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1            Introduction 

 Why is there a chapter on HIV in a translational science textbook on aging? Effective 
antiretroviral therapy (ART) has resulted in many people with HIV infection living 
far beyond what was thought possible just a few years ago [ 1 ,  2 ]. It is estimated that 
over half of all U.S. HIV-infected persons will be >50 years by 2015 [ 3 ,  4 ], and the 
success and availability of ART is even leading to an aging HIV-infected population 
in developing nations [ 1 ,  5 ,  6 ], emphasizing the need for aging-related research in 
those countries where HIV burden of illness is greatest [ 7 ]. 

 There is marked debate as to whether HIV accelerates aging itself or is an added 
risk factor for a number of diseases and conditions that lead to an “aged phenotype.” 
Of course, there is no single pathway that defi nes “aging” – in fact, two recent, 
excellent reviews [ 8 ,  9 ] emphasize a number of “hallmarks” of aging – biologic 
changes that accompany aging, but none is clearly “the” causal pathway. 
Cardiovascular disease (CVD) and many other diseases increase with age, and 
advancing age is the leading risk factor for CVD. But we generally don’t consider 
CVD risk factors (e.g. hypercholesterolemia) to be conditions that accelerate aging 
itself. However aging with HIV is different than aging with hypercholesterolemia; a 
much broader array of illnesses occurs with greater frequency in people aging with 
HIV (PAWH). This leads not only to prematurity of a single disease, but multiple 
diseases, as well as decreased physiologic reserve and increased vulnerability to 
catastrophic illness, hospitalization and death. Functional decline – physical and/or 
cognitive – often accompanies multi-morbidity or may occur independently, but in 
either case functional decline is the strongest risk factor for disability and loss of 
independence, particularly when social and family support structures are lacking. 
This state of multi-morbidity, vulnerability, functional decline and loss of indepen-
dence is what we usually view as “old” – or the aged phenotype – and there is no 
doubt that this phenotype occurs earlier in PAWH when compared to HIV-uninfected 
persons [ 10 – 14 ]. In this chapter, we will briefl y summarize a few examples of age- 
related serious non-AIDS events (SNAEs) such as CVD and cancer – and geriatric 
syndromes (functional decline/frailty and multi-morbidity) to highlight the clinical 
relevance and translational opportunities to link mechanisms to clinical outcomes in 
PAWH.  

2     Increased Prevalence of Age-Related, Serious Non-AIDS 
Events (SNAEs) in PAWH 

 While life expectancy has increased markedly for PAWH, this group experiences a 
greater frequency of age-associated comorbid conditions, such as CVD, non-AIDS- 
defi ning cancers (liver, lung, anal), osteoporosis/osteopenia/bone fractures, meta-
bolic syndrome, and neurocognitive dysfunction. These events are termed SNAEs 
and increasingly robust data suggest they are very common in PAWH, even those 
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well controlled on ART [ 15 ]. CVD and cancer have the most robust database and 
are therefore examined in greater detail in the following paragraphs. 

 CVD risk factors and rates of acute coronary syndromes and heart failure are 
markedly increased in HIV-infected vs. age matched control subjects [ 16 – 20 ], and 
coronary artery “age” is accelerated on average by about 15 years in treated HIV- 
infected persons (median duration of ART ~11 years) as assessed by coronary artery 
calcium (CAC) score comparing PAWH to age-defi ned norms established in the 
MultiEthnic Study on Aging (MESA) cohort [ 21 ]. Higher levels of C-reactive pro-
tein, interleukin-6, and D-dimer have been shown to be signifi cantly associated with 
an increased risk of all-cause mortality in HIV-infected individuals not on ART, and 
much of this is cardiovascular mortality [ 22 ]. Specifi c ART drugs also may be caus-
ally associated with early heart disease, even after controlling for age and traditional 
cardiovascular risk factors [ 23 ,  24 ]. Further, lipodystrophy and metabolic syndrome 
(altered body fat, hyperlipidemia and insulin resistance) are common in HIV- 
infected patients receiving ART [ 25 ,  26 ]. The redistribution of fat mass and progres-
sion to metabolic syndrome (12/100 patient-years) typically occurs within 3 years 
after the initiation of ART [ 27 ], when weight gain is often substantial, thus increas-
ing cardiovascular disease risk. Enhanced cardiovascular “aging” is not limited to 
coronary artery disease. Left ventricular diastolic dysfunction and increased vascu-
lar stiffness [ 28 – 30 ] are more common in HIV-infected subjects versus uninfected, 
age-matched controls even after controlling for hypertension and other risk factors. 
Heart failure and atrial fi brillation, typically seen in older adults, is increasingly 
being reported in younger PAWH [ 18 – 20 ]. 

 As ART use has become widespread, AIDS-defi ning cancers (Kaposi’s Sarcoma, 
lymphomas) have become less common in this population, but increased survival 
and perhaps decreased competing causes of AIDS-defi ning cancer deaths have led 
to increased numbers of non-AIDS-Defi ning Cancers (NADC) [ 31 ]. A number of 
NADC occur more frequently in PAWH than age-matched control cohorts [ 32 ] and 
NADC are increasingly a cause of death in PAWH [ 15 ]. Initial reports suggested the 
age of onset of many NADC was much earlier than in those without HIV, but most 
of this appears to be a cohort effect. PAWH are a younger cohort than the general 
population [ 1 ] so colon, lung or other cancers may appear to only be occurring in 
younger adults, but there aren’t many 70+ year old PAWH so this is often a false 
impression. As control groups and age-adjustments have been refi ned, it appears 
NADC are only minimally “accelerated” with regard to age at diagnosis – perhaps 
3–5 years [ 33 ] (Table  1 ). It is important to note that some NADC that are most 
strongly related to age – breast cancer in women and prostate cancer in men – do not 
appear to be increased in those with HIV [ 33 ,  34 ], though data are sure to evolve as 
persons continue to age with HIV infection.

   Another way to examine the question of whether HIV directly “ages” individuals 
or acts in parallel is to assess whether age remains an independent risk factor for 
SNAEs in PAWH. Within cohorts of PAWH, increased age is an independent pre-
dictor of stroke, myocardial infarction, fractures, osteoporosis, diabetes, and non- 
AIDS associated cancers, while controlling for CD4 count, viral load, intravenous 
drug use, smoking, and duration of HIV infection [ 35 ].  
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3     Geriatric Syndromes in PAWH 

3.1     Multi-morbidity 

 Despite the success of ART, extensive evidence suggests HIV-infected persons are 
more likely than their HIV-uninfected counterparts to have multiple comorbidities 
at a young age. This is perhaps not surprising for illnesses with overlapping risk 
factors (i.e. hepatitis C, human papillomavirus [HPV]-related cancers), but it is also 
true across organ systems where intersecting risks are not so clear; early-onset of 
disease in individual organ systems in PAWH has been observed (e.g. coronary 
artery disease, arterial stiffness, cerebral blood fl ow, and bone fractures) [ 21 ,  36 –
 39 ]. Chronic liver and renal diseases are also more common in PAWH compared to 
HIV uninfected populations [ 40 ]. Although behavioral factors such as smoking and 
illicit drug use are more prevalent in populations of PAWH, controlled studies have 
shown that these factors do not fully explain the increased risk for age-related con-
ditions such as cardiovascular and liver disease [ 35 ,  41 ,  42 ]. Where aggressive ART 
is widely available, 58 % of HIV-infected subjects aged 51–60 have one or more of 
the following: renal failure, diabetes mellitus, bone fracture, hypertension or overt 
cardiovascular disease vs. only 35 % of HIV-uninfected controls [ 10 ,  35 ]. The rate 
of multi-morbidity (> one major chronic illness) at age >50 years is about 2.5 times 
higher in HIV-infected subjects vs. HIV-uninfected controls [ 10 ,  35 ,  40 ]. 

