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Abstract. This paper discusses a decision maker’s attitude regarding
risks, for example risk neutral, risk averse and risk loving in micro-
economics by the convexity and concavity of utility functions. Weighted
quasi-arithmetic means on two-dimensional regions are introduced, and
some conditions on utility functions are discussed to characterize the
decision maker’s attitude. Risk premiums on two-dimensional regions are
given and demonstrated. Some approaches to construct two-dimensional
utilities from one-dimensional ones are given, and a lot of examples of
weighted quasi-arithmetic means are shown.

1 Introduction

Weighted quasi-arithmetic means are important tools for subjective estimation
of data in decision making such as management, artificial intelligence and so
on, and they are also strongly related to utility functions in micro-economics
(Fishburn [3]). Yoshida [9–11] has studied weighted quasi-arithmetic means
of an interval by weighted aggregation operations where Kolmogorov [6] and
Nagumo [7] studied the aggregation operators and Aczél [1] developed the the-
ory regarding weighted aggregation. Yoshida [11] has discussed the relations
between weighted quasi-arithmetic means on an interval and decision maker’s
attitude regarding risks.

For a continuous strictly increasing function ϕ : [a, b] �→ (−∞,∞) as a deci-
sion maker’s utility function and a continuous function ω : [a, b] �→ (0,∞) as a
weighting function, a weighted quasi-arithmetic mean on a closed interval [a, b]
is defined by

ϕ−1

(∫ b

a

ϕ(x)ω(x) dx

/ ∫ b

a

ω(x) dx

)
. (1.1)

Equation (1.1) is mathematically a mean value given by a real number μ(∈ [a, b])
satisfying

ϕ(μ)
∫ b

a

ω(x) dx =
∫ b

a

ϕ(x)ω(x) dx (1.2)
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in the mean value theorem for integration. On the other hand, since ϕ is contin-
uous and strictly increasing, decision maker’s risk averse attitude is described as
the following condition:

ϕ(E(X)) ≥ E(ϕ(X)) (1.3)

for all real valued random variables X, where E(·) denotes the expectation with
some probability measure. Its equivalent representation with density function
and normalization is

ϕ(ν)
∫ b

a

ω(x) dx ≥
∫ b

a

ϕ(x)ω(x) dx (1.4)

for all weighting functions ω, where ν(∈ [a, b]) is the risk neutral mean defined by

ν =
∫ b

a

x ω(x) dx

/∫ b

a

ω(x) dx. (1.5)

From (1.2) and (1.4), decision maker’s risk averse attitude is represented by μ ≤
ν. On the other hand, (1.3) implies the concavity of the function ϕ. Therefore the
following correspondence between the concavity of the function ϕ and weighted
quasi-arithmetic means μ and ν holds [11]:

ϕ′′ ≤ 0 ⇐⇒ μ ≤ ν. (1.6)

In this paper, we investigate weighted quasi-arithmetic means on two-
dimensional regions, and we discuss whether this kind of relation (1.6) still holds
or does not on two-dimensional regions.

In Sect. 2 we discuss a decision maker’s attitude regarding risks, for example
risk neutral, risk averse and risk loving in micro-economics by the convexity and
concavity of utility functions. In Sect. 3 we introduce weighted quasi-arithmetic
means on two-dimensional regions, and we discuss conditions on utility functions
to characterize the decision maker’s attitude. In Sect. 4, we demonstrate risk
premiums on two-dimensional regions, which is one of important concepts for
risk management in economics. In Sect. 5 we give a few approaches to construct
two-dimensional utilities from one-dimensional utilities, and we show a lot of
examples of weighted quasi-arithmetic means.

2 Risk Neutral, Risk Averse and Risk Loving

In this section, we discuss the convexity and concavity of utility functions on
two-dimensional regions to characterize the decision maker’s attitude regarding
risks.

Let a two-dimensional space R
2 = (−∞,∞)2 and let a domain D be a non-

empty open convex subset of R2. Let a utility f be a twice continuously differen-
tiable (C2-class) function on D which is strictly increasing, i.e. fx(x, y) > 0
and fy(x, y) > 0 for (x, y) ∈ D. We introduce concepts about a decision
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maker’s attitude regarding risks with his utility f . Let (Ω,P ) be a probabil-
ity space, where Ω is a non-empty sample space and P is a non-atomic prob-
ability measure on Ω. Let X be a family of all real valued random variables
X : Ω �→ R. A pair of random vectors is called a random vector in this paper.
Let X (D) = {random vectors (X,Y ) : Ω �→ D, X, Y ∈ X}.

