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Abstract. Uncertainty plays an important role in decision making.
People try to avoid risks introduced by uncertainty. Probability theory
can model these risks, and information theory can measure these risks.
Another type of uncertainty is ambiguity; where people are not aware
of the probabilities. People also attempt to avoid ambiguity. Subjective
logic can model ambiguity-based uncertainty using opinions. We look at
extensions of information theory to measure the uncertainty of opinions.

1 Introduction

Uncertainty exists in human decision making, where the results of our actions
cannot be predicted, or we are not aware of the complete circumstances sur-
rounding the decision. The unpredictability of the outcome of a test can be
modelled using probability theory. For example, both calling heads/tails on the
next coin flip (unpredictable) and guessing the side of a covered coin (unknown
state), are naturally modelled as decisions with probabilities of a half. We name
this kind of unpredictability as risk-based uncertainty.

Information theory [10] allows measuring how uncertain we are about the
effects of a decision, in the form of entropy. People tend to be risk-averse [2], and
they prefer to make decisions under low entropy. Concretely, most people prefer
1,000$ over an all-or-nothing coin flip for 2,000$. The former option has 0 bits
entropy, and the latter has 1 bit entropy.

There is a type of uncertainty stronger than risk – ambiguity or Knightian
uncertainty [5] – where the probabilities themselves are unknown. An example
would be a coin with an unknown bias. Subjective logic is a formalism that
addresses this type of uncertainty. People also tend to be ambiguity-avoiding;
the Ellsberg paradox [2] (Sect. 2) shows that people may prefer a bigger known
risk over a smaller unknown risk.

In this paper, we generalise information theory to cover subjective logic.
As a consequence, entropy can be used to measure both types of uncertainty
(rather than merely risk). Moreover, the information theory paradigm comes
with a body of results, which may become useful for reasoning about ambiguity-
based uncertainty. Cross entropy is an example of such a useful concept from
information theory, as it allows measuring the difference between two settings
with either type of uncertainty.
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Table 1. Two sets of choices that comprise the Ellsberg paradox.

Red Black Yellow

Option 1A $100 $0 $0
Option 1B $0 $100 $0

(a) Options for first choice

Red Black Yellow

Option 2A $100 $0 $100
Option 2B $0 $100 $100

(b) Options for second choice

There are four types of extensions that we propose. The first two, pignistic
entropy and aggregate uncertainty entropy, flatten ambiguity-based uncertainty
to risk-based uncertainty. Pignistic entropy models a perfectly rational agent,
interested in the expected risk, given an ambiguous situation; whereas aggregate
uncertainty entropy models a paranoid agent, that assumes the worst-case rea-
sonable risk. The final two, belief entropy and conceivability entropy, properly
extend information theory to model ambiguity-based uncertainty. Both methods
are based on extending surprisal. For belief entropy, surprisal is based on the
beliefs of the agent; whereas for conceivability entropy, surprisal decreases with
uncertainty. All four types coincide when there is no ambiguity-based uncer-
tainty.

2 Ellsberg Paradox

The Ellsberg paradox [2] is a motivating example for uncertainty representa-
tion in subjective logic. The Ellsberg paradox shows that people make different
decisions than rational risk-avoiding agents. We use the Ellsberg paradox as a
running example throughout this paper.

Suppose you are shown an urn with 90 balls in it and you are told that 30
are red and that the remaining 60 balls are either black or yellow. One ball is
selected at random and you are given the following choice: Option 1 A gives you
$100 if a red ball was drawn and $0 of either a black or a yellow ball was drawn;
option 1B gives you $100 if a black ball was drawn and $0 if a red or a yellow
was drawn. Table 1a summarises the possible outcomes given the choices.

Experiments show that people strongly favour option 1 A over option 1B [2].
Assuming that people are rational, this implies that people believe that black
balls are less probable than red.

Options 2 A and 2B are based on the exact same set-up. The amount of balls
of each colour is equal to variant 1. Option 2 A pays $100 when either red or
yellow is drawn, whereas 2B pays $100 when either black or yellow is drawn.
Table 1b summaries these outcomes.

