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Preface

This text provides an introduction to the science that governs the interaction of
light and matter (in the gas phase). It provides readers with the basic knowledge
to exploit light-matter interactions to develop quantitative tools for gas analysis
(i.e. optical diagnostics) and understand and interpret the results of spectroscopic
measurements. The text is organized to cover three sub-topics of gas-phase spec-
troscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral
lineshapes by way of absorption, emission, and scattering interactions. Greater focus
is dedicated to absorption and emission interactions. The latter part of the book
describes optical measurement techniques and equipment for practical applications.
The text is written for graduate students, advanced undergraduate students, and
practitioners across a range of applied sciences including mechanical, aerospace,
and chemical engineering.

The text grew out of a course, Introduction to Spectroscopy and Laser Diag-
nostics for Gases (ME364), first offered in 1977, in response to the growing use
of spectroscopic diagnostics in the research conducted by graduate students in
the High Temperature Gasdynamics Laboratory (HTGL) at Stanford. At the time,
the field of spectroscopy was undergoing a revolution owing to the development
and application of lasers, and many of the standard texts on laser physics and
spectroscopy dealt primarily with theory, e.g., quantum mechanics and optics,
rather than engineering applications. There was thus no single textbook that seemed
suitable for students (or for the professor!) with traditional mechanical engineering
backgrounds, nor was there a suitable text that focused on applied measurements
in high temperature gases. As a result, I initially used various introductory texts,
written for undergraduates and master’s level students in physics and chemistry, and
I supplemented these materials with my own notes for topics not treated in existing
books but critical to the diagnostics employed in the HTGL.

Over time, my own notes became more complete, until finally in 2001 an
energetic student, Michael Webber, helped put the notes into electronic form for use
as a course reader at Stanford. The material continued undergoing expansion and
refinement until two recent doctoral students, Mitchell Spearrin and Christopher
Goldenstein, agreed to help convert my reader into a textbook. They are now my
co-authors, having made new contributions to the latter half of the book.

v
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I am deeply indebted to the many graduate students who have passed through
their doctoral studies in my group at Stanford and contributed in many ways to the
evolution of this text. Though too many to mention all by name, I must acknowledge
one student, Xing Chao, who heroically converted my notes into powerpoint lectures
and created many improved figures for the lecture slides and the text.

Finally, I want to acknowledge the pleasure I have enjoyed in working to develop
and apply laser-based spectroscopic diagnostics to engineering problems. It has
been a very rewarding experience, particularly in watching Stanford’s mechanical
engineering graduates become leaders in the field of applied spectroscopy.
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1Introduction

1.1 Role of QuantumMechanics

This text focuses on the application of spectroscopic diagnostics to gaseous flows.
In order to keep the length and scope manageable, we will accept, prima facie,
the results of quantum mechanics (explaining quantum mechanics in detail would
require another complete text, of which many are already available). That is,
we accept that an atom or molecule may exist only in specific quantum states
(characterized by quantum “numbers”), with each quantum state having a discrete
amount of energy and angular momentum. Hence, molecular energy is quantized.
Furthermore, we will view the internal energy, which excludes kinetic energy, as
the sum of the energy stored in three modes: (1) rotation, (2) vibration, and (3)
electronic:

Etot D Erot C Evib C Eelec: (1.1)

Note that quantized internal energies lead to discrete differences in energy when
molecules change quantum states. These transitions correspond directly with the
energy of emitted or absorbed photons (and hence the emission or absorption
wavelengths) in discrete spectra. Quantum mechanics also places restrictions on the
allowable changes in quantum states during emission and absorption, described by
selection rules. These selection rules (also simply accepted in this course) dictate
which transitions are allowed and which are forbidden, and greatly simplify the
resulting spectra.

1.2 Emission and Absorption Spectra

Emission results when a molecule or atom changes quantum states from higher
to lower energy and releases a photon. Absorption occurs when a molecule or
atom changes quantum states from lower to higher energy by absorbing a photon.

© Springer International Publishing Switzerland 2016
R.K. Hanson et al., Spectroscopy and Optical Diagnostics for Gases,
DOI 10.1007/978-3-319-23252-2_1
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2 1 Introduction

Fig. 1.1 Absorption and emission energy transitions in an atom/molecule

Fig. 1.2 Calculated infrared absorption spectra for HBr. Here frequency (cm�1) is simply
1/wavelength (cm)

The energy of the photon emitted or absorbed is equal to the difference in energy
of the two quantum states (by conservation of energy, of course!). Figure 1.1 shows
how the energy of a molecule changes during these processes. Example absorption
and emission spectra, obtainable by measuring the energies of the photons involved
in these processes, are shown in Figs. 1.2 and 1.3.

Our goal: to be able to interpret and predict absorption and emission
spectra.

Before being able to interpret spectra, however, we must first know a few basics
about light.
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Fig. 1.3 Typical emission spectra of high-temperature air between 560 and 610 nm. The seven
large features are part of the N2.1

C/ system of transitions

1.3 Planck’s Law

Planck’s Law is a fundamental relation that links two ways of thinking about
radiation, namely the particle and wave concepts:

�E D Eupper � Elower D h� (1.2)

Here �E is the energy of the photon (i.e., the particle) associated with a molecular
transition (emission or absorption) between two quantum states, while � is the
frequency of the corresponding electromagnetic wave, and h is Planck’s constant:

h D 6:63 � 10�34 J s (1.3)

Extending Eq. (1.1), we may also express the change in energy of the molecule
(i.e., the energy of the photon) as

�E D �Erot C�Evib C�Eelec: (1.4)

That is, the total change in internal energy of a molecule/atom is the sum of the
individual changes in rotational, vibrational, and electronic energy. Energy changes
in each of these modes have different magnitudes (as the reader will see in Fig. 1.4,
if he/she doesn’t already know) and can be classified according to the following:



4 1 Introduction

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

Energy per Photon [eV]

10
22

10
20

10
18

10
16

10
14

10
12

10
10

10
8

10
6

10
4

10
2

Frequency [Hz]

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

Wavelength [m]

X rays

Visible

Gamma raysUVIRMicrowave

AM

FM

TV

Short-wave radioLong-wave radio

Rotational NuclearTypical molecular transitions: Vibrational Electronic

Common band names:

Fig. 1.4 Electromagnetic spectrum

�Erot ! microwave transitions (rotational)
�Erot C�Evib ! IR transitions (rovibrational)

�Erot C�Evib C�Eelec ! UV/Vis transitions (rovibronic)

Note that changes in vibrational energy are generally accompanied by changes
in rotational energy, and changes in electronic energy are accompanied by changes
in vibrational and rotational energy (although �Erot and �Evib can sometimes be
zero).

Thus, absorption or emission spectra generally consist of a number of “lines,”
corresponding to the discrete differences in energy between a molecule’s states
which are allowed (quantum mechanically) to undergo radiative transitions.

1.4 Wavelength, Frequency, and Other Units and Conversions

Spectroscopy utilizes several different units of length and energy. The most common
usage varies with the spectral region in question.

Term Symbol Units

Wavelength � Å, nm, �m (microns); 1Å D 10�8 cm D 0:1 nm

Frequency � s�1, Hz, MHz, GHz, THz

Wavenumber �; ! cm�1, mK (10�3 cm�1 D 1milliKayser)
(a wavenumber is the number of wavelengths per cm)

Energy E, �E J, cm�1, ergs, eV (all per photon); kcal/mole

The relationship between wavelength and (temporal) frequency is given by

c D �� (1.5)
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where � is the wavelength of the radiation and c is the speed of light, nominally
3:0 � 108 m=s.

Wavelength and wavenumber (sometimes also called frequency, as in spatial
frequency) are related by

� D ! D 1=� (1.6)

From Eqs. (1.5) and 1.6, Planck’s Law can be written in several ways:

�E D h� D hc=� D hc� D hc! (1.7)

Hence, a transition is interchangeably expressed in terms of nanometers,
angstroms or microns for wavelength and in Hertz or wavenumbers for frequency.
In the infrared (IR), use of wavenumber units is quite common; however, in the
visible or ultraviolet (UV), nanometer or angstrom units are the norm.

1.5 Spectral Regions

Figure 1.4 shows some of the different regions of the electromagnetic spectrum,
along with regions where rotational, vibrational, and electronic transitions tend to
occur. The boundaries are somewhat variable in common usage.

As can be seen from Fig. 1.4, units of energy can have many equivalent forms.
Knowing the conversion for a few reference points and the scaling may facilitate
fluency in every unit. For example,1

�1 eV � 12;400Å

�2 eV � 620 nm

�4 eV � 310 nm

and

� Œnm	 D 107=� Œcm�1	

! 500 nm D 20;000 cm�1

! 1000 nm D 10;000 cm�1

11 eV � 1:6� 10�19 J.
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Fig. 1.5 Representative absorption spectra. The left-hand side shows a single line, while the right-
hand side shows a band

1.6 Basic Elements of Spectroscopy

A line is the part of a spectrum that corresponds to a transition from one quantum
state to another, e.g. a change in a molecule’s rotational energy may show a
rotational line in a spectrum as shown on the left of Fig. 1.5. Groups of individual
lines, with common upper and lower vibrational quantum numbers, may comprise
a vibrational band, shown on the right of Fig. 1.5. Furthermore, several vibrational
bands may comprise an electronic system.

1.6.1 Positions, Strengths, and Shapes of Lines

It is convenient to think of spectroscopy as comprised of three primary elements: i.e.,
the positions, strengths, and shapes of lines. Line positions, which receive emphasis
in classical spectroscopy, depend on molecular structure. The strengths and shapes
of lines are of particular importance in diagnostics applications. All three elements
will be addressed in this reader.

What is the relationship of these spectral features to gaseous properties?

1. Line positions and spacing ! molecular parameters
(�0;�� in Fig. 1.5) (internuclear spacing, bond angles)

2. Absorbance and linewidth ! composition, temperature,
(A�; ı� in Fig. 1.5) pressure

1.7 Typical Absorption Spectroscopy Setup

Most modern absorption experiments use a laser as the radiation source for
several reasons. First, their high intensities allow absorption measurements in
very hot gases (with high background emissions levels). Also, because they are
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Fig. 1.6 Laser absorption experimental schematic

highly collimated, laser light can travel across substantial distances—up to several
kilometers. Furthermore, lasers are often spectrally narrow and tunable in wave-
length, allowing high-resolution measurements of absorption spectra. Alternatively,
absorption spectra may be recorded with a spectrally broad light source (e.g., globar)
and a tunable spectral filter (e.g., grating monochromator), but such spectra are
artificially broadened owing to the (relatively) large spectral bandwidth of the filters
currently available.

1.8 Beer’s Law of Absorption

The governing law for absorption spectroscopy describes the relationship between
the incident and transmitted laser intensities, shown in Fig. 1.6. By way of introduc-
tion, Beer’s Law is simply listed below. In Chap. 7 it will be derived.

Beer’s Law T� D
�

I

I0

�
�

D exp.�k�L/ (1.8)

T� is the fractional transmission at frequency �, k� is the spectral absorption
coefficient [cm�1], and L is the absorption path length [cm]. The combined quantity
k�L is known as the spectral absorbance. The spectral absorption coefficient for
a single, spectrally isolated transition (typical of atoms and small molecules) is
given by

k� D S � �.� or �/ � Pi (1.9)

For Eq. (1.9), S is the “strength” of the transition (common units are cm�2 atm�1),
� is the “lineshape function” (common unit is cm), and Pi is the partial pressure of
the absorbing species (unit is atm). Beer’s Law can also be expressed in terms of
absorption:

A� D 1 � T� D
�

I0 � I

I0

�
�

D 1 � exp.�k�L/ (1.10)
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1.9 Spectral Absorption Coefficient

Later in the course we will derive relations for the spectral absorption coefficient,
k� , which appears in Beer’s Law of absorption (Eq. (1.8)). We will find that k� is
proportional to: (1) the population density ni in the lower level i of an absorption
transition, and (2) a parameter (e.g., fosc or B12) that characterizes the strength of
the transition. Here fosc is known as the oscillator strength and B12 is an Einstein
coefficient for absorption between levels 1 and 2.

Thus, absorption from a level i will only occur at frequencies corresponding to
quantum-mechanically allowed transitions, and the magnitude of the absorption
coefficient depends on the population density in i and the oscillator strength of the
transition.

1.10 Boltzmann Distribution

Boltzmann’s equation for the fraction of molecules in energy level i is [1]

Fi D ni

n
D gi exp

�� 
i
kT

�
Q

; (1.11)

where the partition function, Q, is given by

Q D
X

i

gi exp
�
� 
i

kT

�
D QrotQvibQelec (1.12)

The Boltzmann distribution function describes the equilibrium distribution of
molecules (or atoms) of a single species over its allowed quantum states. Here gi

is the degeneracy of level i (i.e., the number of individual states with a common
energy, 
i) and Q is a specific, energy-weighted sum over all levels known as the
partition function. There are some subtle differences between “states” and “levels”
which will require careful attention later in this course. Note that the overall partition
function Q may be written as a product of partition functions for the different types
of internal energy, since these energies are taken to be additive. The parameter
T is the temperature, and the species may be said to be in local thermodynamic
equilibrium (LTE) if the populations in all the quantum levels obey Boltzmann’s
equation. In essence, this equation defines temperature.

Reference

1. W.G. Vincenti, C.H. Kruger, Physical Gas Dynamics (Krieger Publishing Company, Malabar,
FL, 1965)
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2.1 InteractionMechanism for EM Radiation with Molecules

The primary interactions of light and matter take the form of emission, absorption,
or scattering. There are multiple possibilities for the interaction, of which the most
likely are:

• Electric dipole moment (emission/absorption)
• Induced polarization (Raman scattering)
• Elastic scattering (Rayleigh scattering)

There are other, rarer, mechanisms for electromagnetic (EM) interaction such as
magnetic dipoles, electric quadrupoles, octopoles, etc., but we will limit most of
our discussion to electric dipoles. Scattering processes will be discussed briefly in
Chap. 6.

Heteronuclear diatomic molecules, which carry a permanent net positive charge
on one end and a net negative charge on the other (e.g., HCl, NO), have a
permanent electric dipole moment. The motion of this electric dipole moment,
through rotation or vibration, gives rise to the possibility of emitting or absorbing
(receiving) electromagnetic radiation, much like a miniature antenna. The strength
or probability of emission or absorption is a function of the electric dipole moment
and its variation with internuclear spacing. EM radiation can also interact with
diatomics through the rearrangement of the electron distribution in the molecule’s
shells.

© Springer International Publishing Switzerland 2016
R.K. Hanson et al., Spectroscopy and Optical Diagnostics for Gases,
DOI 10.1007/978-3-319-23252-2_2

9
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2.1.1 Microwave Region: Rotation

When heteronuclear diatomic molecules rotate, their dipole moments also rotate
their orientation. Molecular motions, at characteristic frequencies, create opportu-
nities for resonances with EM waves, leading to absorption or emission at these
frequencies.

The electric dipole moment is specified by

E� D
X

i

qiEri; (2.1)

where i refers to particles in a molecule or system, qi is the particle charge, and Eri

is the vector specifying location. For carbon monoxide (CO), the C atom has a net
positive charge, while the O atom has a net negative charge (see the left panel of
Fig. 2.1). Thus, the dipole points upwards when the molecule is oriented along the
vertical axis with the C atom above the O atom, as drawn in panel (a) of Fig. 2.1.

When 1=� D �rot (see Fig. 2.1), resonance occurs, increasing the chance of
“exchange” between the EM wave and molecule by absorption or stimulated
emission. The frequency of molecular rotation is in the microwave region. All
molecules with a permanent electric dipole can interact with light as a result of
their rotation, and hence are considered “microwave active.” Homonuclear diatomic
molecules with no permanent electric dipole (N2, Cl2, etc.) are termed “microwave
inactive.”

rotation μ=Σqiri

Time

Time

E-field of incident
wave of freq v
(polarized)

a

b

Vertical component
of dipole

Time

C

O

c

τrot

1/ν

Fig. 2.1 (a) Electric dipole oscillation for a heteronuclear diatomic molecule rotating at frequency
1=�rot; and (b) E-field for an incident wave of frequency �, shown here as resonant and in phase
with the dipole oscillation in (a); (c) oscillation of the vertical component of the electric dipole
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Fig. 2.2 Stretching vibrational mode for carbon monoxide

2.1.2 Infrared Region: Vibration

For the IR region, it is a heteronuclear molecule’s vibration that leads to the changes
in electric dipole moment and the possibility for interaction with light. Figure 2.2
depicts the change in CO’s electric dipole moment with time due to the molecule’s
stretching motion.

2.1.3 Ultraviolet and Visible Regions: Electronic

For the ultraviolet (UV) and visible regions of the spectrum, allowed changes in
a molecule’s electronic structure (and hence electric dipole moment) introduce the
possibility for interaction with light. For infrared and microwave spectra, energy
transitions are related to the motions of the molecule. For electronic spectra, energy
transitions are related to the distribution of electrons in the molecule’s shells
(Fig. 2.3).

2.1.4 Summary of Background

Quantum mechanics tells us that energy levels of most molecules (and atoms)
are discrete and that optically allowed transitions (i.e., emission, absorption) may
occur only in certain cases. The result is that absorption and emission spectra are
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Fig. 2.3 Electronic structure of carbon monoxide

typically discrete. The molecular energies of interest are: rotational, vibrational, and
electronic, with progressively larger energy spacings.

Energy spacing W �Erot < �Evib < �Eelec (2.2)

Although our primary interest will be in vibrational and electronic spectra,
rotational spectra are embedded. In order to understand and simulate actual spectra,
we first begin with a discussion of rotational spectra and a physical model that helps
us understand the processes involved. The simplest rotational model for the diatomic
molecule is the Rigid Rotor (Sect. 2.2.1), while the simplest vibrational model is the
Simple Harmonic Oscillator (SHO) (Sect. 2.3.1). Once we have introduced these
simple models and have shown how they can describe each mode separately (with
the help of the results of quantum theory), we will relax some of their assumptions to
form improved models: the Non-rigid Rotor and the Anharmonic Oscillator (AHO)
(Sect. 2.4.1). In essence, these more complex models require only minor corrections
to the original, simpler models. Having introduced these models for each mode, we
will then combine them and use them to understand rovibrational spectra, using
at first, the simple models (Sect. 2.5), and then the improved models (Sect. 2.6).
Finally, in Sect. 2.7, we will incorporate electronic transitions into the conceptual
framework.

2.2 Rotational Spectra: Simple Model

2.2.1 Rigid Rotor (RR)

Our approach for the rigid rotor (RR) model is a blend of classical and quantum
mechanics. For this model, we assume that the atoms are point masses (dnuc �
10�13 cm) with an equilibrium separation distance re that is constant or “rigid.” That
is, the rotating diatomic is analogous to a rotating dumbell that has a massless,
inflexible rod connecting the weights at the end. Typical separation lengths are re �
10�8 cm (Fig. 2.4). The “rigid” assumption for the bond length will be relaxed later.
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Fig. 2.4 Diatomic molecule with rigid rotor approximation

2.2.2 Classical Mechanics

Classical mechanics can be used to describe the moment of inertia about the center
of mass for a diatomic molecule. The center of mass is the location along the
internuclear axis at which r1m1 D r2m2. The moment of inertia I is given by:

I D
X

mir
2
i D �r2e ; (2.3)

where �, the reduced mass, is

� D m1m2

m1 C m2

: (2.4)

So, the two-body problem is equivalent to the motion of a single-point mass, �,
rotating about the center of mass at a distance, re. The angular momentum of the
molecule is then I!rot where !rot is the angular velocity.

2.2.3 QuantumMechanics

Although angular momentum is a vector quantity, whose allowed values and
directions are quantized, we often care only for its magnitude. Quantum theory gives
the following relationship for the allowed magnitudes of angular momentum:

j I!rot jD
p

J.J C 1/ „; J D 0; 1; 2; 3 : : : ; (2.5)

where

„ D h=2�: (2.6)

Here, “J” is an integer called a quantum number. There are several different
quantum numbers needed to completely describe the state of a molecule. J is the
one that characterizes the total angular momentum.
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2.2.4 Rotational Energy

Classical mechanics can now be used to relate the rotational energy of a molecule
to its moment of inertia, thereby yielding an expression for the allowed values of
rotational energy as a function of rotational quantum number.

Erot D 1

2
I!2rot (2.7)

D 1

2I
.I!rot/

2 (2.8)

D 1

2I
J.J C 1/„2 (2.9)

D J.J C 1/ h2

8�2I
(2.10)

D EJ (2.11)

EJ , calculated in this manner, is usually in units of Joules. By convention, however,
spectroscopists usually denote rotational energy by F.J/, in units of cm�1. Referring
to Eq. (1.7), the conversion is

F.J/
�
cm�1

	 D EJ ŒJ	

hc
(2.12)

D



h

8�2Ic

�
J.J C 1/: (2.13)

The “rotational constant,” known as B, is

B
�
cm�1

	 D



h

8�2Ic

�
: (2.14)

Thus, Eq. (2.13) reduces to

F.J/ D BJ.J C 1/ : (2.15)

Note: So far we have only considered molecular rotation, so J, which com-
monly represents the total angular momentum, also represents the rota-
tional angular momentum in this case. Later in the text, we will differen-
tiate between angular momentum due to molecular rotation and angular
momentum from electrons, and several new quantum numbers will be
introduced that will contribute to J.
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2.2.5 Absorption Spectrum

Schrödinger’s wave equation is a key relation in quantum mechanics. Its basic form
is as follows:

d2 

dx2
C 2m

„2 ŒE � U.x/	 .x/ D 0 (2.16)

This is the time-independent form of the Schrödinger equation that describes a
particle of mass m moving in a potential field described by U.x/. The wave
function,  , is the solution to Schrödinger’s differential wave equation, and   �
is proportional to the probability that the particle will occupy the portion of
configuration space in x! xCdx. The transition probability is directly related to the
integral of the wave functions for the initial and final quantum states (m and n), and
the permanent electric dipole moment, over all the configuration space elements,
d� [1].

Transition probability /
Z
 m� 

�
n d� ! �J D ˙1 (2.17)

where

 � Wave function

 � � Complex conjugate of the wave function

� � Dipole moment (2.18)

The quantum mechanical solution to Schrödinger’s equation also yields “selec-
tion rules” for rotational transitions, namely that the change in rotational quantum
number (Jfinal�Jinitial) for a diatomic rigid rotor, can only be˙1. For pure rotational
transitions (meaning there are no changes in vibrational or electronic configuration),
we can restrict the change in J to +1 if we define the change in J as:

0 (upper) 00 (lower)
# #

�J D J0 � J00 D C1

Here we have introduced commonly used notation in which the upper state is
denoted with a single prime superscript and the lower state with a double prime. For
example,

�J0D1 J00D0 D F.J D 1/ � F.J D 0/
D 2B � 0
D 2B
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Fig. 2.5 Rotational energy level spacing
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Fig. 2.6 Energy level spacing and introduction of “first difference” in energy

Figure 2.5 shows each rotational state’s energy level and the allowed transitions
between them. Figure 2.6 provides the same information in tabular form.

In general, the rotational frequencies for transitions obeying the �J D 1

selection rule are

�JC1 J D �J0 J00 D B.J00 C 1/.J00 C 2/ � B.J00/.J00 C 1/; (2.19)

so, in terms of the lower state J00

�J0 J00 D 2B.J00 C 1/ : (2.20)

Let’s look at the following rotational absorption spectrum for CO (Fig. 2.7).

2.2.6 Usefulness of Rotational Line Spacing

The line spacing of rotational absorption spectra can be used to deduce accurate
physical characteristics of the molecule under investigation.

Line spacing! B! I ! re
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Fig. 2.7 Absorption spectrum spacing for heteronuclear rotation

Note: 1. lines have uniform spacing, making them easy to identify/interpret
2. BCO � 2 cm�1 ! �J00D0 D 1=� D 1=4 cm D 2:5 mm (microwaves/mm waves)
3. �rot D c=� D .3� 1010/=0:25 D 120GHz (�wave)

Consider carbon monoxide (CO) for an example. The rotational constant can be
spectroscopically measured to six significant figures, leading to a highly precise
determination of the CO internuclear spacing.

B D 1:92118 cm�1 ! rCO D 1:128227Å

The last digit, 7, is associated with an increment of length of only 7 � 10�6 Å D
7 � 10�16 m!

2.2.7 Rotational Partition Function

The rotational partition function for diatomic molecules that are rigid rotors can be
approximated by Vincenti and Kruger [2]

Qrot D 1



kT

hcB
; (2.21)

where  is the symmetry number (the number of ways of rotating the molecule
to achieve the same orientation of the molecule, treating identical atoms as
indistinguishable). For heteronuclear molecules such as CO,  D 1, while for
homonuclear molecules such as N2,  D 2.

2.2.8 Rotational Temperature

Rotational excitation can be described in terms of a characteristic temperature.
From statistical mechanics, we know that the Boltzmann fraction of molecules with
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rotational quantum number J is

NJ

N
D .2J C 1/ exp .�EJ=kT/

Qrot
(2.22)

D .2J C 1/ exp .��rJ.J C 1/=T/

T=�r
: (2.23)

It may be noted here that 2J C 1 is the degeneracy for energy level EJ , a
result from quantum mechanics associated with the number of possible directions
(orientations) of the angular momentum vector with the same energy.

Since

EJ

k
D hcF.J/

k
(2.24)

D
�

hc

k

�
BJ.J C 1/ (2.25)

� �rotJ.J C 1/; (2.26)

the rotational temperature �rot is

�rot ŒK	 D
�

hc

k

�
B: (2.27)

Thus the “characteristic temperature,” in this case �rot, is determined simply by
multiplying a characteristic energy in cm�1 units by hc=k (Table 2.1). The relation

�
hc

k

�
D 1:44K=cm�1 (2.28)

Table 2.1 Characteristic
rotational temperatures
for some diatomic species

Species �rot [K]

O2 2.1

N2 2.9

NO 2.5

Cl2 0.351



2.3 Vibrational Spectra: Simple Model 19

is worth memorization. We will use it often! Using the rotational temperature, the
equation for the rotational partition function (Eq. (2.21)) can be simplified to

Qrot D 1



T

�r
: (2.29)

2.2.9 Intensities of Spectral Lines

The absorption (or emission) probability, per molecule, is approximately indepen-
dent of J; we shall call this crude approximation the principle of “equal probability.”
Therefore, the absorption/emission spectrum varies with J similar to the Boltzmann
distribution for the population in J.

Using the Boltzmann fraction again, we have

NJ

N
D .2J C 1/ exp .�EJ=kT/

Qrot
: (2.30)

The strongest peaks occur near where the population is at a local maximum (i.e., at
the maxima of the Boltzmann distribution, Eq. (2.30)), i.e.,

d.NJ=N/

dJ
D 0; (2.31)

giving

Jmax D .T=2�rot/
1=2 � 1=2: (2.32)

2.3 Vibrational Spectra: Simple Model

2.3.1 Simple Harmonic Oscillator

The simplest model for diatomic vibration is the SHO. This model assumes that two
masses, m1 and m2, have an equilibrium separation distance re. The bond length, or
separation distance between the masses, r, oscillates about the equilibrium distance
as if the bond were a spring (see Fig. 2.8). We will begin the investigation of the
SHO model with classical mechanics.

2.3.2 Classical Mechanics

Hooke’s law describing linear spring forces can be applied for the SHO:

Force D �ks.r � re/: (2.33)
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Fig. 2.8 Oscillation of a linear diatomic molecule; rmin corresponds to molecule at distance of
greatest compression

In this equation, ks is the spring constant (not to be confused with Boltzmann’s
constant, k), and the restoring force is linearly proportional to the extension (or
compression) of the spring from its equilibrium length. Such systems have a
fundamental resonant frequency of vibration, �vib, which depends on the stiffness
of the bond (i.e., the spring constant) and the magnitudes of the masses at both ends
of the bond,

�vib D 1

2�

p
ks=� Œs�1	: (2.34)

As before, the reduced mass, �, is given by

� D m1m2

m1 C m2

: (2.35)

Note that this vibration frequency does not depend on the amplitude of vibration. In
wavenumber units the fundamental frequency is

!e D �vib=c Œcm�1	: (2.36)

The potential energy, U, stored in the oscillator (owing to compression or extension
of the spring), is

U D 1

2
ks.r � re/

2: (2.37)

Thus, according to Eq. (2.37), the potential energy for an SHO molecule varies as
the square of the extension (or compression) of the internuclear spacing. A plot of U
versus r is thus a parabola, with a minimum value .U D 0/ at r D re (see Fig. 2.9).
Also shown in Fig. 2.9 is the truncated harmonic oscillator (THO).
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Fig. 2.9 Potential energy and vibrational levels for diatomic SHO and THO molecules

2.3.3 QuantumMechanics

The results of quantum mechanics for an SHO lead to an expression for the energy
of a vibrating diatomic molecule

G.v/ D !e.v C 1=2/ Œcm�1	 (2.38)

where v is the vibrational quantum number:

v D 0; 1; 2; 3 : : : :

Note that the SHO has equal energy spacing between adjacent quantum states,
i.e. G.v C 1/ � G.v/ D !e independent of v. This independence is one of the
attractive simplifications that result from the SHO model. Another virtue of the SHO
model is that the quantum mechanics solution for absorption and emission of a
heteronuclear diatomic molecule leads to a very simple selection rule, namely that
the vibrational quantum number can change only by 1 [3].

�v D v0 � v00 D C1 (2.39)

2.3.4 Vibrational Partition Function

For diatomics whose vibrational potential energy can be approximated by the SHO
model (Eq. (2.38)), the vibrational partition function, Qvib, is [2]

Qvib D


1 � exp

��hc!e

kT

���1
exp

��hc!e

2kT

�
: (2.40)
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It is common with the SHO model to choose an alternate reference (zero) energy
at v D 0, so that

G.v/ D !ev (2.41)

In this case,

Qvib D


1 � exp

��hc!e

kT

���1
(2.42)

It is important to keep in mind that the magnitude of the vibrational partition
function depends on the choice of the zero energy, and that the same zero must
be used in specifying molecular energies Ei for any level i and in evaluating the
associated partition function.

2.3.5 Vibrational Temperature

Just as rotations have a characteristic temperature, �rot, vibrations have their own
temperatures, �vib, that are typically much higher (Table 2.2). If we define the
vibrational temperature as

�vib ŒK	 D
�

hc

k

�
!e; (2.43)

and employ Eq. (2.41) for G.v/, then the Boltzmann fraction for vibrational states is

Nvib

N
D gvib exp.�v�vib=T/

Qvib
(2.44)

D exp.�v�vib=T/ .1 � exp.��vib=T// ; (2.45)

where gvib D 1.

Table 2.2 Characteristic
vibrational temperatures
for some diatomic species

Species �vib [K]

O2 2270

N2 3390

NO 2740

Cl2 808
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2.4 ImprovedModels of Rotation and Vibration

2.4.1 Non-rigid Rotation

The model for molecular rotation can be improved by relaxing the initial assumption
of rigidity. There are two dominant effects that lead to non-rigid rotation and hence
affect B and F.J/:

1. vibrational stretching causes the average spacing Nr to be a function of Evib, i.e.
Nr.Evib/. The trends are:

Evib "; Nr "; I ";B # (2.46)

That is, as the vibrational energy Evib increases, the average nuclear separation
increases, thus increasing the moment of inertia, and the rotational constant
decreases.

2. centrifugal distortion causes the average spacing Nr to be a function of J, i.e. Nr.J/.
The trends are:

J "; Nr ";B # (2.47)

That is, as rotational energy (J) increases, the average nuclear separation
increases, and the rotational constant decreases.

The effects of vibrational stretching are much larger than the effects of centrifugal
distortion. The result of these non-rigidities is a new expression for the rotational
energy, Fv.J/,

Fv.J/ D BvJ.J C 1/ � DvJ
2.J C 1/2; (2.48)

where Dv is the centrifugal distortion constant (written with a subscript v to
denote its dependence on vibrational quantum number), and Bv is the vibrationally
dependent rotational constant. The rotational transition frequency for rotators in
vibrational level v, after accounting for distortion, becomes

�J0 J00;v D 2Bv.J
00 C 1/ � 4Dv.J

00 C 1/3 (2.49)

The distortion constant term is subtracted in Eq. (2.49) (compared with Eq. (2.20)),
and thus the rotational spacings are reduced by non-rigid rotation. The vibrationally
dependent constants for rotation, Bv , and centrifugal distortion, Dv , are given by:

Bv D Be � ˛e.v C 1=2/ (2.50)

Dv D De C ˇe.v C 1=2/ (2.51)



24 2 Diatomic Molecular Spectra

where both ˛e and ˇe have positive values. See Sect. 2.4.3 for typical correction
values for vibrational and centrifugal distortion.

2.4.2 Anharmonic Oscillator

True diatomics do not adhere exactly to the idealized SHO model, but rather
have anharmonicities that affect the shape of the potential well and the spacing
between energy levels. Thus, the models for vibrational energy can be improved
by accounting for the effects of anharmonic oscillation. The total energy for an
oscillating diatomic, after correcting for higher order anharmonicities, is

G.v/ D !e.v C 1=2/ � !exe.v C 1=2/2„ ƒ‚ …
anharmonicity corr:

C � � � C H:O:T: (2.52)

Correcting for anharmonicity decreases the energy spacing. In addition, the selec-
tion rule for allowed changes in vibrational quantum number is modified to permit
the additional possibility of (relatively weak) transitions with �v D v0 � v00 other
than 1 (Table 2.3). That is, relaxing the SHO model to allow for anharmonicity
leads to finite probabilities for �v D 2; 3; : : : and higher transitions, though these
probabilities diminish rapidly with increasing magnitude of �v.

Note: Transition probabilities for the first overtone of CO are about 100
times weaker than for the fundamental.

Potential Energy
The potential energy well for an anharmonic diatomic molecule can more accurately
be described by the Morse function (see Fig. 2.10) than by Hooke’s Law. The Morse
function is

U D Deq Œ1 � exp.�ˇ.r � re//	
2 ; (2.53)

where U is the potential energy and Deq is the bond-dissociation energy (in
wavenumbers). The .r � re/ term in the exponential is the displacement from the

Table 2.3 AHO frequencies and corrections

Transition Transition name Frequency

�v D C1 “Fundamental” band �1 0 D !e.1� 2xe/ D G.1/� G.0/

(e.g. 1 0; 2 1) �2 1 D !e.1� 4xe/

�v D C2 First overtone �2 0 D 2!e.1� 3xe/

(e.g. 2 0; 3 1)

�v D C3 Second overtone �3 0 D 3!e.1� 4xe/

(e.g. 3 0; 4 1)
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re

SHO potential

Morse potential

r

U

Deq

Fig. 2.10 Potential energy and vibrational levels for a diatomic molecule

equilibrium internuclear distance, re (in centimeter units). The term ˇ (not to be
confused with ˇe in Eq. (2.51)) is

ˇ D 1:2177 � 107 !e

q
�=Deq: (2.54)

The term !e is in wavenumber units and the reduced mass is in atomic mass units.

2.4.3 Typical CorrectionMagnitudes

Rotational Correction
As described in Sect. 2.4.1, the improvements to the model for molecular rotation
include vibrationally dependent constants Bv and Dv . Examples showing the relative
magnitudes of the pertinent parameters are below. In general,

ˇe 	 De 	 ˛e 	 Be

That is, the centrifugal distortion depends only very weakly on vibrational level
and hence both De and Dv are small compared to the stretching effect of vibration
(˛e). The moment of inertia (and thus the rotational constant, B) is well-reflected
by a rigid rotor approximation, but vibrational effects (˛e) can cause small changes
(about 1 % as shown in the example below).
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1. .D=B/	 1:
By balancing the force of centrifugal distortion with a restorative force from

a harmonic oscillator, it can be shown that1

D D 4B3

!2e
	 B (2.55)

Hence, D=B is quite small, especially for molecules with “stiff” or high-
frequency bonds. For example,

.D=B/NO D 4
�

B

!e

�2
� 4

�
1:7

1900

�2
� 10�6

2. .˛e=Be/	 1

For a potential energy well described by the Morse function,

˛e D 6
p
!exeB3e
!e

� 6B2e
!e

(2.56)

Frequencies of vibration are quite high compared to rotational constants, so
˛e is small compared to Be. Physically, this means the change in internuclear
distance by vibration is small compared to the internuclear distance itself. For
example,

.˛e=Be/NO � 0:01

3. .ˇe=De/	 1

Using the Morse function again to describe the molecule’s potential, the
constant ˇe is

ˇe=De D 8!exe

!e
� 5˛e

Be
� ˛

2
e !e

24B3e
	 1 (2.57)

� 8!exe

!e

The constant ˇe is often much smaller than De, which itself is small, and may
therefore typically be neglected. For example,

.ˇe=De/NO � 0:001

1See Herzberg [4, pp. 103–104], for more details.
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Table 2.4 Typical values for vibration (Banwell [5], p. 62, Table 3.1)

Gas
Vibration
!e Œcm�1	

Anharmonicity
constant xe

Force constant
ks [dynes/cm]

Internuclear
distance re [Å]

Dissociation
energy Deq [eV]

CO 2170 0.006 19� 105 1.13 11.6

NO 1904 0.007 16� 105 1.15 6.5

H2
a 4395 0.027 16� 105 1.15 6.5

Br2
a 320 0.003 2:5� 105 2.28 1.8

a Not IR-active, use Raman spectroscopy!

Vibrational Correction
Typical values for anharmonicity constants as well as some other molecular
constants are listed in Table 2.4.

Useful Conversions
1 eV D 8065:54 cm�1 D 23:0605 kcal=mole D 1:60219�10�19 J
1 cal D 4:1868 J
1N D 105 dynes
1Å D 0:1 nm

Example: NO, Nitric Oxide
Be D 1:7046 cm�1

˛e D 0.0178
De � 5:8 � 10�6 �2…1=2

�
ˇe � 0:0014 � De

� 8 � 10�9 cm�1

!e D 1904.03
�
2…1=2

� I 1903:68 �2…3=2

�
!e xe D 13:97 cm�1

re D 1:1508Å

2.5 Rovibrational Spectra: Simple Model

2.5.1 Born–Oppenheimer Approximation

The simplest model for rovibration is a vibrating rigid rotor based on the Born–
Oppenheimer approximation, in which vibration and rotation are regarded as
independent. These transitions include a simultaneous change in vibrational quan-
tum number, v, and rotational quantum number, J. The total energy for these
transitions, T.v; J/, is a sum of the energy for a rigid rotor, F.J/ (Eq. (2.15)), and
SHO, G.v/ (Eq. (2.38)).
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T.v; J/ D ERR C ESHO

D F.J/C G.v/

D BJ.J C 1/C !e.v C 1=2/ (2.58)

The same selection rules that applied for the rigid rotor and SHO, namely that
the quantum numbers change only by 1 in a transition, also apply for the combined
transition, with only slight reinterpretation [5].

Selection Rules �v D C1

�J D ˙1

Note that�J D J0�J00 D ˙1 rather than onlyC1. This new selection rule occurs
simply because both allowed values of J0, namely J00 ˙ 1, lead to upper states with
higher energy than the lower state of the molecule, i.e.

F.J0/C G.v0/ > F.J00/C G.v00/

for both J0 D J00C1 and J0 D J00�1. The line positions are based on the differences
in total energy for the upper and lower rovibrational states.

� D T 0 � T 00 D T.v0; J0/ � T.v00; J00/ (2.59)

2.5.2 Spectral Branches

Because the rotational quantum number can either increase or decrease by 1, two
branches of line positions emerge (Fig. 2.11). The R branch is associated with an
increase in rotational quantum number (J0 > J00) and the P branch is associated
with a decrease in rotational quantum number (J0 < J00). There is a gap (the “null
gap”) between the lowest lines in the P and R branches, as shown in Fig. 2.12.

v' = 1

v" = 0

J' = J"+1
J' = J"
J' = J"-1

J"+1
J"

P R

Fig. 2.11 Energy level diagram denoting P and R absorption transitions from a ground vibrational
state for a heteronuclear diatomic molecule



2.5 Rovibrational Spectra: Simple Model 29

Tr
an

si
tio

n 
P

ro
ba

bi
lit

ie
s

-8 -6 -4 -2 0 2 4 6
(ω-ωo)/2B

R(0)

R(2)

P(1)

P branch R branch

Null Gap

Fig. 2.12 Simulated absorption spectrum of the P and R branches of a ground state rovibrational
transition of a heteronuclear diatomic molecule

P branch: �J D �1
R branch: �J D C1

Note that for this simple model, both branches have constant line spacing equal to
2B. Figure 2.12 shows unequal strengths between the P and R branches, which arises
from Hönl–London factor considerations (more in Chap. 7). This effect, magnified
in Fig. 2.12, illustrates the error associated with the principle of “equal probability”
introduced in Sect. 2.2.9.

R Branch
The energy in the R branch is denoted R.v; J/.

R.v00; J00/ D ŒG.v0/ � G.v00/	„ ƒ‚ …
�G D !o

CB.J00 C 1/.J00 C 2/ � BJ00.J00 C 1/ Œcm�1	

(2.60)

In this simple model, the difference in vibrational energy, �G D G.v0/ � G.v00/,
known as the rotationless transition frequency, is independent of J. �G, often
written as either !0 or �0, is given numerically by !e in the SHO model. For an
AHO, !o is a function of !e, !exe, and v00.

�G D
8<
:
�0; !0 rotationless transition wavenumber
!e SHO model
!e.1 � 2xe/ AHO model for v0  v00 D 1 0

Thus,

R.v00; J00/ D !o C 2B.J00 C 1/: (2.61)
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P Branch
Similarly, for the P branch, the energy, P.v; J/, is

P.v00; J00/ D !o � 2BJ00: (2.62)

Note that since the P branch occurs for net changes in rotational quantum number
of �1, the P.0/ transition is not possible, leaving a gap (the “null gap”) between the
lowest lines in the P and R branches.

Note: The naming convention is R.J00/ or P.J00/ for rotational transitions. For
example, R.7/ indicates a transition involving (in absorption or emission)
a lower rotational state of J00 D 7 and an upper rotational state of J0 D 8,
while P.7/ represents a transition involving a lower rotational state of
J00 D 7 and an upper rotational state of J0 D 6.

Branch Separation
The separation between the tallest peaks in the P and R branch absorption intensities
is a direct function of temperature due to Boltzmann statistics. Subject to the “equal
probability” approximation where the absorption spectrum (in both the P and R
branches) maps directly from the Boltzmann distribution over rotational state, the
peak-to-peak frequency separation is

�� D
r
8BkT

hc
: (2.63)

As the temperature increases, the most probable transition shifts to higher energy
levels due to increasing population of those levels (see Eq. (2.32)). Thus the
frequency location of each branch’s maximum will move further away from the
null gap, leading to larger separation.

A more complete analysis, without the equal probability approximation, leads to
a more complex expression for the peak spacing, but the numerical values do not
differ greatly except at low temperatures.

2.6 Rovibrational Spectra: ImprovedModel

2.6.1 Breakdown of Born–Oppenheimer Approximation

By allowing for non-rigid rotation, anharmonic vibration, and interactions between
vibration and rotation (i.e., the breakdown of the Born–Oppenheimer approxima-
tion), an improved model for rovibrational energy can be established.

T.v; J/ D G.v/C F.v; J/ (2.64)

D !e.v C 1=2/„ ƒ‚ …
SHO

�!exe.v C 1=2/2„ ƒ‚ …
anharm: corr:

CBvJ.J C 1/„ ƒ‚ …
RR.v/

�DvJ
2.J C 1/2„ ƒ‚ …

cent: dist: term
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Recall from Sect. 2.4.1 [Eqs. (2.50) and (2.51)] that the rotational and centrifugal
distortion constants, Bv and Dv , respectively, introduce vibrational coupling into the
rotational energy:

Bv D Be � ˛e.v C 1=2/ (2.65)

Dv D De C ˇe.v C 1=2/ (2.66)

This coupling, indicated by the subscript v on B and D, signifies that the Born–
Oppenheimer approximation is no longer in effect. The rotational constants can be
related to previous notation, B0 and B00, by noting that B0 D Bv.v0/ and B00 D Bv.v00/.

2.6.2 Spectral Branches

Just as before, the possibility for net changes in rotational quantum number of either
C1 or�1 yields two spectral branches with a null gap separating them. However, by
including the correction terms to the simple models, the line spacing of the branches
will not be constant at 2B.

R Branch
The new expression for R-branch energies as a function of the vibrational and
rotational quantum numbers is

R.v00; J00/ D �GC B0.J00 C 1/.J00 C 2/ � B00.J00/.J00 C 1/
D �GC 2B0 C .3B0 � B00/J00 C .B0 � B00/.J00/2; (2.67)

where, as before,

�G D G.v0/ � G.v00/ (2.68)

For clarity, these expressions are typically written without the 00 and assumed to be a
function of the lower-state quantum numbers only. Thus, Eq. (2.67) can be written as

R.v; J/ D �GC 2B0 C .3B0 � B00/J C .B0 � B00/J2; (2.69)

where J refers to J00.

P Branch
Similarly, for the P branch,

P.v00; J00/ D �GC B0.J00 � 1/.J00/ � B00.J00/.J00 C 1/
D �G � .B0 C B00/J00 � .B00 � B0/.J00/2 (2.70)
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Writing with J instead of J00 produces

P.v; J/ D �G � .B0 C B00/J � .B00 � B0/J2 (2.71)

2.6.3 Rotational Constant

As shown above, the rotational constant depends on the vibrational state of the
molecule.

B0 D Be � ˛e.v
0 C 1=2/ (2.72)

B00 D Be � ˛e.v
00 C 1=2/ (2.73)

And, for v0 D v00 C 1,

B0 � B00 D �˛e: (2.74)

Since ˛e > 0,

B0 < B00: (2.75)

As a result, the line spacing decreases with J in the R branch and increases with
J in the P branch.

2.6.4 Bandhead

The unequal spacing in the P and R branches leads to a bandhead in the R branch
as the lines “wrap around” on themselves (Fig. 2.13). This bandhead occurs where
dR.J/=dJ D 0.

dR.J/

dJ
D .3B0 � B00/„ ƒ‚ …

2B0�˛e

C2 .B0 � B00/„ ƒ‚ …
�˛e

J00 D 0 (2.76)

The location of the bandhead is

J00bandhead �
2B0 � ˛e

2˛e
� B

˛e
(2.77)
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Fig. 2.13 Unequal line spacing due to non-rigid rotation leads to a bandhead in the R branch for
diatomic molecules

Example: CO Bandhead
For CO,

B

˛e
� 1:9

0:018
� 106

Thus, the bandhead will only be observed in high temperature spectra.

2.6.5 Finding Key Parameters: Be, ˛e, !e, xe

Assuming access to the absorption spectra of a molecule, e.g. a tabular listing of the
R- and P-branch line positions for the v D 1  0 and v D 2  0 bands, how
would one extract the key parameters?

First Approach
Use measured band origin data for the fundamental and first overtone with v00 D 0

to get !e and xe.

�G1 0 D G.1/ � G.0/ D !e.1 � 2xe/ (2.78)

�G2 0 D G.2/ � G.0/ D 2!e.1 � 3xe/ (2.79)



34 2 Diatomic Molecular Spectra

Second Approach
Fit rotational transitions to the line spacing equation to get Be and ˛e.

! D !o C .B0 � B00/m2 C .B0 C B00/m (2.80)

where

m D
(
�J for the P-branch

J C 1 for the R-branch
(2.81)

Equation (2.80) is known as the Fortrat parabola formula. Finding B0 and B00 allows
direct determination of Be and ˛e. The Fortrat parabola can also be useful in the
analysis of electronic systems (Sect. 2.7.3).