Definition 2.1 (Risk and decision making, [2–5]).

(i) Decision making with a utility function f : D �→ R is called risk neutral if

f(E(X), E(Y )) = E(f(X,Y )) (2.1)

for all random vectors (X,Y ) ∈ X (D).
(ii) Decision making with a utility function f : D �→ R is called risk averse if

f(E(X), E(Y )) ≥ E(f(X,Y )) (2.2)

for all random vectors (X,Y ) ∈ X (D).
(iii) Decision making with a utility function f : D �→ R is called risk loving if

f(E(X), E(Y )) ≤ E(f(X,Y )) (2.3)

for all random vectors (X,Y ) ∈ X (D).

These decision maker’s attitudes are related to the concavity and the con-
vexity of his utility function f [9–11]. Hence we introduce the definitions of the
concavity and the convexity of utility functions on two-dimensional regions [8].

Definition 2.2 (Concavity and convexity).

(i) A function f : D �→ R is called concave if

f((1 − θ)x1 + θx2, (1 − θ)y1 + θy2) ≥ (1 − θ)f(x1, y1) + θf(x2, y2) (2.4)

for all (x1, y1), (x2, y2) ∈ D and all real numbers θ satisfying 0 ≤ θ ≤ 1.
(ii) A function f : D �→ R is called strictly concave if

f((1 − θ)x1 + θx2, (1 − θ)y1 + θy2) > (1 − θ)f(x1, y1) + θf(x2, y2) (2.5)

for all (x1, y1), (x2, y2) ∈ D satisfying (x1, y1) 
= (x2, y2) and all real num-
bers θ satisfying 0 < θ < 1.

(iii) A function f : D �→ R is called convex if

f((1 − θ)x1 + θx2, (1 − θ)y1 + θy2) ≤ (1 − θ)f(x1, y1) + θf(x2, y2) (2.6)

for all (x1, y1), (x2, y2) ∈ D and all real numbers θ satisfying 0 ≤ θ ≤ 1.
(iv) A function f : D �→ R is called strictly convex if

f((1 − θ)x1 + θx2, (1 − θ)y1 + θy2) < (1 − θ)f(x1, y1) + θf(x2, y2) (2.7)

for all (x1, y1), (x2, y2) ∈ D satisfying (x1, y1) 
= (x2, y2) and all real num-
bers θ satisfying 0 < θ < 1.
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The concavity and the convexity of utility functions are characterized with
differentials as follows (Rockafellar [8]).

Lemma 2.1 Let a utility f : D �→ R be a C2-class function on D such that fx >
0 and fy > 0 on D.

(i) The following (a)–(c) are equivalent:
(a) f is concave (strictly concave respectively).
(b) Its Hessian matrix

H =
(

fxx fxy

fyx fyy

)

is negative semi-definite (negative definite).
(c) f satisfies

fxx ≤ 0, fyy ≤ 0 and |H| = fxxfyy − f2
xy ≥ 0 (2.8)

(fxx < 0, fyy < 0 and |H| = fxxfyy − f2
xy > 0) (2.9)

on D.
(ii) The following (a’)–(c’) are equivalent:

(a’) f is convex (strictly convex respectively).
(b’) Its Hessian matrix

H =
(

fxx fxy

fyx fyy

)

is positive semi-definite (positive definite).
(c’) f satisfies

fxx ≥ 0, fyy ≥ 0 and |H| = fxxfyy − f2
xy ≥ 0 (2.10)

(fxx > 0, fyy > 0 and |H| = fxxfyy − f2
xy > 0) (2.11)

on D.

By Jensen’s inequality, we obtain the following lemma from Definitions 2.1
and 2.2.

Lemma 2.2

(i) If a utility function f : D �→ R is linear, i.e. f(x, y) = αx + βy + γ for
(x, y) ∈ D where real constants α, β, γ satisfying α > 0 and β > 0, then
decision making with the utility f is risk neutral.

