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Abstract. In this paper, four possibilistic clustering methods are pro-
posed. First, we propose two possibilistic clustering methods for spherical
data — one based on Shannon entropy, and the other on Tsallis entropy.
These methods are derived by subtracting the cosine correlation between
an object and a cluster center from 1, to obtain the object-cluster dis-
similarity. These methods are derived from the proposed spherical data
methods by considering analogies between the spherical and categori-
cal multivariate fuzzy clustering methods, in which the fuzzy methods’
object-cluster similarity calculation is modified to accommodate the pro-
posed possibilistic methods. The validity of the proposed methods is ver-
ified through numerical examples.

Keywords: Possibilistic clustering · Spherical data · Categorical
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1 Introduction

Fuzzy c-means (FCM), proposed by Bezdek [1], is the most popular algorithm
for performing fuzzy clustering on linear data. FCM is fuzzified through its
membership in the hard c-means (HCM) objective function [2]. Other HCM
fuzzification methods include entropy-regularized FCM (eFCM) [3] and Tsallis
entropy-based FCM (tFCM) [4].

FCM and its variants are useful clustering methods; however, their member-
ships do not always correspond well to the degree of belonging of the data. To
address this weakness of FCM, Krishnapuram and Keller [5] proposed a possi-
bilistic c-means (PCM) algorithm that uses a possibilistic membership function.
Krishnapuram and Keller [6], and Ménard et al. [4] proposed other possibilistic
clustering techniques that employ Shannon entropy and Tsallis entropy, respec-
tively. In this study, these two methods are respectively referred to as entropy-
regularized PCM (ePCM) and Tsallis-entropy-regularized PCM (tPCM).

All the aforementioned clustering methods are designed for linear data. In
other application domains, linear data clustering methods may yield poor results.
For example, information retrieval applications show that cosine similarity is a
more accurate similarity measure for clustering text documents than Euclidean
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distortion of dissimilarity [7]. Such domains require spherical data use, and only
consider the directions of the unit vectors. In particular, spherical K-means [8]
and its fuzzified variants [9–13] are designed to process spherical data. However,
a possibilistic approach for clustering spherical data has not been proposed in
the literatures; this was a motivation for this work. The spherical clustering
methods that correspond to eFCM and tFCM are denoted as eFCS and tFCS
in this paper.

In recent studies [13–17], various fuzzy clustering methods have been pro-
posed for categorical multivariate data (FCCM). In these methods, a categorical
multivariate dataset is provided in the form of a cross-classification table, contin-
gency table, or co-occurrence matrix. Because the optimization problems [13,15]
are similar to spherical clustering, these FCCM methods can be extended
into possibilistic clustering, which was another motivation for this work. The
method described in [15] is referred to as entropy-regularized FCCM (eFCCM),
and the method described in [13] is referred to as Tsallis entropy-regularized
FCCM (tFCCM), in order to distinguish these methods in this paper.

In this study, four possibilistic clustering methods are proposed — two for
spherical data and two for categorical multivariate data. First, we propose
the possibilistic clustering methods for spherical data: entropy-regularized pos-
sibilistic clustering for spherical data (ePCS) and Tsallis entropy-regularized
possibilistic clustering for spherical data (tPCS). These methods are derived by
subtracting the cosine correlation between an object and a cluster center from 1,
to obtain the object-cluster dissimilarity; this value is used in place of the squared
Euclidean distance between an object and an cluster center, which is commonly
used in conventional linear data methods. Second, we propose two possibilistic
clustering methods for categorical multivariate data: entropy-regularized possi-
bilistic clustering for categorical multivariate data (ePCCM) and Tsallis entropy-
regularized possibilistic clustering for categorical multivariate data (tPCCM).
These methods are derived from the proposed spherical data methods (ePCS
and tPCS) by considering analogies between the fuzzy methods for spherical
data and categorical multivariate data; here, the object-cluster similarity calcu-
lation in the fuzzy methods is modified to accommodate the proposed possibilis-
tic methods. The validity of the proposed methods is verified through numerical
examples.

