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Abstract. Noise is added by privacy-preserving methods or anonymiza-
tion processes to prevent adversaries from re-identifying users in anony-
mous networks. The noise introduced by the anonymization steps may
also affect the data, reducing its utility for subsequent data mining
processes. Graph modification approaches are one of the most used and
well-known methods to protect the privacy of the data. These methods
converts the data by edges or vertices modifications before releasing the
perturbed data. In this paper we want to analyse the edge modification
techniques found in the literature covering this topic, and then empiri-
cally evaluate the information loss introduced by each of these methods.
We want to point out how these methods affect the main properties and
characteristics of the network, since it will help us to choose the best one
to achieve a desired privacy level while preserving data utility.

Keywords: Privacy · Social networks · Graphs · Data utility · Graph
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1 Introduction

In recent years, a huge amount of social and human interaction networks have
been made publicly available. Embedded within this data there is user’s private
information which must be preserved before releasing this data to third parties and
researchers. The study of Ferri et al. [13] reveals that up to 90 % of user groups
are concerned by data owners sharing data about them. Backstrom et al. [2] point
out that the simple technique of anonymizing graphs by removing the identities of
the vertices before publishing the actual graph does not always guarantee privacy.
They show that an adversary can infer the identity of the vertices by solving a set
of restricted graph isomorphism problems.

Therefore, anonymization processes become an important concern in this sce-
nario. These methods add noise into the original data to hinder re-identification
processes. Nevertheless, the noise introduced by the anonymization steps may also
affect the data, reducing its utility for subsequent data mining processes. Usually,
the larger the data modification, the harder the re-identification but also the less
the data utility. Thus, it is necessary to preserve the integrity of the data to ensure
that the data mining step is not altered by the anonymization step. The analysis
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performed on the obfuscated data should produce results as close as possible to
the ones the original data would have led to.

Several methods appeared recently to preserve the privacy of the data con-
tained in a graph. One of the most used and well-known approaches is based
on “graph modification”. These methods first transform the data by edges or
vertices modifications (adding and/or deleting) and then release the perturbed
data. The data is thus made available for unconstrained analysis. There are two
main approaches in the privacy-preserving literature [23]: (a) random perturba-
tion of the graph structure by randomly adding/removing/switching edges and
often referred to as edge randomization [4,6,16,17,24,25]; and (b) constrained
perturbation of the graph structure via sequential edge modifications in order to
fulfil some desired constraints – for example k-anonymity-based approaches that
modify the graph so that every node is in the end indistinguishable from k − 1
other nodes (in terms of node degree for instance) [7,10,18–20,28,29].

All aforementioned algorithms use edge modification techniques, i.e. add,
remove and/or switch edges to achieve a desired privacy level. Nevertheless,
it is inevitable to introduce noise in the data, producing a certain amount of
information loss, and consequently, deteriorating the utility of the anonymous
data. Some authors claim that only adding edges better preserves the data utility,
since none true relationship is removed. On the contrary, some other authors
claim that removing an edge affects the structure of the graph to a smaller
degree than adding an edge [5].

In this paper we want to analyse the edge modification techniques found in
the literature covering this topic, and then empirically evaluate the information
loss introduced by each of these methods during the perturbation process. We
want to understand how these edge modifications affect the main properties
and characteristics of the network. This will help us to choose the best edge
modification technique to achieve a desired privacy level while keeping data
utility and reducing information loss.

1.1 Our Contributions

In this paper we present an empirical evaluation of the basic edge modification
techniques, which can help us to increase data utility in anonymous networks. We
focus on simple, undirected and unlabelled graphs. Since these graphs have no
attributes or labels in the edges, information is only in the structure of the graph
itself and, due to this, evaluating edge modification techniques is an critical way
to reduce information loss. We offer the following results:

– We analyse the most used and well-known edge modification techniques found
in the graph privacy literature.

– We conduct an empirical evaluation of these techniques on several synthetic
and real graphs, comparing information loss based on different graph’s prop-
erties.

– We demonstrate that graph’s structure must be considered in order to select
the best edge modification technique, and it conducts the process to reduce
the information loss and increase the data utility.
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Fig. 1. Basic operations for edge modification.

