
10Electronic Spectra of Diatomic Molecules:
Improved Treatment

10.1 Term Symbols for Diatomic Molecules

Term symbols, introduced in the previous chapter, are the notation used to charac-
terize key features of electron spin and orbital angular momentum.

For an atom, the term symbol is: 2SC1LJ

For a diatomic, the term symbol is: 2SC1ƒ�

Important terms to define are ES, E†, Eƒ, and E�:

Eƒ projection of orbital angular momentum on the internuclear axis

Its magnitude is
ˇ
ˇ
ˇ Eƒ

ˇ
ˇ
ˇ D ƒ„, where ƒ is an integer, and the symbols

associated with different values of ƒ are shown in the table below.

ƒ 0 1 2

Symbol † … �

ES total electronic spin angular momentum (the net sum of electron spin

in unfilled shells). The magnitude is
ˇ
ˇ
ˇES

ˇ
ˇ
ˇ D S„, where S will have

1=2-integer values.
E† projection of ES onto the internuclear axis (only defined when

ƒ ¤ 0). The magnitude of this projection is
ˇ
ˇ
ˇ E†

ˇ
ˇ
ˇ D †„, and the

allowed values of † are

† D S; S � 1; : : : ;�S (2SC 1 values)
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E� sum of projections along the internuclear axis of electron spin and
orbital angular momentum

E� D E†C Eƒ
� D ƒC S; ƒC S � 1; : : : ; jƒ � Sj (2SC 1 values for ƒ � S)

Examples

NO The ground state for NO is X2….
S D 1=2, ƒ D 1, � D 3=2; 1=2

There are two spin-split sub-states: 2…1=2, 2…3=2

Separation: 121 cm�1

CO The ground state for CO is X1†C.
S D 0 and ƒ D 0, therefore � is unnecessary. This is a rigid rotor
molecule with no influence from electrons. Easiest case!

O2 The ground state for O2 is X3†�g .
S D 1, ƒ D 0

The � and g are notations about symmetric properties of wave
functions. This is an example of a molecule that is modelled by
Hund’s case b, discussed below.

10.2 CommonMolecular Models for Diatomics

There are four common molecular models that are used to describe diatomic
electronic spectra:

Rigid rotor ƒ D 0; S D 0

Symmetric top ƒ ¤ 0; S D 0

Hund’s a ƒ ¤ 0; S ¤ 0

Hund’s b ƒ D 0; S ¤ 0

The rigid rotor and symmetric top models have no spin, and thus their multiplicity
(2SC1) is one; these states are called “singlets.” For the Hund’s cases, the influence
of spin on the electronic state structure must be considered through interactions of
ƒ and †.

10.2.1 Rigid Rotor (1†)

The simplest model for molecular rotation assumes that electron motions do not
contribute to the rotational energy. Rotation of the nuclei occurs about an axis
perpendicular to the A-axis (i.e., the B-axis). Recall that IA � 0 and IB D IC

(Fig. 10.1).
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Fig. 10.1 Rigid rotor model for molecular motion

When ƒ and S D 0, the molecule is 1† type and � is not defined. Note that
ƒ D 0 means that the projection of the orbital angular momentum onto the A-axis
is zero, and that rotation must thus be around the B-axis.

Rotational Energy
The total rotational energy for a rigid rotor, including centrifugal distortion is, as
before,

F.J/ D BvJ.J C 1/ � DvJ2.J C 1/2 (10.1)

Total Energy
Rovibronic transitions (those that include electronic, vibrational, and rotational
changes in quantum number) have a total energy that includes contributions from
each mode, i.e. �E D �Te C�GC�F

where E.Te; v; J/ D Te C G.v/C F.J/: (10.2)

Selection Rules
The selection rules for these transitions, as described before, are:

