in efficiency on Type-II problems (i.e.,
minimizing plan cost).
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by inserting state constraints (as “bottlenecks”) at lower levels. For instance,
creating a plan to visit six people (in six different rooms) takes PlanHG less
than 20 seconds, but requires more than 13 min for PlanFG. Therefore, PlanHG
can significantly reduce the planning time in solving Type-I planning problems.
While PlanHG is not guaranteed to find the shortest length plan, both PlanHG
and PlanFG find the shortest length plan in our testing domain.

PlanHG vs. PlanFG on Type-II Problems: As shown in Fig. 1, multi-entrance
rooms make the shortest plan not necessarily the lowest-cost plan. We compare
PlanHG against PlanFG on Type-II problems that aim at minimizing overall
plan costs. Previous research has studied applying the PlanFG algorithm on
Type-II problems [13], where the lowest-cost plan is found by searching among
all plans of length less than a user specified upper-bound. Instead, we use Eqs. 2
and 3 of PlanHG to estimate this upper bound. The efficiency has been sig-
nificantly improved, because instead of directly solving the Type-II problem,
PlanHG solves a set of low-weight guided Type-II problems generated using the
abstraction hierarchy.

Figure 2b shows the significant improvement in efficiency against PlanFG.
To run larger numbers of trials, the experiments were conducted on a powerful
desktop machine with 15 G memory and Intel Core i7 CPU at 3.40 GHz. For
instance, to create a plan visiting three people, PlanFG needs 5.98 min, while
PlanHG requires less than one second. When a small number of people need
to be visited, PlanHL took more time than PlanHG, because PlanHL calls the
ASP solver more frequently. Although PlanHG (the proposed approach) becomes
slower than PlanHL while planning for visiting more than three people, both
require significantly less time than PlanFG. PlanHL’s significant loss in plan
quality will be discussed.

Table 1. Scalability of PlanHG on
Type-II problems with three people
need to be visited (in seconds).

# of ppl. Number of rooms

10 15 20 25

5 1.41 2.86 5.65 10.28

10 1.83 4.18 7.69 11.56

15 - 6.20 9.93 14.58

Scalability of PlanHG on Type-II Problems:
We next evaluate the scalability of PlanHG
to learn how the planning time changes
given different problem domains. We keep
the number of people who need to be visited
fixed at three, and then vary the total num-
ber of people in the building from 5 to 15,
rooms from 10 to 25, and doors from 13 to
27. Table 1 presents the planning time as the size of the domain increases.

Plan Quality: Figure 3a compares all approaches in plan quality (i.e. cost) in
the domain shown in Fig. 1. In this set of experiments, the trials (totally 1000)
are paired for different algorithms: the robot is initially placed in the corridor
beside a randomly-selected door; and n people (n varies from 2 to 4) are ran-
domly selected to need the robot’s visit. Realistic action costs are learned and
associated with the actions using algorithms presented in [13]. We observe that
algorithms solving a Type-I problem do not perform as well as those solving the
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(a) (b)

Fig. 3. (a) Evaluation of plan quality in minimizing plan cost using different planning
algorithms (normalized, paired)—results of trials that would require longer then five
hours to complete were not included; and (b) Visual illustration of computed plans
(worst case) in a test case.

corresponding Type-II problem as they do not attempt to minimize overall plan
cost, but in turn have much faster execution times.

Figure 3a shows that PlanFG, the “flat” planning approach that computes
optimal plans, produces plans of the best quality in overall plan cost, but cannot
solve Type-II problems with more than two people in reasonable time (as shown
in Fig. 2b). Comparing with PlanFG on Type-II problem with two people, we find
PlanHG has only a 11.25 % loss in optimality. Compared to PlanHL, the baseline
hierarchical planning algorithm, PlanHG significantly improved the quality of
generated plans—when compared over 1000 trials using a student’s t-test with
p-value < 10−50.

Figure 3b presents a test case of planning to visit two people, to demonstrate
why PlanHG can produce lower cost plans than PlanHL, where the robot is
initially beside d7 at the corridor, and the goal is to collect mail from Alice and
Erin. We present the plans in the worst case. As expected, algorithm PlanFG
generated the optimal plan with the minimum cost (195). While planning with
PlanHG, the robot decided to visit room o1 first (suboptimal) because the robot’s
finer position (e.g., beside(d7)) could not be represented at level 1—D1 only
“knows” the robot is in the corridor. While planning with PlanHL, the robot
decided to go through d6 because the subproblem is to find the optimal plan
going into lab1. As a result, PlanHG and PlanHL produce plans with costs of
205 and 345 respectively. Without minimizing plan cost globally, the robot could
not know going through d5 could reduce the overall cost.

5.2 Illustrative Trials of PlanHG on a Robot

Algorithm PlanHG has been implemented on an autonomous Segway-based
robot—see Fig. 4b. The robot uses a Hokuyo URG-04LX LIDAR and a Kinect
RGB-D camera for sensing and navigation. The robot moves in indoor environ-
ments at a maximum speed of 0.7m/s. Figure 4a shows part of the real world
map generated using a simultaneous localization and mapping (SLAM) algo-
rithm. Since manipulation tasks are not the focus of this paper, similar to [22],
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(a) (b)

Fig. 4. (a) Part of the inflated occupancy-grid map with a path (green bubbles) planned
for going through a door; and (b) The robot platform used in experiments.

the robot simply asks help from humans to open doors. The system architecture
has been implemented using Robot Operating System (ROS) [21].

As a trial, we initially placed the robot at a position labeled by the yellow dot
in Fig. 4a and asked the robot to collect mail from three people in lab1, lab2 and
room1 respectively. Using PlanHG, the robot found the plan within 2 seconds.
In contrast, the robot needed more than 5 min to find the plan when PlanFG was
used (see Fig. 2b). The plan suggests following this path: start

d1−→lab1∗ d1−→cor1
d2−→

lab2∗ d4−→cor2
d5−→room1∗, where mail was collected at the rooms labeled with the

star sign. The red dot in Fig. 4a shows the position where the robot finished the
task. It should be noted that there are multiple plans of similar lengths leading
to the goal. For instance, the robot can cross d3 after serving the first person
in lab1. This plan is not preferred, because d3 is a narrow door and has a high
cost of navigating through it. A video of the robot’s performance can be viewed
online.2

6 Conclusions

In this paper, we present algorithm PlanHG for robotic task planning using
an abstraction hierarchy represented in action language BC. The hierarchy is
obtained by composing additional domain descriptions at coarser granularities
and plans computed at coarser levels are used to generate “bottlenecks” in the
form of search depth bounds at lower levels. This work combines the KRR advan-
tages of BC and the efficiency of hierarchical planning to enable mobile robots
to compute provably sound plans in real-world environments. The hierarchy and
algorithm have been fully implemented in simulation and on real robots. We
observed orders of magnitude improvements in efficiency with only a 11.25 %
loss in optimality compared to a “flat” planning approach.
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Abstract. Logic programs with graded modality (LPGM s) combine
ideas underlying graded modal logic and answer set programming. Logic
programming under answer set semantics is extended with a new graded
modality M[lb:ub] where lb and ub are natural numbers satisfying lb ≤ ub.
The modality is used to precede a literal in rules bodies, and thus
allows for the representation of graded introspections: M[lb:ub]F intu-
itively means: it is known that the number of belief sets where F is true
is between lb and ub. We define the semantics of Logic programs with
graded modality, give an algorithm for computing solutions of LPGM s,
and show the effectiveness of the formalism for modeling two problems.

Keywords: Logic programming · Graded modality · Answer set

1 Introduction

Modalities and negation as failure have proved to be intuitive and powerful for
the declarative representation of modal concepts and defaults respectively. Sev-
eral epistemic nonmonotonic formalisms have been developed to support quali-
tative modalities and negation as failure. Examples include the logic of grounded
knowledge [6], the logic of MKNF [7], and epistemic specifications [8] etc. Those
formalisms have proved to be potentials in dealing with some important issues in
the field of knowledge representation and reasoning, for instance the correct rep-
resentation of incomplete information in the presence of multiple belief sets [9],
epistemic queries [10], commonsense reasoning [9], formalization for conformant
planning [11], meta-reasoning [12] etc. Recently, there is increasing research in
this direction, e.g. [13–16]. In those formalisms, two qualitative modalities are
usually considered: Kp:“p is known”(p is true in all belief sets of the agent),
Mp:“p may be true”(p is true in some belief sets of the agent), and their nega-
tions: ¬Kp:“p is not known”(p is not true in some belief sets of the agent), and
¬Mp:“p is never true”(p is not true in every belief sets of the agent).

Graded modalities are quantitative modalities that are widely used to rep-
resent the modal concepts: “at least as many as...” and “at most as many
as...” (based on counting). This is especially useful in knowledge representa-
tion because humans tend to describe objects by the number of other objects
they are related to. Several formalisms are proposed to extend classical logics

c© Springer International Publishing Switzerland 2015
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with graded modalities. Examples include the family of graded modal logics con-
taining the logic GrK defined in [5], the logic Gr(S5) proposed in [17], and the
logic T in [18] etc., and the description logic based ALCQ in [19]. In those log-
ics, the graded modality ♦nF (n = 1, 2, ...) is usually interpreted in a possible
world framework as “there are more than n accessible worlds where F is true.”.
However those formalisms do not support negation as failure.

In this paper, our purpose is to represent a formalism that is able to support
not only the declarative representation of counting based gradation of an agents
belief but also the declarative representation of defaults. We present a new logic
programming language that combines ideas underlying graded modal logics and
answer set programming that adopts negation as failure not to represent defaults
declaratively. A new graded modality M[lb:ub] is proposed to precede a literal in
rules bodies, and thus allows for the representation of graded introspections:
M[lb:ub]F intuitively means: it is known that the number of belief sets where F
is true is between lb and ub.

The rest of the paper is organized as follows. In the next section, we review
the basic principles underlying the answer set semantics of logic programs and
the basic idea underlying graded modal logics, we show how they can be merged
resulting in LPGM s. In Sect. 3, we introduce syntax and semantics of LPGM s.
In Sect. 4, we consider several properties of LPGM s. In Sect. 5, we consider the
relationship between LPGM s and epistemic specifications. In Sect. 6, we give an
algorithm for computing solutions of LPGM s and an analysis of its complexity.
In Sect. 7, we show the effectiveness of the formalism for modeling two graph
problems. We conclude in Sect. 8 with some further discussion.

2 Preliminaries

Throughout this paper, we assume a finite first-order signature σ that contains
no function constants of positive arity. There are finitely many Herbrand inter-
pretations of σ, each of which is finite as well.

2.1 Answer Set

A logic program over σ is a collection of rules of the form

l1 or ... or lk ← lk+1, ..., lm, not lm+1, ..., not ln.

where ls are literals of σ, not is called negation as failure and not l is often read
as “it is not believed that l is true.”, or is epistemic disjunction. l1 or l1 can be
read as “l1 is believed to be true or l2 is believed to be true.” The left-hand of a
rule is called the head and the right-hand is called the body. A rule is called a fact
if its body is empty and its head contains only one literal, and a rule is called
a denial if its head is empty. A logic program is called ground if it contains no
variables. [2] intuitively interprets that an answer set associated with a ground
logic program is a set of beliefs (collection of ground literals) and is formed by
a rational reasoner guided by three principles:
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– Believe in the head of a rule if you believe in its body (Rule’s Satisfiability
principle).

– Do not believe in contradictions (Consistency principle).
– Believing nothing you are not forced to believe (Rationality Principle).

For example for the program

p ← not a. q ← not b. a or b.

The first rule means “If a does not belong to your set of beliefs, then p must.”,
the second rule means “If b does not belong to your set of beliefs, then q must.”,
the last rule means “Believe a or believe b.” Clearly, by the three principles, the
last says that a is possible to be believed i.e., it may belong to an answer set of
the program. This means that the body of the first rule is not satisfied in the
answer set, thus the first rule will not contribute to form such answer set. Since
we cannot be forced to believe b, the body of the second rule is satisfied, and
hence q must belong to the answer set. Thus, the belief set {a, q} is an answer
set of the program. In a similar way, we can construct another answer set {b, p}
of the program.

The definition of the answer set is extended to any non-ground program by
identifying it with the ground program obtained by replacing every variable with
every ground term of σ.

2.2 Graded Modal Logic

We introduce the basic ideas underlying graded modal logic by a concise review
of the language and semantics of (GrK) defined in [5].

A GrK formula is constructed from a set of propositional variable p1, ..., pn,
the usual logic connectives: the binary operator ∨ and the unary operator ¬,
and a necessity modality � and graded modalities ♦n (n = 1, 2, ...).

