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Preface

This volume contains papers presented at the 12th International Conference on Mod-
eling Decisions for Artificial Intelligence (MDAI 2015), held in Skövde, Sweden,
September 21–23. This conference followed MDAI 2004 (Barcelona, Catalonia),
MDAI 2005 (Tsukuba, Japan), MDAI 2006 (Tarragona, Catalonia), MDAI 2007
(Kitakyushu, Japan), MDAI 2008 (Sabadell, Catalonia), MDAI 2009 (Awaji Island,
Japan), MDAI 2010 (Perpinyà, France), MDAI 2011 (Changsha, China), MDAI 2012
(Girona, Catalonia), MDAI 2013 (Barcelona, Catalonia) and MDAI 2014 (Tokyo,
Japan) with proceedings also published in the LNAI series (Vols. 3131, 3558, 3885,
4617, 5285, 5861, 6408, 6820, 7647, 8234, 8825).

The aim of this conference is to provide a forum for researchers to discuss theory and
tools for modeling decisions as well as applications that encompass decision-making
processes and information-fusion techniques.

The organizers received 38 papers from 14 different countries, 18 of which are
published in this volume. Each submission received at least two reviews from the
Program Committee and a few external reviewers. We would like to express our
gratitude to them for their work. The plenary talks presented at the conference are also
included in this volume.

The conference was supported by the University of Skövde, the School of Infor-
matics, the Japan Society for Fuzzy Theory and Intelligent Informatics (SOFT), the
Catalan Association for Artificial Intelligence (ACIA), the European Society for Fuzzy
Logic and Technology (EUSFLAT), and the UNESCO Chair in Data Privacy.

July 2015 Vicenç Torra
Yasuo Narukawa
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Modeling the Complex Search Space of Data
Privacy Problems

Bradley A. Malin

Department of Biomedical Informatics, School of Medicine,
Vanderbilt University, Nashville, TN, USA

Abstract. Data privacy protection models often dictate towards worst-case
adversarial assumptions, assuming that a recipient of data will always attack and
exploit it. Yet, adversaries are agents who must make a wide range of decisions
before running an attack, and accounting for the outcomes of such decisions
indicate data sharing frameworks, can, at times, be more safe than expected under
traditional beliefs. In this presentation, various models of data protection and
attacks are reviewed, followed by illustrations of how decision making can be
integrated as two-party games, leading to unexpected “no attack” scenarios of
data. This presentation concludes with a review of challenges and opportunities
for the AI community in data privacy, including modeling the search over large
data protection spaces for defenders and decision making under uncertainty for
attackers.

Extended Abstract

The past several decades have led to dramatic advances in our ability to collect, store,
and analyze personal data. At the same time, there is a push to make data available
beyond the confines of the individuals who generate it, as well as the organizations that
initial collect it, for some predefined primary purpose (e.g., biomedical research, ser-
vice optimization of mobile applications, and creditworthiness reviews). The motiva-
tion behind such secondary data sharing is based on many factors, including open data
and transparency initiatives, the need to support validation of scientific findings, and
increasing recognition that data holds remarkable value and can be commercialized in a
market-like setting. Despite the opportunities such data provides, there are concerns
that making information widely available substantially increases the chances that pri-
vacy rights will be infringed upon. In recognition of such rights, various laws and
policies suggest organizations should “de-identify”, “depersonalize”, or “anonymise”
data prior to disclosing it.