Rotational spectra: �J D J0 � J00 D C1

Rovibrational spectra: �v D v0 � v00 D C1

�J D ˙1

Rovibronic spectra: �v determined by Franck–Condon factors
�J D ˙1

Note: An alternate form for the selection rules is used in some texts, i.e. �˛ D
˛final � ˛initial where (˛ D J or v).
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Intensity Distribution
Within each band .v0; v00/, the intensity distribution follows the Boltzmann distribu-
tion for J modified by a J-dependent branching ratio (i.e., for the P and R branches),
known as the Hönl–London factor (defined later in this chapter). Similarly, the
relative intensities among all the vibrational bands originating from a single initial
level vinitial to all possible final levels vfinal are given by Franck–Condon factors
(a manifestation of the Franck–Condon principle). The relative total emission or
absorption from vinitial (i.e., to all values of vfinal) depends directly on the Boltzmann
fraction in that level, i.e. nvinitial=n, and also on an overall Einstein coefficient or
oscillator strength for the specific electronic system (i.e., a specific pair of lower
and upper electronic states), as presented in Sect. 10.3.

Examples
Most stable diatomics, including CO, Cl2, Br2, N2, H2 are Rigid Rotors. Exceptions
are NO (X2…) and O2 (X3†). (Note that there are no X� states for the diatomics
listed in Herzberg—all X states are † or …!) Some linear polyatomics such as
CO2 ( QX1†Cg ) and both HCN and N2O ( QX1†C) are Rigid Rotors with 1† ground
states. Remember, however, that nuclear spin can have an impact on the statistics of
homonuclear diatomic molecules.

10.2.2 Symmetric Top

Symmetric tops have a non-zero projection of orbital angular momentum on the
internuclear axis and zero spin (ƒ ¤ 0; S D 0). Thus, its ground states are 1…, 1�

(although, as mentioned in the previous section, there are no known X1� ground
states for diatomics) (Fig. 10.2).

The important components are

EN angular momentum of nuclei
Eƒ A-axis projection of electron orbital angular momentum
EJ total angular momentum; EJ D EN C Eƒ

N J

Fig. 10.2 Symmetric top model for molecular motion
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Only the axial component of orbital angular momentum is used, because only Eƒ
is a “good” quantum number, i.e. a constant of the motion.

Rotational Energy
The total rotational energy for a symmetric top is

F.J/ D BJ.J C 1/C .A � B/ƒ2 J D ƒ; ƒC 1; : : : (10.3)

The constants A and B are given as before by

A; B D h

8�2cIA;B
(10.4)

Therefore, the symmetric top energy levels have the same spacing as the Rigid
Rotor, but with a constant offset. Note, however, that since IA is small compared to
IB, A is large compared to B. Lines with J < ƒ are missing, as J D ƒ; ƒC 1; : : : .

Selection Rules
The selection rules for symmetric top electronic spectra are

�ƒ D 0 �J D ˙1; 0 (�J D 0 may be weak)
�ƒ D ˙1 �J D ˙1; 0

As a result of having a Q branch (i.e., �J D 0), the bands for a symmetric top will
be double-headed, in contrast to the single-headed character of rigid rotor bands.

Spectra
The spectra for the case where �ƒ D 0 are discussed here. The upper- and lower-
state energies are described by the following equations:

T 0 D B0J0.J0 C 1/C .A0 � B0/ƒ2 C G.v0/C T 0e (10.5)

T 00 D B00J00.J00 C 1/C .A00 � B00/ƒ2 C G.v00/C T 00e (10.6)

N�1 D upper (for J0 D 0/ � lower (for J00 D 0/ D constant (10.7)

T 00e D 0 for the ground state. Then, for the three branches, the line positions are as
follows:

P.J00/ D N�1 � .B0 C B00/J C .B0 � B00/J2 (10.8)

Q.J00/ D N�1 C .B0 � B00/J C .B0 � B00/J2 (10.9)

R.J00/ D N�1 C .B0 C B00/.J C 1/C .B0 � B00/.J C 1/2 (10.10)
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Using the rotational number m for the three branches,

mP D �J

mQ D CJ

mR D J C 1

the line positions for the P and R branches become

� D N�1 C amC bm2; (10.11)

where a D B0CB00 and b D B0�B00, and the line positions for the Q branch become

� D N�1 C bmC bm2 (10.12)

Note that the three branches now can lead to two bandheads (see the Fortrat parabola
plot below for the case of a 1� 1� band) (Fig. 10.3).