Third Approach
Use the “method of common states” to get Be and ˛e. In general,

F.J/ D BJ.J C 1/ (2.82)

Then, for Fig. 2.14, drawn for a “common upper state,”

�E D F.J C 1/ � F.J � 1/ D R.J � 1/ � P.J C 1/ (2.83)

�E D B00.J C 1/.J C 2/ � B00.J � 1/.J/ (2.84)

Fig. 2.14 Energy level diagram for the method of common upper states
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Therefore,

�E D B00.4J C 2/ (2.85)

The energy difference between R and P branch transitions to a common upper
state J0 D J leads directly to a value for B00. Simply divide�E by .4JC2/. A similar
approach, with a common lower state, leads directly to a value for B0. Knowledge
of B0 and B00 can be used to determine the parameters Be and ˛ in Eq. (2.50). The
method of common states will also find use in analysis of electronic spectra where
B0 and B00 differ in the two electronic states of an absorption or emission spectra.

2.6.6 Effects of Isotopic Substitution

What are the effects of isotopic substitution on absorption or emission spectra?
Changes in nuclear mass (neutrons) do not change re or bond stiffness since these
properties depend primarily on electric binding forces, which are unchanged with
mass of nuclei. Since B varies as 1=�,

B / 1

I
/ 1

�
;

the spacing of lines changes as � changes. Similarly, the fundamental frequency of
vibration, !e, varies with �,

!e /
s

ks

�
/
s
1

�
;

therefore the band origin also changes as � changes.

Example: CO Isotope, 13C16O
What can be learned from the combined IR absorption spectra of 12C16O and
13C16O? After the lines are assigned, the line spacing can be used to infer the B
values of both species, yielding:

B12C16O D 1:92118 and B13C16O D 1:83669 cm�1 (2.86)

1. The change in line spacing from 12C16O to 13C16O is �.2B/ D �0:17 cm�1

2. The ratio of the B values can be used to calculate the mass of 13C from the
known value of m12C D 12:0, i.e.

B12C16O

B13C16O

D �13C16O

�12C16O

) m13C D 13:0006 (2.87)

This calculation is within 0.02 % of the actual value, 13.0034!
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3. The relative B values can also be used to estimate the shift in the band origin:

!e;13C16O

!e;12C16O

D
s

B13C16O

B12C16O

D p0:956

Using !e;12C16O � 2200 cm�1, the change in band origin is

�!e � 50 cm�1

See Banwell [5] (Fig. 3.7, p. 67) for an example absorption spectrum in which
the natural abundance of 13C (about 1.1 %) is evident.

2.6.7 Hot Bands

Hot bands are those that involve excited states, i.e. having a lower state with a
vibrational quantum number greater than zero. When are hot bands important?
Recall, the Boltzmann fraction for vibrational states is

Nvib

N
D gvib exp.�v�vib=T/

Qvib
(2.88)

D exp.�v�vib=T/ .1 � exp.��vib=T// (2.89)

Hence, the necessary condition to allow neglect of hot bands is that T 	 �vib. Since
the characteristic vibrational temperature, �vib, often exceeds 103 K (see Table 2.2),
hot bands can often be neglected in absorption and emission.

Example: CO Hot Bands

�vib;CO � 3000K

N1
N
D
�

e�10 � 0 T D 300K
e�1.1 � e�1/ � 0:23 T D 3000K

Therefore, “hot bands” become important only when the temperature is signif-
icant relative to the characteristic vibrational temperature.
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2.7 Electronic Spectra of Diatomic Molecules

We have so far introduced models to adequately interpret or predict the rovibra-
tional spectra of diatomic molecules. We are now ready to incorporate electronic
transitions. Electronic spectra involve transitions between different potential energy
wells, each representing a different electronic configuration (and hence energy).

2.7.1 Potential EnergyWells

There is a different potential energy well for each electronic configuration
(described by one or more electronic quantum numbers). Potential wells illustrate
the variation of electronic forces with internuclear spacing, since

F D �dV

dr
(2.90)

where F is the force, V is the potential energy, and r is a one-dimensional distance
(often the internuclear distance for diatomics). As the electronic configurations
change, the electronic forces change, and thus the potential wells change in shape,
energy minimum (Te) and equilibrium internuclear distance (re) (see Fig. 2.15).

X

A

V

r

νmin

νmax

Te

De"

De'

Eex

re"

re'

Fig. 2.15 Sample potential wells for the X and A electronic energy states
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Example: Potential Energy Wells for N2

A is the first excited state.
X is the ground electronic state.

Te is the energy of the A-state with respect to the ground
state (measured between the well minimums).

�min; �max are the extremes of photon energies for discrete
absorption from v00 D 0 (note that the end-points
are at v00; v0 D 0 and at the dissociation limit of the
A-state).

Eex is the difference in electronic energy of atomic frag-
ments.

De is the dissociation energy of the lower (00) or upper (0)
electronic state (not to be confused with the rotational
distortion constant, which, unfortunately, sometimes
shares the same symbol).

Characteristic Event Times and the Franck–Condon Principle
Absorption and emission associated with molecular transitions from one potential
well to another is essentially instantaneous because the time to move or excite
electrons is much shorter than the time required to move or excite nuclei during
vibrations or rotations.

�elec � 10�16 s time to move/excite electrons
�vib � 10�13 s characteristic time for vibration
�coll � 10�12 s duration of collision
�rot � 10�10 s characteristic time for rotation

�emiss � 10�6–10�8 s “radiative lifetime”

It is clear that �elec 	 �others.
The Franck–Condon principle reflects the relative characteristic times by approx-

imating that the internuclear distance, r, remains constant during an electronic
transition. In other words, during the time it takes for the electronic transition to
occur, the molecule’s vibration and rotation appear frozen (hence, we draw lines
vertically between potential wells to represent an electronic transition at constant r).

Some additional points of note:

1. It is evident that �coll � �vib. This can lead to resonant behavior between
vibrations and collisions.

2. The “radiative lifetime,” �emiss, is the average time a molecule (or atom) spends
in an excited state before undergoing radiative emission.
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V

r

Fig. 2.16 Sample potential wells for discrete electronic spectra

2.7.2 Types of Spectra

Electronic spectra can be discrete or continuous. Sometimes a spectrum can contain
both discrete and continuous parts, depending on the potential energy curves of the
states involved.

Discrete
When the equilibrium internuclear distance is approximately the same for the upper
and lower potential energy wells, r0e � r00e ; the result is an electronic spectrum with
discrete features (Fig. 2.16).

Recall that:

1. r � constant in absorption and emission (Franck–Condon Principle)
2. vibrationally excited molecules (v ¤ 0) spend more time near the edges of the

potential well, so that transitions to and from these locations will be favored
3. lowest v00 levels are the most populated

Continuum
Sometimes one of the states involved in a transition has no equilibrium internuclear
distance (the atoms only repel each other), or the transition frequency exceeds the
dissociation limit. In these cases, the electronic spectrum is a continuum. Examples
of each of these cases are shown in Fig. 2.17.

1. For the left figure, � > � leads to a continuous absorption spectrum, and � < �
results in a discrete spectrum.
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V

r

kν kν

V

r

repulsive
state

continuous
spectrum

noitprosbanoitprosba

Fig. 2.17 Samples of potential wells (top) that result in continuous spectra (bottom). The
parameter k� is an absorption coefficient, i.e. a measure of absorption strength

2. For the right figure, the upper state is always repulsive. That is to say, there is no
“well” in the potential curve, and the molecule is equally likely to be excited by
any sufficiently energetic photon. The absorption spectrum is thus a continuum.

2.7.3 Rotational Analysis

Here we wish to analyze the rotational transitions within a single band (v0; v00) of an
electronic system. As with the rovibrational transition analysis, we begin by simply
adding the expressions for energy. For the upper state,

T 0 D Trot C Tvib C Telec

D F.J0/C G.v0/C T 0elec

D B0J0.J0 C 1/C !e
0.v0 C 1=2/ � !exe

0.v0 C 1=2/2 C T 0elec„ ƒ‚ …
C0(const. for rot. analysis in a single band)

(2.91)
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For the lower state,

T 00 D Trot C Tvib C Telec

D F.J00/C G.v00/C T 00elec„ ƒ‚ …
C00

(2.92)

Note that if the lower state is in the ground electronic state, T 00elec � 0. Defining

C D C0 � C00

and combining Eqs. (2.91) and (2.92) gives

T 0 � T 00 D B0J0.J0 C 1/ � B00J00.J00 C 1/C C (2.93)

Similar to the rovibrational analysis, we can simplify Eq. (2.93) to a Fortrat parabola
by creating a new variable,

m D
(
�J for the P branch;

J C 1 for the R branch;
(2.94)

where J D J00. Now, Eq. (2.93) reduces to a parabolic formula.

T 0 � T 00 D am2 C bmC C (2.95)

Equation (2.95) is virtually the same as Eq. (2.80), except for the use of the constant
C rather than !o, and the introduction of constants a and b:

a D B0 � B00

b D B0 C B00

The bandhead can be found by taking the derivative of Eq. (2.95) and setting it equal
to zero. Letting T D T 0 � T 00,

dT

dm
D 2amC b D 0 (2.96)

Therefore,

mbandhead D � b

2a
D B0 C B00

2.B00 � B0/
(2.97)
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Note: 1. If r0e > r00e , then B0 < B00, a < 0, and the bandhead is in the R branch.
2. If r0e < r00e , then B0 > B00, a > 0, and the bandhead is in the P branch.

Example: O2

The X3†�g ground state has B00 D 1:44 cm�1, and the A3†Cu upper state has
B0 D 1:05 cm�1. The bandhead location is at

mbh D 2:49

2.0:39/
� 3

Note that the bandhead can occur at low J owing to the large possible
differences in B for different electronic states. This particular electronic system,
known as the Herzberg bands, is comprised of weakly “forbidden” transitions
(meaning they are not allowed via typical selection rules but occur with low
probability due to second-order effects). A much stronger transition system in
O2 is B3†�u  X3†�g , known as the Schumann–Runge system. Be for B3†�u is
0.82 cm�1.

Fortrat Parabola
One can graph the Fortrat parabola by plotting line positions, and use it to find
rotational constants as well as the bandhead (Fig. 2.18). The Fortrat parabola can be
used for rotational analysis by following these steps:

1. separate spectra into bands (v0; v00) for detailed analysis
2. tabulate positions of lines in a given band
3. identify null gap and label lines (not always trivial)
4. infer B0 and B00 from the Fortrat equation or method of common states

Note: When labelling lines, keep these items in mind:

• If there is no bandhead, then a null gap is obvious.
• If there is a bandhead,then lines overlap.
• If there is a bandhead, it is recommended to start from the wings of

the parabola and work backwards, using a constant second difference.

The first and second differences are illustrated as follows:

first difference: T1.m/ D T.mC 1/ � T.m/
second difference: T2.m/ D T1.mC 1/ � T1.m/ D 2.B0 � B00/ D 2a

Therefore, the second difference is constant in each branch!
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Fig. 2.18 Fortrat parabola for the case with B0 < B00

Example: Rotational Analysis of Electronic Spectra
The following line positions (in cm�1) were observed in the .v0; v00/ D .0; 0/

band of an electronic transition .A3…0Cu � X1†Cg / in 35Cl2; see the spectrum
below. Find B0e;B00e ; r0e; r00e and the null gap frequency (Figs. 2.19 and 2.20).

1. �0 D 18;147:40 cm�1 (found by inferring the null gap)
2. 2a D �0:173 (found from average of second differ-

ences; note a < 0 as the first differences are negative
except for small J in R-branch)

3. use common states to get B00 (Fig. 2.21)
R.0/ D 18147:71, P.2/ D 18;146:25
R.0/ � P.2/ D 1:46
B00 D 1:46=6 D 0:243 cm�1

B0 D B00 C a D 0:157 cm�1

4. Solve for r0; r00 from B0 and B00

Compare the values determined from rotational analysis with those listed in
Herzberg [4]:

B00e D 0:2438; ˛e D 0:0017) B000 D 0:2438 � 0:0008 D 0:243
B0e D 0:158; ˛e D 0:003) B00 D 0:158 � 0:0015 � 0:157
Te D 18310:5; r00e D 1:988Å; r0e D 2:47Å
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18147.85 R(1)

18147.81 R(2)

18147.71 R(0)

18147.60 R(3)

18147.22 R(4)

18146.91 P(1)

18146.66 R(5)

18146.25 P(2)

18145.93 R(6)

18145.42 P(3)

18145.02 R(7)

18144.41 P(4)

18143.94 R(8)

18143.23 P(5)

18142.69 R(9)

18141.87

18140.34

18138.64

18136.76

null gap at 18147.40

.14

.31

.49

.66

.83

1.01

1.18

1.36

1.53

1.70

1.88

.17

.18

.17

.18

.17

.17

.18

first
diff

second
diff

.04

.21

.38

.56

.73

.91

1.08

1.25

.17

.17

.18

.17

.18

.17

.17

first
diff

second
diff

bandhead

Fig. 2.19 Second difference rotational analysis for a < 0

1813818136 18142 181461814418140

Fig. 2.20 Rotational spectrum in the 0–0 band of 35Cl2

2.7.4 Vibrational Analysis

Vibrational analysis can be used to determine !e and xe.

Band Origin Data
Absorption gives information on upper states, and emission gives information on
lower states (Fig. 2.22).
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P(2)
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1

1

0 R(0)

Fig. 2.21 Common upper states

V

r

Fig. 2.22 Absorption and emission between two potential wells

Deslandres Table
Tables of band origin values, known as Deslandres Tables, can be used via row
analysis to get !00e and !exe

00. With column analysis, information regarding !e
0 and

!exe
0 can be retrieved (Fig. 2.23).

Recall:

G.v/ D !e.v C 1=2/ � !exe.v C 1=2/2
G.1/ � G.0/ D !e � 2!exe

G.2/ � G.1/ D !e � 4!exe


2!exe
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v''          0       1       2       3
v'

0          ---      ---     ---

1

2

3

ν0,3

ν

ν

2,0

3,0

column analysis

for ω ωe e e', x '

row analysis for '', x ''ω ωe e e

ω ωe e e'-2 x '

ω ωe e e'-4 x '
2 x 'ωe e

Fig. 2.23 Deslandres table with row and column analysis

Table 2.5 Analysis techniques and their
related fundamental quantities

Analysis Parameters

Rotational analysis Be; ˛e, De, ˇe

Vibrational analysis !e, !exe

Emission analysis De
00 and G.v00/

Absorption analysis De
0, Te and G.v0/

2.8 Summary

Table 2.5 summarizes the analytical techniques covered thus far and the fundamental
quantities that can be determined with them. Rotation is described by a rigid rotor,
characterized by the rotational constant, B; however, non-rigid corrections due to
vibrational (Be, ˛e ) and centrifugal (De, ˇe) distortion are often used to improve the
model. Diatomic vibrations are usually described primarily as a harmonic oscillator
(!e) with a small, anharmonic correction (!exe) that may become important at high
vibrational energies.

Absorption spectra, in general, can provide information on the upper state
properties like De

0 (dissociation energy), Te, and G.v0/, as shown in Fig. 2.24.
Emission spectra, conversely, provide information about the lower state, e.g., De

00
and G.v00/, as shown in Fig. 2.25.
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Δ

Δ

Eex

Fig. 2.24 Example potential wells and corresponding absorption spectrum for upper state prop-
erties
Typical analyses for absorption include:

1. using band origin data to give G.v0/ and hence G.v0 D 0/.
2. using measured �0 D Te C G.v0 D 0/� G.v00 D 0/ to find Te.
3. using measured � to give De

0 via �C G.v00 D 0/ D Te C De
0.

Δ

Δ

Fig. 2.25 Potential curves and emission spectrum for lower-state properties
Typical analyses for emission include:

1. using band origin data (Deslandres table) from fixed v0 to find G.v00/.
2. using measured � and known Te and G.v0/ to find De

00 via De
00 C� D Te C G.v0/.
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2.9 Exercises

1. Which of the following molecules would show (a) a microwave (rotational)
spectrum, and (b) an infrared (vibrational) spectrum: Cl2, HCl, CO2?

2. The rotational spectrum of 1H127I shows equidistant lines 13.102 cm�1 apart.
What is the rotational constant, moment of inertia, and bond length for this
molecule? What is the wavenumber of the J D 8 ! J D 9 transition? Find
which transition gives rise to the most intense spectral line at 300 K. Calculate
the angular velocity (in revolutions per second) of an HI molecule when in the
J D 0 state and when in the J D 10 state.

3. Three consecutive lines in the rotational spectrum of H79Br are observed at
84.544, 101.355, and 118.112 cm�1. Assign the lines to their appropriate J00 ! J0
transitions, then deduce values for B and D, and hence evaluate the bond length
and approximate vibrational frequency of the molecule.

4. The carbon monoxide molecule, 12C16O, has a rotational constant, Bv , of
1.9226 cm�1. Boltzmann’s equation gives the ratio of the population in rotational
energy level J to the total number of molecules as shown below.

NJ

N
D gJ

Qrot
exp

��E

kT

�

The rotational degeneracy (i.e., the number of states with the same energy level),
gJ , is given by 2J C 1, and the partition function Qrot is given by T=�rot, where
�rot D Bv

�
hc
k

�
.

(a) Find the rotational level that has the maximum population if T D 1000K.
(b) Calculate the temperature which maximizes the population fraction NJ=N for

the J value found in part (a).
(c) Plot NJ=N as a function of J for the two temperatures in (a) and (b).

5. The following are the line positions in wavenumber units of the fundamental and
first overtone bands of BBr, with v00 D 0.

674.31 1344.6

675.30 1345.5

676.28 1346.5

678.23 1348.4

679.19 1349.4

680.15 1350.4

(a) Assign proper labels to all of the lines and calculate Be, ˛, !e, !exe.
(b) Estimate the centrifugal distortion coefficient De and use it to determine the

centrifugal correction to the position of the P(3) line of the fundamental band.
Assume D0 D D1 D De.

(c) Calculate the position of the P(1) and R(0) lines for the second overtone band
of BBr.
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6. The band origin of a transition in C2 is observed at 19,378 cm�1, while the
rotational fine structure indicates that the rotational constants in excited and
ground states are, respectively, B0 D 1:7527 cm�1 and B00 D 1:6326 cm�1;
the centrifugal distortion parameters D0 and D00 are negligible. Determine the
position of the bandhead, i.e. the branch, the value of J00, and the frequency of
the transition. Which state has the larger equilibrium internuclear distance, re?

7. The following lines (wavenumber units) were observed in the 40–000 band of the
Lyman series of H2 ŒB1†Cu  X1†Cg 	:

95,253.64 95,193.60 95,105.72 95,044.22
94,897.76 94,805.51 94,600.47 94,477.47
94,213.94 94,060.10 93,737.88 93,553.38
93,172.58 92,957.34 92,517.96 92,271.96
91,773.99

Determine B04, B000 , and the null gap.

Helpful Hints:

(a) 1† �1 † bands have only two branches: P and R.
(b) Since the H atom nuclear spin is 1/2, Fermi statistics apply and all J states

are populated.
(c) It is often helpful in sorting out a spectrum to plot the line positions along

the frequency axis.
(d) If a bandhead is apparent, you may wish to begin at the opposite end of the

spectrum and try to find a pattern with constant second differences.
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3Bond Dissociation Energies

The bond dissociation energy, De, is a critical parameter in thermodynamics,
spectroscopy, and kinetics. For example, in thermodynamics, bond energies directly
affect heats of formation and reaction. Dissociation energies thus also play key roles
determining rates of reaction as a function of temperature. This chapter will give
several examples of how spectroscopic information can reveal De (of ground and
excited electronic states).

3.1 Birge–Sponer Method

A simple (but highly approximate) model, known as the Birge–Sponer method, can
be used to directly convert spectroscopic parameters to dissociation energies [1]. It
is based on a model of constant anharmonicity. If the anharmonicity is constant, the
vibrational level spacing decreases to zero in the limit of dissociation.

G.v/ D !e.v C 1=2/ � !exe.v C 1=2/2 (3.1)

G.v C 1/ D !e.v C 3=2/ � !exe.v C 3=2/2 (3.2)

�G.v/ D G.v C 1/ � G.v/ D �2!exev C .!e � 2!exe/ (3.3)

The expression above [Eq. (3.3)] is linear with the form

�G.v/ D av C b (3.4)

where the slope, a, is �2!exe and the intercept, b, is !e� 2!exe.�G, the separation
between vibrational transitions, goes to zero when v D vD, as shown in Fig. 3.1,
and the corresponding dissociation energy is G.vD/. (Note that G.vD/ is also
proportional to the integrated area under the curve of Fig. 3.1.)

© Springer International Publishing Switzerland 2016
R.K. Hanson et al., Spectroscopy and Optical Diagnostics for Gases,
DOI 10.1007/978-3-319-23252-2_3
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Fig. 3.1 Illustration of Birge–Sponer method for finding the dissociative vibrational level, vD, and
the dissociation energy, De

The “real” values of �G.v/ are not perfectly linear with quantum number v
because the anharmonicity of a real molecule tends to increase near the dissociation
limit. The estimation by the Birge–Sponer method thus tends to overpredict the
dissociation energy, De.

At the dissociation limit, v D vD and �G.vD/ D 0.

�G.vD/ D 0 D �2!exevD C .!e � 2!exe/ (3.5)

Solving for vD yields

vD D !e

2!exe
� 1 (3.6)

Substituting Eq. (3.6) into

De D !e.vD C 1=2/ � !exe.vD C 1=2/2 (3.7)

gives

De D !e
2

4!exe
� !exe

4
� !e

2

4!exe
D !e

4xe
(3.8)

Example: HCl
For HCl, !e D 2990 cm�1 and xe D 0:0174. Thus,

vD D 27:7! 27 next lowest integer
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and

De D 513 kJ/mole.

A more accurate value, based on known thermochemistry, is De D 427 kJ/mole.
Thus, Birge–Sponer gives a good first estimate, but overpredicts De by about
20 %.

3.2 Thermochemical Approach

The thermochemical approach is another method for finding De but can also depend
indirectly on spectroscopic data. This method is based on evaluating the extent of
a reaction as a function of temperature. For example, if the reaction were I2 ! 2I,
then the equilibrium constant is given by

Kp D P2I
PI2

and its change with temperature may be given by Van’t Hoff’s equation:

d.ln Kp/

dT
D �H

RT2

where

�H D
X

viHi D Hprod � Hreact D De C 2
Z

I
OcpdT �

Z
I2

OcpdT

Thus, measurements of partial pressures can be used to infer Kp.T/ and hence
both �H and De

00. Partial pressures or species concentrations are often measured
spectroscopically (e.g., by laser absorption) because these techniques provide an
experimentalist with the ability to accurately measure a single species within a
mixture.

3.3 Predissociation

Another way of establishing key energies is with the curve-crossing method, so
named because it refers to a predissociative excited electronic state whose potential
curve can cross the potential curve of the ground electronic state [1]. Two examples
are shown below: HNO (nitroxyl) and N2O (nitrous oxide).
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Fig. 3.2 HNO structure
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A
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2

AA ′′1~

AX ′1~

Fig. 3.3 Curve-crossing method for HNO dissociation

3.3.1 HNO

Even though HNO is nonlinear (Fig. 3.2), we can plot its energy level diagram
versus H–NO bond distance (i.e., for dissociation of HNO to HCNO) (Fig. 3.3).

�E � �HR;

but

�HR D �HH
f C�HNO

f ��HHNO
f

Therefore, we can solve for �HHNO
f from an estimate of �E, and knowledge of

�HH
f and �HNO

f .

Recall: 1 kcal
mol D 349:7 cm�1

1 cal D 4:187 J

Note: 1. Dissociation (without curve-crossing) of the ground state HNO leads
to NO.2†/, rather than the lower energy state NO.2…/.
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ν

absorption

νo=A-G(v''=0)

Fig. 3.4 Allowed absorption spectrum for HNO

Fig. 3.5 N2O structure

2. Predissociation occurs at 590 nm (17,000 cm�1) in absorption spectra,
corresponding to A � 49 kcal/mol. This is then an upper bound
on �HR.

3. �HR.0 K/ � �HH
f C �HNO

f � �HHNO
f , and hence we can use the

upper bound value of �HR, and known values for �HH
f and �HNO

f to
establish a value for the heat of formation of HNO, �HHNO

f .
4. Because both electronic states of HNO have the same multiplicity

(singlet states with spin D 0), there is an allowed absorption spectrum
(Fig. 3.4).

5. For polyatomic molecules, the electronic term symbols include a tilde
(�) over the initial symbol; Roman symbols are used to denote the
electronic structure (e.g., 1A00 and 1A0) unless the molecule is linear, in
which case Greek symbols are used (e.g., 1† or 3…).

3.3.2 N2O

Nitrous oxide is important in combustion chemistry and is linked to NO production
and the greenhouse effect. N2O is also a source of atomic oxygen in shock tube
kinetics experiments (Fig. 3.5).

There are three relevant energies on the diagram in Fig. 3.6: the depth of
the bound potential well, De

00; the energy of the curve intersection, Eact; and
the difference in energy between the repulsive state products and the bottom of
the ground state potential well.
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Fig. 3.6 Potential energy wells for N2O

Note: 1. There is a spin change between the ground electronic state of N2O
and the excited repulsive state shown. As a result, there is no strong
absorption process between these electronic states.

2. The dissociation products may result in either O.1D/ or O.3P/, but the
latter is lower in energy, and hence more likely.

3. A measurement of the dissociation rate for

N2OCM! N2 C OCM;

e.g. in a shock tube gives Eact, i.e. k / exp.�65 Œkcal=mole	=RT/.
4. The observed activation energy of 65 kcal/mol provides a lower bound

on the dissociation energy, De
00.

3.4 Exercises

1. A banded structure is observed in the absorption spectrum of ground-state
oxygen, which changes to a continuum at a wavelength corresponding to
7.047 eV. The upper electronic state of molecular oxygen dissociates into one
ground state .3P/ atom and one excited .1D/ atom; the excitation energy of
the .1D/ atom relative to the .3P/ atom is 1.967 eV. Determine D00o for O2 in
kcal/mole.

2. The zero-point energy of the ground state of O2 is 793 cm�1, and the difference
in energy between the potential-energy minima of the two electronic states, Te,
of Problem 1 is 49,800 cm�1. Determine De for the upper and ground states of
O2 in cm�1.

3. Partial electronic band origin data for an absorption spectrum from the ground
electronic state is listed below.
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v0 v00 D 0

1 31,800 cm�1

2 32,400 cm�1

3 32,800 cm�1

(a) Estimate the bond dissociation energy of the upper electronic state
(b) If G.v00 D 0/ is 575 cm�1, what is Te in cm�1?

4. Given the following band origin data (in cm�1) for an electronic system:
(a) Determine !0e, !ex0e, !00e , !ex00e
(b) Calculate v0D and D0e using the Birge–Sponer method

v0 v00 D 0 v00 D 1 v00 D 2 v00 D 3

0 25,000

1 24,700

2 26,300

3 26,800 25,800 24,800 23,800

Reference

1. C.N. Banwell, E.M. McCash, Fundamentals of Molecular Spectroscopy, 4th edn. (McGraw-Hill
International (UK) Limited, London, 1994)
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The mechanism for electromagnetic radiation to interact with polyatomic molecules
is similar to the process discussed previously for diatomics. Molecular vibrations
and rotations cause changes in electric dipole moments that occur at resonant fre-
quencies. At these frequencies, molecules can interact with radiation (via emission,
absorption, or scattering). The difference is that polyatomic molecules have more
rotational and vibrational modes, and each of these modes gives rise to additional
possible resonances.

This chapter will introduce the fundamental concepts necessary to understand the
spectra of various groups of polyatomic molecules. In so doing, we will also present
how groups of molecules are classified by their geometry, e.g. linear molecules,
symmetric tops, spherical tops, and asymmetric rotors. Similar to our presentation
of the material on diatomics, we will first present the aspects of rotational lines and
vibrational bands separately before combining them into rovibrational spectra.

4.1 Rotational Spectra of Polyatomic Molecules

A body or molecule is characterized by three principal axes of molecular rotation,
about which the three principal moments of inertia, IA, IB, and IC, are defined. These
axes pass through the center of mass and are orthogonal to each other (see Fig. 4.1).
Molecules are classified in terms of the relative values of IA, IB, and IC. There is
more than one convention for assigning the A-axis, but we will say that the A-axis is
the “unique” or “figure” axis, along which lies the molecule’s defining symmetry.

© Springer International Publishing Switzerland 2016
R.K. Hanson et al., Spectroscopy and Optical Diagnostics for Gases,
DOI 10.1007/978-3-319-23252-2_4
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Fig. 4.1 Orthogonal axes and moments of inertia for ammonia, a polyatomic molecule

4.1.1 Linear Molecules

Linear molecules are those for which all the atoms are “on a line,” including
diatomics. The principal moments of inertia are IB D IC and IA � 0, where the
A-axis passes through each atom. IA is actually finite, but quantized momentum
means that the molecule will remain in the lowest state of rotation about the A-axis,
so that effectively, IA D 0. Examples of linear molecules include OCS, HCN, and
HC2Cl.

Linear polyatomic molecules must be asymmetric to have a permanent electric
dipole moment and resulting rotational spectra. Linear molecules that do not have
a permanent dipole moment (i.e., molecules that are both linear and symmetric),
such as CO2 and C2H2, are not microwave active. Isotopic substitution in symmetric
molecules does not alter bond lengths or charge distributions, and thus does not yield
dipole moments.

Linear polyatomics can be treated the same as diatomics, with one value of I.
Therefore, the linear polyatomic rotational constant, rotational energy levels, and
transition frequencies are the same as for diatomics.

B D h

8�2IBc
(4.1)

F.J/ D BJ.J C 1/ � DJ2.J C 1/2 (4.2)

�.J/ D 2B.J00 C 1/ � 4D.J00 C 1/3 (4.3)

Compared to diatomics, polyatomic molecules typically have a larger moment of
inertia, I, and thus have smaller rotational constants, B, and smaller line spacing.

For linear molecules with N atoms, there are N�1 bond lengths that can be found
with spectroscopy. Absorption/emission spectra yield the rotational constant, B, and
its associated moment of inertia, IB. Using N � 1 isotopes yields measurements of
N � 1 different values for IB; the resulting N � 1 equations can be solved for the
N � 1 bond lengths. Carbon oxysulfide provides one such example (Fig. 4.2).
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Example: OCS, Carbon Oxysulfide

Fig. 4.2 Model of the linear polyatomic molecule OCS

There are two bond lengths, rCO, and rCS, which can be determined from the
measured moment of inertia I from two isotopes, e.g.

I16O12C32S D F.masses; rCO; rCS/

I18O12C32S D F.masses; rCO; rCS/

4.1.2 Symmetric Top

Molecules with symmetric top structure are those that have two equivalent moments
or inertia, both of which are different from the third moment. Molecules such
as boron trichloride (BCl3) and ammonia (NH3) are symmetric tops. The A-axis
corresponds to the figure axis of a symmetric top, and thus is also the main axis of
symmetry. For symmetric tops, IA ¤ IB D IC, and IA ¤ 0 (Fig. 4.3). Similar to the
description for linear molecules, the rotational constants are related to the moments
of inertia by

A D h

8�2IAc
; B D h

8�2IBc
; C D h

8�2ICc
Œcm�1	 (4.4)

Typically, the equivalent moments of inertia for symmetric top molecules are
described simply as IB, and the main axis moment is IA. The relative magnitudes of
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Fig. 4.3 Symmetric top structure. The A-axis passes through C–F for CH3F; for BCl3, it is
perpendicular to the plane formed by the atoms and passes through B

the inertial moments or rotational constants can be used to further distinguish the
tops as Prolate or Oblate:

Prolate: IA < IB D IC

A > B D C Example: CH3F
Oblate: IA > IB D IC

A < B D C Example: BCl3

Since symmetric tops have two main directions of rotation, they have two
quantum numbers to describe rotational energy, J and K, where J represents the total
angular momentum (0; 1; 2; : : : ), and K represents the angular momentum about the
A-axis. There are 2J C 1 possible values of K for each value of J, with K restricted
to J; J � 1; : : : ; 1; 0;�1; : : : ;�J. All non-zero values of K are doubly degenerate
since states, that differ only by the sign of K, have different directions of motion but
the same energy.

J Total angular momentum: 0, 1, 2, : : :
K Angular momentum about the A-axis: J; J�1; : : : ; 1; 0;�1; : : : ;�J

There are 2J C 1 possibilities of K for each J. Positive and negative
values of K are allowed, without a change in energy.

As before, the quantized total angular momentum is (see Eq. (2.5))

IA
2!2A C IB

2!2B C IC
2!2C D J.J C 1/„2 (4.5)

Here !i is the rotational angular velocity. In addition, the angular momentum about
the A-axis is quantized.

IA
2!2A D K2„2 (4.6)
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Energy Levels
The energy levels, assuming rigid rotation, from Eqs. (4.5) and (4.6) are given by

EJ;K D 1

2

X
i

Ii!
2
i (4.7)

which leads, after some algebra, to

F.J;K/ D BJ.J C 1/C .A � B/K2 (4.8)

Note that the sign of K has no effect on the rotational energy, i.e., the direction of
rotation does not affect the rotational energy.

Selection Rules
The selection rules that result from quantum mechanics are:

�J D C1 As before for pure rotation
�K D 0

The interpretation is that since there is no dipole moment for rotation about the
A-axis, no changes in K will occur with absorption or emission.

Line Positions
The transition frequencies for the polyatomic rigid rotor are

�J;K D F.J C 1;K/ � F.J;K/ D 2B.J C 1/ Œcm�1	 (4.9)

Again, since the line positions are differences in energy levels, they are independent
of K for a rigid rotor. K-dependency is introduced for non-rigid rotation.

Non-rigid Rotation
Energy level descriptions for non-rigid rotation include higher-order correction
terms with centrifugal distortion constants that are J-dependent (DJ), K-dependent
(DK), and J–K dependent (DJK).

F.J;K/ D BJ.J C 1/C .A � B/K2 � DJJ2.J C 1/2

� DJKJ.J C 1/K2 � DKK4

(4.10)

�J;K D 2.J C 1/
�
B � 2DJ.J C 1/2 � DJKK2

	
(4.11)

Note that there are 2JC 1 components (K values) for each total angular momentum
quantum number J but only JC 1 frequencies, since �K and K are degenerate. The
last two terms in Eq. (4.11) are small except at very high J and K values. The reader
should gain some idea of the magnitude of these corrections from the following
example.
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Example: CH3F, Methyl Fluoride
B D 0:851 cm�1

DJ D 2 � 10�6 cm�1

DJK D 1:47 � 10�5 cm�1

4.1.3 Spherical Top

Spherical tops are characterized by three equal moments of inertia.

IA D IB D IC (4.12)

Molecules such as CH4 are spherically symmetric (Fig. 4.4). There is no permanent
electric dipole moment along any of the principal axes; therefore, spherical tops
have no rotational spectra.

4.1.4 Asymmetric Rotor

Asymmetric rotors (also known as asymmetric tops) are characterized by three
moments of inertia, none of which are equal to each other.

IA ¤ IB ¤ IC (4.13)

This category is the most complex and will not be addressed here. Examples of
asymmetric rotors include H2O and NO2 (Fig. 4.5).

4.1.5 Rotational Partition Function

The classical expressions for polyatomic rotational partition functions are different
for the various molecular structures. Linear polyatomics can be treated as diatomics,
and thus, from before,

Fig. 4.4 Molecular structure of CH4
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Fig. 4.5 Molecular structure of H2O

Table 4.1 Symmetry factors for a few poly-
atomic molecules

Molecule Symmetry factor,  Molecule type

CO2 2 Linear

NH3 3 Symmetric top

CH4 12 Spherical top

H2O 2 Asymmetric rotor

Qrot D kT

hcB
; (4.14)

where  is the molecule-dependent symmetry factor (defined in Sect. 2.2.7)
(Table 4.1). For symmetric top molecules, where B D C,

Qrot D 1



s
�

AB2

�
kT

hc

�3
: (4.15)

For spherical top molecules, the rotational partition function simplifies even fur-
ther to

Qrot D 1



s
�

B3

�
kT

hc

�3
: (4.16)

Similarly, for an asymmetric rotor:

Qrot D 1



s
�

ABC

�
kT

hc

�3
: (4.17)
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4.2 Vibrational Bands of Polyatomic Molecules

Polyatomic molecules have multiple and different vibrational modes depending on
their structure and number of atoms. The existence and nature of these modes affect
the vibrational bands in the spectra of these molecules.

4.2.1 Number of Vibrational Modes

For polyatomic molecules with N atoms, a total of 3N dynamical coordinates
are needed to specify the instantaneous location and orientation of the molecule
(i.e., the nuclei). This total corresponds to the sum of coordinates needed to
specify the molecular center of mass, the angular rotation of the molecule, and
vibrational motion (bond lengths), and hence provides an easy accounting method
for identifying the number of vibrational modes, as follows:

Center of Mass: requires 3 coordinates (has 3 translational modes)
Rotation: 2 angular coordinates (hence rotational modes) for linear

molecules
3 angular coordinates (rotational modes) for nonlinear
molecules

Vibrations: the remaining number of vibrational coordinates/
modes is:
3N � 5 for linear molecules
3N � 6 for nonlinear molecules

4.2.2 Parallel and Perpendicular Modes

H2O and CO2 are good examples of triatomic molecules with different vibrational
modes. The numbering (i.e., identification) convention for the vibrational modes
(and their resultant bands in a spectrum) is based first on symmetry, and second on
decreasing energy [1]. That is, �1 is the highest-frequency symmetric vibrational
mode, �2 the next highest symmetric mode, and so on, followed by the asymmetric
modes in order of declining frequency. (See [1, p. 272] for an exception to this rule.)
There are two types of vibrational modes:

1. Parallel (k), where the vibrations are those that occur parallel to the main axis of
symmetry

2. Perpendicular (?), where the vibrations are those that occur perpendicular to the
main axis of symmetry

In order for vibrational motion of a molecule to result in an absorption/emission
spectrum, some change must occur in the electric dipole of the molecule during
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Fig. 4.6 Structure, symmetry, and vibrational modes for H2O

this motion (i.e., a difference must exist in the dipole moment between vibrational
quantum states). If this change in dipole occurs along the axis of symmetry of the
molecule, the absorption/emission spectrum is termed a “parallel (k) band,” while
if the change in dipole moment occurs perpendicular to the axis of symmetry, a
“perpendicular (?) band” will occur. It follows that for a symmetric molecule, such
as CO2, the symmetric stretch vibration will not produce a change in dipole moment,
and hence there will be no active parallel band for this mode of vibration (see the
discussion below).

4.2.2.1 Water, H2O
H2O is a nonlinear triatomic molecule, so it has three vibrational modes. The C2
notation in Fig. 4.6 means that there is a twofold symmetry of rotation about this
axis (which is the unique A-axis of H2O ). The symmetric stretch vibration, known
as �1 (as it is the highest-frequency symmetric motion), results in a k band, as does
the symmetric bending vibration, �2. The remaining vibrational mode, �3, involves
asymmetric stretching, and produces dipole variations perpendicular to the axis of
symmetry. Hence �3 is a ? band.

Carbon Dioxide, CO2

For a linear molecule, such as CO2, there are two stretching modes: symmetric and
asymmetric. The stretching and compression of these bonds are illustrated in the
following figure with exaggerated amplitude (Fig. 4.7).

For the “symmetric stretch” vibrational mode, the two C–O bonds are stretched
or compressed simultaneously, preventing formation of a dipole moment. Since
the dipole moment remains zero for this mode, no direct light interaction (i.e.,
absorption or emission) is possible. Thus, the “symmetric stretch” vibration for
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Fig. 4.7 Symmetric stretching of carbon dioxide (Fig. 1.6, Banwell)

Fig. 4.8 Asymmetric stretching vibrational mode for carbon dioxide

CO2 is “infra-red inactive.” For anti-symmetric stretching (see Fig. 4.8), one bond
is stretched while the other is compressed, giving rise to a changing dipole moment.
This vibrational mode is “infra-red active,” and there will be an absorption band at
the characteristic frequency of vibration. Since CO2 is a linear triatomic molecule,
it has 4 vibrational modes, two of which are degenerate. Only a single absorption
band will appear at the degenerate frequency. Hence there are three fundamental
frequencies (�1, �2, and �3) as shown in Fig. 4.9.

Interestingly, for symmetric molecules we will find (Chap. 6) that vibrational
modes are either IR-active or Raman-active (see Table 4.2) for symmetric
molecules.
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Fig. 4.9 Structure, symmetry, and vibrational modes for CO2

Table 4.2 Active modes
of CO2 (S strong, VS very
strong); N.A. not active

Mode IR Raman

�1 N.A. Active

�2 S N.A.

�3 VS N.A.

Table 4.3 Fundamental vibrations, frequencies, types, and descriptions
for NH3

Vibration Frequency [cm�1	 Type Description

�1 3337 k Symmetric stretch

�2 950 k Symmetric bend

�3 3444 ? Asymmetric stretch (degenerate)

�4 1627 ? Asymmetric bend (degenerate)

Ammonia, NH3

A listing of the fundamental vibrational modes of ammonia is given in Table 4.3.
Note that ammonia has six vibrational modes, but two (�1 and �2) are doubly
degenerate.

4.2.3 Types of Bands

There are various types of bands that appear in a spectrum; they are all based on
the vibrational modes discussed above. The terminology for these different types of
bands is as follows:
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Fundamental Bands �i, the ith vibrational mode

�v D v0 � v00 D 1 for the ith mode

First Overtone 2�i

�v D v0 � v00 D 2 for the ith mode

Second Overtone 3�i

�v D v0 � v00 D 3 for the ith mode

Combination Bands Changes in multiple quantum numbers, e.g.

�1 C �2 �v1 D �v2 D 1; i.e. v1 and v2
both increase by 1 for absorption or
decrease by one for emission.

2�1 C �2 �v1 D C2 and �v2 D C1
Difference Bands Quantum number changes with mixed sign

�1 � �2 This means that v1final � v1initial D
˙1 and v2final � v2initial D 
1, i.e.,
a unit increase in v1 is accompanied
by a unit decrease in v2, and vice
versa.

4.2.4 Relative Strengths

The fundamental bands are generally much stronger than the combination, differ-
ence, and overtone bands. For fairly harmonic molecules such as CO, the difference
in relative strengths between the fundamental and overtone bands is approximately
two orders of magnitude. However, for very anharmonic molecules such as NH3,
the difference between the fundamental and overtone or combination bands is often
just one order of magnitude or less. Nearly harmonic molecules have much weaker
overtones and combination bands because they closely approximate the SHO model
that was presented earlier, namely that overtone bands are forbidden. In reality, these
bands are not forbidden, but rather have low transition probabilities (that is, they
are nearly forbidden). For highly anharmonic molecules, the bands are much more
likely to occur (that is, they are less forbidden because the SHO solutions are bad
approximations), and thus have strengths that are closer to the fundamental bands.

Relative Strengths Exception
Accidental degeneracies (i.e., near resonances) can strengthen weak processes: e.g.,

2�2;CO2 at 1334 cm�1 � �1;CO2

Since the first overtone of the �2 band is nearly resonant with the fundamental of the
�1 band, the two vibrational modes are strongly coupled by radiative and collisional
exchanges. This case is called Fermi resonance.
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4.2.5 Vibrational Partition Function

For polyatomics whose vibrational potential energy can be approximated by the
SHO model [see Eqs. (2.41) and (2.42) and note the choice of zero-point energy],
the vibrational partition function, Qvib, can be written as the product of the harmonic
partition function for each vibrational mode

Qvib D
modesY

i



1 � exp

��hc!e;i

kT

���gi

; (4.18)

where !e;i is the harmonic frequency of the ith vibrational mode, and gi is the
degeneracy of that mode. For example, ammonia’s molecular formula is NH3, and
thus it has 3N � 6 D 6 possible vibrations. However, two vibrations are degenerate,
so the molecule has four different vibrational frequencies (see Table 4.3). Thus,
ammonia’s vibrational partition function is

Qvib.T/ D


1 � exp

��hc!e;1

kT

���1 

1 � exp

��hc!e;2

kT

���1

�


1 � exp

��hc!e;3

kT

���2 

1 � exp

��hc!e;4

kT

���2 (4.19)

4.3 Rovibrational Spectra of Polyatomic Molecules

4.3.1 Linear Polyatomic Molecules

There are two types of vibrational bands, parallel and perpendicular, defined in terms
of the orientation of the electric dipole moment associated with a specific vibrational
mode, as discussed in Sect. 4.2.2. Here we limit consideration to fundamental
transitions within that mode (i.e., we exclude overtone and combination bands).

Case I: Parallel Bands
There are two types of parallel band vibrations: symmetric and asymmetric stretch.
For fundamental transitions, we consider only the vibrational energy stored in mode
i and rotational energy.

Energy T.vi; J/ D G.vi/C F.J/
Selection Rules �vi D 1

�J D ˙1 (R and P branches)
�vj D 0; j ¤ i

Absorption Spectrum P and R branches only (see Fig. 2.12)



72 4 Polyatomic Molecular Spectra
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Fig. 4.10 Energy levels and absorption spectrum for the P, Q, and R branches of a linear
polyatomic perpendicular band

Table 4.4 Band strength comparison: HCN

Mode !e [cm�1] �i IRa Raman a

Symmetric stretch 3310 �1 S W

Bending (2)b 715 �2 VS W

Asymmetric stretch 2097 �3 W S
aW weak, S strong, VS very strong
b(2) denotes two degenerate (indistinguishable) bending modes

Note:
The IR and Raman band strengths are often complementary, i.e. if IR is strong, Raman
is weak and vice versa.

Examples CO2 (�3), HCN (�1, �3)
i.e., the �3 mode of CO2 (asymmetric stretch), and the �1 (sym-
metric stretch) and �3 (asymmetric stretch) modes of HCN are all
parallel bands.

Note: The �1 mode of CO2 is not IR-active, since symmetric stretching
of a symmetric molecule causes no oscillating electric dipole
moment. Hence, there is no �1 parallel band.

Case II: Perpendicular Bands
Selection Rules �vi D 1

�J D ˙1; 0 (R, P and Q branches)
�vj D 0; j ¤ i

1. If B0 D B00, all Q branch lines occur at the same frequency.
2. If B0 ¤ B00, then Q.J00/ D !o C .B0 � B00/J00.J00 C 1/

Since B0 � B00 D �˛, the Q branch “degrades” to lower frequencies (i.e., to
the “red” in wavelength) (Fig. 4.10).

Table 4.4 summarizes the bands and relative strengths for the moles of HCN.
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4.3.2 Symmetric TopMolecules

A symmetric top molecule has two, equal, principal moments of inertia, i.e.
IB D IC ¤ IA. Example molecules include CH3F and BCl3. The total energy for
symmetric top molecules is simply a summation of the vibrational and rotational
energies.

T.vi; J;K/ D G.vi/C F.J;K/

D .vi C 1=2/!e
i � !e

ixe
i.vi C 1=2/2

CBJ.J C 1/C .A � B/K2 (4.20)

Recall that K is the quantum number for angular momentum around axis A.
Again we limit consideration to fundamental transitions within a single vibrational
mode i.

