
2Diatomic Molecular Spectra

2.1 InteractionMechanism for EM Radiation with Molecules

The primary interactions of light and matter take the form of emission, absorption,
or scattering. There are multiple possibilities for the interaction, of which the most
likely are:

• Electric dipole moment (emission/absorption)
• Induced polarization (Raman scattering)
• Elastic scattering (Rayleigh scattering)

There are other, rarer, mechanisms for electromagnetic (EM) interaction such as
magnetic dipoles, electric quadrupoles, octopoles, etc., but we will limit most of
our discussion to electric dipoles. Scattering processes will be discussed briefly in
Chap. 6.

Heteronuclear diatomic molecules, which carry a permanent net positive charge
on one end and a net negative charge on the other (e.g., HCl, NO), have a
permanent electric dipole moment. The motion of this electric dipole moment,
through rotation or vibration, gives rise to the possibility of emitting or absorbing
(receiving) electromagnetic radiation, much like a miniature antenna. The strength
or probability of emission or absorption is a function of the electric dipole moment
and its variation with internuclear spacing. EM radiation can also interact with
diatomics through the rearrangement of the electron distribution in the molecule’s
shells.
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2.1.1 Microwave Region: Rotation

When heteronuclear diatomic molecules rotate, their dipole moments also rotate
their orientation. Molecular motions, at characteristic frequencies, create opportu-
nities for resonances with EM waves, leading to absorption or emission at these
frequencies.

The electric dipole moment is specified by

E� D
X

i

qiEri; (2.1)

where i refers to particles in a molecule or system, qi is the particle charge, and Eri

is the vector specifying location. For carbon monoxide (CO), the C atom has a net
positive charge, while the O atom has a net negative charge (see the left panel of
Fig. 2.1). Thus, the dipole points upwards when the molecule is oriented along the
vertical axis with the C atom above the O atom, as drawn in panel (a) of Fig. 2.1.

When 1=� D �rot (see Fig. 2.1), resonance occurs, increasing the chance of
“exchange” between the EM wave and molecule by absorption or stimulated
emission. The frequency of molecular rotation is in the microwave region. All
molecules with a permanent electric dipole can interact with light as a result of
their rotation, and hence are considered “microwave active.” Homonuclear diatomic
molecules with no permanent electric dipole (N2, Cl2, etc.) are termed “microwave
inactive.”
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Fig. 2.1 (a) Electric dipole oscillation for a heteronuclear diatomic molecule rotating at frequency
1=�rot; and (b) E-field for an incident wave of frequency �, shown here as resonant and in phase
with the dipole oscillation in (a); (c) oscillation of the vertical component of the electric dipole
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Fig. 2.2 Stretching vibrational mode for carbon monoxide

2.1.2 Infrared Region: Vibration

For the IR region, it is a heteronuclear molecule’s vibration that leads to the changes
in electric dipole moment and the possibility for interaction with light. Figure 2.2
depicts the change in CO’s electric dipole moment with time due to the molecule’s
stretching motion.

2.1.3 Ultraviolet and Visible Regions: Electronic

For the ultraviolet (UV) and visible regions of the spectrum, allowed changes in
a molecule’s electronic structure (and hence electric dipole moment) introduce the
possibility for interaction with light. For infrared and microwave spectra, energy
transitions are related to the motions of the molecule. For electronic spectra, energy
transitions are related to the distribution of electrons in the molecule’s shells
(Fig. 2.3).

2.1.4 Summary of Background

Quantum mechanics tells us that energy levels of most molecules (and atoms)
are discrete and that optically allowed transitions (i.e., emission, absorption) may
occur only in certain cases. The result is that absorption and emission spectra are
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Fig. 2.3 Electronic structure of carbon monoxide

typically discrete. The molecular energies of interest are: rotational, vibrational, and
electronic, with progressively larger energy spacings.

Energy spacing W �Erot < �Evib < �Eelec (2.2)

Although our primary interest will be in vibrational and electronic spectra,
rotational spectra are embedded. In order to understand and simulate actual spectra,
we first begin with a discussion of rotational spectra and a physical model that helps
us understand the processes involved. The simplest rotational model for the diatomic
molecule is the Rigid Rotor (Sect. 2.2.1), while the simplest vibrational model is the
Simple Harmonic Oscillator (SHO) (Sect. 2.3.1). Once we have introduced these
simple models and have shown how they can describe each mode separately (with
the help of the results of quantum theory), we will relax some of their assumptions to
form improved models: the Non-rigid Rotor and the Anharmonic Oscillator (AHO)
(Sect. 2.4.1). In essence, these more complex models require only minor corrections
to the original, simpler models. Having introduced these models for each mode, we
will then combine them and use them to understand rovibrational spectra, using
at first, the simple models (Sect. 2.5), and then the improved models (Sect. 2.6).
Finally, in Sect. 2.7, we will incorporate electronic transitions into the conceptual
framework.

2.2 Rotational Spectra: Simple Model

2.2.1 Rigid Rotor (RR)

Our approach for the rigid rotor (RR) model is a blend of classical and quantum
mechanics. For this model, we assume that the atoms are point masses (dnuc �
10�13 cm) with an equilibrium separation distance re that is constant or “rigid.” That
is, the rotating diatomic is analogous to a rotating dumbell that has a massless,
inflexible rod connecting the weights at the end. Typical separation lengths are re �
10�8 cm (Fig. 2.4). The “rigid” assumption for the bond length will be relaxed later.
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Fig. 2.4 Diatomic molecule with rigid rotor approximation

2.2.2 Classical Mechanics

Classical mechanics can be used to describe the moment of inertia about the center
of mass for a diatomic molecule. The center of mass is the location along the
internuclear axis at which r1m1 D r2m2. The moment of inertia I is given by:

I D
X

mir
2
i D �r2e ; (2.3)

where �, the reduced mass, is

� D m1m2

m1 C m2

: (2.4)

So, the two-body problem is equivalent to the motion of a single-point mass, �,
rotating about the center of mass at a distance, re. The angular momentum of the
molecule is then I!rot where !rot is the angular velocity.

2.2.3 QuantumMechanics

Although angular momentum is a vector quantity, whose allowed values and
directions are quantized, we often care only for its magnitude. Quantum theory gives
the following relationship for the allowed magnitudes of angular momentum:

j I!rot jD
p

J.J C 1/ „; J D 0; 1; 2; 3 : : : ; (2.5)

where

„ D h=2�: (2.6)

Here, “J” is an integer called a quantum number. There are several different
quantum numbers needed to completely describe the state of a molecule. J is the
one that characterizes the total angular momentum.
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2.2.4 Rotational Energy

Classical mechanics can now be used to relate the rotational energy of a molecule
to its moment of inertia, thereby yielding an expression for the allowed values of
rotational energy as a function of rotational quantum number.

