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Abstract. Maximum variance unfolding (MVU) is one of the most
prominent manifold learning techniques for nonlinear dimensionality
reduction. Despite its effectiveness it has proven to be considerably slow
on large data sets, for which fast extensions have been developed. In
this paper we present a novel algorithm which combines classical MVU
and multi-output kernel ridge regression (KRR). The proposed method,
called Selective MV U, is based on a three-step procedure. First, a subset
of distinguished points indicated as central prototypes is selected. Then,
MVU is applied to find the prototypes embedding in the low-dimensional
space. Finally, KRR is used to reconstruct the projections of the remain-
ing samples. Preliminary results on benchmark data sets highlight the
usefulness of Selective MVU which exhibits promising performances in
terms of quality of the data embedding compared to renowned MVU
variants and other state-of-the-art nonlinear methods.

Keywords: Nonlinear dimensionality reduction - Manifold learning -
Maximum variance unfolding + Prototype selection

1 Introduction

Dimensionality reduction is the process of converting high dimensional data into
meaningful representations of reduced dimensionality. As a preliminary step it
plays a fundamental role in several machine learning tasks by favoring data
visualization, clustering and classification. Dimensionality reduction techniques
are usually divided into linear and nonlinear approaches. Within the family of
nonlinear methods manifold learning algorithms have drawn great interest by
attempting to recover the low dimensional manifold along which data are sup-
posed to lie. These include, among others, Isometric feature mapping [1], Locally
linear embedding [2], Laplacian eigenmaps [3], Local tangent space alignment [4]
and Maximum variance unfolding [5].

Maximum variance unfolding (MVU), also known as Semidefinite embedding,
relies on the notion of isometry which can be defined as a smooth invertible
mapping that behaves locally like a rotation plus a translation. The final low-
dimensional embedding is therefore locally-distance preserving, since it is derived
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by keeping unchanged the distances and angles between neighboring points. The
unfolding process requires the solution of a semidefinite program (SDP) which
maximizes the variance of the points in the feature space, represented by the
trace of the corresponding Gram matrix, under linear equality constraints which
impose the local-isometry conditions.

Despite its effectiveness MVU turns out to be considerably slow when the
number of points increases since solving large semidefinite programs is time-
consuming. To overcome this drawback different approaches can be followed.
One may resort to greedy optimization procedures, as those described in [6]
and [7], able to efficiently achieve the global optimum of semidefinite programs
on large data sets, or to iterative algorithms which transform graph embeddings
into MVU feasible solutions [8]. A further strategy to speed up the algorithm is
to reduce the original SDP to a smaller problem by means of the Gram matrix
factorization. Based on this last approach two fast variants have been developed.
In the first the Gram matrix is reconstructed from a smaller submatrix of inner
products between randomly chosen landmarks [9]. In the second variant matrix
factorization is obtained by expanding the solution of the initial SDP in terms
of the bottom eigenvectors of the graph Laplacian [10].

In this paper we present a novel method for nonlinear dimensionality reduc-
tion which combines MVU and kernel ridge regression [11] and [12]. The pro-
posed algorithm, called Selective MVU, is based on a three-step procedure.
A subset of distinguished points, indicated as prototypes, is first selected from the
original data set. Classical MVU is then applied on the collection of prototypes
to find their embedding in the low d-dimensional space. The projections of the
remaining points are finally derived by learning the nonlinear mapping through
multi-output kernel ridge regression (KRR), which has been successfully used
as out-of-sample extension for manifold learning [13]. The proposed algorithm
enables significant computational savings compared to classical MVU that is in
this case applied only to the set of representative points. It draws inspiration from
both landmark methods for fast embedding [14] and [9], which place a point in
the feature space according to its distance from the projected landmarks, and the
spectral regression paradigm [15], in which the subspace learning problem is cast
into a regression framework. To designate the collection of prototypes we also
propose a novel method based on K-means algorithm that behaves more effec-
tively than random selection. Experiments on eight benchmark data sets high-
light the usefulness of Selective MVU which provides promising results compared
to well-known MVU fast variants and other prominent nonlinear dimensionality
reduction techniques.

The remainder of the paper is organized as follows. Section 2 briefly recalls
maximum variance unfolding. Section3 presents the novel Selective MVU
algorithm and the prototype selection method. Computational experiments and
results are described in Sect. 4. Conclusions and future developments are dis-
cussed in Sect. 5.
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2 Maximum Variance Unfolding

Maximum variance unfolding imposes local-isometry constraints aimed at pre-
serving both distances and angles between points and their neighbors, in order
to find low-dimensional projections which faithfully represent the input data.