Case I: Parallel Bands
Selection Rules �vi D 1

a. if K ¤ 0 �K D 0, �J D ˙1; 0 (P, Q, R branches)
b. if K D 0 �K D 0, �J D ˙1 (no Q-branch), except

�J D C1 for J D 0
Since K is the same in the upper and lower states, we have P, Q, and R branches
for each value of K. That is to say, there are 2J C 1 values of K (K D J; J �
1; : : : ; 0; : : : ;�J), each of which produces a P, Q, and R branch. The resultant
absorption spectrum can become somewhat complex, although the general features
are recognizable, as shown in Fig. 4.11. The intensity of the Q branch is a function
of (IA/IB). As (IA/IB) approaches zero, the symmetric top approaches the structure of
a linear molecule, and the strength of the Q branch approaches zero.

Referring to Fig. 4.11, the following observations can be made:

1. For K D 0, the spectrum reduces to that of a linear molecule, i.e. there is no
Q-branch.

2. For each value of K, the minimum value of J in the P-branch is K C 1, since
J0 D J00 � 1, and K (unchanged in the transition) cannot exceed J.

Case II: Perpendicular Bands
Selection Rules �vi D 1

�J D ˙1; 0
�K D ˙1

R Branch �J D C1;�K D ˙1
�R D !o C 2B.J C 1/C .A � B/.1˙ 2K/

P Branch �J D �1;�K D ˙1
�P D !o � 2BJ C .A � B/.1˙ 2K/
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Fig. 4.11 The resolved components of a parallel band showing the contributions from each of the
K levels of the v D 0 state. The small but discernible splitting evident in the superposed P- and
R-branch spectra (bottom row of this figure) is due to a difference in the magnitude of (A � B) in
the upper and lower vibrational levels; see Eq. (4.20). The discernible splitting in the superposed
Q-branch is due mostly to the difference in B in the upper and lower vibrational levels (B0 < B00,
so spectra degrade to lower frequencies)

Q Branch �J D 0;�K D ˙1
�Q D !o C .A � B/.1˙ 2K/

Thus, we have two sets of R, P, and Q branches for each lower-state value
of K. The result is generally a very complex spectrum, which is simplest at low
temperatures (fewer J levels are populated) and low pressures (individual lines are
narrow—more on this in Chap. 8).

An example of the J, K energy levels for a symmetric top molecule and the
allowed transitions for a perpendicular band are shown in Fig. 4.12. The complete
band can be understood in terms of a summation of sub-bands. These sub-bands
consist of all the �J D 0;˙1 that occur for a given change in K [1]. A resulting
spectrum, decomposed to illustrate the component sub-bands, is given in Fig. 4.13.
These two figures are from Barrow [2, pp. 151–152].
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Fig. 4.12 The energy levels of a symmetric top molecule showing the transitions that are allowed
for a perpendicular band. Figure from Barrow [2, p. 151]
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Fig. 4.13 The components of a perpendicular band of a symmetric top molecule. Note that the
lines with �J D �K have greater intensity than those with �J D ��K, i.e., R-branch lines with
�J D �K D C1 are stronger than the P-branch lines of �J D �1, when �K D C1. See
Herzberg [1, pp. 424–426], for the selection rules that characterize this effect. Figure from Barrow
[2, p. 152]

4.4 Exercises

1. List the vibrational modes of the following molecules, and indicate which of the
modes are IR active, and/or Raman active? (Note: the molecular structure can be
found in [1])
(a) HBr
(b) OCS (linear)
(c) SO2 (bent)
(d) C2H4 (only determine the IR- and Raman-activity of the modes: C–C stretch,

C–H symmetric stretch)
2. Calculate the vibrational partition function of CO and CO2 from 300 to 3000 K.

Explain the trends and differences you observe.
3. What is the ratio of NH3’s rotational energy for the J D 1, K D 0, and J D 4,

K D 0 levels?
4. Absorption spectra of three species (CO2, H2O, and CO) important to combustion

and atmospheric science are shown below. By visual inspection of the spectra and
knowledge of bond structure, address the following:
(a) How many vibrational modes exist for each species?
(b) What type of absorption spectra are shown (rotational, rovibrational, rovi-

bronic)? Why?
(c) Label the spectra by species name.
(d) Which types of bands exist within each spectra (hint: this should help you

with part iii)?
(e) Identify and label the fundamental bands of CO and CO2.
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5. A student measured the absorption spectrum (2280–2400 cm�1) of a mixture
of 0.2 % CO2 in argon, at 1 atm and 296 K in a gas cell of length 10 cm using
an equipment with very poor resolution. The absorption band was known to be
centered at 2349 cm�1. Having a strong background in mathematics, this student
is able to describe the absorption profile as:

˛.�/ D 0:93

1C 0:005.� � 2333/2 C
1:5

1C 0:0152.� � 2362/2

where � is the wavenumber.
(a) Draw the graph of ˛.�/. Label P, Q, and R branches, if they exist. What are

the allowed and forbidden transitions of this band?
(b) Now we will perform a simple calculation of CO2 spectrum based on what

we learned in class. Assume a simple harmonic oscillator model. All the
transitions are known to be in the CO2 fundamental band with lower-state
v00 D 0.

Step 1: Given the moment of inertia 7:175 � 10�46 kg m2, calculate the rota-
tional constant B of CO2 and give expressions for the transitions in each
branch of the band. What is the highest energy transition of P branch? What
is the lowest energy transition of R branch?

Step 2: The probability of each transition is nearly proportional to the lower-
state population, which we assume to be given by a Boltzman distribution
with a degeneracy of .2J C 1/. Here we approximate the probability as:

transition probability / .2J C 1/ exp

��S.0; J/hc

kT

�



78 4 Polyatomic Molecular Spectra

where S.0; J/ is the energy of the .0; J/ state. What is the rotational level that
has the maximum transition population, Jmax? With Jmax, you can normalize
the predicted structure by examining the transition probability ratio. Give the
expression for the normalized probability.

Step 3: Plot the above ratio as a function of wavenumber and compare your
calculation with the ratio ˛.�/=˛max, where ˛max is the maximum value of
˛.�/.
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5Effects of Nuclear Spin: Rotational Partition
Function and Degeneracies

In previous chapters on diatomic and polyatomic spectra, we discussed quantized
angular momentum as it relates to a rotating molecule and its effect on Boltzmann
statistics. Rotational angular momentum is, in fact, only one kind of angular
momentum that must be considered when evaluating real molecules and their
spectra. For example, electrons also have quantized angular momentum as they
orbit nuclei (called orbital angular momentum, which we will discuss further
in Chaps. 9 and 10). Additionally, individual subatomic particles like nuclei and
electrons have their own intrinsic, quantized, angular momentum, analogous to
the angular momentum of a spinning top or planet; hence, the common name
for this property is spin. Because of the added complexity that nuclear spin can
introduce, we have not discussed its effects up to this point; however, nuclear spin
can, in symmetric molecules, change the degeneracy of some states and thus affect
molecular statistics. This chapter will introduce the effects of nuclear spin, when
they need to be considered, and how one can incorporate them into the statistics of
linear and nonlinear molecules.

5.1 Introduction

Recall that the population fraction, Fi, of a given molecular energy level Ei is

Fi D
gi exp

�� 
i
kT

�
Q

; (5.1)

where the partition function, Q, is given by the summation over all energy levels

Q D
X

i

gi exp
�
� 
i

kT

�
(5.2)

When evaluating partition functions and energy level degeneracies, gi, for
asymmetric molecules, e.g. heteronuclear diatomics like NO and polyatomics like

© Springer International Publishing Switzerland 2016
R.K. Hanson et al., Spectroscopy and Optical Diagnostics for Gases,
DOI 10.1007/978-3-319-23252-2_5
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HCN, we usually consider only three internal energy modes: electronic, vibrational,
and rotational. Thus, the partition function is

Q D QrotQvibQelec (5.3)

We have thus far neglected nuclear spin (even though it exists) for such cases
because there is no coupling between nuclear spin and rotation and because the
nuclear terms cancel in expressions for population fraction in specific rotational
states.

However, in molecules with certain symmetric placement of equivalent nuclei,
e.g. O2 and NH3, we must consider the total partition function, including the nuclear
terms:

Q D QrotQvibQelecQnuc (5.4)

Here again, we have invoked the Born–Oppenheimer approximation: the energy
associated with each mode is independent or separable. As outlined below, we must
include the nuclear terms for symmetric molecules because of their coupling to the
rotational levels. In these cases, we use an effective rotational partition function
defined by

Q0rot D QrotQnuc; (5.5)

and likewise, an effective rotational degeneracy

g0rot D grotgnuc: (5.6)

5.2 Nuclear Spin and Symmetry

Since nuclear energies are quite large for most if not all practical conditions (Enuc �
kT for excited nuclear states), we are only interested in the lowest (ground) nuclear
energy level. It follows that

Qnuc D gnuc (5.7)

since exp.�E=kT/ � 0 for all but the ground level. In general, the ground nuclear
energy level has a degeneracy associated with the spin quantum number, I (not to
be confused with the moment of inertia IA, IB, etc.) of the nuclei (Table 5.1). For a
single nucleus, the number of degenerate spin states is given by

gnuc D 2I C 1 (5.8)

For example, a 14N nucleus has I D 1 and a corresponding nuclear spin degeneracy
gnuc D 3. For a molecule made up of L atoms, the total nuclear partition function is
formed by the product of the terms for the individual nuclei
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Table 5.1 Spin
of several nuclei

Nucleus Spin, I
1H 1/2
2H 1
11B 5/2
12C 0
13C 1/2
14N 1
16O 0
35Cl 3/2

Qnuc D
LY

nD1
.2In C 1/ (5.9)

where In is the spin of the nth nucleus.
Nuclear spin states and rotational states couple through the symmetry properties

of their respective wave functions. A wave function that describes any state com-
posed of two or more identical particles is either symmetric or antisymmetric with
respect to those particles. For rotational states, the symmetry property is determined
by the resulting wave function if a pair of identical nuclei were interchanged.
For symmetric states, the sign of the wave function remains unchanged [C] upon
interchange of the nuclei; for antisymmetric states, the sign changes [�]. For
example, if a molecule had two nuclei, x and y, its rotational wave function is
symmetric if ‰rot.x; y/ D ‰rot.y; x/; it would be antisymmetric if ‰rot.x; y/ D
�‰rot.y; x/.

In rotationally symmetric molecules like O2 and NH3, nuclear spin states (with
their own symmetry properties) can only pair with rotational states having a
compatible symmetry, either symmetric or antisymmetric. Which one is compatible
depends on the nature of nuclei (i.e., whether the system is a boson or fermion).

The rules governing symmetry compatibility depend on which statistics apply
to the nuclear system. For nuclear systems that follow Fermi–Dirac statistics
(fermions), the total molecular wave function must be antisymmetric. This sym-
metry is made up of a combination of a symmetric and antisymmetric states (an
overall sign change comes from multiplying a function having no sign change with
a function having a sign change, i.e. ŒC	 � Œ�	 D Œ�	). For example, antisymmetric
nuclear spin states combine (only) with symmetric rotational levels to produce an
overall antisymmetric state. For Bose–Einstein nuclear systems (bosons), the overall
wave function must be symmetric. Thus symmetric states combine only with sym-
metric states, and antisymmetric with antisymmetric (ŒC	� ŒC	 D Œ�	� Œ�	 D ŒC	).

For a single nucleus, Fermi–Dirac statistics are associated with nuclei having
half-integral spins (I D 1=2; 3=2; : : : ) and Bose–Einstein statistics hold for nuclei
with integral spins (0, 1, 2, : : : ). The important question now becomes, what is the
symmetry character of the rotational levels? The most powerful tool for attacking
symmetry questions like these is called group theory. Since group theory requires
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more explanation than can be given here, results for some of the most important
(and common) molecular configurations are presented below.

5.3 Case I: Linear Molecules

5.3.1 Asymmetric (e.g., CO and N2O)

For linear molecules without symmetry, there is no coupling between nuclear spin
and molecular rotation. Thus, the effective rotational expressions are simply the
standard expressions multiplied by a constant term,

Q0rot D
T

�r

LY
nD1
.2In C 1/ (5.10)

and

g0rot D .2J C 1/
LY

nD1
.2In C 1/ (5.11)

For asymmetric linear molecules, the symmetry factor  D 1; this factor represents
the number of ways that the molecule may be rotated into an identical configuration.
As stated initially, the nuclear spin terms can be omitted from the partition functions
and degeneracies for asymmetric molecules since they cancel in expressions for the
population fraction.

Consider CO

Q0rot D
T

�r

2Y
nD1
.2In C 1/ D T

�r
.2IC C 1/.2IO C 1/ D T

�r

g0rot D .2J C 1/.2IC C 1/.2IO C 1/ D 2J C 1

Thus the fractional population in J is, as we found for an asymmetric rigid rotor
without consideration of nuclear spin,

NJ

N
D .2J C 1/ exp.�F.J/hc=kT/

T=�r

Consider N2O

Q0rot D
T

�r

3Y
nD1
.2In C 1/ D T

�r
.2IN C 1/2.2IO C 1/ D 9 T

�r

g0rot D .2J C 1/.2IN C 1/2.2IO C 1/ D 9.2J C 1/
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Both Qrot and grot are larger by a factor of 9 owing to nuclear spin, but these
terms cancel in forming the Boltzmann fraction,

NJ

N
D .2J C 1/ exp.�F.J/hc=kT/

T=�r
:

Recall that the term 2JC1 is the degeneracy for energy level F.J/ associated with
the number of possible directions (orientations) of the angular momentum vector of
the molecular rotation. In the presence of an applied electric or magnetic field, these
2J C 1 states may be slightly separated in energy. In the absence of such fields, the
states all have the same energy, but the degeneracy remains.

5.3.2 Symmetric (e.g., O2, CO2, and C2H2)

Now the rotational partition function contains a non-unity value for the symmetry
factor,  . For linear and symmetric molecules,  D 2 because these molecules are
indistinguishable upon rotation about the B axis.

Q0rot D
1

2

T

�r

LY
nD1
.2In C 1/ (5.12)

The degeneracy is determined as follows. The overall symmetry required by the
nuclear statistics must first be determined. Then we multiply the degeneracy .2JC1/
of a rotational level, with a given symmetry, by the degeneracy of the appropriate
nuclear spin state.

In a linear molecule, the nuclear statistics of the overall nuclear system are
controlled by the number of fermions (half-integral spin nuclei) on one side of the
center of the molecule (if a central nucleus exists, it is ignored). For an odd number
of fermions, the system behaves according to Fermi–Dirac statistics and the overall
symmetry is antisymmetric. Conversely, for an even number of fermions (including
zero or none), Bose–Einstein statistics and an overall symmetric wave function are
required.

The degeneracy of the symmetric nuclear spin states is given by

gnuc;symm D .2IC C 1/
2

"
MY

mD1
.2Im C 1/2 C

MY
mD1

.2Im C 1/
#

(5.13)

and the degeneracy of the antisymmetric states is given by

gnuc;asymm D .2IC C 1/
2

"
MY

mD1
.2Im C 1/2 �

MY
mD1

.2Im C 1/
#

(5.14)



84 5 Effects of Nuclear Spin: Rotational Partition Function and Degeneracies

where Im is the nuclear spin of the mth nucleus on one side of the center of the
molecule, M D .L � 1/=2, and IC is the nuclear spin of the central nucleus if one
is present (not to be confused with either the nuclear spin of a carbon atom, IC, or
the moment of inertia about the C-axis of a nonlinear molecule, IC). If no central
nucleus exists (e.g., in a homonuclear diatomic), the term (2IC C 1) is replaced by
unity and M D L=2 [see Eq. (5.16)]. For a symmetric molecule made up of nuclei
with spin I D 0, it can be seen that only symmetric spin states exist.

The symmetry of a rotational state depends on its rotational quantum number as
well as the structure of the electronic manifold within which it exists (Table 5.3).
For rotational levels in electronic manifolds designated †Cg and †�u , levels with
even N are symmetric, and those with odd N are antisymmetric. (Note, here the
quantum number N describes molecular rotations, while J includes contributions
from electron spin. For molecular states with no electron spin, J D N.) For
rotational levels in †Cu and †�g electronic manifolds, the reverse is true; even N
are antisymmetric and odd N are symmetric. These four electronic configurations
represent the ground electronic structures of most common linear symmetric
molecules. For other electronic configurations (e.g.,… and�), it turns out that each
rotational level consists of two nearly degenerate states, one symmetric and the other
antisymmetric, and like asymmetric molecules, the nuclear spin effects can usually
be ignored.

Combining the above, we have

g0rot D .2J C 1/.2IC C 1/
2

"
MY

mD1
.2Im C 1/2 ˙

MY
mD1

.2Im C 1/
#

(5.15)

where the choice between adding or subtracting .C=�/ the two products is
determined from Table 5.2. For homonuclear diatomics, as described above, the
rotational degeneracy including nuclear spin effects reduces to

g0rot D .2J C 1/1
2
Œ.2I C 1/2 ˙ .2I C 1/	: (5.16)

Consider H2 (molecular hydrogen comprised of two 1H atoms)

Q0rot D
1

2

T

�r
.2IH C 1/2 D 2 T

�r

Since there is one fermion on either side of the axis of symmetry, Fermi statistics
apply. And, since the ground state of H2 is X1†Cg ,
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Table 5.2 Key to addition or subtraction of nuclear degen-
eracies in Eqs. (5.15) and (5.16) for different rotational statis-
tics and electronic manifold configurations

Electronic Addition or
Statistics (symmetry) configuration N subtraction

Fermi (antisymmetric) †Cg ; †
�

u Odd C
Even �

†Cu ; †
�

g Odd �
Even C

Bose (symmetric) †Cg ; †
�

u Odd �
Even C

†Cu ; †
�

g Odd C
Even �

Table 5.3 Sample species and ground state config-
urations

Ground state configurations Species

X1†Cg
1H2;

2H2;
14N2;

15Cl2
X3†�g

16O2

X3
Q

u
12C2

QX1†Cg CO2;C2H2;C2N2

g0rot D .2J C 1/1
2

�
.2IH C 1/2 ˙ .2IH C 1/

	 � �; J even
C; J odd

�

D .2J C 1/1
2

�
2; J even
6; J odd

�

D .2J C 1/
�
1; J even
3; J odd

�

so that the effective rotational degeneracy alternates with even and odd J.

Consider O2

Q0rot D
1

2

T

�r
.2IO C 1/2 D T

2�r
.IO D 0/

Since there are no fermions (I D 0), Bose–Einstein statistics apply. And, since
we have a 3†�g state,
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g0rot D .2J C 1/
�
1

2

��
1 � 1; J even
1C 1; J odd

�

D
�

0; J even
2J C 1; J odd

�

Therefore, only the odd J states are populated! Even J states do not exist for O2

in its ground electronic state.

Consider CO2

Q0rot D
1

2

T

�r
.2IC C 1/.2IO C 1/2 D T

2�r

The number of fermions on one side of the axis is zero, therefore the molecule
obeys Bose statistics.

g0rot D .2J C 1/1
2
.2IC C 1/

�
.2IO C 1/2 ˙ .2IO C 1/

	 � C; J even
�; J odd

D .2J C 1/1
2

�
2; J even
0; J odd

�

D .2J C 1/
�
1; J even
0; J odd

�

Therefore, only the even J states are populated! Odd J states do not exist for
CO2 in its ground electronic state.

Consider C2H2

Q0rot D
1

2

T

�r
.2IC C 1/2.2IH C 1/2 D 2 T

�r

There is one fermion on either side of the axis of symmetry, so Fermi statistics
apply.

g0rot D .2J C 1/1
2

�
.2IC C 1/2.2IH C 1/2

˙.2IC C 1/.2IH C 1/	
� �; J even
C; J odd

D .2J C 1/1
2

�
2; J even
6; J odd

�

D .2J C 1/
�
1; J even
3; J odd

�
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5.4 Case II: Nonlinear Molecules

5.4.1 Asymmetric Rotor (e.g., CHFClBr and N2H4)

Recall that asymmetric rotor molecules have three non-zero and unequal moments
of inertia, IA ¤ IB ¤ IC. The general expression for the rotational partition function,
including contributions from all three axes of rotation and nuclear spin is

Q0rot D
1



s
�

�
T

�A

��
T

�B

��
T

�C

� LY
nD1
.2In C 1/ (5.17)

The degeneracy is

g0rot D
1


.2J C 1/

LY
nD1
.2In C 1/ (5.18)

Again, the nuclear spin terms can be omitted since there is no nuclear spin-rotation
coupling, and the nuclear terms cancel in expressions for the population fraction.

Consider 1H2HO (HDO)

Q0rot D
s

�T3

�A�B�C
.2IO C 1/.2IH C 1/.2ID C 1/

D 6
s

�T3

�A�B�C

g0rot D 6.2J C 1/ (5.19)

5.4.2 Symmetric Top

Recall that symmetric top molecules have two equal moments of inertia, IA ¤
IB D IC. The general expression for the rotational partition function, including
contributions from all three axes of rotation and nuclear spin is

Q0rot D
p
�



s
T

�A

�
T

�B

� LY
nD1
.2In C 1/ (5.20)

where  depends on the group symmetry.
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(a) C3v Group Symmetry .e:g: NH3 and CH3Cl/

Q0rot D
p
�

3

s
T

�A

�
T

�B

� LY
nD1
.2In C 1/ (5.21)

The symmetry factor for C3v group symmetry is  D 3 due to the threefold
rotational symmetry about the A-axis. The degeneracy is dependent on whether
the quantum number K is divisible by 3.

For K divisible by 3 (including K D 0)

g0rot D .2J C 1/
"

CY
cD1
.2IC C 1/

#
2INC C 1

3
.4I2NC C 4INC C 3/ (5.22)

For K not divisible by 3

g0rot D .2J C 1/
"

CY
cD1
.2IC C 1/

#
2INC C 1

3
.4I2NC C 4INC/ (5.23)

where IC is the nuclear spin of the cth nucleus on the threefold symmetry axis
and INC is the nuclear spin of one of the nuclei off the threefold symmetry
axis of the molecule (e.g., H in NH3). The degeneracy is independent of the
statistics of the nuclei. Thus, for a given J, the K degeneracies vary like
x W x W x0 W x W x W x0 W : : :, with x < x0.

Consider CH3Cl as an example of a molecule with C3v symmetry.

Q0rot D
p
�

3

s
T

�A

�
T

�B

�
.2IC C 1/.2ICl C 1/.2IH C 1/3

D 32
p
�

3

s
T

�A

�
T

�B

�

g0rot D .2J C 1/1
3
.2IC C 1/.2ICl C 1/

.2IH C 1/
�
4I2H C 4IH C 3; K div: by 3

4I2H C 4IH; K not div: by 3

�

D .2J C 1/8
3

�
6; K div: by 3
3; K not div: by 3

�

D .2J C 1/8
�
2; K div: by 3
1; K not div: by 3

�
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(b) D3h
Group Symmetry (e.g., BCl3)

The effective partition function is the same as given for the C3v case above,

Q0rot D
p
�

3

s
T

�A

�
T

�B

� LY
nD1
.2In C 1/ (5.24)

For levels with K D 0, there is now an alternation in nuclear degeneracy as J
(or N) increases. Depending on the appropriate nuclear statistics and rotational
quantum number, the degeneracy is given by:

For integral INC and even N or half-integral INC and odd N:

g0rot D .2J C 1/
"

CY
cD1
.2IC C 1/

#
2INC C 1

3
.2INC C 3/.INC C 1/ (5.25)

For integral INC and odd N or half-integral INC and even N:

g0rot D .2J C 1/
"

CY
cD1
.2IC C 1/

#
2INC C 1

3
.2INC � 1/INC (5.26)

For levels with K ¤ 0, Eqs. (5.22) and (5.23) apply for K divisible by 3 and not
divisible by 3, respectively.

Consider BCl3 as an example of a molecule with D3h symmetry.

Q0rot D
p
�

3

s
T

�A

�
T

�B

�
.2IB C 1/.2ICl C 1/3

D 128p�
s

T

�A

�
T

�B

�
(5.27)

Since INC � ICl D 3=2, the system follows Fermi statistics.

g0rot D .2J C 1/.2IB C 1/1
3

.2ICl C 1/

8̂
<̂
ˆ̂:

.2ICl � 1/ICl; K D 0; J even
.2ICl C 3/.ICl C 1/; K D 0; J odd

4I2Cl C 4ICl C 3; K ¤ 0; K div: by 3
4I2Cl C 4ICl; K ¤ 0; K not div: by 3

9>>=
>>;
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D 8.2J C 1/

8̂̂
<
ˆ̂:

3; K D 0; J even
15; K D 0; J odd
18; K ¤ 0;K div: by 3
15; K ¤ 0;K not div: by 3

9>>=
>>;

D 24.2J C 1/

8̂̂
<
ˆ̂:

1; K D 0; J even
5; K D 0; J odd
6; K ¤ 0;K div: by 3
5; K ¤ 0;K not div: by 3

9>>=
>>;

5.4.3 Others (e.g., C6H6; CH4; and P4)

These molecules must be considered by symmetry group. See, for example,
Herzberg [1, vol. 2, Chap. 2] and [2, vol. 3, Chap. 1].

5.5 Exercises

1. Ammonia, NH3, is a symmetric top molecule with C3v symmetry, which means
 D 3, and the molecule can be rotated into itself three different ways.
(a) Evaluate the relative strengths of the microwave absorption lines for J00 D 1

and J00 D 2 at 300 K assuming that these relative strengths follow Boltzmann
statistics, i.e., evaluate (NJD1=NJD2). Use �A D 9K and �B D 14K in your
calculations. Hint: don’t forget to sum over the allowed values of K.

(b) Calculate the effective (including nuclear spin) rotational partition function
for ammonia at 300 K.
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6Rayleigh and Raman Spectra

Unlike absorption and emission, Rayleigh and Raman spectroscopy are based on
how a molecule scatters photons. One key difference to keep in mind as we explore
scattering processes further is that while absorption requires that the molecule have
energy-level spacings (for allowed transitions) corresponding to the energy of the
interacting photon, scattering can occur with an incident photon of almost any
energy. That is, for a molecule to absorb light, the light must generally be at specific
wavelengths or frequencies. Scattering, on the other hand, can occur at almost any
wavelength.

6.1 Light Scattering

For the light scattering experimental schematic in Fig. 6.1, the incident laser power,
Pi, becomes scattered (Rayleigh or Raman) when it interacts with molecules inside
the volume element ıV D ıA � L. The scattered laser power, Ps, is determined by
the product of incident laser power, number density of molecules inside the volume
element, length L, scattering cross-section, and collection angle of the optics.

Incident Laser Power Pi D PNph� [W]
PNpD incident photons/s

Scattered Laser Power Ps D PNsh� [W]
PNsD scattered photons/s into collection angle

PNs D
PNp

ıA„ƒ‚…
photons

per area

per second

�N
@

@�
�„ ƒ‚ …

projected

scattering

area, cm2
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Fig. 6.1 Schematic of a light scattering experiment

N D n � ıA � L D the number of molecules in ıV; n is the molecular density
[molec=cm3]
@

@�
D differential scattering cross-section [cm2=molec Sr]

� D solid angle of collection [Steradians, Sr]

so that

Ps D PinL
@

@�
� (6.1)

Since scattering is essentially instantaneous, the above relation applies at any
instant, when the incident power varies with time. For pulsed light, often employed
for Rayleigh and Raman scattering, Pi and Ps can be reinterpreted as the total
number of incident and scattered (collected) photons.

6.1.1 Cross-Sections

Rayleigh Cross-Sections
The differential Rayleigh cross-section is a property of a molecule that describes
its propensity to scatter light. In general, this cross-section depends on the angle
between the detection beam and the incident beam as well as the polarization. One
can derive the differential Rayleigh cross-section as a function of laser and scattering
geometry by modelling a molecule as an infinitesimally small oscillating dipole
interacting with an imposed electric field. While a thorough discussion can be found
in Miles et al. [1] or in Banwell [2], some key results are given here.
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A spherically symmetric molecule’s differential cross-section at 90ı relative to
the plane of incident polarization (formed by the E-field vector of the propagating
wave and the direction of propagation) is

�
@ss

@�

�
Rayleigh

Š 4�2 .ni � 1/2
N2�4

(6.2)

where ni is the refractive index and N is the number density of the scattering
molecules (written here as a capital N to distinguish number density from the
refractive index). Note the strong inverse dependence on wavelength. Also, since
the quantity .ni � 1/ of a gas is proportional to its density, the quantity .ni � 1/2=N2

is independent of density, and hence the Rayleigh cross-section (per molecule) is
an intrinsic property (actually, this property is proportional to something called
the polarizability of the molecule). The total cross-section is the differential cross-
section integrated over the surface of a sphere enclosing the scatterer. It is given by

ss Š 32�3

3�4

�
ni � 1

N

�2
D 8�

3

�
@ss

@�

�
Rayleigh

(6.3)

This formula will generally allow one to calculate the scattering cross-section to
within a few percent for most molecules. If more accuracy is required, particles
with some spherical asymmetry (e.g., diatomics) also have a King factor, FK , that
describes their anisotropy:

 Š FKss (6.4)

Typical values of the total cross-section in the visible region are on the order of
10�27 cm2=molec for small molecules. A few examples are given in Table 6.1.

Table 6.1 Rayleigh scattering parame-
ters for selected molecules, taken from [1]
and [3]

� 

Molecule [nm] FK Œcm2=molec	

Ar 250 1 9:77� 10�26
500 5:85� 10�27

1000 3:50� 10�28
N2 250 1.039 1:14� 10�25

500 1.035 6:81� 10�27
1000 1.034 4:08� 10�28

Air 250 1.051 1:26� 10�25
500 1.049 6:66� 10�27

1000 1.047 4:01� 10�28
SF6 250 1 7:12� 10�25

500 4:32� 10�26
1000 2:63� 10�27
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Table 6.2 Vibrational Raman
cross-sections for common
molecules at 532 nm (in units of
10�30 cm2=molec=Sr)

Species Cross-section

O2 0.65

N2 0.46

H2 0.943

NH3 1.3

CO2.�1) 0.6

CH4.�1) 2.6

Raman Cross-Sections
The cross-section for Raman scattering is much smaller than for Rayleigh scattering
(Table 6.2).

�
@

@�

�
Raman

� 10�3
�
@

@�

�
Rayleigh

Example: Rayleigh and Raman Scattering by N2 at STP
For a laser source with Pi D 1W at � D 500 nm, the incident photon rate
is PNp D 2:5 � 1018 photons/s. The approximate differential scattering cross-
section for Rayleigh scattering is

�
@

@�

�
Rayleigh

� 8:1 � 10�28 Œcm2=molec Sr	

For a system with 4 W of incident laser power at this wavelength, a measure-
ment length L D 1mm and � � 10�2 Sr,

PNs D
�
1019

photons

s

�
„ ƒ‚ …

PNp

�
2:7 � 1019 molec

cc

�
„ ƒ‚ …

nDnL at STP

.0:1 cm/„ ƒ‚ …
L

�
8:1 � 10�28 cm2

molec Sr

�
„ ƒ‚ …

@=@�

.10�2 Sr/„ ƒ‚ …
�

PNs D 22 � 107 photons/s

Ps � 88 pW

For Raman scattering, however,

PNs D 22 � 104 photons/s, and

Ps � 0:088 pW D 88 fW (small!)
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Fig. 6.2 Photon scattering due to interaction with a molecule

6.2 QuantumModel

Consider radiation to be composed of discrete photons that exchange energy
with molecules (see Fig. 6.2). There are three different scattering possibilities:
elastic (incident and scattered energy/wavelength are the same), and inelastic with
either increased or decreased energy. Rayleigh scattering corresponds to elastic
interactions, and Raman scattering corresponds to the two inelastic interaction
possibilities.

Rayleigh E (elastic); � D �0
Anti-Stokes Raman EC�E (inelastic); � D �0 C�E=h

Stokes Raman E ��E (inelastic); � D �0 ��E=h

where

�E D �Erot or �Erot;vib;

with new selection rules for allowed transitions. Scattering is a weak process, and
thus requires a sensitive apparatus for making measurements.

6.3 Classical Theory

Classical theory for scattering is based on the polarizability of molecules. Whereas
absorption and emission require an intrinsic dipole to be resonant with the interact-
ing photon, scattering occurs when an externally applied electric field (the photon
in classical terms) induces a dipole in the molecule. The induced dipole strength, �,
is given by

� D ˛E (6.5)
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where ˛ is the polarizability and E is the E-field of the light wave. The E-field
is oscillatory in nature (e.g., E D Eo sin.2��t/) and induces an oscillation in the
molecule. The induced oscillation can occur:

1. at the same frequency of the incident field, resulting in “emission” at �
(Rayleigh), or

2. at beat frequencies based on the interaction of the incident field and the
molecule’s rotational/vibrational frequencies, i.e. with “emission” at � ˙ �vib=rot

These beat frequencies are the Raman sidebands. This occurs because the
polarizability may oscillate with the rotational and/or vibrational frequencies of the
molecule, e.g.

˛ D ˛o C ˇ sin.2��vibt/;

where ˇ is the rate of change of polarizability with the rotation/vibration. From
Eq. (6.5), the induced dipole strength becomes

� D ˛oEo sin.2��t/„ ƒ‚ …
Rayleigh

C1
2
ˇEoŒcos.2�.� � �vib/t/„ ƒ‚ …

Stokes

� cos.2�.� C �vib/t/„ ƒ‚ …
Anti-Stokes

	

Therefore, for molecules with ˇ ¤ 0, molecular motion leads to sidebands. That is,
in order to be Raman active a molecular rotation or vibration must cause a change
in a component of the molecular polarizability. The electron motion and response is
a primary factor in polarizability, as nuclei might not move much in the short times
of applied field oscillations.

6.4 Rotational Raman Spectra

For now, consider only pure rotational interactions for Raman scattering. Two
pertinent cases are linear and symmetric top molecules.

6.4.1 Linear Molecules

The energy for a linear molecule is

F.J/ D BJ.J C 1/ � DJ2.J C 1/2„ ƒ‚ …
neglect for Raman

(6.6)

The scattering rotational selection rules for linear rigid rotor molecules are

Selection Rules �J D 0; C2 (6.7)
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Fig. 6.3 Sample energy levels for rotational Raman transitions

�J D 0 corresponds to Rayleigh scattering

�J D C2 corresponds for pure rotations to the S branch;
pure rotations cannot have �J D �2 since, by
definition, �J D J0 � J00

Why do the selection rules allow transitions with �J D C2 instead of C1? This
difference emerges from the symmetry arguments of polarizability (see Banwell
[2, p. 105]). The branch associated with increments of 2 in the rotational quantum
number J is the S branch (Fig. 6.3). The expression for the transition energy in the
S branch as a function of the lower-level value of J (i.e., J00) is given below.

�E.J/ D EJ0 � EJ00

D BŒ.J C 2/.J C 3/ � J.J C 1/	
D B.4J C 6/

S.J/ D B.4J C 6/; J D 0; 1; 2; : : : (6.8)

Therefore,

� D �ex ˙ B.4J C 6/ ; (6.9)

where J refers to J00. For anti-Stokes Raman transitions, the photon gains energy
(the molecule loses energy), and Eq. (6.9) becomes

� D �ex C B.4J C 6/ (6.10)

Similarly, the photon loses energy for Stokes Raman transitions, producing

� D �ex � B.4J C 6/ (6.11)
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Fig. 6.4 Two branches of Raman spectra. Note that the signal strength is proportional to the
population of molecules in the initial state .NJ-initial/

Figure 6.4 illustrates the equal transition spacings and unequal transition
strengths associated with the Stokes and anti-Stokes branches in rotational Raman
spectra. Rayleigh scattering, which occurs at � D �ex, is shown in the plot as
a strong transition halfway between the two branches. Note that IR and �wave
inactive molecules, such as N2 and O2, have Raman spectra.

Nuclear spin effects alter the rotational Raman spectra in a similar fashion to the
rotational absorption spectra discussed earlier.

O2 even J lines are missing
CO2 odd J lines are missing

N2 alternating line intensities 2:1 (even J: odd J)

6.4.2 Symmetric TopMolecules

Recall that the rotational energy for a symmetric top molecule is

EJ;K ; cm�1 D F.J;K/ D BJ.J C 1/C .A � B/K2 (6.12)

The scattering selection rules are:

�K D 0
�J D 0;C1;C2

except,

�J D C2 when K D 0

Molecules with K D 0 are essentially linear, so the selection rule for a linear
molecule applies, namely �J D C2. The R branch is for transitions in which
�J D 1 and the S branch is for transitions with �J D 2. The transition spacing
as a function of J for the two branches is given by the following equations.
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Fig. 6.5 Sample energy levels for symmetric top rotational Raman transitions

R branch: �J D 1, spacing D 2B

�ER D R.J/ D 2B.J C 1/ J D 1; 2; 3; : : : (6.13)

S branch: �J D 2, spacing D 4B

�ES D S.J/ D B.4J C 6/ J D 0; 1; 2; : : : (6.14)

Applying these two branches for the Stokes and anti-Stokes conditions gives

�R D �ex ˙ 2B.J C 1/ (6.15)

�S D �ex ˙ B.4J C 6/ (6.16)

where the C sign applies to the anti-Stokes lines and the � sign is for the Stokes
lines.

Figure 6.5 shows the alternating intensities in the Stokes and anti-Stokes regimes
due to the additive and overlapping nature of the R and S branches. These alternating
intensities are evidence of the two branches, and thus, symmetric top structure.
The spacing of 4B instead of 2B from the null gap is a clue that the spectra are
from Raman transitions, rather than emission or absorption. For spherical tops, all
rotational modes are Raman inactive. For asymmetric rotors, all rotational modes
are Raman active.

6.5 Vibrational Raman Spectra

The Raman-activity of a molecule’s vibrational modes generally follows a pattern.
For asymmetric molecules, all vibrational modes are usually Raman-active. For
symmetric molecules:

symmetric stretch vibrations: very strong

asymmetric stretch vibrations: usually weak (sometimes unobservable)

bending vibrations: usually weak
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The reader may notice that Raman-activity tends to be strong when infrared-
activity is weak or non-existent. Because of this, infrared and Raman spec-
troscopy are often considered complementary. The relationship between infrared-
and Raman-activity can be summarized by the Rule of Mutual Exclusion.

Rule of Mutual Exclusion

If a molecule has a center of symmetry, then Raman-active modes are
IR-inactive, and vice versa. If no center of symmetry exists, then some
modes may be both IR- and Raman-active.

For a definition and discussion of the center of symmetry, see Appendix E.

6.5.1 Polarization

Polarization information of Raman-scattered light can help in interpreting spectra
and molecular structure.

1. symmetric vibration! partially/fully polarized scattering
2. asymmetric vibration! depolarized scattering

The usefulness of combining IR and Raman techniques is illustrated in the
following example.

Example: N2O
IR and Raman spectra can be used to investigate the symmetry and linearity of
N2O’s molecular structure. For example, using Table 6.3 below can we answer
the following questions:

Linearity Linear or nonlinear?
Symmetry N–N–O or N–O–N?

• some bands with only P, R branches! hence a linear molecule
• Raman and IR in the same band! hence no center of symmetry, must be

N–N–O

Table 6.3 Raman and IR spectra informa-
tion for N2O

� [cm�1] IR Raman

589 Strong; P, Q, R –

1285 VS; P, R VS; polarized

2224 VS; P, R S; depolarized
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• symmetric modes are polarized ! hence the 1285 cm�1 band is the sym-
metric stretch (�1)

• asymmetric modes are depolarized ! hence the 2224 cm�1 band is the
asymmetric stretch vibrational mode (�3)

• the 589 cm�1 band has P, Q, and R lines! hence it must be the perpendic-
ular bending mode (�2)

6.5.2 Selection Rules

The selection rules for vibrational Raman spectra permit the following vibrational
quantum number change for a harmonic oscillator:

�v D v0 � v00 D C1

and for an anharmonic oscillator:

�v D v0 � v00 D C1;C2;C3; : : :

Note that �v D 0 corresponds to pure rotational Raman, and that transitions
corresponding to changes greater than 1 in the vibrational quantum number v are
generally much weaker than for �v D 1.

6.5.3 Diatomics

The selection rules for a diatomic harmonic oscillator are

�v D v0 � v00 D C1
�J D J0 � J00 D 0;˙2

The changes in rotational quantum number J are what produce the different
branches (Fig. 6.6).

�J D

8̂̂
<
ˆ̂:
0 corresponds to the Q branch

C2 corresponds to the S branch

�2 corresponds to the O branch



102 6 Rayleigh and Raman Spectra

cm-1]

Rayleigh

ex

sekotS-itnasekotS

S
Q

O S S O
Q

S

ex- o ex+ o

Rot.
Raman

(Stokes Nv =0 (anti-Stokes) Nv =1)

Fig. 6.6 S, Q, and O branches for Stokes and anti-Stokes vibrational and rotational Raman spectra.
Note that the signal strength is dependent on the population of molecules in the initial state
.Nv-initial/

The general expressions for the transition frequencies in the three branches are

�Q D �ex ˙ �0 �0 D !e.1 � 2xe/ (6.17)

�S D �ex ˙ .�0 C B.4J C 6// J D 0; 1; 2; : : : (6.18)

�O D �ex ˙ .�0 � B.4J � 2// J D 2; 3; 4; : : : (6.19)

where J denotes the rotational state in the lower vibrational level. Thus, the anti-
Stokes lines are at

�Q D �ex C �0 (6.20)

�S D �ex C �0 C B.4J C 6/ (6.21)

�O D �ex C �0 � B.4J � 2/ (6.22)

and the Stokes lines are at

�Q D �ex � �0 (6.23)

�S D �ex � Œ�0 C B.4J C 6/	 (6.24)

�O D �ex � Œ�0 � B.4J � 2/	 (6.25)

6.5.4 Temperature

The ratio of anti-Stokes and Stokes signals can be used for temperature measure-
ments. The anti-Stokes signals are proportional to the initial population in the v D 1
state, while the Stokes signals are proportional to the initial population in the v D 0
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vibrational state. This ratio can be related to temperature through the Boltzmann
relation for vibrational levels.

anti-Stokes

Stokes
/ NvD1

NvD0
! T

6.5.5 Typical Raman Shift

A typical excitation wavelength is the second harmonic of the output of an Nd:YAG
laser,

�ex D 532 nm! �ex D 18;797 cm�1

A representative vibrational frequency of 1880 cm�1 would thus correspond to a
Raman shift of 10 % in frequency, shifting the Stokes scattered signal to a longer
wavelength, � D 591 nm, where the light can be readily separated from that at the
excitation wavelength. Also, the efficiency of photo-detection at � D 591 nm can
be larger than that at � D 532 nm.

6.6 Summary of Rayleigh and Raman Scattering

1. Raman is complementary to IR and �wave absorption and emission
2. Techniques are linear (signal is proportional to Iillum)
3. Observable signals made possible by the availability of intense laser sources

(high photons/cm2 s)
4. Rayleigh� Raman and abs � Rayleigh � Raman

5. Scattering is instantaneous; fluorescence takes time
6. Raman spectrum can be observed in the visible (where detector responsivities are

generally high)
7. Rayleigh/Raman cross-sections generally scale with 1=�4

6.7 Exercises

1. (a) Which type of spectroscopy would one observe the pure rotational spectrum
of H2?

(b) If the characteristic rotational temperature of H2, �r, is 87.59 K, and it is a
rigid rotor, what is the spacing of the lines in the pure rotational spectrum?

(c) The spin of the hydrogen nucleus is 1/2. How would that affect your answer
to part (b)?

2. You are asked to measure the temperature at a point along the centerline of a
high-temperature stream of N2 gas. You elect to infer the temperature from the
ratio of the anti-Stokes and Stokes branches of the vibrational Raman spectrum
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of N2. A pulsed laser at 500 nm is used to generate the Raman spectrum. Spectral
filters are used to separate the anti-Stokes and Stokes signals so that they can be
recorded on separate detectors. The individual features of the anti-Stokes and
Stokes are not resolved, just the total signal of each branch is recorded. Assume
!eD 2354 cm�1 and !exe D 0.
(a) Calculate the temperature of the gas if the ratio of the anti-Stokes and Stokes

signals is 1/e (i.e., 0.368).
(b) What is the center wavelength of the anti-Stokes signal?

3. (a) A cell contains an unknown gas. Probing of the infrared region has revealed
absorption features centered at 712 (VS), 1415 (VW), 2097 (W), and 3311
(S) cm�1, as shown in the sketch below. The first feature can be resolved
into three distinct, but unresolved branches, while the others contain only
two branches, also unresolved. In addition, Raman scattering from a HeNe
laser (632.8 nm) has been measured at 662.7 and 729.8 nm (see sketch).
Determine the origin of each of these features and the geometry of the
molecule contained in the cell. Try to identify the molecule.

(b) Upon further examination, the separation between the tallest peaks of the two
outer branches of the 712 cm�1 IR feature has been found to be 93.6 cm�1

at 1000 K. Use this fact to determine the shift in the purely rotational Raman
spectrum for the 18th stokes line and the 14th anti-stokes line.

(c) A second cell containing another gaseous molecule has qualitatively similar
IR and Raman spectra, except the IR absorption bands are now centered at
569, 2630, and 1925 cm�1 and the Raman scattering of the HeNe laser is now
found to be at 656.4 and 720.6 nm. Suggest the identity of this new molecule.

4. (a) A 500 nm laser is used to record the Raman spectrum of CO. Use the
following constants for CO: !e D 2000 cm�1, !exe D 0 cm�1, Be D 2 cm�1,
and ˛e D 0 cm�1.

(i) What is the frequency of the Rayleigh scattering, in cm�1?
(ii) What is the frequency (in cm�1) of the Q branch of the anti-Stokes

(�v D 1) Raman spectrum?
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(iii) What is the frequency (in cm�1) of the first S branch transition in the
anti-Stokes (�v D 1) Raman spectrum?

(iv) Calculate the frequency of the O.2/ line in the same band.
(v) What is the frequency (in cm�1) of the Q branch of the anti-Stokes

(�v D 2) Raman scattering?
(b) The above experiment is repeated for O2 which has a ground state configura-

tion of X3†�g and the following spectroscopic parameters: !e D 1500 cm�1,
!exe D 15 cm�1, Be D 1:5 cm�1, and ˛e D 0 cm�1.
(i) What is the frequency (in cm�1) of the first S branch transition in the

anti-Stokes (�v D 1) Raman spectrum?
(ii) What is the frequency (in cm�1) of the Q branch of the anti-Stokes

(�v D 2) Raman scattering?
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7Quantitative Emission and Absorption

We are ready to begin discussion of quantitative emission and absorption spec-
troscopy, with the goal of being able to specify emission and absorption as a function
of wavelength. Two steps are involved in this treatment. In the first step, a simple
form of the equation of radiative transfer will be used to identify a new parameter,
known as the spectral absorption coefficient, which will be seen as the governing
quantity which characterizes emission and absorption of light, as a function of
wavelength. In the second step, the Einstein theory of radiation is employed to
show that the spectral absorption coefficient is given simply by the product of
the line strength and a lineshape function; the relationship of the line strength to
fundamental quantities known as Einstein coefficients is also shown. With these
relationships in hand, it will become evident how spectrally resolved absorption (or
emission) can be used as a nonintrusive means of measuring a variety of gasdynamic
parameters, including: species concentration, pressure, temperature, density, and
even flow velocity.

7.1 Spectral Absorption Coefficient

We begin with an overview of possibilities when collimated light at frequency �
enters a gas sample of differential length dx: there are four separate possibilities,
with probabilities summing to 1 (100 %).