1.2 Notation

Let G = (V,E) be a simple, undirected and unlabelled graph, where V is the set
of vertices and E the set of edges in G. We define n = |V | to denote the number
of vertices and m = |E| to denote the number of edges. We use {i, j} to define an
undirected edge from vertex vi to vj and deg(vi) to denote the degree of vertex
vi. Finally, we designate G = (V,E) and ˜G = (˜V , ˜E) to refer the original and the
perturbed graphs, respectively. Note that in this work we use the terms graph
and network indistinguishably.

1.3 Roadmap

This paper is organized as follows. In Sect. 2, we review the basic edge mod-
ification techniques for privacy-preserving on graphs. Section 3 introduces our
experimental framework to analyse and compare the edge modification tech-
niques on both synthetic and real networks. Then, in Sect. 4, we discuss the
results in terms of information loss and data utility. Lastly, in Sect. 5, we present
the conclusions of this work and some future remarks.

2 Edge Modification Techniques

We define four basic edge modification processes to change the network’s struc-
ture by adding, removing or switching edges. These methods are the most basic
ones, and they can be combined in order to create complex combinations. We are
interested in them since they allow us to model, in a general and conceptual way,
most of the privacy-preserving methods based on edge-modification processes.
In the following lines we will introduce these basic methods, also called pertur-
bation methods, due to the fact that they can model the perturbation introduced
in anonymous data during the anonymization process.

There are four basic edge modifications illustrated in Fig. 1. Dashed lines
represent existing edges which will be deleted and solid lines constitute the edges
which will be added. Node color indicates whether a node changes its degree
(dark grey) or not (light grey) after the edge modification has been carried out.
These are:
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– Edge add simply consists on adding a new edge {vi, vj} �∈ E. Figure 1a illus-
trates this operation. The number of the edges will increase (m̃ > m) when
anonymization percentage increases. True relationships will be preserved in
perturbed data.

– Edge del removes an existing edge {vi, vj} ∈ E, as depicted in Fig. 1b. Con-
trary to the previous method, the number of edges decreases m̃ < m and
no fake relationships are included in the anonymous data, but several true
relations are deleted from original data.

– Edge add/del is a combination of the previous pair methods. It simply consists
of deleting an existing edge {vi, vj} ∈ E and adding a new one {vk, vp} �∈ E.
Figure 1c illustrates this operation. In this case some true relations are deleted
and some fake ones are created, but the total number of edges is preserved
(m̃ = m). All vertices involved in this operation change their degree.

– Edge switch occurs between three nodes vi, vj , vp ∈ V such that {vi, vj} ∈ E
and {vi, vp} �∈ E. It is defined as deleting edge {vi, vj} and creating a new
edge {vi, vp} as shown in Fig. 1d. As in the previous case, some true relations
are removed, some fake ones are created and the number of edges is also
preserved (m̃ = m). However, two vertices change their degree (vj and vp)
while the third one (vi) does not.

For all perturbation methods, the number of vertices remains the same but
the degree distribution changes. As previously stated, most of the anonymization
methods rely on one (or more) of these basic edge modification operations. We
believe that this covers the basic behavior of edge-modification-based methods
for graph anonymization, even though some of them do not apply edge modifi-
cation to the entire edge set.

As aforementioned, some algorithms are based on Edge add [10,19,21,28],
since their authors usually claim that this edge modification technique bet-
ter retain data utility. A similar situation occurs with Edge del [4,5]. Several
random-based anonymization methods are based on the concept of Edge add/del
[17,24,25] and most k-anonymity methods can be also modelled through the
this concept [18,22,28,29]. Lastly, Edge switch is also used in many algorithms,
such as [7,16,20,25]. Other methods consider to alter the vertex set to achieve
anonymity. This concept is known as noise node addition [9,11,26]. We do not
consider this algorithms in this paper due to space constraints and we propose
it for future work.

3 Evaluating Framework

In this section we will post the experimental framework we have used to analyse
and compare the information loss induced by our four edge modification tech-
niques. Our experimental framework considers 10 independent executions of the
edge modification methods with a perturbation parameter p in range between
0 % (original graph) and 25 % of total number of edges, i.e., 0 ≤ p ≤ 25.