Erot D 1

2
I!2rot (2.7)

D 1

2I
.I!rot/

2 (2.8)

D 1

2I
J.J C 1/„2 (2.9)

D J.J C 1/ h2

8�2I
(2.10)

D EJ (2.11)

EJ , calculated in this manner, is usually in units of Joules. By convention, however,
spectroscopists usually denote rotational energy by F.J/, in units of cm�1. Referring
to Eq. (1.7), the conversion is

F.J/
�
cm�1

� D EJ ŒJ�

hc
(2.12)

D
�

h

8�2Ic

�
J.J C 1/: (2.13)

The “rotational constant,” known as B, is

B
�
cm�1

� D
�

h

8�2Ic

�
: (2.14)

Thus, Eq. (2.13) reduces to

F.J/ D BJ.J C 1/ : (2.15)

Note: So far we have only considered molecular rotation, so J, which com-
monly represents the total angular momentum, also represents the rota-
tional angular momentum in this case. Later in the text, we will differen-
tiate between angular momentum due to molecular rotation and angular
momentum from electrons, and several new quantum numbers will be
introduced that will contribute to J.
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2.2.5 Absorption Spectrum

Schrödinger’s wave equation is a key relation in quantum mechanics. Its basic form
is as follows:

d2 

dx2
C 2m

„2 ŒE � U.x/� .x/ D 0 (2.16)

This is the time-independent form of the Schrödinger equation that describes a
particle of mass m moving in a potential field described by U.x/. The wave
function,  , is the solution to Schrödinger’s differential wave equation, and   �
is proportional to the probability that the particle will occupy the portion of
configuration space in x! xCdx. The transition probability is directly related to the
integral of the wave functions for the initial and final quantum states (m and n), and
the permanent electric dipole moment, over all the configuration space elements,
d� [1].

Transition probability /
Z
 m� 

�
n d� ! �J D ˙1 (2.17)

where

 � Wave function

 � � Complex conjugate of the wave function

� � Dipole moment (2.18)

The quantum mechanical solution to Schrödinger’s equation also yields “selec-
tion rules” for rotational transitions, namely that the change in rotational quantum
number (Jfinal�Jinitial) for a diatomic rigid rotor, can only be˙1. For pure rotational
transitions (meaning there are no changes in vibrational or electronic configuration),
we can restrict the change in J to +1 if we define the change in J as:

0 (upper) 00 (lower)
# #

�J D J0 � J00 D C1

Here we have introduced commonly used notation in which the upper state is
denoted with a single prime superscript and the lower state with a double prime. For
example,

�J0D1 J00D0 D F.J D 1/ � F.J D 0/
D 2B � 0
D 2B
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Fig. 2.5 Rotational energy level spacing
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Fig. 2.6 Energy level spacing and introduction of “first difference” in energy

Figure 2.5 shows each rotational state’s energy level and the allowed transitions
between them. Figure 2.6 provides the same information in tabular form.

In general, the rotational frequencies for transitions obeying the �J D 1

selection rule are

�JC1 J D �J0 J00 D B.J00 C 1/.J00 C 2/ � B.J00/.J00 C 1/; (2.19)

so, in terms of the lower state J00

�J0 J00 D 2B.J00 C 1/ : (2.20)

Let’s look at the following rotational absorption spectrum for CO (Fig. 2.7).

2.2.6 Usefulness of Rotational Line Spacing

The line spacing of rotational absorption spectra can be used to deduce accurate
physical characteristics of the molecule under investigation.

Line spacing! B! I ! re
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Fig. 2.7 Absorption spectrum spacing for heteronuclear rotation

Note: 1. lines have uniform spacing, making them easy to identify/interpret
2. BCO � 2 cm�1 ! �J00D0 D 1=� D 1=4 cm D 2:5 mm (microwaves/mm waves)
3. �rot D c=� D .3� 1010/=0:25 D 120GHz (�wave)

Consider carbon monoxide (CO) for an example. The rotational constant can be
spectroscopically measured to six significant figures, leading to a highly precise
determination of the CO internuclear spacing.

B D 1:92118 cm�1 ! rCO D 1:128227Å

The last digit, 7, is associated with an increment of length of only 7 � 10�6 Å D
7 � 10�16 m!

2.2.7 Rotational Partition Function

The rotational partition function for diatomic molecules that are rigid rotors can be
approximated by Vincenti and Kruger [2]

Qrot D 1

	

kT

hcB
; (2.21)

where 	 is the symmetry number (the number of ways of rotating the molecule
to achieve the same orientation of the molecule, treating identical atoms as
indistinguishable). For heteronuclear molecules such as CO, 	 D 1, while for
homonuclear molecules such as N2, 	 D 2.

2.2.8 Rotational Temperature

Rotational excitation can be described in terms of a characteristic temperature.
From statistical mechanics, we know that the Boltzmann fraction of molecules with
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rotational quantum number J is

NJ

N
D .2J C 1/ exp .�EJ=kT/

Qrot
(2.22)

D .2J C 1/ exp .�
rJ.J C 1/=T/

T=	
r
: (2.23)

It may be noted here that 2J C 1 is the degeneracy for energy level EJ , a
result from quantum mechanics associated with the number of possible directions
(orientations) of the angular momentum vector with the same energy.

Since

EJ

k
D hcF.J/

k
(2.24)

D
�

hc

k

�
BJ.J C 1/ (2.25)

� 
rotJ.J C 1/; (2.26)

the rotational temperature 
rot is


rot ŒK� D
�

hc

k

�
B: (2.27)

Thus the “characteristic temperature,” in this case 
rot, is determined simply by
multiplying a characteristic energy in cm�1 units by hc=k (Table 2.1). The relation

�
hc

k

�
D 1:44K=cm�1 (2.28)

Table 2.1 Characteristic
rotational temperatures
for some diatomic species

Species 
rot [K]

O2 2.1

N2 2.9

NO 2.5

Cl2 0.351
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is worth memorization. We will use it often! Using the rotational temperature, the
equation for the rotational partition function (Eq. (2.21)) can be simplified to

Qrot D 1

	

T


r
: (2.29)

2.2.9 Intensities of Spectral Lines

The absorption (or emission) probability, per molecule, is approximately indepen-
dent of J; we shall call this crude approximation the principle of “equal probability.”
Therefore, the absorption/emission spectrum varies with J similar to the Boltzmann
distribution for the population in J.