1 D absorption„ ƒ‚ …
˛�

C reflection„ ƒ‚ …
D0

C scattering„ ƒ‚ …
D0

C transmission„ ƒ‚ …
T�

(7.1)

Therefore, in the common case where reflection and scattering are negligible,

˛� C T� D 1 (7.2)

© Springer International Publishing Switzerland 2016
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where ˛� and T� are known as the spectral absorptivity and transmissivity, respec-
tively. The result in Eq. (7.2) follows from conservation of energy.

We now express ˛� , the fraction of incident light I� for the frequency range � !
�C d� that is absorbed, in terms of an absorption coefficient per unit length, k� , i.e.

˛� � k�dx D �dI�
I�

[no units] (7.3)

k� is the spectral absorption coefficient (the fraction of incident light I� over
frequency range � ! � C d� that is absorbed per unit length dx). Thus

k� � � .dI�=dx/

I�
Œcm�1	 (7.4)

where I� may have units of power per unit area per unit spectral interval at frequency
� (i.e., power per unit area over the spectral range � ! �Cd�), or can be substituted
with I.�/, which denotes power at frequency � or power per unit area at frequency
�. In the former case, which is most common for our purposes, I� is known as the
spectral intensity and has units

�
W=cm2

cm�1

�
or

�
W=cm2

Hz

�
:

The spectral intensity I� can be integrated over frequency to obtain the total radiant
intensity, I:

I ŒW=cm2	 D
Z
�

I�d� (7.5)

In general, the equations that relate spectral intensity, spectral radiancy, and total
radiancy to other parameters can use I� or I.�/ interchangeably. The exceptions are
integral relations such as Eqs. (7.5) and (7.13); they require the differential form
of spectral intensity, I� . Thus, Eqs. (7.3) and (7.4) also define ˛� , the fraction of
incident light absorbed, and k� , the fraction of incident light absorbed per unit
length, each at frequency �.

Hence, ˛� and k� are the spectral absorptivity and spectral absorption
coefficient at frequency � or over the frequency range � ! � C d�.
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7.2 Equation of Radiative Transfer: Classical Approach

We wish to perform a simple one-dimensional radiation energy balance on a thin
slab of gas. To do this, we must first introduce the spectral emissivity, which is the
way that we account for the “emission” from the gas slab. (If a gas sample can absorb
light, it follows that it must be allowed to emit, in order to satisfy detailed balance
arguments for equilibrium.) The spectral emissivity is conventionally defined as
the radiation emitted by the gas sample .Iem

� / relative to that of a blackbody (an
“equilibrium” radiator which sets the upper bound on the emission for a specified
temperature):

"� D Iem
�

Ibb
�

[no units] (7.6)

D Iem.�/

Ibb.�/
[no units] (7.7)

where Ibb
� is the blackbody spectral radiancy. At this point, we employ Kirchhoff’s

law, which states that “emissivity equals absorptivity,” so that

"� D ˛�: (7.8)

(This law also follows from equilibrium arguments.) Now consider the radiation
energy balance at frequency � for a gas slab of thickness dx; for simplicity, we
consider only collimated light (Fig. 7.1).

emission D "�Ibb
�

absorption D ˛�I�

dI� D emission � absorption

D "�Ibb
� � ˛�I� (7.9)

D ˛�.Ibb
� � I�/ (7.10)

Therefore,

dI� D k�dx.Ibb
� � I�/: (7.11)

Thin sample of emitting/absorbing gas

Collimated light @ v

Iv Iv + dIv

dx

Fig. 7.1 Radiation energy balance across a slab of gas
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Gas

Collimated light @ v

I(v)I°(v)

L

Fig. 7.2 Radiation energy across a slab of gas of width L

This is the differential form of the equation of radiative transfer. Integrating over a
distance L, for a uniform sample (i.e., constant k� , see Fig. 7.2), with an incident
intensity I0� at x D 0 (the boundary condition):

I�.L/ D I0� exp.�k�L/C Ibb
� Œ1 � exp.�k�L/	 (7.12)

This important result is the integrated form of the equation of radiative transfer.
The quantity k�L is known as the “optical depth” (and also as the absorbance at
frequency �). Note that the gas sample is not required to radiate as a blackbody, but
we can relate the actual emission to the blackbody level.

Consider the two important cases: Emission and Absorption.

7.2.1 Case 1: Emission Experiments .I0
� D 0/

For emission experiments, the incident radiation intensity I0� D 0 (i.e., there is no
radiation source such as a laser involved).

Spectral radiancy: I�.L/ D Ibb
� Œ1 � exp.�k�L/	

Spectral emissivity: "�.k�;L/ D I� .L/
Ibb
�
D 1 � exp.�k�L/

We can integrate these relations over frequency to obtain results for the total
radiancy:

I.L/ D
Z 1
0

I�.L/d� D
Z 1
0

Ibb
� Œ1 � exp.�k�L/	d� (7.13)

".L/ D I.L/

Ibb
D 1

T4

Z 1
0

Ibb
� Œ1 � exp.�k�L/	d� (7.14)

Note:

Ibb D
Z 1
0

Ibb
� d� D T4;
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where

 D 5:67 � 10�5 Œerg cm�2 s�1 K�4	

is the Stefan–Boltzmann constant.

Emission Types
The emission for the formulas above may be of any type, including single line,
multiple line, single or multiple bands, or continuum.

Optical Depth
The optical depth, k�L, is a key parameter. When k�L � 1, the system is optically
thick and the spectral radiance approaches that of a blackbody. When k�L	 1, the
system is optically thin and the spectral radiance approaches .k�L/Ibb

� .

optically thick: k�L� 1; I�.L/! Ibb
�

optically thin: k�L	 1; I�.L/! .k�L/Ibb
�

7.2.2 Case 2: Absorption Experiments .I0
� � Ibb

� /

For absorption experiments, the incident radiant intensity is much greater than the
blackbody radiation intensity.

Absorption: I0� � Ibb
�

The equation of radiative transfer, Eq. (7.12), then becomes

I�.L/ D I0� exp.�k�L/ (7.15)

This relation, known as Beer’s Law or the Beer–Lambert Law, may be the most
important relation in absorption spectroscopy. Alternate forms in terms of the
fractional transmission or “transmissivity,” T� , are

T� D
�

I

I0

�
�

(7.16)

D exp.�k�L/ (7.17)

D I.�/

I0.�/
(7.18)
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We make two observations:

1. The same equation would apply to the transmission of a pulse of laser excitation,
with energy E� ŒJ=cm2=cm�1	, i.e. T� D E�=E0� .

2. The fundamental parameter controlling absorption over length L is the spectral
absorption coefficient, k� .

Our next step is to establish a relationship between k� and the fundamental
molecular parameters that govern the “strengths” and “shapes” of absorption lines,
namely the Einstein coefficients and line-broadening coefficients.

7.3 Einstein Theory of Radiation

We begin with a simplified theory, without regard to lineshape or structure (some-
times termed the Milne Theory). Consider two states of an atom (or molecule)
which are radiatively coupled (i.e., have radiative transitions that are “allowed”),
with E2 � E1 D h�.

The total transition rates [molec/s] are N2A21, N1B12�.�/, and N2B21�.�/, where
Ni is the total number of molecules in state i. Alternatively the transition rate per
unit volume [molec/cm3/s] can be expressed using the number density ni.

7.3.1 Einstein Coefficients

A21, B12, and B21 in Fig. 7.3 are the Einstein coefficients of radiation.

B12�.�/ the probability/s that a molecule in state 1 exposed to radiation
of spectral density �.�/ [J/(cm3 Hz)]1 will absorb a quantum h�
and pass to state 2. The Einstein B-coefficient thus carries units of
cm3 Hz/(J s).

Spontaneous
Emission

Induced
Emission

Induced
Absorption

A21 B21B12

Energy

Fig. 7.3 Transition probabilities between states 1 and 2

1The spectral density is the energy density per unit frequency contained in an electric field.
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B21�.�/ the probability/s that a molecule in state 2 exposed to radiation of
spectral density �.�/ will emit a quantum h� and pass to state 1.2

A21 the probability/s of spontaneous transfer from state 2 to 1 with
release of photon of energy h� (without regard to the presence of
�.�/)

Similar expressions apply when isotropic radiation intensity or parallel beam
intensity (e.g., a laser) are involved.

7.3.2 Equilibrium

At equilibrium, the net rate of change of molecules in any molecular state is zero.
Consider a detailed balance of the optical processes at equilibrium for the population
change in state 2:

� PN2�rad D N1B12�.�/„ ƒ‚ …
molec/s entering state 2

�N2.A21 C B21�.�//„ ƒ‚ …
molec/s leaving state 2

D 0 (7.19)

The molecule balance in Eq. (7.19) is simply the difference between the rate of
molecules entering state 2 and the rate of molecules leaving state 2. Equilibrium
requires that all transitions from state 1 to 2 (induced absorption) are balanced by
transitions from state 2 to 1 (induced and spontaneous emission). Another way to
express the equilibrium condition is with the Boltzmann fraction from statistical
mechanics:

N2
N1
D B12�.�/eq

A21 C B21�.�/eq„ ƒ‚ …
rad. equil.

D g2
g1

exp.�h�=kT/
„ ƒ‚ …

statistical equil.

(7.20)

Solving for �.�/eq in Eq. (7.20) and equating it to the known result for �.�/eq, i.e.
Planck’s blackbody distribution,

�.�/eq D .8�h�3=c3/

exp.Ch�=kT/ � 1 (7.21)

gives

�.�/eq D .A21=B21/
g1
g2

B12
B21

exp.h�=kT/ � 1 D
.8�h�3=c3/

exp.h�=kT/ � 1„ ƒ‚ …
Planck’s distribution

(7.22)

2This induced emission occurs in phase with and in the same direction as the incident beam. Hence,
for collimated incident light (e.g., a collimated laser beam) the induced emission appears as gain
in the exciting beam.
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Equation (7.22) must hold for all � and T , producing the two following important
conclusions [1]:

g1B12 D g2B21 (7.23)

A21 D
�
8�h�3

c3

�
B21 (7.24)

� 1=�21 (7.25)

where �21, the inverse of A21, is the “radiative lifetime” in state 2. We must note
here that even though Eq. (7.24) was derived from thermodynamic equilibrium
arguments and Planck’s blackbody distribution, the relationship between A and B
holds even for systems not in equilibrium, and it does not depend on �.�/. A21,
and hence B12 and B21 are theoretically calculable from quantum mechanics, but in
practice, �21 and/or B12 are often measured.

Note: For collimated light (as in the case for most absorption experiments):
�.�/eq D np � h� [J/cm3 s�1 ] (np is the number of photons/cm3 s�1 )
I� D np � h� � c [W/cm2 s�1 ] (power per unit area per unit frequency)
Therefore,

�.�/ D I�=c (7.26)

Where is the link to k� ? Find this next.

7.3.3 What is k�?

We proceed now to find the relationship between the spectral absorption coefficient,
k� , and the Einstein coefficients, for the case of a structureless absorption line of
width ı�. Recall that Beer’s Law is

T� D
�

I

I0

�
�

D exp.�k�L/ (7.27)

where I� may be either the spectral intensity ŒW=cm2 s�1	 or intensity ŒW=cm2	 or
power ŒW	 at frequency �, and that

k� � � dI�
I�dx

(7.28)

Figure 7.4 plots T� and k� versus frequency for this case. Note that T� D 1

everywhere but in the region of the absorption line.
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Fig. 7.4 T� and k� versus frequency for a structureless absorption line of width ı�

Gas Ivdv + (dIv)dvIvdv

dx

Fig. 7.5 Transmission of laser intensity across a gas slab of depth dx

Imagine that a spectrally broad light source of uniform spectral intensity I0� is
used to illuminate a sample gas with the spectral absorption coefficient shown in
Fig. 7.4; the length of the sample is L. What is the absorbed power in W/cm2?

Pabs D .incident power over ı�/ � (fraction absorbed) [W/cm2]

D .I0� ı�/ � .1 � T�/ (7.29)

D .I0� ı�/.1 � exp.�k�L// (7.30)

where I0� has units of W=cm2 s�1 and ı� has units of s�1. The product I0�ı�
represents the incident power per unit area .W=cm2/ contained in the spectral
interval ı� over which absorption may occur.

What happens to Eq. (7.30) for a small (incremental) width dx, such that
k�dx	 1? For small optical thickness, the exponential term can be linearized,
leading to the simple result

Pabs D .I0� ı�/.k�dx/ (7.31)

or

Pabs

I0� ı�
D fraction absorbed D k�dx: (7.32)

This is known as the optically thin limit.
We can use a simple energy balance on an incremental slab of gas to find k�

(Fig. 7.5).
In this model, we recognize that the change in intensity, i.e. .dI�/ı�, is equal to

the net combined effects of emission and absorption,
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.dI�/ı� D (induced emissionC spontaneous emission)„ ƒ‚ …
D0

�induced absorption

(7.33)

where the spontaneous emission is approximately zero for collimated light and

induced emission D .n2dx/„ƒ‚…
molec=cm2

in state 2

�B21�.�/„ ƒ‚ …
prob=s of

emission

� h�„ƒ‚…
energy per

photon

(7.34)

induced absorption D .n1dx/„ƒ‚…
molec=cm2

in state 1

� B12�.�/„ ƒ‚ …
prob=s of

absorption

� h�„ƒ‚…
energy per

photon

(7.35)

Recalling Eq. (7.26), Eq. (7.33) becomes

.dI�/ı� D Œn2B21 � n1B12	
h�

c
I�dx (7.36)

Therefore,

dI�
I�dx

� �k� D h�

c

1

ı�
Œn2B21 � n1B12	 (7.37)

which may be simplified further to give

k� Œcm�1	 D h�

c

1

ı�
n1B12 .1 � exp.�h�=kT// (7.38)

While this result is immediately helpful in understanding the fundamental coupling
between k� and B12, n1, �, and T , we can see now that the shape and width of
absorption lines (evident in Eq. (7.38) with the term ı�) are also relevant. How
would the use of a more realistic lineshape model affect Eq. (7.38)?

7.4 Revised Treatment of Einstein Theory (with Lineshape)

We now repeat the derivation for k� using an improved lineshape model that includes
the structure of absorption and emission lines. Compared with the uniform and
structureless feature in Fig. 7.4, real spectra have shapes. These realistic shapes
for the spectral transmission, T� , spectral absorption, k� , and normalized lineshape
function, �, of a single absorption line are shown in Fig. 7.6.
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Fig. 7.6 T� , k� , and � versus frequency for an absorption line with typical structure

Recall that the general form for Beer’s Law is

T� D
�

I

I0

�
�

D exp.�k�L/ (7.39)

Solving for k� yields

k� D �1
L

ln T� (7.40)

In addition, we define a new parameter, �, as the normalized lineshape function

� � k�R
line

k�d�
[cm] or [s] (7.41)

so that
Z

line

�d� D 1 (7.42)

The units for � are inverse frequency (and hence may have units of either
centimeters or seconds). The lineshape function, whose integral over the line is 1,
provides a useful way of characterizing the shape of a line.

Note: Since
Z

k�d� � k�;maxı�

where ı� is an average width, then

�pk D k�;maxR
k�d�

� 1

ı�
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Fig. 7.7 Transition probabilities per second per molecule in level 2 or 1

Thus we should not be surprised if we find that the term 1=ı� in
Eq. (7.38) is simply replaced by � in the revised formulation, with �
varying smoothly from zero in the “wings” of an absorption line to a
peak value proportional to 1=ı� (see Fig. 7.6 above).

Consider the small frequency interval, � ! � C d�, in Fig. 7.6. What are the
relevant transition probabilities for this spectral interval? We recognize that these
probabilities should have the same spectral dependence (shape) as k� and �.�/, i.e.
having a peak value at line center and falling to zero away from the line. We achieve
this shape with a simple modification to our previous model (with the constant
probabilities A21, B12, B21) by multiplying the Einstein coefficients by �.�/d� (see
Fig. 7.7).

A21�.�/d� the probability/s of a molecule undergoing spontaneous emis-
sion, in the range � ! � C d�
[Note that the integral of this quantity over the range of
allowed � is just A21 [s�1], i.e.

R
A21�.�/.d�/ D A21.]

B12�.�/d��.�/ the probability/s of a molecule undergoing a transition from
1! 2, in the range � ! � C d�

B21�.�/d��.�/ the probability/s of a molecule undergoing a transition from
2! 1, in the range � ! � C d�

Recall: �.�/ D I�=c, where �.�/ is the spectral energy density [J/cm3 s�1]
and I� is the spectral intensity ŒW=cm2 s�1	 of collimated laser
light.

We are now ready to do a simple energy/power balance on an incremental gas
slab of width dx, for the frequency range � ! � C d� (Fig. 7.8).

The energy balance for the slab requires that the incremental gain in intensity,
dI�d�, is equal to the difference between the emission and absorption over the
frequency interval d� in the gas slab:
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Gas
Ivdv + (dIv)dvIvdv

[W/cm2 in v to v+dv]
dx

Fig. 7.8 Energy/power balance on an incremental gas slab

dI�d� D emission in d� � absorption in d�

D
#=cc‚…„ƒ
n2 dx„ ƒ‚ …

molec=cm2

�
prob=s�molec for d�‚ …„ ƒ
ŒB21�.�/d�I�=c	� h �0„ƒ‚…

energy=

photon

� n1dxŒB12�.�/d�I�=c	h�0

Therefore,

� dI�
I�dx

� k� D h�

c
Œn1B12 � n2B21	�.�/ (7.43)

so

k� D h�

c
n1B12 .1 � exp.�h�=kT// �.�/ (7.44)

which is, as suggested, equal to our earlier result for k� aside from the substitution
of �.�/ for 1=ı�! Integrating k� over the absorption line yields

S12 �
Z

line

k�d� Œcm�1 s�1	 (7.45)

S12 D h�

c
n1B12.1 � exp.�h�=kT// (7.46)

S12 is an important quantity known as the “integrated absorption” for the absorption
transition 1 ! 2[1]. It is also often called the “line strength.” Note that the
quantity does not depend on lineshape and is simply a function of n1, T , and B12.
Changes in lineshape, e.g. owing to pressure-broadening, thus do not affect S12.
This quantity, like Einstein coefficients, is thus fundamental in nature. In view of
the interrelationships of A21, B12, and B21, we may also write
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S12 D �2

8�
n1A21

g2
g1
.1 � exp.�h�=kT// Œcm�1 s�1	 (7.47)

S12 D
�
�e2

mec

�
n1f12.1 � exp.�h�=kT// Œcm�1 s�1	 (7.48)

(Note that the units of S12 shown here as cm�1 s�1 depend on the choice of units
for frequency, typically either s�1 or cm�1, so that S12 may have units of cm�1 s�1

or cm�2. Other variations also appear in the literature.)
Equation (7.47) makes use of the relationship between A21 and B12. Equa-

tion (7.48) utilizes the oscillator strength, f :

f12 D S12;actual

S12;classical.1 � exp.�h�=kT//
(7.49)

The oscillator strength of a transition (or group of transitions like a vibrational
band or electronic system) compares the integrated strength of the transition with
the classical electromagnetic model of an oscillating electron in a magnetic field.
Sclassical is given by[2]:

Sclassical D
�
�e2

mec

�
n1 (7.50)

where

�
�e2

mec

�
D 0:0265 cm2 Hz:

so that

S12;actual D .0:0265 cm2 Hz/n1f12.1 � exp.�h�=kT// (7.51)

Since n1 can be written in terms of pressure, i.e.,

n1 D p1
kT

(7.52)

then at STP, if all the absorbing atoms are in the ground state (n1 D n D
2:7 � 1019 cm�3) and exp.�h�12=kT/ 	 1, the line strength S12 is simply 7:17 �
1017f12 Œcm�1 Hz=atm	, or equivalently

S12Œcm�2=atm	 D 2:380 � 107f12 (7.53)
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From Eqs. (7.47) and (7.48), the reader may note that the oscillator strength is
also directly related to the Einstein coefficients for a given transition, and like the
coefficients for stimulated emission,

f21 D
�

g1
g2

�
f12 (7.54)

We now make two important observations:

1. From the original definition of k� and S12 we have

k� D S12�.�/

2. When

h�=kT � 1;

as is common for electronic state transitions,

S12 Œcm�1 Hz	 D
�
�e2

mec

�
n1f12 (7.55)

D .0:0265 cm2 Hz/n1f12 (7.56)

D �2

8�
n1A21

g2
g1

(7.57)

and, by comparison of right-hand sides

f12=A21 D f12�21 D 1:51g2
g1
.� Œcm	/2 (7.58)

where �21 D 1=A21 is the radiative lifetime of the 2! 1 transition.

Example: “Resonance Transition”
A resonance transition is one that couples the ground state to the first excited
state. Let’s look at a case for an electronic transition of a sodium atom:

Na .

lower.L/‚…„ƒ
32S1=2 �

upper.U/‚…„ƒ
32P1=2/;

g2
g1
D 1;

� D 589 nm D 5:89 � 10�5 cm (7.59)
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Table 7.1 Oscillator
strengths of selected sodium
transitions, abstracted from [1]

Transition f21 �[nm]

32S1=2 – 32P1=2 0.33 589.6

32S1=2 – 32P3=2 0.67 589.0

32S – 42P 0.04 330.2

Conventions:
atoms: (L – U)
molecules: (U$ L), arrow denotes absorption or emission
fij: i denotes initial state, j denotes final

From Eq. (7.58),

f12�589 nm D 5:24 � 10�9 s;

where the radiative lifetime is

� D 16:1 � 10�9 s (measured, corresponds to A D 0:62 � 108 s�1)

Thus, f � 0:325 (strong atomic transition; single electron). Values of f for
molecular transitions tend to be much smaller, �10�2–10�4, owing to the
relatively strong coupling between the multiple electrons and protons in a
molecule and can be very much smaller for highly forbidden transitions. The
“term symbols” for electronic states in atoms will be discussed in Chap. 9.

Table 7.1 lists the emission (f21) oscillator strengths and spectral locations for a
few transitions of the sodium atom.

These values can be compared with electronic and vibrational oscillator strengths
in a few molecules (Table 7.2).

7.5 Radiative Lifetime

The concept of radiative lifetime merits further discussion. If we write a rate
equation for radiative decay from an upper level u, accounting for all allowed
spontaneous decay paths to lower states l, then
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Table 7.2 Absorption oscillator strengths of selected
vibrational and vibronic bands of a few molecules

Electronic Band center

Molecule v0 v00 transition [cm�1] f12
CO 1 0 – 2143 1:09� 10�5

2 0 – 4260 7:5� 10�8
OH 1 0 – 3568 4:0� 10�6

0 0 2† 2… 32;600 1:2� 10�3
CN 0 0 2… 2† 9117 2:0� 10�2

dnu

dt
D �nu

X
l

Au!l (radiation only) (7.60)

Thus, for an initial number density nu.0/, the time-dependent density, allowing for
radiative decay only, is:

nu.t/ D nu.0/ exp

"
�t
X

l

Au!l

#
(7.61)

so

�r D radiative lifetime D 1P
l

Au!l
(7.62)

Of course, collisions and radiative excitation into the upper levels will also be
present and will maintain a non-zero population in the upper level. �r is also
sometimes described as the zero-pressure lifetime.

The decay u ! l may also occur through non-radiative (i.e., collisional)
processes; corresponding energy may be given to neighboring molecules as trans-
lational energy or, quite commonly, as internal energy. In the case of non-radiative
decay, the rate of decays per unit volume can be written in terms of a rate parameter
knr.s�1/

�
dnu

dt

�
nr
D �knrnu D � nu

�nr
(7.63)

where �nr is the non-radiative decay time. This parameter depends on the transition
considered and on the surrounding molecules.
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With the simultaneous presence of both radiative and non-radiative transitions,
the time variation of the upper level u population can be written as

dnu

dt
D �nu

�r
� nu

�nr
D �nu

�
(7.64)

where ��1 D ��1r C ��1nr is called the lifetime of level u.

7.6 Alternate Forms

There are many alternate forms for the linestrength and Beer’s Law, each with its
own units and notation.

7.6.1 Line Strengths

Alternate forms for linestrength notation and units are as follows:

1.

k! Œcm�1	 D S12 Œcm�2	 �! Œcm	; or

k� Œcm�1	 D S12 Œcm�2	 �� Œcm	

where

� Œcm�1	 or ! Œcm�1	 � 1=� Œcm	;

�� Œcm	 or �! Œcm	 D c Œcm=s	 �� Œs	

and

d� Œcm�1	 or d! Œcm�1	 D .1=c/d� Œs�1	

2.

S12 Œcm�2	 D .1=c/S12 Œcm�1=s	

3.

S12 Œcm�2=atm	 D S12 Œcm�2	=Pi Œatm	

D
�

n1
Pi Œatm	

�� c

8��2

�
A21

g2
g1
.1 � exp.�h�=kT//

where n1 is the number density of the absorbing species i in state 1.



7.6 Alternate Forms 125

4. The typical units for linestrengths include a per-unit-pressure version, S
[cm�2 atm�1], and a per-unit-number-density version used by HITRAN96, S�
[cm�1=.molecule cm�2/]. The conversion between S and S� is

S Œcm�2 atm�1	 D S� Œcm�1=.molecule cm�2/	 � n Œmolecules=cc	

P Œatm	
; (7.65)

where n is the number density of the absorbing species in [molecules/cc] and
P is the corresponding partial pressure in [atm]. Using the ideal gas law and
converting pressure units from [dynes=cm2] to [atm] yields the following relation

S Œcm�2 atm�1	 D S� Œcm�1=.molecule cm�2/	 � 1013250 Œdynes=.cm2 atm/	

kT
;

(7.66)

where k D 1:38054 � 10�16 erg/K is the Boltzmann constant and T [K] is the
temperature at which the conversion is being performed and the linestrength is
known. Equation (7.66) reduces to

S D S� � .7:34 � 1021/
T

Œcm�2 atm�1	: (7.67)

For converting room-temperature linestrength (T D 296K), the conversion is

S D S� � .2:4797 � 1019/ Œcm�2 atm�1	: (7.68)

7.6.2 Beer’s Law

It follows from the alternate forms for the linestrength that multiple expressions for
Beer’s Law also exist, e.g.

�
I

I0

�
�;!;�

D exp .�k�L/ (7.69)

D exp .�n�L/ (7.70)

D exp .�ˇ!PiL/ (7.71)

D exp.�S��PiL/ (7.72)

where

n D number density of the absorbing species [molecules/cm3]

� D absorption cross-section [cm2/molecule]
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S D “linestrength” [cm�2 atm�1] or [cm�1 s�1=atm]

ˇ! D frequency-dependent absorption coefficient [cm�1/atm] (7.73)

Pi D partial pressure of species i [atm]

�� D frequency-dependent lineshape function [cm] or [s]

In the IR, it is common to use atmosphere and wavenumber units, i.e. ˇ! D
k�=Pi D absorption coefficient per atmosphere of pressure. Thus,

S12 Œcm�2=atm	 D
Z
ˇ!d!

D S12 Œcm�1 s�1	

cPi Œatm	

D 8:82 � 10�13 n1
Pi Œatm	

f12 .1 � exp.�h�=kT//

D c

8��2
n1
Pi

A21
g2
g1
.1 � exp.�h�=kT//

7.7 Temperature-Dependent Linestrengths

As Eq. (7.46) demonstrates, linestrengths are directly dependent on the number den-
sity, n1, and exponentially dependent on the temperature, T . Using the Boltzmann
fraction to relate n1 at various temperatures and combining with Eq. (7.46) yields an
expression for the linestrength as a function of temperature.

The linestrength Si.T/ for a particular transition i at some temperature T can
be determined from the molecule’s reference temperature linestrength Si.T0/; the
absorbing molecule’s partition function Q.T/; the frequency of the transition, �0;i;
and the lower-state energy of the transition, E00i . This relationship is given by

Si.T/ D Si.T0/
Q.T0/

Q.T/

�
T0
T

�
exp



�hcE00i

k

�
1

T
� 1

T0

��

�


1 � exp

��hc�0;i
kT

��

1 � exp

��hc�0;i
kT0

���1
;

(7.74)

where S is in units of [cm�2 atm�1 ]. For units of [cm�1=.molecule cm�2/], the
following temperature scaling can be used
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S�i .T/ D S�i .T0/
Q.T0/

Q.T/
exp



�hcE00i

k

�
1

T
� 1

T0

��

�


1 � exp

��hc�0;i
kT

��

1 � exp

��hc�0;i
kT0

���1
:

(7.75)

Thus, a ratio of linestrengths with the different units can be calculated as follows:

S.T/

S.T0/
D S�i .T/

S�i .T0/
� T0

T
: (7.76)

7.8 Concept of Band Strength

The concept of band strength is common in the IR. Recall that a band is a group of
lines for different upper and lower vibrational quantum numbers. The band strength
is determined by the number and strength of individual lines, and is expressed as a
sum of the linestrengths.

Sband D
X
band

Slines (7.77)

Example: Heteronuclear Diatomic Band Strength
For the 1 0 band of a heteronuclear diatomic molecule, the band strength is

S1 0 D
v0D1 v00D0X

J00

�
S1 0J0 J00.P/C S1 0J0 J00.R/

	

where

S10J0J00.R/ D
c

8��2

nJ00
Pi ; atm‚ …„ ƒ
nJ00

nikT=1:013 � 106

�1‚ …„ ƒ

gJ0

gJ00
D 2J0 C 1
2J00 C 1

�
A10P � J00

2J00C1
A10‚ …„ ƒ


A10R �
J00 C 1
2J00 C 1A10

�

� .1 � exp.�h�=kT//:

Note: The approximations shown for A10R and A10P are based on the normal-
ized Hönl–London factors, to be discussed in Chap. 10.

Then

S10.R/ D .1:013 � 106/ c

8��2kT
A10

X
J00



nJ00

ni

J00 C 1
2J00 C 1

�
;
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and similarly

S10.P/ D .1:013 � 106/ c

8��2kT
A10

X
J00



nJ00

ni

J00

2J00 C 1
�

Therefore, since
P

J00.nJ00=ni/ D 1,

S10.T/ D .1:013 � 106/ c A10

8��2kT

Example: Band Strength of CO
The measured band strength of CO at 273 K, as measured at Stanford, is

S10CO.273K/ D 3:2 � 1028 A10

�2
� 280 cm�2=atm

But,

! � 2150 cm�1

and

� � 6:4 � 1013 s�1;

yielding

A10 D 36 s�1;

or, equivalently,

�10 D 0:028 s

Compare the value for �10 with the previous example of �Na � 16 ns. CO
requires 28 ms to decay by radiation! Thus, IR transitions, due to their smaller
changes in dipole moment, have much lower values of A and longer radiative
lifetime � than UV/Visible transitions.
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7.9 Exercises

1. Light is transmitted through an optically thin (but absorbing) medium. If the path
length (L) is doubled, what happens to the fractional absorption?

2. The fractional transmission of monochromatic light through a uniform absorbing
medium of length L is 0.75. What is the fractional transmission if the path length
is doubled?

3. A discrete electronic transition of a monatomic gas at high temperature (T D
5000K) and low pressure (P D 0:01 atm) has a measured linecenter spectral
absorption coefficient k�o of 0.1 cm�1 at a wavelength of 500 nm. Determine the
linecenter spectral emissivity of the gas if the gas sample is 10 cm thick and
�(500 nm) = 6 cm.

4. The Einstein-A coefficient for a particular rovibrational transition of CO2 is
220 s�1. In the absence of collisions, what is the characteristic lifetime of the
upper state? Compare this with the Na transition near 589.6 nm which has an
Einstein-A coefficient of 6:14 � 107 s�1.

5. The partial pressure of H2O is 0.10 atm and an absorption transition with a
linestrength of 7:58 � 10�22 cm�1/molecule cm2 is excited by a 10 mW laser
near 1392 nm that is resonant with the transition linecenter. How much power
is absorbed by the 10 cm gas sample if �.1392 nm/= 5 cm?

6. Given the Einstein-A coefficient of a transition, what additional information do
you need to calculate the temperature-dependent linestrength of this transition?
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8Spectral Lineshapes

The lineshape function �.�/ characterizes the relative variation in the spectral
absorption coefficient with frequency and appears directly in Beer’s Law:

�
I

I0

�
�

D exp.�S��PiL/ (8.1)

This variation with frequency is caused by broadening mechanisms in the medium.
An understanding of these mechanisms allows accurate predictions of the lineshape
function. Likewise, a measurement of the lineshape function, and the center fre-
quency, �0, can be used to determine properties of the medium such as temperature,
pressure, and velocity.

8.1 Lineshape Introduction

The lineshape function has been defined so that its integral over frequency is unity,

�.�/ D k�R
line

k�d�
; (8.2)

so that

Z C1
�1

�.�/ d� D 1: (8.3)

A typical lineshape of an isolated absorption line centered at �0 is shown in Fig. 8.1
as a function of frequency.

The lineshape has a maximum value �.�0/ at the center frequency �0. The width
of the feature, ��, is defined by the width at half the maximum value (the fullwidth

© Springer International Publishing Switzerland 2016
R.K. Hanson et al., Spectroscopy and Optical Diagnostics for Gases,
DOI 10.1007/978-3-319-23252-2_8

131



132 8 Spectral Lineshapes
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Fig. 8.1 Sample lineshape as a function of frequency

at half maximum, or, FWHM). Note that the halfwidth at half maximum, HWHM,
is also used in many texts. The integral in Eq. (8.3) is defined to have no dimensions.
Since the units of d� are typically either cm�1 or s�1, �.�/ will have units of cm
or s, respectively.

It is often convenient to investigate the lineshape and other absorption parameters
by converting transmission or absorption into absorbance, where absorbance is
defined as

˛.�/ D � ln

�
I

I0

�
�

D S��PiL D S��PXiL; (8.4)

where Xi D mole fraction of the absorbing species i. Note that absorbance has no
units.

8.2 Line BroadeningMechanisms

Broadening of an absorption feature occurs due to physical processes within the
medium that perturb the transition’s energy levels or the way in which individual
atoms and molecules interact with light. If this effect is the same for all atoms of
the species, the broadening is said to be homogeneous. If, however, there are separate
classes or subgroups for which the interaction varies, the broadening is said to be
inhomogeneous or heterogeneous. This subtle difference will become more clear
when examining the types of broadening mechanisms.

The energy of an optical transition is equal to the energy difference between two
states. The Heisenberg Uncertainty Principle relates the uncertainty of these energy
levels to their lifetimes [1]. The uncertainty in the energy of level i is limited by

�Ei � h

2��i
(8.5)
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where �i is the lifetime of level i. The lifetimes of the upper and lower states, � 0
and � 00, respectively, can be combined to give the total energy uncertainty �E of a
transition. Thus, there is a range of energies over which the transition has a non-zero
probability of being measured. Since �E D h��, that range is characterized by a
linewidth (FWHM) given (in units of frequency) by:

�� D 1

2�

�
1

� 0
C 1

� 00

�
(8.6)

Since the Uncertainty Principle applies to all atoms in the same way, lifetime
broadening is homogeneous. The lineshape function can be derived by modelling
the atomic system as a damped oscillator. It takes the form of a Lorentzian function:

�L.�/ D 1

2�

��

.� � �0/2 C
�
��
2

�2 (8.7)

The Lorentzian lineshape function at linecenter is

�L.�0/ D 2

���
: (8.8)

Another form of Eq. (8.7) is

�L.�/ D �L.�0/
1

1C 4. ���0
��
/2
: (8.9)

There are different mechanisms that lead to broadening of spectroscopic transi-
tions. Some of these mechanisms are described below.

8.2.1 Natural Broadening

In the absence of interactions with other atoms (e.g., via collisions), the lifetime of
an atom in a particular level is determined by spontaneous emission [2]:

��N D 1

2�

�
1

�i
C 1

�j

�
(8.10)

D 1

2�

 X
k

Aik C
X

k

Ajk

!
(8.11)

This is the sum of the Einstein A coefficients for all downward transitions from the
two levels of the transitions i and j. Thus, the sum is over all k such that Ek < Ei or
Ej. Note that if the lower level, level j, is the ground state, there can be no radiative
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decay and its contribution to the halfwidth is zero. The subscript N indicates that the
FWHM is due to natural broadening which is described by the Lorentzian lineshape
function in Eq. (8.7).

8.2.2 Collisional Broadening (Pressure Broadening)

Molecules (or atoms) interact with each other via collisions. During a collision,
energy may be transferred among various energy modes within and between
molecules, thus changing the molecular state each molecule exists in. As a result,
collisions can reduce the average lifetime of a molecule in a state below that of the
natural lifetime. According to Eq. (8.6), shortening the lifetime �i of a molecule in
level i leads to greater uncertainty, and thus a broader absorption lineshape. Hence,
the more frequently collisions occur, the more lifetimes are shortened and transitions
are broadened. This relationship between collision frequency and transition breadth
is the fundamental mechanism underlying collisional (or pressure) broadening.

A collision can be modelled as occurring when two molecules approach each
other within a certain distance called the optical collision diameter. If the diameters
of molecules A and B are defined as A and B, respectively, the optical collision
diameter is given by

AB D 1

2
.A C B/ (8.12)

The associated optical cross-section area is �.AB/
2. Note that this cross-section

may be significantly different than the cross-sections for collisions between A and
B that give rise to other phenomena (e.g., the elastic collision cross-section). The
number of collisions per second of a single B with all A is given by

ZAB D nA� 
2
AB Nc (8.13)

where nA is the number density of species A and Nc is the mean relative speed of the
molecules given by

Nc D
�
8kT

� �AB

�1=2
(8.14)

The reduced mass, �AB, is a function of the masses of A and B

�AB D mAmB

mA C mB
(8.15)

The total collision frequency (of a single B) for a variety of different collision
partners is obtained by summing over the different species:
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ZB D
X

A

nA� 
2
AB

�
8kT

� �AB

�1=2
(8.16)

Note that for a pure gas, i.e. all B, Eq. (8.16) simplifies to the expression ZB D
nB�

2
BB.8kT=��BB/

1=2. By introducing the ideal gas law, P D nkT , we can rewrite
Eq. (8.16) for the single-molecule collision frequency as

ZB D P
X

A

XA� 
2
AB

�
8

� �ABkT

�1=2
(8.17)

where P is the total pressure and XA is the mole fraction of species A. Using Eq. (8.6)
with 1=� 0 D 1=� 00 D ZB, it follows that ��C, the FWHM due to collisional
broadening, is given by

��C D ZB

�
: (8.18)

The frequency uncertainty due to collisional effects, ��C, is the lineshape’s
halfwidth (FWHM). This net uncertainty for the interrogated species, B, is often
modelled as the product of the system pressure and sum of the mole fraction for each
perturbing species A multiplied with its process-dependent collisional broadening
coefficient 2�B�A

��C D P
X

A

XA2�B�A: (8.19)

Thus, the collisional width of an absorption transition is directly proportional to
pressure. The standard notation for the different broadening coefficients is 2�B�A,
where B is the molecule whose lineshape is being studied and A is the collision
partner (or perturber) that interacts with species B to broaden its absorption line.
Thus, 2�CO�CO is the broadening coefficient for CO–CO collisions (self-broadening,
2�self), and 2�CO�N2 is the coefficient for CO lineshape broadening due to collisions
with N2 (nitrogen-broadening). Mass-averaged O2 and N2 coefficients are contained
in air-broadening coefficients, 2�CO�Air. Values of 2� are published for specific
transitions and specific collision partners.

If P has units of atmospheres, and ��C has units of s�1 then 2�B is defined by

2�B D 1:013 � 106 2AB

�
8

� �ABkT

�1=2
(8.20)

where all parameters are in cgs units. The optical cross-section �2AB and reduced
mass �AB depend on the molecule of interest and its various collision partners,
though typical values for small molecules are 2� � 0:1 cm�1/atm, at room
temperature.
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Example: Pressure Broadening of CO
Calculate the collisional halfwidth (FWHM) for the R.9/ line of CO’s second
overtone for 50 ppm of CO in air at 300 K and 1.0 atm pressure. The standard
species populations in air are 77 % N2, 21 % O2, 2 % H2O (for 85 % standard
humidity), and 380 ppm CO2. The broadening coefficients and species mole
fractions are listed in the following table. According to Eq. (8.19), the colli-

Species, A Mole fraction, XA 2�CO�A(300 K) cm�1/atm

N2 0.77 0.116

H2O 0.02 0.232

CO 50e�6 0.128

CO2 380e�6 0.146

O2 0.21 0.102

sional halfwidth for this CO transition is:

��C D P.XN2 � 2�CO�N2 C XH2O � 2�CO�H2O C XCO � 2�CO�CO

CXCO2 � 2�CO�CO2 C XO2 � 2�CO�O2/

D 0:114 cm�1

The variation of the broadening coefficient 2� with temperature is often modeled
using the following approximation

2�.T/ D 2�.T0/
�

T0
T

�N

(8.21)

where T0 is the reference temperature, typically 296 or 300 K, 2�.T0/ is the
broadening coefficient at the reference temperature, and N is the temperature
coefficient, which is generally less than 1 and typically 0.5–0.8. Inspection of
Eq. (8.20) reveals that N D 0:5 when AB is constant, independent of T , but in
fact AB is typically a weak function of T .

In the absence of actual data, useful approximations are that 2�.300/ �
0:1 cm�1/atm for molecules (atoms tend to have larger values) and N D 0:5. An
exception, however, is NO, whose broadening coefficients for electronic transitions
are 2�.300/ � 0:5 cm�1/atm. Another exception is H2O for which 2� and N vary
widely, N can even be < 0 for high-J transitions (see Chap. 14).
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Table 8.1 Some collisional broadening
coefficients 2� [cm�1/atm] in Argon and
Nitrogen at 300 K

Species Wavelength [nm] Ar N2

Na 589 0.70 0.49

K 770 1.01 0.82

Rb 421 2.21 1.51

OH 306 0.09 0.10

NH 335 0.038

NO 225 0.50 0.58

NO 5300 0.09 0.12

CO 4700 0.09 0.11

HCN 3000 0.12 0.24

Table 8.2 Some collisional broadening
coefficients 2� [cm�1/atm] in Argon and
Nitrogen at 2000 K

Species Wavelength [nm] Ar N2

NO 225 0.14 0.14

OH 306 0.034 0.04

NH 335 0.038

Tables 8.1 and 8.2 contain broadening coefficients for a variety of species at 300
and 2000 K, respectively. Note that there are some radicals listed here that are not
stable at 300 K. However, it is common to extrapolate values of 2� down to 300 K
to facilitate comparisons. Some molecules, like OH, have a strong J (rotational
quantum number) dependency on 2� , while others such as NO do not.

Collisional broadening follows the Lorentzian spectral distribution in Eq. (8.7).
The total halfwidth for the Lorentzian lineshape can be determined by adding the
natural and collisional halfwidths, �� D ��N C ��C. However, ��C is usually
much greater than the natural broadening, so ��N can often be neglected.

8.2.3 Doppler Broadening

When a molecule has a velocity component in the same direction as the propagation
of a beam of light, there will be a shift in the frequency at which it will absorb a pho-
ton. This effect is called the Doppler shift. The molecules of any gas are in constant
motion and the distribution of their random velocities (achieved in the absence of
collisions, see 8.5.1) is described by the Maxwellian velocity distribution function.
We can consider each group of molecules with the same velocity component to be
part of a velocity class. The Maxwellian velocity distribution function tells us what
portion of the molecules are in each class. Each velocity class will have its own
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Doppler shift. Thus the distribution function leads directly to an inhomogeneous
(meaning it varies with frequency) lineshape function with a Gaussian form:

�D.�/ D 2

��D

�
ln 2

�

�1=2
exp

(
�4 ln 2

�
� � �0
��D

�2)
(8.22)

The Gaussian lineshape function at linecenter is

�D.�0/ D 2

��D

�
ln 2

�

�1=2
(8.23)

The Doppler halfwidth (FWHM) ��D is given by

��D D �0
�
8kT ln 2

mc2

�1=2
; (8.24)

for which a more convenient form is

��D D �0.7:1623 � 10�7/
�

T

M

�1=2
; (8.25)

where T is in Kelvins and M is the molecular weight in grams/mole. The Doppler
halfwidth ��D is to be used with Eq. (8.22) and never with (8.7).

The Gaussian lineshape can also be described in normalized terms as an
exponential relationship,

KD.x/ D exp.�x2/; (8.26)

where

x D .� � �0/
��D;1=e

(8.27)

is the normalized frequency detuning relative to the linecenter frequency, �0, and
��D;1=e is the 1=e halfwidth,

��D;1=e D �0
r
2kT

mc2
: (8.28)

Figure 8.2 compares Gaussian (Doppler; inhomogeneous) and Lorentzian (colli-
sional and natural; homogeneous) lineshapes which have the same FWHM and by
definition [Eq. (8.3)] the same area. The Gaussian lineshape has a peak value which
is about 50 % higher than the Lorentzian, but it drops off much faster in the wings.
The molecules of each velocity class will also have some finite lifetime and thus
some Lorentzian halfwidth. If the Lorentzian halfwidth is much smaller than the
Gaussian halfwidth, the Lorentzian component can be ignored, and vice versa.
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Fig. 8.2 Comparison of Gaussian and Lorentzian lineshapes with the same FWHM

8.2.4 Stark Broadening

Plasmas are characterized by the presence of charged particles (ions and electrons)
which exhibit long range Coulomb forces. These forces can perturb the energy
levels causing significant broadening, particularly in atomic hydrogen and other
light atoms. Both numerical and experimental results are published for specific
transitions as a function of electron number density. See the book by Griem [3]
for a detailed description.

8.2.5 Artifactual/Instrument Broadening

A measured lineshape can be broader than expected based on the conditions found
in a medium. Broadening can be caused by the way in which a measurement is
made and thus is an artifact of the experiment. One common example is where
an instrument such as a monochromator has insufficient resolution to measure
an actual lineshape. This low resolution causes the measured profile to look
broader than it really is. Another example is power broadening where a laser is
strong enough to perturb the populations of the molecular states (this effect is
often referred to as saturation) and thereby modify the frequency distribution of
the absorption coefficient. A third example is transit-time broadening where the
interaction between the molecules and the light is limited to a time comparable
to (or less than) the lifetime determined by collisions or natural emission. As an
example, the transit time for a gas moving at velocity V across a laser beam of
diameter D is D=V; this leads to an apparent broadening for absorption lines of
��transit(FWHM)� V=D in the case of a top hat intensity distribution [2].
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8.3 Voigt Profile

8.3.1 Analytical Expressions

In the common case in which both Doppler and collisional broadening are signifi-
cant and neither can be neglected, the appropriate lineshape will be a combination
of the two. If we assume that the effects of Doppler and collisional broadening
are decoupled, we can view each velocity class to be collisionally broadened.
This leads to a lineshape that is a convolution of Doppler and collisional broad-
ening [4] (assuming natural broadening is much less than collisional broadening,
��N	��C).

�V.�/ D
Z C1
�1

�D.u/ �C.� � u/ du (8.29)

This convolution is called the Voigt function. Before inserting relations for �D and
�C, we define some useful parameters:

(1) Voigt “a” parameter

a D
p

ln 2 ��C

��D
(8.30)

(2) nondimensional line position, w

w D 2
p

ln 2 .� � �0/
��D

(8.31)

(3) linecenter magnitude, �D.�0/, the magnitude of Eq. (8.22) at �0

�D.�0/ D 2

��D

r
ln 2

�
(8.32)

(4) integral variable, y

y D 2 u
p

ln 2

��D
(8.33)

With these parameters, Eq. (8.29) becomes

�V.�/ D �D.�0/
a

�

Z C1
�1

exp.�y2/ dy

a2 C .w � y/2
(8.34)

D �D.�0/ V.a;w/ (8.35)

where V.a;w/ is the famous “Voigt function.” The a parameter indicates the
relative significance of Doppler and collisional broadening, with a increasing as
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the effects of collisional broadening increase. The w parameter is a measure of the
distance from linecenter. The integral can be calculated using standard mathematical
routines, but it is common to make use of existing tables for this function.