The rest of this paper is organized as follows. In Sect. 2, the notation and the
conventional methods are introduced. Section 3 presents the proposed methods,
and Sect. 4 provides some numerical examples. Section 5 contains our concluding
remarks.

2 Preliminaries

2.1 Notation, Fuzzyc-Means, and Its Variants

Let X = {xk ∈ R
p | k ∈ {1, · · · , N}} be a dataset of p-dimensional points,

referred to as linear data. The membership of xk that belongs to the i-th cluster
is denoted by ui,k (i ∈ {1, · · · , C}, k ∈ {1, · · · , N}) and the set of ui,k is denoted
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by u, which is also known as the partition matrix. The cluster center set is denoted
by v = {vi | vi ∈ R

p, i ∈ {1, · · · , C}}. The squared Euclidean distance between
the k-th datum and the i-th cluster center is denoted by di,k = ‖xk − vi‖22.

One approach for membership fuzzification is to regularize the objective func-
tion of HCM by introducing a regularization term with a positive parameter
λ into the objective function. This approach was successfully implemented by
Miyamoto and Mukaidono [3]. Using the entropy term, the entropy-regularized
FCM (eFCM) is defined as

minimize
u,v

C∑

i=1

N∑

k=1

ui,kdi,k + λ−1
C∑

i=1

N∑

k=1

ui,k log(ui,k) (1)

subject to
C∑

i=1

ui,k = 1. (2)

Ménard adopted Tsallis entropy [20] instead of Shannon entropy to perform
fuzzy clustering, and proposed tFCM [4] defined as

minimize
u,v

C∑

i=1

N∑

k=1

um
i,kdi,k +

λ−1

m − 1

C∑

i=1

N∑

k=1

[um
i,k − ui,k] (3)

subject to Eq. (2).

2.2 Possibilistic Clustering

To improve the fidelity of fuzzy clustering, Krishnapuram and Keller [5] relaxed
the constrained condition Eq. (2), which yielded a possibilistic membership func-
tion. The memberships for a certain cluster and its cluster center are released
from constraint Eq. (2), and are obtained independent of these for other clus-
ters. Hereafter, we only consider cases in which C = 1, where the number 1
signifies that only one cluster is searched for at a time. With this setting, cluster
fusion [18] is useful, given that many cluster centers become nearer to each other
as iteration proceeds; the distance between two clusters frequently approaches
zero. The cluster fusion is described in the following algorithm:

Algorithm 1

1. Select a subset of objects as initial cluster centers. It is possible to select all
objects: C = N ; vi = xi (i ∈ {1, · · · , C}).

2. Perform possibilistic clustering, and obtain C cluster centers.
3. Merge cluster centers that have negligible distances between them.

Krishnapuram and Keller [6], and Ménard [4] proposed possibilistic clustering
methods using entropy, defined as

minimize
u,v

N∑

k=1

u1,kd1,k + λ−1
N∑

k=1

u1,k log(u1,k) − λ−1
N∑

k=1

u1,k, (4)
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minimize
u,v

N∑

k=1

um
1,kd1,k +

λ−1

m − 1

N∑

k=1

(um
1,k − u1,k) − λ−1

N∑

k=1

u1,k. (5)

These two methods are referred to as ePCM and tPCM because the usual
(Shannon) entropy and Tsallis entropy are employed in these methods, respec-
tively. The optimal solutions for the membership and cluster center are
described as

u1,k = exp(−λd1,k), (6)

v1 =(
N∑

k=1

u1,kxk)/(
N∑

k=1

u1,k) (7)

for ePCM, and

u1,k =(1 − λ (1 − m) d1,k)
1

1−m , (8)

v1 =(
N∑

k=1

um
1,kxk)/(

N∑

k=1

um
1,k) (9)

for tPCM. These equations are alternatively iterated during the second step in
Algorithm 1. Ménard denoted the third term in Eqs. (4) and (5) as a possibilistic
constraint, and showed that these two methods were derived by adding this
constraint to the eFCM and tFCM objective functions in Eqs. (1) and (3).