 On average, PAWH aged 50 and older have up to three chronic illnesses, in addi-
tion to HIV [ 43 ] (Fig.  1 ). Depending on the population, studies have demonstrated 
increased prevalence of specifi c comorbidities. The onset of multi-morbidity 
appears to be accelerated 12–15 years in those with HIV infection [ 10 ]. Further, 
multi-morbidity risk assessments such as the Veterans Aging Cohort Study (VACS) 
Index derived and validated in HIV-infected subjects correlates with mortality risk 
and hospitalization [ 44 ,  45 ]. Importantly, the VACS index has now been validated to 
predict mortality in HIV-uninfected populations [ 45 ] demonstrating the 
 generalizability of this integrated measure of cumulative damage to the hematopoi-
etic, immunologic, hepatic and renal systems.

   Table 1    Age differences between HIV-infected and HIV-uninfected for select NADC   

 Select 
NADC 

 Median age 
at diagnosis 
in AIDS 
population 
(years) 

 Median age at 
diagnosis in 
HIV –  general 
population 
(years) 

 Apparent 
difference 
(years) 

 Median expected 
age at diagnosis in 
HIV –  population 
if cohort limited 
to the same age 
distribution as those 
with AIDS (years) 

 Real 
difference 
(years) 

 Rectal  46  69  −23  51  −5 
 Lung  50  70  −20  54  −4 
 Ovarian  42  63  −21  46  −4 
 Myeloma  47  70  −23  52  −5 

  Adapted from [ 33 ]  
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3.2        Polypharmacy 

 In the setting of multi-morbidity, PAWH have increased risks of developing both 
HIV-associated non-AIDS (HANA) and non-HIV related conditions. Consequently, 
polypharmacy and increased complexity of care are becoming commonplace in the 
health management of PAWH, noting that the disease courses may be altered 
depending on the patient’s state of virologic suppression [ 46 ]. PAWH who are aged 
50 and older are more likely to have at least one medication (in addition to ART) 
compared to PAWH younger than age 50 [ 47 ]. Specifi cally, older PAWH are more 
likely to take concurrent cardiovascular, gastrointestinal, and hormonal medications 
than younger patients [ 47 ]. 

 The inherent complexity of polypharmacy translates into potential harm for older 
patients. In older adults without HIV, polypharmacy is a known risk factor for falls, 
adverse drug events (ADE) including drug-drug interactions (DDI), morbidity, and 
mortality [ 48 ]. These associations remain true for PAWH but may occur at younger 
ages compared to people without HIV infection [ 47 – 49 ]. At baseline, older patients 
are at increased risk for ADE, compared to younger patients. In addition to direct 
toxicity for the patient, ADE and DDI can mean decreased effi cacy of therapy, both 
for HIV and other comorbidities, especially in the case of protease inhibitor 
 (PI)-based ART [ 49 ]. The list of potential DDI is extensive and includes virtually 
every class of therapeutics, including cardiovascular, gastrointestinal, hematologic, 
anti- neoplastic, antimicrobial, psychiatric, and endocrine (including inhaled ste-
roids which aren’t typically considered to have systemic effects) [ 47 – 50 ]. Predicting 
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  Fig. 1    Prevalence of comorbidity burden, HIV-infected persons age > 50 (Data derived from [ 10 ])       
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DDI is more challenging due to changes in drug metabolism that occur with normal 
aging, a process which may be accelerated or accentuated in PAWH. The known 
increased prevalence of liver and kidney disease in PAWH further complicates pre-
diction and prevention of DDI and ADE [ 48 ,  49 ]. 

 Adherence to ART is extremely important for PAWH and is a predictor of mor-
bidity and mortality for these patients, but a signifi cant challenge for many [ 49 ,  51 –
 53 ]. Similar principles regarding consistent medication use can apply to other chronic 
illnesses, including the common HANA and non-HIV associated comorbidities 
which are so prevalent in this population. Recent data suggest that lower pill burden 
is an important factor in improving adherence and virologic suppression, making 
awareness (and avoidance if possible) of polypharmacy even more salient [ 54 ].  

3.3     Frailty 

 Frailty has been defi ned and various measures validated in older HIV-uninfected 
adults, but it is generally agreed to represent increased risk and decreased ability to 
recuperate from illness and injury. Frailty is increased in HIV-infected vs. age- 
matched HIV-uninfected controls [ 13 ,  55 – 61 ]. In those PAWH, there is a high cor-
relation between various measures of frailty validated in seniors, though defi nitions 
vary from study to study and the reader should be cautious to assess frailty defi ni-
tions, cohort effects, and control group defi nitions when comparing individual rates 
of frailty between studies [ 62 ]. Early research measured the prevalence of frailty 
using the frailty-related phenotype (FRP) in 55 year old men with HIV infection 
(infected for less than or equal to 4 years) as equivalent to the prevalence of FRP in 
men 65 years of age or older without HIV [ 12 ]. Onen et al. measured a prevalence 
of 9 % for frailty in an outpatient HIV clinic (mean age of 41.7 years), which was 
comparable to the prevalence of frailty in Caucasian Europeans aged 65 years and 
older [ 13 ]. In the same study, investigators measured patient-level characteristics; 
frailty was associated with socioeconomic status, multi-morbidity, lower education 
level, longer period of HIV infection, history of opportunistic infection, as well as 
an increased risk of hospitalization, number of hospitalizations, and inpatient length 
of stay [ 13 ]. Much of the early data suggested frailty in PAWH was associated with 
uncontrolled HIV/weight loss/wasting, but more recent data suggest frailty in HIV 
has been associated with obesity and intramuscular adiposity, as seen in HIV- 
uninfected older persons [ 59 ,  61 ,  63 ]. 

 Frailty is potentially mediated more by infl ammation and body composition than 
by HIV infection itself. This is compounded by the fact that optimal immune func-
tion may be hindered by age-related changes that are independent of virologic 
 suppression [ 46 ,  64 ]. In PAWH, frailty is associated with central obesity, sarcope-
nia, and increased muscle fat density for age [ 65 ]. Oursler et al. showed that, despite 
ART, physical function in PAWH aged 50 years and older was worse compared to 
HIV-uninfected people [ 60 ]. Regardless of age, HIV-infected patients with chronic 
pulmonary disease had worse physical function compared to HIV-uninfected peo-
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ple, such that a 50 year old person with HIV and chronic obstructive pulmonary 
disease (COPD) had functional measurements approximating a 68 year old person 
with COPD, but without HIV [ 60 ]. Within populations of PAWH, the prevalence of 
frailty is increased in people who also use intravenous drugs [ 43 ]. Not surprisingly, 
frail PAWH have a high prevalence of comorbidities, including hypertension, 
COPD, viral hepatitis, dementia, and cancer; this pattern of multi-morbidity mirrors 
trends seen in the larger population of PAWH [ 11 ]. 