Note that at the linecenter, where w D 0, V.a;w/ reduces to

V.a; 0/ D exp.a2/erfc.a/ (8.36)

D exp.a2/Œ1 � erf.a/	 (8.37)

where erf(a) is the error function.

8.3.2 Numerical Approximations

There are many different numerical approximations for the Voigt lineshape that have
been published. One of the most accurate and quickest to calculate is the algorithm
published by Humlíček (J. Quant. Spectrosc. Radiat. Transfer, Vol. 27, No. 4, pp.
437–444, 1982). The algorithm can be processed using standard programs such as
Igor Pro, Matlab, and the C language. Appendix C contains an example Matlab *.m
file for calculating the normalized Voigt profile.

8.4 Line ShiftingMechanisms

Just as there are physical mechanisms that broaden absorption lines, there are
processes by which the lineshapes are shifted in frequency. Two of these shift
mechanisms, similar to broadening, are pressure shift and Doppler shift.

8.4.1 Pressure Shift of Absorption Lines

Interactions between two collision partners can have a perturbing effect on the
intermolecular potential of the molecule whose lineshape is being studied. Changes
in the intermolecular potential lead to differences in the energy level spacings, and
hence the linecenter frequencies of the different transitions. These differences from
the equilibrium linecenter values that result from collisions are known as pressure
shift. Just as in Eq. (8.19), where the collisional halfwidth, ��C, is proportional
to the pressure and a broadening coefficient, 2� , the expression for pressure shift
depends directly on pressure but contains the shift coefficient ı instead. Both 2�
and ı have units of cm�1 per atm.

��S D P
X

A

XAıA (8.38)
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The shift coefficient also scales from a reference temperature similarly to the
broadening coefficient, but with a different temperature exponent, M.

ıA.T/ D ıA.T0/

�
T0
T

�M

(8.39)

Note that while 2� > 0, the pressure shift can be either negative or positive. Average
values for near-infrared H2O spectra are ı � �0:017 cm�1/atm and M � 0:96.

8.4.2 Doppler Shift Measurements of Velocity

For gases that have a bulk velocity relative to an incident laser beam, the entire Voigt
profile is shifted by

ı�

�0
D u

c
(8.40)

where u is the bulk or mean speed in the laser direction and c is the speed of light.
Measurements of this frequency shift provide a non-intrusive means of measuring
gas velocities. This capacity is especially attractive for high speeds and low densities
where conventional laser Doppler anemometry (with particles) is not feasible.

8.5 Lineshapes Beyond the Voigt Profile

The Voigt profile assumes that Doppler and collisional broadening are indepen-
dent/uncorrelated and does not account for velocity-changing collisions. In some
cases, these assumptions can lead to relatively large errors (typically 1–10 % of
peak values) in modeling the lineshape of measured spectra. This section will
briefly discuss the underlying physics responsible for these errors and introduce
a few advanced lineshape profiles that address these processes. See Sect. 14.3 for a
working example.

8.5.1 Line NarrowingMechanisms

While collisional broadening is usually more significant, collisions can also narrow
lineshapes via two primary mechanisms: (1) Dicke narrowing [5] and (2) speed-
dependent (i.e., heterogeneous) collisional broadening. These processes, more
generally referred to as “collisional narrowing,” lead to larger peak absorbances
and smaller FWHM. Collisional narrowing is most significant for molecules with
large rotational-energy spacing (e.g., H2O, HF, HCN) and at temperatures where
the thermal energy kT is small compared to the spacing between rotational energy
levels (�2BJ00). In this case only strong collisions are rotationally inelastic, and
therefore, state-changing collisions are less common (i.e., � is small).
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Dicke narrowing describes a collision-induced reduction of the Doppler width
[compared to that calculated using Eq. (8.25)] that results from velocity-changing
collisions reducing the average thermal velocity of the absorber with respect to the
photon. Recall, the Maxwellian velocity distribution does not account for collisions.
Dicke narrowing is expected to be observed at modest number densities where the
mean free-path is comparable to �=2� where � is the wavelength of the transition
[6]. Dicke narrowing is insignificant when collisional broadening dominates the
lineshape (e.g., at high pressures).

Speed-dependent collisional broadening refers to collisional broadening that
depends on the speed of the absorber/emitter (i.e., which velocity class it belongs to)
and, therefore, is heterogeneous/inhomogeneous. For example, a molecule moving
at 1 m/s is likely to experience a very different type of collision (e.g., head-on vs.
glancing) than a molecule traveling at 1000 m/s. Despite its name, speed-dependent
broadening leads to a narrower lineshape compared to lineshape models that assume
homogeneous collision broadening (e.g., Lorentzian, Voigt).

8.5.2 Rautian and Galatry Profiles

The Rautian [7] and Galatry [8] profiles address Doppler and collisional broadening
in the same manner as the Voigt profile; however, they also address Dicke narrowing
through either hard- or soft-collision models, respectively. The hard-collision model
assumes that the velocity of the radiator after a collision is uncorrelated with
its velocity prior to the collision while the soft-collision model assumes many
collisions are needed to significantly alter the velocity of the radiator. Both lineshape
models address Dicke narrowing through one additional (compared to the Voigt)
parameter ˇ, commonly expressed in units of cm�1 or cm�1= atm, that represents
the frequency of velocity-changing collisions. ˇ is lineshape-model specific, and
thus, cannot be used interchangeably between the Rautian and Galatry profiles. If
ˇ D 0, both the Rautian and Galatry profiles reduce to the Voigt profile.

8.5.3 Speed-Dependent Voigt Profile

In reality, Doppler and collisional broadening are not independent processes and,
in fact, collisional broadening depends on which velocity class an absorber/emitter
belongs to. The speed-dependent Voigt profile [9] acknowledges this by introducing
a speed-dependent broadening coefficient �2, and � represents the speed-averaged
collisional-broadening coefficient. The speed-dependent Voigt also models the
speed dependence of the pressure-shift by introducing a speed-dependent pressure
shift coefficient ı2. If speed-dependent effects are negligible (i.e., �2 D ı2 D 0), the
speed-dependent Voigt profile reduces to the standard Voigt profile.
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8.6 Quantitative LineshapeMeasurements

The size and shapes of different transitions can be used to make quantitative
measurements of species concentration, pressure, temperature, and flow velocity.

8.6.1 Species Concentration and Pressure

A measurement of the integrated absorbance,

Ai D
Z C1
�1

˛.�/d� (8.41)

or area under the absorption transition, can be used to calculate the species
molefraction, Xj, and the pressure, P. The integral in Eq. (8.41) removes the
normalized contribution of the lineshape, reducing Eq. (8.4) to

Ai D SiPXjL (8.42)

where Si is the line strength of the transition, Xj is the molefraction of the absorbing
species, P is the pressure, and L is the pathlength. When SiPL is known, the species
concentration is then given by

Xj D Ai

SiPL
(8.43)

Similarly, if SiXjL is known, the pressure is determined by

P D Ai

SiXjL
(8.44)

8.6.2 Temperature

There are two lineshape techniques available for measuring the temperature. The
first can be used in Doppler-limited applications, where the pressure broadening is
negligible. For these applications, the width of the absorption lineshape, or FWHM,
can be related directly to the temperature of the absorbing species via Eq. (8.24).

For measurement regimes in which pressure broadening cannot be ignored, a
two-line technique can be used. Earlier, it was demonstrated that a line strength for
a particular transition has a temperature dependency [Eq. (7.74)]. Taking the ratio of
the integrated absorbance area for two transitions removes the pressure and species
concentration parameters, leaving only the temperature and lower-state energies
for the respective transitions. Since the lower-state energies are typically known
(either by quantum mechanical calculation or, more commonly, from tabulations),
the temperature can be inferred. The ratio of the integrated areas, R, is related to the
temperature by
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R D S.T; �1/

S.T; �2/
D S.T0; �1/

S.T0; �2/
exp



�
�

hc

k

�
.E001 � E002 /

�
1

T
� 1

T0

��
(8.45)

where �1, �2, E001 , and E002 are the linecenter frequencies and lower-state energies
for the two transitions, S.T0; �1/ and S.T0; �2/ are the strengths of the two lines at
the reference temperature T0, and the induced emission terms have been neglected.
Thus, the temperature is

T D
hc
k .E

00
2 � E001 /

ln RC ln S2.T0/
S1.T0/

C hc
k
.E002 �E001 /

T0

(8.46)

Differentiating Eq. (8.45) yields the temperature sensitivity for a given line pair at a
specific temperature in percent per Kelvin:

1

R

dR

dT
Œ%=K	 D

�
hc

k

�
.E001 � E002 /

T2
� 100 (8.47)

This shows that a large �E00 is desirable, to enhance sensitivity, regardless of the
temperature. There are additional factors, however, which must be considered. The
absorbance of each transition (˛1 and ˛2) must be properly bounded. A good rule of
thumb is 0:1 < ˛ < 2:3. This means that for a given partial pressure, path length,
and lineshape, the two linestrengths, S1.T/ and S2.T/, will be bounded. Generally, a
large difference between E001 and E002 results in a large difference between S1.T/ and
S2.T/. Thus, we see that a tradeoff exists between acceptable absorbance levels and
temperature sensitivity.

8.6.3 Examples

Nitric Oxide, NO
Nitric oxide, NO, is a common species found in combustion flows. It has an
electronic transition .A2† � X2…/ near 225 nm (44,000 cm�1) in the UV region.
Some typical values (in cm�1) for the halfwidths are shown below for a pressure of
1 atm and two different temperatures.

T [K] ��N ��C ��D

300 �5�10�5 0.58 0.10

2000 0.14 0.26

Since neither Doppler nor collisional broadening is dominant, Voigt functions
are necessary at both temperatures to accurately describe the lineshape function.
It is clear that Doppler broadening becomes more significant with increasing
temperature (scales with T1=2). Likewise, collisional broadening becomes more
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significant with increasing pressure (scales approximately with P=T1=2). Note that
the collisional broadening coefficient for NO’s electronic transition is relatively high
compared to other molecules.

Because Doppler broadening is proportional to the transition frequency, it
becomes less significant for IR spectroscopy. NO has a vibrational band at 5.3�m.
Values (in cm�1) for the FWHM are shown below for a pressure of 1 atm. While
Doppler broadening may be neglected at 300 K, it clearly cannot be neglected at
2000 K.

T [K] ��C ��D

300 0.12 0.004

2000 0.05 0.01

Sodium, Na
A narrowband laser is tuned to the linecenter of the 589 nm sodium transition. It is
used to infer the partial pressure of sodium which is seeded into an atmospheric
pressure flame. The temperature has been determined to be 1600 K. The partial
pressure is obtained from a linecenter absorption measurement via the absorption
coefficient. First, solve for k�0 from the measured fractional transmission at linecen-
ter; next, evaluate the linecenter value of the lineshape function; finally, solve for Pi

using the known value for the line strength at 1600 K.

(1) find k�0 D .�1=L/ ln.I=I0/�0
(2) find �.�0/
(3) find Pi using Eq. (8.48)

Pi D k�
S�.�0/

(8.48)

To evaluate �.�0/, first calculate the collisional and Doppler halfwidths. Assume
that the collisional broadening is adequately characterized by collisions with N2, the
major species in an air flame:

��C D P � 2�.1600K/ D P � 2�.300K/

r
300

1600
D 0:21 cm�1

This example uses the value of 2� at 300 K (see Table 8.1) and scales it to 1600 K.
Next, convert the wavelength to frequency:

.589 � 10�7 cm/�1 D 16; 978 cm�1
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and calculate the Doppler halfwidth with Eq. (8.24):

��D D .7:17 � 10�7/.16; 978 cm�1/

�
1600

23

�1=2
D 0:10 cm�1

Next, calculate the Voigt a parameter with Eq. (8.30):

a D
p

ln 2 ��C

��D
D
p

ln 2 .0:21/

0:10
D 1:75

Using the Voigt tables, interpolate between a D 1:70 and 1:80 for w D 0 (linecenter)
to get V.a;w/ D V.1:75; 0/ D 0:2852. Calculate �D.�o/ from Eq. (8.32):

�D.�o/ D 2

��D

r
ln 2

�
D 2

0:10

r
ln 2

�
D 9:39 cm

The lineshape function can now be found from Eq. (8.35):

�.�o/ D �D.�o/V.0/ D 9:39 � 0:2852 D 2:68 cm

Now solve for Pi using Eq. (8.48). Note that S.T/ can be calculated from Einstein
coefficients or the oscillator strength, if S.T/ is not already known (see Chap. 7).

Atomic H Velocity
LIF (Laser Induced Fluorescence) in an arcjet thruster is used to measure the
Doppler shift of atomic hydrogen at 656 nm. The laser is directed into the flow
in an axial direction (relative to the arcjet), and a shift of 0.70 cm�1 is observed. The
corresponding velocity component is found by using Eq. (8.40):

u D c ı�

�0
D 3 � 108 m=s � 0:70 cm�1

15; 232 cm�1
D 13; 800m=s

8.7 Exercises

1. Neglecting all broadening mechanisms except collision and Doppler broadening,
write a general expression for the Voigt a parameter of a single gas system, in
terms of the total pressure, temperature, optical collision diameter ( ), and the
transition center frequency.

2. Given a sample cell filled with pure 12C16O at atmospheric pressure and  D
4:0Å, determine at what temperature a D pln 2 for �0 D 2100 cm�1 (an IR
transition) and for �0 D 22; 170 cm�1 (a visible transition).

3. For T D 300K,  D 4:0Å, and a line strength S D 10 cm�2 atm�1, plot the
spectral absorption coefficient at line center, ˇ.�0/ cm�1/atm, versus pressure
from 0 to 3 atmospheres, for the 2100 cm�1 transition.
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4. What atmospheric path length, L (cm), is required at 300 K, 1 atm total pressure,
to give 60 % absorption at the center of this transition when CO is present at
a level of 10 ppm in the atmosphere? You may neglect the small differences in
mass between CO, O2, and N2. You may also assume that the optical collision
diameters for CO, O2, and N2 are equal.

5. A pure gas of molecular weight 25 g/mole is at T D 300K, and P D 1 atm. The
rovibronic transition at � D 700 nm is characterized by a Voigt a parameter a D
0:5. Determine the new Voigt a parameter value at T D 600K and P D 4 atm.
You may assume that the optical collision diameter is invariant with temperature.

Hints for these problems:
(a) In order to eliminate interpolation of the Voigt tables you may choose to pick

values of P that correspond to convenient values of a. In other words, select
a value of a, then calculate the corresponding value of P.

(b) For a > 10, the effect of Doppler broadening is small and purely Lorentzian
lineshape may be assumed.

(c) Use a semi-log plot (logˇ vs. P) to more clearly display the wide variations
in ˇ.�0/.
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9Electronic Spectra of Atoms

Electronic spectra of atoms includes the following topics:

1. the role of electron spin and orbital angular momentum
2. the notation employed in describing the electronic state
3. the building-up principle

Key references for the material in this chapter are [1, 2].

9.1 Electron QuantumNumbers

Instead of the vibrational and rotational quantum numbers that have been introduced
for molecules, atoms have quantum numbers that derive from the quantum states
occupied by their electrons. The individual electrons are characterized by four
different quantum numbers:

n principal quantum number: 1; 2; : : :
` orbital quantum number: 0; : : : ; n � 2; n � 1

m or m` magnetic quantum number: 0; : : : ;˙.` � 1/;˙` (2`C 1 values)
s or ms spin quantum number: ˙1=2

9.2 Electronic Angular Momentum

Thus far we have discussed nuclear motions—now it is time to consider the role of
electrons. There are two motions/momenta for electrons: orbital angular momentum
and spin angular momentum (Fig. 9.1).

© Springer International Publishing Switzerland 2016
R.K. Hanson et al., Spectroscopy and Optical Diagnostics for Gases,
DOI 10.1007/978-3-319-23252-2_9
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Fig. 9.1 Motions for orbital and spin angular momentum of a single electron atom

9.3 Single Electron Atoms

9.3.1 Orbital Angular Momentum

The orbital angular momentum, È, is a function of the orbital angular momentum
quantum number, ` [1]. ` is an integer in the range 0; 1; 2; : : : ; n� 1, where n is the
principal quantum number. n is the primary determinant of energy, roughly related
to the electron’s distance from the center of the atom.

ˇ̌̌ È ˇ̌̌ Dp`.`C 1/ „ (9.1)

Orbital angular momentum is a vector quantity with 2`C 1 “allowed” directions
(each corresponding to a value for m, the magnetic quantum number) with respect to
an applied electromagnetic field. Therefore, the degeneracy (i.e., the number of val-
ues of m) is 2`C 1. Orbital notation utilizes letters to represent specific values of `:

` D 0, s electron
` D 1, p electron
` D 2, d electron

9.3.2 Spin Angular Momentum

The spin angular momentum is

ˇ̌Esˇ̌ Dps.sC 1/ „ (9.2)

where s is the spin quantum number (1=2). There are two allowed directions: sx D
˙1=2.

9.3.3 Total Electronic Angular Momentum

The total angular momentum, based on vector addition, is

E| D EsC È (9.3)
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But, owing to quantum constraints, the allowed quantum numbers are limited to

j D `C s; ` � s

D `C 1=2; ` � 1=2 (9.4)

This multiplicity of j values is called spin–orbit coupling.

9.3.4 Term Symbols

Term symbols are used to succinctly summarize the state of the atom. Small letters
characterize the “state” of a single electron and large letters characterize the “state”
of a whole atom (including multi-electron atoms).

Term symbol D2SC1LJ (9.5)

where the 2S C 1 term is the “multiplicity” of state, L is the quantum number for
the total orbital angular momentum of the atom, and J is the quantum number for
the total angular momentum. For atoms with a single electron in the outer shell, we
have the simple result that S D 1=2, L D `, and J D L ˙ 1=2 (except for L D 0

where only J D 1=2 is possible, as J cannot be negative). When multiple electrons
become involved, only the electrons in unfilled shells contribute. When L � S, the
multiplicity gives the number of possible J values.

For a single electron: E| D ÈC Es
For the atom: EJ D ELC ES

or in terms of quantum numbers, J D LC S;LC S � 1; : : : ; jL � Sj.
There are different couplings possible for atoms. For an atom’s four quantum

numbers, the selection rules are as follows:

�n D any integer

�L D ˙1
�J D 0;˙1, (but not J D 0! 0)

�S D 0 (�S ¤ 0 is spin-forbidden)

For example, 2S1=2 !2P1=2 or 2P3=2 are allowed transitions, while 2S1=2 !4 S is
forbidden.

9.3.5 Example: Hydrogen Atom

QuantumNumbers
n D 1; 2; 3; : : : principal quantum number
` (and hence L)D 0; 1; 2; : : : for s, p, d states (`max D n � 1)
s (and hence S)D 1=2
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Fig. 9.2 Some of the lower energy levels for the hydrogen atom

States
2S1=2, 2P3=2;1=2, 2D5=2;3=2; : : :

Selection Rules
�n D any integer
�` (and hence �L)D ˙1
�j (and hence �J)D 0;˙1

These selection rules yield “doublets,” i.e. a pair of closely spaced lines for each
�n (Fig. 9.2).

9.4 Multi-Electron Atoms

9.4.1 Building-Up Principle

Electron shells fill as the periodic table progresses and obey the Pauli Principle,
which states that no two electrons in an atom share all n, `, `z.m/, and sz [1].
Therefore, we fill the n D 1 shell with two electrons (1s orbital), and the n D 2

shell with eight electrons (2s, 2p orbitals) (Tables 9.1 and 9.2).
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Table 9.1 Building-up principle for the
first few quantum numbers

n ` m sz Number of electrons

1 0 0 ˙1=2 2 electrons

2 0 0 ˙1=2 2 electrons

2 1 1 ˙1=2 6 electrons

0 ˙1=2
�1 ˙1=2

Table 9.2 Building-up principle for the first ten elements

2p Atomic term symbol

Element 1s 2s px py pz Notation (ground state)

Hydrogen " 1s1 2S1=2
Helium "# 1s2 1S0
Lithium "# " 1s22s1 2S1=2
Beryllium "# "# 1s22s2 1S0
Boron "# "# " 1s22s22p1x

2P1=2
Carbon "# "# " " 1s22s22p1x2p1y

3P0
Nitrogen "# "# " " " 1s22s22p1x2p1y2p1z

4S3=2
Oxygen "# "# "# " " 1s22s22p2x2p1y2p1z

3P2
Fluorine "# "# "# "# " 1s22s22p2x2p2y2p1z

2P3=2
Neon "# "# "# "# "# 1s22s22p2x2p2y2p2z

1So

Note: • The notations px, py, and pz correspond to the three allowed
values of m for the p-orbital (m D 1; 0;�1)

• 2p2x2p2y2p2z can also be denoted 2p6.
• Neon and Helium have closed shells and are thus inert.

They have no net electronic (orbital or spin) angular
momentum. That is, the spins (˙1=2) and m (˙1; 0)
quantum numbers of their electrons sum to zero.

• Hund’s principle: electrons tend to occupy degenerate
orbitals singly with their spins parallel, when possible (e.g.,
note the progression for B, C, and N).

• Only the electrons in unfilled shells need be considered
in establishing the atomic term symbol, e.g., only the 2s
electron for Lithium.

9.4.2 Examples

Carbon
What is the term symbol for C in its ground (lowest energy) state?

The electron distribution can be represented by 1s22s22p2 or 1s22s22p1x2p1y . We
have two electrons in an unfilled shell with the same n and ` (called equivalent
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Table 9.3 Some possible
electronic configurations
for the carbon atom

1s 2s 2p

"# "# " "
"# "# " "
"# "# "#
"# "# # "

Table 9.4 Terms symbols for equivalent
electrons

Configuration Possible term symbols

s2 1S

p2 1S, 1D, 3P

p3 2P, 2D, 4S

p4 1S, 1D, 3P

p5 2P

p6 1S

d2 1S, 1D, 1G, 3P, 3F

electrons), and we must decide how they are arranged. There are, in fact, 15 possible
electronic configurations (e.g., see Banwell and McCash [2, pp. 149–151]), of which
four are shown in Table 9.3.

There are three net ways for the orbital (angular) momentum to sum, giving
a total orbital momentum of 2; 1, or 0. The Pauli-allowed spin pairings for each
configuration determine the spin multiplicity (2S C 1) and the possible values of J
(here, the possible values of J simply contribute to the total multiplicity).

For a given number of equivalent electrons in a specified orbital, there are several
states of varying energies and thus several possible term symbols. The possibilities
are expressed in Table 9.4.

Since carbon has two p electrons, there are three term symbols that describe the
available energy states: 3P, 1D, and 1S. Hund’s Rules will help us determine which
state has the lowest energy.

Hund’s Rules:
1. Maximize the value of S consistent with the Pauli Principle. The

lowest energy state will be the one with the largest spin multiplicity.
2. Having fixed S, maximize L, i.e., for states of equal multiplicity, the

greatest L has lowest energy.

Therefore, for C:

• 1s22s22p2.3P/ is the ground state, and
• 1s22s22p2.1D/ and 1s22s22p2.1S/ are “excited”
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Fig. 9.3 States for a carbon atom
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Fig. 9.4 States for a nitrogen atom

Note: 1. degeneracy = 2J C 1 for a specific J
2. multiplicity = the # of J states when L � S

The energy spacing of the J D 0, 1, and 2 states of the 3P level increases with the
atomic number (i.e., nuclear charge, Z). When energy increases with J, as shown
in Fig. 9.3, the multiplet is called “normal”; cases in which energy decreases as J
increases are termed “inverted.”

Atomic Nitrogen
The electron distribution for N is 1s22s22p3. What is its term symbol? There are
three “equivalent” 2p electrons. From Table 9.4, the possible solutions for term
symbols are: 4S, 2D, 2P. Following Hund’s rules:

Here g0 is the total degeneracy for each level, and g0 D .2LC 1/.2SC 1/. Note
that the 2D states are inverted; i.e., the 2D5=2 state has lower energy than 2D3=2.
Recall from statistical mechanics,
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QN
elec D

X
gi exp .�Ei=kT/

D 4C 6 exp

��27;659
T

�
C 4 exp

��27;669
T

�
C 6 exp

��41;495
T

�

Thus, except for very high temperatures,

QN
elec � gN

o D 4

owing to large spin–orbit splitting.

9.4.3 Hydrogen-Like Species

After hydrogen, the next simplest “hydrogen-like” species (i.e., those with 1 odd
electron and a closed shell) are lithium (Li), sodium (Na), potassium (K), rubidium
(Rb), etc., all members of the first column of the periodic table. These atoms are
known as the alkali metals.

Lithium (Li)
The ground state for Lithium is 1s22s1 (2S1=2). The excited states are 1s22p1, 1s23s1,
1s23p1, 1s23d1, as shown in Fig. 9.5.
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Fig. 9.5 Some of the lower energy levels for the lithium atom and transitions “allowed” by the
selection rules
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CN Radical

�C � N
j

� C �
j

Note that three shared electrons are needed for N-bonding to complete the n D
2 (2s, 2p) shell; four for C-atoms. This sharing of electrons to fill outer shells is
covalent bonding.

9.4.4 Zeeman Effect

We can use Zeeman splitting to infer J, L, g, etc. The basis for the Zeeman effect
is that circulating current (moving electrons) can interact with an external magnetic
field. The magnetic dipole of an atom is E� and is given by

E� D ge

2m
EJ (9.6)

where g = LandKe factor with a value of 0–2, EJ D total angular momentum, e is
electron charge and m is the mass of the atom. Interaction with a field of strength B
leads to �E-splitting between levels of equal J

�E D E� � EB ! �zBz for a field in the z-direction (9.7)

Example:
for g D 1, � � 10�23 J/T
for B D 1 T, �E D 10�23 J
�� � 0:5 cm�1

Therefore, this effect is observable with a narrow linewidth laser (i.e., a laser
with �� � 0:5 cm�1 linewidth).

9.4.5 Nuclear Spin

The total angular momentum for an atom also includes the intrinsic momentum of
the nucleus; however, we have thus far ignored it because the change in energy due
to nuclear spin is small (called hyperfine splitting). Nonetheless, nuclear spin needs
to be considered for a thorough analysis of atomic angular momentum. Similar to
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molecules, the nuclear spin quantum number is I, and has values of zero, integers,
or half-integers.

I D 0; integers, half-integers

For an atom, the total angular momentum is F.

EF .electronic + nuclear/ D
p

F.F C 1/ „ (9.8)

F D J C I; J C I � 1; : : : ; jJ � Ij (9.9)

Therefore, there are 2I C 1 or 2J C 1 states (whichever is less). Typical values
of energy difference between states (i.e., splitting) are �10�3 that of electron spin
splitting. Thus, we can conclude that nuclear spin is:

1. often negligible, and
2. observable only with

(a) narrow linewidth lasers, and
(b) narrow lineshapes (i.e., Doppler-free)

9.5 Exercises

1. Is the term symbol accurate for a particular state quoted as (a) 4S1, (b) 2D7=2, and
(c) 0P1? Explain why.

2. The term symbol for a particular atomic state is quoted as 4D5=2. What are the
values of L, S, and J for this state? What is the minimum number of electrons
which could give rise to this?

3. The moving electrons can interact with an external magnetic field, resulting in
the magnetic dipole of an atom [Eq. (9.6)]. For a field in the z-direction,

E�z D ge

2m
EJz;

where Jz D J; J � 1; : : : ;�J; g is the LandKe splitting factor. This factor depends
on the state of the electrons in the atom and is given by:

g D 3

2
C S.SC 1/ � L.LC 1/

2J.J C 1/ :

This expression shows that the application of the field splits the original levels
into .2J C 1/ different energy levels. Note that the selection rule for the split
energy levels is:

�J D 0;˙1:
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With this knowledge, try to answer the following questions:
(a) We discussed the electronic energy levels of lithium (hydrogen-like) in class

and reproduced some of the lower energy levels in the figure below, showing
the doublet lines arising between the 2S and 2P states. Write down the
corresponding quantum numbers .S;L; J/ of these three states and the LandKe
splitting factor g.

(b) When a magnetic field is applied to this lithium atom, how would its
spectrum be affected?
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10Electronic Spectra of Diatomic Molecules:
Improved Treatment

10.1 Term Symbols for Diatomic Molecules

Term symbols, introduced in the previous chapter, are the notation used to charac-
terize key features of electron spin and orbital angular momentum.

For an atom, the term symbol is: 2SC1LJ

For a diatomic, the term symbol is: 2SC1ƒ�

Important terms to define are ES, E†, Eƒ, and E�:

Eƒ projection of orbital angular momentum on the internuclear axis

Its magnitude is
ˇ̌̌
Eƒ
ˇ̌̌
D ƒ„, where ƒ is an integer, and the symbols

associated with different values of ƒ are shown in the table below.

ƒ 0 1 2

Symbol † … �

ES total electronic spin angular momentum (the net sum of electron spin

in unfilled shells). The magnitude is
ˇ̌̌
ES
ˇ̌̌
D S„, where S will have

1=2-integer values.
E† projection of ES onto the internuclear axis (only defined when

ƒ ¤ 0). The magnitude of this projection is
ˇ̌̌
E†
ˇ̌̌
D †„, and the

allowed values of † are

† D S; S � 1; : : : ;�S (2SC 1 values)

© Springer International Publishing Switzerland 2016
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E� sum of projections along the internuclear axis of electron spin and
orbital angular momentum

E� D E†C Eƒ
� D ƒC S; ƒC S � 1; : : : ; jƒ � Sj (2SC 1 values for ƒ � S)

Examples

NO The ground state for NO is X2….
S D 1=2, ƒ D 1, � D 3=2; 1=2
There are two spin-split sub-states: 2…1=2, 2…3=2

Separation: 121 cm�1

CO The ground state for CO is X1†C.
S D 0 and ƒ D 0, therefore � is unnecessary. This is a rigid rotor
molecule with no influence from electrons. Easiest case!

O2 The ground state for O2 is X3†�g .
S D 1, ƒ D 0
The � and g are notations about symmetric properties of wave
functions. This is an example of a molecule that is modelled by
Hund’s case b, discussed below.

10.2 CommonMolecular Models for Diatomics

There are four common molecular models that are used to describe diatomic
electronic spectra:

Rigid rotor ƒ D 0; S D 0
Symmetric top ƒ ¤ 0; S D 0

Hund’s a ƒ ¤ 0; S ¤ 0
Hund’s b ƒ D 0; S ¤ 0

The rigid rotor and symmetric top models have no spin, and thus their multiplicity
(2SC1) is one; these states are called “singlets.” For the Hund’s cases, the influence
of spin on the electronic state structure must be considered through interactions of
ƒ and †.

10.2.1 Rigid Rotor (1†)

The simplest model for molecular rotation assumes that electron motions do not
contribute to the rotational energy. Rotation of the nuclei occurs about an axis
perpendicular to the A-axis (i.e., the B-axis). Recall that IA � 0 and IB D IC

(Fig. 10.1).
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Fig. 10.1 Rigid rotor model for molecular motion

When ƒ and S D 0, the molecule is 1† type and � is not defined. Note that
ƒ D 0 means that the projection of the orbital angular momentum onto the A-axis
is zero, and that rotation must thus be around the B-axis.

Rotational Energy
The total rotational energy for a rigid rotor, including centrifugal distortion is, as
before,

F.J/ D BvJ.J C 1/ � DvJ
2.J C 1/2 (10.1)

Total Energy
Rovibronic transitions (those that include electronic, vibrational, and rotational
changes in quantum number) have a total energy that includes contributions from
each mode, i.e. �E D �Te C�GC�F

where E.Te; v; J/ D Te C G.v/C F.J/: (10.2)

Selection Rules
The selection rules for these transitions, as described before, are:

Rotational spectra: �J D J0 � J00 D C1
Rovibrational spectra: �v D v0 � v00 D C1

�J D ˙1
Rovibronic spectra: �v determined by Franck–Condon factors

�J D ˙1
Note: An alternate form for the selection rules is used in some texts, i.e. �˛ D

˛final � ˛initial where (˛ D J or v).
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Intensity Distribution
Within each band .v0; v00/, the intensity distribution follows the Boltzmann distribu-
tion for J modified by a J-dependent branching ratio (i.e., for the P and R branches),
known as the Hönl–London factor (defined later in this chapter). Similarly, the
relative intensities among all the vibrational bands originating from a single initial
level vinitial to all possible final levels vfinal are given by Franck–Condon factors
(a manifestation of the Franck–Condon principle). The relative total emission or
absorption from vinitial (i.e., to all values of vfinal) depends directly on the Boltzmann
fraction in that level, i.e. nvinitial=n, and also on an overall Einstein coefficient or
oscillator strength for the specific electronic system (i.e., a specific pair of lower
and upper electronic states), as presented in Sect. 10.3.

Examples
Most stable diatomics, including CO, Cl2, Br2, N2, H2 are Rigid Rotors. Exceptions
are NO (X2…) and O2 (X3†). (Note that there are no X� states for the diatomics
listed in Herzberg—all X states are † or …!) Some linear polyatomics such as
CO2 ( QX1†Cg ) and both HCN and N2O ( QX1†C) are Rigid Rotors with 1† ground
states. Remember, however, that nuclear spin can have an impact on the statistics of
homonuclear diatomic molecules.

10.2.2 Symmetric Top

Symmetric tops have a non-zero projection of orbital angular momentum on the
internuclear axis and zero spin (ƒ ¤ 0; S D 0). Thus, its ground states are 1…, 1�
(although, as mentioned in the previous section, there are no known X1� ground
states for diatomics) (Fig. 10.2).

The important components are

EN angular momentum of nuclei
Eƒ A-axis projection of electron orbital angular momentum
EJ total angular momentum; EJ D EN C Eƒ

N J

Fig. 10.2 Symmetric top model for molecular motion
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Only the axial component of orbital angular momentum is used, because only Eƒ
is a “good” quantum number, i.e. a constant of the motion.

Rotational Energy
The total rotational energy for a symmetric top is

F.J/ D BJ.J C 1/C .A � B/ƒ2 J D ƒ;ƒC 1; : : : (10.3)

The constants A and B are given as before by

A;B D h

8�2cIA;B
(10.4)

Therefore, the symmetric top energy levels have the same spacing as the Rigid
Rotor, but with a constant offset. Note, however, that since IA is small compared to
IB, A is large compared to B. Lines with J < ƒ are missing, as J D ƒ;ƒC 1; : : : .

Selection Rules
The selection rules for symmetric top electronic spectra are

�ƒ D 0 �J D ˙1; 0 (�J D 0 may be weak)
�ƒ D ˙1 �J D ˙1; 0

As a result of having a Q branch (i.e., �J D 0), the bands for a symmetric top will
be double-headed, in contrast to the single-headed character of rigid rotor bands.

Spectra
The spectra for the case where �ƒ D 0 are discussed here. The upper- and lower-
state energies are described by the following equations:

T 0 D B0J0.J0 C 1/C .A0 � B0/ƒ2 C G.v0/C T 0e (10.5)

T 00 D B00J00.J00 C 1/C .A00 � B00/ƒ2 C G.v00/C T 00e (10.6)

N�1 D upper (for J0 D 0/ � lower (for J00 D 0/ D constant (10.7)

T 00e D 0 for the ground state. Then, for the three branches, the line positions are as
follows:

P.J00/ D N�1 � .B0 C B00/J C .B0 � B00/J2 (10.8)

Q.J00/ D N�1 C .B0 � B00/J C .B0 � B00/J2 (10.9)

R.J00/ D N�1 C .B0 C B00/.J C 1/C .B0 � B00/.J C 1/2 (10.10)
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Using the rotational number m for the three branches,

mP D �J

mQ D CJ

mR D J C 1

the line positions for the P and R branches become

� D N�1 C amC bm2; (10.11)

where a D B0CB00 and b D B0�B00, and the line positions for the Q branch become

� D N�1 C bmC bm2 (10.12)

Note that the three branches now can lead to two bandheads (see the Fortrat parabola
plot below for the case of a 1� 1� band) (Fig. 10.3).

The Fortrat parabola shows the bandheads in the Q and R branches for the typical
case of B0 < B00. For the 1�  1� case, Jmin D 2 and therefore mmin D 3 for the
R branch, mmin D 2 for the Q branch and m D �3 is the first line in the P branch,
resulting in multiple missing lines near the origin.

Fig. 10.3 Symmetric top model for molecular motion, 1� 1 � case
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Intensity Distribution
Actual relative intensities depend on nJ=n and “relative intensity factors/line
strengths,” also known as Hönl–London factors, denoted below by SP;Q;R

J . Differ-
ences in Hönl–London factors indicate the breakdown of the principle of equal
probability [1].

Example: Hönl–London factors for symmetric top (p. 208 of [1])
For �ƒ D 0

SR
J D .JC1Cƒ/.JC1�ƒ/

JC1 � J C 1 .J � ƒ/

SQ
J D .2JC1/ƒ2

J.JC1/ � 2ƒ2

J � 0 for large J

SP
J D .JCƒ/.J�ƒ/

J � J for large J

9>>>>>=
>>>>>;

X
SJ D 2J C 1

Note: 1. †SJ D 2J C 1, the total degeneracy!
2. The R-branch line, for a specified J, is approximately .J C 1/=J

times as strong as the P branch line.
3. For �ƒ D ˙1, and J � ƒ

SR
J � .2JC1/

4

SQ
J � .2JC1/

2

SP
J D .2JC1/

4

9>>>>>=
>>>>>;

X
SJ D 2J C 1

The Q branch lines are thus twice as strong as the P and R lines!
Therefore, the �ƒ value is important in determining the relative
line and branch strengths of rovibronic spectra.

Example: X D 1…

If X D 1…, then the following transitions are possible for changes in ƒ of 0 or
˙1. That is, there are three separate “systems” of bands possible from X1….

1… 1… 1� 1… 1† 1…

�ƒ D 0 �ƒ D 1 �ƒ D �1
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Fig. 10.4 Coupling of † and ƒ

Fig. 10.5 Spin–orbit splitting

10.2.3 Interaction of ƒ and †

Understanding the interactions and coupling of ƒ and † is a key to modelling the
influence of spin on the electronic state structure. When ƒ ¤ 0 and S ¤ 0, they
combine to form a net component of �, as shown in Fig. 10.4.

The presence of ƒ ¤ 0 implies that there is an associated magnetic field due to
net current about the axis. This field interacts with spinning electrons. This effect is
known as spin–orbit coupling (or spin-splitting) (Fig. 10.5).

Examples
3� has three components (3�3, 3�2, 3�1) corresponding to S D 1, ƒ D 2 and
� D 3; 2; 1 (since † D 1; 0;�1). These states have different electronic energies,
which may be represented by

Te D T0 C Aƒ† (10.13)

Here, A is the spin–orbit coupling constant (it’s not exactly the same A as in the
symmetric top, but it is similar; keep in mind that these are models). A generally
increases with molecular weight and the number of electrons. T0 is the energy
without interaction.

For 3�, ƒ D 2, S D 1, and † D 1; 0;�1. Therefore,

Te D T0 C A.2/

0
@ 1

0

�1

1
A
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Some sample spin–orbit coupling constants are listed below.

ABeH � 2 cm�1 (10.14)

ANO � 124 cm�1 (10.15)

AHgH � 3600 cm�1 (10.16)

AOH � �140 cm�1 (10.17)

Note that the spin–orbit coupling constant for OH is negative. (See Herzberg, Vol. I
for details; p. 215/216, 232, 558/559, 561.)

Note: 1. Y D A
Bv

is the ratio of the spin–orbit constant and Bv
2. Values for A are given in tables in Herzberg, Vol. I

Now, finally, we are ready to consider rotational levels for cases where S ¤ 0.
There are two primary cases: Hund’s a and Hund’s b.

10.2.4 Hund’s Case a

Hund’s case a is for ƒ ¤ 0 and S ¤ 0 with † defined as † D S; S � 1; : : : ;�S.
Replace ƒ with � in F.J/ for the symmetric top to get [1]

F.J/ D BJ.J C 1/C .A � B/�2 (10.18)

� D ƒC S; ƒC S � 1; : : : ; jƒ � Sj
J D �;�C 1; : : :

Remember that A for the equation above is A D h=8�2IAc; it is not the spin–orbit
constant.

There are P, Q, and R branches for each value of �. For example, with 2…, we
have � D 3=2 and 1=2, i.e. two electronic sub-states, giving a total of 2 � 3 D 6

branches.

10.2.5 Hund’s Case b

Hund’s case b applies when spin is not coupled to the A-axis [1] (Fig. 10.6), e.g.:

1. for ƒ D 0 (so E† is not defined, and we must use ES)
2. at high J, especially for hydrides, even with ƒ ¤ 0

The allowed J are J D N C S;N C S� 1; : : : ;N � S, and J � 0 only. For this case,
ES and EN couple directly.
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Fig. 10.6 Molecular model for Hund’s b

Example: O2

The ground state X3† has three J’s for each N except N D 0. These energy
levels are labelled F1.N/, F2.N/ and F3.N/.

F1.N/ F2.N/ F3.N/

J D N C 1 J D N J D N � 1

There are split rotational levels for N > 0, and each level has a degeneracy of
2JC1 and a sum of Hönl–London factors of 2JC1. The minimum J is jN�Sj.

Note: In the N D 0 level, since only spin is active and is not equal to zero
(i.e., S D 1), the minimum value of J is 1.
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Fig. 10.7 Lambda-doubling results in two different energy levels

10.2.6 ƒ-Doubling

There is further complexity in the energy levels resulting from a phenomenon known
as ƒ-doubling. The two orientations of Eƒ (˙ƒ along the A-axis) have slightly
different energies, owing to different coupling with nuclear rotation (i.e., EN and
Eƒ interaction). The result is

F.J/! Fc.J/ and Fd.J/

That is, there are two components to the energy, F.J/ (Fig. 10.7).
By definition, Fc.J/ > Fd.J/,1 i.e. the c state is the higher-energy state.
Lambda doubling usually results in a very small change in energy, thus affecting

the Boltzmann fraction only slightly (other than adding a state). A more important
aspect is found in the change of parity betweenƒ-doubled states, which reduces the
accessible fraction of molecules for a given transition (due to selection rules).

10.2.7 Comment onModels

1. Models are only approximations to real molecules; don’t think of them as exact!
2. Coupling may change as J ranges from low to high values.

10.3 Quantitative Absorption

This section is a review of Beer’s Law and spectral absorption as interpreted for
molecules with multiplet structure.

Beer’s Law

�
I

I0

�
�

D exp.�k�L/ (10.19)

For a two-level system, we had

k� D S12�.�/ D
�
�e2

mec

�
n1f12 .1 � exp.�h�=kT// �.�/; (10.20)

1Note that the subscripts c and d are replaced by e and f , respectively, in some literature.
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where S12 is the integrated absorption intensity with units of cm�1 s�1 [see
Eq. (7.48)]. How do we evaluate n1 and f12 in a complex, multiple level system?
There are two issues:

1. The Boltzmann fraction, and
2. The oscillator strength for a specific transition

10.3.1 Boltzmann Fraction

n1 D ni
n1
ni

(10.21)

where ni D the total number density of species i and

n1=ni D the fraction of species i in state/level 1

The state/level is specified through the quantum numbers, e.g. n (elec), v (vib), †
(spin), ƒ (orbital), J (total angular momentum), N (nuclear rotation), c or d (ƒ-
component).

n1
ni
D Ni.n; v;†;ƒ; J;N/

Ni
(10.22)

ƒ gives the orientation and distinguishes ƒ-doubling.

10.3.2 Oscillator Strength

It is common to denote the oscillator strength of a specific, single transition (i.e.,
from one of the J00 substates to a specific J0 substate) by fJ00J0 , and to view this
transition strength as the product of a system strength, vibrational factor (fraction)
and rotational factor (fraction), i.e.,

f12 D f.m;v00;J00/.n;v0;J0/ (10.23)

D fJ00J0 (10.24)

D fel„ƒ‚…
“system” osc.

strength

� qv00v0„ƒ‚…
Franck–Condon

factor

� SJ00J0

2J00 C 1„ ƒ‚ …
normalized H-L

factor or line
strength

(10.25)
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We will show later that the sum of line strengths from a specific substate of J00 (i.e.,
with a specific N and ƒ component (c or d)) to all possible J0 is simply 2J00 C 1;
further,

P
v0 qv00v0 D 1. Thus, the effective total oscillator strength (i.e., for the

sum of all radiative transitions) for each of the substates, i.e. with specific values
of J00, N00, ƒ00 and v00, is fel.

Note: 1.
P

J0 SJ00J0 D .2J00 C 1/Œ.2SC 1/ı	P
J0 SJ00J0 is the sum over all allowed J0 (upper states) for the combined

lower substates with specific J D J00. ı D 1 for † � †, otherwise
ı D 2 (to account forƒ-doubling!). The term Œ.2SC1/ı	 D 4 for OH’s
A2† X2… system, since there are four substates with a given J00.

2.
P

v0;J00 fJ00J0 D Œ.2SC 1/ı	fel

where
P

v0;J00 is the sum over v0 and all the substates in J00. This sum
is fel for a single J00 substate.

Remarks
1. It is common to use band oscillator strengths (available in the literature).

fv00v0 D felqv00v0

e.g., f00 D 0:001 (OH; A2† X2…)
2. Then

fJ00J0 D fv00v0
�

SJ00J0

2J00 C 1
�

e.g., if only P and R are allowed,

SP
J00J0 D J00 (10.26)

SR
J00J0 D J00 C 1 (10.27)

Therefore, the intensities for R and P transitions from a specific J00 are similar,
except for small J", but the R-branch transitions are stronger than the P-branch
transitions by the ratio .J"C 1/=J".

3. In some cases, an additional “correction term” TJ00J0 is used, e.g. in OH.

fJ00J0 D fv00v0
�

SJ00J0

2J00 C 1
�

TJ00J0 ;

where TJ00J0 is always near 1.
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4. In terms of A-coefficients, we may also write

fv00v0 D
�

mec�2

8�2e2

�
Av0v00

�
ge0

ge00

�

5. And recalling Eq. (7.54) we may write

fv00v0 D ge0

ge00
fv0v00

We now know enough to tackle a real (and important) molecule, OH; see
Chap. 14.

10.4 Exercises

1. A rovibronic transition in nitric oxide (NO) occurs at 226 nm. The oscillator
strength for the transition between states 1 and 2 is given by

f12 D fel � qv00v0 � SJ00J0

2J00 C 1 D f21
g0

g00

where fel is the oscillator strength for transitions between the lower and upper
electronic states, qv00v0 is the Franck–Condon factor and SJ00J0=.2J00 C 1/ is the
normalized Hönl–London factor. For this transition of NO,

fel D 3:0 � 10�3
qv00v0 D 1:673 � 10�1

SJ00J0

2J00 C 1 D 0:5

Consider a gas mixture at 1000 K and 2 atm, with an effective collisional
broadening coefficient for this NO transition of 2� D 0:09 cm�1 atm�1, and a
number density in the absorbing state 1 of n1 D 3:7 � 1014 cm�3.
(a) Determine the peak absorption coefficient k�0 in cm�1 at the above tempera-

ture and pressure.
(b) Find the fractional absorption at line center and at a detuning of 0.2 cm�1 for

path lengths of 1 and 10 cm.
(c) Determine the spontaneous lifetime of the upper state. You may assume the

electronic degeneracies of the upper and lower states are both 2.
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(d) What is the mole fraction of NO (in ppm) for this gas mixture, assuming an
approximate Boltzmann fraction of NO molecules in the absorption state of
4.2 %. (This is a reasonable estimate, if one neglects issues of ƒ-doubling
and assumes that the absorbing state is in v00 D 0 and J00 near the peak of the
rotational distribution.) This step requires no spectroscopic calculation, only
a simple use of the ideal gas equation of state, but is useful in giving a sense
of the species detection sensitivity of spectrally resolved absorption.