The semantics of GrK is defined on the possible world framework <
W,R, π >, where W is a non-empty set and R is a binary relation on W , π
is a map from variable set to 2W . Then the satisfiability of GrK is defined as
below: for w ∈ W

– for a propositional variable p, w |= p iff w ∈ π(p),
– for a formula F , w |=¬F iff not w |=F ,
– for formulas F1 and F2, w |=F1 ∨ F2 iff w |=F1 or w |=F2,
– for a formula F , w |=�F iff not v |=F for all v such that wRv,
– for a formula F , w |=♦nF iff |{v|wRv, v |=F}| ≥ n,

The basic idea of GrK is to allow propositional formulas preceded by graded
modalities which are interpreted by counting possible worlds where the proposi-
tion is true. The principles of defining answer sets provide an rational approach
to the construction of all possible worlds where the logic program possible having
negation as failure can be satisfied.
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3 Logic Programs with Graded Modality

3.1 Syntax

A LPGM program Π is a finite collection of rules of the form

l1 or ... or lk ← e1, ..., em, s1, ..., sn.

where k ≥ 0, m ≥ 0, n ≥ 0, ls are literals in first order logic language and are
called objective literals here, es are extended literals which are objective literals
possibly preceded by a negation as failure operator not, ss are subjective literals
of the form Mωe where e is an extended literal and Mω is a modality where ω
is of the form [lb : ub] or [lb :] where lb and ub are natural numbers satisfying
lb ≤ ub. As in usual logic programming, a rule is called a fact if its body is empty
and its head contains only one literal, and a rule is called a denial if its head is
empty. We use head(r) to denote the set of objective literals in the head of a
rule r and body(r) to denote the set of extended literals and subjective literals
in the body of r. Sometimes, we use head(r) ← body(r) to denote a rule r. The
positive body of a rule r is composed of the extended literals containing no not
in its body. We use body+(r) to denote the positive body of r. r is said to be
safe if each variable in it appears in the positive body of the rule.

It is clear that a LPGM containing no subjective literals is a disjunctive logic
program that can be dealt with by ASP solvers like DLV [3], CLASP [4].

3.2 Semantics

We will restrict our definition of the semantics to ground programs. However, we
admit rule schemata containing variables bearing in mind that these schemata
are just convenient representations for the set of their ground instances. In the
following definitions, l is used to denote a ground objective literal, e is used to
denote a ground extended literal with or without one not.

Models of LPGM s. Let W be a non-empty collection of consistent sets of
ground objective literals, < W,w > is a pointed structure of W where w ∈ W .
We call w as a belief set in W . W is a model of a program Π if for each rule r
in Π, r is satisfied by every pointed structure of W . The notion of satisfiability
is defined below.

– < W,w > |= l if l ∈ w
– < W,w > |=not l if l �∈ w
– < W,w > |= M[lb:ub]e if lb ≤ |{w ∈ W | < W,w > |= e}| ≤ ub
– < W,w > |= M[lb:]e if |{w ∈ W | < W,w > |= e}| ≥ lb

Then, for a rule r in Π, < W,w > |= r if

– ∃l ∈ head(r): < W,w > |= l
– ∃t ∈ body(r): < W,w > �|= t.
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The satisfiability of a subjective literal does not depend on a specific belief set
w in W , hence we can simply write W |= Kω e if < W,w > |= Mω e and say
the subjective literal Mω e is satisfied by W . For convenient description, if an
extended literal e can be satisfied by < W,w >, we also say that e is believed
with regard to w.

World Views of LPGM s. The definition of the world view consists of two
parts. The first part is for disjunctive logic programs. The second part is for
arbitrary LPGM s.

Definition 1. Let Π be a disjunctive logic program, the world view of Π is the
non-empty set of all its answer sets, written as AS(Π).

We immediately have a conclusion below.

Theorem 1. Π has an unique world view if it is a consistent disjunctive logic
program.

Now, we give the second part of the definition of the world view to address
graded modalities in an arbitrary LPGM.

Definition 2. Let Π be an arbitrary LPGM, and W is a non-empty collection
of consistent sets of ground objective literals in the language of Π, we use ΠW

to denote the disjunctive logic program obtained by removing graded modalities
using the following reduct laws

1. removing from Π all rules containing subjective literals not satisfied by W .
2. replacing all other occurrences of subjective literals of the form M[lb:ub] l or

M[lb:] l where lb = |W | with l.
3. removing all occurrences of subjective literals of the form M[lb:ub] not l or

M[lb:] not l where lb = |W |.
4. replacing other occurrences of subjective literals of the form M[0:0] e with enot.
5. replacing other occurrences of subjective literals of the form Mω e with e and

enot respectively.

where enot is l if e is not l, and enot is not l if e is l. Then, W is a world view
of Π if W is a world view of ΠW .

ΠW is said to be the introspective reduct of Π with respect to W . Such a reduct
process eliminates graded modalities so that the belief sets in the model are
identified with the answer sets of the program obtained by the reduct process.
The intuitive meanings of the reduct laws can be described as follows:

– The first reduct law directly comes from the Rule’s Satisfiability principle
and Rationality Principle which means if a rule’s body cannot be satisfied
(believed in), the rule will contribute nothing;

– The second reduct law states that, if it is known that there are at least lb
number of belief sets where l is true and there are totally lb belief sets in W ,
then, by the meaning of the gradation based on counting, l must be believed
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with regard to each belief set in W . Then, by the Rationality Principle in
answer set semantics, you are forced to believe l with regard to each belief
set. Hence, M[lb:ub] l (or M[1b:] l) should be replaced by l (instead of being
removed) to avoid self-support;

– The third law states that, if it is known that there are at least lb number of
belief sets where l is not true and there are totally lb belief sets in W , then
not l is satisfied by each belief set in W . Hence, Removing M[lb:ub]not l or
M[lb:]not l in a rule will not effect the satisfiability of the rule1.

– The fourth law states that if it is known that e is not believed with regard to
each belief set in W , then enot must be believed with regard to each belief set
in W .

– The last law states that, if it is known that there are at least lb number of
belief sets where e is believed, and the number of belief sets in W is strict
greater than lb, then e may be believed or may not be believed with regard to
a belief set in W . Hence, Mω e where ω is [lb : ub] or [lb :] should be replaced
by e and enot respectively.

Example 1. Consider a LPGM Π containing rules:

a or b ← . c ← M[1:1]a.

Let W = {{a, c}, {b, c}}. Because of W |= M[1:1]a, ΠW is a disjunctive logic
program contains rules:

a or b ← . c ← a. c ← not a.

It is easy to see that W is a world view of ΠW , hence, W is a world view of Π.

Combine the two parts of the definition of the world view, it is easy to get the
following conclusion.

Theorem 2. For an arbitrary LPGM Π, a non-empty set W is its world view
if and only if W = AS(ΠW ).

Definition 3. A LPGM is said to be consistent if it has at least one world view.
Otherwise, it is said to be inconsistent.

Example 2. An inconsistent program:

¬p ← M[1:1]p. p ← not ¬p. ← p.

Some LPGM s have two or more world views. We use WV (Π) to denote the set
of all world views of a program Π.

1 Remove Mωnot l in a denial of the form ← Mωnot l, we will get a denial with empty
body, and such a denial is considered as an unsatisfiable rule in the answer set
program. For example, for a logic program with a denial with empty body, CLASP
answers “UNSATISFIABLE”.
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Example 3. A program Π with Multiple world views:

f ← p. f ← q. p or q ← . ← M[1:]not p, p. ← M[1:]not q, q. ← M[1:]not f.

Π has two world views: {{p, f}} and {{q, f}}.

Now, we give a program that has a world view containing multiple belief sets.

Example 4. Consider Π: p or ¬p ← M[2:3]not r. {{p}, {¬p}} is a world view
of Π.

4 Some Properties

We first consider the introspective ability of a LPGM s based agent.

Definition 4. Let Π be a LPGM, for a pair (l, n) where l is a ground objective
literal and n ∈ N

– (l,= n) is true in Π written by Π |=n l if ∀W ∈ WV (Π) W |= M[n,n]l.
– (l,≥ n) is true in Π written by Π |=≥n l if ∀W ∈ WV (Π) W |= M[n:]l.
– (l,≤ n) is true in Π written by Π |=≤n l if ∀W ∈ WV (Π) W |= M[0:n]l.

Theorem 3. Let Π be a LPGM, l and l′ be ground objective literals and n ∈ N

– Π ∪ {← M[n,n]l.} is inconsistent if Π |=n l.
– Π |=≥n−1 l if Π |=≥n l for n ≥ 1.
– Π |=≤n+1 l if Π |=≤n l for n ≥ 0.
– Π ∪ {l′ ← l} |=n l′ if Π ∪ {l′ ← l} |=n l

Second, we find that the division of the counting intervals in the subjective
literals will not change the world views of a LPGM. This is in line with our
intuition. For convenient description, we consider M[lb:]e as an abbreviation of
M[lb:∞]e.

Definition 5. A pair (r1, r2) of rules is called a substitute of a rule r if there
exists exactly one subjective literal M[lb:ub]e in r such that: (1) r1 is obtained
from r by replacing M[lb:ub]e with a subjective literal M[lb1:ub1]e, and r2 is
obtained from r by replacing M[lb:ub]e with a subjective literal M[lb2:ub2]e, and
(2) min{lb1, lb2} = lb and max{ub1, ub2} = ub.

Theorem 4. If a LPGM Π ′ is obtained from a LPGM Π by replacing a rule
r of Π with rules in a substitute of r, then WV (Π ′) = WV (Π).

Example 5. Consider a LPGM Π containing one rule:

p ← M[1:]not ¬p.

Let Π ′ consist of two rules in a substitute of the rule of Π:

p ← M[1:2]not ¬p. p ← M[3:]not ¬p.

It is easy to see that WV (Π ′) = WV (Π) = {{{p}}}.
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5 Relation to Epistemic Specifications

In this section we will explore the relationship between the language of LPGM s
and the language of epistemic specifications. We show that the language of epis-
temic specifications recently defined in [11] can be viewed as LPGM s.

An epistemic specification is a set of rules of the form

h1 or ... or hk ← b1, ..., bm.

where k ≥ 0,m ≥ 0, hs are objective literals, and each b is an objective literal
possible preceded by a negation as failure operator not, an modal operator K or
M, or a combination operator not K or not M. The semantics of an epistemic
specification is defined by a notion of world view2.

Theorem 5. From an epistemic specification Π, a LPGM Π ′ is obtained by

– Replacing all occurrences of literals of the form Kl in Π by “M[0,0]not l”.
– Replacing all occurrences of literals of the form Ml in Π by “M[1:]l” and

“not not l”3 respectively.
– Replacing all occurrences of literals of the form not Kl in Π by “M[1:]not l”

and not l respectively.
– Replacing all occurrences of literals of the form not Ml in Π by M[0:0]l.

then W is a world view of Π ′ iff W is a world view of Π.

Example 6. Consider an epistemic specification Π:

p ← Mp.

Π has an unique world view {{p}}. By the above theorem, Π ′ contains two
rules:

p ← M[1:]p. p ← not not p.

It is easy to see that Π ′ has an unique world view {{p}}.

6 An Algorithm for Computing World Views

For a given LPGM Π, we use WVi(Π) (i ∈ N and i ≥ 1) to denote the set
of world views of Π which contain exactly i belief sets, i.e., WVi(Π) = {W ∈
WV (Π)||W | = i}. Obviously, we have WV (Π) =

⋃
i≥1 WVi(Π). In addition,

we use WV>i(Π) to denote the set of world views of Π which contain strictly
more than i belief sets. Then we have WV (Π) = (

⋃
1≤i≤k WVi(Π))∪WV>k(Π)

2 To distinguish the world view semantics defined in [11] from the world view semantics
in this paper, we use bold face world view to denote the former.

3 Here, we view not not l as a representation of not l′ where we have l′ ← not l and
l′ is a fresh literal. It is worthwhile to note that CLINGO [21] is able to deal with
not not.
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for any natural number k and k ≥ 1. Based on this idea, we propose an algo-
rithm for finding world views of LPGM s composed of safe rules. At a high level
of abstraction, the algorithm for computing world views of a LPGM Π is as
showed in Algorithm 1. In Algorithm 1, LPGMSolver first computes a divid-
ing line n. Then, LPGMSolver adopts a FOR-LOOP to compute all world
views of size less than or equal to n for Π by calling a function WViSolver
that computes all world views of size i for Π. After that, LPGMSolver calls a
function WVgiSolver that computes all world views of size strict greater than n
for Π.

Algorithm 1. LPGMSolver.
Input:

Π: A LPGM ;

Output:

All world views of Π;

1: n = max{lb|M[lb:ub]e or M[lb:]e in Π} {computes the maximal lb of subjective literals in

Π}
2: WV = ∅
3: for every natural number 1 ≤ k ≤ n do

4: WVk = WViSolver(Π, k) {computes all world views of size k for Π}
5: WV = WV ∪ WVk

6: end for

7: WV>n =WVgiSolver(Π, n) {computes all world views of size strict greater than n for Π}
8: WV = WV ∪ WV>n

9: output WV

For ease of description of WViSolver and WVgiSolver, m C lb U V p will be
used to denote the fresh atom obtained from a subjective literals Mωe, where p
is the atom in e, and in the prefixes, V is t if e is p, V is f if e is ¬p, V is nt if
e is not p, V is nf if e is not ¬p, C is 0 if ω is of the form [lb : ub], C is 1 if ω is
of the form [lb :], and U is ub if ω is of the form [lb : ub], and U is o if ω is of the
form [lb :]. Thus, m C lb U V p is called a denoter of Mωe and also recorded as
m ω l for convenience. We assume prefixes used here do not occur in Π. Other
fresh atoms may be used to avoid conflicts.

WViSolver(Π, k) includes the following steps.