 Beyond the effects that frailty may have on physical health and mental well- 
being, this phenotype has implications for healthcare delivery and models of care. 
Guideline-driven care may not be practical or universally applicable to PAWH if 
their risks of various conditions change at different age breakpoints or based on fac-
tors other than what has been measured in the foundational studies. Use of more 
tailored prediction tools such as the VACS Index may be more applicable due to 
incorporation of multiple biomarkers [ 46 ].  

3.4     Neurocognitive Impairment 

 A full examination of the neurologic manifestations of HIV and even discussion 
limited to cognitive impairment is beyond the scope of this review. Briefl y, 50 % of 
PAWH will develop an HIV-associated neurocognitive disorder (HAND) [ 43 ,  66 ]. 
HAND is a spectrum of clinical conditions ranging from asymptomatic neurocogni-
tive impairment (ANI – least severe) to HIV-associated dementia (HAD – most 
severe, previously known as “AIDS Dementia Complex”) [ 67 ] (Fig.  2 ). The symp-
toms can be largely reversed with ART, but the incidence of HAND is associated 
with worse adherence. The impact of HAND is marked with HAND being associ-
ated with decreased ability to complete daily functions, poorer quality of life, and 
shorter survival. While the incidence and prevalence of HAND are decreasing due 
to ART, the incidence and prevalence of ANI and mild neurocognitive disorder 
(MND) are stable to increasing, spurring a recommendation for universal neurocog-
nitive screening of PAWH [ 67 ,  68 ]. Furthermore, HIV itself may alter brain struc-
ture, despite ART, thus, the full expression of HIV-related cognitive disorders may 
require time to become apparent [ 69 ].

3.5        Quality of Life and Mental Health 

 Compared to HIV-uninfected people, PAWH (ages ≥ 50 years) are not as happy, 
optimistic about aging, or resilient [ 43 ,  70 ]. They also experience more perceived 
stress, anxiety about the future, and lower quality of physical and mental health 
[ 70 ]. Social isolation, a common occurrence in older adults regardless of HIV sta-
tus, is associated with increased risk for hospitalization and all-cause mortality. The 
social networks for older PAWH may shrink due to common age-related factors 
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(e.g. age-related deaths, limited transportation, geographic isolation) and/or more 
HIV-specifi c factors: loss of peers earlier in the HIV/AIDS epidemic, stigma, mar-
ginalization in the current make-up of the epidemic [ 43 ,  71 ,  72 ]. While both HIV- 
infected and HIV-uninfected older adults may experience social isolation to some 
degree, HIV infection alone is associated with increased risk and prevalence of 
social isolation [ 71 ].   

4     Potential Mechanisms Linking Chronic HIV Infection 
with Age-Related Conditions 

4.1     Immunological Similarities Between HIV Infection 
and Healthy Aging 

 The overlapping burden of morbidities and SNAEs in PAWH and aged individuals 
has led to the hypothesis that similar pathogenic mechanisms are driving the devel-
opment of these diseases in both populations. Indeed there are many immunological 
parallels between chronic HIV infection and healthy aging which are summarized 
in Table  2  and discussed in detail below.
      Adaptive Immune Changes 
 The reduced number of naïve T cells and reduced CD4:CD8 T cell ratio observed in 
the aged is a hallmark of T cell immunosenescence [ 73 ,  74 ] and also occurs in HIV- 
infected individuals due in part to thymic involution and reduced regenerative 
capacity [ 75 ,  76 ]. Low CD4:CD8 T cell ratio is an independent predictor of non- 
AIDS mortality [ 77 ] and cardiovascular disease risk [ 78 ,  79 ] in HIV-infected 
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  Fig. 2    The spectrum of HIV-associated neurocognitive impairment       
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individuals, suggesting T cell immunosenescence has important clinical implica-
tions in the context of PAWH. Importantly, the majority of HIV-infected individuals 
on long term ART fail to normalize the CD4:CD8 T cell ratio, despite restoration of 
CD4+ T cell levels [ 80 ]. Elderly HIV-uninfected and HIV-infected individuals also 
exhibit increased T cell activation (as measured by expression of the activation 
markers HLA-DR and CD38) [ 76 ,  81 ], an increased susceptibility to spontaneous 
apoptosis [ 82 ,  83 ] and an expansion of ‘senescent’ memory CD8+ T cells which 
lack expression of the co-stimulatory molecule CD28, contain shortened telomeres 
and exhibit a reduced proliferative potential [ 84 – 86 ]. Expansion of this cell popula-
tion is thought to be largely driven by chronic antigenic stimulation by cytomegalo-
virus (CMV), with a large proportion of CD8+ T cells in both HIV-infected and 
aged individuals being specifi c for CMV epitopes (discussed further below). 
However, there are phenotypic differences in the T cells expanded due to HIV infec-
tion and those observed in CMV+ HIV seronegative individuals, in that the former 
show an increased number of transitional memory cells and a reduced proportion of 
CD28- cells expressing CD57 (a marker of reduced proliferative capacity), with low 
levels of this population being associated with increased risk of mortality [ 87 ]. 
These observations suggest that although there are many phenotypic similarities 
between HIV infection and aging, the mechanistic drivers, and thus immunological 
consequences of, senescent T cell expansion in HIV and aging may be subtly 
different. 

 While the above mentioned immunological alterations due to HIV are signifi -
cantly improved by ART, they typically fail to normalize, and defects including 
reduced naïve T cell proportions, inverted CD4:CD8 T cell ratios and increased T 
cell activation largely persist in virologically suppressed HIV-infected individuals 
(reviewed in [ 88 ]). Furthermore, aging appears to impact negatively on the immu-
nological benefi t of ART and associated reductions in immune activation, with 
older HIV-infected individuals exhibiting muted naïve T cell regeneration following 
ART initiation [ 89 ], suggesting immunological aging may heighten HIV-related 
immune dysfunction in older HIV-infected individuals. 

 During aging, there is a reduction in the number of both total and memory B cells 
and defects emerge in class switching and antibody production which are thought to 
contribute to impaired vaccine response in the elderly [ 81 ,  90 ]. Viremic HIV infec-
tion is similarly associated with reduced total and memory B cell numbers together 
with hypergammaglobulinemia, increased cellular activation and increased suscep-
tibility to apoptosis [ 91 ]. ART reverses many of these defects, although virologi-
cally suppressed HIV-infected individuals continue to show impaired antibody 
production, reduced vaccine responses and an incomplete restoration of memory B 
cells [ 92 ,  93 ]. Markers of HIV disease severity including viral load and immune 
activation are associated with an increased frequency of regulatory B cells (Bregs), 
which inhibit CD8+ T cell proliferation and function via a mechanism involving 
IL-10 and PD-1 [ 94 ], which may potentiate immune dysfunction in HIV. Bregs 
from HIV-infected individuals constitutively express higher levels of IL-6, IL-10 
and cellular activation markers, suggesting increased Breg activation in vivo [ 95 ]. 
Interestingly, older HIV-infected individuals show an altered pattern of B cell resto-
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HIV Infection Aging

T cells

Decreased naïve and increased memory T cells
Decreased CD4:CD8 T cell ratio

Expansion of senescent CD8+ CD28-T cells
Expansion of CMV-specific CD8+ T cells

B cells

Decreased numbers and proportion of mature/memory B cells
Impaired class switching and antibody production, leading to

impaired vaccine response

Monocytes/Macrophage

Impaired phagocytosis
Increased proportion CD16+ inflammatory monocytes

Increased expression of cellular activation markers
Increased TLR4-stimulated cytokine/chemokine production