Using the Boltzmann fraction again, we have

NJ

N
D .2J C 1/ exp .�EJ=kT/

Qrot
: (2.30)

The strongest peaks occur near where the population is at a local maximum (i.e., at
the maxima of the Boltzmann distribution, Eq. (2.30)), i.e.,

d.NJ=N/

dJ
D 0; (2.31)

giving

Jmax D .T=2
rot/
1=2 � 1=2: (2.32)

2.3 Vibrational Spectra: Simple Model

2.3.1 Simple Harmonic Oscillator

The simplest model for diatomic vibration is the SHO. This model assumes that two
masses, m1 and m2, have an equilibrium separation distance re. The bond length, or
separation distance between the masses, r, oscillates about the equilibrium distance
as if the bond were a spring (see Fig. 2.8). We will begin the investigation of the
SHO model with classical mechanics.

2.3.2 Classical Mechanics

Hooke’s law describing linear spring forces can be applied for the SHO:

Force D �ks.r � re/: (2.33)



20 2 Diatomic Molecular Spectra

Fig. 2.8 Oscillation of a linear diatomic molecule; rmin corresponds to molecule at distance of
greatest compression

In this equation, ks is the spring constant (not to be confused with Boltzmann’s
constant, k), and the restoring force is linearly proportional to the extension (or
compression) of the spring from its equilibrium length. Such systems have a
fundamental resonant frequency of vibration, �vib, which depends on the stiffness
of the bond (i.e., the spring constant) and the magnitudes of the masses at both ends
of the bond,

�vib D 1

2�

p
ks=� Œs�1�: (2.34)

As before, the reduced mass, �, is given by

� D m1m2

m1 C m2

: (2.35)

Note that this vibration frequency does not depend on the amplitude of vibration. In
wavenumber units the fundamental frequency is

!e D �vib=c Œcm�1�: (2.36)

The potential energy, U, stored in the oscillator (owing to compression or extension
of the spring), is

U D 1

2
ks.r � re/

2: (2.37)

Thus, according to Eq. (2.37), the potential energy for an SHO molecule varies as
the square of the extension (or compression) of the internuclear spacing. A plot of U
versus r is thus a parabola, with a minimum value .U D 0/ at r D re (see Fig. 2.9).
Also shown in Fig. 2.9 is the truncated harmonic oscillator (THO).
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Fig. 2.9 Potential energy and vibrational levels for diatomic SHO and THO molecules

2.3.3 QuantumMechanics

The results of quantum mechanics for an SHO lead to an expression for the energy
of a vibrating diatomic molecule

G.v/ D !e.v C 1=2/ Œcm�1� (2.38)

where v is the vibrational quantum number:

v D 0; 1; 2; 3 : : : :

Note that the SHO has equal energy spacing between adjacent quantum states,
i.e. G.v C 1/ � G.v/ D !e independent of v. This independence is one of the
attractive simplifications that result from the SHO model. Another virtue of the SHO
model is that the quantum mechanics solution for absorption and emission of a
heteronuclear diatomic molecule leads to a very simple selection rule, namely that
the vibrational quantum number can change only by 1 [3].

�v D v0 � v00 D C1 (2.39)

2.3.4 Vibrational Partition Function

For diatomics whose vibrational potential energy can be approximated by the SHO
model (Eq. (2.38)), the vibrational partition function, Qvib, is [2]

Qvib D
�
1 � exp

��hc!e

kT

���1
exp

��hc!e

2kT

�
: (2.40)
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It is common with the SHO model to choose an alternate reference (zero) energy
at v D 0, so that

G.v/ D !ev (2.41)

In this case,

Qvib D
�
1 � exp

��hc!e

kT

���1
(2.42)

It is important to keep in mind that the magnitude of the vibrational partition
function depends on the choice of the zero energy, and that the same zero must
be used in specifying molecular energies Ei for any level i and in evaluating the
associated partition function.

2.3.5 Vibrational Temperature

Just as rotations have a characteristic temperature, 
rot, vibrations have their own
temperatures, 
vib, that are typically much higher (Table 2.2). If we define the
vibrational temperature as


vib ŒK� D
�

hc

k

�
!e; (2.43)

and employ Eq. (2.41) for G.v/, then the Boltzmann fraction for vibrational states is

Nvib

N
D gvib exp.�v
vib=T/

Qvib
(2.44)

D exp.�v
vib=T/ .1 � exp.�
vib=T// ; (2.45)

where gvib D 1.

Table 2.2 Characteristic
vibrational temperatures
for some diatomic species

Species 
vib [K]

O2 2270

N2 3390

NO 2740

Cl2 808
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2.4 ImprovedModels of Rotation and Vibration

2.4.1 Non-rigid Rotation

The model for molecular rotation can be improved by relaxing the initial assumption
of rigidity. There are two dominant effects that lead to non-rigid rotation and hence
affect B and F.J/:

1. vibrational stretching causes the average spacing Nr to be a function of Evib, i.e.
Nr.Evib/. The trends are:

Evib "; Nr "; I ";B # (2.46)

That is, as the vibrational energy Evib increases, the average nuclear separation
increases, thus increasing the moment of inertia, and the rotational constant
decreases.

2. centrifugal distortion causes the average spacing Nr to be a function of J, i.e. Nr.J/.
The trends are:

J "; Nr ";B # (2.47)

That is, as rotational energy (J) increases, the average nuclear separation
increases, and the rotational constant decreases.

The effects of vibrational stretching are much larger than the effects of centrifugal
distortion. The result of these non-rigidities is a new expression for the rotational
energy, Fv.J/,

Fv.J/ D BvJ.J C 1/ � DvJ
2.J C 1/2; (2.48)

where Dv is the centrifugal distortion constant (written with a subscript v to
denote its dependence on vibrational quantum number), and Bv is the vibrationally
dependent rotational constant. The rotational transition frequency for rotators in
vibrational level v, after accounting for distortion, becomes

�J0 J00;v D 2Bv.J
00 C 1/ � 4Dv.J

00 C 1/3 (2.49)

The distortion constant term is subtracted in Eq. (2.49) (compared with Eq. (2.20)),
and thus the rotational spacings are reduced by non-rigid rotation. The vibrationally
dependent constants for rotation, Bv , and centrifugal distortion, Dv , are given by:

Bv D Be � ˛e.v C 1=2/ (2.50)

Dv D De C ˇe.v C 1=2/ (2.51)
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where both ˛e and ˇe have positive values. See Sect. 2.4.3 for typical correction
values for vibrational and centrifugal distortion.

2.4.2 Anharmonic Oscillator

True diatomics do not adhere exactly to the idealized SHO model, but rather
have anharmonicities that affect the shape of the potential well and the spacing
between energy levels. Thus, the models for vibrational energy can be improved
by accounting for the effects of anharmonic oscillation. The total energy for an
oscillating diatomic, after correcting for higher order anharmonicities, is

G.v/ D !e.v C 1=2/ � !exe.v C 1=2/2„ ƒ‚ …
anharmonicity corr:

C � � � C H:O:T: (2.52)

Correcting for anharmonicity decreases the energy spacing. In addition, the selec-
tion rule for allowed changes in vibrational quantum number is modified to permit
the additional possibility of (relatively weak) transitions with �v D v0 � v00 other
than 1 (Table 2.3). That is, relaxing the SHO model to allow for anharmonicity
leads to finite probabilities for �v D 2; 3; : : : and higher transitions, though these
probabilities diminish rapidly with increasing magnitude of �v.