Experiments show that people strongly favour option 2B over option 2A [2].
Assuming that people are rational, this implies that people believe that the
black balls are more probable than red. However, the set-up remains unchanged
between variant 1 and 2. Thus, the choices made by the people cannot be
explained as rational estimates of probabilities.

It is impossible to explain the choices using risk-based uncertainty, since
the risks are perfectly symmetrical. The common explanation of the difference
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between variant 1 and 2 is ambiguity-based uncertainty. In variant 1, option 1a
has no ambiguity-based uncertainty, as the odds are known to be one in three.
In variant 2, option 2b is the ambiguity-free option, as the odds are known to be
two in three. Options 1b and 2a have ambiguity-based uncertainty, as the real
odds could be as low as 0 or 1/3, respectively (if there are no black balls), or as
high as 2/3 or 1, respectively (if there are no yellow balls).

The Ellsberg paradox is the running example throughout this paper. We
relate concepts from subjectively logic and the four types of entropy directly to
the four choices of the Ellsberg paradox. A good entropy measure can describe
the core difference between options 1 A or 2B and options 1B or 2A.

3 Opinion Representation in Subjective Logic

Random events have a set of possible outcomes. Each of these outcomes is
assigned some probability. A user with incomplete knowledge, however, may not
know these probabilities. Subjective logic introduces opinions to model users
that estimate these probabilities.

The domain of an opinion is the set of outcomes of the underlying event. The
elements of the domain are exclusive and exhaustive. The user realises that the
underlying event can have only one outcome, and includes all possible outcomes
in the domain.

A probability distribution assigns a (non-negative) probability to each of the
outcomes. An opinion assigns a (non-negative) belief to each of the outcomes.
Unlike the probability distribution, the sum of the beliefs may be less than one.
The remainder is uncertainty.

An opinion of user A about an event with domain X is denoted ωA
X . An opin-

ion consists of a belief mass function bAX : X → [0, 1], such that
∑

x∈X bAX(x) ≤ 1,
and a base rate function aA

X : X → [0, 1], such that
∑

x∈X aA
X(x) = 1. The uncer-

tainty uA
X is defined 1−∑

x∈X bAX(x). For the domain X = {x1, . . . , xn}, we may
denote an opinion as ωA

X = (b1, . . . , bn), to mean bAX(x1) = b1, . . . b
A
X(xn) = bn.

The base rates denote the projected probabilities, in case of uncertainty. With
a base rate, every opinion uniquely denotes a probability distribution, which
we call the pignistic probabilities. The pignistic probability mass for x ∈ X is
computed pAX(x) = bAX(x) + uA

X · aA
X(x).

Barycentric coordinate systems can be used to visualise opinions. In a barycen-
tric coordinate system the location of a point is specified as the centre of mass, or
barycentre, of masses placed at its vertices [8]. A barycentric coordinate system
with n axes is represented on a simplex with n vertices which has dimensionality
(n − 1). A triangle is a 2D simplex which has 3 vertices and is thus a barycentric
system with 3 axes. A binomial opinion can be visualised as a point in a barycen-
tric coordinate system of 3 axes represented by a 2D simplex which is in fact an
equal sided triangle, as in Fig. 1. Here, the belief, disbelief and uncertainty axes go
perpendicularly from each edge towards the respective opposite vertices denoted
x, x and uncertainty. The base rate aA

X(x) is a point on the base line, and the pro-
jected probability pAX(x) is determined by projecting the opinion point to the base
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x vertexx vertex

X vertex       (uncertainty)

(a) Visualisation binomial opinion

ωX

PX aX
x3 vertex x1 vertex

uX

x2 vertex

X vertex       (uncertainty)

(b) Visualisation trinomial opinion

Fig. 1. Barycentric visualisations of opinions.

line in parallel with the base rate director. The binomial opinion ωx = (1/5, 2/5)
with projected probability pAX(x) = 1/2 is shown as an example.