Dysfunctional TLR-responses

Natural Killer (NK) cells
Expansion of CD56dim population (acute HIV infection only)
Impaired cytokine production (modest decline in aging) 

Increased activation
Increased spontaneous ADCC
Expansion of CD56-
population
Impaired cytotoxic potential

Dendritic cells Reduced numbers in blood (pDC in HIV and mDC in aging)

Impaired response to TLR 7/8
stimulation
Increased activation in pDC

Impaired chemotaxis and antigen
uptake 

Neutrophils Increased basal activation Decreased chemotaxis

Impaired phagocytosis, migration, respiratory burst and
intracellular killing

Inflammation Increased plasma levels of IL-6, TNF, hsCRP

Soluble markers of
immune activation

Increased plasma levels of CXCL10, sCD14, sCD163, neopterin

Gut integrity

Increased plasma concentrations of LPS
Increased levels of gut permeability markers I-FABP and/or

zonulin-1

Oxidative stress Increased plasma markers of oxidative stress

Telomere length Shortened (PBMC, T cells, monocytes)

  Shaded cells indicate immunological changes which occur in both HIV infection and aging  

   Table 2    Comparison of immunological changes observed in HIV infection and aging       
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ration after ART initiation, including expansion of the naïve population to levels 
greater than those in uninfected individuals [ 96 ], suggesting that HIV and age may 
potentiate immune dysfunction in PAWH. These studies collectively indicate that 
HIV infection induces a phenotype within the adaptive immune system which 
resembles age-related immunosenescence and immune dysfunction, and viral sup-
pression associated with ART only partially improves these parameters.  

4.1.1     Innate Immune Changes 

 Immunological similarities are also seen between HIV infection and healthy aging 
within the innate immune system. Monocytes from both HIV-infected individuals 
and the elderly show impaired phagocytic function, increased TLR4-mediated pro-
duction of pro-infl ammatory cytokines and chemokines and an increase in pheno-
typic markers of activation, including an expansion of the infl ammatory CD16+ 
monocyte subset [ 97 – 101 ]. Viral suppression associated with ART appears to nor-
malize some of these changes, such as the proportions of CD16+ subsets, whilst 
other markers of monocyte dysfunction persist [ 97 ,  102 ]. Elevated levels of soluble 
plasma monocyte/innate immune activation markers including the chemoattractant 
CXCL10 (released from IFNγ-stimulated monocytes), neopterin and soluble(s) 
receptors CD14 and CD163 (shed from activated monocytes/macrophages) are ele-
vated in both the elderly and HIV-infected individuals and although ART reduces the 
levels of these markers in HIV infection, they fail to normalize [ 97 ,  98 ,  103 – 107 ]. 

 An increase in total NK cell number, due to expansion of the CD56 dim  population 
occurs during aging and in acute HIV infection [ 74 ,  108 ]. Aging is associated with 
a minimal impairment of NK cell cytotoxic function and cytokine production [ 109 –
 111 ], whilst overall cytolytic activity is impaired in HIV infection (most  prominently 
in viremic infection) which may be due in part to expansion of an anergic CD56 neg  
population in HIV-infected individuals [ 108 ]. NK cells from both viremic and viro-
logically suppressed HIV-infected individuals show heightened basal activation 
[ 112 ,  113 ] and spontaneous ADCC activity [ 112 ], whilst cytokine production is 
impaired [ 114 ]. The functionality of neutrophils is similarly impaired in HIV infec-
tion as in aging, as evidenced by impaired phagocytosis and oxidative burst but a 
heightened basal level of activation [ 115 ]. The impact of age on the number, activa-
tion state and function of dendritic cells remains unclear due to confl icting fi ndings 
(reviewed in [ 116 ]), although chemotaxis and antigen uptake are impaired in aged 
humans [ 117 ,  118 ] whilst HIV infection is associated with impaired ex vivo response 
of plasmacytoid dendritic cells to TLR7 ligands [ 119 ]. Taken together, these data 
suggest that a signature of increased activation but dysregulated function is a com-
mon effect of both HIV infection and aging on innate immune cells, although much 
work is required to fully defi ne the extent of these effects. It is important to note that 
many of the above mentioned age-related immunological changes have been 
observed in cross-sectional studies of HIV-infected individuals with varying degrees 
of immunosuppression both prior to and following ART initiation. Future 
 longitudinal studies are required in cohorts of individuals who initiate ART early 
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and maintain immunocompetence to adequately determine the impact of virologi-
cally suppressed HIV infection on age-related immune changes in PAWH.   

4.2     Telomere Shortening 

 The presence of telomeres at the ends of chromosomes protects the DNA from dam-
age and preserves the replicative potential of the cell. Telomere length progressively 
decreases with age and triggers replicative senescence, which contributes to immu-
nosenescence and immune aging [ 120 ]. Telomere shortening is associated with risk 
of a range of age-related diseases including malignancies [ 121 ], cardiovascular/
metabolic disease [ 122 – 124 ] and neurocognitive disease [ 125 ,  126 ] (summarized in 
Table  3  and reviewed in [ 195 ]) and has been linked with premature death in a large 
prospective study in Denmark [ 123 ]. HIV infection is associated with heightened 
telomere shortening within both T cells [ 85 ] and monocytes [ 97 ]. However, epide-
miological links between shortened telomeres and HIV-related co-morbidities have 
received little investigation to date.

   Telomere length is maintained within cells via the action of telomerase and pre-
mature telomere shortening in HIV infection may be due to reduced activity of this 
critical enzyme. The HIV proteins Vpr [ 196 ] and Tat [ 197 ] have been shown to 
inhibit telomerase in vitro whilst HIV-infected individuals appear to have an 
impaired ability to upregulate telomerase in response to cell stimulation [ 198 ]. 
Antiretroviral therapy may also contribute to premature telomere shortening as the 
nucleos(t)ide reverse transcriptase inhibitor (NRTI) drugs can inhibit the telomerase 
reverse transcriptase (TERT) component of human telomerase. In vitro studies have 
shown that even modern, relatively non-toxic NRTIs such as tenofovir and 
 emtricitabine show inhibitory effects on human TERT [ 199 ,  200 ], and can acceler-
ate telomere loss in cultured cells [ 199 ] whilst a small cross-sectional study found 
telomeres from individuals on NRTI-containing regimens were shorter than HIV 
negative controls and HIV-infected individuals taking non-NRTI containing regi-
mens [ 200 ]. NRTIs remain the backbone of ART regimens throughout the world, 
but the accumulated consequences of decades of NRTI-treatment on oxidative stress 
and telomere shortening remain to be defi ned.  