Reference

1. G. Herzberg, Molecular Spectra and Molecular Structure, Volume I. Spectra of Diatomic
Molecules, 2nd edn. (Krieger Publishing Company, Malabar, 1950)



11Laser-Induced Fluorescence

This chapter discusses the theory and practical application of laser-induced
fluorescence (LIF). Fluorescence, generally, is just another name for spontaneous
emission. LIF is a two-step process: (1) absorption of the laser photon, followed by
(2) emission.

11.1 Introduction

Why is this technique of interest?

1. the LIF signal can be monitored at 90ı to the exciting laser beam, thereby giving
spatial resolution to the absorption measurement

2. the signal rides on a dark background, rather than being based on signal
differences as in absorption

3. LIF is a stronger process for spatially resolved species-specific measurements
than Raman scattering

11.1.1 Background

LIF is a multiple step process in which absorption is followed after some delay
by spontaneous emission (Fig. 11.1). LIF is NOT instantaneous. The lasers for LIF
are either continuous wave (CW) or pulsed and are often tunable, thereby enabling
access to specific features in an absorption spectrum.

History of LIF
This is a relatively young field. Key advances have been linked to the evolution of
laser sources and detectors.

© Springer International Publishing Switzerland 2016
R.K. Hanson et al., Spectroscopy and Optical Diagnostics for Gases,
DOI 10.1007/978-3-319-23252-2_11
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Fig. 11.1 Simple model for laser-induced fluorescence

• Excitation with a flash-lamp pumped tunable dye laser [2]
• Excitation with a CW laser source (1970)
• Excitation with a frequency-doubled CW laser source (around 1980)
• Excitation with Nd:YAG- and excimer-pumped tunable dye lasers (also around

1980)
• 2-D imaging using array detectors, i.e. PLIF, enabling collection of UV/visible

fluorescence images (1982)
• Extension of PLIF to infrared excitation and detection, i.e. IR-PLIF (1999)
• Extension of PLIF to high pressures (2004)
• Extension of PLIF to high-speed imaging (2008)

Light detection for LIF can be accomplished with photomultiplier tubes (PMTs)
for single-point applications, and array photodetectors for multi-point applications.
These arrays can be 1-D or 2-D and may be intensified. Quantum detectors are
typically used, owing to their sensitivity. Intensification is achieved by converting
the incident photons to electrons, which then undergo multiplication, followed by
conversion on a phosphor to an increased number of photons that reach the detector
array.

LIF can be used to measure multiple properties, including the following:

ni .n; v; J/ number density of species i in a state described by n, v, and J
T temperature (from the Boltzmann fraction)
Xi species concentration
Ev velocity (from the Doppler shift of the absorption frequency)
P pressure (from line broadening)

LIF can also be used to measure different species:

Radicals or atoms: OH, C2, CN, NH, : : : , O, H, C,: : :
Stable diatoms: O2, NO, CO, I2, : : :

Polyatomics: NO2, NCO, CO2, CH2O, Acetone (CH3COCH3),
Biacetyl ..CH3CO/2/, Toluene (C7H8), and other
carbonyls and aromatic compounds.
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11.1.2 Typical Experimental Set-Up

There are several different recording modes available for LIF: (1) emission intensity
in a fixed wavelength interval or band, (2) fluorescence spectrum, or (3) excitation
spectrum. A recording of emission intensity, I.t/, through filters centered at a
fixed wavelength �ex or �det, can be used to monitor the temporal behavior of
LIF. The fluorescence spectrum refers to the emission spectrum, i.e. the intensity
as a function of wavelength, I.�em/, for a fixed excitation wavelength, �ex. The
excitation spectrum resolves the absorption spectrum by varying the excitation
wavelength, �ex, while monitoring the LIF emission at a fixed detection wavelength,
�det, or fixed range of wavelengths (Fig. 11.2).

11.1.3 Measurement Volume

The pathlength, L, for LIF is adjustable, but typically is in the range of
L � 0:5 � 5mm. The solid angle of collection, �, is given below (Fig. 11.3)

Fig. 11.2 Typical experimental setup for LIF systems

Fig. 11.3 Measurement volume for LIF
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� � lens area

`2
(11.1)

D �d2=4

`2
(11.2)

� 1

.f #/2
(11.3)

The f # of collection is

f # � `

d
(11.4)

Therefore, small f #’s (also known as fast optics) are required for efficient light
collection.

Note: At f # D 2:5, �=4� D 0:01, or 1 % ! Therefore, the collection process is
relatively inefficient, even for fast lenses.

11.1.4 Signal Level (Two-Level System)

See Fig. 11.4

Steady Conditions
For steady conditions, the signal level of fluorescence, SF, is

S21F [# photons/s] D N2 � A21 � �

4�
(11.5)

D n2 � V � A21 � �

4�
(11.6)

where

N2 D number of molecules in the measurement volume in state 2
n2 D number density of molecules (#/cc) in state 2

Fig. 11.4 Spontaneous emission corresponds to an atomic (or molecular) transition from level 2
to 1, with release of a photon
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V D volume (cc)
A21 D probability/s of emission from state 2 to state 1

�=4� D collection fraction

The collected signal power is

SF [power collected] D .S21F [# photons/s]/ h� (11.7)

Pulsed Conditions
For unsteady conditions (e.g., with pulsed excitation), the collected fluorescence can
be integrated over time:

S21F [# photons] D
�Z �

0

n2.t/dt

�
� V � A21 � �

4�
(11.8)

n2.t/ depends on the laser and the collision process and is further explained in the
following sections.

11.2 Two-Level Model

The two-level model provides a good introduction to LIF modelling. As more levels
are added to the model, the complexity naturally increases, but the general method
of analysis remains the same (Fig. 11.5).

Recall from Einstein theory that the probability per second of a molecule
undergoing a transition from state 1 to state 2 due to absorption in the frequency
range � ! � C d� is

prob/s�!�Cd�
1!2 D B12

��.�/�.�/d� (11.9)

where

�.�/ D I�=c

Fig. 11.5 Different transitions that are included in the two-level model
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Fig. 11.6 Pulsed lasers are often spectrally broad compared to absorption lines

and
Z
�.�/d� D 1

Most pulsed lasers are spectrally broad compared with absorption lines (see
Fig. 11.6), so that I� � constant over the spectral width of the absorption line.
Hence, the total rate of absorption (i.e., the spectral integral for the 2 1 transition)
becomes

Rate1!2 D n1

Z
line

B12I��.�/d� D n1B12I� (11.10)

D n1W12: (11.11)

Thus W12 is the rate (s�1) that individual molecules in state 1 undergo the transition
to state 2, and we have introduced B12 D B�12=c as the probability per second of
absorption per unit spectral intensity.

Rate analysis can be performed to determine the rate of change of the population
of molecules in level 2

Pn2 D n1.I�B12/ � n2.I�B21 C Q21 C A21/ (11.12)

D n1W12 � n2.W21 C Q21 C A21/ (11.13)

At steady-state, Pn2 � 0, thus

.n2/SS D n1
W12

W21 C A21 C Q21

(11.14)
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Two limits emerge from the steady-state analysis for n2:

• weak excitation (“linear LIF”)
• strong excitation (“saturated LIF”)

11.2.1 Weak Excitation Limit

If the induced emission from level 2 is much weaker than the sum of collisional and
spontaneous decay processes, i.e. if

W21 	 A21 C Q21; (11.15)

then n2 	 n1, and n1 � n01 (usually n01 � n0 where n0 is the conserved total number
density, n0 D n1 C n2). The population fraction in level 2 becomes

n2 D n01
W12

A21 C Q21

(11.16)

and the fluorescence signal is given by

SF D n2 � V � A21 � �

4�
(photons/s) (11.17)

D .n01 V/.W12 D B12I�/„ ƒ‚ …
photons absorbed/s

�
A21

A21 C Q21

�
„ ƒ‚ …

“fluor yield”

�
�

4�

�
„ƒ‚…
fraction

collected

(11.18)

Note: 1. Need to know Q21 (the rate of the electronic quenching, a collisional
process), as well as A21 and I�

2. SF / n01 D nifv;J.T/
Thus, we can see that the LIF signal is directly proportional to the
population density in the lower quantum level. Hence, LIF is typically
viewed as a species diagnostic.

3. Alternate view:

# of absorptions/s D (# molec in 1)(prob/s of abs)

D .n01 V/.B12I�/
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11.2.2 Saturation Limit

If the induced emission rate is much larger than the collisional and spontaneous
emission rates (W21 � A21 C Q21), then

n2 D n1
W12

W21

(11.19)

D n1
B12
B21

(11.20)

D n1
g2
g1

(11.21)

(recall g1B12 D g2B21).
Thus, in the “saturation” limit, the population in level 2 is independent of Q

and I� .

Note: 1. If g2 D g1, then n2 D n1 when the transition is “saturated”
2. n01 D total D n2 C n1, so that

n2 D n01
1C g1=g2

D n01
2

when g2 D g1

Therefore, the LIF signal level (#photons/s reaching the detector) for
the saturation limit in the two-level model is

SF D n01

�
g2

g1 C g2

�
� V � A21 � �

4�
(11.22)

The virtue of working in the saturation limit is that the fluorescence signal
does not depend on the quenching rate Q21, which may be poorly known, nor
does it depend on the laser intensity, which may be difficult to measure accurately.
However, there are other complications which arise when one tries to do “saturated
LIF.” For instance, it may be difficult to reach the saturated limit in all parts of the
laser beam (whose intensity varies in space). If the intensity is not sufficiently high,
one may reach an intermediate situation between weak excitation and saturation.

11.2.3 Intermediate Result

The solution for n2, valid at all values of I� is found directly from Eq. (11.14), with
n1 C n2 D n01,
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1.0

0.5

0.0

S
F/

S
F,

sa
t

14x1091086420
(B12+B21)Iν  [s

-1]

at small (B12+B21)Iν,
SF/SF,sat=(B12+B21)Iν/(Q21+A21)

Q21+A21=109

Q21+A21=1010

Fig. 11.7 Intermediate fluorescence signal levels

n2 D n01
B12

B12 C B21

�
1C Q21 C A21

.B12 C B21/I�

��1
(11.23)

Since g1B12 D g2B21, then B12=.B12 C B21/ D g2=.g1 C g2/ and therefore

SF

SF;sat
D n2

n2;sat
D 1

1C Q21CA21
.B12CB21/I�

(11.24)

See Fig. 11.7.

11.2.4 Typical Values for A and Q in Electronic Transitions

1. A21 � 105 � 108 s�1 (106 s�1 for NO, OH; 108 s�1 for Na)
2.

Q21 � Z (collision frequency)

D n � �2 �
�
Nc D

p
8kT=��

�

/ 2P=pT

Q21 � 109 � 1010 s�1 at STP

3. Therefore, the fluorescence yield, A21=.A21 C Q21/, is much less than 1, except
at low P [i.e., LIF is an inefficient process!]
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4. Note: spontaneous emission for IR transitions is much weaker (smaller A21)
than for UV transitions. Therefore LIF is weak in the IR, unless the effective
quenching rate Q21 is small (as may be the case!)

A21;IR=A21;UV 	 1 (11.25)

Q21;IR=Q21;UV D‹

5. What is I� for B21I� � A21 C Q21? Call this .I�/sat

(a) For low Q21, I�;sat � A21=B21
(b) For high Q21, I�;sat � Q21=B21 so that I�;sat / .P=

p
T/.1=B21/

(c) Recall from Eq. (7.24) that B�21 D A21.�3=8h�/

) B21 D B21
I D B21�

c
D A21

�3

8hc�

at � D 500 nm,

B21 D 25 A21 Œcm2=erg s	

(d) Assume Q21 � 104A21 (e.g., Q21 D 1010 s�1 and A21 D 106 s�1), then

I�;sat � 104A21=25 A21

D 400



ergs=cm2 D erg=s

cm2 Hz

�

D 0:4 J=m2

(e) But,

I� D Power

Area ���laser

Take d D 1mm, ��L D 0:5 cm�1 D 1:5 � 1010 s�1, then

I� D PŒW	 � 107 Œergs/J	

.0:8 � 10�2 cm2/ .1:5 � 1010 s�1/

D .PŒW	/.0:08/

Therefore, Psat ŒW	� 400 Œergs=cm2	

0:08
D 5 � 103 W D 5 kW!

(f) Note: Nd:YAG-pumped dye lasers give 1–10 mJ per 10 ns pulse at 225 or
300 nm, giving 105 � 106 W!

(g) Therefore, it’s easy to saturate within the limits of a two-level model! In fact,
with atoms it’s easy to reach full saturation; with molecules it is not so easy to
get full saturation, owing particularly to population exchanges with adjacent
rotational states, but saturation is feasible at P � 1 atm.
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11.2.5 Typical Values for A and Q: Vibrational Transitions (IR)

1. A21 � 101 � 102 s�1 (30 s�1 for CO, �v D 1) for strong IR bands
2. Q21 is either the vibration–translation (V–T) de-excitation rate or vibrational–

vibrational (V–V) transfer rate (to another species). The dominant process is
usually V–V; e.g. QV�V � 105 s�1 for CO with N2 near STP, but higher at
elevated temperatures.

3. Therefore, the fluorescent yield is typically in the range 10�3 � 10�5. This is
sufficient for IR LIF to be a useful diagnostic, providing a means of imaging
many species not accessible via electronic transitions.

11.3 Detection Limits (Pulsed Laser)

Since LIF is used to detect species, the minimum detectivity of this technique is an
important characteristic.

11.3.1 Weak Excitation Limit

The fluorescence signal level in the weak excitation limit in terms of total photons is

SF D
Z

SF.t/dt (11.26)

D n01 V �
Z

I�dt � B12
A21

A21 C Q21

�

4�
(11.27)

where

n01 D n Xi fv;J (11.28)

and

n D total number density

Xi D mole fraction of species i

fv;J D fraction of molecules initially in v and J

The integral term,
R

I�dt, is equal to the laser pulse energy, Ep, divided by the laser
linewidth, ��L, and the cross-sectional area of the exciting beam, Ac.

Z
I�dt D Ep

��L � Ac
(11.29)

Thus, the signal level reduces to
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SF � n01 L
Ep

��L
B12

A

Q

�

4�
(11.30)

where L is the length of the measurement zone (L D V=Ac). Here, we have
assumed a common case where A21 	 Q21, and for simplicity, we have dropped
the subscripts on Q21 and A21.

Now, let’s calculate the detection limit for representative weak excitation con-
ditions using the new expression for the signal level. The following information is
given:

Laser pulse energy EP D 10�5 J (10�J) = 102 ergs
Pulse length �L D 10�8 s

Laser linewidth ��L D 1 cm�1

Number density n D 5 � 1018 molecules/cc (at 1 atm, 1620 K)
Boltzmann fraction fv;J D 0:01 (1 % of the species is in the

absorbing state)
Measurement volume V D Ac � L D .10�2 cm2/.10�1 cm/ D

0:001 cc
Collection angle �=4� D 10�3 (for optics with f # = 8)

Einstein coefficients A=Q � 10�4, B12 � 20 � A21 Œcm2=erg s	,
A21 D 106 s�1

Using the typical values listed above and Eq. (11.30) gives

SF D .5 � 1018 � Xi � 10�2/„ ƒ‚ …
n01

.10�1/
�

EP [ergs]

��L Œs�1	

�
.20 � 106/„ ƒ‚ …

B12

.10�4/.10�3/

D 1016 � Xi � EP [ergs]

1 cm�1 � 3 � 1010 cm=s

D 3 � 107 � Xi

where Xi is the mole fraction of the absorber i.
The total number of photoelectrons produced by this number of photons incident

on a quantum detector is SF�, where � is the quantum efficiency of the detector. The
quantum efficiency is defined as

� D # of e� produced

# of photons input
(11.31)

For ideal, shot-noise-limited detection, the signal-to-noise ratio (SNR) is simply
the square root of the number of photoelectrons in the pulse

SNR DpSF� (11.32)
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Thus, an estimate for the SNR for the prescribed conditions in the weak excitation
limit (and assuming � D 0:1) is

SNR D
p
3 � 106 � Xi

Therefore, the SNR for Xi D 1 ppm (Xi D 10�6) is 1.7. Or, Xi D 0:3 ppm for a
SNR = 1. This sensitivity is pretty impressive for a nonintrusive measurement made
in a 1 mm3 volume in 10 ns and with only 10�J of laser energy!

11.3.2 Saturation Limit

In the saturation limit, the signal level is

SF D n01 V
g2

g2 C g1
A21

�

4�

�Z �laser

0

dt D �L

�
[photons] (11.33)

To find the detection limit for typical conditions, use the information and
procedure from Sect. 11.3.1. The signal level in the saturated case is

SF D .5 � 1018 � Xi � 10�2/.10�3 cc/.0:5 D g2=.g1 C g2//.10
6/.10�3/.10�8 s/

D 2:5 � 108 � Xi

Then, with � D 0:1,

SNR D
p
2:5 � 107 � Xi;

or SNR = 5 at Xi D 1 ppm. Thus, if we can saturate, the minimum detectivity is
Xi;min D 0:04 ppm for a SNR = 1!

In molecules, the dominant collisional rate (in the rate equation analysis) tends to
be rotational transfer, and because this rate is typically larger than Qelec, saturation
is relatively difficult to achieve except at reduced pressures.
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11.4 Characteristic Times

With pulsed excitation, the question emerges of whether we can continue to use the
same steady-state relations that were derived before. This section compares the time
to reach steady-state with laser pulsewidth to show that these relations are generally
acceptable (Fig. 11.8).

Recall that the fluorescence signal level at any time t is

.n2/SS D n1
W12

W21 C A21 C Q21

(11.34)

D n01
W12

W12 CW21 C A21 C Q21

(11.35)

.n2/
weak
SS D n01

W12

A21 C Q21

(11.36)

Are these results applicable for pulsed experiments? Yes, if there is time to reach
steady-state, that is, if �SS < �laser. Consider idealized step changes in I� and define
�SS (characteristic time to reach steady-state) as follows (Fig. 11.9):

�SS D .n2/SS

.Pn2/initial
(11.37)

Iν

t

Laser pulse
τlaser~ 5 - 20 nsec

Fig. 11.8 Characteristic laser pulse times can be 5–20 ns

n2

ss

decay

(n )2 ss

t

Fig. 11.9 Characteristic steady-state and decay times for the population in state 2
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Then

�SS D 1

W12 CW21 C A21 C Q21

(11.38)

and, similarly,

�decay D 1

A21 C Q21

(11.39)

What, then, is n2.t/?
Weak Excitation

For weak excitation, W12 	 Q21 and A21 	 Q21, so �SS � 1=Q21, e.g. Q21 �
109 � 1010 s�1 at STP, then �SS � 0:1� 1 ns, and the SS relation applies at virtually
all values of time in the laser pulse.
Strong Excitation

For strong excitation, W12 � Q21 � A21, so

�SS � 1

W12 CW21

	 1

Q21

so that for typical Q21,

�SS 	 10�9 s;

and the SS approximation is good on most time scales of interest for strong
excitation (except, perhaps, for ultrafast lasers).

11.5 Modifications of the Two-Level Model

11.5.1 Hole-Burning Effects

Inhomogeneous (velocity) broadening can lead to “hole” burning (saturation due to
depletion of a certain velocity class) with intense, spectrally narrow lasers.

11.5.2 Multi-Level Effects

Upper and lower levels of molecules are really manifold states (Fig. 11.10). Hence
the LIF signal and the associated fluorescence quantum yield depend on collisional
transfer rates among upper levels and the number of these monitored by the
detection system. Two interesting limits are narrowband detection and broadband
detection.

If emission occurs only to v00 and is collected only from v0; J0 (this is narrowband
detection), then
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I B12

(1)

(2) J`+1
J`-1

Fig. 11.10 Upper and lower manifold states

Pn2 D n1B12I� � n2.B21I� C A21 C Qelec C Qrot C Qvib/ (11.40)

where A21 is the sum of A-coefficients (A2i) for allowed transitions that are
monitored by the detection system, shown here as the emission lines (e.g., P, Q
and R). For weak excitation, i.e. B21I� small relative to other decay terms,

.n2/SS D n1
B12I�

A21 C†Q
; (11.41)

where †Q (the effective loss or “quenching” rate) includes Qrot, Qvib, and Qelec

(i.e., all processes removing molecules from the upper state observed by fluorescent
emission). Hence, in the weak excitation limit,

SF D n1 � Vo � I�B12 � A21
A21 C†Q

� �
4�

(11.42)

What about broadband collection (e.g., from all J0 with v0), again in the weak
excitation limit? Then the “2” state is redefined to include all rotational levels, and
the steady-state relation becomes

.n2/SS D n1
B12I�

A21 C†Q
; (11.43)

where †Q now includes only Qvib and Qelec ! The fluorescence signal is

SF D n1 � Vo � I�B12 � A21
A21 C†Q

� �
4�

(11.44)

The important conclusion to be drawn is that collection bandwidth defines the
upper state “2” being monitored by emission and the effective quenching rate. The
LIF signal strength, and the fluorescence yield, are thus dependent on the collection
bandwidth!
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Fig. 11.11 Potential curves for ground, excited, and predissociative states of OH

(Note that A21, i.e. the sum of A-coefficients from a given J0, is effectively
independent of J0; see Appendix F for details.)

11.5.3 Predissociation

For some excitation scenarios, new decay paths become available along predissocia-
tive potential curves (Fig. 11.11). Including a new decay path, Qpre, the rate analysis
yields

Pn2 D n1B12I� � n2.B21I� C A21 C Qelec C Qrot C Qvib C Qpre/ (11.45)

Interestingly, Qpre can be much larger than the other collision rates, i.e. Qpre �
Qrot > Qvib. For example, for O2, Qpre � 1011 � 1012 s�1. In this case, we recover
the two-level result, with Qeff D Qpre.

Advantage Qpre is independent of composition, pressure, and
temperature, so the fluorescence yield is more read-
ily quantified.

Disadvantage A=Qpre may be small! (i.e. low fluorescence yield)
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11.6 Example: Acetone LIF

11.6.1 Background

In order to perform LIF in air, it is common to add a fluorescent tracer (neither
O2 nor N2 are readily accessible). In the 1980s, researchers at the High Temperature
Gasdynamics Laboratory (HTGL) at Stanford University used biacetyl (.CH3CO/2),
a food additive with modest vapor pressure (40 Torr), but it had two problems:

1. smelly and hard to handle
2. highly quenched by O2

In the early 1990s, Lozano’s survey identified acetone (CH3COCH3), a member
of the ketone family with desirable properties. Since then, acetone-based LIF has
become a popular laser diagnostic in laboratories worldwide, with applications rang-
ing from fundamental studies of fluid mechanics to internal combustion engines.

11.6.2 Acetone Photophysics

See Fig. 11.12.

• Vapor pressure is 180 Torr at room temperature
• cheap, non-toxic, easy to handle
• fluorescence lifetime is approximately 2 ns and is independent of O2

• constant fluorescence yield of about 0.2 % at room temperature
• each state is a manifold of vibrational levels
• “intramolecular intersystem crossing,” at rate Qt, dominates, therefore the FY D

A10=.A10 C Qt/ � A10=Qt � 0:2%!
• absorption and fluorescence are broadband

Fig. 11.12 Molecular levels for acetone
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11.7 Applications of LIF

There are different strategies for measuring various properties with LIF.

11.7.1 Species Density

To measure species density (ni [molecules/cc]) with LIF using linear excitation, we
have (where Q21 and Q are used interchangeably)

SF [photons/s] D n01 � V � I�B12 �
A21

A21 C Q21

� �
4�

(11.46)

SF / ni
fv;J.T/

Q
(11.47)

• assumed known: A21, B12, I� , V , and � are usually measured (i.e., by Rayleigh
scattering)

• then SF / C � ni, where C / V�fv;J
Q is from a calibration point

• for T-varying systems, we can select v and J to give fv;J=Q nearly independent
of T , in which case SF is directly proportional to ni, the desired quantity.

11.7.2 Species Mole Fraction

For measuring mole fraction Xi, use the following expression

SF / ni
fv;J.T/

n Nc (11.48)

D Xi
fv;J


p

T
(11.49)

� C � Xi (11.50)

Note that Q D n Nc, where Nc is the mean molecular speed, and C is obtained by
calibration. This relation implies that selection of v and J to give fv;J


p

T
¤ f .T/ leads

to direct proportionality between SF and Xi.

11.7.3 Temperature

There are two strategies for measuring temperature.

Strategy 1
The first strategy is a single-line method.
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SF / Xi
fv;J


p

T
(11.51)

Therefore,

1. use a tracer with fixed Xi

2. select v and J for large T dependence of fv;J

p

T

Strategy 2
The second strategy is a two-line method (two excitation wavelengths) [1].

SF.1/

SF.2/
D
h
ni

fv;J.T/
Q

i
1h

ni
fv;J.T/

Q

i
2

(11.52)

� fv;J.T/1
fv;J.T/2

(11.53)

D F.T/ (11.54)

Therefore, select �1 and �2 to probe states with strong T-dependence for
fv;J.T/1=fv;J.T/2.

Example: OH
For OH, the R1.7/ and R1.11/ lines are located within 0.5 cm�1 of each other,
so it is possible to scan over the entire pair with one laser sweep (Fig. 11.13).
The laser at Stanford based on a fast-scanning ring dye laser can scan in
approximately 200�s.

SF.�
0
11/

SF.�
0
7/
D nOHfb.N00 D 11/ŒI�11B1211�.�011/.A=Q/	11

nOHfb.N00 D 7/ŒI�7B127�.�07/.A=Q/	7
(11.55)

SF

λ (time)

νo
7

R1(7)

νo
11

R1(11)

Fig. 11.13 OH line pair for temperature measurements



11.7 Applications of LIF 197

D c � fb.N00 D 11/ŒA=Q	11

fb.N00 D 7/ŒA=Q	7
(11.56)

Therefore,

SF.�
0
11/

SF.�
0
7/
/ fb.N00 D 11/

fb.N00 D 7/ (11.57)

D F.T/ (11.58)

With T known, the integrated area can be used to find nOH, and the measured
linewidth can give the pressure.

11.7.4 Velocimetry

Flow velocity information can be found from Doppler shift (Figs. 11.14 and 11.15).

��Doppler shift

�
D v cos �

c
(11.59)

��Doppler shift D v cos �

�
(11.60)

Therefore, we can infer v cos � from a measure of ��Doppler.

1. These measurements have been made in supersonic and subsonic flows
2. Pulsed (broad) laser sources have also been used for the measurements
3. With two laser components, the 2-D velocity can be resolved
4. The mass flux, Pm D �v, is given by the product of � (obtained from the

determination of total number density, n) and v (from the Doppler shift),
assuming � is known

5. The momentum flux, T D �v2, is available from measurements of � and v

Fig. 11.14 The Doppler shift from a flowing gas can be used to measure the gas velocity along
the direction of the laser beam
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SF

νlaser

Moving sample
Static Sample

νο νο + ΔνDoppler

Fig. 11.15 The Doppler shift from a flowing gas can be used to measure a component of velocity

11.8 Exercises

1. What is the effective electronic temperature, T(K), for a 2-level atom with E2 >
E1 in the limit of fully saturated LIF?

2. You are asked to study a molecule described by only 2 energy levels. A short
duration, spectrally narrow, high-power laser pulse is used to saturate the
absorption transition between levels 1 and 2. After the laser pulse is complete
(i.e., t > 0), the gas begins to relax towards a new thermal equilibrium via the
pathways shown below. The energy levels and pertinent constants are indicated.

(a) What are the fractional populations in each energy level (i.e., n1=n and n2=n)
immediately after the laser pulse?

(b) At equilibrium and 1000 K, what is Q12?
(c) Write a differential equation describing the fractional number density in level

2 (i.e., n2=n) for t > 0.
(d) 0.3 ns after the laser pulse, what is the fractional population in level 2? Hint:

Neglect small terms.
3. A continuous-wave diode laser is used to excite a vibrational band of H2O

via laser absorption. Assuming weak-excitation and a two-level molecule and
ignoring collisional excitation and stimulated emission:
(a) Derive an equation for the fractional population in the excited vibrational

state.
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(b) Derive an expression for the LIF signal in photons/s cm3 and the fluorescence
quantum yield.

Note: Assume steady-state and write your equations in terms of n or
ni;Q;A;W12, and �.

4. You are given a three-level model of a molecular system diagrammed below.
Remember that Wi;j D Bi;jI, and for i > j, Ti;j D Ai;j C Qi;j and Tj;i D Qj;i. Also
for this problem g1 D g2 D g3 and N1 .t D 0/ D N0.
(a) Write the complete set of equations needed to characterize the rate of change

of the population of each level.
(b) Solve this system of equations to determine the steady-state population

difference between levels 1 and 3 (�NSS
13 � NSS

1 � NSS
3 ) in terms of N0 and

the transition rate coefficients. You may neglect all non-radiative excitation
processes. In other words, T13 D T12 D T23 D 0.

(c) Find the saturation intensity, I13;sat, for the 1 ! 3 transition in terms of the
stimulated absorption coefficient, B13 and the other rates, Ti;j. The saturation
intensity is I such that �NSS

13 D 1
2
�NtD0

13 . Assume �NtD0
13 � NtD0 � N0.

(d) Using the three-level rate equations, derive an expression for the rate of the
fluorescence, S32 (number of photons/s emitted in all directions), at steady-
state from level 3 to level 2. Assume I 	 I13;sat.

Reference

1. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press,
Kent, 1988)

2. F.P. Schafer, W. Schmidt, J. Volze, Organic Dye Solution Laser, Applied Physics Letters 9, 306–
309 (1966)
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A variety of techniques exist that complement or enhance traditional absorption and
fluorescence diagnostics. Here we introduce a number of these techniques.

12.1 Absorption Techniques

12.1.1 Frequency-Modulation Spectroscopy (FMS)

In FMS, the optical frequency of a laser is sinusoidally modulated, typically
with an electro-optic modulator (EOM), at frequencies equal to or greater than
the HWHM of the absorption transition lineshape. This typically requires mod-
ulation frequencies from 100 MHz to GHz rates for IR transitions at � 1 atm
(1 GHz = 0.033 cm�1). The modulation effectively shifts absorption and dispersion
information in frequency space to the harmonics of the modulation frequency which
lie above lower frequency noise sources. As a result, FMS can provide highly
sensitive measurements (down to absorbances of 10�8 [1]) of narrow absorption
transitions.

Figure 12.1 illustrates a typical experimental setup for an FMS experiment.
Frequency modulation is achieved by modulating the voltage applied to an EOM
crystal which modulates its refractive index, and therefore, the phase or frequency
of the laser beam passing through the EOM. The electric field of the laser beam
exiting the EOM is given by:

Eo.t/ D Eo exp.i2��ctC iˇ sin.2� fmt// (12.1)

If the modulation index, ˇ, is < 1, the electric field exiting the EOM predom-
inantly consists of a carrier wave at �c and two out-of-phase sidebands located at
�c ˙ fm, known as a triplet. In the absence of wavelength-specific absorption, the
triplet is balanced and the beat signals (of opposite sign) cancel each other out
and go undetected by the photodetector. However, if the triplet is resonant with

© Springer International Publishing Switzerland 2016
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Fig. 12.1 Schematic for laser-absorption measurements using FMS

an absorption transition, the wavelength-specific absorption and dispersion (phase
shift) cause unbalance within the triplet (since each component is attenuated and
phase shifted a different amount) which introduces a beat signal at fm in the detector.
This beat signal can be extracted via homodyne detection (e.g., with a lockin-
amplifier or double-balanced mixer) and compared with measured reference signals
or simulated signals to infer gas properties. By scanning the carrier frequency of the
laser across an absorption feature, FMS spectra can be measured. More information
can be found in [2–6] and the references therein.

12.1.2 Wavelength-Modulation Spectroscopy (WMS)

In WMS, the laser’s wavelength is sinusoidally modulated (typically via injection
current modulation) about a given location on an absorption transition lineshape
(Fig. 12.2). The wavelength modulation leads to intensity modulation, according to
Beer’s Law, which introduces frequency content centered at the harmonics of the
modulation frequency in the detector signal. The harmonic signals can be extracted
via lock-in filters during post-processing or data acquisition and can be compared
with calibration-free WMS models [7–13] to infer gas conditions (T, P, �, V)
from the measured WMS harmonic signals. Like FMS, WMS enables improved
measurement sensitivity via high-frequency modulation, down to absorbances of
10�5 [1], but is more versatile than FMS since lower modulation frequencies (fm is
typically 1 kHz to 1 MHz) and larger modulation depths O(0.1–1 cm�1) can be used,
the latter of which enables sensitive measurements at high pressures.

It.t/ D Io.t/ expŒ�˛.�.t/;T;P; �;L/	 (12.2)
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Fig. 12.2 Schematic for laser-absorption measurements using WMS

When using injection-current-tuned lasers (e.g., diode lasers, quantum cascade
lasers) the current modulation introduces near-linear intensity modulation that can
be exploited to normalize-out the dependence of WMS signals on the DC light
intensity and electronic gain [10,14]. This enables use of first-harmonic-normalized
WMS signals that are insensitive to low-frequency (compared to fm) variations in the
light intensity impinging on the detector (e.g., resulting from beamsteering, window
fouling, etc.) thereby improving measurement fidelity in harsh environments [10].

12.1.3 Cavity-Ringdown Spectroscopy (CRDS)

Cavity-ringdown spectroscopy enables increased sensitivity in laser absorption
detection of a species by increasing the path length over which the light interacts
with the absorbing species (Fig. 12.3).

In CRDS, a small fraction of pulsed light is coupled into a cavity through highly
reflective mirrors (R > 99:99%). This light reflects many times (> 10;000 passes)
so that the light circulating in this cavity has a long interaction path with any gases
inside the cavity. The rate of decay of the transmitted intensity can be related to the
reflectivity of the mirrors and any other loss processes (e.g., absorption, scattering)
of light from the cavity. If a concentration of absorbing species is the dominant loss,
the transmitted intensity can be expressed in the following form [15]:

It.t/ D Io exp.�t=�/ (12.3)

D Io exp.�..1 � R/C ˛SP.�//ct=L/ (12.4)

Cavity-ringdown spectroscopy has the potential to be 10,000 times or more
sensitive than direct absorption [16]. Variations of pulsed CRDS (Fig. 12.3) include
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Fig. 12.3 Schematic for laser-absorption measurements using CRDS

CW (continuous wave), PS (phase shift) CRDS, and off-axis integrated-cavity
output spectroscopy (OA-ICOS) [17, 18].

For optimum performance, the laser should be coupled into the TEM00 mode of
the cavity. The spectral width of the laser is also important. If the laser bandwidth is
wider than the cavity mode spacing or is not very narrow compared to the absorption
linewidth, additional considerations are required [15, 17]. Additionally, a small
amount of window fouling can create a significant interference when the beam is
reflected from the mirror 10,000 times. Thus, maintaining clean mirrors is critical
for sensitive measurements.

12.1.4 Off-Axis Integrated Cavity Output Spectroscopy

Similar to CRDS, OA-ICOS enables improved measurement sensitivity by increas-
ing the effective path length over which light interacts with the absorbing species.
However, in OA-ICOS cavity-mode-locking is not required since the reflections
within the cavity are spatially separated (laser light travels around the perimeter of
the mirrors in an elliptical pattern as it moves back and forth, see Fig. 12.4). At each
interface, a small fraction of the light is transmitted through each mirror, and the
spatially integrated signal is collected and focused onto a detector. The transmitted
intensity exiting the mirror is given by a variant of Beer’s Law, Eq. (12.5).

It.t/ D Io.t/ expŒ�˛CEAS.�/	 D Io.t/=.1C G˛SP.�// (12.5)

Here, Io.t/ and It.t/ are the intensities exiting the cavity in the absence and presence
of absorbers, respectively, ˛CEAS is the effective cavity-enhanced absorbance, ˛SP is
the absorbance for a single pass (i.e., S.T/P�iˆL), and G is the gain of the cavity.

By spatially separating the reflections, many roundtrips are required before the
light rays overlap and retrace their original path through the cavity. The effective
cavity length is now m times longer (up to O(1 km)) and the effective free-spectral
range (FSR) of the cavity is now m times smaller (typically << HWHM of absorp-
tion transition at STP). These attributes enable scanned-wavelength measurements
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Fig. 12.4 Schematic for laser-absorption measurements using OA-ICOS

of absorption spectra and a cavity-enhanced path length that is much less sensitive to
alignment compared to CRDS. More information regarding OA-ICOS can be found
in [19–22] and the references therein.

12.2 Fluorescence Techniques

12.2.1 Planar Laser-Induced Fluorescence (PLIF)

One advantage of LIF is that it can easily be extended to two dimensions. By replac-
ing the detector with a 2-D detector array (i.e., a digital camera), and expanding the
excitation laser beam into a sheet, a two-dimensional image can be acquired (see
Fig. 12.5). PLIF was first applied to combustion in 1982 [23,24]. Details of PLIF can
be found in Kychakoff et al. [25] and the extension to high pressure was reported by
Lee et al. [26]. PLIF has been used to measure concentration, temperature, pressure,
and velocity [27, 28]. Pulsed lasers are normally employed to achieve single-shot
imaging, and the short excitation pulse effectively freezes the flow field. While it
is useful for measuring quantities in a plane, PLIF can suffer from lower SNR than
1-D LIF because the laser energy is spread out over a much larger area. For steady
systems, PLIF measurements may use averaged measurements for improved SNR
with either CW or pulsed laser excitation [27, 28].

12.2.2 Narrow Linewidth LIF

Stanford has pioneered the use of rapid-tuning, narrow-linewidth CW lasers for
absorption and fluorescence spectroscopy (dye lasers, diode lasers (IR, NIR, VIS)).
The LIF linear excitation equation for narrow-linewidth sources is
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Fig. 12.5 Schematic of a PLIF experiment to measure species concentration

Fig. 12.6 A typical experimental schematic for narrow-linewidth LIF

SF.� ! � C d�/ D n01 � V � I�B12Œ�.�/d�	„ ƒ‚ …
W12Dprob=s of abs

� A

AC Q
� �
4�

(12.6)

where �.�/ is the absorption lineshape function (see Chap. 8). Recall thatR
�.�/d� D 1, therefore �.�/d� = the fraction of total probability per second

of absorption (I� B12), for the frequency range � ! � C d�. What can we do with
this? We can make spatially resolved measurements of the lineshape function and
its integral (Fig. 12.6).

The shape of the LIF line provides opportunities for inferring pressure and
temperature, while the integral (area) of the lineshape can provide a measure of
n1 D nifb.v00; J00/.
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Fig. 12.7 Experimental schematic for LIBS analysis of a condensed-phase specimen

12.2.3 Laser-Induced Breakdown Spectroscopy (LIBS)

Laser-induced breakdown spectroscopy is a simple yet powerful analysis tool for
particles and surfaces.

In LIBS, a high-energy laser pulse is focused onto a small sample of unknown
composition, ablating a small amount of material from the sample and heating it to
high temperatures (Ï10,000–20,000 K) [29]. At these high temperatures, the ablated
material is broken down into the atoms and ions which constituted the original
sample. These atoms emit light at very specific wavelengths, in proportion to the
excited-state atomic concentration of the sample. Analysis of the emission spectrum
can be used to identify the relative concentrations of the atoms present in the sample,
which can then be matched to LIBS spectra of known specimens.

LIBS can be performed on stationary solid or liquid samples as shown in
Fig. 12.7 or may be applied to flowing gaseous or particle-laden systems [30, 31].
Variations on standard LIBS include double-pulse and mixed-wavelength systems
for enhanced identification [32, 33].

Advantages:
1. Requires little or no sample preparation
2. Can analyze very small sample sizes (Ï10�9 g)
3. Measurement time is typically short (Ï1 s)
4. Experimental setup is simple
5. Utilizes high-quality, inexpensive Vis/UV optical components

Disadvantages: LIBS is subject to variation in the pulse energy and can
be subject to interference from plasma breakdown of the air surrounding the
sample. Quantitative analysis can be complicated by electronic nonequilibrium and
unknown, time-varying temperature.
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12.3 Photothermal Techniques

Following laser absorption, the upper quantum energy states are depopulated via
fluorescence or quenching. LIF is commonly limited by low fluorescence yields,
an inefficiency caused by the more dominant quenching process. Conversely, pho-
tothermal techniques exploit rapid quenching by relating changes in the translational
energy (i.e., temperature) of the gas to the absorbed photon energy. Two variants of
photothermal diagnostic methods are presented below.

12.3.1 Photoacoustic Spectroscopy (PAS)

Recall the equation for laser-induced fluorescence signal for the simple two-level
model:

SF D .n2/SS � A21 � h� [energy/vol/s] (12.7)

• Where did the other absorbed energy go? Heating.

Sheating D .n2/SS Q h� (12.8)

D n01 � B12I� �
Q

I�BC AC Q
� h� (12.9)

� n01 � B12I� � h� [energy/vol/s] (12.10)

How can we measure the heating strength? Use a pulsed laser and measure the
pressure pulse with a microphone! In a confined test cell, where density is constant,
the absorbed energy per unit volume is related to the change in temperature and
pressure by

Eabs D cv��T (12.11)

and

�P D �R�T (12.12)

such that

Eabs D cv.�P=R/ (12.13)

A cylindrical gas cell may serve as a resonant cavity for sound waves, amplifying
the signal when laser modulation is performed at acoustic frequencies. Due to
signal dependencies on hardware components, PAS usually requires calibration for



12.3 Photothermal Techniques 209

Fig. 12.8 Experimental configuration for optoacoustic measurements

Fig. 12.9 Schematic and data traces for photothermal deflection

quantitative species concentration measurements. PAS is a common technique for
species monitoring in relatively quiescent environments (Fig. 12.8).

12.3.2 Photothermal Deflection (PTD)

Temperature from the Speed of Sound
The speed of sound is proportional to T1=2, and so a measurement of the speed of
a weak pressure wave can be used to infer T . As one example, local heating on a
wire from a pulsed laser leads to a pressure pulse that causes deflection of two HeNe
probe beams (Fig. 12.9). The times at which the pressure pulse causes deflection at
the two different HeNe probe beams is related to their separation distance, L, and
the speed of sound in the flow.

a D L

�
(12.14)

D
r N�RT

M
! T (12.15)

An alternative is to use laser spark breakdown to produce a pressure wave.
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Fig. 12.10 Schematic velocity measurements using photothermal deflection

Fig. 12.11 Energy levels for spontaneous Raman scattering

Flow Velocity from Propagation of a Hot Spot
Flow velocity can be inferred from the convection of marked fluid, e.g. a thermal
hot spot, as in Fig. 12.10. Alternatively, fluid may be marked by laser excitation to
produce a new chemical species or excited state of a constituent species that can be
tracked by a probe beam.

12.4 Scattering Techniques

Various forms of spectroscopic detection have been developed based on the Raman
effect. Most notable are spontaneous Raman scattering (SRS) and coherent anti-
Stokes Raman spectroscopy (CARS).

12.4.1 Spontaneous Raman Scattering

Rotational Raman: .�v D 0/; changes in J only (�J D ˙2)
Vibrational Raman: changes in v and J (Fig. 12.11)

Set-up: Similar to LIF (90ı detection); CW and
pulsed lasers
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Fig. 12.12 Typical experimental setup for CARS (4-wave mixing)

Fig. 12.13 Energy levels for CARS spectroscopy with 4-wave mixing

Uses: measure ni and T (e.g., by use of filters and
IAS
IS
/ exp.��v=T/)

I.�s/ D cni.2J00 C 1/.v00 C 1/ exp.�E.v00; J00/=kT/

Qr;v
.�L � �R/

4 (12.16)

Note: �4-dependence favors short-wavelength lasers.

12.4.2 Coherent Anti-Stokes Raman Spectroscopy

Figure 12.12 depicts a typical experimental setup for a CARS experiment and Figs.
12.13 and 12.14 illustrate the energy levels and processes most relevant to CARS.
Energy conservation requires that !4 D 2!1 � !2, where ! is in frequency units.
When !1 � !2 is resonant, there is strong, coherent generation of !4 via wave-
mixing. In addition, conservation of momentum is in effect.

The spectrum and scanning !2 mode are depicted in the following figure
(Figs. 12.15).
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Fig. 12.14 Conservation of momentum for 4-wave mixing

Fig. 12.15 CARS spectra for scanning and broadband sources

Advantages: directed beam, efficient process
Uses: thermometry/single shot in jet exhaust

Disadvantages: complexity of theory/experiment/cost

Modern CARS techniques can provide high temporal and spatial resolution in
complex flows [35, 36].

12.5 Laser Ionization Spectroscopy

Multiple analytical strategies have been developed based on the concept of laser-
induced ionization (Fig. 12.16).

The lifetimes for laser ionization spectroscopy are as follows:

real levels � � 10�9
virtual levels � � 10�15

The experimental schematic for the measurements is shown below (Fig. 12.17).
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Fig. 12.16 Different energy levels for laser ionization spectroscopy [34]

Fig. 12.17 Experimental schematic for laser ionization spectroscopy

Example applications for 3-photon processes:

H-atom detection .1S! 2S/ at approximately 121.6 nm
2 � 243! 121:5 nm
2S! HC C e with third photon

O-atom detection 23P! 33P
33P! OC C e� at 223 nm
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13Spectroscopy Equipment

An important consideration for spectroscopic measurements is the availability
and performance of light sources and detectors. Figure 13.1 shows the operating
wavelength range for many common laser sources. This chapter is devoted to a
discussion of laser light sources and detectors that operate between the UV and
far-IR. While many of the sources and detectors find industrial uses, we concern
ourselves here with the spectroscopic applications of these devices.

13.1 Sources

Laser light can be made at many wavelengths ranging from the UV to the far IR.
Some lasers are quite large and expensive while others are small enough to fit in the
palm of your hand and cost less than $100. Lasers can be pulsed or continuous wave
(CW), with average powers ranging from microwatts to kilowatts or more. In this
section we will discuss a few of the more popular sources and their uses.

13.1.1 The Helium–Neon Laser

The helium–neon (HeNe) laser is one of the simplest lasers and was one of the
earliest lasers invented (the ruby laser was the first laser). The HeNe laser is so
simple that there are books, web sites, and undergraduate classes that will teach
motivated students to build their own [2]. The HeNe laser has a tube filled with a
mixture of helium and neon (�0.1 Torr neon, 0.9 Torr helium) [3]. The helium is
excited by an electrical discharge (which looks very much like a neon light). The
excited helium atoms transfer energy to the neon atoms which produce the laser
light. HeNe’s are CW devices with typical powers ranging from 1 to 50 mW.

HeNe lasers are most commonly used to produce 632 nm light, but HeNe’s
are also available with output at 3.3903�m, 1.15�m, and several other visible
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Fig. 13.1 Wavelengths of operation for many common lasers [1]

and IR wavelengths [4, 5]. Visible HeNe’s are useful for optical alignment and
optical scattering measurements. The 3.39�m HeNe laser is useful in absorption
spectroscopy for detection of hydrocarbons because the C–H stretch oscillates near
3.4�m [6].