In case the opinion point is located at the left or right vertex of the triangle,
i.e. with bAX(x) = 1 or bAX(x) = 1 (and uA

X = 0), then the opinion is equivalent
to boolean TRUE or FALSE, in which case subjective logic becomes equivalent to
binary logic. In case the opinion point is located on the baseline of the triangle, i.e.
with uA

X = 0, then the opinion is equivalent to a traditional probability, in which
case subjective logic becomes equivalent to probabilistic logic.

In general, a multinomial opinion can be represented as a point inside a regular
simplex. In particular, a ternary multinomial opinion can be represented inside a
tetrahedron with a barycentric system of 4 axes, as shown in Fig. 1.

The tetrahedron is a 3D simplex. Assume the 3-domain X = {x1, x2, x3}.
Figure 1 shows a tetrahedron with the example multinomial opinion ωX =
(1/5, 1/5, 1/5), and base rate distribution (6/8, 1/8, 1/8). The belief axes for x1, x2 and
x3 are omitted due to the difficulty of 3D visualisation.

Running Example 1. The Ellsberg paradox can be expressed elegantly in subjec-
tive logic. We can let the domain be {win, lose}. For choice 1A, the opinion is
(1/3, 2/3); for 1B (0, 1/3); for 2A (1/3, 0); and for 2B (2/3, 1/3). The base rate a(win) =
1/2 is the most natural base rate – black balls are no more or less likely than yellow
balls – but we generally consider arbitrary base rates for the Ellsberg paradox. The
choices 1 A and 2B lead to opinions without uncertainty; their generalised entropy
measure, therefore, equals the standard entropy measure. The choices 1B and 2 A
have an amount of uncertainty; their various generalised entropy measures lead
to different figures.

4 Information Theory

Subjective logic has an extensive set of operations that allow calculus with opin-
ions. One particular operation represents constructing opinions based on recom-
mendations. In [11], the authors show the use of (standard) information theory in
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measuring the usefulness of recommendations and the derived opinions. Informa-
tion theory, opinions and uncertainty are intimately linked.

Before we introduce some extensions of information theory to cover subjective
logic, we introduce the important standard notions. A more detailed discussion
and treatment can be found, e.g., in [7].

Definition 1 (Surprisal). The surprisal (or self-information) of an outcome x
of a discrete random variable X is IX(x) = − log(pX(x)).

Surprisal measures the degree to which an outcome is surprising. The more sur-
prising an outcome is, the more informative it is. In information theory, surprisal
of an outcome is completely determined by the probability it happens. Usually,
an outcome is more surprising if it is less likely to happen.

Definition 2 (Entropy). The entropy of a discrete random variable X is the
expected surprisal H(X) = −∑

x pX(x) log(pX(x)).

Entropy measures the expected information carried with a random variable. In
information theory, entropy of a random variable is decided by the uncertainty of
its outcome in one test. A random variable has more entropy if all of its outcomes
have more similar probabilities to happen.

Definition 3 (Cross Entropy). The cross entropy of two discrete random vari-
ables X,Y is H(X,Y ) = −∑

x pX(x) log(pY (x)).

The cross entropy measures the amount of surprisal obtained when you believe
an event is distributed as Y , but in reality is distributed as X. This amount is
not typically symmetric in Y and X. The cross entropy is minimised when Y is
selected to be equal to X, in which case the believed distribution equals reality.

5 Pignistic Entropy

Subjective logic opinions model the subjective opinions of users. Users make deci-
sions based on their opinions. We can imagine a user forced to make a decision,
where he would decide one way if the probability is above a certain threshold, and
the other way otherwise. The cut-off for the decision is called the pignistic proba-
bility of a belief in an opinion.

A user may have an opinion about a potentially unfair coin. The user believes
that even unfair coins provide heads or tails at least 30% of the time. Hence, his
opinion ω is (3/10, 3/10) (with uncertainty 4/10). Since the user has no reason to pre-
fer heads over tails (or vice versa), if he is forced to pick a probability distribution,
then he assigns 1/2 to both.