2.3 Fuzzy Clustering for Spherical Data

If objects are on the unit hypersphere, 1 − xT
kvi can be used as the dissimilarity

between an object xk and a cluster center vi. Such objects are referred to as
spherical data. Two methods that correspond to Eqs. (1) and (3) are obtained
for the following optimization problems:

minimize
u,v

C∑

i=1

N∑

k=1

ui,k(1 − xT
kvi) + λ−1

C∑

i=1

N∑

k=1

ui,k log(ui,k), (10)

minimize
u,v

C∑

i=1

N∑

k=1

um
i,k(1 − xT

kvi) +
λ−1

m − 1

C∑

i=1

N∑

k=1

[um
i,k − ui,k], (11)

respectively, subject to Eq. (2) and

‖vi‖2 = 1, (12)

referred to as eFCS [9] and tFCS [13], respectively. It is shown in [19] that eFCS
optimization problem in Eq. (10) can be equivalently described as the following
maximizing problem
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maximize
u,v

C∑

i=1

N∑

k=1

ui,kxT
kvi − λ−1

C∑

i=1

N∑

k=1

ui,k log(ui,k). (13)

However, to the best of our knowledge, a possibilistic approach to spherical
clustering has not yet been investigated.

2.4 Fuzzy Clustering for Categorical Multivariate Data

Assume that for datasets X = {xk | k ∈ {1, . . . , N}} and Y = {y� | � ∈
{1, . . . , M}}, the co-occurrence information between xk and y�, Rk,� is given.
R is the matrix whose (k, �)-th element is Rk,�. We refer to X and Y as the
row and column datasets, respectively, because the k-th row of R represents
the similarities between xk and y�, and the �-th column of R represents the
similarities between y� and xk. The membership of datum xk belonging to the
i-th cluster is denoted by ui,k. The (i, k)-th element of matrix u is denoted by
ui,k, and u satisfies the constraint in Eq. (2). The membership of datum y�

belonging to the i-th cluster is denoted by wi,�. The (i, �)-th element of matrix
w is denoted by wi,�, and w satisfies the constraint

M∑

�=1

wi,� = 1. (14)

The eFCCM [15] is obtained by solving the following optimization problem:

maximize
u,w

C∑

i=1

N∑

k=1

M∑

�=1

ui,k log(wi,�)Rk,� − λ−1
C∑

i=1

N∑

k=1

ui,k log(ui,k) (15)

subject to Eqs. (2) and (14), where λ > 0 is a fuzzification parameter. The
tFCCM [13] are obtained by solving the following optimization problem

maximize
u,w

C∑

i=1

N∑

k=1

M∑

�=1

um
i,k log(wi,�)Rk,� − λ−1

m − 1

C∑

i=1

N∑

k=1

[um
i,k − ui,k] (16)

subject to Eqs. (2) and (14), where λ > 0 and m > 1 are fuzzification parameters.
Because the optimization problem described in Eq. (15) is similar to Eqs. (1)
and (10), and because the optimization problem described in Eq. (16) is similar
to Eqs. (3) and (11), it is possible to generalize FCCM in the same manner in
which eFCM was modified into ePCM. This fact motivated this work.