Let Sy = {x;, i e M ={1,2,...,m}} C R" be a set of m points approxi-
mately confined to a nonlinear manifold of intrinsic dimension d (d < n). The
unfolding process starts with the construction of the neighborhood graph in
which nodes represent data points and edges neighborhood relations. Then,
it requires the solution of a quadratic optimization problem which maximizes
the variance of the embedding subject to the local-isometry conditions. In
practice, the problem is reformulated as the following semidefinite program
over the Gram matrix G,, = [gi;] of the points in the feature space, with
gij = <Ziazj> aViaj € Ma

max  tr (G) (SD)
s.to Gii + gjj — 29” = d?] VZ,] c M7 777;j = ]., (1)
> 9 =0, (2)
1,jJEM
G =0, 3)
where d;; = ||x; — x;|| and the coefficient 7;; € {0,1} takes the value 1 if x;

is among the k-nearest neighbors of x; or x; and x; are common neighbors of
another point in the data set. The first constraints of problem SD preserve the
distances between neighboring points. The second yields a unique solution by
centering the projections on the origin and the third forces the Gram matrix to
be positive semidefinite. The objective function, finally, maximizes the trace of
G which is tantamount to maximizing the total variance of the points in the
low-dimensional space.

Once the matrix G is learned via semidefinite programming the final embed-
ding is obtained by computing its d largest eigenvalues and setting the projec-
tions to Z = VA1/2, where Z,, x4 is the matrix of embedded vectors z;, Ay is
the square diagonal matrix of leading eigenvalues and V,,xq4 is the matrix of
corresponding eigenvectors.

Although efficient solvers for semidefinite programming exist, problem SD
hardly scales to large data sets. The computational effort increases with the
number of constraints and the size of G. It is possible to show, however, that for
well-sampled manifolds the Gram matrix can be reasonably approximated as the
product of smaller matrices G = QY Q’, where Q,,,x; (I < m) must be properly
determined. This results in a semidefinite program over the square matrix Y
of size [, which has to be optimized under the local distance constraints. The
low-rank expansion of G represents the key point of two fast MVU extensions
given by Landmark MVU (L-MVU) [9] and Graph Laplacian Regularized MVU
(GL-MVU) [10].
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3 Selective MVU

The distinctive traits of MVU are the maximization of the variance of the embed-
ding and the preservation of the distances between neighboring points. L-MVU
and GL-MVU algorithms represent a substantial improvement over classical
MVU from the computational viewpoint. However, they both diverge from the
original paradigm due to the Gram matrix factorization.

In this paper we present a novel MVU extension, called Selective MVU
(S-MVU), in which the required computing effort is reduced according to a
different framework. Instead of resorting to modified MVU formulations applied
to the entire set of data, the proposed method uses classical MVU to find the
embedding of a collection of distinguished points indicated as prototypes. The
low-dimensional coordinates of the remaining samples are then reconstructed via
multi-output kernel ridge regression (KRR) [13]. The aim of this study, therefore,
is to empirically investigate whether the solution of the original MVU model over
a subset of representative points combined with an accurate regression method
for learning the nonlinear mapping may provide higher quality low-dimensional
projections compared to both MVU fast variants. The proposed Selective MVU
algorithm can be summarized as follows.

Procedure. Selective MVU (S-MVU)

1. Define a collection P C S,, of prototypes, where card(P) = p. Let P C M
be the set of their indices.

2. Find the embedding of P by solving problem SD over the corresponding
Gram matrix G, = [g;;], where g;; = (2;,2;),Vi,j € P. Then, set Z =
VA2 where Z,x4 contains the projections of the prototypes in the feature
space, Aq collects the d leading eigenvalues of G and Vw4 the corresponding
eigenvectors.

3. Learn the mapping via multi-output kernel ridge regression. To this aim,
define a Mercer kernel p : R x ™ — R inducing a nonlinear projection
¢ : R +— H from the original input space R" to a Hilbert space H. Formulate
the kernel ridge regression model as min [|Z — (&, W)||%. + A HVVH%7 where
|-l is the Frobenius norm of a matrix, the vector ® collects the images
¢ (xi), 1 € P, in ‘H and the parameter A controls the trade-off between the
error and the penalty term. The regression coefficients can be computed in
close form as W = &' (U + AL,) " Z, where I, is the identity matrix of size p
and U, = [u;;] is the kernel matrix associated to p, with u;; = (¢ (x;) , ¢ (x;)),
Vi,j € P.