Pignistic entropy of an opinion ωA
X characterised by belief mass function bAX

and base rate aA
X is based on the entropy of the associated pignistic probability

distribution:

Definition 4 (Pignistic Entropy). The pignistic entropy Hp(ωA
X) is defined:

−∑
x pAX(x) log(pAX(x)) = −∑

x

(
bAX(x) + uA

X · aA
X(x)

)
log

(
bAX(x) + uA

X · aA
X(x)

)
.
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The pignistic entropy is insensitive towards the change of uncertainty in an
opinion:

Proposition 1. Let ωA
X and ωB

X be two opinions, such that uA
X > uB

X and for all
x, pAX(x) = pBX(x), then Hp(ωA

X) = Hp(ωB
X).

Proof. Proposition follows from the fact that Hp is completely determined by the
pignistic probabilities, which are equal for ωA

X and ωB
X .

Running Example 2. The pignistic entropy models the way a rational agent would
approach the Ellsberg paradox. As depicted in Table 1, if the base rate for black
versus yellow is 50-50, then options 1 A and 1B have equal pignistic entropy, and
options 2 A and 2B also have equal pignistic entropy. If the base rate is skewed
towards black, then 1B and 2B are the superior choices, and 1 A and 2A if it is
not. As expected, the pignistic entropy does not reflect the inherent desire to avoid
ambiguity.

Entropy can not just be used to measure how much information there is, but
also to compare the difference between two opinions. The cross entropy between
ωA
X and ωB

X describes how well ωB
X predicts ωA

X :

Definition 5 (Pignistic Cross Entropy). The pignistic cross entropy between
ωA
X and ωB

X , Hp(ωA
X , ωB

X) is defined: −∑
x pAX(x) log(pBX(x)).

The pignistic cross entropy is insensitive towards the difference between the
uncertainty of two opinions:

Proposition 2. LetωA
X andωA′

X be two opinions, such that uA
X > uA′

X and for all x,
pAX(x) = pA

′
X (x), and idem for ωB

X and ωB′
X . Then Hp(ωA

X , ωB
X) = Hp(ωA′

X , ωB
X) =

Hp(ωA
X , ωB′

X ) = Hp(ωA′
X , ωB′

X ).

Proof. Proposition follows from the fact that Hp is completely determined by the
pignistic probabilities, which are equal for ωA

X and ωA′
X , and for ωB

X and ωB′
X .

The pignistic cross entropy between two identical opinions is equal to the
entropy of one of the opinions:

Proposition 3. Hp(ωX , ωX) = Hp(ωX)

To give an example of pignistic cross entropy, consider five opinions (with
belief and disbelief): ωA

X = (7/10, 3/10), ωB
X = (3/10, 7/10), ωC

X = (1/2, 1/10),
ωD
X = (1/10, 1/2), ωE

X = (0, 0). We suppose the base rate is 1/2. Their pignistic cross
entropies are presented in Table 3. As ωA

X (ωB
X) and ωC

X (ωD
X) have the same pig-

nistic probability distributions, their cross entropy is minimal. In this sense, the
uncertainty component in ωC

X (ωD
X), which makes them different from ωA

X (ωB
X),

is eliminated. Note that cross entropy between ωE
X , which represents complete

uncertainty, and any other opinions are the same. It implies that they are equally
different when compared with the complete uncertain opinion. Such difference is
actually smaller than that between two completely opposite opinions (e.g., ωA

X

and ωB
X). Also note that the pignistic cross entropy measure is not symmetric.
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Table 2. Pignistic entropy of the options in the Ellsberg paradox.

Choice A Choice B

Option 1 −1/3 log 1/3 − 2/3 log 2/3 −2/3·a log(2/3·a) − (1 − 2/3·a) log(1 − 2/3·a)
Option 2

−(1/3 + 2/3·a) log(1/3 + 2/3·a)
−2/3·(1 − a) log(2/3·(1 − a))

−2/3 log 2/3 − 1/3 log 1/3

Table 3. Pignistic cross entropy among five opinions.

