
7Quantitative Emission and Absorption

We are ready to begin discussion of quantitative emission and absorption spec-
troscopy, with the goal of being able to specify emission and absorption as a function
of wavelength. Two steps are involved in this treatment. In the first step, a simple
form of the equation of radiative transfer will be used to identify a new parameter,
known as the spectral absorption coefficient, which will be seen as the governing
quantity which characterizes emission and absorption of light, as a function of
wavelength. In the second step, the Einstein theory of radiation is employed to
show that the spectral absorption coefficient is given simply by the product of
the line strength and a lineshape function; the relationship of the line strength to
fundamental quantities known as Einstein coefficients is also shown. With these
relationships in hand, it will become evident how spectrally resolved absorption (or
emission) can be used as a nonintrusive means of measuring a variety of gasdynamic
parameters, including: species concentration, pressure, temperature, density, and
even flow velocity.

7.1 Spectral Absorption Coefficient

We begin with an overview of possibilities when collimated light at frequency �

enters a gas sample of differential length dx: there are four separate possibilities,
with probabilities summing to 1 (100 %).

1 D absorption
„ ƒ‚ …

˛�

C reflection
„ ƒ‚ …

D0

C scattering
„ ƒ‚ …

D0

C transmission
„ ƒ‚ …

T�

(7.1)

Therefore, in the common case where reflection and scattering are negligible,

˛� C T� D 1 (7.2)
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108 7 Quantitative Emission and Absorption

where ˛� and T� are known as the spectral absorptivity and transmissivity, respec-
tively. The result in Eq. (7.2) follows from conservation of energy.

We now express ˛� , the fraction of incident light I� for the frequency range � !
�C d� that is absorbed, in terms of an absorption coefficient per unit length, k� , i.e.

˛� � k�dx D �dI�

I�

[no units] (7.3)

k� is the spectral absorption coefficient (the fraction of incident light I� over
frequency range � ! � C d� that is absorbed per unit length dx). Thus

k� � � .dI�=dx/

I�

Œcm�1� (7.4)

where I� may have units of power per unit area per unit spectral interval at frequency
� (i.e., power per unit area over the spectral range � ! �Cd�), or can be substituted
with I.�/, which denotes power at frequency � or power per unit area at frequency
�. In the former case, which is most common for our purposes, I� is known as the
spectral intensity and has units

�

W=cm2

cm�1

�

or

�

W=cm2

Hz

�

:

The spectral intensity I� can be integrated over frequency to obtain the total radiant
intensity, I:

I ŒW=cm2� D
Z

�

I�d� (7.5)

In general, the equations that relate spectral intensity, spectral radiancy, and total
radiancy to other parameters can use I� or I.�/ interchangeably. The exceptions are
integral relations such as Eqs. (7.5) and (7.13); they require the differential form
of spectral intensity, I� . Thus, Eqs. (7.3) and (7.4) also define ˛� , the fraction of
incident light absorbed, and k� , the fraction of incident light absorbed per unit
length, each at frequency �.

Hence, ˛� and k� are the spectral absorptivity and spectral absorption
coefficient at frequency � or over the frequency range � ! � C d�.
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7.2 Equation of Radiative Transfer: Classical Approach

We wish to perform a simple one-dimensional radiation energy balance on a thin
slab of gas. To do this, we must first introduce the spectral emissivity, which is the
way that we account for the “emission” from the gas slab. (If a gas sample can absorb
light, it follows that it must be allowed to emit, in order to satisfy detailed balance
arguments for equilibrium.) The spectral emissivity is conventionally defined as
the radiation emitted by the gas sample .Iem

� / relative to that of a blackbody (an
“equilibrium” radiator which sets the upper bound on the emission for a specified
temperature):

"� D Iem
�

Ibb
�

[no units] (7.6)

D Iem.�/

Ibb.�/
[no units] (7.7)

where Ibb
� is the blackbody spectral radiancy. At this point, we employ Kirchhoff’s

law, which states that “emissivity equals absorptivity,” so that

"� D ˛�: (7.8)

(This law also follows from equilibrium arguments.) Now consider the radiation
energy balance at frequency � for a gas slab of thickness dx; for simplicity, we
consider only collimated light (Fig. 7.1).

emission D "�Ibb
�

absorption D ˛�I�

dI� D emission � absorption

D "�Ibb
� � ˛�I� (7.9)