The process is the following: Firstly, we generate 10 independent sets of per-
turbed networks (from 0 % to 25 %) using each one of our edge modification
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Fig. 2. Framework for evaluating information loss induced by edge modification tech-
niques.

techniques (also called perturbation methods). Secondly, we compute the error
between the original (G) and each perturbed network ( ˜G) using several measures
(defined in Sect. 3.2). Thirdly, we compute the average error over the 10 inde-
pendent sets. We repeat the same process for all our tested networks (detailed
in Sect. 3.1). This framework is depicted in Fig. 2.

3.1 Tested Networks

We use both synthetic and real networks in our experiments. We use software
igraph1 to generate two kinds of random graphs.

– Erdös-Rényi Model [12] is a classical random graph model. It defines a random
graph as n vertices connected by m edges that are chosen randomly from the
n(n − 1)/2 possible edges. In our experiments, we set n=1,000 and m=5,000.
This dataset is denoted as “ER-1000”.

– Barabási-Albert Model [3], also called scale-free model, is a network whose
degree distribution follows a power-law. That is, for degree d, its probability
density function is P (k) = d−γ . In our experiments, we set the number of
vertices to be 1,000 and γ=1, i.e. linear preferential attachment. This dataset
is denoted as “BA-1000”.

Additionally, four different real networks are used in our experiments.
Although all these sets are unlabelled, we have selected these datasets because
they have different graph’s properties. Table 1 shows a summary of their main
features. They are the following ones:

– Zachary’s Karate Club [27] is a network widely used in literature. The graph
shows the relationships among 34 members of a karate club.

– Jazz musicians [14] is a collaboration graph of jazz musicians and their rela-
tionship.

– URV email [15] is the email communication network at the University Rovira
i Virgili in Tarragona (Spain). Nodes are users and each edge represents that
at least one email has been sent.

– Political blogosphere data (polblogs) [1] compiles the data on the links among
US political blogs.

1 Available at: http://igraph.org/.

http://igraph.org/
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Table 1. Network’ properties. For each dataset we present the number of vertices (n),
number of edges (m), average degree (deg), average distance (dist) and diameter (D).

Dataset n m deg dist D

ER-1000 1,000 4,969 9.938 3.263 5

BA-1000 1,000 4,985 9.970 2.481 4

Zachary’s Karate Club 34 78 4.588 2.408 5

Jazz musicians 198 2,742 27.697 2.235 6

URV email 1,133 5,451 9.622 3.606 8

Polblogs 1,222 16,714 27.31 2.737 8

3.2 Information Loss Measures

According to the authors in [8], we use some structural and spectral measures
which are strongly or moderately correlated to clustering specific processes. We
claim that choosing these measures our results will be applicable not only to
graph’s properties, but also to clustering and community detection processes.
The first graph structural measure is average distance (dist), which is defined as
the average of the distances between each pair of vertices in the graph. Transi-
tivity (T ) is one type of clustering coefficient, which measures and characterizes
the presence of local loops near a vertex. It measures the paths’ percentage of
length 2 which are also triangles. The above measures evaluate the entire graph
as a unique score. We compute the error on these graph metrics as follows:

εm(G, ˜G) = |m(G) − m( ˜Gp)| (1)

where m is one of the graph characteristic metrics, G is the original graph and
˜Gp is the p-percent perturbed graph, where 0 ≤ p ≤ 25.

The following metrics evaluate specific structural properties for each vertex
of the graph: the first one is betweenness centrality (CB), which measures the
fraction of the shortest paths that go through each vertex. This measure indicates
the centrality of a vertex based on the flow between other vertices in the graph.
A vertex with a high value indicates that this vertex is part of many of the
shortest paths in the graph, which will be a key vertex in the graph structure.
The second one is closeness centrality (CC) and is defined as the inverse of
the average distance to all accessible vertices. Finally, the third one is degree
centrality (CD), which evaluates the centrality of each vertex associated with
its degree, i.e. the fraction of vertices connected to it. We compute the error on
vertex metrics by:

εm(G, ˜G) =

√

1
n

((g1 − g̃1)2 + . . . + (gn − g̃n)2) (2)

where gi is the value of the metric m for the vertex vi of G and g̃i is the value
of the metric m for the vertex vi of ˜G.
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Fig. 3. Degree distribution on our synthetic networks. Horizontal axis represent the
whole vertex set and vertical axis their degree values.