Note: Transition probabilities for the first overtone of CO are about 100
times weaker than for the fundamental.

Potential Energy
The potential energy well for an anharmonic diatomic molecule can more accurately
be described by the Morse function (see Fig. 2.10) than by Hooke’s Law. The Morse
function is

U D Deq Œ1 � exp.�ˇ.r � re//�
2 ; (2.53)

where U is the potential energy and Deq is the bond-dissociation energy (in
wavenumbers). The .r � re/ term in the exponential is the displacement from the

Table 2.3 AHO frequencies and corrections

Transition Transition name Frequency

�v D C1 “Fundamental” band �1 0 D !e.1� 2xe/ D G.1/� G.0/

(e.g. 1 0; 2 1) �2 1 D !e.1� 4xe/

�v D C2 First overtone �2 0 D 2!e.1� 3xe/

(e.g. 2 0; 3 1)

�v D C3 Second overtone �3 0 D 3!e.1� 4xe/

(e.g. 3 0; 4 1)
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Fig. 2.10 Potential energy and vibrational levels for a diatomic molecule

equilibrium internuclear distance, re (in centimeter units). The term ˇ (not to be
confused with ˇe in Eq. (2.51)) is

ˇ D 1:2177 � 107 !e

q
�=Deq: (2.54)

The term !e is in wavenumber units and the reduced mass is in atomic mass units.

2.4.3 Typical CorrectionMagnitudes

Rotational Correction
As described in Sect. 2.4.1, the improvements to the model for molecular rotation
include vibrationally dependent constants Bv and Dv . Examples showing the relative
magnitudes of the pertinent parameters are below. In general,

ˇe � De � ˛e � Be

That is, the centrifugal distortion depends only very weakly on vibrational level
and hence both De and Dv are small compared to the stretching effect of vibration
(˛e). The moment of inertia (and thus the rotational constant, B) is well-reflected
by a rigid rotor approximation, but vibrational effects (˛e) can cause small changes
(about 1 % as shown in the example below).
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1. .D=B/� 1:
By balancing the force of centrifugal distortion with a restorative force from

a harmonic oscillator, it can be shown that1

D D 4B3

!2e
� B (2.55)

Hence, D=B is quite small, especially for molecules with “stiff” or high-
frequency bonds. For example,

.D=B/NO D 4
�

B

!e

�2
� 4

�
1:7

1900

�2
� 10�6

2. .˛e=Be/� 1

For a potential energy well described by the Morse function,

˛e D 6
p
!exeB3e
!e

� 6B2e
!e

(2.56)

Frequencies of vibration are quite high compared to rotational constants, so
˛e is small compared to Be. Physically, this means the change in internuclear
distance by vibration is small compared to the internuclear distance itself. For
example,

.˛e=Be/NO � 0:01

3. .ˇe=De/� 1

Using the Morse function again to describe the molecule’s potential, the
constant ˇe is

ˇe=De D 8!exe

!e
� 5˛e

Be
� ˛

2
e !e

24B3e
� 1 (2.57)

� 8!exe

!e

The constant ˇe is often much smaller than De, which itself is small, and may
therefore typically be neglected. For example,

.ˇe=De/NO � 0:001

1See Herzberg [4, pp. 103–104], for more details.



2.5 Rovibrational Spectra: Simple Model 27

Table 2.4 Typical values for vibration (Banwell [5], p. 62, Table 3.1)

Gas
Vibration
!e Œcm�1�

Anharmonicity
constant xe

Force constant
ks [dynes/cm]

Internuclear
distance re [Å]

Dissociation
energy Deq [eV]

CO 2170 0.006 19� 105 1.13 11.6

NO 1904 0.007 16� 105 1.15 6.5

H2
a 4395 0.027 16� 105 1.15 6.5

Br2
a 320 0.003 2:5� 105 2.28 1.8

a Not IR-active, use Raman spectroscopy!

Vibrational Correction
Typical values for anharmonicity constants as well as some other molecular
constants are listed in Table 2.4.

Useful Conversions
1 eV D 8065:54 cm�1 D 23:0605 kcal=mole D 1:60219�10�19 J
1 cal D 4:1868 J
1N D 105 dynes
1Å D 0:1 nm

Example: NO, Nitric Oxide
Be D 1:7046 cm�1

˛e D 0.0178
De � 5:8 � 10�6 �

2…1=2

	

ˇe � 0:0014 � De

� 8 � 10�9 cm�1

!e D 1904.03
�
2…1=2

	 I 1903:68 �
2…3=2

	

!e xe D 13:97 cm�1

re D 1:1508Å

2.5 Rovibrational Spectra: Simple Model

2.5.1 Born–Oppenheimer Approximation

The simplest model for rovibration is a vibrating rigid rotor based on the Born–
Oppenheimer approximation, in which vibration and rotation are regarded as
independent. These transitions include a simultaneous change in vibrational quan-
tum number, v, and rotational quantum number, J. The total energy for these
transitions, T.v; J/, is a sum of the energy for a rigid rotor, F.J/ (Eq. (2.15)), and
SHO, G.v/ (Eq. (2.38)).
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T.v; J/ D ERR C ESHO

D F.J/C G.v/

D BJ.J C 1/C !e.v C 1=2/ (2.58)

The same selection rules that applied for the rigid rotor and SHO, namely that
the quantum numbers change only by 1 in a transition, also apply for the combined
transition, with only slight reinterpretation [5].

Selection Rules �v D C1

�J D ˙1

Note that�J D J0�J00 D ˙1 rather than onlyC1. This new selection rule occurs
simply because both allowed values of J0, namely J00 ˙ 1, lead to upper states with
higher energy than the lower state of the molecule, i.e.

F.J0/C G.v0/ > F.J00/C G.v00/

for both J0 D J00C1 and J0 D J00�1. The line positions are based on the differences
in total energy for the upper and lower rovibrational states.