D ˛�.Ibb
� � I�/ (7.10)

Therefore,

dI� D k�dx.Ibb
� � I�/: (7.11)

Thin sample of emitting/absorbing gas

Collimated light @ v

Iv Iv + dIv

dx

Fig. 7.1 Radiation energy balance across a slab of gas
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Gas

Collimated light @ v

I(v)I°(v)

L

Fig. 7.2 Radiation energy across a slab of gas of width L

This is the differential form of the equation of radiative transfer. Integrating over a
distance L, for a uniform sample (i.e., constant k� , see Fig. 7.2), with an incident
intensity I0

� at x D 0 (the boundary condition):

I�.L/ D I0
� exp.�k�L/C Ibb

� Œ1 � exp.�k�L/� (7.12)

This important result is the integrated form of the equation of radiative transfer.
The quantity k�L is known as the “optical depth” (and also as the absorbance at
frequency �). Note that the gas sample is not required to radiate as a blackbody, but
we can relate the actual emission to the blackbody level.

Consider the two important cases: Emission and Absorption.

7.2.1 Case 1: Emission Experiments .I0
� D 0/

For emission experiments, the incident radiation intensity I0
� D 0 (i.e., there is no

radiation source such as a laser involved).

Spectral radiancy: I�.L/ D Ibb
� Œ1 � exp.�k�L/�

Spectral emissivity: "�.k�; L/ D I� .L/

Ibb
�
D 1 � exp.�k�L/

We can integrate these relations over frequency to obtain results for the total
radiancy:

I.L/ D
Z 1

0

I�.L/d� D
Z 1

0

Ibb
� Œ1 � exp.�k�L/�d� (7.13)

".L/ D I.L/

Ibb
D 1

�T4

Z 1

0

Ibb
� Œ1 � exp.�k�L/�d� (7.14)

Note:

Ibb D
Z 1

0

Ibb
� d� D �T4;
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where

� D 5:67 � 10�5 Œerg cm�2 s�1 K�4�

is the Stefan–Boltzmann constant.

Emission Types
The emission for the formulas above may be of any type, including single line,
multiple line, single or multiple bands, or continuum.

Optical Depth
The optical depth, k�L, is a key parameter. When k�L � 1, the system is optically
thick and the spectral radiance approaches that of a blackbody. When k�L� 1, the
system is optically thin and the spectral radiance approaches .k�L/Ibb

� .

optically thick: k�L� 1; I�.L/! Ibb
�

optically thin: k�L� 1; I�.L/! .k�L/Ibb
�

7.2.2 Case 2: Absorption Experiments .I0
� � Ibb

� /

For absorption experiments, the incident radiant intensity is much greater than the
blackbody radiation intensity.

Absorption: I0
� � Ibb

�

The equation of radiative transfer, Eq. (7.12), then becomes

I�.L/ D I0
� exp.�k�L/ (7.15)

This relation, known as Beer’s Law or the Beer–Lambert Law, may be the most
important relation in absorption spectroscopy. Alternate forms in terms of the
fractional transmission or “transmissivity,” T� , are

T� D
�

I

I0

�

�

(7.16)

D exp.�k�L/ (7.17)

D I.�/

I0.�/
(7.18)
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We make two observations:

1. The same equation would apply to the transmission of a pulse of laser excitation,
with energy E� ŒJ=cm2=cm�1�, i.e. T� D E�=E0

� .
2. The fundamental parameter controlling absorption over length L is the spectral

absorption coefficient, k� .

Our next step is to establish a relationship between k� and the fundamental
molecular parameters that govern the “strengths” and “shapes” of absorption lines,
namely the Einstein coefficients and line-broadening coefficients.

7.3 Einstein Theory of Radiation

We begin with a simplified theory, without regard to lineshape or structure (some-
times termed the Milne Theory). Consider two states of an atom (or molecule)
which are radiatively coupled (i.e., have radiative transitions that are “allowed”),
with E2 � E1 D h�.

The total transition rates [molec/s] are N2A21, N1B12�.�/, and N2B21�.�/, where
Ni is the total number of molecules in state i. Alternatively the transition rate per
unit volume [molec/cm3/s] can be expressed using the number density ni.

7.3.1 Einstein Coefficients

A21, B12, and B21 in Fig. 7.3 are the Einstein coefficients of radiation.