4.3     Oxidative Stress 

 An imbalance between levels of oxidants and anti-oxidants occurs during aging, 
resulting in increased plasma markers of oxidative stress in the elderly [ 201 ,  202 ] 
which contribute to immunosenescence and infl amm-aging (reviewed in [ 203 ]). 
HIV infection is also associated with increased levels of oxidative stress, with 
decreased plasma levels of anti oxidant factors such as glutathione and increased 
levels of the oxidative stress marker malondialdehyde found in both viremic and 
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     Table 3    Associations between immunological changes occurring during aging/HIV infection and 
morbidity/mortality   

 HIV-infected 
 General 
population 

 Marker  Outcome/risk factor 

  Infl ammation  
 Cardiovascular/metabolic 
disease 

 IL-6  Cardiovascular events 
[ 127 ,  128 ], obesity [ 129 ] 

 Sudden cardiac 
death [ 130 ,  131 ], 
cardiovascular 
events [ 131 – 134 ] 

 hsCRP  Cardiovascular events 
[ 127 ,  128 ], progression 
of cIMT [ 135 ], metabolic 
syndrome [ 136 ], diabetes 
[ 137 ] 

 Cardiovascular 
events [ 131 ,  138 ], 
insulin resistance 
[ 139 ] 

 sTNFRI/II  Obesity [ 129 ], diabetes 
[ 137 ] 

 Cardiovascular 
events [ 138 ] 

 TNF  Coronary artery calcium 
[ 140 ] 

 Neurocognitive impairment  IL-6  [ 141 ]  [ 132 ] Future 
cognitive decline 
[ 142 ] 

 hsCRP  [ 132 ,  143 ] 
 sTNFR-I/II  [ 144 ] 
 TNF  Alzheimer’s 

disease [ 145 ,  146 ] 
 Malignancies  IL-6, hsCRP  All cancers [ 147 ]  All cancers [ 148 ] 

 D-Dimer  All cancers [ 147 ] 
 TNF  All cancers [ 148 ] 

 Bone disease/osteoporosis  hsCRP  Bone mineral 
density [ 149 ], 
fracture risk 
[ 150 ], future bone 
mineral density 
loss [ 151 ] 

 IL-6  Future bone 
mineral density 
loss [ 151 ,  152 ] 

 TNF  Future bone 
mineral density 
loss [ 151 ] 

 Frailty/disability  IL-6  [ 153 ,  154 ]  [ 132 ,  155 ] 
 TNF  [ 153 ] 
 CRP  [ 153 ]  [ 132 ,  156 ] 

 Mortality  sTNFRI, 
hsCRP 

 [ 157 ] 

(continued)
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Table 3 (continued)

 HIV-infected 
 General 
population 

 Marker  Outcome/risk factor 

  Loss of gut integrity/microbial translocation  
 Cardiovascular/metabolic 
disease 

 LPS  Progression of cIMT 
[ 158 ], endothelial 
dysfunction [ 159 ], 
hypercholesterolemia 
[ 160 ], insulin resistance 
[ 160 ], hypertension 
[ 161 ] 

 Metabolic 
syndrome [ 162 ] 

 LBP  Metabolic 
syndrome [ 163 ] 

 Neurocognitive impairment  LPS  [ 141 ,  164 ] 
 Malignancies  LPS  Non-Hodgkin’s 

lymphoma [ 165 ] 
 Mortality  IFAB-1, 

zonulin 
 [ 157 ] 

  Monocyte/innate immune activation  
 Cardiovascular/metabolic 
disease 

 sCD14  Increased cIMT [ 166 ], 
cIMT progression [ 158 ], 
coronary calcifi cation 
[ 167 ], hypertension 
[ 161 ] 

 Diabetes [ 169 ], 
hypertension 
[ 169 ] 

 sCD163  Arterial infl ammation 
[ 170 ], non-calcifi ed 
coronary artery plaques 
[ 171 ] 

 Atherosclerosis 
[ 172 ], insulin 
resistance [ 139 , 
 173 ,  174 ], 
diabetes [ 175 ] 

 MCP-1  Coronary artery calcium 
[ 140 ] 

 Neurocognitive impairment  sCD14  [ 141 ,  144 ,  176 ,  177 ] 
 sCD163  [ 178 ] 
 Neopterin  Alzheimer’s 

disease [ 179 ] 
 Malignancies  sCD14  Non-Hodgkin’s 

lymphoma [ 165 ] 
 Frailty/disability  Neopterin  [ 180 ] 
 Mortality  sCD14  [ 157 ] 
  T cell activation/senescence  
 Cardiovascular/metabolic 
disease 

 HLADR + 
CD38+ 
T cells 

 Carotid artery plaques 
[ 181 ,  182 ], carotid artery 
stiffness [ 183 ] 

 Bone disease/osteoporosis  T cell 
activation 

 Bone mineral density 
[ 184 ] 

 Mortality  Low CD8+ 
CD28- CD57+ 
T cells 

 [ 185 ] 

(continued)
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Table 3 (continued)

 HIV-infected 
 General 
population 

 Marker  Outcome/risk factor 

  Telomere shortening  
 Cardiovascular/metabolic 
disease 

 Leukocyte 
telomere 
length 

 Increased cIMT 
[ 122 ,  185 ], risk of 
myocardial 
infarction and 
stroke [ 122 – 124 ], 
Diabetes [ 122 ] 

 Monocyte 
telomere 
length 

 Type 2 diabetes 
[ 187 ] 

 Neurocognitive impairment  Leukocyte 
telomere 
length 

 Dementia [ 125 ] 

 Monocyte 
telomere 
length 

 Alzheimer’s 
disease [ 126 ] 

 Malignancies  Epithelial cell 
telomere 
length 

 Epithelial cancer 
[ 121 ] 

 Telomere 
length in 
mucosal tissue 

 Early stages of 
gastric carcinoma 
[ 188 ] 

 Early death  Leukocyte 
telomere 
length 

 [ 123 ,  125 ] 

  Cytomegalovirus (CMV) infection  
 Cardiovascular/metabolic 
disease 

 CMV 
seropositivity 

 Type 2 diabetes 
[ 189 ], mortality in 
coronary artery 
disease patients 
[ 190 ] 

 CMV-specifi c 
T cells 
responses 

 cIMT [ 191 ] 

 CMV IgG  Carotid artery disease 
[ 192 ] 

 Frailty/disability  CMV IgG  [ 193 ] 
 Mortality  CMV IgG 

 CMV 
seropositivity 

 All-cause 
mortality [ 193 ], 
cardiovascular 
related deaths 
[ 194 ] 
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virologically suppressed HIV-infected individuals [ 204 ,  205 ]. High intracellular 
levels of the antioxidant factors N-acetylcysteine and glutathione inhibit HIV repli-
cation in infected cells [ 206 ] whilst low levels of these factors are associated with 
increased NF-kB-mediated transcription of HIV and a heightened ability of the pro- 
infl ammatory cytokine TNF to activate HIV transcription [ 207 ], suggesting a posi-
tive feedback loop between infl ammation and HIV replication. The mechanism 
responsible for decreased anti oxidant levels in HIV may involve the HIV Tat pro-
tein, which has been shown in mouse models to decrease production of anti oxidants 
and induce mitochondrial damage [ 208 ]. Certain antiretroviral (ARV) drugs includ-
ing PIs and NRTIs increase the production of reactive oxygen from cells treated 
in vitro [ 209 ]. Consistent with this, one study reported higher levels of oxidative 
stress in ART-treated individuals as compared to both untreated HIV-infected and 
uninfected individuals, however the HIV-infected individuals in this study had sig-
nifi cantly higher levels of a number of confounding factors including concurrent 
hepatitis C infection [ 210 ]. More data from virologically suppressed HIV-infected 
cohorts with adequate control of variables which may potentially infl uence oxida-
tive stress are required to determine the impact of oxidative stress on immune aging 
in the modern ART era.  