The Fortrat parabola shows the bandheads in the Q and R branches for the typical
case of B0 < B00. For the 1�  1� case, Jmin D 2 and therefore mmin D 3 for the
R branch, mmin D 2 for the Q branch and m D �3 is the first line in the P branch,
resulting in multiple missing lines near the origin.

Fig. 10.3 Symmetric top model for molecular motion, 1� 1 � case
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Intensity Distribution
Actual relative intensities depend on nJ=n and “relative intensity factors/line
strengths,” also known as Hönl–London factors, denoted below by SP;Q;R

J . Differ-
ences in Hönl–London factors indicate the breakdown of the principle of equal
probability [1].

Example: Hönl–London factors for symmetric top (p. 208 of [1])
For �ƒ D 0

SR
J D .JC1Cƒ/.JC1�ƒ/

JC1
� J C 1 .J � ƒ/

SQ
J D .2JC1/ƒ2

J.JC1/
� 2ƒ2

J � 0 for large J

SP
J D .JCƒ/.J�ƒ/

J � J for large J

9

>>>>>=

>>>>>;

X

SJ D 2J C 1

Note: 1. †SJ D 2J C 1, the total degeneracy!
2. The R-branch line, for a specified J, is approximately .J C 1/=J

times as strong as the P branch line.
3. For �ƒ D ˙1, and J � ƒ

SR
J � .2JC1/

4

SQ
J � .2JC1/

2

SP
J D .2JC1/

4

9

>>>>>=

>>>>>;

X

SJ D 2J C 1

The Q branch lines are thus twice as strong as the P and R lines!
Therefore, the �ƒ value is important in determining the relative
line and branch strengths of rovibronic spectra.

Example: X D 1…

If X D 1…, then the following transitions are possible for changes in ƒ of 0 or
˙1. That is, there are three separate “systems” of bands possible from X1….

1… 1 … 1� 1 … 1† 1 …

�ƒ D 0 �ƒ D 1 �ƒ D �1
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Fig. 10.4 Coupling of † and ƒ

Fig. 10.5 Spin–orbit splitting

10.2.3 Interaction ofƒ and†

Understanding the interactions and coupling of ƒ and † is a key to modelling the
influence of spin on the electronic state structure. When ƒ ¤ 0 and S ¤ 0, they
combine to form a net component of �, as shown in Fig. 10.4.

The presence of ƒ ¤ 0 implies that there is an associated magnetic field due to
net current about the axis. This field interacts with spinning electrons. This effect is
known as spin–orbit coupling (or spin-splitting) (Fig. 10.5).

Examples
3� has three components (3�3, 3�2, 3�1) corresponding to S D 1, ƒ D 2 and
� D 3; 2; 1 (since † D 1; 0;�1). These states have different electronic energies,
which may be represented by

Te D T0 C Aƒ† (10.13)

Here, A is the spin–orbit coupling constant (it’s not exactly the same A as in the
symmetric top, but it is similar; keep in mind that these are models). A generally
increases with molecular weight and the number of electrons. T0 is the energy
without interaction.

For 3�, ƒ D 2, S D 1, and † D 1; 0;�1. Therefore,

Te D T0 C A.2/

0

@

1

0

�1

1

A
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Some sample spin–orbit coupling constants are listed below.

ABeH � 2 cm�1 (10.14)

ANO � 124 cm�1 (10.15)

AHgH � 3600 cm�1 (10.16)

AOH � �140 cm�1 (10.17)

Note that the spin–orbit coupling constant for OH is negative. (See Herzberg, Vol. I
for details; p. 215/216, 232, 558/559, 561.)

Note: 1. Y D A
Bv

is the ratio of the spin–orbit constant and Bv

2. Values for A are given in tables in Herzberg, Vol. I

Now, finally, we are ready to consider rotational levels for cases where S ¤ 0.
There are two primary cases: Hund’s a and Hund’s b.