B12�.�/ the probability/s that a molecule in state 1 exposed to radiation
of spectral density �.�/ [J/(cm3 Hz)]1 will absorb a quantum h�

and pass to state 2. The Einstein B-coefficient thus carries units of
cm3 Hz/(J s).

Spontaneous
Emission

Induced
Emission

Induced
Absorption

A21 B21B12

Energy

Fig. 7.3 Transition probabilities between states 1 and 2

1The spectral density is the energy density per unit frequency contained in an electric field.
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B21�.�/ the probability/s that a molecule in state 2 exposed to radiation of
spectral density �.�/ will emit a quantum h� and pass to state 1.2

A21 the probability/s of spontaneous transfer from state 2 to 1 with
release of photon of energy h� (without regard to the presence of
�.�/)

Similar expressions apply when isotropic radiation intensity or parallel beam
intensity (e.g., a laser) are involved.

7.3.2 Equilibrium

At equilibrium, the net rate of change of molecules in any molecular state is zero.
Consider a detailed balance of the optical processes at equilibrium for the population
change in state 2:

� PN2

�

rad D N1B12�.�/
„ ƒ‚ …

molec/s entering state 2

�N2.A21 C B21�.�//
„ ƒ‚ …

molec/s leaving state 2

D 0 (7.19)

The molecule balance in Eq. (7.19) is simply the difference between the rate of
molecules entering state 2 and the rate of molecules leaving state 2. Equilibrium
requires that all transitions from state 1 to 2 (induced absorption) are balanced by
transitions from state 2 to 1 (induced and spontaneous emission). Another way to
express the equilibrium condition is with the Boltzmann fraction from statistical
mechanics:

N2

N1

D B12�.�/eq

A21 C B21�.�/eq
„ ƒ‚ …

rad. equil.

D g2

g1

exp.�h�=kT/

„ ƒ‚ …

statistical equil.

(7.20)

Solving for �.�/eq in Eq. (7.20) and equating it to the known result for �.�/eq, i.e.
Planck’s blackbody distribution,

�.�/eq D .8�h�3=c3/

exp.Ch�=kT/ � 1
(7.21)

gives

�.�/eq D .A21=B21/
g1

g2

B12

B21
exp.h�=kT/ � 1

D .8�h�3=c3/

exp.h�=kT/ � 1
„ ƒ‚ …

Planck’s distribution

(7.22)

2This induced emission occurs in phase with and in the same direction as the incident beam. Hence,
for collimated incident light (e.g., a collimated laser beam) the induced emission appears as gain
in the exciting beam.
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Equation (7.22) must hold for all � and T , producing the two following important
conclusions [1]:

g1B12 D g2B21 (7.23)

A21 D
�

8�h�3

c3

�

B21 (7.24)

� 1=�21 (7.25)

where �21, the inverse of A21, is the “radiative lifetime” in state 2. We must note
here that even though Eq. (7.24) was derived from thermodynamic equilibrium
arguments and Planck’s blackbody distribution, the relationship between A and B
holds even for systems not in equilibrium, and it does not depend on �.�/. A21,
and hence B12 and B21 are theoretically calculable from quantum mechanics, but in
practice, �21 and/or B12 are often measured.

Note: For collimated light (as in the case for most absorption experiments):
�.�/eq D np � h� [J/cm3 s�1 ] (np is the number of photons/cm3 s�1 )
I� D np � h� � c [W/cm2 s�1 ] (power per unit area per unit frequency)
Therefore,

�.�/ D I�=c (7.26)

Where is the link to k� ? Find this next.

7.3.3 What is k�?

We proceed now to find the relationship between the spectral absorption coefficient,
k� , and the Einstein coefficients, for the case of a structureless absorption line of
width ı�. Recall that Beer’s Law is

T� D
�

I

I0

�

�

D exp.�k�L/ (7.27)

where I� may be either the spectral intensity ŒW=cm2 s�1� or intensity ŒW=cm2� or
power ŒW� at frequency �, and that

k� � � dI�

I�dx
(7.28)

Figure 7.4 plots T� and k� versus frequency for this case. Note that T� D 1

everywhere but in the region of the absorption line.
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Fig. 7.4 T� and k� versus frequency for a structureless absorption line of width ı�

Gas Ivdv + (dIv)dvIvdv

dx

Fig. 7.5 Transmission of laser intensity across a gas slab of depth dx

Imagine that a spectrally broad light source of uniform spectral intensity I0
� is

used to illuminate a sample gas with the spectral absorption coefficient shown in
Fig. 7.4; the length of the sample is L. What is the absorbed power in W/cm2?

