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Abstract. Intelligent decision support should allow integrating human
knowledge with efficient algorithms for making interpretable and useful
recommendations on real world decision problems. Attitudes and prefer-
ences articulate and come together under a decision process that should
be explicitly modeled for understanding and solving the inherent con-
flict of decision making. Here, risk attitudes are represented by means of
fuzzy-linguistic structures, and an interactive methodology is proposed
for learning preferences from a group of decision makers (DMs). The
methodology is built on a multi-criteria framework allowing imprecise
observations/measurements, where DMs reveal their attitudes in linguis-
tic form and receive from the system their associated type, characterized
by a preference order of the alternatives, together with the amount of
consensus and dissention existing among the group. Following on the sys-
tem’s feedback, DMs can negotiate on a common attitude while searching
for a satisfactory decision.

Keywords: Interval mutlicriteria · Fuzzy-linguistic structures · Human-
system interaction · Consensus-dissention · Social decision making

1 Introduction

Uncertainty is naturally present in real-world decision problems. In fact, uncer-
tainty is always present in human evaluations, measurements and judgments,
which represent the available information that has to be dealt with for gaining
relevant knowledge and making decisions. Under this view, support is required to
give decision makers (DMs) useful and insightful feedback for arriving at satis-
factory solutions. Based on multi-criteria decision modeling (see e.g. [5,13,22]),
in particular the Weighted Overlap Dominance (WOD) procedure [13] which
deals with imprecise (interval) data problems, we address the specific chal-
lenge of handling risk decision attitudes for intelligent decision support (see e.g.
[6,10,16,27,28]).

The decision support system (DSS) process dynamics that will be examined
throughout this paper is illustrated in Fig. 1, being composed by three main
phases, namely INFO, WOD and IACT:
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1. INFO. All the available information is introduced into the system, consisting
in a fixed set of alternatives, a given set of interval-valued criteria with their
respective weights, and the risk attitudes of DMs.

2. WOD. For every DM, alternatives are ordered according to their weighted
multi-dimensional interval scores, obtaining for every pair of alternatives
either a dominance/outranking or an indifference relation.

3. IACT. The system learns the type of every DM according to an associated
preference order, measuring the amount of consensus and dissention among
types, so DMs can negotiate/rectify their attitudes, restarting the process at
INFO while searching for a satisfactory/optimal solution. The process stops
when no further consensus can be reached.

INFO 

WOD 

IACT

Fig. 1. The DSS process dynamics

Focusing on WOD, it is stated that one alternative outranks/dominates
another one if there is sufficient evidence for affirming so, otherwise they are
considered to be indifferent [7,13]. Under this approach, the verification of suf-
ficient evidence is examined in relation to the risk attitude of the DM (as it will
be examined in detail in Sect. 4). Hence, the inherent conflict of the multicrite-
ria problem, associated to the incomparability [20] among alternatives, can be
explained by learning the different attitudinal types of DMs, like opposing pos-
tures (sources of disagreement) which have to come closer together for finding
a social decision. In this way, the objective of this paper is to establish a deci-
sion support methodology that builds useful and reliable knowledge from the
linguistic interaction with DMs, aiding their negotiation process while searching
for results with greater coherence among them, maximizing group consensus by
reducing (pairwise) minimal dissention among types.

In order to do so, this paper is organized as follows. Section 2 offers an outline
of the WOD inference process as it was originally presented in [13]. Section 3
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introduces fuzzy-lingustic structures, presenting the preliminary concepts that
are used in Sect. 4 for modeling risk attitudes. In Sect. 5 the methodology for
learning the types of DMs is explained, and in Sect. 6 the DSS human-system
interaction is summarized under Algorithm 3, producing decision support while
searching for an agreement on the social solution. Finally there are some notes
and comments concerning open problems for future research.