ωA
X ωB

X ωC
X ωD

X ωE
X

ωA
X 0.8813 1.3702 0.8813 1.3702 1.0000

ωB
X 1.3702 0.8813 1.3702 0.8813 1.0000

ωC
X 0.8813 1.3702 0.8813 1.3702 1.0000

ωD
X 1.3702 0.8813 1.3702 0.8813 1.0000

ωE
X 1.1258 1.1258 1.1258 1.1258 1.0000

The pignistic (cross) entropy ignores the uncertainty present in an opinion,
and converts uncertainty to pignistic probability, before measuring the (cross)
entropy. Pignistic entropy, therefore, accurately measures the entropy of the deci-
sions of users with an opinion, but not the entropy of the opinion itself (nor the
cross entropy between opinions). In the remainder of the paper, we want to study
the entropy of the opinions including the uncertainty.

6 Aggregate Uncertainty Entropy

Dempster-Shafer theory [1] shares similarities with subjective logic. Dempster-
Shafer theory also deals with beliefs and uncertainty. Extensions of information
theory for Dempster-Shafer theory currently exist. The major variant is the aggre-
gate uncertainty [6]. In this section, we discuss aggregate uncertainty, and trans-
late it to subjective logic (Table 2).

A particular downside of pignistic entropy, is that an uncertainty plays no role
in the amount of entropy. Intuitively, we should expect a more uncertain opinion
not to have less entropy. The aggregate uncertainty entropy is the minimal exten-
sion of pignistic entropy that satisfies this requirement [6]:

Definition 6 (Aggregate Uncertainty Entropy). Let FA
X be the set of func-

tions f with, for all x, bAX(x) ≤ f(x) ≤ 1 and
∑

x f(x) = 1. The aggregate uncer-
tainty entropy Hau(ωA

X) is defined: −maxf∈FA
X

∑
x f(x) log(f(x)).

The aggregate uncertainty entropy cannot decrease whenever uncertainty
increases, even if the ratio of beliefs is affected:

Proposition 4. Let ωA
X and ωB

X be two opinions, such that for all x, bAX(x) >
bBX(x), then Hau(ωA

X) ≤ Hau(ωB
X).
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Proof. As bAX(x) > bBX(x), FA
X ⊆ FB

X , meaning maximal f in FA
X is in FB

X .

The functions fA
X are all probability mass functions. Each probability mass

function fA
X has the property that it assigns a probability at least as great as the

belief to each outcome. Thus, FA
X is essentially the set of probability distributions

that we believe may be the case. If we take the maximal element of the entropy
using the different probabilities, then we satisfy the requirement that increasing
uncertainty can never decrease entropy.

Running Example 3. The aggregate uncertainty entropy models the way a para-
noid agent would approach the Ellsberg paradox. Specifically, the agent assumes
that the Shannon entropy is maximised under constraints of his beliefs. For 1A
and 2B, the beliefs fix the probabilities, but for 1B and 2A, the entropy is max-
imised by letting the probability of winning (and losing) be 1/2. As depicted in
Table 1, the aggregate uncertainty entropy is independent of base rates (as it
is based on Dempster-Shafer theory), and 1A and 2B score significantly better
than 1B and 2A. This approach to the problem uses no notions of ambiguity,
and has been suggested previously [3]. The problem with this view, is that the
Ellsberg’s experiment is purposely set-up to ensure the set-up remains unchanged
between the two variants, whereas the maximal entropy cases of 1B and 2 A are
inconsistent.

Definition 7 (Aggregate Uncertainty Cross Entropy). Let FA
X and FB

X as
before, and f, g be argmaxf∈FA

X

∑
x f(x) log(f(x)), argmaxg∈FB

X

∑
x g(x) log(g(x))

The aggregate uncertainty cross entropy between ωA
X and ωB

X , Hau(ωA
X , ωB

X) is
defined: −∑

x f(x) log(g(x)).