Pabs D .incident power over ı�/ � (fraction absorbed) [W/cm2]

D .I0
� ı�/ � .1 � T�/ (7.29)

D .I0
� ı�/.1 � exp.�k�L// (7.30)

where I0
� has units of W=cm2 s�1 and ı� has units of s�1. The product I0

�ı�

represents the incident power per unit area .W=cm2/ contained in the spectral
interval ı� over which absorption may occur.

What happens to Eq. (7.30) for a small (incremental) width dx, such that
k�dx� 1? For small optical thickness, the exponential term can be linearized,
leading to the simple result

Pabs D .I0
� ı�/.k�dx/ (7.31)

or

Pabs

I0
� ı�

D fraction absorbed D k�dx: (7.32)

This is known as the optically thin limit.
We can use a simple energy balance on an incremental slab of gas to find k�

(Fig. 7.5).
In this model, we recognize that the change in intensity, i.e. .dI�/ı�, is equal to

the net combined effects of emission and absorption,
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.dI�/ı� D (induced emissionC spontaneous emission)
„ ƒ‚ …

D0

�induced absorption

(7.33)

where the spontaneous emission is approximately zero for collimated light and

induced emission D .n2dx/
„ƒ‚…

molec=cm2

in state 2

�B21�.�/
„ ƒ‚ …

prob=s of

emission

� h�
„ƒ‚…

energy per

photon

(7.34)

induced absorption D .n1dx/
„ƒ‚…

molec=cm2

in state 1

� B12�.�/
„ ƒ‚ …

prob=s of

absorption

� h�
„ƒ‚…

energy per

photon

(7.35)

Recalling Eq. (7.26), Eq. (7.33) becomes

.dI�/ı� D Œn2B21 � n1B12�
h�

c
I�dx (7.36)

Therefore,

dI�

I�dx
� �k� D h�

c

1

ı�
Œn2B21 � n1B12� (7.37)

which may be simplified further to give

k� Œcm�1� D h�

c

1

ı�
n1B12 .1 � exp.�h�=kT// (7.38)

While this result is immediately helpful in understanding the fundamental coupling
between k� and B12, n1, �, and T , we can see now that the shape and width of
absorption lines (evident in Eq. (7.38) with the term ı�) are also relevant. How
would the use of a more realistic lineshape model affect Eq. (7.38)?

7.4 Revised Treatment of Einstein Theory (with Lineshape)

We now repeat the derivation for k� using an improved lineshape model that includes
the structure of absorption and emission lines. Compared with the uniform and
structureless feature in Fig. 7.4, real spectra have shapes. These realistic shapes
for the spectral transmission, T� , spectral absorption, k� , and normalized lineshape
function, �, of a single absorption line are shown in Fig. 7.6.
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Fig. 7.6 T� , k� , and � versus frequency for an absorption line with typical structure

Recall that the general form for Beer’s Law is

T� D
�

I

I0

�

�

D exp.�k�L/ (7.39)

Solving for k� yields

k� D �1

L
ln T� (7.40)

In addition, we define a new parameter, �, as the normalized lineshape function

� � k�
R

line
k�d�

[cm] or [s] (7.41)

so that
Z

line

�d� D 1 (7.42)

The units for � are inverse frequency (and hence may have units of either
centimeters or seconds). The lineshape function, whose integral over the line is 1,
provides a useful way of characterizing the shape of a line.

Note: Since
Z

k�d� � k�;maxı�

where ı� is an average width, then

�pk D k�;max
R

k�d�
� 1

ı�
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Fig. 7.7 Transition probabilities per second per molecule in level 2 or 1

Thus we should not be surprised if we find that the term 1=ı� in
Eq. (7.38) is simply replaced by � in the revised formulation, with �

varying smoothly from zero in the “wings” of an absorption line to a
peak value proportional to 1=ı� (see Fig. 7.6 above).