Efforts to do so have led to the establishment of an alphabet soup of data manip-
ulation schemes (e.g., redaction of explicit identifiers, k-anonymity, l-diversity, and t-
closeness) [1], but also detective-like investigations that illustrate where holes reside in
the current arsenal of protection methods [2]. Based on these presumed failures of data
protection, there are cries for changes in the manner by which data sharing is
accomplished, ranging from foundational legal revisions to new computational



definitions of privacy. In many respects, such calls may be in the right and society may
need to revamp our perspectives on privacy. However, it must be recognized that such
calls are often predicated on the belief that there is some adversary who will exploit the
holes in the system to begin with - and this is certainly not a guarantee. Rather than
dictate towards worst-case scenarios and aim to protect accordingly (or suggest the
futility of protection), we need to be more pragmatic. Specifically, we must model
tradeoffs between the utility in sharing data and the anticipated threats towards
exploiting it in a manner that erodes privacy. In this regard, the databases and privacy
communities have an opportunity to adapt risk management frameworks to enable data
custodians to quantify the privacy risks in a much broader context. There are several
specific aspects of this problem that are notable for the artificial intelligence community
to be aware of.

First, the space of potential data protection models is massive which implies
decision making requires efficient exploration strategies. As an example, let us consider
a traditional view on the re-identification problem. In this problem, the data holder
suspects that certain attributes about an individual may be exploited by some adversary.
As such, the data holder strips away all explicitly identifying attributes, such as Social
Security Number, phone number, and personal names, but then has to decide which
remaining quasi-identifying attributes (i.e., the values of which can uniquely represent
an individual and be linked to resources that contain an individual’s identity) can be
shared and at what level of fidelity. If the data holder is permitted to use generalization
(e.g., by making values more coarse) and a generic information loss measure (e.g.,
KL-divergence), then the search space can be ordered and we can search for solutions
that optimize the balance between privacy and utility because of a monotonicity in the
system [3, 4]. However, if we allow for suppression (e.g., removal of a specific value
for an individual), then monotonicity may no longer hold and we may need to use
approximation strategies to guide the search.

Second, and perhaps more importantly, the decision making aspects of the system
need to be modeled, which often entails accounting for uncertainty. Recently, we
showed that the re-identification problem can be modeled as a basic Stackelberg (i.e.,
leader-follower) game, where the data holder attempts to publish data in a manner that
limits the chance that an adversary will commit a re-identification attempt [5]. Notably,
we illustrated that, the defender can discover policies in which substantial quantities of
personal data are shared and, despite the potential for re-identification, the adversary is
not sufficiently incentivized to mount an attack. This is notable because it also implies
that the space of possible solutions is not just data-based, but also policy-based, such
that we could make data more general, but also raise the threat of fines (or some other
penalties) to disincentive malevolent behavior in a system. Yet to deploy such an
approach in practice, we need allow for uncertainty in the risks and utility functions. It
is unlikely that such functions yield exact values, such that we will need to reason over
distributions. At the same time, to date, such modeling has assumed a two-player game,
but it is clear that the data about an individual is distributed across different organi-
zations, each of which may have their own utility function and have limited ability to
coordinate before making data disclosure decisions [6]. Similarly, there may be more
than one adversary in the system and coalitions may be formed in a manner that lead to
more effective attack strategies [7].
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Despite the challenges associated with modeling large search spaces and adversarial
behavior, it is critical to ensure claims about data privacy and policy decisions based on
such claims are grounded. Now that a foundation for privacy concerns has been
established and there is a general idea of the types of protections that can be invoked, it
is time to start mapping these protections into optimization problems that account for
active decisions on data holders and adversaries alike.

Acknowledgments. The author would like to thank the various individuals who have
informed this idea, including his collaborators at the University of Texas (Murat
Kantarcioglu) and Vanderbilt University (Ellen Wright Clayton, Raymond Heatherly,
Yevgeniy Vorobeychik, Zhiyu Wan, and Weiyi Xia).
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Classifying Large Graphs
with Differential Privacy

Fredrik D. Johansson, Otto Frost, Carl Retzner, and Devdatt Dubhashi

Chalmers University of Technology, 412 58, Göteborg, Sweden
{frejohk,dubhashi}@chalmers.se