4. Embed the other points xi,k € M\ {P}, by setting z;, = (W', ¢ (xx)) =
Z' (U + )\Ip)fl T (xg), where the generic element of the p-dimensional vector
T is given by t; = (¢ (x;), ¢ (xx)), j € P.

Notice that, the distance-preserving constraints of problem SD are in this case
imposed only to the collection of prototypes, which are the pivotal elements for
data embedding.
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Fig. 1. Embedding of two artificial data sets. Panels (a) and (d) illustrate the Swiss
roll and the S-curve data sets in the original three-dimensional space. Panels (b) and
(e) show the two-dimensional projection of the randomly selected prototypes by means
of MVU. Panels (c) and (f) depict the final mapping obtained by applying KRR on
the embedded prototypes.

To illustrate the projection based on Selective MVU we applied the proposed
algorithm to two artificial data sets obtained by sampling 6000 points from a
Swiss roll and a S-curve surface, respectively. In particular, we computed the
two-dimensional embedding from the three-dimensional space by setting k = 6,
using the radial basis function (RBF) kernel for KRR and randomly choosing
10 % of the available points as prototypes. The projections obtained by S-MVU
are depicted in Fig. 1. As we may observe, although based on a very small number
of representative points the final mapping of both data sets faithfully correspond
to the structure of the manifold in the native three-dimensional space.

3.1 Central Prototypes Selection

The most straightforward way to designate the set of prototypes is to select
them randomly. Random selection is usually applied to identify landmark points
in landmarks-based manifold learning algorithms [14] and [9]. However, it may
generate misleading data projections [16] and [17], especially when data are
affected by noise.

To find the collection of representative points we resorted to a simple but
effective procedure based on clustering. In particular, we first applied K-means
algorithm to partition the points into K distinct clusters. From each cluster we
then selected a predefined number of central prototypes, defined as the points for
which the maximum distance from the other points in the cluster is minimized.
The algorithm can be summarized as follows:

Procedure. Central Prototypes Selection (CPS)

1. Let v = p/m be the fraction of points in S, to use as prototypes.
2. Identify a set of K points as initial seeds and partition .S, into K clusters by
applying K-means algorithm.
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3. For each cluster Cy,h =1,2,..., K, sort the points in ascending order based
on their maximum distance from the other points in the cluster. Select the
first |y - card(Cp)] points from the list, where | - | denotes the integer part,
and insert them in the set P of desired prototypes.

The initial seeds for K-means clustering at step 2 were computed through
a multivariate variant of the algorithm proposed in [18], which introduces a
measure of distance between cluster centers and virtually reduces to zero the
variance of different runs. Indeed, it provides the same initial clusters across
multiple experiments by excluding any form of randomness. The algorithm was
originally conceived for clustering along a single dimension. The multivariate
extension considered in this study is described by the following procedure.

Procedure. Seeds Selection (SS)

1. Sort the points in S, in terms of increasing magnitude, given by their norms
Ix;||, i € M. Let F be the set of sorted points.

2. Compute the distances D; = ||x/™' —x7||, j = 1,2,...,m — 1, between all
pairs of consecutive points, where x? denotes point x at position j in F.

3. Identify the indices {jl,jg,...,j(K_l)} corresponding to the K — 1 high-
est distance values and sort them in ascending order. Define the sets of
indices U = {j1,J2,..-,J(x—1).dx } and V = {jo, 1 +1,...,jx—1) + 1} of
the points serving as upper and lower bounds, respectively, where jx = m
and jo = 1.

4. Compute the K initial seeds as the mean vectors between the upper and lower
bound points defined above.

To highlight the usefulness of central prototypes selection we considered a
data set composed by 6000 points randomly sampled from a Swiss roll mani-
fold with 1% of uniform distributed outliers, and computed the low-dimensional
embedding by means of alternative techniques. In particular, we analyzed the
effect of randomness in the worst case scenario when outliers are used as land-
marks in L-MVU and prototypes in S-MVU. The different embeddings, obtained
by setting k& = 6 for all methods, are illustrated in Fig.2. As one may notice,
the presence of noise interferes with the unfolding process and induces a major
distortion when the projections are based on the outliers (Panels d and e). The
use of central prototypes in S-MVU, however, mitigates this effect preserving
the structure of the underlying manifold (Panel f). As shown in Fig.2, a major
robustness of S-MVU compared to GL-MVU and L-MVU was also observed
when injecting 10% of outliers (Panels g, h and 7).