Consider the small frequency interval, � ! � C d�, in Fig. 7.6. What are the
relevant transition probabilities for this spectral interval? We recognize that these
probabilities should have the same spectral dependence (shape) as k� and �.�/, i.e.
having a peak value at line center and falling to zero away from the line. We achieve
this shape with a simple modification to our previous model (with the constant
probabilities A21, B12, B21) by multiplying the Einstein coefficients by �.�/d� (see
Fig. 7.7).

A21�.�/d� the probability/s of a molecule undergoing spontaneous emis-
sion, in the range � ! � C d�

[Note that the integral of this quantity over the range of
allowed � is just A21 [s�1], i.e.

R

A21�.�/.d�/ D A21.]
B12�.�/d��.�/ the probability/s of a molecule undergoing a transition from

1! 2, in the range � ! � C d�

B21�.�/d��.�/ the probability/s of a molecule undergoing a transition from
2! 1, in the range � ! � C d�

Recall: �.�/ D I�=c, where �.�/ is the spectral energy density [J/cm3 s�1]
and I� is the spectral intensity ŒW=cm2 s�1� of collimated laser
light.

We are now ready to do a simple energy/power balance on an incremental gas
slab of width dx, for the frequency range � ! � C d� (Fig. 7.8).

The energy balance for the slab requires that the incremental gain in intensity,
dI�d�, is equal to the difference between the emission and absorption over the
frequency interval d� in the gas slab:
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Gas
Ivdv + (dIv)dvIvdv

[W/cm2 in v to v+dv]
dx

Fig. 7.8 Energy/power balance on an incremental gas slab

dI�d� D emission in d� � absorption in d�

D
#=cc

‚…„ƒ

n2 dx
„ ƒ‚ …

molec=cm2

�
prob=s�molec for d�

‚ …„ ƒ

ŒB21�.�/d�I�=c�� h �0
„ƒ‚…

energy=

photon

� n1dxŒB12�.�/d�I�=c�h�0

Therefore,

� dI�

I�dx
� k� D h�

c
Œn1B12 � n2B21��.�/ (7.43)

so

k� D h�

c
n1B12 .1 � exp.�h�=kT// �.�/ (7.44)

which is, as suggested, equal to our earlier result for k� aside from the substitution
of �.�/ for 1=ı�! Integrating k� over the absorption line yields

S12 �
Z

line

k�d� Œcm�1 s�1� (7.45)

S12 D h�

c
n1B12.1 � exp.�h�=kT// (7.46)

S12 is an important quantity known as the “integrated absorption” for the absorption
transition 1 ! 2[1]. It is also often called the “line strength.” Note that the
quantity does not depend on lineshape and is simply a function of n1, T , and B12.
Changes in lineshape, e.g. owing to pressure-broadening, thus do not affect S12.
This quantity, like Einstein coefficients, is thus fundamental in nature. In view of
the interrelationships of A21, B12, and B21, we may also write
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S12 D 	2

8�
n1A21

g2

g1

.1 � exp.�h�=kT// Œcm�1 s�1� (7.47)

S12 D
�

�e2

mec

�

n1f12.1 � exp.�h�=kT// Œcm�1 s�1� (7.48)

(Note that the units of S12 shown here as cm�1 s�1 depend on the choice of units
for frequency, typically either s�1 or cm�1, so that S12 may have units of cm�1 s�1

or cm�2. Other variations also appear in the literature.)
Equation (7.47) makes use of the relationship between A21 and B12. Equa-

tion (7.48) utilizes the oscillator strength, f :

f12 D S12;actual

S12;classical.1 � exp.�h�=kT//
(7.49)

The oscillator strength of a transition (or group of transitions like a vibrational
band or electronic system) compares the integrated strength of the transition with
the classical electromagnetic model of an oscillating electron in a magnetic field.
Sclassical is given by[2]:

Sclassical D
�

�e2

mec

�

n1 (7.50)

where

�

�e2

mec

�

D 0:0265 cm2 Hz:

so that

S12;actual D .0:0265 cm2 Hz/n1f12.1 � exp.�h�=kT// (7.51)

Since n1 can be written in terms of pressure, i.e.,

n1 D p1

kT
(7.52)

then at STP, if all the absorbing atoms are in the ground state (n1 D n D
2:7 � 1019 cm�3) and exp.�h�12=kT/ � 1, the line strength S12 is simply 7:17 �
1017f12 Œcm�1 Hz=atm�, or equivalently