{ottfro,krettan}@gmail.com

Abstract. We consider classification of graphs using graph kernels under dif-
ferential privacy. We develop differentially private mechanisms for two
well-known graph kernels, the random walk kernel and the graphlet kernel. We
use the Laplace mechanism with restricted sensitivity to release private versions
of the feature vector representations of these kernels. Further, we develop a new
sampling algorithm for approximate computation of the graphlet kernel on large
graphs with guarantees on sample complexity, and show that the method
improves both privacy and computation speed. We also observe that the number
of samples needed to obtain good accuracy in practice is much lower than the
bound. Finally, we perform an extensive empirical evaluation examining the
trade-off between privacy and accuracy and show that our private method is able
to retain good accuracy in several classification tasks.



Statistical Forecasting Using Belief Functions

Thierry Denœux

Sorbonne Universités, Université de Technologie de Compiègne, CNRS, France
tdenoeux@utc.fr

Forecasting may be defined as the task of making statements about events that have not
yet been observed. When the events can be considered as generated by some random
process, we need a statistical model that has to be fitted to the data and used to predict
the occurrence of future events. In this process, the quantification of uncertainty is
of the utmost importance. In particular, to be useful for making decisions, forecasts
need to be accompanied with some confidence measure.

In this talk, the limits of classical approaches to the quantification of statistical
forecasting are discussed, and we advocate a new approach based on the
Dempster-Shafer theory of belief functions [6]. A belief function can be viewed both as
a non additive measure, and as a random set. Dempster-Shafer reasoning thus extends
both Bayesian reasoning and set-membership computation. More specifically, the
method presented in this talk consists in modeling estimation uncertainty using a
consonant belief function constructed from the likelihood [2, 3], and combining it with
random uncertainty represented by an error probability distribution [4, 5]. A predictive
belief function can be approximated to any desired accuracy using a combination of
Monte Carlo simulation and interval computation. When prior probabilistic information
is available, the method boils down to Bayesian prediction. It is, however, more widely
applicable, as it does not require such precise prior information.

One of the advantages of the proposed methodology is that it allows us to combine
statistical data and expert judgements within a single general framework. We illustrate
this process using several examples, including prediction using a regression model with
partially known cofactors [5], and the combination of expert opinions and statistical
data for extreme sea level prediction, taking into account climate change [1].
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Preference Learning: Machine Learning Meets
Preference Modeling

Eyke Hüllermeier

Department of Computer Science, University of Paderborn, Paderborn, Germany
eyke@upb.de

The notion of “preferences” has a long tradition in operational research, economics and
the social sciences, where it has been formalised in various ways and studied exten-
sively from different points of view [2, 5, 7]. It is a topic of key importance in fields
such as game theory, social choice and the decision sciences. In these fields, much
emphasis is put on properly modeling a decision maker’s preferences, and on deriving
and (axiomatically) characterizing rational decision rules.

In machine learning, like in artificial intelligence and computer science in general,
the interest in the topic of preferences arose much more recently [1]. The emerging field
of preference learning [3] is concerned with methods for learning preference models
from explicit or implicit preference information, which are typically used for predicting
the preferences of an individual or a group of individuals in new decision contexts.
While research on preference learning has been specifically triggered by applications
such as recommender systems and “learning to rank” for information retrieval [6], the
methods developed in this field are useful in many other domains as well.

Obviously, preference modeling and preference learning can ideally complement
and mutually benefit from each other. In particular, the suitable specification of an
underlying model class is a key prerequisite for successful machine learning, that is to
say, successful learning presumes appropriate modeling. Likewise, data-driven
approaches for preference elicitation are becoming more and more important in pref-
erence modeling and decision analysis nowadays, mainly due to large scale applica-
tions and the increasing availability of preference data.

The goal of this talk is to provide a brief introduction to the field of preference
learning and, moreover, to elaborate on its connection to preference modeling. In this
regard, specific emphasis will be put on preference learning based on aggregation
operators.