2 Inferring Preferences from Imprecise Data

The WOD procedure [13] allows coping with the natural imprecision of real
life observations and measurements, as given by interval values. This procedure
makes use of criteria weights and risk attitude parameters to make sense of the
interval data, identifying the preference relations holding among the alternatives.
In short, the WOD procedure consists in the following.

Consider a set of decision makers D, a set of alternatives N and a set of
criteria C, such that for every alternative a ∈ N and criterion i ∈ C there is a
lower and upper bounded valuation, respectively given by xL

ai, x
U
ai ∈ [0, 1], such

that xL
ai ≤ xU

ai, scoring alternatives according to the characteristic property of
the criterion. Every criterion has an associated weight expressing its relative
importance, given by wi ∈ R

+, and every decision maker e ∈ D has a subjective
decision attitude represented by parameters βe ∈ [0, 1] and γe ∈ R

+.
Therefore, for every alternative a ∈ N , the suitability of a regarding the set

of criteria C, |C| = m, is given by the multi-dimensional (hyper) cube,

ca =
[
xL

a1, x
U
a1

] × · · · × [
xL

am, xU
am

]
. (1)

Based on this information, a pairwise comparison process is developed among
alternatives a, b ∈ N , such that

∑m
i=1 wix

U
ai ≥ ∑m

i=1 wix
U
bi. According to the

amount of overlap between ca and cb, the WOD procedure infers the preference
relation holding among a and b. There are three kinds of overlap, namely no
overlap, partial overlap and complete overlap. In the case of no overlap, such
that

m∑

i=1

wix
L
ai >

m∑

i=1

wix
U
bi, (2)

it certainly holds that a dominates b, which is represented by the outranking
relation �, such that

a � b. (3)

On the other hand, if there is partial overlap, such that

m∑

i=1

wix
L
ai >

m∑

i=1

wix
L
bi (4)

and
m∑

i=1

wix
U
ai >

m∑

i=1

wix
U
bi, (5)
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then it holds that,
a � b ⇔ P (a, b) > β. (6)

Here P (a, b) expresses a proxy for the likelihood that alternative a in fact
dominates alternative b, due to the possibility that some point in (or randomly
taken from) ca can be greater than another point from cb (see [13] for a specific
example on how to estimate such proxy). This likelihood has to be higher than
β in order for a to outrank b. Otherwise, if

P ≤ β, (7)

then both alternatives are said to be indifferent, such that

a ∼ b. (8)

Lastly, if there is complete overlap, such that

m∑

i=1

wix
L
ai <

m∑

i=1

wix
L
bi (9)

and
m∑

i=1

wix
U
ai >

m∑

i=1

wix
U
bi, (10)

then it holds that,
a � b ⇔ G(a, b) > γ, (11)

where G(a, b) expresses the likelihood that any point belonging to ca is greater
than any other point in cb (see again [13] for more details). Hence, if G(a, b) is
greater than γ, it holds that a � b. Otherwise, it either holds that b � a or a ∼ b
if it is respectively verified that G(a, b) is less than or equal to γ.

Notice that the indifference relation of the WOD procedure, due to the inter-
val nature of data, does not hold as a transitive or equivalence relation. There-
fore, the outranking order assigned on N is semi-transitive, such that for every
a, b, c ∈ N it holds that a � b, b � c �⇒ c � a (see again [13] but also [7]).

Under this framework, the parameters β and γ denote risk thresholds for
establishing an outranking relation, such that their meaning is being modeled in
direct relation to a crisp number. On the other hand, acknowledging the general
character of words, concepts and perceptions, it is necessary to take a closer look
at the correspondence between DMs’ risk attitudes and their numerical transla-
tion/estimation. Thus, a given attitude should at least refer to a set of values,
which under an explicit semantic structure, allows incorporating the gradualness
and generality of its numerical estimation.