� D T 0 � T 00 D T.v0; J0/ � T.v00; J00/ (2.59)

2.5.2 Spectral Branches

Because the rotational quantum number can either increase or decrease by 1, two
branches of line positions emerge (Fig. 2.11). The R branch is associated with an
increase in rotational quantum number (J0 > J00) and the P branch is associated
with a decrease in rotational quantum number (J0 < J00). There is a gap (the “null
gap”) between the lowest lines in the P and R branches, as shown in Fig. 2.12.

v' = 1

v" = 0

J' = J"+1
J' = J"
J' = J"-1

J"+1
J"

P R

Fig. 2.11 Energy level diagram denoting P and R absorption transitions from a ground vibrational
state for a heteronuclear diatomic molecule
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Fig. 2.12 Simulated absorption spectrum of the P and R branches of a ground state rovibrational
transition of a heteronuclear diatomic molecule

P branch: �J D �1
R branch: �J D C1

Note that for this simple model, both branches have constant line spacing equal to
2B. Figure 2.12 shows unequal strengths between the P and R branches, which arises
from Hönl–London factor considerations (more in Chap. 7). This effect, magnified
in Fig. 2.12, illustrates the error associated with the principle of “equal probability”
introduced in Sect. 2.2.9.

R Branch
The energy in the R branch is denoted R.v; J/.

R.v00; J00/ D ŒG.v0/ � G.v00/�„ ƒ‚ …
�G D !o

CB.J00 C 1/.J00 C 2/ � BJ00.J00 C 1/ Œcm�1�

(2.60)

In this simple model, the difference in vibrational energy, �G D G.v0/ � G.v00/,
known as the rotationless transition frequency, is independent of J. �G, often
written as either !0 or �0, is given numerically by !e in the SHO model. For an
AHO, !o is a function of !e, !exe, and v00.

�G D
8
<

:

�0; !0 rotationless transition wavenumber
!e SHO model
!e.1 � 2xe/ AHO model for v0  v00 D 1 0

Thus,

R.v00; J00/ D !o C 2B.J00 C 1/: (2.61)
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P Branch
Similarly, for the P branch, the energy, P.v; J/, is

P.v00; J00/ D !o � 2BJ00: (2.62)

Note that since the P branch occurs for net changes in rotational quantum number
of �1, the P.0/ transition is not possible, leaving a gap (the “null gap”) between the
lowest lines in the P and R branches.

Note: The naming convention is R.J00/ or P.J00/ for rotational transitions. For
example, R.7/ indicates a transition involving (in absorption or emission)
a lower rotational state of J00 D 7 and an upper rotational state of J0 D 8,
while P.7/ represents a transition involving a lower rotational state of
J00 D 7 and an upper rotational state of J0 D 6.

Branch Separation
The separation between the tallest peaks in the P and R branch absorption intensities
is a direct function of temperature due to Boltzmann statistics. Subject to the “equal
probability” approximation where the absorption spectrum (in both the P and R
branches) maps directly from the Boltzmann distribution over rotational state, the
peak-to-peak frequency separation is

�� D
r
8BkT

hc
: (2.63)

As the temperature increases, the most probable transition shifts to higher energy
levels due to increasing population of those levels (see Eq. (2.32)). Thus the
frequency location of each branch’s maximum will move further away from the
null gap, leading to larger separation.

A more complete analysis, without the equal probability approximation, leads to
a more complex expression for the peak spacing, but the numerical values do not
differ greatly except at low temperatures.

2.6 Rovibrational Spectra: ImprovedModel

2.6.1 Breakdown of Born–Oppenheimer Approximation

By allowing for non-rigid rotation, anharmonic vibration, and interactions between
vibration and rotation (i.e., the breakdown of the Born–Oppenheimer approxima-
tion), an improved model for rovibrational energy can be established.

T.v; J/ D G.v/C F.v; J/ (2.64)

D !e.v C 1=2/„ ƒ‚ …
SHO

�!exe.v C 1=2/2„ ƒ‚ …
anharm: corr:

CBvJ.J C 1/„ ƒ‚ …
RR.v/

�DvJ
2.J C 1/2„ ƒ‚ …

cent: dist: term
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Recall from Sect. 2.4.1 [Eqs. (2.50) and (2.51)] that the rotational and centrifugal
distortion constants, Bv and Dv , respectively, introduce vibrational coupling into the
rotational energy:

Bv D Be � ˛e.v C 1=2/ (2.65)

Dv D De C ˇe.v C 1=2/ (2.66)

This coupling, indicated by the subscript v on B and D, signifies that the Born–
Oppenheimer approximation is no longer in effect. The rotational constants can be
related to previous notation, B0 and B00, by noting that B0 D Bv.v0/ and B00 D Bv.v00/.

2.6.2 Spectral Branches

Just as before, the possibility for net changes in rotational quantum number of either
C1 or�1 yields two spectral branches with a null gap separating them. However, by
including the correction terms to the simple models, the line spacing of the branches
will not be constant at 2B.

R Branch
The new expression for R-branch energies as a function of the vibrational and
rotational quantum numbers is

R.v00; J00/ D �GC B0.J00 C 1/.J00 C 2/ � B00.J00/.J00 C 1/
D �GC 2B0 C .3B0 � B00/J00 C .B0 � B00/.J00/2; (2.67)

where, as before,

�G D G.v0/ � G.v00/ (2.68)

For clarity, these expressions are typically written without the 00 and assumed to be a
function of the lower-state quantum numbers only. Thus, Eq. (2.67) can be written as

R.v; J/ D �GC 2B0 C .3B0 � B00/J C .B0 � B00/J2; (2.69)

where J refers to J00.

P Branch
Similarly, for the P branch,

P.v00; J00/ D �GC B0.J00 � 1/.J00/ � B00.J00/.J00 C 1/
D �G � .B0 C B00/J00 � .B00 � B0/.J00/2 (2.70)



32 2 Diatomic Molecular Spectra

Writing with J instead of J00 produces

P.v; J/ D �G � .B0 C B00/J � .B00 � B0/J2 (2.71)

2.6.3 Rotational Constant

As shown above, the rotational constant depends on the vibrational state of the
molecule.

B0 D Be � ˛e.v
0 C 1=2/ (2.72)

B00 D Be � ˛e.v
00 C 1=2/ (2.73)

And, for v0 D v00 C 1,

B0 � B00 D �˛e: (2.74)

Since ˛e > 0,

B0 < B00: (2.75)

As a result, the line spacing decreases with J in the R branch and increases with
J in the P branch.

2.6.4 Bandhead

The unequal spacing in the P and R branches leads to a bandhead in the R branch
as the lines “wrap around” on themselves (Fig. 2.13). This bandhead occurs where
dR.J/=dJ D 0.

dR.J/

dJ
D .3B0 � B00/„ ƒ‚ …

2B0�˛e

C2 .B0 � B00/„ ƒ‚ …
�˛e

J00 D 0 (2.76)

The location of the bandhead is

J00bandhead �
2B0 � ˛e

2˛e
� B

˛e
(2.77)
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Fig. 2.13 Unequal line spacing due to non-rigid rotation leads to a bandhead in the R branch for
diatomic molecules

Example: CO Bandhead
For CO,

B

˛e
� 1:9

0:018
� 106

Thus, the bandhead will only be observed in high temperature spectra.