4.4     Chronic Infl ammation and Immune Activation 

 Increased infl ammation is one of the cornerstones of immunological aging and 
geroscience, and appears to be potentiated by HIV infection. Indeed, chronic infl am-
mation and related immune activation likely has the greatest impact on morbidity 
and mortality in PAWH in the post-ART era. Infl ammaging is a well-documented 
state of chronic, low-grade infl ammation occurring progressively with age and is 
associated with the development of many age-related morbidities and functional 
decline in the elderly [ 211 ]. Markers of infl ammation including IL-6, TNFα and 
high-sensitivity C-reactive protein (hsCRP) are elevated in both HIV-infected indi-
viduals and the elderly [ 212 ,  213 ] and are associated with increased risk of SNAEs 
including CVD, frailty, malignancies, bone disease and neurocognitive decline. 
Infl ammation is intrinsically linked with cellular activation, and biomarkers of 
immune activation and infl ammation are increasingly being recognised as risk pre-
dictors of infl ammatory diseases in HIV infection, as they are in the aged (see 
Table  3 ). Biomarkers of monocyte/macrophage activation including plasma levels 
of sCD163 and sCD14 are predictive of age-related diseases including neurocogni-
tive impairment/dementia [ 141 ,  176 – 178 ], malignancies [ 165 ] and also mortality 
[ 214 ] in HIV infection (see Table  3 ). Chronic monocyte/macrophage activation 
appears to be particularly relevant for the development of CVD in HIV infection; 
biomarkers of monocyte activation including the proportion of infl ammatory CD16+ 
monocytes, the expression of monocyte activation markers (i.e. CD11b) and the 
soluble activation markers mentioned above are associated with atherosclerosis and 
its progression [ 158 ,  159 ,  215 ], arterial infl ammation [ 170 ], coronary calcium score 
[ 167 ] and the presence of non-calcifi ed carotid plaques [ 171 ] in HIV-infected 
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individuals. Importantly, these associations have been made in cohorts of primarily 
virologically suppressed individuals, suggesting mechanisms other than overt HIV 
viremia are involved. Indeed, in the post-ART era, markers of infl ammation and/or 
immune activation are emerging as more relevant predictors of disease outcome and 
death in virologically suppressed individuals than traditional HIV biomarkers such 
as viral load and CD4+ T cells count [ 157 ,  216 ]. Recent data reporting an associa-
tion between sCD163 levels and telomere length [ 217 ] provide a direct link between 
monocyte/macrophage activation and potentiation of immunological aging. Given 
chronic infl ammation/immune activation and resultant disease burden are similar 
between HIV-infected individuals and the aged, the question arises to what extent 
the mechanisms driving these phenomena are similar in both populations and what 
contributing factors may be unique to HIV infection.   

5     Factors Potentiating Age-Related Changes and Morbidity 
in HIV-Infected Individuals 

 The development of SNAEs in PAWH is multifactorial, and typically results from 
the combined effects of traditional risk factors, HIV-specifi c effects, and a potentia-
tion of age-related changes (see Fig.  3 ).

5.1       Traditional Risk Factors 

 Traditional risk factors for disease development are highly relevant for the aging 
HIV-infected population, not only as they are often more readily modifi able but also 
because they may potentiate HIV-specifi c factors. Many cohort studies report a 
higher prevalence of smoking amongst HIV-infected participants [ 218 – 220 ], and 
whilst illicit drug use is higher within certain high risk HIV-infected populations, 
this variable is often not adequately assessed or controlled for in HIV cohort studies. 
Relevant to the development of cardiovascular disease, HIV infection is associated 
with dyslipidemia and metabolic alterations, which are discussed further below.  

5.2     Metabolic Alterations 

 Hyperglycemia occurs in up to 17 % of HIV-infected individuals receiving ART and 
diabetes mellitus is more common in HIV infected vs seronegative people [ 221 ], 
with some studies reporting up to a fourfold increased risk due to HIV [ 222 ]. Insulin 
resistance in ART-treated HIV infection is largely associated with the use of prote-
ase inhibitor antiretroviral drugs, which act to inhibit the glucose transporter Glut-4 
[ 223 ], although hepatitis C virus (HCV) co-infection, infl ammation and immunode-
fi ciency also contribute to insulin resistance and diabetes in HIV infection [ 221 ]. 
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High glucose levels have been shown to increase the susceptibility of CD4+ T cells 
in HIV infection in vitro by upregulating the expression of the HIV co-receptor 
CXCR4 [ 224 ], whilst increased expression of Glut-1 on T cells from HIV-infected 
individuals (irrespective of ART) is associated with T cell activation and immuno-
defi ciency [ 169 ]. Taken together, these data suggest that metabolic alterations due 
to both HIV and its treatment not only increase the risk of co-morbidities such as 
diabetes, but may also perpetuate HIV replication and immune activation to further 
drive immune exhaustion and senescence in PAWH. 

 HIV-related lipodystrophy syndrome is common in HIV infection, and includes 
lipoatrophy (loss of subcutaneous fat) and dyslipidemia. Lipoatrophy appears to be 
largely due to PI and NRTI use, particularly the NRTIs stavudine and zidovudine 
(reviewed in [ 225 ]). Whilst HIV infection per se is associated with lipid alterations 
including high triglyceride and low HDL levels (thought to be due to the effect of 
infl ammation on lipid peroxidation, reactive oxygen species production and vascu-
lar changes [ 226 ,  227 ]), the majority of dyslipidemia observed in the post-ART era 
is due to the specifi c effects of antiretroviral drugs.  

5.3     Antiretroviral Drugs 

 Although highly effective in inhibiting HIV replication and maintaining immune 
health, many antiretroviral drugs, particularly the NRTIs, have some degree of tox-
icity which is at least partially attributable to effects on the mitochondria. The 
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  Fig. 3    Mechanism contributing to the pathogenesis of SNAEs in HIV-infected individuals       
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ability of NRTIs to inhibit HIV reverse transcription is due to structural similarities 
between NRTIs and endogenous nucleos(t)ides, and whilst nuclear DNA polymer-
ases are not signifi cantly affected by NRTIs, the mitochondrial replicase pol γ is 
inhibited by NRTIs at physiologically relevant levels, resulting in depletion of mito-
chondrial DNA and increased oxidative stress (reviewed in [ 208 ]). Specifi cally, zid-
ovudine and stavudine have been shown to increase oxidative stress in a number of 
cell types including adipocytes and macrophages [ 228 ]. As discussed above, NRTIs 
are also able to inhibit the RT component of cellular telomerase and may potentially 
contribute to premature telomere shortening. Interestingly, certain NRTIs have 
recently been shown to be able to inhibit NLRP3 infl ammasome-mediated activa-
tion of caspase-1 and subsequent production of the pro-infl ammatory cytokines 
IL-1β and IL-18 [ 229 ], suggesting NRTIs may have an unexpected infl uence on 
cytokine production in HIV-infected individuals receiving these drugs. 