Moreover, one spectral measure which is closely related to many graph char-
acteristics [25] is used. The largest eigenvalue of the adjacency matrix A (λ1)
where λi are the eigenvalues of A and λ1 ≥ λ2 ≥ . . . ≥ λn. The eigenvalues of A
encode information about the cycles of a graph as well as its diameter.

4 Experimental Results

In this section we will discuss the results of our four edge modification tech-
niques. Results are presented in Table 2. Each cell indicates the error value for
the corresponding measure and method computed by Eqs. 1 and 2. Values are
averaged from 10 independent executions. The lower the value, the better the
method. Although deviation is undesirable, it is inevitable due to the graph’s
alteration process.

The first two tested networks are the synthetic ones. As we have commented
previously, ER-1000 has been created using Erdös-Rényi model. Its degree his-
togram does not follow de power-law, as it can be seen in Fig. 3a. Most of the
vertices have degree values between 7 and 13, while few have degree values lower
than 7 or higher than 13. Edge add/del and Edge switch present the best values
on almost all metrics used on our experiments, as we can see in Table 2. Last
column corresponds to the cumulative normalized error (ε), which points out
that Edge switch achieves the lowest information loss, closely followed by Edge
add/del. Both Edge add and Edge del get worse results. On the contrary, the
second network, BA-1000, has been constructed by applying scale-free model
and its degree distribution follows a power-law. Figure 3b points out clearly a
large number of vertices with small degree value and few vertices with very high
degree value. It is important to underline the scale difference between this figure
and the previous one. In this case, Edge add and Edge switch reach results with
the lowest information loss. As in the previous case, the difference between these
two methods and the other ones (Edge del and Edge add/del) is considerable.
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Table 2. Results for Edge add (Add), Edge Del (Del), Edge add/del (Add/del) and
Edge Switch (Switch) methods. For each dataset and method, we compare the results
obtained on dist, T , CB , CC , CD and λ1. Last column corresponds to the cumulative
normalized error (ε) for each method on all evaluated metrics.