(ii) If a utility function f : D �→ R is concave, then decision making with the
utility f is risk averse.

(iii) If a utility function f : D �→ R is convex, then decision making with the
utility f is risk loving.
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3 Weighted Quasi-Arithmetic Means on Two-Dimensional
Regions

In this section, we introduce weighted quasi-arithmetic means on two-
dimensional regions, and we discuss conditions on the decision maker’s utility
functions to characterize his attitude for risks based on the weighted quasi-
arithmetic means. Let a domain D be a non-empty open convex subset of
R

2, and let a utility f be a C2-class strictly increasing function on D. Now
we take a weighting w as a density function of a random vector (X,Y ) in
Definition 2.1, where we assume w is a once continuously differentiable (C1-
class) positive valued function on D. Denote a family of rectangle regions by
R(D) = {R = I × J | I and J are bounded closed intervals and R ⊂ D}. For a
rectangle region R ∈ R(D), weighted quasi-arithmetic means on region R with
utility f and weighting w are given by a subset Mf

w(R) of R as follows.

Mf
w(R) =

{
(x̃, ỹ) ∈ R | f(x̃, ỹ)

∫∫
R

w(x, y) dx dy =

∫∫
R

f(x, y)w(x, y) dx dy

}
. (3.1)

Then we have Mf
w(R) 
= ∅ since f is continuous on R and

min
(x̃,ỹ)∈R

f(x̃, ỹ) ≤
∫∫

R

f(x, y)w(x, y) dx dy

/ ∫∫
R

w(x, y) dx dy ≤ max
(x̃,ỹ)∈R

f(x̃, ỹ).

Since fx > 0 and fy > 0 on R, there exists an implicit function φ which satisfies
an equation

f(x̃, φ(x̃))
∫∫

R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy, (3.2)

and then φ is strictly decreasing since φ′ = − fx

fy
< 0 on Mf

w(R). Thus the set
of weighted quasi-arithmetic means Mf

w(R) = {(x, y) ∈ R | y = φ(x)} becomes
a continuous strictly decreasing curve segment on R. This curve is called indif-
ference curve for utility function f in economics.

Lemma 3.1 Let a rectangle region R ∈ R(D), and let a utility f be a C2-class
strictly increasing function on D. Let φ be an implicit function for (3.2). Then
the following (i) and (ii) hold:

(i) If f is concave (strictly concave), then its implicit function φ is convex i.e.
φ′′ ≥ 0 (strictly convex i.e. φ′′ > 0 respectively).

(ii) If f is convex (strictly convex), then its implicit function φ is concave i.e.
φ′′ ≤ 0 (strictly concave i.e. φ′′ < 0 respectively).

From Definition 2.1 we introduce the following concept depending on a rec-
tangle region and a weighting function.

Definition 3.1 Let a rectangle region R ∈ R(D). Let a utility function f : D �→
R and let a weighting function w : D �→ (0,∞).
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(i) Decision making with a utility f is called risk neutral on R with weighting
w if

f(xR, yR)
∫∫

R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy, (3.3)

where we define a point (xR, yR) on R by weighted means

xR =
∫∫

R

x w(x, y) dx dy

/ ∫∫
R

w(x, y) dx dy, (3.4)

yR =
∫∫

R

y w(x, y) dx dy

/ ∫∫
R

w(x, y) dx dy. (3.5)

(ii) Decision making with a utility f is called risk averse on R with weighting
w if

f(xR, yR)
∫∫

R

w(x, y) dx dy ≥
∫∫

R

f(x, y)w(x, y) dx dy. (3.6)

(iii) Decision making with a utility f is called risk loving on R with weighting
w if

f(xR, yR)
∫∫

R

w(x, y) dx dy ≤
∫∫

R

f(x, y)w(x, y) dx dy. (3.7)

Hence we investigate the weighted means (3.4) and (3.5) in Definition 3.1.
Let a rectangle region R ∈ R(D). Let a weighting function w : D �→ (0,∞).
From Lemma 2.2(i), we can give a risk neutral utility function g : D �→ R by
a linear function: g(x, y) = αx + βy + γ for (x, y) ∈ D with real constants
α, β, γ satisfying α > 0 and β > 0. Then its weighted quasi-arithmetic means
are reduced to

Mg
w(R) = {(x, y) ∈ R | α(x − xR) + β(y − yR) = 0}, (3.8)

where (xR, yR) is defined by (3.4) and (3.5). In (3.8), it holds clearly that
(xR, yR) ∈ Mg

w(R) for linear risk neutral utility functions g with any real parame-
ters α, β, γ satisfying α > 0 and β > 0. Therefore (xR, yR) is called an invariant
risk neutral point on R with weighting w.