3 Proposed Method

3.1 Modifying ePCM and tPCM

In this subsection, we modify ePCM and tPCM as a preparatory procedure to
derive the proposed methods.
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ePCM and tPCM objective functions are slightly generalized from Eqs. (4)
and (5) to

minimize
u,v

N∑

k=1

u1,kd1,k + λ−1
N∑

k=1

u1,k log(u1,k) − α
N∑

k=1

u1,k, (17)

minimize
u,v

N∑

k=1

um
1,kd1,k +

λ−1

m − 1

N∑

k=1

(um
1,k − u1,k) − α

N∑

k=1

u1,k, (18)

where the factor of the last term in the original problems in Eqs. (4) and (5),
λ−1, is replaced by another parameter α ∈ (−∞,+∞) for modified ePCM and
α ∈ (−1/(λ(m−1)),+∞) for modified tPCM. These optimal solutions for mem-
bership are described as

u1,k =β exp(−λd1,k), (19)

for modified ePCM, where β = exp(λα − 1) ∈ (0,+∞), and

u1,k =β(1 − λ(1 − m)d1,k)1/(1−m), (20)

for modified tPCM, where β = (1 + αλ (m − 1))/m)1/(m−1) ∈ (0,+∞), and the
optimal solutions of cluster center are the same as the original forms in Eqs. (7)
and (9). We can observe that α = λ−1 recovers the original problems. We note
that the membership value is 1 at d1,k = 0 for the original membership form;
this is not the case in Eqs. (19) and (20), except for the case in which α = λ−1.
However, this does not imply that the modified ePCM and the modified tPCM
do not contain defects. First, in the possibilistic theory, the maximal membership
value does not need to be 1. Second, such a modification does not affect cluster
center updating, as explained in the following procedure. Denote the membership
and the cluster center in the modified ePCM as ũ and ṽ to distinguish them from
those in the original ePCM. Then, we have

ṽ1 =
∑N

k=1 ũ1,kxk∑N
k=1 ũ1,k

=
∑N

k=1 βu1,kxk∑N
k=1 βu1,k

=
β

∑N
k=1 u1,kxk

β
∑N

k=1 u1,k

= v1, (21)

which means that such a modification does not affect the updating of the cluster
centers, and simply changes the scale of membership. The case of tPCM also
leads to the same result. Hereafter, the modified versions of ePCM and tPCM
are used to derive the proposed methods.

3.2 Possibilistic Clustering for Spherical Data

In this subsection, we propose two possibilistic clustering methods for spherical
data, ePCS and tPCS.

ePCS is obtained by solving the optimization problem

minimize
u,v

N∑

k=1

u1,k(1 − xT
kv1) + λ−1

N∑

k=1

u1,k log(u1,k) − α

N∑

k=1

u1,k, (22)
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subject to Eq. (12). This optimization problem is derived by subtracting the
cosine correlation between an object and a cluster center from 1 (1 − xT

kv1) to
obtain the object-cluster dissimilarity, instead of using the squared Euclidean
distance between an object and a cluster center (‖xk − v1‖22) applied in ePCM,
which was described in Eq. (17). The optimal solutions for the membership and
cluster center are described as

u1,k = β exp(λxT
kv1), (23)

v1 = (
N∑

k=1

u1,kxk)/(‖
N∑

k=1

u1,kxk‖2), (24)

where β = exp(−λ − 1 + λα). ePCS is also derived from eFCS by subtracting
the possibilistic constraint term α

∑N
k=1 u1,k from the eFCS objective function

described in Eq. (10), omitting the probabilistic constraint in Eq. (2), and consid-
ering the spherical constraint in Eq. (12). The ePCS membership in Eq. (23) is
described for arbitrary object x as u1(x) = β exp(λxTv1); this is the unnor-
malized von Mises-Fisher distribution. This membership function for a one-
dimensional sphere is depicted in Fig. 1 for several parameter values of λ, where
β is set such that maxx u1(x) = 1. The ePCS optimization problem is described
as the following maximizing problem:

Eq. (22) ⇔ maximize
u,v

N∑

k=1

u1,kxT
kv1 − λ−1

N∑

k=1

u1,k log(u1,k) + (α − 1)
N∑

k=1

u1,k

⇔ maximize
u,v

N∑

k=1

u1,kxT
kv1 − λ−1

N∑

k=1

u1,k log(u1,k) + α′
N∑

k=1

u1,k, (25)

where α′ = α−1. This optimization problem is also obtained from the maximiz-
ing problem of eFCS in Eq. (13), by adding the possibilistic constraint term
α′ ∑N

k=1 u1,k from the ePCS objective function described in Eq. (13), while
omitting the probabilistic constraint in Eq. (2) and considering the spherical
constraint in Eq. (12). This maximizing problem is used to derive ePCCM in
the next subsection.