2.6.5 Finding Key Parameters: Be, ˛e, !e, xe

Assuming access to the absorption spectra of a molecule, e.g. a tabular listing of the
R- and P-branch line positions for the v D 1  0 and v D 2  0 bands, how
would one extract the key parameters?

First Approach
Use measured band origin data for the fundamental and first overtone with v00 D 0

to get !e and xe.

�G1 0 D G.1/ � G.0/ D !e.1 � 2xe/ (2.78)

�G2 0 D G.2/ � G.0/ D 2!e.1 � 3xe/ (2.79)
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Second Approach
Fit rotational transitions to the line spacing equation to get Be and ˛e.

! D !o C .B0 � B00/m2 C .B0 C B00/m (2.80)

where

m D
(
�J for the P-branch

J C 1 for the R-branch
(2.81)

Equation (2.80) is known as the Fortrat parabola formula. Finding B0 and B00 allows
direct determination of Be and ˛e. The Fortrat parabola can also be useful in the
analysis of electronic systems (Sect. 2.7.3).

Third Approach
Use the “method of common states” to get Be and ˛e. In general,

F.J/ D BJ.J C 1/ (2.82)

Then, for Fig. 2.14, drawn for a “common upper state,”

�E D F.J C 1/ � F.J � 1/ D R.J � 1/ � P.J C 1/ (2.83)

�E D B00.J C 1/.J C 2/ � B00.J � 1/.J/ (2.84)

Fig. 2.14 Energy level diagram for the method of common upper states
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Therefore,

�E D B00.4J C 2/ (2.85)

The energy difference between R and P branch transitions to a common upper
state J0 D J leads directly to a value for B00. Simply divide�E by .4JC2/. A similar
approach, with a common lower state, leads directly to a value for B0. Knowledge
of B0 and B00 can be used to determine the parameters Be and ˛ in Eq. (2.50). The
method of common states will also find use in analysis of electronic spectra where
B0 and B00 differ in the two electronic states of an absorption or emission spectra.

2.6.6 Effects of Isotopic Substitution

What are the effects of isotopic substitution on absorption or emission spectra?
Changes in nuclear mass (neutrons) do not change re or bond stiffness since these
properties depend primarily on electric binding forces, which are unchanged with
mass of nuclei. Since B varies as 1=�,

B / 1

I
/ 1

�
;

the spacing of lines changes as � changes. Similarly, the fundamental frequency of
vibration, !e, varies with �,

!e /
s

ks

�
/

s
1

�
;

therefore the band origin also changes as � changes.

Example: CO Isotope, 13C16O
What can be learned from the combined IR absorption spectra of 12C16O and
13C16O? After the lines are assigned, the line spacing can be used to infer the B
values of both species, yielding:

B12C16O D 1:92118 and B13C16O D 1:83669 cm�1 (2.86)

1. The change in line spacing from 12C16O to 13C16O is �.2B/ D �0:17 cm�1

2. The ratio of the B values can be used to calculate the mass of 13C from the
known value of m12C D 12:0, i.e.

B12C16O

B13C16O

D �13C16O

�12C16O

) m13C D 13:0006 (2.87)

This calculation is within 0.02 % of the actual value, 13.0034!
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3. The relative B values can also be used to estimate the shift in the band origin:

!e;13C16O

!e;12C16O

D
s

B13C16O

B12C16O

D p0:956

Using !e;12C16O � 2200 cm�1, the change in band origin is

�!e � 50 cm�1

See Banwell [5] (Fig. 3.7, p. 67) for an example absorption spectrum in which
the natural abundance of 13C (about 1.1 %) is evident.

2.6.7 Hot Bands

Hot bands are those that involve excited states, i.e. having a lower state with a
vibrational quantum number greater than zero. When are hot bands important?
Recall, the Boltzmann fraction for vibrational states is

Nvib

N
D gvib exp.�v
vib=T/

Qvib
(2.88)

D exp.�v
vib=T/ .1 � exp.�
vib=T// (2.89)

Hence, the necessary condition to allow neglect of hot bands is that T � 
vib. Since
the characteristic vibrational temperature, 
vib, often exceeds 103 K (see Table 2.2),
hot bands can often be neglected in absorption and emission.

Example: CO Hot Bands


vib;CO � 3000K

N1
N
D



e�10 � 0 T D 300K
e�1.1 � e�1/ � 0:23 T D 3000K

Therefore, “hot bands” become important only when the temperature is signif-
icant relative to the characteristic vibrational temperature.
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2.7 Electronic Spectra of Diatomic Molecules

We have so far introduced models to adequately interpret or predict the rovibra-
tional spectra of diatomic molecules. We are now ready to incorporate electronic
transitions. Electronic spectra involve transitions between different potential energy
wells, each representing a different electronic configuration (and hence energy).

2.7.1 Potential EnergyWells

There is a different potential energy well for each electronic configuration
(described by one or more electronic quantum numbers). Potential wells illustrate
the variation of electronic forces with internuclear spacing, since

F D �dV

dr
(2.90)

where F is the force, V is the potential energy, and r is a one-dimensional distance
(often the internuclear distance for diatomics). As the electronic configurations
change, the electronic forces change, and thus the potential wells change in shape,
energy minimum (Te) and equilibrium internuclear distance (re) (see Fig. 2.15).

X

A

V

r

νmin

νmax

Te

De"

De'

Eex

re"

re'

Fig. 2.15 Sample potential wells for the X and A electronic energy states
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Example: Potential Energy Wells for N2

A is the first excited state.
X is the ground electronic state.

Te is the energy of the A-state with respect to the ground
state (measured between the well minimums).

�min; �max are the extremes of photon energies for discrete
absorption from v00 D 0 (note that the end-points
are at v00; v0 D 0 and at the dissociation limit of the
A-state).

Eex is the difference in electronic energy of atomic frag-
ments.

De is the dissociation energy of the lower (00) or upper (0)
electronic state (not to be confused with the rotational
distortion constant, which, unfortunately, sometimes
shares the same symbol).

Characteristic Event Times and the Franck–Condon Principle
Absorption and emission associated with molecular transitions from one potential
well to another is essentially instantaneous because the time to move or excite
electrons is much shorter than the time required to move or excite nuclei during
vibrations or rotations.

�elec � 10�16 s time to move/excite electrons
�vib � 10�13 s characteristic time for vibration
�coll � 10�12 s duration of collision
�rot � 10�10 s characteristic time for rotation

�emiss � 10�6–10�8 s “radiative lifetime”

It is clear that �elec � �others.
The Franck–Condon principle reflects the relative characteristic times by approx-

imating that the internuclear distance, r, remains constant during an electronic
transition. In other words, during the time it takes for the electronic transition to
occur, the molecule’s vibration and rotation appear frozen (hence, we draw lines
vertically between potential wells to represent an electronic transition at constant r).