In order to undertake computations with attitudes under the DSS (see again
Fig. 1), the estimation of linguistic values for β and γ can be examined through
the computing with words and perceptions paradigm (see [30–32], but also
[18,23]). Thus, the following analysis is based on the intuition that language is
the means to represent the subjective thinking process and the relation between



82 C. Franco et al.

perception and reality, enhancing the interaction with technology and the affec-
tive (decision-wise) states of DMs.

The complete procedure for the articulation of binary preference relations is
specified under the WOD Algorithm 1. In the following section fuzzy-linguistic
structures are introduced, which will be later used for undertaking a linguistic
modelization of the attitudes explaining the β and γ parameters.

Algorithm 1. WOD algorithm
Input: For every a ∈ N and i ∈ C, the hyper cubes ca, the criteria weights wi and for
every e ∈ D, the risk attitude parameters βe and γe.
Output: For every e ∈ D, a preference order on N .
(WOD −1) For every a, b ∈ N , establish an outranking or indifference relation accord-
ing to (1)-(11).

3 Fuzzy-Linguistic Structures

Fuzzy logic [30,31] allows representing the meaning of words and concepts, exam-
ining human reasoning through natural/ordinary language. Under this approach,
commonly known as the Computing with Words paradigm [9,11,14,32], words
are taken as linguistic terms that are susceptible of being represented by fuzzy
sets. Thus, through their associated membership functions, the meaning of fuzzy
sets is supported by a particular structure maintaining a specific order among
them (see e.g. [6,17,18]). Such structure is here referred to as a fuzzy-linguistic
structure.

Addressing the general character of words, and in particular of gradable
predicates that are succeptible of verification up to a certain degree, fuzzy sets
are an appropriate tool for designing the means of such verification process. In
this way, a fuzzy set representing a linguistic term can be regarded as containing
a core and a support, such that its core is the subset of the universe U where
the term is known to hold true, while its co-support consists in the subset of U
where it is known that it does not hold true. Hence, there is a space in between
the core and the co-support that can be gradually filled in by a continuous and
monotone transition (in fact, the specific form of this transition is a matter of
design [24,25]), representing the intensity in which the elements of U verify the
meaning of the fuzzy set. Thus, the elements belonging to the core are considered
to have absolute intensity, while the ones belonging to the co-support have null
intensity.

For a general valuation scale L, the membership function μ : U → L can
be expressed as an ordered quadruple of the ordinates (μ1, μ2, μ3, μ4), such that
the interval [μ1, μ4] stands as the support and the interval [μ2, μ3] stands as the
core of the fuzzy set. So, for any pair of consecutive linguistic terms lt, lt+1 ∈ L,
respectively represented by μlt and μlt+1 , the order relation � is defined such
that μlt � μlt+1 holds only if μ3

lt
≤ μ1

lt+1
and μ4

lt
≤ μ2

lt+1
. Now, fuzzy-linguistic

structures can be defined as follows.
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Definition 1. Given a set of different and consecutive linguistic labels L =
{l1, l2, ..., lT }, where each label lt ∈ L, t = 1, 2, ..., T , is represented by means of
a fuzzy set with a membership function given by μlt = (μ1

lt
, μ2

lt
, μ3

lt
, μ4

lt
), a fuzzy-

linguistic structure is such that for any pair of consecutive labels lt, lt+1 ∈ L, it
holds that μlt � μlt+1 .

In this way, a fuzzy-linguistic structure contains the reference ordered set of
linguistic terms, such that l1 and lT are respectively the minimum and maxi-
mum objects of the structure. This approach can be further developed to handle
words in a manner that is more approximate to natural language and its use of
gradable predicates, taking into consideration linguistic modifiers and linguistic
aggregation operators, following the initial proposal of [18] (see also [6]).

Linguistic modifiers can be defined as unary functions M : L → L, such that
their effect on the meaning of the terms can be either compressing or expanding
[18]. A compressing M is such that for any lt ∈ L, it holds that M(lt) ⊂ lt, while
an expanding M is such that lt ⊂ M(lt). Some examples for compressing M can
be “very”-lt, “strictly”-lt or “strongly”-lt, while for an expanding M , they can
be “around”-lt, “almost”-lt or “roughly”-lt.