The tPCS method is obtained by solving the optimization problem

minimize
u,v

N∑

k=1

um
1,k(1 − xT

kv1) +
λ−1

m − 1

N∑

k=1

(um
1,k − u1,k) − α

N∑

k=1

u1,k, (26)

subject to Eq. (12). This optimization problem is derived by subtracting the
cosine correlation between an object and a cluster center from 1 (1 − xT

kv1) to
obtain the object-cluster dissimilarity. This value replaces the squared Euclidean
distance between an object and an cluster center (‖xk−v1‖22), which is used in the
tPCM method described in Eq. (5). The optimal solutions for the membership
and cluster center are described as

u1,k = β(1 − λ(1 − m)(1 − xT
kv1))

1
1−m , (27)
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v1 =(
N∑

k=1

um
1,kxk)/(‖

N∑

k=1

um
1,kxk‖2), (28)

where β = ((1 − αλ(1 − m))/m)1/(m−1). tPCS is also derived from tFCS by
subtracting the possibilistic constraint term α

∑N
k=1 u1,k from tFCS objective

function described in Eq. (10), omitting the probabilistic constraint in Eq. (2),
and considering the spherical constraint in Eq. (12). The membership is rewritten
using λ′ = λ/(1 − λ(1 − m)) and β′ = β(λ/λ′)1/(1−m) as

u1,k =β′(1 + λ′(1 − m)xT
kv1)1/(1−m). (29)

This membership in Eq. (29) is described for arbitrary object x as u1(x) =
β′(1 + λ′(1 − m)xTv1)1/(1−m); this is a deformation of the unnormalized von
Mises-Fisher distribution when λ = 1, i.e., u1(x) recovers a von Mises-Fisher
distribution with m → 1, which is similar to the method used by the Tsallis
distribution [20] to recover a Gaussian distribution. This membership function
for a one-dimensional sphere is depicted in Figs. 2 and 3 for several parameter
values of (λ,m), where β is set such that maxx u1(x) = 1. The tPCS optimization
problem is described as the following maximizing problem:

Eq. (26) ⇔ maximize
u,v

N∑

k=1

um
1,kxT

kv1 − 1 + λ(m − 1)
λ(m − 1)

N∑

k=1

[um
1,k − u1,k]

+ (α − 1)
N∑

k=1

u1,k

⇔ maximize
u,v

N∑

k=1

um
1,kxT

kv1 − λ′−1

m − 1

N∑

k=1

[um
1,k − u1,k] + α′

N∑

k=1

u1,k, (30)

where α′ = α − 1 and λ′ = λ/(1 − λ(1 − m)). This maximizing problem is used
to derive tPCCM in the next subsection.

3.3 Possibilistic Clustering for Categorical Multivariate Data

In this subsection, we propose two possibilistic clustering methods for categorical
multivariate data, ePCCM and tPCCM.

First, we reconfigure the objective function of eFCCM described in Eq. (15) as

C∑

i=1

N∑

k=1

M∑

�=1

ui,k(log(wi,�)Rk,� − log(Γ(Rk,� + 1))) − λ−1
C∑

i=1

N∑

k=1

ui,k log(ui,k), (31)

by adding the term

−
C∑

i=1

N∑

k=1

M∑

�=1

ui,k log(Γ(Rk,� + 1)) (32)

to the original objective function. This term originates from the third term of
the following lower bound, for the log-likelihood of a multinomial mixture model
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−
N∑

k=1

C∑

i=1

ui,k log(ui,k)
N∑

k=1

C∑

i=1

ui,k + log(Γ(
M∑

�=1

Rk,� + 1)