 HIV-infected individuals treated with ART have a relative risk of CVD of 1.52 
(95 % CI 1.35–1.70) compared to untreated individuals [ 230 ], suggesting ART may 
contribute to the pathogenesis of CVD. Indeed, recent use of certain PIs and the 
NRTIs abacavir and didanosine has been associated with increased risk of myocar-
dial infarction [ 231 ,  232 ] although the association with abacavir was not reproduced 
in a randomised control trial and remains controversial [ 233 ]. The increased risk 
attributable to PIs is largely due to an effect on lipid levels, as 70–80 % of HIV- 
infected individuals receiving PI-containing ART regimens show elevated lipid 
 levels [ 226 ]. Most PIs (with the possible exception of atazanavir) have been shown 
to induce dyslipidemia involving increased plasma concentrations of triglycerides, 
total cholesterol and LDL [ 234 ], all of which are known risk factors for cardiovas-
cular disease. The mechanism involves a direct effect of PIs on adipocyte differen-
tiation and also an ability of these drugs to inhibit factors involved in lipid transport 
and metabolism [ 227 ]. 

 Untreated HIV infection results in loss of bone mineral density which contrib-
utes to increased fracture risk and osteoporosis (as discussed above), but ART- 
initiation potentiates this effect and results in a further loss of bone mineral density 
of approximately 2–6 % within the fi rst 2 years of ART initiation. This effect is 
thought to be due to disruption of the delicate immunological balance in the bone 
marrow which governs osteogenesis, and specifi c antiretroviral drugs including the 
NRTI tenofovir [ 235 ] and the protease inhibitor class of drugs have been shown to 
potentiate bone loss in ART-treated individuals [ 236 ]. 

 The relatively recent introduction of ART, combined with the lengthy and mul-
tifactorial pathogenesis of many HIV-related co-morbidities, means that signifi -
cant associations between specifi c ARVs and disease outcomes are continuing to 
emerge. HIV-infected individuals initiating therapy in the early days largely did 
so with low CD4 counts and received ARVs which have since been phased out 
due to side effects and toxicities. Thus, ongoing and future longitudinal studies 
will be critical for evaluating the long term effects of current ARVs on immune 
changes and the development of age-related diseases in HIV-infected individuals 
who avoid signifi cant immunological damage by initiating ART at higher CD4 T 
cell counts.   
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6     Mechanisms That May Contribute to Chronic 
Infl ammation and Immune Activation in HIV 

6.1     Microbial Translocation and Endotoxemia 

 HIV infection is associated with increased permeability of the gut to microbial 
products, which translocate across the gut epithelium and eventually into the blood-
stream, resulting in increased plasma levels of the bacterial endotoxin lipopolysac-
charide (LPS) and bacterial DNA in HIV-infected individuals [ 237 ]. The cause of 
increased gut barrier permeability in HIV infection is due to immunodefi ciency and 
structural defects within the gut-associated lymphoid tissue (GALT) resulting from 
HIV-mediated T cell depletion [ 238 ]. The majority of lymphocytes in the body are 
contained in GALT, which is an important site for both pathogenesis and persistence 
of HIV. CD4+ T cells are rapidly depleted from the GALT during primary HIV 
infection and remain depleted into chronic infection. Studies in Simian 
Immunodefi ciency Virus (SIV)-infected macaques (a pathogenic animal model of 
HIV infection) have revealed that peak infection of CD4+ T cells in the lamina 
propria of the gut occurs within 10 days of infection, at which point 93 % of target 
CD4+ memory T cells are infected [ 239 ]. While effective ART suppresses viral 
replication and restores peripheral CD4+ T cells, gut-associated CD4+ T cells 
remain depleted years after ART initiation [ 240 ]. Interestingly, a subset of HIV- 
infected individuals who maintain high CD4+ T cells counts and low/undetectable 
viral loads in the absence of ART (known as long term non-progressors) maintain 
normal CD4+ T cell levels in the GALT [ 241 ], suggesting the importance of this 
compartment for disease pathogenesis. The mechanism of increased gut permeabil-
ity in HIV involves epithelial disruption and decreased production of tight junction 
proteins in the distal portions of the colon [ 242 ] which is consistent with increased 
levels of intestinal fatty acid binding protein (I-FABP; a marker of enterocyte dam-
age) and zonulin-1 (a regulator of tight junction permeability) in the plasma of HIV- 
infected individuals [ 157 ,  243 ]. The inability to fully restore GALT structure and 
function despite effective restoration of peripheral T cells by ART means that 
chronic endotoxemia (elevated levels of LPS in the blood) persists in virologically 
suppressed HIV-infected individuals. Lipopolysaccharide (LPS) is a potent immune 
activator which is recognised by toll-like receptor (TLR)-4 expressing cells such as 
monocytes/macrophages in an immune complex consisting of LPS-binding protein 
(LBP), the adaptor protein MD2 and either soluble or cell-bound CD14. LPS signal-
ling stimulates the production of pro-infl ammatory cytokines including IL-6, TNF 
and type I interferons. Microbial translocation is considered a signifi cant driver of 
both HIV disease and related co-morbidities, with gut translocation markers such as 
LPS, the LPS binding protein LBP and I-FABP/zonulin-1 associated with immune 
activation and HIV disease progression [ 237 ,  244 ,  245 ], cardiovascular and meta-
bolic disease [ 159 ,  160 ], neurocognitive impairment [ 141 ] and mortality [ 157 ,  216 ]. 

 In contrast to HIV, relatively little is known regarding the effect of age on the 
integrity of the gut epithelium in humans [ 246 ], however work in  Drosophila  has 
demonstrated that loss of intestinal barrier integrity occurs with aging and is a better 
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predictor of age-related morbidity and death than chronological age [ 247 ]. Increased 
plasma levels of LPS [ 98 ] and LBP [ 248 ] in the elderly indicate microbial transloca-
tion, may also increase during aging and the inverse association between LBP levels 
and physical function in the aged [ 248 ] suggests it may also contribute to morbidity 
in this population, although this requires further investigation. 

6.1.1     Alterations to the Gut Microbiome 

 Within the GALT, cytokines including IL-17 and IL-22 play a critical role in maintain-
ing gut integrity and orchestrating the mucosal immune responses to gut pathogens. 
Depletion of CD4+ T cells from the gut during HIV infection reduces the production 
of these cytokines and disrupts the delicate mucosal immunological balance. The gut 
microbiome interacts intimately with mucosal immunity and helps educate and regu-
late immune cells. Signifi cant alterations are observed in the gut microbiome of HIV-
infected individuals, with sequence analysis of bacterial communities from stool/gut 
mucosa samples revealing an overall increase in genetic diversity, an expansion of 
 Prevotella  and potentially pathogenic bacteria and a reduced proportion of  Bacteroidia  
species [ 249 – 252 ]. Importantly, these changes in microbial communities are associ-
ated with infl ammation, innate and adaptive immune activation and markers of disease 
progression in HIV-infected individuals. ART appears to only partially normalize the 
bacterial composition of the microbiome in a proportion of treated individuals [ 251 ]. 
A higher proportion of bacteria from the order  Lactobacillales  (lactic acid-producing 
bacteria) in the distal gut of ART naïve individuals has been associated with more 
favorable immunological parameters including higher pre-ART CD4+ T cells counts 
and CD4:CD8 T cells ratio but lower viral loads and sCD14 levels [ 253 ]. The complex 
interplay between the gut microbiome, GALT immunity and systemic infl ammation/
immune activation continues to be elucidated but may reveal an important mechanism 
of persistent immune dysfunction in HIV which can be targeted therapeutically.  