Some additional points of note:

1. It is evident that �coll � �vib. This can lead to resonant behavior between
vibrations and collisions.

2. The “radiative lifetime,” �emiss, is the average time a molecule (or atom) spends
in an excited state before undergoing radiative emission.
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V

r

Fig. 2.16 Sample potential wells for discrete electronic spectra

2.7.2 Types of Spectra

Electronic spectra can be discrete or continuous. Sometimes a spectrum can contain
both discrete and continuous parts, depending on the potential energy curves of the
states involved.

Discrete
When the equilibrium internuclear distance is approximately the same for the upper
and lower potential energy wells, r0e � r00e ; the result is an electronic spectrum with
discrete features (Fig. 2.16).

Recall that:

1. r � constant in absorption and emission (Franck–Condon Principle)
2. vibrationally excited molecules (v ¤ 0) spend more time near the edges of the

potential well, so that transitions to and from these locations will be favored
3. lowest v00 levels are the most populated

Continuum
Sometimes one of the states involved in a transition has no equilibrium internuclear
distance (the atoms only repel each other), or the transition frequency exceeds the
dissociation limit. In these cases, the electronic spectrum is a continuum. Examples
of each of these cases are shown in Fig. 2.17.

1. For the left figure, � > � leads to a continuous absorption spectrum, and � < �
results in a discrete spectrum.
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kν kν

V

r
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state

continuous
spectrum

noitprosbanoitprosba

Fig. 2.17 Samples of potential wells (top) that result in continuous spectra (bottom). The
parameter k� is an absorption coefficient, i.e. a measure of absorption strength

2. For the right figure, the upper state is always repulsive. That is to say, there is no
“well” in the potential curve, and the molecule is equally likely to be excited by
any sufficiently energetic photon. The absorption spectrum is thus a continuum.

2.7.3 Rotational Analysis

Here we wish to analyze the rotational transitions within a single band (v0; v00) of an
electronic system. As with the rovibrational transition analysis, we begin by simply
adding the expressions for energy. For the upper state,

T 0 D Trot C Tvib C Telec

D F.J0/C G.v0/C T 0elec

D B0J0.J0 C 1/C !e
0.v0 C 1=2/ � !exe

0.v0 C 1=2/2 C T 0elec„ ƒ‚ …
C0(const. for rot. analysis in a single band)

(2.91)



2.7 Electronic Spectra of Diatomic Molecules 41

For the lower state,

T 00 D Trot C Tvib C Telec

D F.J00/C G.v00/C T 00elec„ ƒ‚ …
C00

(2.92)

Note that if the lower state is in the ground electronic state, T 00elec � 0. Defining

C D C0 � C00

and combining Eqs. (2.91) and (2.92) gives

T 0 � T 00 D B0J0.J0 C 1/ � B00J00.J00 C 1/C C (2.93)

Similar to the rovibrational analysis, we can simplify Eq. (2.93) to a Fortrat parabola
by creating a new variable,

m D
(
�J for the P branch;

J C 1 for the R branch;
(2.94)

where J D J00. Now, Eq. (2.93) reduces to a parabolic formula.

T 0 � T 00 D am2 C bmC C (2.95)

Equation (2.95) is virtually the same as Eq. (2.80), except for the use of the constant
C rather than !o, and the introduction of constants a and b:

a D B0 � B00

b D B0 C B00

The bandhead can be found by taking the derivative of Eq. (2.95) and setting it equal
to zero. Letting T D T 0 � T 00,

dT

dm
D 2amC b D 0 (2.96)

Therefore,

mbandhead D � b

2a
D B0 C B00

2.B00 � B0/
(2.97)
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Note: 1. If r0e > r00e , then B0 < B00, a < 0, and the bandhead is in the R branch.
2. If r0e < r00e , then B0 > B00, a > 0, and the bandhead is in the P branch.

Example: O2

The X3†�g ground state has B00 D 1:44 cm�1, and the A3†Cu upper state has
B0 D 1:05 cm�1. The bandhead location is at

mbh D 2:49

2.0:39/
� 3

Note that the bandhead can occur at low J owing to the large possible
differences in B for different electronic states. This particular electronic system,
known as the Herzberg bands, is comprised of weakly “forbidden” transitions
(meaning they are not allowed via typical selection rules but occur with low
probability due to second-order effects). A much stronger transition system in
O2 is B3†�u  X3†�g , known as the Schumann–Runge system. Be for B3†�u is
0.82 cm�1.

Fortrat Parabola
One can graph the Fortrat parabola by plotting line positions, and use it to find
rotational constants as well as the bandhead (Fig. 2.18). The Fortrat parabola can be
used for rotational analysis by following these steps:

1. separate spectra into bands (v0; v00) for detailed analysis
2. tabulate positions of lines in a given band
3. identify null gap and label lines (not always trivial)
4. infer B0 and B00 from the Fortrat equation or method of common states

Note: When labelling lines, keep these items in mind:

• If there is no bandhead, then a null gap is obvious.
• If there is a bandhead,then lines overlap.
• If there is a bandhead, it is recommended to start from the wings of

the parabola and work backwards, using a constant second difference.

The first and second differences are illustrated as follows:

first difference: T1.m/ D T.mC 1/ � T.m/
second difference: T2.m/ D T1.mC 1/ � T1.m/ D 2.B0 � B00/ D 2a

Therefore, the second difference is constant in each branch!
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Fig. 2.18 Fortrat parabola for the case with B0 < B00

Example: Rotational Analysis of Electronic Spectra
The following line positions (in cm�1) were observed in the .v0; v00/ D .0; 0/

band of an electronic transition .A3…0Cu � X1†Cg / in 35Cl2; see the spectrum
below. Find B0e;B00e ; r0e; r00e and the null gap frequency (Figs. 2.19 and 2.20).