3.2 Complexity of Selective MVU

Classical MVU runs in O (m3 + 03) over a set of m points, where ¢ is the number
of constraints in the semidefinite program [5]. The time-complexity of KRR is
O (p3) [13] whereas the prototype selection procedure runs in O (m2 +mKI n),
where [ is the number of iterations in the K-means algorithm and the quadratic
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Fig. 2. Embedding of a Swiss roll with noise. Panel (a) represents the Swiss roll com-
posed by 6000 points with 1% of uniform distributed outliers (60 outliers). Panels
(b) and (c) describe the projections obtained by GL-MVU (12 Laplacian eigenvectors
used) and L-MVU (30 landmarks used). Panels (d) and (e) illustrate the mapping of
L-MVU (30 outliers used as landmarks) and S-MVU (600 prototypes composed by the
60 outliers and 540 randomly chosen points). Panel (f) shows the embedding of S-MVU
based on 600 central prototypes. Finally, panels (g), (h) and (i) display the unfolding
of GL-MVU, L-MVU and S-MVU, respectively, on the Swiss roll data set with 10% of
outliers.

term refers to the intra-clusters distances computation. The overall complexity
of S-MVU is, therefore, O (m? + mK1In + p® + ¢*). Major computational advan-
tages are obtained when p < m, where p can be naturally expressed as a fraction
v € (0,1] of the available points, p = |ym|. Experiments on artificial manifold
data sets and on medium-size data sets from the UCI Repository [19] empiri-
cally showed that 7 can be fixed to a very small value (v & 0.1) to obtain a fast
low-dimensional unfolding at the expense of a reduced loss in the quality of the
embedding.

4 Experiments and Results

To evaluate the usefulness of Selective MVU we resorted to a variety of criteria
based on the concept of loss of quality, which is supposed to be strongly related
to the preservation of the data geometry [20]. Most of these criteria can be
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divided into local and global approaches which are focused, respectively, on the
local neighborhood and the global structure preservation.

Computational tests were performed on eight benchmark data sets mostly
available at [19] and given by Page Blocks, Wall-Following Robot Navigation
(Wall), Gisette, Isolet, U.S. Postal Service Handwritten Digits (USPS), Human
Activity Recognition Using Smartphones (Smartphones), Pen-Based Recogni-
tion of Handwritten Digits (Penbased) and EEG Eye State (EEG). Prior to the
experiments missing values were removed and data were standardized. These
data sets are described in Table1 in terms of number of points, attributes and
dimensionality d* of the embedding space. This last was estimated by analyz-
ing the difference between consecutive eigenvalues in the eigenspectrum of the
landmark Gram matrix in L-MVU, as suggested in [9].

Despite MVU behaves like local methods by preserving distances and angles
between neighboring points it can be also regarded as a global technique
since it maximizes the overall variance of the embedding. Besides L-MVU and
GL-MVU the proposed algorithm was therefore compared to three state-of-the-
art local and global approaches. Among local methods we considered Locally
linear embedding (LLE) and Local tangent space alignment (LTSA). The for-
mer emerged as the most effective manifold learning algorithm for microarray
data embedding [21]; the latter received great attention for its simple geomet-
ric intuition and straightforward implementation. Among global techniques we
focused on Kernel PCA (KPCA) with RBF kernel, which has been related to
MVU in a recent taxonomy proposed in [22]. Indeed, both methods are spectral
techniques which convert the dimensionality reduction problem into the eigen-
decomposition of a kernel matrix.

In the following experiments some parameters were fixed. The number of
Laplacian eigenvectors in GL-MVU was set to 12 whereas 30 landmarks were
used in L-MVU to limit the computing time. The percentage of points taken as
prototypes in S-MVU was fixed to 0.1 for all data sets except for EEG, for which
it was set to 0.05. The number of clusters in procedure CPS was found through

Table 1. Description of the data sets. The last column indicates the estimated dimen-
sionality of the embedding space.

ID | Data set Points | Attributes | d*
1 | Pageblocks 5406 10 5
2 | Wall 5456 24 6
3 | Gisette 7000 | 5000 10
4 | Isolet 7797 | 617 6
5 | USPS 9298 | 256 6
6 | Smartphones| 10299 | 561 5
7 | Penbased 10992 16 6
8 | EEG 14980 14 6
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a grid search so to minimize the neighborhood size for which the connection of
the neighborhood graph was achieved. Finally, the RBF kernel was applied in
the KRR model by setting A = 0.1 and fixing the RBF parameter to 107 for a
given j in the interval [—3, —1]. The same RBF parameter’s values were tested
for KPCA. All methods were implemented in MATLAB. Computations were run
on a 3.40 GHz quad-core processor with 16 GB RAM.