Example 3.1 Fix a domain D = R
2 and a rectangle region R = [0, 1]2 and fix

a weighting function w = 1. Then the invariant risk neutral point is (xR, yR) =
( 12 , 1

2 ). Hence we investigate the following three cases.

(i) (Strictly concave utility f). Take a utility function f as

f(x, y) = −x2 − y2 + 3x + 3y (3.9)

for (x, y) ∈ R
2. Then fx > 0 and fx > 0 on R. We can easily check

f(xR, yR)
∫∫

R

dx dy =
∫∫

R

f(x, y) dx dy +
1
6
.
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Thus the utility f is risk averse on R with weighting w. Its Hessian matrix is

H =
(

fxx(x, y) fxy(x, y)
fxy(x, y) fyy(x, y)

)
=

(−2 0
0 −2

)

and the determinant is |H| = 4 > 0. Therefore the utility f is strictly
concave.

(ii) (Non-concave utility f). Take a utility function f as

f(x, y) = x2 − 2y2 + x + 5y (3.10)

for (x, y) ∈ R
2. Then fx > 0 and fx > 0 on R. We can easily check

f(xR, yR)
∫∫

R

dx dy =
∫∫

R

f(x, y) dx dy +
1
12

.

Thus the utility f is risk averse on R with weighting w. Its Hessian matrix is

H =
(

fxx(x, y) fxy(x, y)
fxy(x, y) fyy(x, y)

)
=

(
2 0
0 −4

)

and the determinant is |H| = −8 < 0. Therefore the utility f is not concave.
(iii) (Non-convex utility f). Take a utility function f as

f(x, y) = 2x2 − y2 + x + 3y (3.11)

for (x, y) ∈ R
2. Then fx > 0 and fx > 0 on R. We can easily check

f(xR, yR)
∫∫

R

dx dy =
∫∫

R

f(x, y) dx dy − 1
12

.

Thus the utility f is risk loving on R with weighting w. Its Hessian matrix is

H =
(

fxx(x, y) fxy(x, y)
fxy(x, y) fyy(x, y)

)
=

(
4 0
0 −2

)

and the determinant is |H| = −8 < 0. Therefore the utility f is not convex.

Example 3.1(ii) shows the concavity of utility f may not be a necessary
condition for the risk averse on R, and Example 3.1(iii) also shows the convexity
of utility f may not be a necessary condition for the risk loving on R. However
it is possible to give the following necessary conditions for risk averse and risk
loving (Fig. 1).

Theorem 3.1 Let a utility f be a C2-class strictly increasing function on D.

(i) If decision making with utility f is risk averse on any rectangle region R ∈
R(D) with any C1-class positive valued weighting function w on D, then it
holds that

fxx ≤ 0 and fyy ≤ 0 on D. (3.12)
(ii) If decision making with utility f is risk loving on any rectangle region R ∈

R(D) with any C1-class positive valued weighting function w on D, then it
holds that

fxx ≥ 0 and fyy ≥ 0 on D. (3.13)
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Fig. 1. Weighted quasi-arithmetic means Mf
w(R) (f(x, y) = −x2 − y2 + 3x + 3y and

w(x, y) = 1 on R = [0, 1]2)

4 Risk Premiums on Two-Dimensional Regions

Risk premiums are one of important concepts in financial theory. In this section
we discuss risk premiums on two-dimensional regions. For this purpose, we intro-
duce the following natural ordering on R

2.

Definition 4.1 (A partial order 
 on R
2). For two points (x, y), (x, y)(∈ R

2),
an order (x, y) 
 (x, y) implies x ≤ x and y ≤ y.