For example, given a linguistic term lt ∈ L represented by means of the
membership function μlt , and given an averaging operator k, a compressing M ,
denoted by CM , is such that

CM(μlt) = (k(μ1
lt , μ

2
lt), μ

2
lt , μ

3
lt , k(μ3

lt , μ
4
lt)), (12)

and an expanding M , denoted by EM , is such that

EM(μlt) = (μ1
lt , k(μ1

lt , μ
2
lt), k(μ2

lt , μ
3
lt), μ

4
lt). (13)

On the other hand, linguistic aggregation operators allow using the existing
linguistic labels to generate new labels, such that new terms can appear in
between any pair of consecutive terms, while maintaining the order among the
linguistic components of the structure [6,18]. In this way, a new term can arise
in between any pair lt, lt+1 ∈ L, by means of an operator specifically designed
for the inclusion of new linguistic labels.

Definition 2. Given a fuzzy-linguistic structure, the in between linguistic aggre-
gation operator is a mapping LA : L2 → L such that for any pair of
consecutive terms lt, lt+1 ∈ L and their associated fuzzy sets, it holds that
CM(μlt) � LA(μlt , μlt+1) � CM(μlt+1).

In this way, given two averaging operators k1, k2, such that for any pair of
elements u1, u2 ∈ U it holds that k1(u1, u2) ≤ k2(u1, u2), LA can be taken as in
the following example, previously undertaking the compression of the consecutive
terms, as in νlt = CM(μlt) and νlt+1 = CM(μlt+1),

LA(lt, lt+1) = (ν3
lt , k1(ν

3
lt , ν

2
lt+1

), k2(ν3
lt , ν

2
lt+1

), ν2
lt+1

). (14)

Under the general framework of fuzzy-linguistic structures, the design of dif-
ferent examples for M and LA can be further developed, including more lin-
guistic terms and modifiers that preserve the order relation among every pair
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lt, lt+1 ∈ L,while enhancing the granularity of L as much as required (see [6,18]).
Its application for the representation and measurement of risk attitudes will be
explored next.

4 Measuring Risk Attitudes with Fuzzy Linguistic
Structures

Based on fuzzy-linguistic structures, the β and γ risk attitudes can be modelized
and incorporated in the articulation of preferences under the WOD interactive
decision process. The incorporation of attitudes is particularly relevant for deci-
sion support under imprecision, where attitudes play a central role (see e.g.
[28,29], but also [7]). In this sense, examining the meaning of risk as a concept
which is used by DMs, the attitude towards risk can be measured on a linguis-
tic scale built from the two opposite categories of aversion and proneness (see
[1,15,19] for a general view on the evaluation of attitudes under different bipolar
evaluation spaces).

As it has been examined in Sect. 2 and the DSS process dynamics of Fig. 1,
attitudes guide the articulation of preferences through the interaction between
the system and the group of DMs. In particular, attitudes towards risk refer to
the amount of evidence needed to affirm an outranking relation for every pair
a, b ∈ N , such that a � b (�), instead of having that a ∼ b (∼) or even that b � a
(�−1), the latter only for the case of complete overlap and the parameter γ.

Therefore, high values of β correspond with a low risk attitude, because an
outranking relation will only hold if there is a high amount of evidence existing
in favor of �. In this way, β is defined over a scale with minimum element 0,
denoting high risk, and a maximum element K = 1, denoting low risk, with
an indeterminate space of medium risk consisting of being in between high and
low risk attitudes (see Fig. 2). So, if β is close to 0, the attitude towards risk
is considered to be of risk proneness, and if β is close to 1, then the attitude
is considered to be of risk aversion, being the middle attitude regarded as risk
neutrality. Notice that here neutrality refers to a middle attitude (as in [8,19]),
although a linearity between extreme and neutral attitudes may not necessarily
hold (see e.g. [15,17]).