The aggregate uncertainty cross entropy between two identical opinions is
equal to the entropy of one of the opinions:

Proposition 5. Hau(ωA
X , ωA

X) = Hau(ωA
X)

We compute aggregate uncertainty cross entropy between the opinions intro-
duced in Table 3, and the results are presented in Table 4b. As argmaxf∈FA

X∑
x f(x) log(f(x)) are the same for ωC

X , ωD
X , ωE

X , namely f(x) = 0.5 for all x,

Table 4. Ellsberg paradox and cross entropy for aggregate uncertainty entropy.

Choice A Choice B

Option 1 0.9183 1
Option 2 1 0.9183

(a) Ellsberg paradox.

ωA
X ωB

X ωC
X ωD

X ωE
X

ωA
X 0.8813 1.3702 1.0000 1.0000 1.0000

ωB
X 1.3702 0.8813 1.0000 1.0000 1.0000

ωC
X 1.1258 1.1258 1.0000 1.0000 1.0000

ωD
X 1.1258 1.1258 1.0000 1.0000 1.0000

ωE
X 1.1258 1.1258 1.0000 1.0000 1.0000

(b) Cross entropy
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any of five opinions has the same cross entropy with them. Also, due to sym-
metry between ωA

X and ωB
X , other three opinions have equal cross entropy with

them. Using this cross entropy measure, opinions with partial uncertainty (ωC
X ,

ωD
X) seems to be the same as that with complete uncertainty (ωE

X). Because they
have the same distance with the other two deterministic opinions.

There are two major downsides to the aggregate uncertainty entropy. The first
is theoretical, namely that the aggregate uncertainty is not a closed form expres-
sion. There is, however, research that addresses this specific problem to some
degree [9]. The second downside is that the measure applies to Dempster-Shafer
theory, which has a subtly different interpretation of uncertainty (specifically, that
the probability mass must be over the belief mass). In the next two sections, we
study how subjective logic’s interpretation of uncertainty impacts the definition
of entropy.

7 Ambiguity Entropy

Rather than using the entropy based on risk as a proxy for ambiguity-based uncer-
tainty entropy, we can directly encode beliefs and ambiguity-based uncertainty
into surprisal. An interesting question is whether uncertainty leads to surprisal.
Two opposing interpretations are that total uncertainty means that everything is
maximally surprising, or that nothing is surprising at all. We demonstrate that
which interpretation is appropriate depends on the context.

Before introducing the two types of ambiguity entropy, we introduce an over-
arching definition of surprisal: − log(bAX(x) + c · uA

X). The definition contains a
parameter c ∈ [0, 1], which determines the amount of surprisal from uncertainty.
The special cases for c are when c = 0 (or c ≈ 0) and when c = 1. If the uncertainty
is zero, then all choices of c collapse into one, which equals the standard definition
of surprisal. If the uncertainty is non-zero, then possible interpretations of sur-
prisal start to diverge. In the next two sections, we formally analyse the two edge
cases, belief entropy and conceivability entropy.

In [4], Klir explores a similar idea, where belief entropy parallels confusion
ambiguity and conceivability entropy parallels dissonance ambiguity. The fun-
damental difference is that [4] considers Dempster-Shafer theory, and therefore
cannot use the base-rate that subjective logic has. As a consequence, his notions
cannot use projected probabilities. His notions are further removed from classical
notions in information theory, as he cannot use the expected surprisal.

7.1 Belief Entropy

A user has an opinion with beliefs. If the belief in an outcome is low, then the user
thinks it is unlikely that the outcome will happen. To encode this, we can define
surprisal based on the belief mass, by letting the belief in x be: − log(bAX(x)). This
equates to − log(bAX(x) + c · uA

X), when c = 0.
We take the natural definition of entropy as the expected surprisal. Entropy

of an opinion should measure the expected surprisal of beliefs.
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Definition 8 (Belief Entropy). The belief entropy Hb(ωA
X) is defined as:

−∑
x pAX(x) log(bAX(x)).

The belief entropy has several nice properties. The first property is that, with
the pignistic probabilities remaining constant, the entropy strictly increases when
the uncertainty increases:

Proposition 6. Let ωA
X and ωB

X be two opinions, such that uA
X > uB

X and for all
x, pAX(x) = pBX(x), then Hb(ωA

X) > Hb(ωB
X).