Argon-ion lasers are similar to HeNe lasers because they are gas lasers that are
pumped by an electrical discharge. However, in an argon-ion laser, the argon is
ionized in the plasma and ions act as the gain medium. Argon-ion lasers are typically
CW devices, but can provide significantly more power than the HeNe laser. Argon-
ion lasers can lase at many discrete wavelengths between 275 and 550 nm [7].

Argon-ion lasers can be used for direct absorption measurements at their funda-
mental wavelength [8] or at wavelengths of higher order harmonics [9]. They can
also be used to pump dye lasers for absorption or fluorescence measurements [9].

13.1.2 The Nd:YAG Laser

The Nd:YAG laser (i.e., neodymium-doped yttrium aluminum garnet: Nd:Y3Al5O12)
is a common laser for high-power applications. The YAG crystal is doped with
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triply ionized neodymium, which replaces another element of roughly the same
size, typically yttrium. To emit coherent radiation, the neodymium must first be
pumped from the equilibrium state into a higher energy level. For these solid state
lasers, this is often done using flashlamps, but diode lasers are also used. Nd:YAG
lasers can be CW or pulsed. Higher peak powers are available when operated in
pulsed mode, which is important for frequency conversion (i.e., frequency doubling,
difference frequency generation, and sum frequency generation) and fluorescence.

Nd:YAG lasers are useful for their high power output. Nonlinear processes are
often used to convert the IR light (usually at 1064 nm) to mid-IR light (2–4�m)
using an optical parametric oscillator (OPO) [10], or to visible and UV light (532,
355, 266 nm) through harmonic generation [11,12]. Nd:YAG lasers can also be used
to pump dye lasers [13]. Because of the high achievable powers and wide range
of wavelengths that can be accessed using the Nd:YAG laser, they are a common
component in many fluorescence and absorption experiments, both in the UV [12]
and IR [10].

13.1.3 The Excimer Laser

Excimer lasers (short for Excited Dimer) are pulsed UV lasers with a gain medium
that is a short-lived molecule made up of one rare-gas atom and one halogen (e.g.,
ArF, KrCl, KrF, XeCl, XeF) [4]. Excimer lasers are used for LIF because they have
high output powers in the UV [12]. A UV laser photolysis technique has also been
demonstrated using the excimer laser as the photolyzing source [14].

13.1.4 The CO2 Laser

In the CO2 laser, the molecular vibrations are pumped by a plasma discharge. CO2

lasers can be either pulsed or CW. CO2 lasers can operate at discrete wavelengths
between 9.3 and 11.4�m, however the 10.6�m transitions are popular choices
[5]. High-power CO2 lasers are useful in manufacturing for cutting, welding, and
other processing technologies [3]. CO2 lasers are also utilized in spectroscopy for
fluorescence and absorption measurements [15].

13.1.5 Semiconductor Lasers

Semiconductor lasers (e.g., diode lasers, quantum cascade lasers, external cavity
diode lasers, distributed feedback (DFB) lasers) have become increasingly important
in spectroscopy and remote sensing. Semiconductor lasers are available in wave-
lengths from the near UV (375 nm) to the far-IR (�11�m) and produce powers
from �1 to 500 mW. Near-IR diode lasers are well developed and commercially
available due to significant investment from the telecom industry. These lasers are
compact and rugged and can often be purchased in a prepackaged, fiber-coupled
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unit. Many DFB lasers can be rapidly tuned over several wavenumbers by changing
the injection current or laser temperature. Some external cavity diode lasers can be
tuned more than 100 cm�1.

Due to their lower power outputs, tunable diode lasers are used primarily in
absorption spectroscopy. Wavelength-tunability enables the user to interrogate an
individual absorption feature of an atom (e.g., potassium or cesium) or small
molecule (e.g., CO, CO2, H2O, or CH4). Absorption measurements at multiple
wavelengths have been used for simultaneous measurements of temperature and
multiple species [16] or pressure, temperature, and velocity [17].

13.1.6 Dye Lasers

Dye lasers use an organic dye as the gain medium. Because the dye is a liquid, the
absorption and fluorescence spectra are broadband, but the laser cavity is designed
to emit “monochromatic” laser light somewhere within this emission band. Dye
lasers are tunable over this emission band; each specific dye provides a range of
wavelengths (10 to 70 nm), mostly in the visible and UV. Dye lasers are pumped by
other UV lasers (such as an argon-ion laser) or by flashlamps.

Laser dyes can be found that emit between 300 and 1200 nm [18]. Harmonic
generation of these tunable lasers facilitates spectroscopic work in the UV [9, 13].

13.1.7 Non-Laser Sources

While lasers act as valuable spectroscopic tools, and cover much of the electromag-
netic spectrum from the UV to the far-IR, some wavelengths cannot be accessed
using laser sources. Broadband lamps are useful tools for accessing wavelengths
that cannot be easily obtained with lasers. Lamps offer the additional benefit of
being simpler and less expensive than lasers, however, the lower spectral intensities
reduce the SNR for spectrally resolved measurements.

13.2 Detectors

In an optical experiment, the detection system is an important consideration, second
only to the optical source. Thus, we will devote some time to describing the different
types of detectors and their characteristics. Before examining detectors in detail,
some basic detector vocabulary is reviewed. Next, three common types of detectors
are described. Finally, detector wavelength range, time response, and signal-to-noise
ratio are compared for several common detectors. While this is only an introductory
treatment, more information can be found in [19–21].

Shot noise refers to noise that is a result of random fluctuations in the time of
arrival of the photons or electrons.
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Dark current is the current produced by the detector with no signal from the
source. Sources of dark current include background radiation from the environment
and random thermal excitation of electrons within the detector itself.

Johnson noise is the noise generated by the equilibrium fluctuations of the
electric current inside an electrical conductor, which happens without any applied
voltage, due to the random thermal motion of the charge carriers (i.e., the electrons).
In other words, Johnson noise is caused by random electron motion in the circuit.

Generation-recombination noise occurs in photoconductors because the pho-
toexcited carrier has a characteristic lifetime, � . The lifetime of each carrier is not
exact, but described statistically. Thus, there is uncertainty in the precise time that
the carrier recombines and this uncertainty results in random noise.

Background limited infrared performance (BLIP) occurs when the detector
noise is limited by the background shot noise and not by intrinsic detector noise.
Infrared detectors are often cryogenically cooled to approach this ideal condition.

Bandgap energy is the energy difference between the top of the valence band
and the bottom of the conduction band in a semiconductor. Photons with energy that
is lower than this bandgap energy are not detected by the semiconductor.

The detectors we will consider here are referred to as quantum detectors.
Quantum detectors respond to individual photons and offer a fast response time.
Thermal detectors are not discussed here, but more information can be found in
[19]. It is sufficient to say that thermal detectors offer broad wavelength sensitivity,
but at the cost of reduced time response.

13.2.1 The Photomultiplier

The photomultiplier is a popular optical detector used to measure radiation in the
UV, visible, and near-IR wavelength regions. The photomultiplier consists of a
photocathode, a series of electrodes, called dynodes, and an anode. When a photon
strikes the photocathode, there is some probability that an electron will be emitted
and accelerated towards the first dynode. Each dynode is held at a higher electrical
potential than the previous so that it can attract the electrons. When an electron
strikes the dynode, it sheds multiple electrons which accelerate to the next dynode.
In this way, the signal is amplified at each dynode. Primary sources of noise in a
photomultiplier are shot noise (generated by both the signal and the dark current)
and Johnson noise.

13.2.2 Photoconductive Detectors

A photoconductive (PC) detector is a semiconductor-based detector with an electri-
cal resistance that is sensitive to the light incident on it. A voltage placed across the
detection element is used to measure the resistance. Photoconductive detectors are
available in the near-IR to the far-IR (wavelengths from 1 to 50�m).
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Photoconductive detectors (and other semiconductor-based detectors) have a
bandgap energy associated with them. Photons with energy that is smaller than this
bandgap energy are not observed by the detector. For photons with energy that is
greater than the bandgap energy, the current generated is proportional to the number
of photons striking the active area. Thus, for fixed power, the detector sensitivity
increases linearly with wavelength until the bandgap energy is reached, then the
sensitivity drops off rapidly.

When a photon is absorbed by the material, an electron is excited from the
valence band to an acceptor atom. There is a minimum photon energy required
to excite the electron, placing a lower limit on the photon energy (or an upper
limit on the detectable wavelength). The electron hole is acted on by the electric
field (the applied voltage) and drifts along the field direction, resulting in a current.
The contribution of a particular hole to the total current ends when an electron
recombines with the hole. This process is referred to as electron-hole recombination.
Photoconductive detectors are often cryogenically cooled so that thermal excitation
of the carriers does not dominate over the photoexcitation process. There are two
primary sources of noise in photoconductors. The first noise source is shot noise
which can originate from the dark current or from the measured signal. The second
source of noise is generation-recombination noise, which is a result of the finite
lifetime of the photoexcited carrier.

13.2.3 Photodiode Detectors

A photodiode is a semiconductor that generates a voltage (or current) when light is
incident on it and is often called a photovoltaic (PV) detector. Like photoconductors,
photodiodes have a minimum photon energy associated with the energy bandgap of
the semiconductor. Noise in a photodiode is dominated by the Johnson noise and
therefore is not usually shot-noise limited.

A variation of the standard photodiode is an avalanche photodiode. In an
avalanche photodiode, an electric voltage is placed across the diode. When a carrier
is produced, it is accelerated by the electric field to energies great enough to knock
new electrons out of the valence band. Thus, the signal is amplified resulting in more
sensitive detection. The shot noise of the avalanche photodiode is also amplified in
this system, but because a standard photodiode is Johnson noise limited, the SNR
increases with increasing amplification until the shot noise dominates.

13.2.4 Selecting a Detector

There are many criteria that might be used to choose the correct detector for a
specific application including wavelength, time response, noise characteristics, sim-
plicity, and cost. Different types of detectors are sensitive to different wavelengths
of light. Figure 13.2 shows the wavelength range for many common detectors.
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Fig. 13.2 Wavelength range for common detectors. Black boxes indicate photovoltaic detectors
(photodiodes). Gradient from left to right indicates a photoconductor and gradient from top to
bottom indicates a photomultiplier
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Fig. 13.3 Typical bandwidth for common detectors. Black boxes indicate photovoltaic detectors
(photodiodes). Gradient from left to right indicates a photoconductor and gradient from top to
bottom indicates a photomultiplier

By choosing a specific wavelength or set of wavelengths, the choice of detectors
will be some subset of the detectors indicated in the figure.

As shown in Fig. 13.2, there are often several detectors available for a particular
wavelength, so more selection criteria can be used to reduce this list. Detectors
have a frequency bandwidth which is important for time-resolved measurements.
Bandwidth can be dependent on the detector area and temperature as well as the pre-
amplifier gain, and of course, the detector material. By increasing the detector area
or the preamplifier gain, the frequency bandwidth will generally be reduced. Typical
commercially available bandwidth for some common detector types is plotted in
Fig. 13.3.
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Detector noise can also be an important issue, especially when measuring weak
signals (such as with fluorescence). Detector noise is characterized by the detectivity
.D�/:

D� D
p

ADetector�f

NEP
(13.1)

where ADetector is the detector area, �f is the bandwidth, and NEP, the noise
equivalent power, is the amount of optical power required to equal the magnitude
of the detector noise. The signal-to-noise ratio for a measurement dominated by
detector noise can be calculated using this equation:

SNR D Pincident

NEP
D PincidentD�p

ADetector�f
(13.2)

where Pincident is the incident optical power. Thus a high D� is required for sensitive
optical measurements.

Cost and complexity should also be considered when choosing detectors. Most
near-IR, visible, and UV photodiodes are available in compact packages at a
relatively low price while photomultipliers typically are bulkier and more fragile and
expensive. Many IR detectors are mounted in large dewars and require cryogenic
cooling which can be inconvenient and makes the detector package more expensive
and fragile. However, some IR detectors operate at room temperature or can be
thermo-electrically cooled, making these detectors more compact, rugged, and
portable.

Spatially uniform responsivity is an important factor that should not be ignored.
IR detectors (particularly HgCdTe and room temperature and TE cooled PV
detectors) can have a spatially nonuniform response across the active detector
surface. This nonuniform response can manifest itself as noise in a poorly controlled
experiment. Oftentimes smaller detectors are more uniform than large detectors and
cooled detectors are more uniform than uncooled detectors. In the end, there is often
a tradeoff between cost, sensitivity, bandwidth, noise, size, and complexity.

References

1. R.W. Waynant, M.N. Ediger, Electro-Optics Handbook, 2nd edn. (McGraw-Hill, New York,
2000)

2. G. Mccomb, Lasers, Ray Guns, and Light Cannons: Projects From the Wizard’s Workbench
(McGraw-Hill, New York, 1997)

3. J.T. Luxon, D.E. Parker, Industrial Lasers and Their Applications, 2nd edn. (Prentice-Hall,
Englewood Cliffs, NJ, 1992)

4. J. Hecht, Understanding Lasers: An Entry Level Guide, 2nd edn. (IEEE Press, Piscataway, NJ,
1994)

5. K.J. Kuhn, Laser Engineering (Prentice-Hall, Upper Saddle River, NJ, 1998)
6. A.E. Klingbeil, J.B. Jeffries, R.K. Hanson, Temperature- and pressure-dependent absorption

cross sections of gaseous hydrocarbons at 3.39�m. Meas. Sci. Technol. 17, 1950–1957 (2006)



References 225

7. W.B. Bridges, A.N. Chester, Visible and uv laser oscillation at 118 wave lengths in ionized
neon, argon, krypton, xenon, oxygen and other gases. Appl. Opt. 4(5), 573–580 (1965)

8. M. Rohrig, E.L. Petersen, D.F. Davidson, R.K. Hanson, Shock tube study of the pyrolysis of
NO2. Int. J. Chem. Kinet. 29(7), 483–493 (1997)

9. M.A. Oehlschlaeger, D.F. Davidson, J.B. Jeffries, R.K. Hanson, Ultraviolet absorption cross-
sections of hot carbon dioxide. Chem. Phys. Lett. 399(4/6), 490–495 (2004)

10. B.J. Kirby, R.K. Hanson, Linear excitation schemes for ir planar-induced fluorescence imaging
of CO and CO2. Appl. Opt. 41(6), 1190–1201 (2002)

11. J. Egermann, T. Seeger, A. Leipertz, Application of 266-nm and 355-nm nd:yag laser radiation
for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering. Appl. Opt.
43(29), 5564–5574 (2004)

12. J.D. Koch, R.K. Hanson, Temperature and excitation wavelength dependencies of 3-pentanone
absorption and fluorescence for PLIF applications. Appl. Phys. B Lasers Opt. 76(3), 319–324
(2003)

13. T. Lee, J.B. Jeffries, R.K. Hanson, Experimental evaluation of strategies for quantitative laser-
induced-fluorescence of nitric oxide in high-pressure flames (1–60 bar). Proc. Combust. Inst.
31, 757–764 (2007)

14. D.F. Davidson, R.K. Hanson, High temperature reaction rate coefficients derived from n-atom
ARAS measurements and excimer photolysis of NO. Int. J. Chem. Kinet. 22(8), 843–861
(1990)

15. B.J. Kirby, R.K. Hanson, CO2 imaging with saturated planar laser-induced vibrational
fluorescence. Appl. Opt. 40(33), 6136–6144 (2001)

16. D.S. Baer, R.K. Hanson, M.E. Newfield, N.K.J.M. Gopaul, Multiplexed diode-laser sensor
system for simultaneous H2O, O2, and temperature measurements. Opt. Lett. 19(22), 1900–
1902 (1994)

17. L.C. Philippe, R.K. Hanson, Laser diode wavelength-modulation spectroscopy for simultane-
ous measurement of temperature, pressure, and velocity in shock-heated oxygen flows. Appl.
Opt. 32(30), 6090–6103 (1993)

18. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd enl. edn.
(Springer, New York, 1996)

19. J.D. Vincent, Fundamentals of Infrared Detector Operation and Testing (Wiley, New York,
1989)

20. A Yariv, Optical Electronics in Modern Communications, 5th edn. (Oxford University Press,
Oxford, 1996)

21. E.L. Dereniak, G.D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996)



14Case Studies: Molecular Spectroscopy

Here we present spectroscopic case studies of specific molecules, spanning
the ultraviolet to long-wave infrared. These case studies are intended to reinforce the
concepts of line positions, line strengths, and line shapes, while also exposing
the reader to some of the many species-specific details that contribute to the
uniqueness of observed spectra. A detailed study of the OH molecule is followed
by more brief reviews of O2, H2O, and hydrocarbons.

14.1 Ultraviolet OH Spectroscopy: The A2†C � X2… System

Contributing Author: Jerry M. Seitzman

As a practical example of material previously covered, we will examine the ultravi-
olet (UV) absorption spectrum of the hydroxyl molecule. In order to understand the
electronic absorption spectrum of a molecule, there are at least three things one must
consider: (1) the energy levels of the molecule (for line positions and Boltzmann
populations), (2) the specific radiative transitions which are allowed (determined
from selection rules) and, finally, (3) the proper calculation of an absolute spectral
absorption coefficient.

14.1.1 OH Energy Levels

In this first section, we briefly examine the structure of the two OH electronic levels
involved in the OH spectrum. Based on the structure of each, we then consider the
proper term energies to apply. For a more complete discussion of this material, see
Chap. V, Sect. 2 of Herzberg (Spectra of Diatomic Molecules).

© Springer International Publishing Switzerland 2016
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Term Energies
Recall, the term energy E.n; v; J/ of a specific energy level with electronic quantum
number n, vibrational quantum number v, and angular momentum quantum number
J is given in general by:

E.n; v; J/ D Te.n/C G.v/C F.J/; (14.1)

where Te is the electronic term energy, G.v/ is the vibrational term energy,
and F.J/ is the angular momentum term energy (also commonly referred to
as the rotational term energy even though it comprises more motions than just
nuclear rotations). In writing this equation, we have applied the Born–Oppenheimer
approximation, which assumes the different motions associated with each energy
mode are separable.

Generally, explicit equations for each term energy mode can be written. These
equations have as variables the appropriate quantum number and other molecular
parameters. For example, recall that the vibrational term energies are often modelled
by an equation of the form

G.v/ D !e.v C 1=2/ � !exe.v C 1=2/2 (14.2)

Because of the complexity of modelling electronic term energies, the values for Te

are usually obtained from appropriate tables.
In the remainder of this section, we focus on proper modelling of the appropriate

expressions for F.J/. As discussed previously, this depends on how we choose to
model the coupling between the various forms of angular momentum (e.g., nuclear
rotation, electron spin, and electron orbital angular momentum). Generally, a model
based on one of Hund’s Cases is chosen. For most diatomics of interest here, either
Hund’s Case (a), Hund’s Case (b) or an intermediate model representing a transition
from Hund’s (a) to Hund’s (b) is appropriate (at least for values of J up to some
cutoff).

Spin-Splitting
According to standard spectroscopic notation, the A2†C � X2… system of OH
involves a transition between the ground electronic configuration, X2… (where X
denotes the ground level), and the A2†C level, the lowest energy excited electronic
configuration with the same spin multiplicity as the ground level. Likewise, a B�X
transition would usually indicate a transition between the ground and the second
excited electronic energy level with the same spin multiplicity.

In this case for OH, the two electronic levels are doublets, i.e. 2S C 1 D 2

or S D 1
2

(which results from the configurations having an unpaired electron in a
suborbital). Therefore, each electronic configuration actually consists of two spin
sublevels, one having an electron with spin “up” and one with the electron
spin “down.” Instead of writing a different electronic term energy Te for the two
spin sublevels, it is more convenient to denote two spin-split levels with the same
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J but different spin with the angular momentum term energies F1 and F2. Recall, the
quantum number N (when defined) is given by

N D
(

J � 1=2 for F1

J C 1=2 for F2
(14.3)

The Excited A2†C Level
The designation † implies that for this configuration, ƒ, the component of the
electronic orbital angular momentum (L) along the internuclear axis, is zero. Since
ƒ is zero, there is no induced magnetic field to couple the electron spin vector S to
the internuclear axis and, therefore, Hund’s case (b) is the proper coupling model.
In that model, L couples (aligns) directly with the B-axis of nuclear rotation and we
get the following quantum number rules

N D ƒ;ƒC 1;ƒC 2;ƒC 3 : : :
or in this case N D 0; 1; 2; 3; : : :

and then coupling to S, we get the two spin-split levels,

J D N ˙ S or J D N ˙ 1=2

The rotational term energies for such a 2† state are well modelled by:

F1.N/ D BvN.N C 1/ � DvŒN.N C 1/	2 C �vN
F2.N/ D BvN.N C 1/ � DvŒN.N C 1/	2 � �v.N C 1/ (14.4)

.�� � 0:1 cm�1 for OH A2†C/

The energies of two states having the same N but different J are nearly identical,
with a spin-splitting (constant in this model) of �v.2NC 1/. (Recall the v subscripts
denote molecular “constants” which can be a function of vibrational level.) See
Table 14.1 for values of �v .

Figure 14.1 shows the first few energy levels of the A2† configuration. Note,
only one state exists with a value of N D 0.

As a final note, the symbol C in the A2†C name denotes that even numbered N
levels have a positive parity (that is, they have wave functions which are symmetric).
For a †� state, the even N levels have � parity, and the odd levels are nowC.

The Ground X2… Level
Hund’s a ƒ ¤ 0; S ¤ 0
Hund’s b ƒ D 0; S ¤ 0

Here, the symbol … designates that the ground electronic configuration has a value
of ƒ D 1. Because S can now couple to the internuclear axis Hund’s Case (a)
may be appropriate, although this is not a strict rule, especially for hydrides and
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Table 14.1 OH term energy constants
(in cm�1)

T !e !exe

32,682.0 3184.28 97.84

A2†C Bv Dv �v

v D 3 14.422 0.206E�2 0.0980

v D 2 15.287 0.208E�2 0.0997

v D 1 16.129 0.203E�2 0.1056

v D 0 16.961 0.204E�2 0.1122

Te !e !exe

0.0 3735.21 82.21

X2… Bv Dv Yv
v D 3 16.414 0.182E�2 �8:568
v D 2 17.108 0.182E�2 �8:214
v D 1 17.807 0.182E�2 �7:876
v D 0 18.515 0.187E�2 �7:547

Fig. 14.1 Energy level progression for A2†C; Hund’s Case (b). The symbol “p” denotes parity
(C or �)

light molecules (see Herzberg, p. 221). In fact, for OH, a transition occurs from
Case (a) to Case (b) as the nuclear rotation increases (i.e., the coupling between
L and the nuclear rotation (N) becomes stronger, and the coupling between S
and the internuclear axis becomes weaker). Because the ground level has some
characteristics of Case (a) and Case (b), we use a mix of quantum numbers to
describe it. With the definitions for Hund’s (b) already given above, now recall in
Hund’s Case (a), the coupling between L and S along the internuclear axis forms a
new quantum number.

� D jƒC†j; jƒC† � 1j:
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With ƒ D 1 and † D 1=2, the two spin-split levels have different quantum number
values

� D 1=2; 3=2:

and the total angular quantum numbers for each is given by

J D �;�C 1;�C 2;�C 3; : : :

or =

S

N
J

The rotational term energies for a 2… state in the intermediate case are relatively
well modelled by:

F1.N/ D Bvf.N C 1/2 �ƒ2 � 1
2
Œ4.N C 1/2

CYv.Yv � 4/ƒ2	1=2g � DvŒN.N C 1/	2

F2.N/ D BvfN2 �ƒ2 C 1

2
Œ4N2 C Yv.Yv � 4/ƒ2	1=2g � DvŒN.N C 1/	2

(14.5)

where Yv � A=Bv (< 0 for OH) and A (spin-orbit coupling constant) is like
the parameter A (from the moment of inertia) in the symmetric top model; see
Eq. (10.13). At large N, the spin-splitting F2.N/�F1.N/ approaches zero, indicating
the transition to the Hund’s (b) case. Note also that the approach to zero is from the
positive side, i.e. F1.N/ � F2.N/ according to the model represented by (14.5).

By substituting the definitions of (14.3) into (14.5) and neglecting the centrifugal
correction terms (Dv),

F1.J/ D Bvf.J C 1=2/2 �ƒ2 � 1
2
Œ4.J C 1=2/2 C Yv.Yv � 4/ƒ2	1=2g

F2.J/ D Bvf.J C 1=2/2 �ƒ2 C 1
2
Œ4.J C 1=2/2 C Yv.Yv � 4/ƒ2	1=2g (14.6)

it is also evident that F1.J/ < F2.J/ for all J.
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So far we have identified two spin levels with different quantum numbers�, and
two term energies F1 and F2. Which term energy expression belongs to which �?
Recall the Hund’s case (a) expressions which showed two levels with the same J
but different � were separated by a term � A�2, with the � D 1=2 state lower in
energy for A > 0. Similarly here, for Y > 2 or so-called regular states, a given J
level in � D 1=2 should have a lower energy than the corresponding level in � D
3=2; in this case, the F1 expression corresponds to the � D 1=2 levels. Likewise,
for Y < 2 or inverted states, as is the case here for OH, F1 is associated with the
� D 3=2 levels. One might wonder what is the importance of the � designation
since we have already defined the values of N and J for a given Fi. Recall that the
lowest allowed value of J in a given � level is J D �. Therefore, the regular or
inverted designation determines the identity of the lowest (energy) lying J levels.

Because ƒ ¤ 0, the … configuration also is lambda-doubled. Each specific
.J;N/ configuration actually consists of two lambda-doubled sublevels, designated
c and d (recently, the slightly different designations e and f have begun to be used).
The lambda-doubling corrections to (14.6) can be adequately modelled by

Fic D Fi.J/C ıcJ.J C 1/
Fid D Fi.J/C ıdJ.J C 1/ (14.7)

where ıc and ıd are the lambda-doubling constants and Fid.J/ < Fic.J/. The
lambda-doubling is usually quite small .ŒFic.J/�Fid.J/	 �0.04 cm�1 for the X state
of OH). Finally, each lambda-doubled sublevel for a given N and J has a different
parity, i.e. one isC and the other is �.

Figure 14.2 shows the first few energy levels of the inverted OH X2… configu-
ration (Y0 D �7:547). Figure 14.3 shows what the assignment of levels would be
if the ground configuration was regular. Note, the smallest value of N changes and
only one J is assigned to N D 0 and to N D 1.

14.1.2 Allowed Radiative Transitions

In this section, we examine the general selection rules to determine which rotational
levels can be radiatively coupled, or in other words, what rotational branches will
occur in the OH spectrum. The standard notation for rotational branches is also
reviewed.

General Selection Rules
Here we summarize the general selection rules for single photon dipole transitions
that are derived from quantum mechanics:

(1) parity must change C! � or � ! C;
(2) angular momentum can only change by �J D 0,˙1; and
(3) no Q.J D 0/ transition, J D 0! J D 0 not allowed.
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Fig. 14.2 Energy level progression for OH X2… (inverted)
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Fig. 14.3 Energy level progression for a regular X2… configuration

Transition Notation
In general, a specific radiative absorption transition for a diatomic molecule is
denoted by a symbol of the form, A2†C.v0/  X2….v00/ YX˛ˇ.N00 or J00). The
electronic and vibrational systems involved in the transition are given first, while the
last term denotes the specific (N; J) states being considered. In the YX˛ˇ.N00 or J00/
notation,

(1) Y represents a symbol for �N .O;P;Q;R; or S for �N D �2 to 2/;
(2) X represents �J .P;Q; or R for �J D �1 to 1/;
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Fig. 14.4 Allowed rotational transitions from N00 D 13 in the A2†C X2… system

(3) ˛ gives i for F0i (1 or 2 for spin doublets); and
(4) ˇ gives i for F00i .

For example, the symbol PQ12.13/, in a spin-doublet transition, represents a
transition from N00 D 13, J00 D 12:5 (in F002 ) to N0 D 12, J0 D 12:5 (in F01).
For transitions between two lambda-doubled electronic configurations, the identity
of the lambda-doubled states is given by symbol of the form PQ12cd.13/ (here the
upper level is the c state and the lower one is the d state).

One should note the following shorthand forms that can be confusing:

(1) when �N D �J, the Y symbol is suppressed;
(2) when ˛ D ˇ, the ˇ symbol is suppressed; and
(3) often authors will always suppress either the Y or X symbol.

Finally, though N00 or J00 can be used in the transition notation, N00 is found more
frequently in the recent literature.

Figure 14.4 illustrates the application of the selection rules and transition notation
to the OH system. There, all possible transitions from all states with N00 D 13 are
shown.

Shown in the figure are the four states with N00 D 13 and all excited states to
which they can be radiatively excited (by single photon transitions). In total, 12
bands are possible with 3 bands originating from each lambda-doubled, spin-split X
state. Two kinds of rotational branches are evident: (1) the main branches for which
˛ and ˇ are equal and (2) the cross-branches, with ˛ not equal to ˇ. As N increases,
the cross-branches weaken, and the 6 main branches contain the only significant
transition strengths. Note for transitions between two lambda-doubled levels (e.g.,
a … � …), there would be twice as many transitions, 24, with 6 connected to any
given lambda-doubled, spin-split state.
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Fig. 14.5 Allowed rotational transitions from N00 D 13 in the A2†C X2†C system

As another example of the general selection rules, consider the 2†C �2 †C
system shown in Fig. 14.5. Note the effect of the parity selection rule in reducing
the number of allowed main branches to 4.

14.1.3 Absorption Coefficient

In order to perform quantitative spectroscopy (e.g., absorption or laser-induced fluo-
rescence), one often needs to calculate an absolute absorption coefficient. Recall, the
spectral absorption coefficient kv [cm�1] at frequency � [s�1] for a single, isolated
radiative transition from an initial molecular state 1 to a final state 2 is given by

k� D � e2

mec
.N1f12 � N2f21/�.� � �0/ (14.8)

where N1 and N2 are the number density [cm�3] of molecules in the specific
states involved, f12 and f21 are the oscillator strengths for stimulated absorption
and stimulated emission, respectively, and �.� � �0/ [s] is the lineshape of the
absorption profile. (Note, the value of � e2=mec is written in cgs units here, and is
approximately 2:651� 10�2 cm2/s. If wavenumber units are preferred for �, replace
�[s] using the equality �Œs	 D .1=c/�Œcm�1	.) Though it is common to work with
and find tabulations of oscillator strengths, Einstein coefficients (A21, B21, B12) are
frequently used, and helpful conversion formulas are

B21
A21
D c2

8� h�321
(14.9)

f21 D mec3

8�2�221e2
A21 (14.10a)

f21 D 
omec3

2� �221e2
A21 (14.10b)
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where e is in cgs units (an esu, Eq. (14.10a)) or in SI units (Coulomb, Eq. (14.10b)),
where we have multiplied by 4�
o to convert units.

In the case of thermal equilibrium at temperature T , the number densities are
related by a Boltzmann distribution, and the expression for k� reduces to

k� D � e2

mec
Na

N1
Na

f12

�
1 � e

�h�0
kT

�
�.� � �0/ (14.11)

where �0 is the transition center frequency (s�1) given by .E2 � E1/c, Na is the
total number density of absorber molecules, and N1/Na is the fraction of absorber
molecules contained in the specific transition level 1. For visible or ultraviolet
transitions, E2 � E1 � 14;000 cm�1 (or in equivalent temperature, 20,160 K). Thus,
the exponential term can be neglected in most temperature environments.

Oscillator Strengths
In order to calculate the absorption coefficient, it is useful to consider discrete energy
states and again assume the molecular motions are separable into distinct modes. For
a transition between two specific states (n00, v00, †00, J00, ƒ00) and (n0, v0, †0, J0, ƒ0)
where n characterizes the electronic configuration, v represents the vibrational level,
† identifies the spin multiplet, J is the angular momentum, and ƒ discriminates
between lambda-doubled levels, the absorption oscillator strength is given by

f.n00;v00;†00;J00;ƒ00/;.n0;v0;†0;J0;ƒ0/ D fn00n0qv00v0
SJ00J0

2J00C1 (14.12a)

or fJ00J0 D fn00n0qv00v0
SJ00J0

2J00C1 (14.12b)

where we have used the common shorthand notation fJ00J0 to describe the oscillator
strength for a specific rotational (absorption) transition. In (14.12a) and (14.12b),
fn00n0 is the electronic part of the oscillator strength (proportional to the electronic
dipole moment jRej2), qv00v0 is the Franck–Condon (vibrational overlap) factor, and
SJ00J0 is the Hönl–London (rotational strength) factor. The electronic and vibrational
parts of the oscillator strength are often combined to form the so-called band
oscillator strength

fv00v0 D fn00n0qv00v0 ; (14.13)

or

fJ00J0 D fv00v0
SJ00J0

2J00 C 1 :
1 (14.14)

Equivalently, the band oscillator strength is simply
P

J0 fJ00J0 .

1Because of the normalization chosen for the Hönl–London factors (see Eq. (14.17) below)
and because of a common, but different, way of defining fv0v00 , transitions from an excited …
configuration and a lower energy† level may follow a different equation, e.g. fJ00J0 D 1

2
fv00v0

SJ00J0

2J0C1 .
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For some molecules, like OH, this separation of the motions of the molecule into
discrete modes is deficient. For OH, the band oscillator strength is, in fact, a function
of J00 and J0. Empirical corrections, denoted TJ00J0 , are used as follows.

fJ00J0 D fv00v0
SJ00J0TJ00J0

2J00 C 1 (14.15)

Since the qv00v0 and SJ00J0 terms represent subdivisions of the total electronic
oscillator strength, they must conform to certain sum rules. These rules are

X
v0

qv00v0 D 1 (14.16)

and for transitions from all states with a specific (n00, v00, J00) to all J0 levels with a
specific (n0, v0)

X
J0

SJ00J0 D .2J00 C 1/.2SC 1/ı (14.17)

where ı accounts for lambda-doubling; it is unity for † � † transitions and two
otherwise. (Note that 2S C 1 is equal in the upper and lower states, for the spin-
allowed transitions of interest here.) Using these sum rules and the law of detailed
balance (for transitions between discrete states with degeneracies gi, f12g1 D f21g2),
it can be shown that

X
v00

qv00v0 D 1 (14.18)

and

X
J00

SJ0J00 D .2J0 C 1/.2SC 1/ı (14.19)

where

SJ00J0 D SJ0J00 (14.20)

and

fv00v0 D fv0v00 : (14.21)

Note that the sum of SJ0J00 terms from a single upper state (i.e., specific J0, N0) will
now equal 2.2J0 C 1/, but as there are 2 states with the same J0, the overall sum of
SJ0J00 will obey Eq. (14.19) as required, i.e. 4.2J0 C 1/.
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Table 14.2 Band
oscillator strengths
for the OH A2†C�
X2… System

(v0,v00)a fv0v00

(0,0) 0.00096

(1,0) 0.00028

Table 14.2 lists band oscillator strengths for two OH bands and Table 14.3 lists
SJ00J0=.2J00 C 1/ values for J00 D 0:5, 1.5, 2.5, 3.5, and 9.5. aNote, the usual
convention for a band is to specify the vibrational quantum numbers in the order
(v0, v00), so that (1,0) corresponds to v0 D 1, v00 D 0.

The normalization is that described by (14.17). Note for the J D 0:5, only
the F2 levels exist, so that the sum over all J0 is only 2. Also note that while the
cross-branch transitions are important at low J, they decrease in strength at higher
rotational levels. The OP12 and SR21 cross-branches disappear most rapidly, since
�N D ˙2 for them.

Population Fractions
In calculating the absorption coefficient for transitions from a specific energy level,
we must be careful to consider the number of molecules in that level. For example,
the Q1.13/ transition of OH (see Fig. 14.4) involves molecules in one state only, the
F1.N D 13; J D 13:5;ƒ D c/ state. We do not want to include the population of
the ƒ D d level or the F2 levels.

In thermal equilibrium, the fractional population of all molecules Na which are
in a specific energy level N1 is given by the Boltzmann distribution

N1
Na
D gie

�hcEi
kT

Q
(14.22)

where the energies are in (cm�1) units, and the partition function Q is found by
summing over all possible energy levels,

Q D
X

i

gie
�hcEi

kT (14.23)

For example, the population fraction N.n;v;†;J;ƒ/00=Na of a specific energy level
.n00; v00; †00; J00; ƒ00/ would be

N.n;v;†;J;ƒ/00

Na
D .2J00 C 1/e�hcE.n00 ;v00 ;†00 ;J00 ;ƒ00/

kTP
.n;v;†;J;ƒ/00.2J00 C 1/e�hcE.n00 ;v00 ;†00 ;J00 ;ƒ00/

kT

(14.24)
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Table 14.3 Hönl–London factors for selected OH transitions

Transition SJ00J0=.2J00 C 1/ †F1.J/ †F2.J/ †ŒF1.J/C F2.J/	

Q12(0.5) 0.667 0 2 2

Q2(0.5) 0.667

R12.0:5/ 0.333

R2(0.5) 0.333

P1(1.5) 0.588 2 2 4

P12(1.5) 0.078

P21(1.5) 0.392

P2(1.5) 0.275

Q1(1.5) 0.562

Q12(1.5) 0.372

Q21(1.5) 0.246

Q2(1.5) 0.687

R1(1.5) 0.165

R12(1.5) 0.235

R21(1.5) 0.047

R2(1.5) 0.353

P1(2.5) 0.530 2 2 4

P12(2.5) 0.070

P21(2.5) 0.242

P2(2.5) 0.358

Q1(2.5) 0.708

Q12(2.5) 0.263

Q21(2.5) 0.214

Q2(2.5) 0.757

R1(2.5) 0.256

R12(2.5) 0.173

R21(2.5) 0.050

R2(2.5) 0.379

P1(3.5) 0.515 2 2 4

P12(3.5) 0.056

P21(3.5) 0.167

P2(3.5) 0.405

Q1(3.5) 0.790

Q12(3.5) 0.195

Q21(3.5) 0.170

Q2(3.5) 0.814

R1 (3.5) 0.316

R12(3.5) 0.131

R21(3.5) 0.044

R2(3.5) 0.402

P1(9.5) 0.511 2 2 4

P12(9.5) 0.016

P21(9.5) 0.038

(continued)
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Table 14.3 (continued)

Transition SJ00J0=.2J00 C 1/ †F1.J/ †F2.J/ †ŒF1.J/C F2.J/	

P2(9.5) 0.488

Q1(9.5) 0.947

Q12(9.5) 0.050

Q21(9.5) 0.048

Q2(9.5) 0.950

R1(9.5) 0.441

R12(9.5) 0.035

R21(9.5) 0.014

R2(9.5) 0.462

While (14.24) is a rigorous definition of the population fraction, it requires
calculating the energy of every possible state (at least until the sum converges for
some given T). While computers can do this rapidly, it is still often convenient to
divide the energy into separable modes and produce a population fraction for each
using simplified partition functions. In that case,

N.n;v;†;J;ƒ/00

Na
D Nn00†00ƒ00

Na
� Nv00

Nn00†00ƒ00
� NJ00

Nv00
(14.25)

where we have effectively defined each spin and lambda level of a particular
configuration to be a different electronic level. Next, we would write a Boltzmann
fraction (14.22) for each. Since we usually combine the energies for the different
spins and lambdas into the angular momentum term energy F.J/, it is more
reasonable to write

N.n;v;†;J;ƒ/00

Na
D e

�hcTe.n00/
kT

Qe
� e

�hcG.v00/
kT

Qv

� .2J00 C 1/e�hcF.J00/
kT

Qr
(14.26)

where Qe, Qv , and Qr are the electronic, vibrational, and rotational partition
functions and the only degeneracy to be included in the numerator is .2J00 C 1/.

At temperatures� Bv.hc=k/, the rigid rotor result

Qr D T

Bv
hc
k

(14.27)

is often a reasonable approximation to the complete sum. (It is useful to remember
hc=k D 1:44K=cm�1.) While Qv can also be represented simply for a harmonic
oscillator,

Qv D e
�hc!e
2kT

1 � e
�hc!e

kT

(14.28)
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accurate values of Qv for realistic anharmonic oscillators at elevated temperatures
may require performing the sum (14.23), from v D 0 to a high enough v that the
sum converges.

Finally, we consider Qe. For many molecules, the excited electronic levels, i.e.
levels other than the ground X configuration, have sufficiently high energies that
they do not contribute to the sum except at extremely high temperatures (they
are negligibly populated at lower temperatures). When only the ground electronic
configuration is populated, we can simply model Qe as the “degeneracy” of the
ground electronic configuration

Qe D ge D .2SC 1/.2 � ı0;ƒ/ (14.29)

where ı0;ƒ is 1 ifƒ D 0 († states), otherwise it is 0. We have to remember, however,
that the splitting between different spin levels Fi can actually be appreciable (per-
haps 100–200 cm�1 or, equivalently, a few hundred Kelvin). At low temperatures,
where this splitting is important, we can approximate the effect with

Qe D .2 � ı0;ƒ/
X

1:::.2SC1/
exp
�hcŒFi.Jm/ � F1.Jm/	

kT
(14.30)

where Jm is the minimum J value for the F1 level. This works well for a Hund’s
case (a) state, where the spin-splitting is a constant value. Unfortunately for many
molecules, this is not the case. From the Eq. (14.5) for states intermediate between
Hund’s cases (a) and (b), we have already seen that the splitting varies with J.

Combined with the inaccuracy of the rigid rotor approximation (14.27) at low
temperatures, the full summation (14.24) should be performed when the temperature
is low and when high degrees of accuracy are required. It should also be noted
that comparisons between different transitions at the same temperature can be
carried out with ease and accuracy, since the ratio of the absorption coefficients
is independent of the partition functions.

Example Calculation
As an example, consider the spectral absorption coefficient of the .0; 0/Q1.9/ line
in the OH A2†C � X2… system, at line center. The transition occurs at �309.6 nm
or roughly 32,300 cm�1. For the calculation, we will use a temperature of 2000 K, a
collision fullwidth of 0.05 cm�1, and we will express the answer as a function of OH
partial pressure. Again from (14.11) the spectral absorption coefficient is given by

k� Œcm�1	 D 2:651 � 10�2 cm2

s

Pa

kT

N.n;v;†;J;ƒ/00

Na
fJ00J0�.�o/
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where we have written the number density of absorber molecules in terms of their
partial pressure (Na D Pa=kT). So, we need to calculate the absorption oscillator
strength, the population fraction, and the lineshape factor at linecenter.

The oscillator strength from Tables 14.2 and 14.3 is

fQ1.9/ D fv00v0
SJ00J0

2J00 C 1 D 0:00096 � 0:947 D 9:09 � 10
�4

The population fraction in the absorbing state (v00 D 0, F1c(9.5)), according
to (14.26) and with the term energies from (14.2), (14.5) and the values in
Table 14.1, is

Nf1c.9:5/

Na
= e

�hcTe.0/
kT

Qe

e
�hcG.0/

kT

Qv
.2J00C1/e�hcF1.9:5/

kT

Qr

= e0

4
e
�2660K

T

0:287
20e
�2313K

T
T

26:66K

= 1
4

0:264
0:287

6:29
75:0

= 0.25 0.920 0.0839

= 0.0193

where Qv is from performing the sum, which converges by about v D 3, and Qe

is the electronic “degeneracy” (14.29). It is interesting to note that the harmonic
oscillator approximation gives Qv D 0:280, a 2.4 % difference from the converged
sum. Also, the final result, 1.93 % of the OH molecules in (v D 0) F1c.9:5/ of the
X state, is very close to the value of 1.91 % obtained from performing the complete
sum over states (14.24).

The final component in the absorption coefficient calculation is the lineshape
factor. At 2000 K, the OH Doppler width is 0.25 cm�1. With the collision
width given earlier, 0.05 cm�1, this gives a Voigt a parameter of 0.17. At line
center (x D 0), the Voigt profile � is 3.13 cm or 1:04 � 10�10 s (ignoring
the collision broadening would have given us � D 3:75 cm). So we have

k�0 =

�
2:651 � 10�2 cm2

s

�
.Pa Œatm	/

�
3:66 � 1018 cm�3

atm

�

�.1:93%/.9:09 � 10�4/.1:04 � 10�10s/ D 177 cm�1

atm .Pa Œatm	/

which may be rounded to k�0 D .180 cm�1=atm/.Pa Œatm	/ for present purposes.
Recalling Beer’s law,

I� D I0�exp.�k�L/

we calculate that a narrowband laser centered on the Q1(9) transition would see
approximately 59 % absorption in 5 cm of gas containing 1000 ppm of OH at
2000 K, 1 atm (total static pressure).
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Fig. 14.6 Plot of OH line strengths for a selected region of the A2†C  X2….0; 0/ band at
2000 K

As a more comprehensive illustration of the information presented here, Fig. 14.6
shows 2000 K line strengths, k� /� (�) (also known as integrated line intensity), for
lines in the (0,0) band between 305.9 and 310.1 nm. Unlike the example calculation
shown above, the units of the line strength are presented in wavenumbers (e.g., � (�)
has units of [cm] instead of [s]). To convert into the units given earlier, simply divide
by c [cm/s].

In the figure, vertical lines are plotted for each transition, with the height
representing the line strength. Lines belonging to a specific branch are connected
(at the top) with a dashed or dotted curve. The main branches are those connected
by thicker dashed lines, while the cross-branch lines are identified by thin dotted
lines. Each branch is labelled, using the standard notation where the �N symbol
has been dropped.

The bandheads associated with the R branches are clearly seen. (Remember, the
bandheads can be predicted by comparing the Bv values of the upper and lower
states; if Bv0 < Bv00 , we get a bandhead in the R branches and if Bv0 > Bv00 , we
get a bandhead in the P branches.) The Q21 branch also has a bandhead; recall it is
properly denoted RQ21. The reverse holds for the QR12 branch.

The following sections provide more brief case studies of spectra in the visible,
near-infrared, and mid-infrared.
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14.2 Visible/Near-Infrared O2 Spectroscopy

Quantitative detection of molecular oxygen is of interest for monitoring biological
and chemical processes, and for planetary sciences. Due to oxygen’s symmetry,
absorption and emission interactions are generally constrained to electronic or rovi-
bronic transitions. Although electronic spectra are predominant in the ultraviolet,
some transitions may be observed in the visible or near-infrared wavelength domain,
enabling utilization of more convenient and less expensive light sources, such as
tunable diode lasers, to conduct spectroscopic measurements.

The observation of the solar spectrum around 760 nm in telescopes has shown
the fine structure of a weak, spin-forbidden, atmospheric oxygen absorption band.
The analysis of the line positions and their absolute wavelength measured precisely
by interferometry has shown that this band corresponds to transitions between the
X3†�g .v00 D 0/ electronic ground state of O2 and the b1†Cg .v0 D 0/ excited state.
Potential curves of the electronic states of the O2 are shown in Fig. 14.7.

The rotational levels of the O2 electronic states are designated by the quantum
numbers N and J, corresponding, respectively, to the rotational angular momentum
of the nuclei and the total angular momentum (with00 for the ground state and0
for the excited state). The ground electronic state, which is a triplet state with a
spin of unity, is split into levels corresponding to J00 D N00, J00 D N00 � 1, and

Fig. 14.7 Potential energy diagram for diatomic molecular oxygen [1]



14.3 Near-Infrared H2O 245

Table 14.4 Spectroscopic constants for O2

State TeŒcm�1	 !eŒcm�1	 !eXeŒcm�1	

X3
P
�

g .v
00 D 0/ 0 1580.36 12.07

b1
P
C

g .v
0 D 0/ 13,195.22 1432.69 13.95

J00 D N00 C 1, with only odd values of N00 allowed. The excited state (zero spin) is
composed of singlet states with J0 D N0, where only even values of N0 are allowed.
The selection rules allow four types of transitions, denoted �N�J.N00; J00/, with
�N�J D PP;PQ;RR;RQ.