1. Create a disjunctive logic program Π ′ from Π.
Rules without subjective literals are left unchanged. For each rule r containing
a subjective literal Mωe
(a) Eliminate Mωe by the following laws:

i. if ω is [0 : 0], replace Mωe with m ω e, enot.
ii. if ω is [k :] or [k : ub], and e is of the form not l, replace Mωe with

m ω e.
iii. if ω is [k :] or [k : ub], and e is a literal l, replace Mωe with m ω e, l.
iv. otherwise,

A. Add a rule obtained from r by replacing Mωe by m ω e, e, and
B. Add a rule obtained from r by replacing Mωe by m ω e, enot
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(b) Add rules
m ω e ← body+(r), not ¬m ω e.

and
¬m ω e ← body+(r), not m ω e.

2. Compute the set AS(Π ′) of answer sets of Π ′ using ASP grounder-solver like
DLV, CLINGO etc.

3. Generate a set CWV (Π) of candidate world views of k-size from AS(Π ′).
Group the answer sets in AS(Π ′) by common m− and ¬m −literals. Each
group is said to be a candidate world view.

4. Generate k-size world views of Π by checking each candidate world view in
CWV (Π).
For each candidate world view W , check that the following condition are met
– |W | = k
– if m ω e is a common literal in W , then W |= Mωe is true.
– if ¬m ω e is a common literal in W , then W |= Mωe is false.
Let WS denote the set of literals with a prefixes m or ¬m in W. {A|∃B ∈
W,A = B − WS} is a world view of Π if the above two conditions are met.

WVgiSolver(Π,n) includes the following steps.

1. Create a disjunctive logic program Π ′ from Π.
Rules without subjective literals are left unchanged. For each rule r containing
a subjective literal Mωe
(a) Eliminate Mωe by the following laws:

i. if ω = [0 : 0], replace Mωe with m ω e, enot.
ii. otherwise,

A. Add a rule obtained from r by replacing Mωe with m ω e, e, and
B. Add a rule obtained from r by replacing Mωe with m ω e, enot

(b) Add rules
m ω e ← body+(r), not ¬m ω e.

and
¬m ω e ← body+(r), not m ω e.

2. Compute the set AS(Π ′) of answer sets of Π ′ using ASP grounder-solver like
DLV, CLINGO etc.

3. Generate a set CWV (Π) of candidate world views of size > n from AS(Π ′).
Group the answer sets in AS(Π ′) by common m− and ¬m −literals. Each
group is said to be a candidate world view.

4. Generate > n size world views of Π by checking each candidate world view
in CWV (Π).
For each candidate world view W , check that the following condition are met
– |W | > n
– if m ω e is a common literal in W , then W |= Mωe is true.
– if ¬m ω e is a common literal in W , then W |= Mωe is false.
Let WS denote the set of literals with a prefixes m or ¬m in W. {A|∃B ∈
W,A = B − WS} is a world view of Π if the above two conditions are met.
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Theorem 6. LPGMSolver is sound and complete for computing world views.

Now, we consider the complexity of LPGMSolver informally. Let L be the set
of all ground literals in Π. It is easy to see that: step 1 of WViSolver(Π, k)
only takes linear time and needs a polynomial space; step 2 calls an ASP solver
where deciding whether a given disjunctive logic program has some answer sets
is

∑P
2 -complete and needs a polynomial space [20]; step 3 and step 4 generates

and checks each collection of the subsets of L that costs O(23|L|), but uses a
polynomial space. In summary, WViSolver(Π, k) is in PSPACE and O(23|L|).
It is easy to see that WViSolver(Π, k) and WVgiSolver(Π,n) have same time
and space complexity. Therefore, LPGMSolver is in PSPACE while the time
complexity of LPGMSolver depends on the number of calling WViSolver by
the FOR loop from step 3 to step 6 in Algorithm 1. The number is determined
in step 1 of Algorithm 1 by computing the maximal lb of all subjective literals
of the form M[lb:ub] or M[lb:] in the program. Theoretically, that loops number
may be anyone of the natural numbers.

7 Modeling with LPGM s: A Case Study

We will now present two graph problems which illustrate the applications of the
language of LPGM s we developed in the previous sections. We first consider a
modification of the critical edge problem4 related to the existence of Hamiltonian
cycles.

– n-critical edge problem: Given a directed graph G = {V,E} where V is the
set of vertices of G and E is the set of edges of G, find the set of all edges
that belong to n or more hamiltonian cycles in G.

Represent G using a set of facts:

D(G) = {vertex(x).|x ∈ V } ∪ {edge(x, y).|(x, y) ∈ V }

Encode the definition of Hamiltonian cycle using a disjunctive logic program
HC below.

inhc(X,Y ) or ¬inhc(X,Y ) ← edge(X,Y ).
← inhc(X1, Y 1), inhc(X2, Y 1),X1 �= X2.
← inhc(X1, Y 1), inhc(X1, Y 2), Y 1 �= Y 2.
reachable(X,X) ← vertex(X).
reachable(X,Y ) ← inhc(X,Z), reachable(Z, Y ).
← vertex(X), vertex(Y ), not reachable(X,Y ).

We represent the definition of n − critical edge by a rule r:

ncritical(X,Y ) ← M [n:]inhc(X,Y ), edge(X,Y ).

Then, we have the following result.
4 critical edge problem: given a directed graph G, find all critical edges, i.e., the edges

that belong to every hamiltonian cycle in G. The encoding of critical edge problem
is given in [12] by using the language of epistemic specifications.
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Theorem 7. Let G = {V,E} be a directed graph, n a natural number. An edge
(x, y) ∈ E is a n-critical edge iff HC ∪ D(G) ∪ {r} has a world view W such
that ncritical(x, y) ∈ w is true for any w ∈ W .

The second problem is related to the paths. Let G be a directed graph, a
and b be two different vertices in G, n a nonzero natural number. Two paths are
exclusive if they have no common edges. We say that it is reliable with a degree
n with regard to m-lane edges from a to b if there are n or more paths between
a and b, and there are no edge belonging to m or more of the paths (m-exclusive
paths). Then, we have

– n-exclusive paths problem: Given a directed graph G = {V,E} where V is the
set of vertices of G and E is the set of edges of G, decide whether there are n
number of m-exclusive paths from a vertex a to another vertex b.

Represent G using D(G) defined above.
Encode the definition of path between a and b using a disjunctive logic pro-

gram PATH(a, b) below.

inpath(X,Y ) or ¬inpath(X,Y ) ← edge(X,Y ).
← inpath(X1, Y 1), inpath(X2, Y 1),X1 �= X2.
← inpath(X1, Y 1), inpath(X1, Y 2), Y 1 �= Y 2.
reachable(X,X) ← vertex(X).
reachable(X,Y ) ← inpath(X,Z), reachable(Z, Y ).
path ← reachable(a, b).
← not path.

We represent the constraint of “n or more paths” by nPath(n) containing:

npath ← M[n:]path.
← not npath.

We represent the “m-exlusive” condition by a denial r:

← M[m:]inpath(X,Y ), edge(X,Y ).

Then, we have the following result.

Theorem 8. Let G = {V,E} be a directed graph, n a nonzero natural number,
a and b vertices. From a to b is safe with n degree with regard to m-lane edges
iff D(G) ∪ PATH(a, b) ∪ nPath(n) ∪ {r} is consistent.

8 Conclusion and Future Work

We present a logic programming formalism capable of reasoning that combines
nonmonotonic reasoning, graded epistemic reasoning via introspections. The
restriction to logic programming gives us a computationally attractive frame-
work built on the existing efficient answer set programs grounders and solvers.
This makes it an elegant way to formalize some non-trivial problems with default
knowledge and graded introspections.
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Actually, besides graded modalities, there have been a lot of quantitative
modalities proposed to express modal concepts like certainty, confidence, likeli-
hood etc. We expect many results established in logic programming with quanti-
tative modalities, which may provide more powerful paradigms for commonsense
reasoning.
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Abstract. Answer Set Programming (ASP) is a well-known para-
digm of declarative programming with roots in logic programming
and non-monotonic reasoning. Similar to other closely-related problem-
solving technologies, such as SAT/SMT, QBF, Planning and Schedul-
ing, advances in ASP solving are assessed in competition events. In
this paper, we report about the design of the Sixth ASP Competition,
which is jointly organized by the University of Calabria (Italy), Aalto
University (Finland), and the University of Genova (Italy), in affilia-
tion with the 13th International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR 2015). This edition maintains some
of the design decisions introduced in the last event, e.g., the design of
tracks, the scoring scheme, and the adherence to a fixed modeling lan-
guage in order to push the adoption of the ASP-Core-2 standard. On the
other hand, it features also some novelties, like a benchmarks selection
stage to classify instances according to their expected hardness, and a
“marathon” track where the best performing systems are given more
time for solving hard benchmarks.

1 Introduction

Answer Set Programming [7,13–15,28,29,35,41,44] is a well-known declarative
programming approach to knowledge representation and reasoning, with roots in
the areas of logic programming and non-monotonic reasoning as well as close rela-
tionships to other formalisms such as SAT, SAT Modulo Theories, Constraint Pro-
gramming, PDDL, and many others. With the exception of the fifth event,1 which
was held in 2014 in order to join the FLoC Olympic Games at the Vienna Summer
of Logic,2 ASP Competitions are biennial events organized in odd years. The goal
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of the Answer Set Programming (ASP) Competition series is to access the state
of the art in ASP solving (see, e.g., [1,10,12,23,25,30,31,33,36,37,42,45] on chal-
lenging benchmarks.

In this paper, we report about the design of the Sixth ASP Competi-
tion,3 jointly organized by the University of Calabria (Italy), Aalto University
(Finland), and the University of Genova (Italy), in affiliation with the 13th
International Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR 2015).4 This edition maintains some of the design decisions introduced
in the last event, e.g., (i) the design of tracks, based on the “complexity” of the
encoded problems (as in past events), but also considering the language fea-
tures involved in encodings (e.g., choice rules, aggregates, presence of queries),
(ii) the scoring scheme, which had been significantly simplified, and (iii) the
adherence to a fixed modeling language in order to push the adoption of the
ASP-Core-2 standard.5 On the other hand, we also introduce novelties, some of
them borrowed from past editions of the SAT and QBF Competitions, i.e., (i)
a benchmarks selection stage to classify instances according to their expected
hardness, in order to select instances from a broad range of difficulty, and (ii)
a “marathon” track where the best performing systems are given more time for
solving hard benchmarks, in order to check whether they are able to complete
difficult instances in the long run.

The present report is structured as follows. First, Sect. 2 introduces the set-
ting of the Sixth ASP Competition. Then, Sects. 3 and 4 present the problem
domains and the instance selection process, respectively. Section 5 surveys the
participants and systems registered for the competition. The report is concluded
by final remarks in Sect. 6.

2 Format of the Sixth ASP Competition

In this section, we discuss the format of the competition event, describe cate-
gories and tracks, and recapitulate the scoring scheme along with general rules.
Furthermore, we provide some information about the competition infrastructure.

As outlined in Sect. 1, the Sixth ASP competition maintains choices made
in the last event, but also adds some novelties. First, the scoring scheme, which
was significantly simplified in the last edition (cf. [11]), remains unchanged. In
order to encourage new teams and research groups to join the event, we also
maintain the division into tracks, primarily based on language features rather
than inherent computational complexity, as in the last edition. Given this, pre-
liminary or otherwise confined systems may take part in some tracks only, i.e.,
the ones featuring the subset of the language they support. Furthermore, the
tracks draw a clearer and more detailed picture about what (combinations of)
techniques work well for particular language features, which, in our opinion, is
more interesting than merely reporting overall winners.
3 https://aspcomp2015.dibris.unige.it/.
4 http://lpnmr2015.mat.unical.it/.
5 https://www.mat.unical.it/aspcomp2013/ASPStandardization/.

https://aspcomp2015.dibris.unige.it/
http://lpnmr2015.mat.unical.it/
https://www.mat.unical.it/aspcomp2013/ASPStandardization/
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Competition Format. The competition is open to any general-purpose solving
system, provided it is able to parse the ASP-Core-2 input format. However, follow-
ing the positive experience of 2014, we also plan to organize an on-site modeling
event at LPNMR 2015, in the spirit of the Prolog contest. Regarding benchmarks,
this year featured a call to submit new domains (see Sect. 3) that, together with
the domains employed in the last event, are part of the benchmark collection of
this edition. For the latter, the Fifth ASP Competition proposed and evaluated
a new set of encodings: this year we fix the encodings to those that led to bet-
ter performance in 2014. For new domains, we consider the encodings provided
by benchmark contributors. The whole benchmark set undergoes a benchmark
selection phase in order the classify instances based on their expected hardness,
and then to pick instances of varying difficulty to be run in the competition (see
Sect. 4 for details).

Competition Categories. The competition consists of two categories, depending
on the computational resources made available to each running system:

• SP: One processor allowed;
• MP: Multiple processors allowed.

While the SP category aims at sequential solving systems, parallelism can be
exploited in the MP category.

Competition Tracks. Both categories of the competition are structured into four
tracks, which are described next:

• Track #1: Basic Decision. Encodings: normal logic programs, simple arith-
metic and comparison operators.

• Track #2: Advanced Decision. Encodings: full language, with queries, except-
ing optimization statements and non-HCF disjunction.

• Track #3: Optimization. Encodings: full language with optimization state-
ments, excepting non-HCF disjunction.

• Track #4: Unrestricted. Encodings: full language.