On the other hand, on the contrary to the partial overlap case of β, γ refers to
the three possibilities of obtaining �, ∼ or the inverse relation �−1, where every
time that � does not hold, it reciprocally holds that �−1, such that �= 〈�,∼〉.
Hence, γ is measured over a scale with a minimum element 0, denoting high
risk for affirming � (or inversely, low risk for affirming �−1), and a maximum
element K ∈ R

+, denoting low risk for affirming � (or inversely, high risk for
affirming �−1). Thus, there is some space for a medium state of risk consisting of
being in between high and low risk attitudes (see again Fig. 2), where low values
of γ denote a risk prone attitude, high values denote a risk averse attitude, and
intemediate values denote a risk neutral attitude.

Overall, the risk attitude parameters β and γ refer to the measurement of
attitudes with respect to three basic components, namely proneness, neutrality
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High      Low

0 K 

Fig. 2. Measuring risk attitudes for affirming � on a commonl linear scale for β and γ

and aversion, ordered according to a specific structure that holds among them.
Acknowledging the general character of words, those terms naturally refer to a
region or interval of the numerical scale, suggesting their correspondence with a
set of numbers instead of a correspondence with a unique number. Even more,
adjacent terms suggest a gradual intersection between them, where e.g. dimin-
ishing intensities of risk proneness may coincide with increasing intensities of
risk neutrality.

In consequence, a risk attitude R can be measured with respect to a basic
fuzzy-linguistic structure LR, composed of at least the two opposite and most
extreme linguistic labels (l1, lT ) of proneness (l1) and aversion (lT ), such that,

LR = {l1 = prone, lT = averse}. (15)

Based on this basic structure, the meaning of the terms can be modified,
where it is possible for the decision maker to express linguistic grades of risk by
attaching different words to the terms, such as “very”or “strictly” in the case
of the compressing modifiers CM , or of “roughly”or “around” in the case of
expanding EM . Besides, with the use of aggregation operators, such as the in
between operator LA, new terms can emerge from any pair of consecutive terms,
enabling the decision maker to create and use a new term for valuing attitudes.
For example, the first new term consists in being neither “prone”nor “averse”,
but “in between”them, denoting the state of l2 =risk neutrality (see Fig. 3, where
the opposite terms l1 and lT compress, making room for l2). Following the same
line of reasoning, the decision maker can be as specific as required, e.g. being
“in between neutral and prone” or “roughly strongly-averse”.

As a result, the attitude towards risk for DMs can be expressed by some (M
or LA) modifed term in LR, assigning linguistic values for computing with β
and γ parameters. In this way, for every ordinate of the fuzzy set representing a
given attitude, the WOD phase infers an order, so in the next phase the different
types of DMs can be identified, as it will be examined in the next section.

5 Learning Types for Decision Support

Following the decision process, the system computes a preference order for every
DM according to their attitudes. As it has been pointed out in Sect. 2, the
outranking order resulting from Algorithm 1 is a semi-transitive one, such that
a definite procedure can be used to further refine it and learn a weak order or
ranking.
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Fig. 3. Emergence of the middle term denoting a “neutral” attitude

Alternatives are ranked according to their relevance [7], taking into account
the amount and the importance of the alternatives that they outrank. In this
way, for every alternative a ∈ N , the relevance of a is given by σ(a), such that,

σ(a) = sa +
∑

∀b∈Sa

sb, (16)

where Sa is the set of alternatives that are dominated/outranked by a, and
sa = |Sa|.

The procedure for learning types of DMs is summarized under Algorithm 2.
First, for every DM e ∈ D, there is a linguistic term denoting e’s attitude, given
by let ∈ LR. The system then computes an (outranking semi-transitive) order
on N , resulting from the WOD evaluation of every ordinate of the membership
function representing let . All four ordinates are then aggregated into an overall
ranking by means of (16). Having identified all the rankings that follow from the
information given by DMs, the system returns the set of types Θ explaining the
different attitudes.