6.1.2     Cytomegalovirus (CMV) and Latent Viral Infections 

 Accumulative immune stimulation by pathogens and subsequent immune exhaus-
tion is an integral mechanism of immune aging and heightened pathogen burden 
due to concurrent and reactivated viral infections may hasten this process in 
PAWH. While CMV-seropositivity rates vary considerably between different coun-
tries (ranging from 40 to >90 %), there is a consistent trend of increasing seroposi-
tivity with age [ 254 ] and CMV is recognized as a signifi cant driver of 
immunosenescence [ 255 ,  256 ]. CMV infection profoundly shifts the lymphocyte 
subset proportions towards a differentiated memory T cell phenotype [ 257 ,  258 ]. In 
aged individuals, the proportion of CD8+ T cells specifi c for a small number of 
CMV epitopes can represent up to 27 % of the total CD8+ pool [ 259 ], with these 
cells typically being dysfunctional and exhibiting an immunosenescent phenotype 
[ 260 ]. CMV seropositivity has also been associated with an increased risk of age- 
related diseases such as cardiovascular disease [ 261 ]. 
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 CMV disease is a signifi cant cause of morbidity and mortality in HIV-infected 
individuals with AIDS and/or severe immunodefi ciency [ 262 ], while asymptomatic 
CMV infection also appears to potentiate immunosenescence in HIV-infected indi-
viduals. CMV infection is almost ubiquitous in the HIV-infected population with 
seropositivity rates of approximately 95 % [ 263 ] and the presence of IgM antibodies 
suggests viral reactivation/reinfection commonly occurs [ 264 ]. Levels of CMV- 
specifi c CD8+ T cells are up to twice as high in HIV-infected as in uninfected indi-
viduals and persist in ART-treated individuals despite long term virological 
suppression [ 265 ], which is consistent with reactivation and impaired immune con-
trol [ 263 ]. HIV-infected/CMV seronegative subjects show higher CD4:CD8 T cells 
ratios and less phenotypic evidence of immunosenescence than HIV/CMV sero-
positive individuals [ 266 ] whilst serum CMV IgG levels, which are increased in 
HIV-infected individuals, correlate with infl ammatory markers [ 267 ]. Taken 
together, these observations suggest that CMV seropositivity may potentiate HIV- 
related immunosenescence and infl ammation and hasten the aging process. 

 Although ART reduces HIV viral load to near undetectable levels in the plasma, 
residual HIV replication (up to 20 copies/mL) can be detected in the plasma of the 
majority of virologically suppressed individuals using ultra-sensitive assays [ 268 ]. 
In addition, ongoing HIV replication may persist at higher levels within anatomical 
sites such as lymphoid tissue where antiretroviral drugs may fail to penetrate to 
effective therapeutic concentrations. Reactivation/replication of other latent viruses 
including Epstein–Barr virus (EBV) and Herpes Simplex Viruses (HSV) also appears 
to be heightened in HIV-infected individuals, likely due to increased immune activa-
tion. HSV-2 reactivation occurs frequently in HIV-infected individuals, is positively 
associated with HIV viral load [ 269 ] and is shed more frequently in HIV-infected vs 
seronegative individuals [ 270 ]. EBV viral loads in HIV-infected individuals are 
reportedly greater than those in EBV+ HIV-uninfected individuals [ 271 ]. 

 Human endogenous retroviruses (HERVs) are a family of replication defective 
viral elements which comprise up to 8 % of the human genome. Although thought 
to be largely silent, increased transcription of HML-2 RNA (a member of the 
HERV-K family) has been demonstrated in PMBCs from HIV-infected individuals 
[ 272 ] and has also been detected at increased levels in plasma in some [ 273 ] but not 
all [ 272 ] studies. Increased HERV transcription may be due to heightened immune 
activation and/or the ability of the HIV Tat protein to activate endogenous retroviral 
transcriptional elements [ 274 ]. Although cause and effect are diffi cult to delineate, 
it is clear that heightened infl ammation/immune activation and reactivation of latent 
viral infections may constitute a self-perpetuating cycle contributing to immune 
exhaustion and immunosenescence in many PAWH.  

6.1.3     Concurrent Infections 

 The development of age-related morbidities in HIV-infected individuals can be 
infl uenced by concurrent infection with a range of pathogens. Co-infection with 
HCV can be up to 90 % in certain high risk HIV+ groups, and is associated with an 
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increased risk of coronary heart disease [ 275 ], osteoporotic fracture [ 276 ], and neu-
rocognitive impairment [ 277 ], suggesting hepatitis C infection may potentiate the 
pathogenesis of these conditions. The mechanism of this is unclear, although a 
potentiation of infl ammation and immune activation is likely, and increased levels 
of pro-infl ammatory factors such as IL-6 have been demonstrated in HIV/HCV co- 
infected, as compared to mono or uninfected individuals [ 278 ]. Active HCV infec-
tion is also associated with shorter leukocyte telomere length in those with HIV 
[ 279 ]. Taken together, these data suggest that HCV co-infection may further 
heighten infl ammation/immune activation and associated immunosenescence in 
HIV-infected individuals and potentiate the development of age-related diseases. 

 HIV-infected individuals co-infected with tuberculosis (TB) have signifi cantly 
increased pro-infl ammatory cytokine production [ 280 ] and ART initiation in highly 
immunocompromised HIV+/TB+ individuals often results in TB-associated 
immune reconstitution infl ammatory syndrome, which results in signifi cant 
 pro- infl ammatory cytokine production [ 281 ]. Heightened CD4+ T cell activation 
and pro-infl ammatory cytokine production also occurs in malaria co-infection 
[ 282 ]. These observations suggest concurrent infections may further potentiate 
infl ammation due to HIV and aging in co-infected individuals, however further 
studies are required to elucidate the full impact of these effects on age-related dis-
ease outcomes.    

7     Potential Treatments/Interventions to Alleviate the Effects 
of HIV on Aging/SNAEs 

 The immunological similarities between HIV infection and aging (particularly 
chronic infl ammation and its consequences) suggest that addressing mechanism of 
aging may alleviate premature aging and disease pathogenesis in HIV-infected indi-
viduals. A large number of preliminary trials are underway to address immune acti-
vation, infl ammation, microbial translocation and other mechanisms of enhanced 
aging in PAWH, but none has yet demonstrated effi cacy in defi nitive clinical trials 
[ 283 – 287 ]. If this is accomplished in PAWH, it will have vast implications for aging 
in general and may be applicable to a much broader population.  

8     Concluding Remarks 

 The success of antiretroviral therapy in preventing AIDS and extending the life span 
of HIV-infected people has revealed unexpected parallels between the impact of 
HIV infection and aging on immune function. Current research is only beginning to 
uncover how HIV may be potentiating age-related changes and the consequences of 
this for premature aging and increased risk of age-related comorbidities in those 
living and aging with HIV. It is still unclear whether HIV-associated ‘aging’ is the 
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result of chronic infection, or whether those infected with HIV at an older age may 
experience similar effects. Furthermore, the impact of long-term ARV drug use on 
age-related process remains to be fully elucidated. HIV infection further compli-
cates the many health challenges experienced by aging individuals including multi- 
morbidity, polypharmacy, impaired physical and mental health and reduced quality 
of life. Uncovering the critical processes which drive age-related changes and iden-
tifying therapeutic strategies to ameliorate the residual effects of HIV will be impor-
tant for ongoing management of the increasingly aging HIV-infected population.     
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