The second property is that, unlike aggregate uncertainty entropy, the entropy
of a completely uncertain opinion is strictly larger than the entropy of any pignistic
entropy:

Proposition 7. Let ωA
X be complete uncertainty; uA

X = 1. Then Hb(ωA
X) >

Hp(ωB
X), for all ωB

X .

As the entropy of uncertainty strictly exceeds the entropy of any other opinion in
subjective logic, uncertainty contains less information than any other opinion.

Running Example 4. The belief entropy directly models the beliefs on the agent,
where ambiguity reduces the sum of the beliefs. Table 1 shows the belief entropies
associated with each of the choices. It is interesting to note that 1B and 2 A are
both assigned infinite belief entropy. The reason is that the participant has no
reason to assume it is even possible to win, so the surprisal upon winning is the
global maximum of surprisal; positive infinity.

Table 5. Ellsberg paradox and cross entropy for belief entropy.

Choice A Choice B

Option 1 0.9183 ∞
Option 2 ∞ 0.9183

(a) Ellsberg paradox.

ωA
X ωB

X ωC
X ωD

X ωE
X

ωA
X 0.8813 1.3702 1.6966 2.6253 ∞

ωB
X 1.3702 0.8813 2.6253 1.6966 ∞

ωC
X 0.8813 1.3702 1.6966 2.6253 ∞

ωD
X 1.3702 0.8813 2.6253 1.6966 ∞

ωE
X 1.1258 1.1258 2.1610 2.1610 ∞

(b) Cross entropy

Note that in Table 5a, choices 1B and 2 A have infinite entropy. The reason is
that they contain the terms −2/3a log(0) and 2/3(1 − a) log(0), which equate to
infinity except when a = 0 or a = 1, respectively. Intuitively, the cause is that we
have zero belief in winning or losing, respectively, although both winning and los-
ing have a non-zero probability of occurring (except for extreme base rates). The
interesting aspect of the extreme base rates is that they would remove the ambigu-
ity uncertainty altogether. Since we would know the outcome under uncertainty,
there is no ambiguity-based uncertainty to measure.

That choices 1B and 2 A have infinite entropy may be desirable for one reason:
the entropy exceeds that of any opinions without zero-belief events. However, the
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downside is that a one-in-a-million event with zero belief and a certain event with
zero belief yield the exact same entropy: infinite bits. Consider the general defini-
tion of ambiguity surprisal, − log(bAX(x)+ c ·uA

X), where c converges to 0 (and the
expected surprisal to belief entropy), then the entropy converges to infinity slowly.
We can consider c = ε, for some small ε > 0, then the entropy remains finite.
The addition of ε hardly affects the entropy of opinions without zero-beliefs. For
example, (0.5, 0.1), with base rate 1/2, has −0.7 log(0.5 + ε) − 0.3 log(0.1 + ε) ≈
−0.7 log(0.5) − 0.3 log(0.1) ≈ 1.6966 bits entropy. For opinions with zero-beliefs,
we get a more fine-grained measure of entropy. For example, (0.5, 0) and (0, 0),
both with base rate 1/2, have −0.75 log(0.5 + ε) − 0.25 log(ε) ≈ −0.25 log(ε) and
−0.5 log(ε)−0.5 log(ε) = − log(ε) bits of entropy, and the latter is four times more
bits entropy. Thus, the belief entropy can be made more fine-grained without loss
of generality.

The belief entropy can be extended to belief cross entropy:

Definition 9 (Belief Cross Entropy).The belief cross entropy between ωA
X and

ωB
X , Hb(ωA

X , ωB
X) is defined: −∑

x pAX(x) log(bBX(x)).

We compute the belief cross entropy between the opinions introduced in
Table 3, and the results are presented in Table 5b. Some equalities in the table
can be easily derived, based on the Definition 9. Note that cross entropy between
any opinions and ωE

X , which means complete uncertainty, is infinity. This is not
reasonable, as explained below.