We also plan to introduce a Marathon track this year, thus analyzing partic-
ipant systems along a different dimension. The idea, borrowed from past QBF
Competitions, is to grant more time to the best solvers on a limited set of
instances that proved to be difficult in regular tracks.

Scoring Scheme. The scoring scheme adopted is the same as in the Fifth ASP
Competition. In particular, it considers the following factors:

– Problems are always weighted equally.
– If a system outputs an incorrect answer to some instance of a problem, this

invalidates its score for the problem, even if other instances are correctly
solved.

– In case of Optimization problems, scoring is mainly based on solution quality.

In general, 100 points can be earned for each benchmark problem. The final
score of a solving system consists of the sum of scores over all problems.
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Scoring Details. For Decision and Query problems, the score of a solver S on a
problem P featuring N instances is computed as

S(P ) =
NS ∗ 100

N

where NS is the number of instances solved within the allotted time and memory
limits.

For Optimization problems, solvers are ranked by solution quality, in the
spirit of the Mancoosi International Solver Competition.6 Given M participant
systems, the score of a solver S for an instance I of a problem P featuring N
instances is computed as

S(P, I) =
MS(I) ∗ 100

M ∗ N

where MS(I) is

– 0, if S did neither provide a solution, nor report unsatisfiability, or
– the number of participant systems that did not provide any strictly better

solution than S, where a confirmed optimum solution is considered strictly
better than an unconfirmed one, otherwise.

The score S(P ) of a solver S for problem P consists of the sum of scores S(P, I)
over all N instances I featured by P . Note that, as with Decision and Query
problems, S(P ) can range from 0 to 100.

Global Ranking. The global ranking for each track, and the overall ranking,
is obtained by awarding each participant system the sum of its scores over all
problems; systems are ranked by their sums, in decreasing order. In case of a
draw in terms of sums of scores, sums of runtimes are taken into account.

Competition Environment. The competition is run on a Debian Linux server
(64bit kernel), featuring 2.30 GHz Intel Xeon E5-4610 v2 Processors with 16 MB
of cache and 128 GB of RAM. Time and memory for each run are limited to
20 min and 12 GB, respectively. Participant systems can exploit up to 8 cores
(i.e., up to 16 virtual CPUs since Intel Hyperthreading technology is enabled)
in the MP category, whereas the execution is constrained to one core in the SP
category. The execution environment is composed of a number of scripts, and
performance is measured using the pyrunlim tool.7

3 Benchmark Suite

The benchmark domains considered in the Sixth ASP Competition include those
from the previous edition, summarized first. Moreover, encodings and instances
were provided for six new domains, introduced afterwards.
6 http://www.mancoosi.org/misc/.
7 https://github.com/alviano/python/.

http://www.mancoosi.org/misc/
https://github.com/alviano/python/
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Previous Domains. The Fifth ASP Competition featured 26 benchmark domains
that had been submitted to earlier editions already, mainly in 2013 when the
ASP-Core-2 standard input format was specified. In some domains, however,
“unoptimized” encodings submitted by benchmark authors incurred grounding
bottlenecks that made participant systems fail on the majority of instances. In
view of this and in order to enrich the available benchmark collection, alterna-
tive encodings were devised and empirically compared last year for all but two
domains dealing with Query answering, which were modeled by rather straight-
forward positive programs.

The first part of assembling the benchmark suite for the Sixth ASP Compe-
tition consisted in the choice of encodings for previously used domains. Table 1
gives an overview of these domains, outlining application-oriented problems,
respective computational tasks, i.e., Decision, Optimization, or Query answering,
and tracks. Most importantly, the fourth column indicates whether the encoding
made available in 2013 or the alternative one provided last year has been picked
for this edition of the ASP Competition. The selection was based on the results
from 2014, favoring the encoding variant that exhibited better performance of
participant systems in a benchmark domain.

For Decision problems in the Hanoi Tower, Knight Tour with Holes, Stable
Marriage, Incremental Scheduling, Partner Units, Solitaire, Weighted-Sequence
Problem, and Minimal Diagnosis domains, all systems benefited from the usage
of alternative 2014 encodings. Although the results were not completely uni-
form, improvements of more systems or greater extent were obtained in Graph
Colouring, Visit-all, Nomystery, Permutation Pattern Matching, and Qualitative
Spatial Reasoning. On two remaining Decision problems, Sokoban and Complex
Optimization, no significant performance gaps were observed, and 2014 encod-
ings were picked as they simplify the original submissions, i.e., aggregates are
omitted in Sokoban and redundant preconditions of rules dropped in Complex
Optimization. In fact, due to similar simplifications, the Basic Decision track
(#1) consists of six domains, while it previously included Labyrinth and Sta-
ble Marriage only. On the other hand, the encodings from 2013 were kept for
domains where alternative variants did not lead to improvements or even dete-
riorated performance, as it was the case in Graceful Graphs.

In view of the relative scoring of systems on Optimization problems, the
selection of encoding variants could not be based on (uniform) improvements in
terms of score here. Rather than that, we investigated timeouts, runtimes, and
solution quality of the top-performing systems from last year, thus concentrating
on the feasibility of good but not necessarily optimal solutions. In this regard,
the alternative 2014 encodings turned out to be advantageous in Crossing Mini-
mization and Maximal Clique, while the original submissions led to better results
in Connected Still Life and Valves Location, or essentially similar performance
in Abstract Dialectical Frameworks.

Notably, this edition of the ASP Competition utilizes a revised formulation
of Connected Still Life (thus marked by ‘∗’ in Table 1), where instances spec-
ify grid cells that must be “dead” or “alive” according to the Game of Life
version considered in this domain. Respective conditions are addressed by side
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Table 1. Encodings selected for benchmark domains from the Fifth ASP competition

Domain App Problem Encoding

Graph Colouring Decision 2014

T
rack

#1
Hanoi Tower Decision 2014
Knight Tour with Holes Decision 2014
Labyrinth Decision 2013
Stable Marriage Decision 2014
Visit-all Decision 2014

Bottle Filling Decision 2013

T
rack

#2

Graceful Graphs Decision 2013
Incremental Scheduling

√
Decision 2014

Nomystery Decision 2014
Partner Units

√
Decision 2014

Permutation Pattern Matching Decision 2014
Qualitative Spatial Reasoning Decision 2014
Reachability Query 2013
Ricochet Robots Decision 2013
Sokoban Decision 2014
Solitaire Decision 2014
Weighted-Sequence Problem Decision 2014

Connected Still Life∗ Optimization 2013 T
rack

#3

Crossing Minimization
√

Optimization 2014
Maximal Clique Optimization 2014
Valves Location

√
Optimization 2013

Abstract Dialectical Frameworks Optimization 2013 T
rack

#4

Complex Optimization
√

Decision 2014
Minimal Diagnosis

√
Decision 2014

Strategic Companies Query 2013

constraints added to the previously available encodings and enable a diversi-
fication of instances of same size, while size had been the only parameter for
obtaining different instances before. In addition, benchmark authors provided
new instance sets for the Knight Tour with Holes, Stable Marriage, Ricochet
Robots, and Maximal Clique domains. For Knight Tour with Holes, the instances
from last year were too hard for most participant systems, and too easy in the
other three domains. Finally, recall that the 2013 encodings for Query problems
in the Reachability and Strategic Companies domains are reused.

Six of the 26 benchmark domains stemming from earlier editions of the ASP
competition are based on particular applications. In more detail, Incremental
Scheduling [6] deals with assigning jobs to devices such that the makespan of a
schedule stays within a given budget. The matching problem Partner Units [5]
has applications in the configuration of surveillance, electrical engineering, com-
puter network, and railway safety systems. The Crossing Minimization [17]
domain aims at optimized layouts of hierarchical network diagrams in graph
drawing. The hydroinformatics problem Valves Location [18] is concerned with
designing water distribution systems such that the isolation in case of damages
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Table 2. New benchmark domains of the sixth ASP competition

Domain App Problem

Combined Configuration
√

Decision

T
r.#2Consistent Query Answering

√
Query

MaxSAT
√

Optimization T
rack

#3
Steiner Tree

√
Optimization

System Synthesis
√

Optimization
Video Streaming

√
Optimization

is minimized. In contrast to objective functions considered in the Optimization
track (#3), the Complex Optimization [22] domain addresses subset minimiza-
tion in the contexts of biological network repair [19] and minimal unsatisfiable
core membership [32]. Finally, Minimal Diagnosis [27] tackles the identification
of minimal reasons for inconsistencies between biological networks and experi-
mental data.

New Domains. Six new benchmark domains, all of which are application-oriented
as indicated in Table 2, were submitted to the Sixth ASP Competition:

• Combined Configuration [26] is a Decision problem inspired by industrial prod-
uct configuration tasks dealing with railway interlocking systems, automation
systems, etc. In the considered scenario, orthogonal requirements as encoun-
tered in bin packing, graph coloring, matching, partitioning, and routing must
be fulfilled by a common solution. Since the combined problem goes beyond
its individual subtasks, specialized procedures for either of them are of limited
applicability, and the challenge is to integrate all requirements into general
solving methods.

• Consistent Query Answering [38] addresses phenomena arising in the inte-
gration of data from heterogeneous sources. The goal is to merge as much
information as possible, even though local inconsistencies and incomplete-
ness typically preclude a mere data fusion. In particular, the Query problem
amounts to cautious reasoning, retrieving consequences that are valid under
all candidate repairs of input data.

• MaxSAT [34] is the optimization variant of SAT, where so-called soft clauses
may be violated to particular costs and the sum of costs ought to be minimal.
Industrial instances, taken from the 2014 MaxSAT Evaluation,8 are repre-
sented by facts and encoded as an Optimization problem.

• Steiner Tree [16] is concerned with connecting particular endpoints by a span-
ning tree. The domain deals with the rectilinear version of this problem, where
points on a two-dimensional grid may be connected by horizontal or verti-
cal line segments. This setting is of practical relevance as it corresponds to
wire routing in circuit design. The accumulated line segments determine a
wire length, which is subject to minimization in the considered Optimization
problem.

8 http://www.maxsat.udl.cat/14/index.html.

http://www.maxsat.udl.cat/14/index.html
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• System Synthesis [9] deals with the allocation of parallel tasks and message
routing in integrated hardware architectures for target applications. On the
one hand, the capacities of processing elements are limited, so that communi-
cating tasks must be distributed. On the other hand, network communication
shall avoid long routes to reduce delays. The Optimization problem combines
three lexicographically ordered objectives: balancing the allocation of process-
ing elements, minimizing network communication, and keeping routes short.

• Video Streaming [46] aims at an adaptive regulation of resolutions and bit
rates in a content delivery network. While the bit rates of users and the num-
ber of different video formats that can be offered simultaneously are limited,
service disruptions are admissible for a fraction of users only. The objective
of the Optimization problem is to achieve high user satisfaction with respect
to particular video contents.

4 Benchmark Selection

For an informed instance selection going beyond the random selection adopted
in the 2014 edition of the ASP Competition or the solver-dependent criterion
employed in 2013, we utilize an instance selection strategy inspired by the 2014
SAT Competition.9 First, the empirical hardness of all available instances is
evaluated by running the top-performing systems from last year, and then a
balanced selection is made among instances of varying difficulty.

Top-performing Systems. We considered the best performing system per team
that participated in the Fifth ASP Competition, corresponding to the systems
taking the first three places last year, i.e., clasp, lp2normal2+clasp, and wasp-

1.5. This choice comes close to the ideal state-of-the-art solver that matches the
best performing system on each instance.

Instance Classification. All instances available in the benchmark collection are
classified according to the runtimes of the top-performing systems by picking
the upmost applicable category as follows:

(non-groundable) Instances that could not be grounded by any of the top-
performing systems within the timeout of 20 min.

(very easy) Instances solved by all top-performing systems in less than 20 s.
(easy) Instances solved by all top-performing systems in less than 2 min.
(medium) Instances solved by all top-performing systems within the timeout

of 20 min.
(hard) Instances solved by at least one among the top-performing systems

within 40 min, i.e., twice the timeout.
(too hard) Instances that could not be solved (no solution produced in case of

Optimization problems) by any of the top-performing systems within 40 min.

9 http://www.satcompetition.org/2014/index.shtml.

http://www.satcompetition.org/2014/index.shtml
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While non-groundable instances are basically out of reach for traditional
ASP systems, very easy ones are highly unlikely to yield any relevant distinction
between participant systems. Hence, instances falling into the first two categories
are discarded and not run in the competition. Unlike that, easy, medium, and
hard instances are expected to differentiate between unoptimized, average, and
top-performing competition entries. Albeit they may not be solvable by any
participant system within 20 min, too hard instances are included to impose
challenges and are primary candidates for the Marathon track in which the
timeout will be increased.

Instance Selection. Instances to be run in the competitions will be picked per
benchmark domain, matching the following conditions as much as possible:

1. 20 instances are included in each domain.
2. Easy, medium, hard, too hard, and randomly picked (yet excluding non-

groundable and very easy) instances shall evenly contribute 20 % (i.e., four)
instances each.

3. Satisfiable and unsatisfiable instances should be balanced (if
known/applicable).

4. The selection among candidate instances according to the previous condi-
tions is done randomly, using the concatenation of winning numbers in the
EuroMillions lottery of 23rd June 2015 as seed.