Network Method dist T CB CC CD λ1 ε

ER-1000 Add 0.1402 0.0012 0.0005 0.0149 0.0016 1.2454 4.407

Del 0.1833 0.0013 0.0006 0.0197 0.0016 1.2262 5.984

Add/del 0.0005 0.0002 0.0007 0.0073 0.0015 0.0122 1.077

Switch 0.0003 0.0001 0.0005 0.0055 0.0010 0.0048 0.020

BA-1000 Add 0.0118 0.0025 0.0005 0.0030 0.0016 0.6507 0.667

Del 0.1111 0.0038 0.0007 0.0315 0.0034 3.5769 6.000

Add/del 0.0902 0.0014 0.0016 0.0230 0.0034 2.9250 4.279

Switch 0.0488 0.0011 0.0005 0.0162 0.0019 1.4601 1.114

Karate Add 0.1799 0.0060 0.0268 0.0428 0.0270 0.4312 2.772

Del 0.1393 0.0223 0.0204 0.0696 0.0296 0.6171 4.104

Add/del 0.0393 0.0166 0.0311 0.0404 0.0331 0.2352 2.730

Switch 0.0935 0.0291 0.0297 0.0424 0.0233 0.1056 2.365

Jazz Add 0.2290 0.0486 0.0073 0.0532 0.0199 1.9575 2.814

Del 0.0653 0.0658 0.0021 0.0940 0.0223 4.7641 3.265

Add/del 0.1888 0.1115 0.0077 0.0497 0.0179 2.9508 3.817

Switch 0.1859 0.1129 0.0068 0.0451 0.0111 2.1005 2.622

URV email Add 0.2142 0.0179 0.0011 0.0193 0.0014 0.5120 1.000

Del 0.1238 0.0208 0.0007 0.2177 0.0017 2.3656 3.309

Add/del 0.1028 0.0387 0.0013 0.1587 0.0016 1.9539 3.321

Switch 0.1319 0.0429 0.0011 0.1481 0.0010 1.3955 2.385

Polblogs Add 0.1738 0.0114 0.0013 0.1649 0.0031 1.0974 2.000

Del 0.0569 0.0280 0.0005 0.1502 0.0050 9.0615 3.258

AddDel 0.1158 0.0389 0.0015 0.1177 0.0045 7.8086 2.934

Switch 0.1620 0.0459 0.0014 0.0991 0.0025 6.1445 2.531

The first tested real network is Zachary’s Karate Club. Although Edge switch
achieves the best values, Edge add and Edge add/del get values close to theirs.
For instance, we can deepen on behaviour of λ1 error in Fig. 4a. The p = 0 value
(x-axis) represents the value of this metric on the original graph. Thus, values
close to this point indicate low noise on perturbed data. As we can see, Edge
switch remains closer to the original value than the other methods.

Jazz musicians is our second tested real network. The differences among our
four methods are smaller using this dataset than the aforementioned exper-
iments. Edge del reaches better results than previous cases and the method
which introduces the most information loss is Edge add/del. However, Edge add
and Edge switch get slightly lower information loss. For example, we analyse
average distance in depth, which usually increases when applying Edge del and
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Fig. 4. Examples of the error evolution computed on our experimental framework.
Perturbation parameter p varies along the horizontal axis from 0 % (original graph)
to 25 %.

decreases when applying Edge add. It is obvious, since removing edges increases
paths between vertices and adding new edges decreases paths. Nevertheless, it is
interesting to see that perturbation introduced by removing edges is lower than
others in this case, as can be seen in Fig. 4b.

Lastly, URV email and Polblogs represent the largest real networks in our
experiments. Their structure is similar to BA-1000, since they are both scale-
free networks but with parameter γ ≈ 0.5. Results on URV email are similar to
ones on BA-1000; Edge add achieves the best results, followed by Edge switch,
and again Edge del and Edge add/del get the worst results. We can observe
this behaviour in Fig. 4c, where Edge add obtains the lowest error on closeness
centrality. The difference is quite important compared to Edge add/del and Edge
switch, but even larger compared to Edge del. Similar behaviour can be observed
on Polblogs dataset. Edge add achieves the best values, but Edge del and Edge
switch also get also good values, close to the ones obtained by Edge add.

Figure 4d depicts transitivity, where all edge modification methods decrease
values obtained on original network. As shown, Edge add gets values closer
to the original ones on all perturbation percentage. Edge del and Edge switch
obtain similar cumulative normalized error on this dataset, suggesting that both
introduce similar noise on tested metrics.
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As conclusions, we note that Edge switch gets lower information loss when
it is applied to networks which do not fulfil the scale-free model, i.e. ER-1000
and Jazz musicians. On the other side, Edge add obtains the lowest information
loss when dealing with scale-free networks, such as BA-1000, URV email and
Polblogs. Edge switch also achieves good results on scale-free networks. That
is not surprising, since Edge switch preserves the degree distribution keeping
some related measures close to the original values. On the contrary, Edge del
and Edge add/del introduce more perturbation on almost all analysed networks,
except Polblogs where Edge del scores the second position and ER-1000 where
Edge add/del also succeed to obtain the second position.

5 Conclusions

In this paper we have evaluated the basic edge modification techniques, which are
commonly used on privacy-preserving algorithms. We have presented four basic
types of edge modification methods, and a framework to assess the behaviour
of some graph’s properties during perturbation processes induced by these four
edge modification methods. Our framework includes some experimental results
both on synthetic and real-world networks.

As we have demonstrated, Edge switch better preserves graph’s properties
on networks with a degree distribution which does not follow the power-law.
On the contrary, Edge add is the best method to keep graph’s properties when
perturbing scale-free networks. Edge del and Edge add/del introduce more noise
during perturbation processes on both type of networks.

Many interesting directions for future research have been uncovered by this
work. It would be interesting to also consider methods based on noise node addi-
tion [11] and information loss measures based on real graph-mining processes,
such as clustering or community detection. It would be also very interesting
to extend this analysis to other graph’s types (directed or labelled graphs, for
instance).
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