First, learning with the Choquet integral will be discussed [9, 10]. The (discrete)
Choquet integral is an established aggregation function that has been used in various
fields of application, including multi-criteria decision problems and information fusion
[11]. It can be seen as a generalization of the weighted arithmetic mean that is not only
able to capture the importance of individual criteria but also information about the
interaction (e.g., redundancy or complementarity) between different criteria. Moreover,
it obeys monotonicity properties in a rather natural way. Due to these properties, the
Choquet integral appears to be a very appealing modeling tool in the context of
preference learning.



Second, the (data-driven) modeling of utility functions by means of fuzzy pattern
trees will discussed [4, 8]. A fuzzy pattern tree is a hierarchical, tree-like structure,
whose inner nodes are marked with generalized (fuzzy) logical and arithmetic aggre-
gation operators, and whose leaf nodes are associated with fuzzy predicates evaluating
individual criteria. Thus, a pattern tree recursively decomposes the evaluation of a
criterion into sub-criteria. To evaluate an alternative, it propagates information from the
bottom to the top of the hierarchy: A node takes the values of its descendants as input,
combines them using the respective operator, and submits the output to its predecessor.
This way, a pattern tree implements a monotone, nonlinear utility function that flexibly
combines evaluations on individual criteria into an overall evaluation assuming values
in the unit interval.
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Game-Theoretic Approaches to Decision
Making in Cyber-Physical Systems Security

(Extended Abstract)

Weiru Liu

School of Electronics, Electrical Engineering and Computer Science
Queen’s University Belfast, Belfast, UK

Recent years have seen a significant increase in research activities in game-theoretic
approaches to security, covering a variety of areas, such as cyber-security (e.g., net-
work intrusion detection), information security (e.g., fraudulent transactions), physical
security (the protection of citizens and critical infrastructure/assets, e.g., smart grids,
airports, government buildings) [1, 2, 16, 22]. One of the main focuses in game-
theoretic approaches to physical security is to strategically allocate security resources to
protect assets. Most of the existing work so far tackles this issue with the Bayesian
Stackelberg game framework (also referred to as security games). A Bayesian Stac-
kelberg game has two players: a defender (e.g., a security force, a leader) and an
attacker (or a follower). Uncertainty over the type of attacker that a defender may face
is modelled by a probability distribution over a set of possible attacker types. A typical
solution concept, specifying assumptions under which a defender can determine a
mixed strategy1 maximizing their expected utility, is the Strong Stackelberg Equilib-
rium (SSE).

There are three assumptions underpinning the SSE solution concept:

– An attacker can observe a defender’s mixed strategy and responds optimally. This
assumption states that an attacker has the full observability and knowledge of a
defender’s strategy, and will act rationally.

– A defender can precisely execute its optimal mixed strategy. This assumption
requires that there will be no failures or exceptions during the execution of a chosen
strategy.

– Each player has a point payoff (precise payoff) value for each pure strategy profile.
This assumption rules out imprecise or absent payoff values. It also rules out the
situation where two or more pure strategy profiles cannot be separated when

This talk presents a summary of joint research work with Wenjun Ma and Kevin McAreavey, as part
of the CSIT project (Centre for Secure Information Technologies) funded by the UK EPSRC, TSB
and Industry, and PACES project funded by the UK EPSRC.

1 A pure strategy for a player is the complete set of actions assigning an action to each possible state.
A pure strategy profile is a pair of pure strategies, one from each player. A mixed strategy is a
probability distribution over the set of all pure strategies of a given player.



assigning payoff values (e.g., the payoff values for these pure strategy profiles
cannot be individually identified).