1. �0 D 18;147:40 cm�1 (found by inferring the null gap)
2. 2a D �0:173 (found from average of second differ-

ences; note a < 0 as the first differences are negative
except for small J in R-branch)

3. use common states to get B00 (Fig. 2.21)
R.0/ D 18147:71, P.2/ D 18;146:25
R.0/ � P.2/ D 1:46
B00 D 1:46=6 D 0:243 cm�1

B0 D B00 C a D 0:157 cm�1

4. Solve for r0; r00 from B0 and B00

Compare the values determined from rotational analysis with those listed in
Herzberg [4]:

B00e D 0:2438; ˛e D 0:0017) B000 D 0:2438 � 0:0008 D 0:243
B0e D 0:158; ˛e D 0:003) B00 D 0:158 � 0:0015 � 0:157
Te D 18310:5; r00e D 1:988Å; r0e D 2:47Å
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18147.85 R(1)

18147.81 R(2)

18147.71 R(0)

18147.60 R(3)

18147.22 R(4)

18146.91 P(1)

18146.66 R(5)

18146.25 P(2)

18145.93 R(6)

18145.42 P(3)

18145.02 R(7)

18144.41 P(4)

18143.94 R(8)

18143.23 P(5)

18142.69 R(9)

18141.87

18140.34

18138.64

18136.76
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1.18
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Fig. 2.19 Second difference rotational analysis for a < 0

1813818136 18142 181461814418140

Fig. 2.20 Rotational spectrum in the 0–0 band of 35Cl2

2.7.4 Vibrational Analysis

Vibrational analysis can be used to determine !e and xe.

Band Origin Data
Absorption gives information on upper states, and emission gives information on
lower states (Fig. 2.22).
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Fig. 2.21 Common upper states
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r

Fig. 2.22 Absorption and emission between two potential wells

Deslandres Table
Tables of band origin values, known as Deslandres Tables, can be used via row
analysis to get !00e and !exe

00. With column analysis, information regarding !e
0 and

!exe
0 can be retrieved (Fig. 2.23).

Recall:

G.v/ D !e.v C 1=2/ � !exe.v C 1=2/2
G.1/ � G.0/ D !e � 2!exe

G.2/ � G.1/ D !e � 4!exe

�
2!exe
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ω ωe e e'-2 x '
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Fig. 2.23 Deslandres table with row and column analysis

Table 2.5 Analysis techniques and their
related fundamental quantities

Analysis Parameters

Rotational analysis Be; ˛e, De, ˇe

Vibrational analysis !e, !exe

Emission analysis De
00 and G.v00/

Absorption analysis De
0, Te and G.v0/

2.8 Summary

Table 2.5 summarizes the analytical techniques covered thus far and the fundamental
quantities that can be determined with them. Rotation is described by a rigid rotor,
characterized by the rotational constant, B; however, non-rigid corrections due to
vibrational (Be, ˛e ) and centrifugal (De, ˇe) distortion are often used to improve the
model. Diatomic vibrations are usually described primarily as a harmonic oscillator
(!e) with a small, anharmonic correction (!exe) that may become important at high
vibrational energies.

Absorption spectra, in general, can provide information on the upper state
properties like De

0 (dissociation energy), Te, and G.v0/, as shown in Fig. 2.24.
Emission spectra, conversely, provide information about the lower state, e.g., De

00
and G.v00/, as shown in Fig. 2.25.
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Δ

Δ

Eex

Fig. 2.24 Example potential wells and corresponding absorption spectrum for upper state prop-
erties
Typical analyses for absorption include:

1. using band origin data to give G.v0/ and hence G.v0 D 0/.
2. using measured �0 D Te C G.v0 D 0/� G.v00 D 0/ to find Te.
3. using measured � to give De

0 via �C G.v00 D 0/ D Te C De
0.

Δ

Δ

Fig. 2.25 Potential curves and emission spectrum for lower-state properties
Typical analyses for emission include:

1. using band origin data (Deslandres table) from fixed v0 to find G.v00/.
2. using measured � and known Te and G.v0/ to find De

00 via De
00 C� D Te C G.v0/.
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2.9 Exercises

1. Which of the following molecules would show (a) a microwave (rotational)
spectrum, and (b) an infrared (vibrational) spectrum: Cl2, HCl, CO2?

2. The rotational spectrum of 1H127I shows equidistant lines 13.102 cm�1 apart.
What is the rotational constant, moment of inertia, and bond length for this
molecule? What is the wavenumber of the J D 8 ! J D 9 transition? Find
which transition gives rise to the most intense spectral line at 300 K. Calculate
the angular velocity (in revolutions per second) of an HI molecule when in the
J D 0 state and when in the J D 10 state.

3. Three consecutive lines in the rotational spectrum of H79Br are observed at
84.544, 101.355, and 118.112 cm�1. Assign the lines to their appropriate J00 ! J0
transitions, then deduce values for B and D, and hence evaluate the bond length
and approximate vibrational frequency of the molecule.

4. The carbon monoxide molecule, 12C16O, has a rotational constant, Bv , of
1.9226 cm�1. Boltzmann’s equation gives the ratio of the population in rotational
energy level J to the total number of molecules as shown below.

NJ

N
D gJ

Qrot
exp

��E

kT

�

The rotational degeneracy (i.e., the number of states with the same energy level),
gJ , is given by 2J C 1, and the partition function Qrot is given by T=
rot, where

rot D Bv

�
hc
k

	
.

(a) Find the rotational level that has the maximum population if T D 1000K.
(b) Calculate the temperature which maximizes the population fraction NJ=N for

the J value found in part (a).
(c) Plot NJ=N as a function of J for the two temperatures in (a) and (b).

5. The following are the line positions in wavenumber units of the fundamental and
first overtone bands of BBr, with v00 D 0.

674.31 1344.6

675.30 1345.5

676.28 1346.5

678.23 1348.4

679.19 1349.4

680.15 1350.4

(a) Assign proper labels to all of the lines and calculate Be, ˛, !e, !exe.
(b) Estimate the centrifugal distortion coefficient De and use it to determine the

centrifugal correction to the position of the P(3) line of the fundamental band.
Assume D0 D D1 D De.

(c) Calculate the position of the P(1) and R(0) lines for the second overtone band
of BBr.
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6. The band origin of a transition in C2 is observed at 19,378 cm�1, while the
rotational fine structure indicates that the rotational constants in excited and
ground states are, respectively, B0 D 1:7527 cm�1 and B00 D 1:6326 cm�1;
the centrifugal distortion parameters D0 and D00 are negligible. Determine the
position of the bandhead, i.e. the branch, the value of J00, and the frequency of
the transition. Which state has the larger equilibrium internuclear distance, re?

7. The following lines (wavenumber units) were observed in the 40–000 band of the
Lyman series of H2 ŒB1†Cu  X1†Cg �:

95,253.64 95,193.60 95,105.72 95,044.22
94,897.76 94,805.51 94,600.47 94,477.47
94,213.94 94,060.10 93,737.88 93,553.38
93,172.58 92,957.34 92,517.96 92,271.96
91,773.99

Determine B04, B000 , and the null gap.

Helpful Hints:

(a) 1† �1 † bands have only two branches: P and R.
(b) Since the H atom nuclear spin is 1/2, Fermi statistics apply and all J states

are populated.
(c) It is often helpful in sorting out a spectrum to plot the line positions along

the frequency axis.
(d) If a bandhead is apparent, you may wish to begin at the opposite end of the

spectrum and try to find a pattern with constant second differences.
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