Thus, different attitudes can obtain the same characteristic order, implying
that the type of a DM can be completely described by a unique order and all the
attitudes associated to it.

Algorithm 2. Learning Types (LT) algorithm
Input: For every e ∈ DM , the linguistic value let denoting their risk attitude.
Output: The set of types Θ.
(LT − 1) Compute the WOD algorithm (1) for every ordinate of μlt .
(LT − 2) Aggregate the outranking orders associated to let by means of the relevance
ranking operator (16).
(LT − 3) Assign to every non-equivalent ranking a distinct type q ∈ Θ.

Therefore, types q ∈ Θ are completely described by a ranking ρq of N and
their associated risk attitudes {lt}ρq . Once the types of DMs are known, the
system can offer support for resolving conflict among them, aiming at reducing
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the number of incomparable alternatives as it will be explained in the next
section. The goal of the system focuses on using the linguistic interaction with
and within DMs for maximizing consensus and arriving at a social satisfactory
solution.

6 Intelligent Decision Support

The interactive human-system dynamics of Fig. 1 can now be addressed under
the setting described by Algorithm 2, such that the decision process is guided
towards reducing discrepancies among DMs. The system aids in identifying the
predominant types and suggesting negotiation paths to arrive at an agreement
or socially acceptable solution maximizing consensus.

Given the set of types θ, the group consensus is measured by the general
consensus index CI = 1/|Θ|. Complementing the information on consensus,
dissention degrees are introduced here to measure the distances among pairs of
types.

In this way, for every a ∈ N and q, q′ ∈ Θ, the system computes the position
of a in rankings ρq and ρq′

, denoted respectively by ρq
a and ρq′

a , and obtains the
overall dissention degree ds(q, q′), such that,

ds(q, q′) =
∑

∀a∈N

dist(ρq
a, ρq′

a ), (17)

where dist represents a given distance measure (see e.g. [2]), like e.g. the 1-norm
distance,

dist(ρq
a, ρq′

a ) = |ρq
a − ρq′

a |. (18)

The decision process aims at maximizing consensus (see Algorithm 3), based
on the previous calculation of dissention degrees among all the different pairs of
types. Thus, the system identifies all pairs q, q′ ∈ Θ with minimal dissention, so
DMs can look for an agreement among the nearest types, negotiating a common
attitude that increases the general consensus index CI. In consequence, under
the complete DSS process dynamics, attitudes not only guide the articulation of
preferences through the interaction between the system and the group of DMs,
but also (and under the same linguistic form) guide the negotiation among the
different DMs.

Algorithm 3. Minimal dissention (MD) algorithm
Input: For every e ∈ D, the risk attitudes associated to e.
Output: All pairs q, q′ ∈ Θ with minimal dissention.
(MD−1) For every e ∈ D, learn the type for e according to the LT-algorithm, identify
the pairs q, q′ ∈ Θ with minimal dissention and repeat for every new input until
CI = 1 or no further negotiation is possible (CI remains constant for a fixed number
of iterations).
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7 Conclusions

A DSS methodology has been provided with the purpose of aiding the consen-
sus/negotiation process between different DMs. The system infers individuals’
preferences from their attitudes towards risk, learns the predominant types of
DMs and measures the dissention and consensus among them. DMs can use the
knowledge generated by the system to search for a satisfactory decision or iden-
tify the source of the conflict making it impossible to arrive at a unique (optimal)
social solution.

It remains for further research to test and implement the DSS dynamic
process in a real-case scenario, exploring the difficulties that may emerge in
a real negotiation process. From a theoretical standpoint, the estimation for the
likelihood of dominance between intervals/hypercubes remains to be explored in
more detail, as well as the ranking and consensus procedures, which should be
compared with other techniqes found in literature (see e.g. [3,4,12,21,26]).
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