Clearly, these assumptions have severe limitations. For the first assumption, it is
unrealistic to assume that an attacker always has full knowledge of a defender’s mixed
strategy (e.g., how to allocate security resources to protect assets). It has been argued
that human attackers usually act on partial information of a defender’s mixed strategy
and that an attacker’s rationality is bounded [5, 20, 22, 23]. As for the second
assumption, recent research has been conducted in analyzing stochastic effects when a
defender executes its mixed strategy [6, 25]. The third assumption has attracted much
research effort due to various factors affecting the assignment of point payoff values to
individual pure strategy profiles. These factors, for example, include reliability of
expert assessment, accuracy of analyzing historical data or qualitative judgements on
security risks. In addition, understanding the motivations of possible attackers and the
levels of threat of different types of attackers also have an effect on the payoff value
assignment. Therefore, such assignments are often pervaded with ambiguity and the
requirement of precise point payoff values for pure strategy profiles is unrealistic in
many real-world applications.

Consequently, there is a growing emphasis on the need to address uncertainty over
payoffs [4, 7, 8, 19]. In fact, the Bayesian Stackelberg game already provides some
handling of a specific type of uncertainty related to payoffs, i.e., the uncertainty over
the possible types of attacker (as different types of attackers have different motivations
and hence project different levels of threat). That is, Bayesian Stackelberg games
assume the existence of a probability distribution over attacker types, where a proba-
bility value is interpreted as risk, associated with that particular type of attacker.

However, another important type of uncertainty related to this assumption (point
payoff value assignment) which cannot be handled by the Bayesian Stackelberg game
is ambiguity. Ambiguity refers to situations where there is a lack of information to
justify such probabilities. Two main classes of ambiguity exist in security games:
(i) ambiguous payoff values where payoffs cannot be represented by point values or a
probability distribution over point payoff values; (ii) ambiguous payoff assignments
where two or more pure strategy profiles cannot be distinguished when assigning
payoff values.

In this talk, I will first present our general decision-theoretic framework for
ambiguous security games based on Dempster-Shafer (D-S) theory [18]. An instanti-
ation of this framework based on the ambiguity-aversion principle of minimax regret
[11] will be introduced and its properties discussed. We prove that when all the payoff
values are point values on individual pure strategy profiles, our framework is reduced
to a standard security game. When there are no absent payoff values and no payoff
values being assigned to subsets of pure strategy profiles, we prove the equivalence
between the outcome of our entire framework and the outcome of a simplified version
of the framework that is specific to handling all types of ambiguity except these two
types. In addition, six existing decision methods (including C-maximin, Maximax,
Maximin regret, Hurwitz criterion, Transferable Belief Model, and Ordered Weighted
Average) [3, 17, 21, 24] will be used to instantiate our framework, and extensive
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experiments on evaluating the performance of all these different decision methods
(including ours) will be presented.

I will then present our ongoing work on game-theoretic approaches to
cyber-physical systems security utilizing real-time intelligent surveillance information,
to dynamically determine the most plausible type of attacker, and to differentiate (or
rank) potential multiple simultaneous (and independent) attacks based on the assess-
ment of levels of threat [12–14]. Current Bayesian Stackelberg games assume that a
prior probability distribution over attacker types is known. We argue that the degrees of
plausibility of possible types of attacker (as well as the consequence of such an attack)
shall be based on the analytical results and fusion of real-time surveillance information
[9, 10] rather than a pre-defined probability distribution. Finally, if we do not assume
that an attacker has the knowledge of a defender’s payoff values assigned to its strategy
profiles, nor a defender’s knowledge about the plausibilities of their types, then our
approaches developed under the notion of Surveillance Driven Security Resource
Allocation (SDSRA) framework in [15] shall be adopted.

Acknowledgement. This work has been supported by the CSIT project with references
EP/G034303/1; EP/H049606/1; and EPSRC PACES project with reference
EP/D070864/1.
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Abstract. We consider classification of graphs using graph kernels
under differential privacy. We develop differentially private mechanisms
for two well-known graph kernels, the random walk kernel and the
graphlet kernel. We use the Laplace mechanism with restricted sensi-
tivity to release private versions of the feature vector representations of
these kernels. Further, we develop a new sampling algorithm for approx-
imate computation of the graphlet kernel on large graphs with guar-
antees on sample complexity, and show that the method improves both
privacy and computation speed. We also observe that the number of sam-
ples needed to obtain good accuracy in practice is much lower than the
bound. Finally, we perform an extensive empirical evaluation examining
the trade-off between privacy and accuracy and show that our private
method is able to retain good accuracy in several classification tasks.