Example: RQ.7; 7/ is a transition from N00 D 7, J00 D 7
state to the N0 D 8, J0 D 7.

For the X3
P�

g .v
00 D 0/ electronic ground state of O2 and the b1

PC
g .v

0 D 0/

excited state, Herzberg gives the constants listed in Table 14.4:
The band center for this transition can be calculated from the energy difference

between X3
P�

g .v
00 D 0/ and b1

PC
g .v

0 D 0/. Use the following equation, we can
find the band center:

�0 D Te C !0e
2
� !eX0e

4
� !

00
e

2
C !eX00e

4

The atmospheric A-band band center is calculated to be 13,120.915 cm�1.
The set of the PP and PQ lines form the P branch, at frequencies smaller

than 13,120 cm�1; the set of the RR and RQ lines form the R branch, located at
frequencies higher than 13,120 cm�1. At 13,165 cm�1, the R lines gather to form a
bandhead (see Fig. 14.8).

14.3 Near-Infrared H2O Spectroscopy: Lineshapes

Accurate lineshape models are needed to simulate absorption and emission spectra
and, therefore, are often required for quantitative absorption- or emission-based
measurements of gas conditions. Complicating matters are the large number of
variables that influence the transition lineshape including temperature, pressure,
collision partner (i.e., composition), and even transition states, to name only a few.
The Voigt profile often provides satisfactory accuracy (typically within 1–2 % of
peak absorbances) despite only accounting for Doppler and collisional broadening
and assuming them to be independent processes. However, H2O and other molecules
with large rotational-energy-level spacing (e.g., HF, HBr, HCl) often require the use
of more advanced lineshape models that address the assumptions of the Voigt profile
and account for additional collision physics. This section will briefly present a few
cases where Rautian (RP) [2], Galatry (GP) [3], and quadratic speed-dependent
Voigt (qSDVP) [4] profiles were used to more accurately model the lineshapes of
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Fig. 14.8 The A-Band of O2

Fig. 14.9 Experimental setup used to measure H2O lineshapes

high-J H2O absorption transitions and discuss the influence of temperature upon
H2O lineshapes. More details regarding this work can be found in [5] and similar
lineshape studies can be found in [6–10].

14.3.1 Experimental Setup

Figure 14.9 shows a schematic of the experimental setup used. Tunable diode lasers
(TDLs) with a linewidth <5 MHz were scanned across 7 high-J rovibrational H2O
transitions near 1.4�m at temperatures and pressures up to 1300 K and 800 Torr,
respectively. Measurements were acquired in pure H2O and H2O-N2 mixtures in
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Fig. 14.10 Measured Io and It for single scans across H2O transitions near 1345 nm at various
pressures. It D Io at non-resonant wavelengths

a heated static cell. Each TDL was injection-current tuned approximately 1 cm�1
with a 100 Hz triangle wave generated by an analogue function generator. The
laser light was collimated and pitched through 3-zone quartz cell with a 76.2 cm
test section using a double-pass arrangement. The quartz cell was located within a
3-zone furnace to provide a near-uniform test section at up to 1300 K. The transmit-
ted laser light was measured using an InGaAs photodetector with a 3 mm diameter
active area and 3 MHz bandwidth.

A fiber-coupled fused-silica etalon with a free-spectral range (FSR) of 0.02 cm�1
was used to characterize the wavelength tuning of each laser and convert the data
from the time domain to the optical frequency domain. The measured spectral
absorbance, ˛.�/, was then calculated using Beer’s Law after the background
emission was subtracted from Io.t/ and It.t/. Figure 14.10 shows measured Io and It

for a single scan across transitions near 1345 nm at a few different pressures.

14.3.2 Experimental Results

Influence of LineshapeModel
Figure 14.11 shows measured absorbance spectra and best-fit lineshape residuals for
H2O transitions near 7413.02 cm�1 with J00 D 8 and 6919.95 cm�1 with J00 D 14.
Upon immediate comparison it is clear that transition near 7413.02 cm�1 has a
much larger collisional-broadening coefficient and the best-fit Voigt profile is more
accurate compared to that of the transition near 6919.95 cm�1. This is because
the larger collisional broadening of the transition near 7413.02 cm�1 mitigates the
influence of Dicke narrowing and the speed-dependence of collisional broadening.
For the transition near 6919.95 cm�1 at the conditions studied, the best-fit Voigt
profile recovers the measured absorbance spectra within only 6 % of the peak
absorbances, and exhibits a systematic gull-wing shaped residual with the largest
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Fig. 14.11 Measured absorbance spectra and best-fit lineshape residuals for H2O transitions
near 7413 cm�1 with J00 D 8 (left) and 6919.9 cm�1 with J00 D 14 (right). The Voigt profile
is significantly less accurate for the transition near 6919.9 cm�1

errors near �o and in the near-wings of the transition. In comparison, the more
advanced Rautian, Galatry, and speed-dependent Voigt profiles provide significantly
smaller residuals and recover the measured spectra within 0.5–1 % of the peak
absorbance. This suggests that Dicke narrowing and/or speed-dependent broadening
are primarily responsible for the non-Voigt shape. This trend was consistent for
all transitions studied and the accuracy of the Voigt profile steadily declined with
increasing J00; however, this is not always expected as collisional broadening
depends on more than J00 [11, 12].

The best-fit lineshape parameters can vary significantly with the lineshape
model used. Figure 14.12 shows the best-fit lineshape parameters as a function
of temperature for the transitions near 7413.02 cm�1 (left) and 7471.6 cm�1 with
J00 D 16 (right) perturbed by N2. The best-fit N2-broadening coefficients are nearly
equal for the Voigt, Galatry, Rautian, and speed-dependent Voigt profile for the
transition near 7413.02 cm�1, but vary greatly for the transition near 7471.6 cm�1.
This is because non-Voigt effects are relatively insignificant for the transition near
7413.02 cm�1 (in which case all lineshape models studied here reduce to the VP),
but play a significant role in the lineshape of the transition near 7471.6 cm�1 due to
its larger energy-level spacing and smaller collisional broadening.

Influence of Temperature on Collision Broadening
Temperature can influence collision broadening by modifying: (1) the relative
velocity distributions and the probability of collision-induced state changes, (2)
the trajectories of the perturber relative to the absorber, and (3) the population
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Fig. 14.12 Measured �N2 , �2;N2 , and ˇN2 for the H2O transitions near 7413.02 cm�1 with J00 D 8

(left) and 7471.6 cm�1 with J00 D 16 (right). Dotted lines correspond to best-fit power-law model

distribution of the perturber across its rotational and vibrational states [13]. Depend-
ing on the species and energy levels involved, these processes compete with
one another and can lead to collisional-broadening coefficients with a complex
temperature dependence.

If the spacing between rotational states is small, collisions easily shuffle
molecules between rotational states and the collisional-broadening coefficient
decreases with increasing temperature, typically with n near 0:75, primarily due
to the reduced collision frequency. If the rotational-energy spacing is large, only
strong collisions can shuffle molecules between rotational states and, therefore,
collisional-broadening coefficients may increase with increasing temperature due to
the corresponding increase in thermal energy and, potentially, increased collisional
resonance (i.e. matching rotational energy-level spacing between absorber and
collision partner).

Figure 14.13 shows the best-fit �N2 as a function of temperature for all transitions
studied using the speed-dependent Voigt profile. In general, as J00 is increased, �N2
and n decrease. Around J00 D 10, n becomes negative (i.e., �N2 increases with
increasing temperature) indicating the importance of increased thermal energy and
collisional resonance on N2-broadening of these high-J H2O transitions. A detailed
discussion regarding this phenomenon can be found in [13].

14.4 Mid-Infrared Spectroscopy of Hydrocarbons and Other
Organic Compounds

Detection of volatile organic compounds (VOCs) is of interest for energy, health,
and environmental monitoring. Time-resolved sensing of fuels and fuel interme-
diates, largely hydrocarbons, are of particular importance to understanding the
chemical kinetics of fuels. Here we review vibrational spectroscopy (infrared) of
hydrocarbons and other organic species.
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studied. Error bars are too small to be seen

Table 14.5 Typical characteristic frequencies for hydrocarbon
vibrations

Vibration Frequency range [cm�1] Functional group

–C�C–H: C–H bend 600–700 Alkynes

C–H rock 720–740 Alkanes

C–H out-of-plane 675–900 Aromatics

=C–H bend 650–1000 Alkenes

C–O stretch 1000–1320 Alcohols, esters

C–N stretch 1250–1340 Amines

C–H rock 1300–1370 Alkanes

C–H bend 1450–1470 Alkanes

C–C stretch 1400–1600 Aromatics

–C=C– stretch 1640–1700 Alkenes

C=O stretch 1665–1760 Aldehydes, ketones

C–H stretch 2690–3330 All hydrocarbons

O–H stretch 2500–3650 Alcohols

As detailed in previous chapters, the characteristic frequencies of absorption or
emission for a given molecule are unique to the chemical bond structure of the
molecule. Because many hydrocarbons have similar bonds or groups of bonds, these
species have similar vibrational modes and correspondingly similar characteristic
infrared spectra. Table 14.5 shows a list of characteristic vibrational modes and
frequencies along with the associated functional groups.

The infrared absorption spectra of methane and octane [14], both saturated
hydrocarbons (alkanes), are shown in Fig. 14.14. Some characteristic vibrational
bands are labeled. Comparison of the two spectra highlights a few important fea-
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Fig. 14.14 FTIR measurements of octane and methane at 1 atm and 25 ıC

tures. The C–H stretch vibration near 3000 cm�1 provides the strongest resonance
for both species, and this is common to all alkanes. Discrete rotational lines are
not observed for octane, whereas they can be observed for methane. This results
directly from the much larger moment of inertia for octane due to its larger
size and correspondingly smaller line spacing between transitions. Similarly, for
many organic compounds of moderate size (N > 6 atoms), discrete rovibrational
transitions are blended, and only the vibrational bands, which include an aggregate
of blended lines, are observed. Since vibrations like the C–H stretch near 3000 cm�1
can be common to many organic species (e.g., alkanes, alkynes, aromatics, alkenes,
aldehydes), the observed spectra of this band in a complex gas mixture offers poor
differentiation for large molecules of interest for gas detection. Conversely, the
spectral window between 700 and 1300 cm�1 is only active for the larger octane
molecule, a result of interacting vibrational modes which can be difficult to interpret
but are unique to a given organic compound. This spectral window is commonly
referred to as the fingerprint region for large hydrocarbons and provides good
differentiation at the expense of weaker absorption.

Figure 14.15 provides two examples of the distinct spectral features observed
when hydrocarbons are oxygenated (e.g., alcohols, ethers, ketones) [14]. The
inclusion of an oxygen atom yields different chemical bond structure and unique
vibrational spectra, as shown here for ethanol and acetone.
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Fig. 14.15 FTIR measurements of acetone and ethanol at 1 atm and 25 ıC
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AGlossary

˛� Spectral absorptivity [no units] at frequency � or over the frequency range
� ! � C d�

"� Spectral emissivity [no units] at frequency � or over the frequency range
� ! � C d�

k� Spectral absorption coefficient [cm�1] at frequency � or over the frequency
range � ! � C d�

I� Spectral intensity with units of power per unit area per unit spectral intervalh
W=cm2

cm�1

i
in the frequency range � ! � C d�

I Total radiant intensity ŒW=cm2	

I0� Incident radiation intensity
I.�/ Radiant intensity at frequency � ŒW=cm2	

� Frequency [cm�1 or s�1]
� Frequency [cm�1]
P Power [W]
T� Spectral transmissivity [no units] at frequency � or over the frequency range

� ! � C d�
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BVoigt Tables

These tables contain the values of the Voigt function, V.a;w/, for a variety of values
of “a” and “w”. Each page list values of “a” across the top and values of “w” down
the left column.1

V.a;w/ D a

�

Z C1
�1

exp.�y2/dy

a2 C .w � y/2
(B.1)

1Tabulated by Liebeskind, 1/30/92.

© Springer International Publishing Switzerland 2016
R.K. Hanson et al., Spectroscopy and Optical Diagnostics for Gases,
DOI 10.1007/978-3-319-23252-2

259



260 B Voigt Tables

wna 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00 0.8965 0.8090 0.7346 0.6708 0.6157 0.5678 0.5259 0.4891 0.4565 0.4276

0.10 0.8885 0.8026 0.7293 0.6665 0.6121 0.5648 0.5234 0.4870 0.4547 0.4260

0.20 0.8650 0.7835 0.7138 0.6537 0.6015 0.5560 0.5160 0.4807 0.4494 0.4215

0.30 0.8272 0.7529 0.6887 0.6330 0.5843 0.5416 0.5039 0.4705 0.4407 0.4140

0.40 0.7773 0.7121 0.6552 0.6053 0.5613 0.5222 0.4876 0.4566 0.4288 0.4038

0.50 0.7176 0.6632 0.6149 0.5717 0.5332 0.4986 0.4675 0.4395 0.4142 0.3912

0.60 0.6511 0.6083 0.5692 0.5336 0.5011 0.4715 0.4444 0.4198 0.3972 0.3766

0.70 0.5807 0.5497 0.5202 0.4923 0.4661 0.4417 0.4190 0.3979 0.3783 0.3602

0.80 0.5093 0.4897 0.4695 0.4492 0.4294 0.4103 0.3919 0.3745 0.3580 0.3425

0.90 0.4394 0.4303 0.4187 0.4058 0.3920 0.3780 0.3640 0.3502 0.3368 0.3239

1.00 0.3732 0.3732 0.3694 0.3630 0.3549 0.3456 0.3357 0.3254 0.3151 0.3047

1.20 0.2574 0.2709 0.2792 0.2834 0.2846 0.2835 0.2807 0.2767 0.2718 0.2662

1.40 0.1684 0.1892 0.2047 0.2157 0.2233 0.2280 0.2306 0.2314 0.2308 0.2292

1.60 0.1058 0.1289 0.1473 0.1617 0.1728 0.1812 0.1872 0.1914 0.1940 0.1954

1.80 0.0651 0.0871 0.1055 0.1208 0.1333 0.1434 0.1514 0.1576 0.1623 0.1657

2.00 0.0402 0.0595 0.0764 0.0909 0.1034 0.1138 0.1226 0.1298 0.1356 0.1402

2.20 0.0257 0.0419 0.0566 0.0697 0.0812 0.0912 0.0999 0.1074 0.1137 0.1189

2.40 0.0174 0.0308 0.0432 0.0546 0.0649 0.0741 0.0823 0.0896 0.0959 0.1013

2.60 0.0126 0.0237 0.0341 0.0438 0.0529 0.0612 0.0687 0.0755 0.0815 0.0869

2.80 0.0098 0.0189 0.0277 0.0361 0.0439 0.0513 0.0580 0.0643 0.0699 0.0750

3.00 0.0079 0.0156 0.0231 0.0303 0.0371 0.0436 0.0497 0.0553 0.0605 0.0653

3.20 0.0067 0.0132 0.0196 0.0259 0.0318 0.0376 0.0430 0.0481 0.0529 0.0573

3.40 0.0057 0.0114 0.0170 0.0224 0.0277 0.0327 0.0376 0.0422 0.0465 0.0506

3.60 0.0050 0.0100 0.0148 0.0196 0.0243 0.0288 0.0332 0.0373 0.0413 0.0450

3.80 0.0044 0.0088 0.0131 0.0274 0.0215 0.0256 0.0295 0.0333 0.0369 0.0403

4.00 0.0039 0.0078 0.0117 0.0155 0.0192 0.0229 0.0264 0.0298 0.0331 0.0363

4.20 0.0035 0.0070 0.0105 0.0139 0.0173 0.0206 0.0238 0.0269 0.0299 0.0328

4.40 0.0032 0.0063 0.0095 0.0126 0.0156 0.0186 0.0216 0.0244 0.0272 0.0299

4.60 0.0029 0.0058 0.0086 0.0114 0.0242 0.0169 0.0196 0.0222 0.0248 0.0273

4.80 0.0026 0.0052 0.0078 0.0104 0.0130 0.0155 0.0179 0.0204 0.0227 0.0250

5.00 0.0024 0.0048 0.0072 0.0096 0.0119 0.0142 0.0165 0.0187 0.0209 0.0230

5.50 0.0020 0.0039 0.0059 0.0078 0.0097 0.0116 0.0135 0.0154 0.0172 0.0190

6.00 0.0016 0.0033 0.0049 0.0065 0.0081 0.0097 0.0113 0.0128 0.0144 0.0159

6.50 0.0014 0.0028 0.0041 0.0055 0.0069 0.0082 0.0096 0.0109 0.0122 0.0135

7.00 0.0012 0.0024 0.0036 0.0047 0.0059 0.0071 0.0082 0.0094 0.0105 0.0116

7.50 0.0010 0.0021 0.0031 0.0041 0.0051 0.0061 0.0072 0.0081 0.0091 0.0101

8.00 0.0009 0.0018 0.0027 0.0036 0.0045 0.0054 0.0063 0.0071 0.0080 0.0089

8.50 0.0008 0.0016 0.0024 0.0032 0.0040 0.0048 0.0055 0.0063 0.0071 0.0079

9.00 0.0007 0.0014 0.0021 0.0028 0.0035 0.0042 0.0049 0.0056 0.0063 0.0070

9.50 0.0006 0.0013 0.0019 0.0025 0.0032 0.0038 0.0044 0.0050 0.0057 0.0063

10.00 0.0006 0.0011 0.0017 6.0023 0.0029 0.0034 0.0040 0.0046 0.0051 0.0057
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wna 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00

0.00 0.4017 0.3785 0.3576 0.3387 0.3216 0.3060 0.2917 0.2786 0.2665 0.2554

0.10 0.4004 0.3774 0.3566 0.3379 0.3208 0.3053 0.2911 0.2780 0.2660 0.2550

0.20 0.3965 0.3740 0.3537 0.3353 0.3186 0.3033 0.2893 0.2765 0.2646 0.2537

0.30 0.3900 0.3684 0.3488 0.3311 0.3148 0.3000 0.2864 0.2739 0.2624 0.2517

0.40 0.3813 0.3608 0.3422 0.3252 0.3097 0.2955 0.2824 0.2703 0.2592 0.2488

0.50 0.3704 0.3513 0.3339 0.3180 0.3034 0.2899 0.2774 0.2659 0.2552 0.2453

0.60 0.3576 0.3402 0.3242 0.3095 0.2958 0.2832 0.2715 0.2606 0.2505 0.2410

0.70 0.3434 0.3278 0.3133 0.2998 0.2873 0.2756 0.2647 0.2546 0.2451 0.2362

0.80 0.3279 0.3142 0.3013 0.2892 0.2779 0.2672 0.2572 0.2479 0.2390 0.2307

0.90 0.3115 0.2997 0.2885 0.2779 0.2678 0.2582 0.2492 0.2406 0.2325 0.2248

1.00 0.2946 0.2847 0.2752 0.2660 0.2571 0.2487 0.2406 0.2329 0.2255 0.2185

1.20 0.2602 0.2540 0.2476 0.2412 0.2349 0.2286 0.2224 0.2164 0.2106 0.2049

1.40 0.2268 0.2237 0.2202 0.2163 0.2123 0.2080 0.2037 0.1993 0.1949 0.1906

1.60 0.1957 0.1952 0.1941 0.1923 0.1902 0.1878 0.1851 0.1822 0.1792 0.1761

1.80 0.1680 0.1694 0.1700 0.1700 0.1695 0.1685 0.1672 0.1656 0.1637 0.1617

2.00 0.1438 0.1465 0.1485 0.1497 0.1504 0.1506 0.1504 0.1499 0.1490 0.1480

2.20 0.1233 0.1268 0.1296 0.1317 0.1333 0.1344 0.1350 0.1353 0.1353 0.1350

2.40 0.1060 0.1099 0.1132 0.1159 0.1181 0.1198 0.1211 0.1220 0.1226 0.1229

2.60 0.0916 0.0957 0.0992 0.1023 0.1048 0.1069 0.1086 0.1100 0.1111 0.1118

2.80 0.0796 0.0837 0.0873 0.0905 0.0932 0.0956 0.0976 0.0993 0.1007 0.1018

3.00 0.0697 0.0736 0.0772 0.0804 0.0832 0.0857 0.0879 0.0897 0.0914 0.0927

3.20 0.0614 0.0652 0.0686 0.0717 0.0745 0.0771 0.0793 0.0813 0.0830 0.0846

3.40 0.0544 0.0580 0.0612 0.0643 0.0670 0.0695 0.0718 0.0738 0.0756 0.0773

3.60 0.0486 0.0519 0.0550 0.0578 0.0605 0.0629 0.0652 0.0672 0.0691 0.0709

3.80 0.0436 0.0467 0.0496 0.0523 0.0548 0.0572 0.0594 0.0614 0.0632 0.0649

4.00 0.0393 0.0422 0.0449 0.0475 0.0499 0.0521 0.0542 0.0562 0.0580 0.0597

4.20 0.0356 0.0383 0.0408 0.0432 0.0455 0.0477 0.0497 0.0516 0.0534 0.0550

4.40 0.0324 0.0349 0.0373 0.0396 0.0417 0.0438 0.0457 0.0475 0.0492 0.0508

4.60 0.0297 0.0320 0.0342 0.0363 0.0383 0.0403 0.0421 0.0439 0.0455 0.0471

4.80 0.0272 0.0294 0.0314 0.0334 6.0354 0.0372 0.0389 0.0406 0.0422 0.0437

5.00 0.0251 0.0271 0.0290 0.0309 0.0327 0.0344 0.0361 0.0377 0.0392 0.0406

5.50 0.0207 0.0224 0.0240 0.0256 0.0272 0.0287 0.0302 0.0316 0.0329 0.0342

6.00 0.0174 0.0188 0.0202 0.0216 0.0230 0.0243 0.0256 0.0268 0.0280 0.0292

6.50 0.0148 0.0160 0.0173 0.0185 0.0196 0.0208 0.0219 0.0230 0.0241 0.0252

7.00 0.0127 0.0138 0.0149 0.0160 0.0170 0.0180 0.0190 0.0200 0.0209 0.0219

7.50 0.0111 0.0120 0.0130 0.0139 0.0148 0.0157 0.0166 0.0175 0.0183 0.0192

8.00 0.0097 0.0106 0.0114 0.0122 0.0131 0.0139 0.0147 0.0154 0.0162 0.0169

8.50 0.0086 0.0094 0.0101 0.0109 0.0116 0.0123 0.0130 0.0137 0.0144 0.0151

9.00 0.0077 0.0084 0.0090 0.6097 0.0103 0.0110 0.0116 0.0123 0.0129 0.0135

9.50 0.0069 060075 0.0081 0.0087 0.0093 0,0099 0.0105 0.0110 0.0116 0.0122

10.00 0.0062 0.0068 0.0073 0.0079 0.0084 0.0089 0.0095 0.0100 0.0105 0.0110
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wna 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00

0.00 0.2356 0.2185 0.2036 0.1905 0.1790 0.1687 0.1595 0.1513 0.1438 0.1370

0.10 0.2353 0.2182 0.2034 0.1904 0.1788 0.1686 0.1594 0.1512 0.1437 0.1369

0.20 0.2343 0.2174 0.2027 0.1898 0.1784 0.1682 0.1591 0.1509 0.1434 0.1367

0.30 0.2326 0.2160 0.2016 0.1889 0.1776 0.1675 0.1585 0.1504 0.1430 0.1363

0.40 0.2303 0.2142 0.2000 0.1876 0.1765 0.1666 0.1577 0.1497 0.1424 0.1358

0.50 0.2274 0.2118 0.1981 0.1859 0.1751 0.1654 0.1567 0.1488 0.1417 0.1352

0.60 0.2240 0.2090 0.1957 0.1839 0.1734 0.1640 0.1555 0.1478 0.1408 0.1344

0.70 0.2200 0.2057 0.1930 0.1817 0.1715 0.1623 0.1541 0.1466 0.,1397 0.1334

0.80 0.2155 0.2020 0.1899 0.1791 0.1693 0.1605 0.1525 0.1452 0.1385 0.1324

0.90 0.2107 0.1980 0.1866 0.1762 0.1669 0.1584 0.1507 0.1436 0.1371 0.1312

1.00 0.2055 0.1936 0.1829 0.1731 0.1643 0.1561 0.1487 0.1419 0.1357 0.1299

1.20 0.1942 0.1842 0.1749 0.1663 0.1584 0.1511 0.1444 0.1381 0.1323 0.1270

1.40 0.1821 0.1740 0.1662 0.1589 0.1520 0.1456 0.1395 0.1339 0.1286 0.1237

1.60 0.1697 0.1633 0.1571 0.1510 0.1451 0.1396 0.1343 0.1293 0.1245 0.1201

1.80 0.1573 0.1526 0.1477 0.1428 0.1380 0.1333 0.1288 0.1244 0.1202 0.1162

2.00 0.1452 0.1420 0.1384 0.1346 0.1308 0.1269 0.1231 0.1193 0.1157 0.1121

2.20 0.1337 0.1317 0.1293 0.1265 0.1235 0.1204 0.1173 0.1141 0.1110 0.1080

2.40 0.1228 0.1219 0.1204 0.1185 0.1164 0.1140 0.1115 0.1089 0.1063 0.1037

2.60 0.1126 0.1126 0.1120 0.1109 0.1094 0.1077 0.1058 0.1037 0.1016 0.0994

2.80 0.1033 0.1040 0.1041 0.1036 0.1028 0.1016 0.1002 0.0986 0.0969 0.0951

3.00 0.0947 0.0960 0.0966 0.0967 0.0964 0.0957 0.0948 0.0937 0.0924 0.0909

3.20 0.0870 0.0887 0.0897 0.0903 0.0904 0.0901 0.0896 0.0888 0.0879 0.0868

3.40 0.0799 0.0819 0.0833 0.0842 0.0847 0.0848 0.0846 0.0842 0.0836 0.0828

3.60 0.0736 0.0758 0.0774 0.0786 0.0794 0.0798 0.0799 0.0798 0.0794 0.0789

3.80 0.0678 0.0702 0.0720 0.0734 0.0744 0.0751 0.0754 0.0756 0.0754 0.0752

4.00 0.0626 0.0651 0.0670 0.0686 0.0698 0.0707 0.0712 0.0715 0.0717 0.0716

4.20 0.0580 0.0604 0.0625 0.0642 0.0655 0.0665 0.0673 0.0678 0.0680 0.0681

4.40 0.0537 0.0562 0.0583 0.0601 0.0615 0.0627 0.0635 0.0642 0.0646 0.0649

4.60 0.0499 0.0524 0.0545 0.0563 0.0578 0.0591 0.0600 0.0608 0.0614 0.0618

4.80 0.0464 0.0489 0.0510 0.0528 0.0544 0.0557 0.0568 0.0576 0.0583 0.0588

5.00 0.0433 0.0457 0.0478 0.0496 0.0512 0.0526 0.0537 0.0547 0.0554 0.0560

5.50 0.0367 0.0389 0.0409 0.0427 0.0443 0.0457 0.0469 0.0480 0.0489 0.0496

6.00 0.0314 0.0334 0.0353 0.0370 0.0386 0.0400 0.0412 0.0423 0.0433 0.0441

6.50 0.0271 0.0290 0.0307 0.0323 0.0338 0.0351 0.0364 0.0375 0.0385 0.0394

7.00 0.0236 0.0253 0.0269 0.0284 0.0298 0.0311 0.0323 0.0334 0.0344 0.0353

7.50 0.0208 0.0223 0.0238 0.0251 0.0264 0.0277 0.0288 0.0298 0.0308 0.0317

8.00 0.0184 0.0198 0.0211 0.0224 0.0236 0.0247 0.0258 0.0268 0.0277 0.0286

8.50 0.0164 0.0177 0.0189 0.0201 0.0212 0.0222 0.0232 0.0242 0.0251 0.0259

9.00 0.0147 0.0159 0.0170 0.0181 0.0191 0.0201 0.0210 0.0219 0.0227 0.0236

9.50 0.0132 0.0143 0.0153 0.0163 0.0173 0.0182 0.0191 0.0199 0.0207 0.0215

10.00 0.0120 0.0130 0.0139 0.0148 0.0157 0.0166 0.0174 0.0182 0.0189 0.0197
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wna 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 9.00 10.00

0.00 0.1225 0.1107 0.1010 0.0928 0.0858 0.0798 0.0746 0.0700 0.0623 0.0561

0.10 0.1224 0.1107 0.1009 0.0928 0.0858 0.0798 0.0746 0.0700 0.0623 0.0561

0.20 0.1223 0.1105 0.1008 0.0927 0.0857 0.0797 0.0745 0.0699 0.0623 0.0561

0.30 0.1220 0.1103 0.1007 0.0926 0.0856 0.0797 0.0745 0.0699 0.0622 0.0561

0.40 0.1216 0.1101 0.1005 0.0924 0.0855 0.0796 0.0744 0.0698 0.0622 0.0561

0.50 0.1211 0.1097 0.1002 0.0922 0.0853 0.0794 0.0743 0.0697 0.0621 0.0560

0.60 0.1206 0.1093 0.0999 0.0919 0.0851 0.0792 0.0741 0.0696 0.0620 0.0559

0.70 0.1199 0.1088 0.0995 0.0916 0.0849 0.0790 0.0740 0.0695 0.0619 0.0559

0.80 0.1191 0.1082 0.0990 0.0913 0.0846 0.0788 0.0738 0.0693 0.0618 0.0558

0.90 0.1182 0.1075 0.0985 0.0909 0.0843 0.0786 0.0736 0.0691 0.0617 0.0557

1.00 0.1173 0.1068 0.0980 0.0904 0.0839 0.0783 0.0733 0.0689 0.0616 0.0556

1.20 0.1151 0.1052 0.0967 0.0894 0.0831 0.0776 0.0728 0.0685 0.0613 0.0554

1.40 0.1127 0.1033 0.0952 0.0883 0.0822 0.0769 0.0722 0.0680 0.0609 0.0551

1.60 0.1099 0.1012 0.0936 0.0870 0.0811 0.0760 0.0715 0.0674 0.0605 0.0548

1.80 0.1070 0.0989 0.0918 0.0855 0.0800 0.0751 0.0707 0.0667 0.0600 0.0544

2.00 0.1039 0.0965 0.0899 0.0840 0.0787 0.0740 0.0698 0.0660 0.0595 0.0540

2.20 0.1007 0.0939 0.0879 0.0823 0.0774 0.0729 0.0689 0.0652 0.0589 0.0536

2.40 0.0973 0.0913 0.0857 0.0806 0.0760 0.0717 0.0679 0.0644 0.0583 0.0532

2.60 0.0939 0.0886 0.0835 0.0788 0.0745 0.0705 0.0668 0.0635 0.0576 0.0527

2.80 0.0905 0.0858 0.0812 0.0769 0.0729 0.0692 0.0658 0.0626 0.0569 0.0521

3.00 0.0871 0.0830 0.0789 0.0750 0.0713 0.0679 0.0646 0.0616 0.0562 0.0516

3.20 0.0837 0.0802 0.0766 0.0731 0.0697 0.0665 0.0635 0.0606 0.0555 0.0510

3.40 0.0803 0.0774 0.0743 0.0711 0.0680 0.0651 0.0622 0.0596 0.0547 0.0504

3.60 0.0770 0.0746 0.0719 0.0692 0.0664 0.0636 0.0610 0.0585 0.0539 0.0498

3.80 0.0738 0.0719 0.0696 0.0672 0.0647 0.0622 0.0598 0.0574 0.0531 0.0492

4.00 0.0707 0.0692 0.0673 0.0652 0.0630 0.0607 0.0585 0.0563 0.0523 0.0485

4.20 0.0677 0.0666 0.0651 0.0633 0.0613 0.0593 0.0572 0.0552 0.0514 0.0479

4.40 0.0648 0.0641 0.0629 0.0613 0.0596 0.0578 0.0560 0.0541 0.0505 0.0472

4.60 0.0621 0.0616 0.0607 0.0595 0.0580 0.0564 0.0547 0.0530 0.0497 0.0465

4.80 0.0594 0.0593 0.0586 0.0576 0.0563 0.0549 0.0534 0.0519 0.0488 0.0458

5.00 0.0568 0.0570 0.0566 0.0558 0.0547 0.0535 0.0521 0.0507 0.0479 0.0451

5.50 0.0510 0.0516 0.0517 0.0514 0.0508 0.0500 0.0490 0.0480 0.0457 0.0433

6.00 0.0458 0.0468 0.0472 0.0473 0.0471 0.0466 0.0460 0.0452 0.0434 0.0415

6.50 0.0412 0.0424 0.0432 0.0436 0.0437 0.0435 0.0431 0.0426 0.0413 0.0397

7.00 0.0371 0.0385 0.0395 0.0401 0.0404 0.0405 0.0404 0.0401 0.0391 0.0379

7.50 0.0336 0.0351 0.0362 0.0370 0.0375 0.0377 0.0378 0.0377 0.0371 0.0362

8.00 0.0305 0.0320 0.0332 0.0341 0.0347 0.0351 0.0354 0.0354 0.0351 0.0345

8.50 0.0278 0.0293 0.0305 0.0315 0.0322 0.0328 0.0331 0.0333 0.0332 0.0328

9.00 0.0254 0.0269 0.0281 0.0292 0.0300 0.0306 0.0310 0.0313 0.0314 0.0312

9.50 0.0232 0.0247 0.0260 0.0270 0.0279 0.0235 0.0290 0.0294 0.0297 0.0297

10.00 0.0213 0.0228 0.0240 0.0251 0.0259 0.0267 0.0272 0.0276 0.0281 0.0283



CMatlab Voigt Fitting Program

The following algorithm was first published by Humlíček (J. Quant. Spectrosc.
Radiat. Transfer, Vol. 27, No. 4, pp. 437–444, 1982).

function [W] = Voigt(X,Y)
%VOIGT Normalized Voigt profile
%
% [W]=Voigt(X,Y)
%
% Uses Humlicek’s algorithm for calculating the

Voigt profile
%
% X = position/frequency
% Y= Voigt ‘‘a" parameter (ratio of Lorentz to

Doppler widths)
% W = Voigt value
% area = sqrt(pi)
% width (FWHM) = (Y+sqrt(Y*Y+4*ln(2)))(approximation)
% linecenter is at X=0
% amplitude = Voigt(0,Y)
%
% To use with curve-fitting or for simulating

absorption spectra,
% use this function the following way:
%
% Lineshape = amp* Voigt((2*sqrt(log(2))/WG)

*(x-x0),a)
% amp = 2*(sqrt(ln(2))*S*P*xj/(sqrt(pi)*WG)
% log(2) = ln(2)
% WG = Doppler FWHM

© Springer International Publishing Switzerland 2016
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266 C Voigt Fitting Program

% x = frequency position at which to calculate the
Voigt function

% x0 = linecenter
% a = Voigt ‘‘a" parameter
%
% For calculating the amplitude, S is the

integrated linestrength
% [cm^(-2)/atm], P is the pressure [atm],

and xj is the
% molefraction of species of interest

T = complex(Y,-X); S = abs(X)+Y;
if S >= 15 %Region I

W= T*0.5641896/(0.5+T*T);
else

if S >= 5.5 %Region II
U= T*T;
W= T*(1.410474+U*0.5641896)/(0.75+U*(3+U));

else
if Y >= (0.195*abs(X)-0.176) %Region III

Wnum= (16.4955+T*(20.20933+T*(11.96482+T*...
(3.778987+T*0.5642236))));

Wden= (16.4955+T*(38.82363+T*(39.27121+T*...
(21.69274+T*(6.699398+T)))));

W=Wnum/Wden;
else %Region IV

U= T*T;
Wnum=T*(36183.31-U*(3321.9905-U*

(1540.787-U*...( 219.0313-U*(35.76683-U*
(1.320522-U*0.56419))))));

Wden =(32066.6-U*(24322.84-U*(9022.228-U*
(2186.181...-U*(364.2191-U*
(61.57037-U*(1.841439-U)))))));

W=Wnum/Wden;
W= complex(exp(real(U))*cos(imag(U)),0)-W;

end
end

end W = real(W);



DHITRANDatabase

The HITRAN database (updated � every 4 years) is a popular compilation of
spectroscopic data. This database provides line positions and strengths, collisional-
broadening coefficients, and other spectroscopic parameters based on molecular
models and experimental data. Using a database such as HITRAN gives useful
predictive information about the spectral features for many different molecules. The
molecules for which the current edition of HITRAN (HITRAN2012) has line-by-
line parameters are the following:

H2O CO2 O3 N2O CO CH4 O2

NO SO2 NO2 NH3 HNO3 OH HF

HCl HBr HI ClO OCS H2CO HOCl

N2 HCN CH3Cl H2O2 C2H2 C2H6 PH3

COF2 SF6 H2S HCOOH HO2 O ClONO2

NOC HOBr C2H4 CH3OH CH3Br CH3CN CF4
C4H2 HC3N H2 CS SO3

HITRAN is organized by Rothman et al. [1] and can be visualized using free
online simulation tools such as HITRAN on the Web (hitran.iao.ru) or SpectraPlot
(SpectraPlot.com).

Though HITRAN is not entirely comprehensive, it does have information for
many rovibrational bands. For molecules that have been well investigated, such as
CO, CO2 and H2O, the database is quite thorough. For high-temperature studies, one
can also use the HITEMP database [2] which uses the same format as HITRAN, but
includes more high-energy transitions for CO, CO2, H2O, NO, and OH. A small
portion of the HITRAN2012 database is shown in Tables D.1 and D.2.

Most databases list pertinent spectroscopic information with respect to a
reference temperature. For the HITRAN and HITEMP databases, the reference
temperature is T0 D 296 K. The linestrengths can be scaled for different

© Springer International Publishing Switzerland 2016
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Table D.2 Key to symbols in Table D.1

Molec: Molecule number in the database (i.e., 1 for H2O, 2 for CO2, etc.)

Isotope: Isotope number (1 = most abundant, 2 = second most abundant, etc.)

�0: Frequency of line center [cm�1]

S: Linestrength [cm�1=.molecule cm�2/] at the specified temperature

A: Einstein-A coefficient [s�1] for the transition

�air: Air-broadening coefficient [cm�1 atm�1] (HWHM) at T0 D 296K

[Note: This is the halfwidth, not the fullwidth! 2�air is the fullwidth]

�self: Self-broadening coefficient [cm�1 atm�1] (HWHM) at T0 D 296K

[Note: This is the halfwidth, not the fullwidth!2�self is the fullwidth]

E00: Lower-state energy [cm�1] relative to the zero vibrational level

n: Exponent of temperature dependence of air-broadened halfwidth

ı: Air-pressure-shift coefficient [cm�1 atm�1] of the transition at T0 D 296K

v0,v00: Upper, lower global quanta index (vibrational level)—

use this index to look up the vibrational states for v0 and v00

Q0,Q00: Upper, lower local quanta index (rotational energy level)

[Note: for carbon dioxide, Q0 is not specified, and Q00 denotes the branch

and lower-state rotational quantum number]

temperatures using the reference temperature, lower-state energy, fundamental
vibrational energies, and the reference linestrength [see Eq. (7.75)]; for nonlinear
polyatomic molecules, when units of linestrength are cm�1/molec cm�2,

S.T/ D S.T0/
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where �i are the different fundamental vibrational energies and n is the total number
of vibrational modes. The .T0=T/3=2 term results from the fact that Qrot / T3=2.
Thus, for H2O, the scaling formula is given as follows:
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270 D HITRAN Database

where �1 D 3657:05 cm�1, �2 D 1594:75 cm�1, and �3 D 3755:93 cm�1. Often
times it is useful to scale the linestrengths from the [cm�1/molecule-cm�2] units to
[cm�2 atm�1], for which the conversion is

SŒcm�2 atm�1	 D 7:34 � 1021
T0

� SŒcm�1=molecule cm�2	: (D.3)

For cases where T0 D 296K, the conversion reduces to

SŒcm�2 atm�1	 D 2:4797 � 1019SŒcm�1=molecule cm�2	: (D.4)

Note that

S.T/Œcm�1=molecule cm�2	

S.T0/Œcm�1=molecule cm�2	
D T

T0

S.T/Œcm�2 atm�1	

S.T0/Œcm�2 atm�1	
(D.5)

D.1 Example Calculation of H2OAbsorbance Spectra using
the HITRAN Database

To illustrate many of the concepts put forth in this book, this section will present an
example calculation of absorbance spectra. The transitions (i.e., lines) of interest
here belong to a H2O doublet near 1392.67 nm that has been used extensively
to measure water vapor using TDLAS. Here, we will calculate the absorbance
spectrum of this doublet at: T = 1000 K, P = 1 atm, and with 10% H2O by mole
in air over a 10 cm path length. The spectroscopic parameters needed to calculate
its absorbance spectrum, taken from HITRAN2012, are given in Table D.3.

D.1.1 Calculation of Linestrength at T

The HITRAN database tabulates linestrengths at 296 K. To calculate the linestrength
of these transitions at 1000 K we can use Eq. D.2 or:

S.T/ D S.To/
Q.To/

Q.T/
exp



�hcE"

k
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� 1
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1 � exp
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1 � exp

�
�hc�o

kTo

���1
(D.6)

for improved accuracy. Eq. D.6 requires an independent evaluation of the partition
function Q at T and To (available online as supplementary material for the HITRAN
database) whereas Eq. D.2 evaluates Q.T/=Q.To/ assuming a rigid-rotor harmonic
oscillator (RRHO). Fig. D.1 compares these two methods, indicating that Eq. D.2
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Table D.3 Sample HITRAN2012 output for the H2O doublet of
interest

Line �0 S.To/ �air �self E00 nair

1 7185.596571 2.00E-22 0.0342 0.371 1045.0583 0.62
2 7185.596909 5.98E-22 0.0421 0.195 1045.0577 0.62
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Fig. D.1 Comparison of linestrength as a function of temperature calculated using Eq. D.6 and
Eq. D.2 for Lines 1 and 2

is accurate to within 2% of that calculated using Eq. D.6 at 296 to 1500 K, but its
accuracy decreases near linearly to within only 5% of that calculated using Eq. D.6
from 1500 to 3000 K.

Using Eq. D.6, the linestrength of Lines 1 and 2 at 1000 K are 1:02 � 10�21 and
3:05 � 10�21 cm�1/molecule-cm�2, respectively.

D.1.2 Calculation of Lineshape Function

Next we will calculate the lineshape function of these transitions using a Voigt
profile (to be consistent with HITRAN) and the numerical approximation given in
Appendix C. To do so, we must first calculate the collisional FWHM (��c) using
Eq. 8.19 (with �.1000K/ calculated using Eq. 8.21) and the Doppler FWHM (��D)
using Eq. 8.25. To evaluate the self-broadening coefficients (�H2O�H2O) at 1000 K
we will assume a self-broadening temperature exponent of 0.75.

Due to their similar �o, ��D.1000K/ D 0:0384 cm�1 for both transitions. For
the pressure and mixture of interest, ��c.1000K/ D 0:0587 and 0.0513 cm�1, for
Lines 1 and 2 respectively. Fig. D.2 shows the corresponding Voigt lineshapes of
these transitions.
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Fig. D.2 Voigt lineshapes of Line 1 and 2 at 1000 K, 1 atm, with 10% H2O in air
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Fig. D.3 Total absorbance spectrum and individual contributions of each line at the conditions of
interest

D.1.3 Calculation of Absorbance

With the linestrength and lineshapes of the transitions of interest known, we can now
calculate the absorbance spectrum resulting from these transitions. For convenience,
we will convert the calculated linestrengths from units of cm�1/molecule-cm�2 to
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cm�2/atm using Eq. D.3 which yields linestrengths of 7:487 � 10�3 and 2:237 �
10�3 cm�2/atm. Now the resulting absorbance spectrum can be calculated using
˛.�/ DPj Sj.T/P�H2O�j.�/L, where j indicates a given transition and S.T/ is in
units of cm�2/atm. Note that the absorbance at a given wavelength is given by the
sum of that corresponding to each line/transition. Fig. D.3 shows the absorbance of
each transition and the sum for this example.



ECenter of Symmetry

The following discussion on the definition of the center of symmetry is taken from
Herzberg,“Molecular Spectra and Molecular Structure, Vol. 2, Infrared and Raman
Spectra of Polyatomic Molecules.”

A center of symmetry is usually designated by i. By carrying out the correspond-
ing symmetry operation, reflection at the center (inversion), a molecule having such
a center is transformed into itself. In other words, if a line is drawn from one atom
through the center and continued it will meet an equal atom at the same distance
from the center but on the opposite side (if x, y, and z are the coordinates of one
atom with respect to the origin,�x,�y, and�z are the coordinates of the other equal
atom). Examples are molecules X2Y4, X2Y2Z2, XY2Z2 if they have the structures
indicated in Figs. a–c. A molecule can have only one center of symmetry. There
may or may not be an atom at the center of symmetry (see examples X2Y2Z2 and
XY2Z2). All other atoms occur in pairs.

a b c
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FFluorescence Yield: Multi-Level Models

Summary: The purpose of this section is twofold:

1. to show that a proper definition of the fluorescence yield requires specification of
the spectral response of the light collection system.

2. to show that the simple two-level model also applies (with reasonable or good
accuracy) to molecules with multiple coupled energy levels, if the light collection
is “broadband” and the relevant A and Q parameters are independent of quantum
number.

Consider the following:

1. AP, AQ, and AR are the A-coefficients (in s�1) for P, Q, and R branch emission
from v0, J0 of an atom or molecule,

Qel is the electronic quench rate [s�1]
Qrot is the rotational transfer rate [s�1]

2. We assume that these rates (probabilities) are the same for all J0. Let’s examine
two interesting limiting cases:
(a) “Narrowband collection”—where the collection optics (usually a monochro-

mator) are set to transmit emission from only one line, say the P line.

© Springer International Publishing Switzerland 2016
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Then the fluorescence yield (FY), which is normally thought of as the
fraction of absorbed photons converted into emitted photons, should be
more narrowly defined as the fraction of absorbed photons emitted into the
collection bandwidth i.e.,

FY D probability or rate of desired process

sum rate of all processes

FY D AP

.AP C AQ C AR/C Qrot C Qel
� AP

Qrot
.usually)

where Qrot is usually > Qel � AP, AQ, AR.
(b) “Broadband collection”—usually just a long pass filter so that fluorescence

of all lines is collected. This is the most common case, since it yields a larger
number of measured photons. Here we must include the fluorescence from
all values of J0. We can view this as a multi-step process, with each J-change
constituting a new step (fresh start) subject to the same probabilities.

Qrot

Qel

A A A

1

2
step1 step2 step3

Qrot Qrot

QelQel

Following absorption, the molecule has three options (A, Qel, Qrot)
i. the fluorescence yield for step 1 is

FY1 D A

AC Qel C Qrot
� ˛

ii. the probability of going to a new J, and hence having a second chance to
fluoresce is

ˇ D Qrot

AC Qel C Qrot

iii. the fluorescence yield for this second step (i.e., its probability) is

FY2 D ˇ˛
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iv. similarly the fluorescence yield for step 3 is

FY3 D ˇˇ˛ D ˇ2˛

v. and the total fluorescence yield

FY D
X

FYi D ˛
1X

nD0
ˇn D ˛

1 � ˇ D
A

AC Qel

Thus, we have that important result that the fluorescence yield always
involves (in the denominator) the rate (Q) of the primary process which
transfers the molecules out of the collection bandwidth!

(c) Note that in the above examples we have not included stimulated emission
(with its rate W21 D B21I�), which implies that we are limiting ourselves to
the “weak excitation”or linear LIF regime.
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