To analyse the local neighborhood preservation we resorted to two local cri-
teria which measure the degree of overlap between the neighboring sets of a
point and of its embedding. The first is represented by the Local-Continuity
Meta-Criterion (Qp) [23], which is defined as the average size of the overlap
of the neighboring sets. The second is given by Trustworthiness and Continu-
ity (Qrc¢) [24], which is based on the exchange of indices of neighboring sam-
ples in the input and the feature space according to the pairwise Euclidean

Q

1 2 3 4 5 6 7 8

Fig. 3. Local and global quality assessment. Each panel indicates the performance of
the competing algorithms on the eight data sets.
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distances. Qr¢ is defined as a linear combination of two measures which evalu-
ate, respectively, the degree of trustworthiness that points farther away enter the
neighborhood of a sample in the embedding and the degree of continuity that
points originally included in the neighborhood are pushed farther away. The
coefficient of the linear combination was here fixed to 0.5. The above criteria
have proven to be good estimates of the embedding quality. In particular, the
greater their values are in the interval [0, 1], the better is the projection.

The global structure holding performance was, instead, analyzed by means of
a global metric recently proposed in [25]. This metric, here denoted as Q¢, eval-
uates the difference of the transforming scales of the embedding set compared to
the original data manifold along various directions. This is achieved by comput-
ing a shortest path tree of the neighborhood graph and using the Spearman’s
rank order correlation coefficient defined on the rankings of the main branches
lengths. The original global manifold is well preserved in the data embedding as
the value of Q¢ approaches 1.

The results obtained by the competing techniques are depicted in Fig. 3,
where each panel collects the performances for a given measure. The comput-
ing time for data embedding recorded by selecting for each method the mini-
mum number of neighbors generating a connected neighborhood graph (provided
k > 4), and once K has been fixed for S-MVU], is shown in Fig. 4. Since the afore-
mentioned criteria are highly sensitive to the neighborhood size, to perform a
fair comparison we computed Qr,, @rc and Q¢ for a fixed value of k that was
set equal to the number of neighbors for which the corresponding neighborhood
graph turned out to be connected for all methods.

According to the local quality assessment the embedding generated by
S-MVU and KPCA more faithfully preserved the local neighborhood structure of

GL-MVU L-MVU S-MVU
200 1000 120

150 750 90

100 500 == 60 e r

1ol T

KPCA LLE LTSA

!

20 l 20 l 2000 J_
15 15 — 1500
10 10 — 1000
5 5 500
T I M
0 12 3 456 7 8 0 12 3 456 7 8 0 12 3 4 |—5—| 6 '_7_‘ '_8_|

Fig. 4. Computing time (secs) for embedding each of the eight data sets.
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the original manifold. In particular, S-MVU dominated both MVU extensions,
LLE and LTSA, and provided better results on the majority of the data sets
(6 out of 8) compared to KPCA. The proposed algorithm exhibited also notable
performances in terms of global structure preservation, as indicated by Q¢.
Therefore, the embedding set of S-MVU encountered a smaller distortion of the
global shape of the manifold on most data sets. It is worth to notice that, whereas
L-MVU and LLE performed generally better than GL-MVU and LTSA accord-
ing to the local measures, they were often dominated by the latter based on the
global metric. The proposed S-MVU algorithm, instead, behaved well both in
terms of local and global quality assessment.

5 Conclusions and Future Extensions

In this paper we described a novel method for nonlinear dimensionality reduction
indicated as Selective MVU (S-MVU). In the proposed algorithm the unfolding
process is guided by a subset of distinguished points called central prototypes,
whose embedding is computed by means of classical MVU. The projections
of the remaining samples are thereafter reconstructed via multi-output kernel
ridge regression. S-MVU was empirically compared to two well-known fast MVU
extensions and to three prominent nonlinear dimensionality reduction meth-
ods. On several benchmark data sets it achieved noteworthy performances and
emerged as a valid alternative to state-of-the-art techniques in terms of quality
of the data projection.

The present study can be extended in several directions. First, novel
procedures for selecting the representative points or embedding the set of non-
prototypes samples could be developed. It would be also worthwhile to inves-
tigate the effectiveness of greedy optimization algorithms for solving problem
SD in Selective MVU to speed up the unfolding process. Finally, further com-
putational tests could be performed by comparing the accuracy that alternative
classification algorithms achieve on the different data projections.
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