Further criteria will be taken into account to filter domains by need. That
is, domains in which instances lack variety, i.e., all instances turn out as easy to
medium or (too) hard, may be excluded in the competition. We do not impose
strict conditions, however, as being new, application-oriented, based on ASP-
specific language features (e.g., aggregates, recursion, or disjunction) or a par-
ticular computational task (Optimization or Query answering) may justify an
interest beyond the scalability of available instances.

Preliminary Data. The instance classification process has been running at the
time of writing this report. In the first stage, non-groundable instances were
identified and discarded, thus dropping 88 of the available instances (86 from
Incremental Scheduling and two from Sokoban). This leaves 4970 instances for
running the three top-performing systems from last year, using a timeout of
40 min. We expect to obtain complete results of these runs, on which the instance
selection will be based, by 22nd June 2015.

5 Participants

In this section, we briefly survey the participants and systems registered for the
competition. In total, the competition features 13 systems coming from three
teams:
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• The Aalto team from Aalto University submitted nine systems, mainly work-
ing by means of translations [10,20,37,43]. Two systems, lp2sat+lingeling

and lp2sat+plingeling-mt, rely on translation to SAT, which includes the
normalization of aggregates as well as the encoding of level mappings for
non-tight problem instances. The latter are expressed in terms of acyclic-
ity checking [20,21] on top of ASP, Pseudo-Boolean or SAT formulations,
respectively, used in the systems lp2acycasp+clasp, lp2acycpb+clasp,
lp2acycsat+clasp, and lp2acycsat+glucose. While lp2sat+lingeling and
lp2sat+plingeling-mt do not support optimization and participate in the
Basic and Advanced Decision tracks (#1 and #2) only, the latter systems
compete also in the Optimization track (#3). The same applies to lp2mip and
lp2mip-mt, which run cplex as a Mixed Integer Programming solver back-
end. Finally, lp2normal+clasp normalizes aggregates (of small to medium
size) and uses clasp as back-end ASP solver; lp2normal+clasp participates
in all four tracks and thus also in the Unrestricted track (#4). All systems
by the Aalto team utilize gringo-4 for grounding, and neither of them sup-
ports Query problems (Consistent Query Answering, Reachability, and Strate-
gic Companies). The systems lp2sat+plingeling-mt and lp2mip-mt exploit
multi-threading and run in the MP category, while the other, sequential sys-
tems participate in the SP category.

• The ME-ASP team from the University of Genova, the University of Sas-
sari, and the University of Calabria submitted the multi-engine ASP solver
me-asp [39,40]. me-asp applies a selection policy to decide what is the most
promising ASP solver to run, given some characteristics of an input program.
The pool of ASP solvers from which me-asp can choose is a selection of the
solvers submitted to the Fifth ASP Competition, while input characteristics
correspond to non-ground and ground features. The me-asp system utilizes
gringo-4 for grounding and participates in all four tracks of the SP category.

• The Wasp team from the University of Calabria submitted two systems based
on wasp [1,2,4], namely wasp and wasp+dlv, as well as the proof-of-concept
prototype jwasp, written in Java. wasp is a native ASP solver based on
conflict-driven learning, yet extended with techniques specifically designed
for solving disjunctive logic programs. It utilizes gringo-4 for grounding and
participates in all tracks, although with limited support for Query problems.
On the other hand, wasp+dlv includes full functionalities for Query answer-
ing [3,33] and competes in all domains. The prototype system jwasp is based
on the sat4j [8] SAT solver and implements some of the algorithms employed
in wasp for handling ASP-specific features, which enables its participation in
the Basic and Advanced Decision tracks (#1 and #2). All systems by the
Wasp team run in the SP category.

In sum, similar to past competitions, the vast majority of submitted systems
is based on two main approaches to ASP solving: (i) “native” systems, which
exploit techniques purposely conceived and/or adapted for dealing with logic
programs under the stable models semantics, and (ii) “translation-based” sys-
tems, which (roughly) at some stage of the evaluation produce an intermediate
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specification in some different formalism that is then fed to a correspond-
ing solver. The solvers submitted by the Wasp team as well as me-asp and
lp2normal+clasp pursue a native approach, while the remaining systems by
the Aalto team utilize translations.

The main novelty among competition entries this year is the “portfolio”
solver me-asp. Its multi-engine approach differs from claspfolio [24], which par-
ticipated last in the 2013 edition of the ASP Competition. Furthermore, it is
worth mentioning that, in order to assess the improvements in ASP solving, we
also consider the version of clasp submitted in 2014 for reference, given that
clasp was the overall winner of the Fifth ASP Competition.

6 Conclusions

The Sixth ASP Competition is jointly organized by the University of Calabria
(Italy), Aalto University (Finland), and the University of Genova (Italy), in
affiliation with the 13th International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR 2015). The main goal is measuring advances
of the state of the art in ASP solving, where native and translation-based systems
constitute the two main approaches. This report presented the design of the event
and gave an overview of benchmarks as well as participants. On the one hand,
this edition of the ASP Competition maintains design decisions from 2014, e.g.,
tracks are conceived on the basis of language features. On the other hand, it also
introduces some novelties, i.e., a benchmark selection phase and a Marathon
track.

The competition results will be announced at LPNMR 2015, at which, fol-
lowing the positive experience of 2014, we also plan to organize another on-site
modeling event in the spirit of the Prolog contest. This modeling competition to
some extent replaces the Model&Solve track that was included last in the 2013
edition of the ASP Competition, yet the idea is to margin the effort of problem
modeling.
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Abstract. Automated planning has been the subject of intensive
research and is at the core of several areas of AI, including intelligent
agents and robotics. In this thesis proposal, we argue that Concurrent
Transaction Logic (CT R) is a natural specification language for planning
algorithms, which enables one to see further afield and thus discover
better and more general solutions than using one-of-a-kind formalisms.
Specifically, we take the well-known STRIPS planning strategy and show
that CT R lets one specify the STRIPS planning algorithm easily and
concisely, and extend it in several respects. For instance, we show that
extensions to allow indirect effects and to support action ramifications
come almost for free. The original STRIPS planning strategy is also
shown to be incomplete. Using concurrency operators in CT R, we pro-
pose a non-linear STRIPS planning algorithm, which is proven to be
complete. Moreover, this thesis proposal outlines several extensions of
STRIPS planning strategy. All of the extensions show that the use of
CT R accrues significant benefits in the area of planning.

1 Introduction

The classical problem of automated planning has been used in a wide range
of applications such as robotics, multi-agent systems, and more. Due to this
wide range of applications, automated planning has become one of the most
important research areas in Artificial Intelligence (AI). The history of using
logical deduction to solve classical planning problems in AI dates back to the late
1960 s when situation calculus was applied in the planning domain [18]. There are
several planners that encode planning problems into satisfiability problems [21],
constraint satisfaction problems (CSP) [1,14,24], or answer set programming
[16,17,22,23] and use logical deduction to solve the planning problems. Beside
those planners, a number of deductive planning frameworks have been proposed
over the years [5–7,13,19,20].

There are several reasons that make logical deduction suitable to be used by
a classical planner: (1) Logic-based deduction used in planning can be cast as a
formal framework that eases proving different planning properties such as com-
pleteness. (2) Logic-based systems naturally provide a declarative language that
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simplifies the specification of planning problems. (3) Logical deduction is usu-
ally an essential component of intelligent and knowledge representation systems.
Therefore, applying logical deduction in classical planning makes the integration
of planners with such systems simpler. Despite these benefits of using logical
deduction in planning, many of the above mentioned deductive planning tech-
niques are not getting as much attention as algorithms specifically provided for
planning problems. The most obvious reason for this shortcoming is as follows:
These works generally show how they can represent and encode classical planning
actions and rely on a theorem prover of some sort to find plans. Therefore, the
planning techniques embedded in such planners are typically the simplest state
space planning (e.g. forward state space search) that has a extremely large search
space. Consequently, they cannot exploit planning heuristics and techniques.

In this thesis, we will show that Concurrent Transaction Logic (or CT R)
[10–12] addresses this issue and also provides multiple advantages for specifying,
generalizing, and solving planning problems. To illustrate the point, we will take
STRIPS planning technique and show that its associated planning algorithm
easily and naturally lend itself to compact representation in CT R.

The expressiveness of CT R let the STRIPS planning algorithm be naturally
extended with intensional rules. Concurrency in CT R lets us introduce a non-
linear STRIPS planning algorithm, which is also proven to be complete. After
inspecting the logic rules that simulate the planning algorithm, we observe some
heuristics that can be applied to reduce the search space. The elegant expression
of STRIPS algorithm in CT R lets us first characterize the regression of literals
through STRIPS actions, then enhance the proposed STRIPS algorithm with
a regression analysis method. We also extend the STRIPS planning algorithm
with a few extra rules to solve planning problems with negative derived literals.

This extended abstract paper is organized as follows. Section 2 briefly explains
how we formally encode planning techniques in CT R. Section 3 also provides the
results of our simple experiments to illustrate the practical applications of this
method. The last section concludes our paper.

2 Planning Using CT R

We assume denumerable pairwise disjoint sets of variables V, constants C, exten-
sional predicate symbols Pext, and intensional predicate symbols Pint. Table 1
shows the syntax of our language. Our work is based on our formal definitions
of the basics of STRIPS planning that can be found in [4].1 Here, we just briefly
remind basics of planning to the reader. A STRIPS action is a triple of the
form α = 〈pα(X1, ...,Xn), P reα, Eα〉, where pα(X1, ...,Xn) denotes the action
and, Preα and Eα are sets of literals representing the precondition and effects
of α. A planning problem 〈R,A, G,S〉 consists of a set of rules R, a set of
1 To understand this report, the reader is expected to be familiar with CT R. We

provide a brief introduction to the relevant subset of CT R in [4] that is needed
for the understanding of this paper. More explanation about CT R can be found in
[8–12].
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Table 1. The syntax of the language for representing STRIPS planning problems.

Term t := V | c where V ∈ V, c ∈ C
Atom Pτ := p(t1, . . . , tk) where p ∈ Pτ , τ ∈ {ext, int}
Literal L := Pint | Pext | ¬Pext

Rule R := Pint ← L1 ∧ · · · ∧ Lm where m ≥ 0

STRIPS actions A, a set of literals G, called the goal of the planning problem,
and an initial state S. A sequence of actions σ = α1, . . . , αn is a planning
solution (or simply a plan) for the planning problem if there is a sequence of
states S0,S1, . . . ,Sn such that

– S = S0 and G ⊆ Sn (i.e., G is satisfied in the final state);
– for each 0 < i ≤ n, αi is executable in state Si−1 and the result of that

execution (for some substitution) is the state Si.2

As mentioned in Sect. 1, we define a set of T R clauses that simulate the
well-known STRIPS planning algorithm and extend this algorithm to handle
intentional predicates and rules. In essence, these rules are a natural (and much
more concise and general) verbalization of the classical STRIPS algorithm [15].
However, unlike the original STRIPS, these rules constitute a complete planner
when evaluated with the CT R proof theory. Using this encoding of STRIPS
planning algorithm, we have extended STRIPS algorithm via extensions of our
encoding with different respects. Our encoding is defined as follows.

Definition 1 (T R planning rules). Let Π = 〈R,A, G,S〉 be a STRIPS plan-
ning problem. We define a set of T R rules, P(Π), which provides a sound and
complete solution to the STRIPS planning problem. P(Π) has three disjoint parts,
PR, PA, and PG, that are briefly described below. The details of this definition
can be found in [4].

– The PR part is an extension to the classical STRIPS planning algorithm and
is intended to capture intentional predicates and ramification of actions.

– The part PA = Pactions ∪Patoms ∪Pachieves is constructed out of the actions in
A. Pactions are the CT R rules that maps actions in A to CT R transactions.
Patoms = Pachieved ∪Penforced has two disjoint parts. Pachieved are CT R rules
that say if an extensional literal is true in a state then that literal has already
been achieved as a goal. CT R rules in Penforced say that one way to achieve a
goal that occurs in the effects of an action is to execute that action. Pachieves

is a set of CT R rules saying that to execute an action, one must first achieve
the precondition of the action and then perform the state changes prescribed
by the action.

– The PG part is showing how the goal will be achieved. �

Given a set R of rules, a set A of STRIPS actions, an initial state S, and a goal
G, Definition 1 gives a set of T R rules that specify a planning strategy for that
2 In this case we will also say that S0,S1, . . . ,Sn is an execution of σ.
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problem. To find a solution for that planning problem, one simply needs to place
the request

? − achieveG . (1)

at a desired initial state and use the T R’s inference system to find a proof. As
mentioned before, a solution plan for a STRIPS planning problem is a sequence
of actions leading to a state that satisfies the planning goal. Such a sequence can
be extracted by picking out the atoms of the form pα from a successful derivation
branch generated by the T R inference system. We provide a technique to extract
that sequence of actions, called pivoting sequence of actions. Soundness of
a planning strategy means that, for any STRIPS planning problem, if sequence
of actions is extracted as a solution, then that sequence of actions is a solution
to the planning problem. We also prove that the proposed technique is sound.
That is, the pivoting sequence of actions is a solution to the planning problem.
Completeness of a planning strategy means that, for any STRIPS planning
problem, if there is a solution, the planner will find at least one plan. A stronger
statement about completeness is called comprehensive completeness: if there
is a non-redundant solution for a STRIPS planning problem, the planner will
find exactly that plan. We also prove that the proposed T R-based planner is
comprehensively complete.