S12Œcm�2=atm� D 2:380 � 107f12 (7.53)
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From Eqs. (7.47) and (7.48), the reader may note that the oscillator strength is
also directly related to the Einstein coefficients for a given transition, and like the
coefficients for stimulated emission,

f21 D
�

g1

g2

�

f12 (7.54)

We now make two important observations:

1. From the original definition of k� and S12 we have

k� D S12�.�/

2. When

h�=kT � 1;

as is common for electronic state transitions,

S12 Œcm�1 Hz� D
�

�e2

mec

�

n1f12 (7.55)

D .0:0265 cm2 Hz/n1f12 (7.56)

D 	2

8�
n1A21

g2

g1

(7.57)

and, by comparison of right-hand sides

f12=A21 D f12�21 D 1:51
g2

g1

.	 Œcm�/2 (7.58)

where �21 D 1=A21 is the radiative lifetime of the 2! 1 transition.

Example: “Resonance Transition”
A resonance transition is one that couples the ground state to the first excited
state. Let’s look at a case for an electronic transition of a sodium atom:

Na .

lower.L/
‚…„ƒ

32S1=2 �
upper.U/
‚…„ƒ

32P1=2/;

g2

g1

D 1;

	 D 589 nm D 5:89 � 10�5 cm (7.59)
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Table 7.1 Oscillator
strengths of selected sodium
transitions, abstracted from [1]

Transition f21 	[nm]

32S1=2 – 32P1=2 0.33 589.6

32S1=2 – 32P3=2 0.67 589.0

32S – 42P 0.04 330.2

Conventions:
atoms: (L – U)
molecules: (U$ L), arrow denotes absorption or emission
fij: i denotes initial state, j denotes final

From Eq. (7.58),

f12�589 nm D 5:24 � 10�9 s;

where the radiative lifetime is

� D 16:1 � 10�9 s (measured, corresponds to A D 0:62 � 108 s�1)

Thus, f � 0:325 (strong atomic transition; single electron). Values of f for
molecular transitions tend to be much smaller, 	10�2–10�4, owing to the
relatively strong coupling between the multiple electrons and protons in a
molecule and can be very much smaller for highly forbidden transitions. The
“term symbols” for electronic states in atoms will be discussed in Chap. 9.

Table 7.1 lists the emission (f21) oscillator strengths and spectral locations for a
few transitions of the sodium atom.

These values can be compared with electronic and vibrational oscillator strengths
in a few molecules (Table 7.2).

7.5 Radiative Lifetime

The concept of radiative lifetime merits further discussion. If we write a rate
equation for radiative decay from an upper level u, accounting for all allowed
spontaneous decay paths to lower states l, then
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Table 7.2 Absorption oscillator strengths of selected
vibrational and vibronic bands of a few molecules

Electronic Band center

Molecule v0  v00 transition [cm�1] f12

CO 1 0 – 2143 1:09� 10�5

2 0 – 4260 7:5� 10�8

OH 1 0 – 3568 4:0� 10�6

0 0 2† 2… 32;600 1:2� 10�3

CN 0 0 2… 2† 9117 2:0� 10�2

dnu

dt
D �nu

X

l

Au!l (radiation only) (7.60)

Thus, for an initial number density nu.0/, the time-dependent density, allowing for
radiative decay only, is:

nu.t/ D nu.0/ exp

"

�t
X

l

Au!l

#

(7.61)

so

�r D radiative lifetime D 1
P

l
Au!l

(7.62)

Of course, collisions and radiative excitation into the upper levels will also be
present and will maintain a non-zero population in the upper level. �r is also
sometimes described as the zero-pressure lifetime.

The decay u ! l may also occur through non-radiative (i.e., collisional)
processes; corresponding energy may be given to neighboring molecules as trans-
lational energy or, quite commonly, as internal energy. In the case of non-radiative
decay, the rate of decays per unit volume can be written in terms of a rate parameter
knr.s�1/

�

dnu

dt

�

nr
D �knrnu D � nu

�nr
(7.63)

where �nr is the non-radiative decay time. This parameter depends on the transition
considered and on the surrounding molecules.
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With the simultaneous presence of both radiative and non-radiative transitions,
the time variation of the upper level u population can be written as

dnu

dt
D �nu

�r
� nu

�nr
D �nu

�
(7.64)

where ��1 D ��1
r C ��1

nr is called the lifetime of level u.