10.2.4 Hund’s Case a

Hund’s case a is for ƒ ¤ 0 and S ¤ 0 with † defined as † D S; S � 1; : : : ;�S.
Replace ƒ with � in F.J/ for the symmetric top to get [1]

F.J/ D BJ.J C 1/C .A � B/�2 (10.18)

� D ƒC S; ƒC S � 1; : : : ; jƒ � Sj
J D �; �C 1; : : :

Remember that A for the equation above is A D h=8�2IAc; it is not the spin–orbit
constant.

There are P, Q, and R branches for each value of �. For example, with 2…, we
have � D 3=2 and 1=2, i.e. two electronic sub-states, giving a total of 2 � 3 D 6

branches.

10.2.5 Hund’s Case b

Hund’s case b applies when spin is not coupled to the A-axis [1] (Fig. 10.6), e.g.:

1. for ƒ D 0 (so E† is not defined, and we must use ES)
2. at high J, especially for hydrides, even with ƒ ¤ 0

The allowed J are J D N C S; N C S� 1; : : : ; N � S, and J � 0 only. For this case,
ES and EN couple directly.
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Fig. 10.6 Molecular model for Hund’s b

Example: O2

The ground state X3† has three J’s for each N except N D 0. These energy
levels are labelled F1.N/, F2.N/ and F3.N/.

F1.N/ F2.N/ F3.N/

J D N C 1 J D N J D N � 1

There are split rotational levels for N > 0, and each level has a degeneracy of
2JC1 and a sum of Hönl–London factors of 2JC1. The minimum J is jN�Sj.

Note: In the N D 0 level, since only spin is active and is not equal to zero
(i.e., S D 1), the minimum value of J is 1.
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Fig. 10.7 Lambda-doubling results in two different energy levels

10.2.6 ƒ-Doubling

There is further complexity in the energy levels resulting from a phenomenon known
as ƒ-doubling. The two orientations of Eƒ (˙ƒ along the A-axis) have slightly
different energies, owing to different coupling with nuclear rotation (i.e., EN and
Eƒ interaction). The result is

F.J/! Fc.J/ and Fd.J/

That is, there are two components to the energy, F.J/ (Fig. 10.7).
By definition, Fc.J/ > Fd.J/,1 i.e. the c state is the higher-energy state.
Lambda doubling usually results in a very small change in energy, thus affecting

the Boltzmann fraction only slightly (other than adding a state). A more important
aspect is found in the change of parity between ƒ-doubled states, which reduces the
accessible fraction of molecules for a given transition (due to selection rules).

10.2.7 Comment onModels

1. Models are only approximations to real molecules; don’t think of them as exact!
2. Coupling may change as J ranges from low to high values.

10.3 Quantitative Absorption

This section is a review of Beer’s Law and spectral absorption as interpreted for
molecules with multiplet structure.

Beer’s Law

�
I

I0

�

�

D exp.�k�L/ (10.19)

For a two-level system, we had

k� D S12�.�/ D
�

�e2

mec

�

n1f12 .1 � exp.�h�=kT// �.�/; (10.20)

1Note that the subscripts c and d are replaced by e and f , respectively, in some literature.
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where S12 is the integrated absorption intensity with units of cm�1 s�1 [see
Eq. (7.48)]. How do we evaluate n1 and f12 in a complex, multiple level system?
There are two issues:

1. The Boltzmann fraction, and
2. The oscillator strength for a specific transition

10.3.1 Boltzmann Fraction

n1 D ni
n1

ni
(10.21)

where ni D the total number density of species i and

n1=ni D the fraction of species i in state/level 1

The state/level is specified through the quantum numbers, e.g. n (elec), v (vib), †

(spin), ƒ (orbital), J (total angular momentum), N (nuclear rotation), c or d (ƒ-
component).

n1

ni
D Ni.n; v; †; ƒ; J; N/

Ni
(10.22)

ƒ gives the orientation and distinguishes ƒ-doubling.