We also introduce fSTRIPS — a modification of the previously introduced
STRIPS transform, which represents to a new planning strategy, which we call
fast STRIPS. We show that although the new strategy explores a smaller search
space, it is still sound and complete. Our experiments show that fSTRIPS can be
orders of magnitude faster than STRIPS. The details of fSTRIPS can be found
in [4].

The third part of our work shows how the simplicity embedded in T R encod-
ing of planning strategies let one apply heuristics in planning mechanism. As an
indirect result of our research, in this stage, we have shown that sophisticated
planning heuristics, such as regression analysis, can be naturally represented in
T R and that such representation can be used to express complex planning strate-
gies such as RSTRIPS [3]. The simplicity of T R representation of RSTRIPS let
us prove its completeness for the first time. We have also extended our above
mentioned non-linear T R-based STRIPS planner with regression analysis. The
T R representation of those planning strategies rely on the concept of regres-
sion of a STRIPS action that is explained in [2]. The idea behind planning with
regression is that the already achieved goals should be protected so that sub-
sequent actions of the planner would not unachieve those goals. The details of
these techniques can be found in [3].

In the last stage of our dissertation research, we have extended out above
mentioned T R-based STRIPS planner with respect to negative derived atoms.
Our original domain specification language syntax reflected in Table 1 did not
include negative derived atoms as none of the existing planners were able to solve
planning problems with negative derived atoms. We also extend both the plan-
ning domain specification language and our above mentioned planner to solve
planning problems with negative derived atoms. The idea behind this planner is
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that, in order to make a derived atom false, the planner disables every deriva-
tion can lead to make that atom true. The details of this extension along with
the proofs of its soundness and completeness will be published in our under-
preparation journal paper.

3 Experiments

In this section we first briefly report on our experiment. The first set of exper-
iment compares STRIPS planning algorithm and forward state space search
[2] that show that STRIPS can be faster than forward state space search up to
three orders of magnitude. Our results in [4] also compare STRIPS and fSTRIPS
and show that fSTRIPS can be two orders of magnitude faster than STRIPS.
We compared RSTRIPS and fSTRIPS to demonstrate our proposed regression
analysis mechanism can improve the performance of planning up to three orders
of magnitude [3]. Due to space limitations we skip explanations of the test envi-
ronment, test cases, and the complete result tables and the interested readers
are referred to our previous papers [2–4]. We have also explained our PDDL2TR
translator that maps planning problems to T R rules in [2].

4 Conclusion

This dissertation will demonstrate that the use of CT R and T R accrues signif-
icant benefits in the area of planning. As an illustration, we have shown that
sophisticated planning strategies, such as STRIPS, not only can be naturally rep-
resented in T R, but also such representation can be used to design new planning
strategies such as non-linear STRIPS, fSTRIPS, non-linear STRIPS with regres-
sion analysis, RSTRIPS, and extensions with negative derived atoms. There are
several promising directions to continue this work. One is to investigate other
planning strategies and, hopefully, accrue similar benefits. We are also working
to represent GraphPlan planning algorithm in T R to get same benefits.
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Abstract. Multi-Context Systems (MCSs) have been introduced in [1]
as a framework for integration of knowledge from different sources. This
research formalizes MCSs with preferences (MCSPs) that allows to inte-
grate preferences into an MCS at the context level and at the MCS level,
and proposes novel distributed algorithms to compute their semantics.

1 Introduction and Problem Description

Multi-Context Systems (MCSs) has been introduced in [1] as a framework for
integration of knowledge from different sources. Intuitively, an MCS consists of
several theories, referred to as contexts. The contexts may be heterogeneous;
each context could rely on a different logical language and a different inference
system; e.g., propositional logic, first order logic, or logic programming. The
information flow among contexts is modeled via bridge rules. Bridge rules allow
for the modification of the knowledge of a context depending on the knowledge of
other contexts. The semantics of MCSs in [1] is defined in terms of its equilibria.

By definition, an MCS is a general framework not tied to any specific lan-
guage, inference system, or implementation. Whenever an MCS is used to model
a concrete problem, it is necessary to specify which logics should be used in
encoding its contexts. Moreover, in several applications, some contexts need to
express their preferences. For instance, consider the following example.

Example 1 [Dining Out Plan]. Two friends A and B will dine together. A can
eat chicken (c) or lamb (l); B can eat fish (f) or steak (s). They share a bottle of
wine, either red (r) or white (w) wine. A knows that white (resp. red) wine could
go with chicken (resp. lamb); B knows that fish (resp. steak) should go with white
(resp. red) wine. A prefers chicken to lamb, and B prefers steak to fish. The two
cannot afford two bottles of wine, and neither of them can eat two dishes.

The MCS in Fig. 1 represents the Example 1 where underlying logics in the
contexts of A and B are Answer Set Optimization (ASO) [2] (a preference logic
built over answer set programming [3]). In Fig. 1, the first five rules encode the
choice of each person, the sixth rule captures the preferences, and the last two
lines in each context encode its bridge rules.
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Choices

w ← wc ← f
r ← rl ← s

← r, w ← w, r
c ← slton ← not f
l ← fcton ← not s

Preferences c > l ← s > f ←
Bridges

w ← (b : w) w ← (a : w)
r ← (b : r) r ← (a : r)

Context of A Context of B

Fig. 1. Two contexts in ASO logic

Although expressing preferences is important and pervasive, integrating pref-
erences into MCSs, in the literature, has not been investigated thoroughly. One
way is to use preference logics that are able to express preferences (e.g., the MCS
in Fig. 1) at the contexts of an MCS. However, since the semantics of a prefer-
ence logic (e.g., ASO) usually tries to obtain its most preferred solution (most
preferred answer set or belief set in ASO), such an MCS might be inconsistent ;
i.e., for such an MCS, it does not have any equilibrium. For example, the MCS
in Fig. 1 has no equilibrium under the semantics of ASO. The context of A has
a unique most preferred answer set (i.e., {c, w}), while that of B has a unique
most preferred answer set (i.e., {s, r}). Neither of them can be used to construct
any equilibrium. As a result, A and B cannot dine together.

We also observe that {l, r} is not the most preferred answer set but the sec-
ond most preferred one of A. Furthermore, if {l, r} is considered as an alternative
acceptable answer set of A, then the MCS will have ({l, r}, {s, r}) as an equilib-
rium. This means A and B can dine together if A (resp. B) has its second most
(resp. most) preferred choice meal, respectively. Likewise, the MCS would have
({c, w}, {f, w}) as another equilibrium where A (resp. B) has its most (resp. sec-
ond most) preferred meal, respectively. This discussion raises a question “How
would one express preferences locally in the contexts of an MCS, and redefine
overall semantics in such a way that every context has its most preferred possible
solution?”

The above discussion allows to integrate preferences into MCSs in a com-
petitive manner (i.e., each context expresses its own preferences, and expects to
obtain its most preferred possible solution). On the other hand, an integration
in a cooperative manner, where a preference order is defined over equilibria of an
MCS aggregately, (e.g., to model voting problems) also needs to be considered.

Example 2. From Example 1, we replace the preferences of A and B (c > l, and
s > f) with the facts that “eating chickens costs A $5”, and “eating steak costs B
$7”. Assume that the other types of food or wine are free, the goal now is to seek a
solution where A and B dine together with the cheapest total dining cost.

There are two possible cases for A and B to dine together, which correspond to
two equilibria of the MCS in Fig. 1 without the sixth rules in both of the contexts;
i.e., ({c, w}, {f, w}) and ({l, r}, {s, r}). Among these equilibria, the former one
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is more desirable since it costs, $5, less than the later one, $7. To solve this, one
could find all of the equilibria of an MCS and then compute centrally the most
preferred one. However, this approach is not desirable since it requires a central
computation unit for the latter step, while original MCSs have been proposed
for integration of distributed knowledge where it is not suitable for sharing all
information among different contexts. This raises another question “How would
one define a preference order among the equilibria of an MCS, and compute
distributedly the most preferred equilibrium?”

My thesis aims to address the above two questions. Its main contributions
are to

• define a general framework, MCS with local preferences (MCS-LP), that inte-
grates preference logics at the context level, and

• define a general framework, MCS with global preferences (MCS-GP), that
expresses preference order among equilibria of an MCS, and propose novel
algorithms that solves MCS-GP in a distributed manner.

In addition, I also expect to define a generic framework that merges both MCS-
LP and MCS-GP, and identify some applications to motivate MCSPs.

2 Background

In this section, I present some background on MCSs, and a typical preference
logic, ASO, which is used in later sections.

2.1 Multi-context Systems1

Heterogeneous non-monotonic multi-context systems (MCS) were defined via a
generic notion of a logic. A logic L is a tuple (KBL, BSL, ACCL) where KBL is
the set of well-formed knowledge bases of L, each being a set of formulae. BSL is
the set of possible belief sets; each being a set of syntactic elements representing
the beliefs L may adopt. ACCL : KBL → 2BSL describes the “semantics” of L
by assigning to each element of KBL a set of acceptable sets of beliefs.

An MCS M = (C1, . . . , Cn) consists of contexts Ci = (Li, kbi, bri), (1 ≤
i ≤ n), where Li = (KBi, BSi, ACCi) is a logic, kbi ∈ KBi, and bri is a
set of Li-bridge rules of the form: s ← (c1 : p1), . . . , (cj : pj), not (cj+1 :
pj+1), . . . , not (cm : pm) where, for each 1 ≤ k ≤ m, we have that: 1 ≤ ck ≤ n,
pk is an element of some belief set of Lck , and kbi ∪ {s} ∈ KBi. Intuitively, a
bridge rule r allows us to add s to a context, depending on the beliefs in the
other contexts. Given a bridge rule r, we will denote by head(r) the part s of r.

The semantics of an MCS is described by the notion of belief states. A belief
state of an MCS M = (C1, . . . , Cn) is a sequence S = (S1, . . . , Sn) where each
Si is an element of BSi.
1 The following definitions are from [1].
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Given a belief state S = (S1, . . . , Sn) and a bridge rule r, r is applicable in S
if pv ∈ Scv where 1 ≤ v ≤ j and pk �∈ Sck where j + 1 ≤ k ≤ m. We denote by
app(B,S) the set of the bridge rules r ∈ B that are applicable in S.

The semantics of an MCS M is defined via its equilibrium. A belief state
S = (S1, . . . , Sn) of M is an equilibrium if, for all 1 ≤ i ≤ n, we have that
Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)}).

2.2 Answer Set Optimization (ASO)2

An ASO program over a signature Σ [2] is a pair (Pgen, Ppref ), where: Pgen is a
logic program over Σ, called the generating program, and Ppref is a preference
program. Pgen is used for generating answer sets which are required to be given
in terms of sets of literals (or belief sets) associated with programs. Given a
set of atoms A, a Ppref over A is a finite set of preference rules of the form
Γ1 > . . . > Γk ← a1, . . . , an, not b1, . . . , not bm where ai and bj are literals
over A, and Γl are boolean combinations over A. A boolean combination is a
formula built from atoms in A by means of disjunction, conjunction, strong
negation (¬, which appears only in front of atoms), and default negation (not,
which appears only in front of literals). Given a preference rule r, we denote
body(r) = a1, . . . , an, not b1, . . . , not bm. An answer set S satisfies the body of
r, denoted by S |= body(r) iff S contains a1, . . . , an and does not contain any
b1, . . . , bm. The preference rule states that if an answer set S satisfies the body of
r, then Γ1 is preferred to Γ2, Γ2 to Γ3, etc. The satisfaction degree of preference
rule r in an answer set S (denoted vS(r)) is:

• vS(r) = 1, if (i) S �|= body(r), or (ii) S |= body(r) and S �|= Γl for each
1 ≤ l ≤ k;

• vS(r) = min{i : S |= Γi}, otherwise.

Given an ASO program P = (Pgen, Ppref ), let S1 and S2 be answer sets of
Pgen, and Ppref = {r1, . . . , rn}. We write S1 < S2 if (i) vS1(ri) ≥ vS2(ri), for
1 ≤ i ≤ n, and (ii) for some 1 ≤ j ≤ n, vS1(rj) > vS2(rj). We refer to this
ordering as preference order between S1 and S2.

Example 3. Consider the ASO program from the context B in Fig. 1. PB =
(PB

gen, PB
pref ), where PB

gen is the program consisting of the first five rules under
answer set semantics and PB

pref = {s > f ←}. It is possible to show that PB

has two answer sets S1 = {s, r}, S2 = {f, w}, and S2 < S1.

3 Research Accomplishments and Future

3.1 Research Accomplishments

In this subsection, I will briefly define the notion of an MCS-LP.
2 The following definitions are from [2].
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Definition 1 (Ranked Logic). A ranked logic L is a tuple (KBL, BSL,
ACCL, <L) where

• (KBL, BSL, ACCL) is an arbitrary logic; and
• <L⊆ (KBL, BSL) × (KBL, BSL) is a partial order over pairs of knowledge

bases and belief sets satisfying the condition that if ((kb1, b1), (kb2, b2)) ∈ <L

then bi ∈ ACCL(kbi) for i = 1, 2.