−
N∑

k=1

C∑

i=1

ui,k

M∑

�=1

log(Γ(Rk,� + 1) +
N∑

k=1

C∑

i=1

ui,k

M∑

�=1

log(wi,�)Rk,� (33)

≤
N∑

k=1

C∑

i=1

ui,k log(
1

ui,k

Γ(
∑M

�=1 Rk,� + 1)
∏M

�=1 Γ(Rk,� + 1)

M∏

�=1

w
Rk,�

i,� ) (34)

=
N∑

k=1

log(
C∑

i=1

Γ(
∑M

�=1 Rk,� + 1)
∏M

�=1 Γ(Rk,� + 1)

M∏

�=1

w
Rk,�

i,� ). (35)

The added term described in Eq. (32) does not affect the optimal solution of
eFCCM because of the constraint described in Eq. (2), whereas it plays a role in
constituting the membership function in a possibilistic manner; this is discussed
later.

Next, similar to the manner in which ePCS is derived from eFCS, the
ePCCM optimization problem is constructed from eFCCM. The objective func-
tion of the eFCS maximizing problem described in Eq. (13) is quite simi-
lar to that of eFCCM in Eq. (31) if si,k = xT

kvi in eFCS (Eq. (13)) and
si,k =

∑M
�=1 log(wi,�)Rk,� − log(Γ(Rk,� + 1)) in eFCCM (Eq. (31)). Based on

this information, an ePCCM optimization problem is proposed as

maximize
u,w

N∑

k=1

M∑

�=1

u1,k(log(w1,�)Rk,� − log(Γ(Rk,� + 1))) − λ−1
N∑

k=1

u1,k log(u1,k)

+ α

N∑

k=1

u1,k (36)

subject to the constraint in Eq. (14), which is obtained from the eFCCM objec-
tive function in Eq. (31) by setting C = 1, omitting the constraint in Eq. (2),
and adding the possibilistic constraint α

∑N
k=1 u1,k to the eFCCM objective func-

tion. By solving this optimization problem, we obtain the optimal solutions for
memberships (u,w) as

u1,k =β exp(λ
M∑

�=1

log(w1,�)Rk,� − log(Γ(Rk,� + 1))), (37)

w1,� =(
N∑

k=1

u1,kRk,�)/(
M∑

r=1

N∑

k=1

u1,kRk,r), (38)

where β = exp(−λ − 1 + αλ). The ePCCM membership in Eq. (37) is described
for arbitrary object R = (R1, · · · , RM ) as u1(R) = β exp(λ

∑M
�=1 log(w1,�) −

log(Γ(R� + 1))) is the unnormalized multinomial distribution when λ = 1. This
membership function for M = 2 and w1 = (0.2, 0.8) is depicted in Fig. 4 for
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several parameter values of λ, where β is set such that maxR u1(R) = 1. Here,
we can observe the purpose of adding the term in Eq. (32). If this term is omitted,
such a membership function is described as

u1(R) =β exp(λ
M∑

�=1

log(w1,�)R�), (39)

and is depicted in Fig. 5 for λ = 1 where β is set such that maxR u1(R) = 1.
From this figure, we can observe that such membership functions cannot capture
the mode of densities; when the mode with w1 < 0.5 is at the minimal value of
R1, R1 = 0, the mode with w1 > 0.5 is at the maximal value of R1, R1 = 20,
and the mode with w1 = 0.5 is disappears. On the other hand, by adding the
term in Eq. (32), we can observe in Fig. 4 that the membership functions can
capture the mode of densities.