Let a domain D be a non-empty open convex subset of R2. Let a utility f be
a C2-class strictly increasing function on D, and let a weighting w be a C1-class
positive valued function on D. We introduce the following concept from [5].

Definition 4.2 A vector πf
w(R) ∈ [0,∞)2 satisfying the following equation is

called a risk premium for utility f :

f((xR, yR) − πf
w(R))

∫∫
R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy. (4.1)

We denote the set of risk premiums satisfying (4.1) by the following Πf
w(R):

Πf
w(R) = {πf

w(R) | (xR, yR) − πf
w(R) ∈ Mf

w(R), 0 
 πf
w(R)}, (4.2)

where 0 is the zero vector on R
2.

Hence Πf
w(R) is also written as

Πf
w(R) = {(xR, yR) − (x, y) | (x, y) ∈ Mf

w(R) ∩ R
(xR,yR)
− }, (4.3)
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where R
(xR,yR)
− is a subregion dominated by the invariant risk neutral point

(xR, yR) which is defined by

R
(xR,yR)
− = {(x, y) ∈ R | (x, y) 
 (xR, yR)}. (4.4)

Since f is strictly increasing, from (3.6) and (4.1) we obtain the following
theorem.

Theorem 4.1 If decision making with utility f is risk averse on R with weight-
ing w, then there exists a risk premium for utility f , i.e. Πf

w(R) 
= ∅.

Let ‖·‖ be a norm on R
2. Now we estimate risk premiums by norm ‖·‖. Since

Mf
w(R) ∩ R

(xR,yR)
− is a continuous curve, the estimated risk premiums become a

closed interval:

{‖πf
w(R)‖ | πf

w(R) ∈ Πf
w(R)} = [Πf

w(R),Π
f

w(R)], (4.5)

where the maximum risk premium Π
f

w(R) and the minimum risk premium
Πf

w(R) are given from (4.3) as follows:

Π
f

w(R) = max
(x,y)∈Mf

w(R)∩R
(xR,yR)
−

‖(xR, yR) − (x, y)‖, (4.6)

Πf
w(R) = min

(x,y)∈Mf
w(R)∩R

(xR,yR)
−

‖(xR, yR) − (x, y)‖. (4.7)

Hence we define sets of points, which are pairs of two-dimensional weighted
quasi-arithmetic means, to attain the maximum risk premium and minimum
risk premium as follows:

M
f

w(R) = arg max
(x,y)∈Mf

w(R)∩R
(xR,yR)
−

‖(xR, yR) − (x, y)‖, (4.8)

Mf
w(R) = arg min

(x,y)∈Mf
w(R)∩R

(xR,yR)
−

‖(xR, yR) − (x, y)‖. (4.9)

Using these tools, we can estimate risk premiums for risk averse utility. In
Definition 2.1, risk neutral decision making is included in risk averse decision
making and risk loving decision making. As a special case of Theorem 4.1, there-
fore, if decision making is risk neutral then the corresponding risk premium is
Πf

w(R) = {0}. Then Π
f

w(R) = Πf
w(R) = 0 and M

f

w(R) = Mf
w(R) = (xR, yR).

The following Example 4.1 illustrates this concepts.

Example 4.1 We calculate risk premiums for Example 3.1(i). Take a domain
D = R

2 and a rectangle region R = [0, 1]2, and take a weighting function w = 1.
Then the invariant risk neutral point is (xR, yR) = (12 , 1

2 ). Take a strictly concave
increasing utility function f as (3.9). Then the utility f is risk averse on R with
weighting w. From (4.3), we obtain risk premiums
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Πf
w(R) =

{(
1

2
− x,

1

2
− y

)
| −x2 − y2 + 3x + 3y =

7

3
, 0 ≤ x ≤ 1

2
, 0 ≤ y ≤ 1

2

}
. (4.10)

Take a norm ‖(x, y)‖ =
√

x2 + y2 for (x, y) ∈ R
2. Then the estimated risk

premiums becomes a closed interval:

{‖πf
w(R)‖ | πf

w(R) ∈ Πf
w(R)} = [Πf

w(R), Π
f
w(R)] =

[√
78

6
−

√
2,

√
42

6
− 1

]
. (4.11)

Hence the maximum risk premium Π
f

w(R) =
√
42
6 −1 = 0.0801234 · · · is attained

by two-dimensional weighted quasi-arithmetic means
(√

42
6 − 1, 0

)
,
(
0,

√
42
6 − 1

)
∈ M

f

w(R), and the minimum risk premium Πf
w(R) =

√
78
6 − √

2 =
0.0577466 · · · is attained by a two-dimensional weighted quasi-arithmetic mean(√

39
6 − 1,

√
39
6 − 1

)
∈ Mf

w(R).