10.3.2 Oscillator Strength

It is common to denote the oscillator strength of a specific, single transition (i.e.,
from one of the J00 substates to a specific J0 substate) by fJ00J0 , and to view this
transition strength as the product of a system strength, vibrational factor (fraction)
and rotational factor (fraction), i.e.,

f12 D f.m;v00;J00/.n;v0;J0/ (10.23)

D fJ00J0 (10.24)

D fel
„ƒ‚…

“system” osc.
strength

� qv00v0
„ƒ‚…

Franck–Condon
factor

� SJ00J0

2J00 C 1
„ ƒ‚ …

normalized H-L
factor or line

strength

(10.25)
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We will show later that the sum of line strengths from a specific substate of J00 (i.e.,
with a specific N and ƒ component (c or d)) to all possible J0 is simply 2J00 C 1;
further,

P

v0 qv00v0 D 1. Thus, the effective total oscillator strength (i.e., for the
sum of all radiative transitions) for each of the substates, i.e. with specific values
of J00, N00, ƒ00 and v00, is fel.

Note: 1.
P

J0 SJ00J0 D .2J00 C 1/Œ.2SC 1/ı�
P

J0 SJ00J0 is the sum over all allowed J0 (upper states) for the combined
lower substates with specific J D J00. ı D 1 for † � †, otherwise
ı D 2 (to account for ƒ-doubling!). The term Œ.2SC1/ı� D 4 for OH’s
A2† X2… system, since there are four substates with a given J00.

2.
P

v0;J00 fJ00J0 D Œ.2SC 1/ı�fel

where
P

v0;J00 is the sum over v0 and all the substates in J00. This sum
is fel for a single J00 substate.

Remarks
1. It is common to use band oscillator strengths (available in the literature).

fv00v0 D felqv00v0

e.g., f00 D 0:001 (OH; A2† X2…)
2. Then

fJ00J0 D fv00v0
�

SJ00J0

2J00 C 1

�

e.g., if only P and R are allowed,

SP
J00J0 D J00 (10.26)

SR
J00J0 D J00 C 1 (10.27)

Therefore, the intensities for R and P transitions from a specific J00 are similar,
except for small J", but the R-branch transitions are stronger than the P-branch
transitions by the ratio .J"C 1/=J".

3. In some cases, an additional “correction term” TJ00J0 is used, e.g. in OH.

fJ00J0 D fv00v0
�

SJ00J0

2J00 C 1

�

TJ00J0 ;

where TJ00J0 is always near 1.
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4. In terms of A-coefficients, we may also write

fv00v0 D
�

mec�2

8�2e2

�

Av0v00

�
ge0

ge00

�

5. And recalling Eq. (7.54) we may write

fv00v0 D ge0

ge00
fv0v00

We now know enough to tackle a real (and important) molecule, OH; see
Chap. 14.

10.4 Exercises

1. A rovibronic transition in nitric oxide (NO) occurs at 226 nm. The oscillator
strength for the transition between states 1 and 2 is given by

f12 D fel � qv00v0 � SJ00J0

2J00 C 1
D f21

g0

g00

where fel is the oscillator strength for transitions between the lower and upper
electronic states, qv00v0 is the Franck–Condon factor and SJ00J0=.2J00 C 1/ is the
normalized Hönl–London factor. For this transition of NO,

fel D 3:0 � 10�3

qv00v0 D 1:673 � 10�1

SJ00J0

2J00 C 1
D 0:5

Consider a gas mixture at 1000 K and 2 atm, with an effective collisional
broadening coefficient for this NO transition of 2	 D 0:09 cm�1 atm�1, and a
number density in the absorbing state 1 of n1 D 3:7 � 1014 cm�3.
(a) Determine the peak absorption coefficient k�0 in cm�1 at the above tempera-

ture and pressure.
(b) Find the fractional absorption at line center and at a detuning of 0.2 cm�1 for

path lengths of 1 and 10 cm.
(c) Determine the spontaneous lifetime of the upper state. You may assume the

electronic degeneracies of the upper and lower states are both 2.
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(d) What is the mole fraction of NO (in ppm) for this gas mixture, assuming an
approximate Boltzmann fraction of NO molecules in the absorption state of
4.2 %. (This is a reasonable estimate, if one neglects issues of ƒ-doubling
and assumes that the absorbing state is in v00 D 0 and J00 near the peak of the
rotational distribution.) This step requires no spectroscopic calculation, only
a simple use of the ideal gas equation of state, but is useful in giving a sense
of the species detection sensitivity of spectrally resolved absorption.
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