7.6 Alternate Forms

There are many alternate forms for the linestrength and Beer’s Law, each with its
own units and notation.

7.6.1 Line Strengths

Alternate forms for linestrength notation and units are as follows:

1.

k! Œcm�1� D S12 Œcm�2� �! Œcm�; or

k� Œcm�1� D S12 Œcm�2� �� Œcm�

where

� Œcm�1� or ! Œcm�1� � 1=	 Œcm�;

�� Œcm� or �! Œcm� D c Œcm=s� �� Œs�

and

d� Œcm�1� or d! Œcm�1� D .1=c/d� Œs�1�

2.

S12 Œcm�2� D .1=c/S12 Œcm�1=s�

3.

S12 Œcm�2=atm� D S12 Œcm�2�=Pi Œatm�

D
�

n1

Pi Œatm�

�
� c

8��2

�

A21

g2

g1

.1 � exp.�h�=kT//

where n1 is the number density of the absorbing species i in state 1.
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4. The typical units for linestrengths include a per-unit-pressure version, S
[cm�2 atm�1], and a per-unit-number-density version used by HITRAN96, S�
[cm�1=.molecule cm�2/]. The conversion between S and S� is

S Œcm�2 atm�1� D S� Œcm�1=.molecule cm�2/� � n Œmolecules=cc�

P Œatm�
; (7.65)

where n is the number density of the absorbing species in [molecules/cc] and
P is the corresponding partial pressure in [atm]. Using the ideal gas law and
converting pressure units from [dynes=cm2] to [atm] yields the following relation

S Œcm�2 atm�1� D S� Œcm�1=.molecule cm�2/� � 1013250 Œdynes=.cm2 atm/�

kT
;

(7.66)

where k D 1:38054 � 10�16 erg/K is the Boltzmann constant and T [K] is the
temperature at which the conversion is being performed and the linestrength is
known. Equation (7.66) reduces to

S D S� � .7:34 � 1021/

T
Œcm�2 atm�1�: (7.67)

For converting room-temperature linestrength (T D 296 K), the conversion is

S D S� � .2:4797 � 1019/ Œcm�2 atm�1�: (7.68)

7.6.2 Beer’s Law

It follows from the alternate forms for the linestrength that multiple expressions for
Beer’s Law also exist, e.g.

�

I

I0

�

�;!;	

D exp .�k�L/ (7.69)

D exp .�n��L/ (7.70)

D exp .�ˇ!PiL/ (7.71)

D exp.�S��PiL/ (7.72)

where

n D number density of the absorbing species [molecules/cm3]

�� D absorption cross-section [cm2/molecule]
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S D “linestrength” [cm�2 atm�1] or [cm�1 s�1=atm]

ˇ! D frequency-dependent absorption coefficient [cm�1/atm] (7.73)

Pi D partial pressure of species i [atm]

�� D frequency-dependent lineshape function [cm] or [s]

In the IR, it is common to use atmosphere and wavenumber units, i.e. ˇ! D
k�=Pi D absorption coefficient per atmosphere of pressure. Thus,

S12 Œcm�2=atm� D
Z

ˇ!d!

D S12 Œcm�1 s�1�

cPi Œatm�

D 8:82 � 10�13 n1

Pi Œatm�
f12 .1 � exp.�h�=kT//

D c

8��2

n1

Pi
A21

g2

g1

.1 � exp.�h�=kT//

7.7 Temperature-Dependent Linestrengths

As Eq. (7.46) demonstrates, linestrengths are directly dependent on the number den-
sity, n1, and exponentially dependent on the temperature, T . Using the Boltzmann
fraction to relate n1 at various temperatures and combining with Eq. (7.46) yields an
expression for the linestrength as a function of temperature.