5 Construction of Two-Dimensional Utilities
from One-Dimensional Utilities

A lot of examples of utility functions on one-dimensional domains are known
([9–11]). Hence we give a few methods, which are easily checked from the defi-
nitions, to construct utility functions g on two-dimensional regions from utility
functions on one-dimensional domains.

Lemma 5.1 Let D be a non-empty open domain in R
2, and let a rectangle

region R ∈ R(D). Let I and J be closed sub-intervals of R. Let g be a C2-class
concave (strictly concave) function on D. Let a pair of utilities (ξ, η) : I×J �→ D
be C2-class such that ξ′ > 0 and ξ′′ ≤ 0 on I and η′ > 0 and η′′ ≤ 0 on J . Then

f(x, y) = g(ξ(x), η(y)) (5.1)

is a C2-class concave (strictly concave resp.) utility function on I × J .

Corollary 5.1 Let I and J be closed sub-intervals of R. Let α and β be positive
constants. Let two utilities ξ : I �→ R and η : J �→ R be C2-class such that ξ′ > 0
and ξ′′ ≤ 0 on I and η′ > 0 and η′′ ≤ 0 on J . Then

f(x, y) = αξ(x) + βη(y) (5.2)

is a C2-class concave utility function on I × J .

Lemma 5.2 Let D be a non-empty open domain in R
2, and let I be a closed

sub-interval of R. Let g : D �→ I be a C2-class concave (strictly concave) utility
function on D. Let a utility ϕ : I �→ R be C2-class such that ϕ′ > 0 and ϕ′′ ≤ 0
on I. Then

f(x, y) = ϕ(g(x, y)) (5.3)

is a C2-class concave (strictly concave) utility function on D.
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Corollary 5.2 Let a rectangle region I × J ∈ R(D) and let α and β be positive
constants. Let K be a closed sub-interval of R such that K = {αx + βy | x ∈
I, y ∈ J}. Let a utility ϕ : K �→ R be C2-class such that ϕ′ > 0 and ϕ′′ < 0 on
K. Then

f(x, y) = ϕ(αx + βy) (5.4)

is a C2-class concave utility function on I × J .

Example 5.1 In Table 1 we list up some economic utility functions ϕ on one-
dimensional domains [10,11], and then from (5.2) and (5.4) we can construct
utility functions on two-dimensional regions by combining these functions. For
example, from (5.2) and Table 1 we can obtain a utility function on two-
dimensional domain (0,∞)2 by

f(x, y) = α log x + β log y (5.5)

for (x, y) ∈ (0,∞)2 with positive constants α and β. On the other hand from 5.4
and Table 1 we can give a utility function on two-dimensional domain R

2 by

f(x, y) = 1 − e−(αx+βy) (5.6)

for (x, y) ∈ R
2 with positive constants α and β.

Table 1. Strictly concave utility functions ϕ on one-dimensional domains

Utility function, domain and parameters ϕ(x)

Power utility (0, ∞); 0 < λ < 1
xλ

λ
Logarithmic utility (0, ∞); λ > 0 λ log x

Exponential utility (−∞, ∞); λ > 0
1 − e−λx

λ

Quadratic utility (0, λ); λ > 0 λx − 1

2
x2

Sigmoid utility (0, ∞); λ > 0
1

1 + e−λx

Concluding Remark. Lemma 2.2 shows that the concavity of utility functions
is a sufficient condition for the risk averse. However, in Example 3.1(ii) we found
that the concavity of utility functions is not a necessary and sufficient condition
for the risk averse. We need to find other conditions instead of the determinant
condition for the Hessian in Lemma 2.1(i):

|H| = fxxfyy − f2
xy ≥ 0 (5.7)

on D.
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