We often write (kb1, b1) <L (kb2, b2) instead of the ((kb1, b1), (kb2, b2)) ∈ <L.
Given bi ∈ ACCL(kbi) for i = 1, 2, (kb1, b1) and (kb2, b2) are incomparable,
denoted with (kb1, b1) ∼ (kb2, b2), if (kb1, b1) �<L (kb2, b2) and (kb2, b2) �<L

(kb1, b1).
As an example, I will construct a ranked logic, denoted by LASO, from ASO.

Given a signature Σ, LASO = (KBASO,BSASO,ACCASO, <ASO) is a ranked
logic over Σ where

• KBASO is the set of ASO programs over Σ;
• BSASO is the set of answer sets of ASO programs over Σ;
• ACCASO maps each ASO program to its possible answer sets;
• <ASO is defined as follows: (kb1, S1) <ASO (kb2, S2) for kbi = (P i

gen, Ppref )
and Si ∈ ACCASO(kbi) where i = 1, 2 such that S2 > S1 with respect to the
ASO preference order defined over the set of rules Ppref .

Example 4. Consider the ASO program PB = (PB
gen, PB

pref ) from the Exam-
ple 3. PB has two answer sets S1 = {s, r}, S2 = {f, w}, and S2 < S1. Thus,
(PB , S2) <ASO (PB , S1). Furthermore, let PB′

= (PB
gen∪{w}, PB

pref ) be another
ASO program, and PB′

has a unique answer set S3 = {f, w}. It is possible to
see that (PB′

, S3) <ASO (PB , S1).

Definition 2 (MCSs with Local Preferences (MCS-LP). A MCS-LP
M = (C1, . . . , Cn) consists of a collection of contexts Ci = (Li, kbi, bri) where
Li = (KBi, BSi, ACCi, <i) is a ranked logic, kbi is a knowledge base kbi ∈ KBi,
and bri is a set of Li-bridge rules.

Definition 3 (Preferred). Let M = (C1, . . . , Cn) be an MCS-LP, and let S =
(S1, . . . , Sn) and E = (E1, . . . , En) be equilibria of M . We say that

• S is preferred to E, denoted with E ≺ S, iff
• (kbEi , Ei) <i (kbSi , Si) or (kbSi , Si) ∼ (kbEi , Ei), ∀i 1 ≤ i ≤ n; and
• (kbEj , Ej) <j (kbSj , Sj) for some j, 1 ≤ j ≤ n.

• S is incomparable to E, denoted with S ∼ E, if S �≺ E and E �≺ S.

Definition 4 (Preferred Equilibrium3). An equilibrium E of an MCS-LP
M is a preferred equilibrium iff there is no equilibrium E′ of M such that E ≺ E′.
E.g., the MCS-LP in Fig. 1 has two preferred equilibria ({c, w}, {f, w}) and

({l, r}, {s, r}).
3 The term “a preferred equilibrium” is used, rather than “the most preferred equi-

librium”, to show that there might not be a unique most preferred equilibrium.
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3.2 Open Issues and Expected Achievements

The MCSs with global framework (MCS-GP) is described via the notion of a
language L associated with an MCS M that defines a partial preference-order
among the equilibria of M . L is made up of MCS atoms, weighted (non-weighted)
formulas, preference elements, and preference statements.

MCS Atoms: Given an MCS M = (C1, . . . , Cn), a MCS atom over M is of the
form (i : pi) where pi is an element of some belief sets in BSi of Lci . We denote
by AM the set of all MCS atoms over M .

Weighted (Non-weighted) Formulas: Given an MCS M , a weighted formula
is of the form w1, . . . , wl : φ, where each wi is a term and φ is a Boolean expression
over AM with logical connectives ,¬,∨, and ∧. Whenever l = 0, it derives a
non-weighted formula, and, for short, it is denoted by φ.

Preference Elements: A preference element over an MCS M is of the form
Φ1 > . . . > Φm||φ, where m ≥ 1, φ is a non-weighted formula describing the
context, and each Φr is a set of weighted formulas for 1 ≤ r ≤ m. For short,
if φ =  which is tautological, we may drop “||φ”, if Φr is a singleton set, we
drop surrounding braces of such sets, and if m = 1, we drop “>”. For example,
a preference element 10 : (1 : a1) stands for {10 : (1 : a1)}||.

Intuitively, r gives the rank of the respective set of weighted formulas, and each
preference element provides a (possible) structure to a set of sets of weighted
formulas by (i.) giving the context (in φ) by means of conditionalization, and (ii.)
specifying the pre-orders among its members (sets of weighted formulas) using
the symbolic way (in addition to the way of using weights). For example, rather
than using the respective weights, we use {(1 : a1), (2 : b2)} > {(1 : c1), (2 : d2)}
to define the pre-order between {(1 : a1), (2 : b2)} and {(1 : c1), (2 : d2)}.

Preference Statements: A preference statement over an MCS M is of the
form #pref(t){e1, . . . , en}, where t are ground terms specifying the preference
type, and each ej is a preference element over M . Each preference type has
its own semantics to declare the preference relation on equilibria of M . E.g.,
#pref(less(weight)){5: (A : c), 7: (B : s)} presents the preferences in Example 2

The semantics of an MCS-GP=(M,L) is defined via preferred equilibria which
are sorted based on the semantics of preference type in L. For now, I have
been implementing different preference types such as more(weight), less(weight),
more(cardinality), less(cardinality), and subset. In future, I expect to have some
more complicated preference types such as pareto.

Some preference types allow to compute preferred equilibria of an MCS-
GP in a distributed way, and some others don’t. For those that allow, I have
been designing some algorithms to compute them distributedly. The idea lies
in representing the structure of the MCS-GP as a tree. From that tree, nodes
(contexts) exchange necessary information to compute preferred equilibria.
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Abstract. Ontology-based data access (OBDA) is a technology where
heterogeneous, distributed data is accessed through queries over an
ontology which provides domain-specific knowledge. The ontology is
connected to the stored data using mappings, which are commonly inter-
preted as first-order implications from the source language to the ontol-
ogy language. I propose to generalize OBDA mappings using defaults
from default logic. The resulting mapping language is much more expres-
sive than standard mapping languages, while retaining all the desired
properties related to query answering in OBDA systems. This would
allow the statement of epistemic queries and greatly reduce maintenance
cost and potential for error in lack of knowledge and exception handling.

1 Introduction

Ontology-based data access has in recent years established itself as a popular
research topic in data transformation and retrieval. It enables the access of data
through the use of an ontology and without any prior knowledge on the man-
ner in which the data is stored. However, the languages used in order to have
tractable query answering are very limited with regards to expressivity. It is not
immediately possible in an OBDA setting to differentiate between knowledge
derived from ontology reasoning and explicit information in the database. Cur-
rent research regarding extending OBDA with nonmonotonic capabilities has
focused on the ontology side, e.g., through modal description logics or inclusion
of closed predicates [4,7]. However the modal semantics are quite unintuitive and
the modal ontology axioms do not behave well with nonmodal axioms, while [7]
demonstrates that adding closed predicates usually results in intractability.

Rather than focusing on the ontology, I propose extending the mapping lan-
guage to allow nonmonotonic behavior through the use of defaults. This has the
potential for greatly reducing redundant querying as well as maintenance costs
and potential for error.
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2 Ontology-Based Data Access

Ontology-based data access (OBDA) [8] is a method for data integration, utiliz-
ing a semantic layer consisting of an ontology and a set of mappings on top of a
database. An ontology is a machine-readable model designed to faithfully repre-
sent knowledge of a domain independently of the structure of the database; it is
comprised of concepts and relationships between these concepts. These ontolo-
gies are often formulated using description logics, a class of decidable fragments
of first-order logic, due to their desirable, application-dependent properties [2].

The process of translating a query over the ontology to a query over the
database(s) can be seen in Fig. 1. Firstly, the ontology query is rewritten using
the ontology in the rewriting step. Here, the query is extended by ontology
reasoning. Secondly, in the unfolding step, the mappings are used to translate
the extended query to a traditional query language, such as SQL.

To allow the translation of ontology queries to database queries, the lan-
guage used to express the ontology must be first-order logic rewritable (FOL-
rewritable). An ontology language is said to be FOL-rewritable if the resulting
query of the rewrite step is always expressible as a conjunctive query. The neces-
sity of this property stems from the fact that conjunctive queries are equivalent
in expressiveness to the core of SQL. However, not all description logics have this
property. A common class of ontology languages used in OBDA is the DL-lite
family, a family of description logics tailored to be FOL-rewritable [2].

Q

Ontology

Rewriting

Mappings

Unfolding DB Answers
Q′ SQL

Fig. 1. OBDA architecture.

Following [6], an OBDA specification is a tuple (K,DS ,M) consisting of a
knowledge base K = (O,S) (the first-order ontology and source schema theories,
respectively), a database instance DS over the schema S, and a set M consisting
of mapping assertions of the form m : ϕ � ψ, where ϕ and ψ are queries over
the data source and ontology, respectively. Semantically, a mapping assertion is
interpreted as the first-order formula

π(m) : ∀x.(ϕ(x) → ∃z.ψ(y, z)) (1)

where y ⊆ x. Then a model of an OBDA specification (K,DS ,M) is a first-order
model of the theory O ∪ DS ∪ π(M), where π(M) = {π(m) | m ∈ M}.

Example 1. Consider a database consisting of precisely one table Persons, with
the columns Name, hasDriversLicense, Occupation, and CarRegistration. Fur-
thermore, consider the following ontology:
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Student � Person

Consultant � Person

TruckDriver � ∃hasDriversLicense

∃hasCar � ∃hasDriversLicense

∃hasDriversLicense � Person

Suppose that we simply wish to query for all instances of Person in the database.
In the rewriting process, the query Person(x) would be rewritten to

∃y, z : Person(x) 	 Student(x) 	 Consultant(x) 	 TruckDriver(x)
	 ∃hasDriversLicense(x, z) 	 hasCar(x, y)

while in the unfolding step, each of the above disjuncts would be expanded to
a database query using the mapping assertions. For example, if there existed
two mapping assertions ϕ1(x) � Student(x) and ϕ2(x) � Student(x), then the
disjunct Student(x) would be rewritten as ϕ1(x) ∨ ϕ2(x).

Example 1 demonstrates some of the current shortcomings of OBDA: due to
its inherent, first-order nature, it is impossible to distinguish between reasoned
and explicit knowledge in the database. In the above example, in the presence
of a mapping assertion m : SELECT x FROM Persons � Person(x)1 the query
Person(x) would have sufficed without any ontology rewriting, since all desired
information was contained in one table. Thus we have an entirely undesirable
and redundant exponential blow-up in query size.

Another issue with the current approach is how exceptions and a lack of
information are dealt with. Currently, one must keep track of exceptions manu-
ally by explicitly listing all exceptions to a rule. Furthermore, due to the closed
world assumption (CWA) in the database, a lack of knowledge is interpreted as
knowledge itself, e.g., if something is not contained in the Persons table, it is
not a Person.

To address these issues, I propose to generalize the mappings in OBDA by
considering them as defaults from default logic [9]. Since defaults support non-
monotonic notions such as negation-as-failure, they could allow the distinction
between explicit and implicit knowledge. This would help to avoid the redundant
query blow-up from Example 1. Furthermore, in the presence of lack of knowl-
edge, such as nulls in the database, defaults would allow a “loosening” of the
closed world assumption: allowing for assumptions based on lack of information
as opposed to hard negation. Finally, defaults would simplify the management of
mappings: as opposed to classical first-order mappings, default mappings would
not have to be updated every time a new type of exception is added to the
database. This would greatly reduce maintenance cost and potential for error.

3 Three Approaches to Default Mappings

In the following, we consider mapping assertions of the form m : ϕ(x) � ψ(x).
1 The query SELECT x FROM Persons corresponds to ∃y, z, w.Persons(x, y, z, w) in

first-order logic.
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3.1 Rule-Based Approach

As before, let K = (O,S) be a knowledge base consisting of an ontology and a
source schema, where O contains �. Furthermore, let DS be a database over S.

Definition 1. A default mapping assertion (DMA) is a default

ϕ(x) : ρ(x)
ψ(x)

where ϕ is a formula over sig(S) and ρ, ψ are formulas over sig(O). If ρ = �, we
refer to it as a crisp mapping assertion (CMA). A default mapping M is a finite
set of DMA’s over K. It is crisp if it only contains CMA’s.

Since our application is accessing data in a database, retrieving correct data is
of utmost importance; we want to avoid false query results. To this end, we only
consider cautious extensions of our database.

Definition 2. For a default OBDA specification (K,DS ,M) the certain answer
theory T〈K,DS ,M〉 is the intersection of all extensions of (K,DS) over M.

Definition 3. A model of (K,DS ,M) is a first-order model of T〈K,DS ,M〉.

By taking the intersection of all extensions in Definition 2, consequences of con-
tradictory defaults in M are ignored. This guarantees that a model of (K,DS ,M)
corresponds to the certain answers of (K,DS ,M), hence the choice in nomen-
clature.

Definition 4. A default mapping M is consistent with (K,DS) if (K,DS) has
only one extension over M and a model of (K,DS ,M) exists. It is said to be
globally consistent if it is consistent and every DMA in M is applied in the
extension.

We can trivially translate a classical OBDA mapping M′ into a corresponding
default mapping

tr(M′) =
{

ϕ(x) : �
ψ(x)

| m ∈ M′,m : ϕ(x) � ψ(x)
}

.