The tPCCM optimization problem is obtained from ePCCM in a similar
manner to how tPCS is derived from ePCS, i.e., by replacing ui,k in the first
term of Eq. (36) and Shannon entropy in the second term of Eq. (36) by um

i,k

and Tsallis entropy, respectively, as

maximize
u,w

N∑

k=1

M∑

�=1

um
1,k(log(w1,�)Rk,� − log(Γ(Rk,� + 1))) − λ−1

m − 1

N∑

k=1

[um
1,k − u1,k]

+ α
N∑

k=1

u1,k (40)

subject to the constraint in Eq. (14). By solving this optimization problem, we
obtain the optimal solutions of memberships as

u1,k =β(1 + (1 − m)λ
M∑

�=1

log(w1,�)Rk,� − log(Γ(Rk,� + 1)))1/(1−m), (41)

w1,� =(
N∑

k=1

um
1,kRk,�)/(

M∑

r=1

N∑

k=1

um
1,kRk,r), (42)

where β = ((1 − αλ(1 − m))/m)1/(m−1). This membership in Eq. (41)
is derived for arbitrary object R = (R1, · · · , RM ), as uk = β(1 + (1 −
m)λ

∑M
�=1 log(w1,�)R� − log(Γ(R� + 1)))1/(1−m), which is a deformation of the

unnormalized multinomial distribution when λ = 1, i.e., u1(x) recovers multino-
mial distribution with m → 1 by setting an adequate normalization factor β. This
membership function for M = 2 and w1 = (0.2, 0.8) is depicted in Figs. 6 and 7
for several parameter values of (λ,m) where β is set such that maxR u1(R) = 1.

4 Numerical Example

This section provides numerical examples based on artificial and actual datasets.
The first example illustrates the performance of ePCS and tPCS using a dataset
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Fig. 1. ePCS membership
functions
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Fig. 2. tPCS membership
functions with m = 2
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Fig. 3. tPCS membership
functions with λ′ = 1
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Fig. 4. ePCCM member-
ship functions
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Fig. 6. tPCCM member-
ship functions with m = 2
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Fig. 7. tPCCM member-
ship functions with λ = 1
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Fig. 10. Artificial dataset #2
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Fig. 11. Results for Artificial
dataset #2 obtained with ePCCM
and tPCCM

containing three clusters, each of which contains 50 points in the first quadrant
of the unit sphere (Fig. 8). Using the parameter settings λ = 1.0 for ePCS and
(λ,m) = (1.0, 1.5) for tPCS, both methods partitioned this dataset adequately,
as shown in Fig. 9, where squares, circles, and triangles indicate the maximal
memberships generated by both algorithms during the test.

The second example illustrates the performance of ePCCM and tPCCM
using an artificial dataset containing four clusters, all of which contain 50 points
obtained from a random sampling of multinomial distributions with parameters
(0.8, 0.1, 0.1), (0.1, 0.8, 0.1), (0.1, 0.1, 0.8), and (1/3, 1/3, 1/3) (Fig. 10). With the
parameter settings λ = 1.0 for ePCCM and (λ,m) = (1.0, 1.5) for tPCCM, both
methods partitioned this dataset adequately, as shown in Fig. 11. The maximal
membership of the data is depicted by squares, circles, triangles, and reverse
triangles.

5 Conclusions

In this study, four possibilistic clustering methods were proposed. First, we pro-
posed two possibilistic clustering methods for spherical data — one based on
Shannon entropy, and one based on Tsallis entropy. It was shown that the mem-
bership functions recovered the unnormalized von Mises-Fisher distribution and
its deformation. Second, we proposed two possibilistic clustering methods for
categorical multivariate data. It was shown that these membership functions
recovered the unnormalized multinomial distribution and its deformation. The
validity of the proposed methods was confirmed through numerical examples.

In future work, we will (1) apply the proposed methods to larger and more
complex datasets, (2) investigate how fuzzification parameters affect clustering
accuracy and propose a method to automatically set the best parameter values,
(3) apply the fuzzified method used in [16], (4) compare the proposed methods
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with other clustering methods, (5) apply the sequential cluster extraction [24],
which is another algorithm for possibilistic clustering, and (6) develop a possi-
bilistic clustering approach for other data types.
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