The belief cross entropy measures the information distance from one opinion
to the other. Intuitively, when an uncertain opinion conflicts with another opinion,
this may not surprise us, whereas two conflicting and certain opinions would be
a surprise. Unfortunately, this is not the intuition captured by the definition of
belief cross entropy. Belief cross entropy measures the information gap between
two opinions, and uncertainty introduced large quantities of entropy, allowing for
bigger information gaps. In the next section, we introduce a measure of entropy
that models the intuition of entropy that is suitable for cross entropy.

7.2 Conceivability Entropy

In belief entropy, the belief in an outcome determines the surprisal. However, we
can imagine that users are not surprised when they are uncertain. To encode this,
we can define surprisal based on the belief mass plus the uncertainty, by letting
the belief in x be: − log(bAX(x)). This equates to − log(bAX(x)+c ·uA

X), when c = 1.
Note that bAX(x) + uA

X = 1 − ∑
x′ �=x bAX(x), so conceivability can be seen as the

converse of belief.
The entropy can be derived from the surprisal:

Definition 10 (Conceivability Entropy). The conceivability entropy Hc(ωA
X)

is defined: −∑
x pAX(x) log(bAX(x) + uA

X).

When the opinion is complete uncertainty, surprisal is zero, as all outcomes are
fully conceivable. For this reason, viewing surprisal as the opposite of informa-
tion does not make sense here (unlike the other notions of entropy, such as belief
entropy and Shannon entropy),
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Table 6. Ellsberg paradox and cross entropy for conceivability entropy.

Choice A Choice B

Option 1 0.9183 2/3a log(2/3)
Option 2 2/3(1 − a) log(2/3) 0.9183

(a) Ellsberg paradox.

ωA
X ωB

X ωC
X ωD

X ωE
X

ωA
X 0.8813 1.3702 0.4064 0.7456 0

ωB
X 1.3702 0.8813 0.7456 0.4064 0

ωC
X 0.8813 1.3702 0.4064 0.7456 0

ωD
X 1.3702 0.8813 0.7456 0.4064 0

ωE
X 1.1258 1.1258 0.5760 0.5760 0

(b) Cross entropy

However, the conceivability entropy notion is suitable for cross entropy:

Definition 11 (Conceivability Cross Entropy). The conceivability cross
entropy between ωA

X and ωB
X ,Hc(ωA

X , ωB
X) is defined:−∑

x pAX(x) log(bBX(x)+uB
X).

Conceivability cross entropy is a more useful measure of distance between opin-
ions than belief cross entropy. More uncertain opinions tend to have a shorter
distance. The reason why conceivability cross entropy is a better measure for
distance, is that we want to measure whether it is “conceivable” that an opinion
describes another opinion. We can see the concrete numbers in Table 6b. The cross
entropy of opinions with similar pignistic probabilities is lower, but the amount of
uncertainty correlates more strongly. The distance from any opinion to complete
uncertainty is 0.

8 Conclusion

To understand decision making, not only must we analyse uncertainty introduced
by risk, but also the uncertainty about risk (ambiguity). Standard notions of Shan-
non entropy in information theory can measure the former, but not the latter. We
extend information theory to capture subjective logic – a framework to deal with
uncertainty about ambiguity – in four ways.

Two of the extensions of information theory remove ambiguity before mea-
suring entropy. The first extension, pignistic entropy, models rational agents. The
second extension, aggregate uncertainty entropy, models paranoid agents.

However, the interesting extensions model ambiguity, rather than remove it.
The final two extensions, belief entropy and conceivability entropy, are two sides
of the same coin. Belief entropy is suitable for measuring entropy of both risk and
ambiguity. Conceivability entropy is more suited for measuring cross entropy.

All extensions are related using Ellsberg paradox as a running example, and
the different entropies provide insights into the paradox. Moreover, the different
entropies can be generalised to cross entropy – a measure of the quality of an opin-
ion, given a valid opinion. Cross entropy can be used for analysing the quality of
opinions in systems that use subjective logic.
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