The notion of global consistency of defaults in Definition 4 is a direct translation
of the definition of global consistency for classical OBDA mappings introduced
in [6].

Proposition 1. A classical OBDA mapping M′ is globally consistent with an
OBDA setup (K,DS) if and only if its default translation tr(M′) is globally
consistent with (K,DS).

Similarly, a crisp default mapping M can be translated to a classical OBDA
mapping

tr−1(M) =
{

ϕ(x) � ψ(x) | ϕ(x) : �
ψ(x)

∈ M
}

.

Clearly, tr and tr−1 are mutually inverse, justifying the notation.
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Theorem 1. Let M be a crisp default mapping consistent with (K,DS). Then
M is a model of the classical OBDA specification (K,DS , tr−1(M)) if and only
if it is a model of (K, ,DS ,M). Similarly, if M′ is a classical OBDA mapping
such that (K,DS ,M′) is consistent, then M is a model of (K,DS ,M′) if and
only if it is a model of its default translation (K,DS , tr(M′)).

Interpreting mappings as rules as opposed to formulas has the side-effect that
inconsistency is not synonymous with unsatisfiability. Hence, if we have a incon-
sistent set of mappings together with a satisfiable theory K, the OBDA specifica-
tion will always have a model; one would simply not apply conflicting mappings.

Thus it might be wise to consider default mappings as formulas instead,
retaining the classical sense of inconsistency.

3.2 Naive Model-Based Approach

A simple way of interpreting defaults as formulas is by taking the intuitive
meaning of what a default is and translating that into logic. Since consistency
of a theory is equivalent to there exists a model in first-order logic, we can apply
this to our setting. Thus we can say that I satisfies a default mapping assertion
ϕ:ρ
ψ if

I � ϕ and ∃I′ : I′ � ρ ∪ O then I � ψ.

Then consistency of a set of DMA’s can be defined in the usual way.

Definition 5. A set M of DMA’s is consistent if there exists a model I that
satisfies every m ∈ M .

Definition 6. A set M of DMA’s is called strongly consistent if it is satisfiable
by some I such that

1. I � ∃t ∈ eval(ϕ,DS).ρm[t] for every m ∈ M (activation)
2. I � ρm[t] ⇒ I � ψm[t] for every m ∈ M and t ∈ eval(ϕ,DS) (consistency)

3.3 Modal and Epistemic Approach

The naive semantics for defaults from the previous section bear a certain resem-
blance to Kripke semantics; the truth of a default in a first order interpretation
is dependent on other interpretations. It might be prudent to restrict the model
I′ to have some relationship to I, i.e., an accessibility relation. I plan on fur-
ther developing and extending the naive approach as needed, considering it is
quite lightweight and very compatible with classical, crisp mappings. This could
give rise to similarities to other, well-known logics that have a semantics for
defaults [1,5]. Intuitively, this would correspond to considering the database as
an autoepistemic agent and describing its knowledge (what is explicit in the
database) and belief (what can be reasoned).
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4 Conclusion

The goal for my thesis is to extend the OBDA setting to allow the expression of
epistemic properties with respect to the database, with an emphasis on remov-
ing redundant query rewriting and unfolding. To that end, I propose extending
the mapping language to include defaults. This has not only the potential to
address the aforementioned problems but also to substantially simplify the map-
ping and OBDA specification maintenance with respect to incomplete knowl-
edge and exceptions. Furthermore, I shall investigate a lightweight semantics
for interpreting defaults as formulas that, for crisp mappings, reduces entirely
to the classical setting. Finally, I will study the complexity of query answering
with default mappings and investigate possibilities of reducing the complexity
in practical applications through ontology and mapping approximation [3].
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Abstract. My work on PhD thesis consists in nonmonotonic reasoning
about spatial relations and how they change in time. Although there are
several approaches concerning this topic, to the best of my knowledge,
there is no general framework that provides nonmonotonic (qualitative)
spatial reasoning. The work I have accomplished so far consists in intro-
ducing the so-called ASPMT(QS) system. It is based on a paradigm of
Answer Set Programming Modulo Theories (ASPMT) and polynomial
encodings of spatial relations. The system enables modelling of dynami-
cally varying spatial information, as well as abductive reasoning, and its
first version is already implemented. As a future work I consider extend-
ing ASPMT(QS) in order to perform more complex spatio-temporal rea-
soning and try to overcome limitations of the current implementation.

Keywords: Nonmonotonic spatial reasoning · Declarative spatial rea-
soning ·Qualitative reasoning ·Answer set programming modulo theories

1 Background

The notion of space has fascinated mathematicians, logicians and philosophers
for ages. Of my main interest are formal methods that enable to model human-
like spatial reasoning. Such formalisms are recently studied in Artificial Intelli-
gence (AI), in particular in Knowledge Representation. As stated in [2]:

‘Space, with its manifold layers of structure, has been an inexhaustible
source of intellectual fascination since Antiquity. [. . . ] In this long intel-
lectual history, however, one relatively recent, yet crucial, event stands
out: the rise of the logical stance in geometry.’

Although, there are numerous AI spatial reasoning systems (see [2]), human
methods are still infeasible. Human-like reasoning about space, and how objects
and spatial relations can change, is a key requirement in systems that aim to
model a wide range of dynamic application domains. The role of space is ubiqui-
tous, and thus myriad domain-specific conclusions drawn via, e.g., causal expla-
nation [16] or default reasoning [15], must also be necessarily concerned with
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spatial consistency – an explanatory hypothesis is not viable if the abduced
spatial relations can not be physically realised.

A number of domain-independent approaches for modelling spatial change
have been developed [9,11,12,19]. Shanahan ([17]) integrates a first-order theory
of shape with the situation calculus for describing common-sense laws of motion.
In [7] the authors present a framework for modelling dynamic spatial systems
by integrating qualitative spatial theories into situation calculus. However no
systems currently exist that are capable of efficient and general nonmonotonic
spatial reasoning.

The aim of my thesis is twofolded. Firstly, to discuss how nonomotonic logics
known from the literature can be extended to perform spatial reasoning in a
qualitative manner. Secondly, to construct new approaches for nonmonotonic
spatial reasoning and implement them.

2 Accomplished Work – ASPMT(QS) System

The main work accomplished so far consists in introduction and first implemen-
tation of the ASPMT(QS) system. ASPMT(QS) is a new approach for dynamic
spatial reasoning (see [18]). It is based on Answer Set Programming Modulo
Theories approach ([4]) extended to spatial domains. Spatial reasoning is per-
formed in an analytic manner, i.e., as in reasoners such as CLP(QS) ([6]), where
relations are encoded as polynomial constraints. The main reasoning task, i.e.,
determining whether a spatial configuration is consistent, is equivalent to deter-
mine whether the system of polynomial constraints is satisfiable. The reasoning
method uses Satisfiability Modulo Theories (SMT) with real nonlinear arith-
metic, and can be accomplished in a sound and complete manner. ASPMT(QS)
implementation consists of a spatial representation module and a method for
turning ASPMT instances into SMT that computes stable models by means of
SMT solvers. ASPMT(QS) is the only spatial reasoning system that enables to
perform nonmonotonic reasoning and uses the theory of arithmetic over real
numbers. In what follows, I will briefly present the system’s implementation and
its applications.

2.1 ASPMT(QS) Implementation

ASPMT(QS) implementation is build on aspmt2smt ([5]) – a compiler that
translates a tight fragment of ASPMT into SMT instances. Additionally, there
is a module for spatial reasoning and Z3 as SMT solver. Input programs consist
of declaration of sorts (data types), objects (particular elements of given types),
constants (functions) and variables (variables associated with declared types).
Afterwards, there are program’s clauses.

The ASPMT(QS) supports standard connectives: &, |, not, ->, <- and
arithmetic operators: <, <=, >=, >, =, !=, +, =, *, with their usual mean-
ing. Additionally, spatial domain entities are available, namely spatial sorts

for geometric objects types, e.g., point, segment, circle, triangle, functions
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describing objects parameters, e.g., x(point), r(circle), and spatial relations,
e.g., coincident(point, circle) or qualitative Region Connection Calculus (RCC)
relations [14], e.g., external connection (EC): rccEC(circle, circle). As an out-
put, the system either produces an instance corresponding to a stable model of
the input program, or states that there is no such model.

ASPMT(QS) uses polynomial encodings of spatial relations and as a result is
able to express a number of relations from the well-known qualitative approaches,
e.g., Interval Algebra [3], Rectangle Algebra [10], Region Connection Calculus,
[14] and Cardinal Direction Calculus [8]. The following Proposition 1 has been
proved in [18].

Proposition 1. Each relation of Interval Algebra, Rectangle Algebra, Region
Connection Calculus and Cardinal Direction Calculus may be defined in
ASPMT(QS).

As an example consider, RCC spatial relations in a domain of circles, as depicted
in Fig. 1.

DC EC PO TPP NTPPEQ

DR
C
O

P
PP

Fig. 1. Region connection calculus relations.

The abovementioned relations are encoded by means of polynomial systems. For
instance, partially overlapping (PO) relation is encoded as follows.

rccPO(C1,C2)=true <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1
& x(C2)=X2 & y(C2)=Y2 & r(C2)=R2)
& ( (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1-R2)*(R1-R2)
& (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) < (R1+R2)*(R1+R2)).

rccPO(C1,C2)=false <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1
& x(C2)=X2 & y(C2)=Y2 & r(C2)=R2)
& not ( (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1-R2)*(R1-R2)
& (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) < (R1+R2)*(R1+R2)).

2.2 Program Example

In this section, I present a simple ASPMT(QS) program that models spatial
configuration of three circles a, b, c, such that a is discrete from b (rccDR(a,b)),
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b is discrete from c (rccDR(b,c)), and a is a proper part of c (rccPP(a,c)). The
input program is as follows.

:- sorts
circle.

:- objects
a, b, c :: circle.

:- constants
.

:- variables
C, C1, C2 :: circle.

{x(C)=X}. {y(C)=X}. {r(C)=X}.
rccDR(a,b)=true. rccDR(b,c)=true. rccPP(a,c)=true.

The ASPMT(QS) task is to determine an exact model for such a spatial config-
uration. The output of the abovementioned program is:

r(a) = 0.5 r(b) = 1.0 r(c) = 0.25
x(a) = 1.0 x(b) = 1.0 x(c) = 1.0
y(a) = 3.0 y(b) = 1.0 y(c) = 3.0

Now, let me extend the input program by additional information, namely that
circles a, b, c have same radius:

<- r(a)=R1 & r(b)=R2 & r(c)=R3
& (R1!=R2 | R2!=R3 | R1!=R3).

ASPMT(QS) infers that the extended input program has no stable models, i.e.,
the spatial configuration is impossible and the system of polynomials is unsatis-
fiable, therefore the output is:

UNSATISFIABLE;

This example shows that ASPM(QS) is able to check consistency of RCC rela-
tions. This task is also known as computing composition table of RCC relations
(see [14]).

2.3 Abductive Reasoning

In this section, I show how abductive reasoning may be achieved in ASPMT(QS).
Consider an application where spatial configuration of objects is recorded in dis-
crete time points (e.g., geospatial information collected about cities or a dynamic
environment observed by a mobile robot). Consider the situation presented in
Fig. 2, where in time point t1: c is a proper part of a and b is a proper part of
a, in t2: c is a proper part of a and b is externally connected with a, in t3: c is a
proper part of a and b is externally connected with a. Additionally, radius of b
in t2 is greater than its radius in t1. The main part of input program is:
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Fig. 2. Nonmonotonically inferring actions and qualitative spatial relations between
spatial objects a, b, c.

pp(c,a,t1)=true. pp(b,a,t1)=true.
pp(c,a,t2)=true. ec(b,a,t2)=true.
pp(c,a,t3)=true. pp(b,a,t3)=true.
<- r(b,t1)=R1 & r(b,t2)=R2 & R1>=R2.

Having a knowledge base about available actions that may be performed, namely
move and grow, and a number of rules describing the spatial behaviour of objects,
ASPMT(QS) infers what actions had to be performed between time points,
namely:

move(b,t1)=true. move(b,t2)=true. grow(b,t2)=true.

Abductive reasoning requires default rules such as inertia which states that if no
action is performed, then object locations and parameters remain the same by
default. This rule enables the inference that the position of c with respect to a
is the same in t1 and t2. Another important rule is action minimality, which is
responsible for inferring only those actions that are necessary to be performed.
Furthermore, the example illustrated in Fig. 2 shows that ASPMT(QS) checks
the global consistency of various spatial relations. Therefore, it infers relations
occurring as a result of performed actions (indirect effects) even if there is more
than one possible solution, e.g., the relation between c and b in t2 may be either
dc(b, c, t2) or ec(b, c, t2).
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3 Future Plans

My future plans consist in extending ASPMT(QS) in order to perform more com-
plex spatio-temporal reasoning and applying ASPMT(QS) to practical problems
such as computer-aided architecture design or mobile robots control. Addition-
ally, I plan to introduce other approaches for nonmonotonic spatial reasoning.
One of the promising approaches is Equilibrium Logic [13] that has been used
for temporal reasoning (see [1]) but not for spatial reasoning. It seems to me
that combining Equilibrium Logic with spatial and spatio-temporal reasoning
may provide an efficient framework.
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