The linestrength Si.T/ for a particular transition i at some temperature T can
be determined from the molecule’s reference temperature linestrength Si.T0/; the
absorbing molecule’s partition function Q.T/; the frequency of the transition, �0;i;
and the lower-state energy of the transition, E00i . This relationship is given by

Si.T/ D Si.T0/
Q.T0/

Q.T/

�

T0

T

�

exp

�

�hcE00i
k

�

1

T
� 1

T0

�	

�
�

1 � exp

��hc�0;i

kT

�	 �

1 � exp

��hc�0;i

kT0

�	�1

;
(7.74)

where S is in units of [cm�2 atm�1 ]. For units of [cm�1=.molecule cm�2/], the
following temperature scaling can be used
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S�i .T/ D S�i .T0/
Q.T0/

Q.T/
exp

�

�hcE00i
k

�

1

T
� 1

T0

�	

�
�

1 � exp

��hc�0;i

kT

�	 �

1 � exp

��hc�0;i

kT0

�	�1

:
(7.75)

Thus, a ratio of linestrengths with the different units can be calculated as follows:

S.T/

S.T0/
D S�i .T/

S�i .T0/
� T0

T
: (7.76)

7.8 Concept of Band Strength

The concept of band strength is common in the IR. Recall that a band is a group of
lines for different upper and lower vibrational quantum numbers. The band strength
is determined by the number and strength of individual lines, and is expressed as a
sum of the linestrengths.

Sband D
X

band

Slines (7.77)

Example: Heteronuclear Diatomic Band Strength
For the 1 0 band of a heteronuclear diatomic molecule, the band strength is

S1 0 D
v0D1 v00D0

X

J00




S1 0
J0 J00.P/C S1 0

J0 J00.R/
�

where

S10
J0J00.R/ D c

8��2

nJ00

Pi ; atm
‚ …„ ƒ

nJ00

nikT=1:013 � 106

�1
‚ …„ ƒ
�

gJ0

gJ00

D 2J0 C 1

2J00 C 1

	

A10
P � J00

2J00
C1

A10

‚ …„ ƒ
�

A10
R �

J00 C 1

2J00 C 1
A10

	

� .1 � exp.�h�=kT//:

Note: The approximations shown for A10
R and A10

P are based on the normal-
ized Hönl–London factors, to be discussed in Chap. 10.

Then

S10.R/ D .1:013 � 106/ c

8��2kT
A10

X

J00

�

nJ00

ni

J00 C 1

2J00 C 1

	

;
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and similarly

S10.P/ D .1:013 � 106/ c

8��2kT
A10

X

J00

�

nJ00

ni

J00

2J00 C 1

	

Therefore, since
P

J00.nJ00=ni/ D 1,

S10.T/ D .1:013 � 106/ c A10

8��2kT

Example: Band Strength of CO
The measured band strength of CO at 273 K, as measured at Stanford, is

S10
CO.273 K/ D 3:2 � 1028 A10

�2
� 280 cm�2=atm

But,

! � 2150 cm�1

and

� � 6:4 � 1013 s�1;

yielding

A10 D 36 s�1;

or, equivalently,

�10 D 0:028 s

Compare the value for �10 with the previous example of �Na � 16 ns. CO
requires 28 ms to decay by radiation! Thus, IR transitions, due to their smaller
changes in dipole moment, have much lower values of A and longer radiative
lifetime � than UV/Visible transitions.
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7.9 Exercises

1. Light is transmitted through an optically thin (but absorbing) medium. If the path
length (L) is doubled, what happens to the fractional absorption?

2. The fractional transmission of monochromatic light through a uniform absorbing
medium of length L is 0.75. What is the fractional transmission if the path length
is doubled?

3. A discrete electronic transition of a monatomic gas at high temperature (T D
5000 K) and low pressure (P D 0:01 atm) has a measured linecenter spectral
absorption coefficient k�o of 0.1 cm�1 at a wavelength of 500 nm. Determine the
linecenter spectral emissivity of the gas if the gas sample is 10 cm thick and
�(500 nm) = 6 cm.

4. The Einstein-A coefficient for a particular rovibrational transition of CO2 is
220 s�1. In the absence of collisions, what is the characteristic lifetime of the
upper state? Compare this with the Na transition near 589.6 nm which has an
Einstein-A coefficient of 6:14 � 107 s�1.

5. The partial pressure of H2O is 0.10 atm and an absorption transition with a
linestrength of 7:58 � 10�22 cm�1/molecule cm2 is excited by a 10 mW laser
near 1392 nm that is resonant with the transition linecenter. How much power
is absorbed by the 10 cm gas sample if �.1392 nm/ = 5 cm?

6. Given the Einstein-A coefficient of a transition, what additional information do
you need to calculate the temperature-dependent linestrength of this transition?
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