1 Introduction

Data containing personal information about individuals are increasingly often
analyzed using machine learning methods. In many applications, such data are
well represented by large graphs, notably in the cases of social networks, email
correspondance and telephone traffic. Sources like these have created vast col-
lections of sensitive graph data, with growing concerns about privacy.

For example, analyzing how information spreads in a social network can
provide great value to social scientists and advertisers alike, but may also leak
sensitive information, such as the sexual orientation, of its users [11]. Simply
removing names and identifiers from the network does often not provide suffi-
cient anonymity [19]. This problem has received considerable attention in various
research communities. Differential privacy [5] offers a quantitative way of trad-
ing off analytical accuracy for privacy of individuals in a database. Intuitively,
the knowledge about an individual, gained from a differentially private query
to a database, should be approximately insensitive to whether the individual
is present in the database or not. Recently, there have been attempts to apply
the framework of differential privacy to graphs. In social networks, this corre-
sponds to not disclosing the identity of a user, or the relationship between two
people. While methods have been developed for releasing several different graph
statistics, practical applications of these are largely unexplored.
c© Springer International Publishing Switzerland 2015
V. Torra and Y. Narakawa (Eds.): MDAI 2015, LNAI 9321, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-23240-9 1
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Graph classification is a common analysis problem in diverse application
areas such as social sciences, bioinformatics and information retrieval [27]. When
data are represented by graphs, this has traditionally been solved by extracting
features of graph structure and attributes, and applying standard classification
tools such as support vector machines. More recently, kernel methods have been
used for this purpose, giving rise to a large family of graph kernels – positive
semi-definite similarity measures on graphs [27]. As of yet, the privacy aspects
of these methods have not been examined.

In many applications, graphs are large, consisting of thousands or millions of
nodes [16]. Most social networks, for example, are orders of magnitude larger
than graphs traditionally used to evaluate graph classification mehods [24].
Working with large graphs is beneficial from a privacy perspective, as the influ-
ence of a single individual or link is less significant, but challenging from a
classification perspective as rich features become expensive to compute.

Main Contributions. We bring classification of large graphs and differential pri-
vacy together, showing how sampling improves both privacy and computational
complexity. We examine the privacy aspects of graph kernels, state-of-the-art
tools for graph classification. We design mechanisms to release two graph ker-
nels under differential privacy. We conclude that a good graph kernel is not
necessarily a good private kernel. To the best of our knowledge, this is the first
application of graph differential privacy to a learning problem. In contrast to
general results on learning with differential privacy we release features used for
classification themselves, not the output of a learning algorithm. This has the
advantage of not limiting the analysis to a single learning method.

We develop efficient methods for computing approximations of graphlet ker-
nels on large graphs using edge sampling, with guarantees on sample complex-
ity. We make an extensive empirical evaluation comparing our private kernels
to their original counterparts, showing that our methods retain good accuracy
in several tasks. For the evaluation, we compile three new datasets for graph
classification. Our results show that both privacy and computational complexity
is improved when sampling and that only a small number samples is sufficient
for high accuracy.

2 Background

We review results on classification with graph kernels, and differential privacy
for graphs.

2.1 Graph Kernels

Graph kernels have been introduced as efficient and accurate tools for classifying
graphs [27]. Graph kernels are positive definite similarity measures on graphs,
K(G,G′) = 〈φ(G), φ(G′)〉, for some embedding φ(G) into a Hilbert space. As
such, they can be used with general kernel methods such as support vector
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machines or kernel principal component analysis [22]. For some kernels, there
exist an explicit, finite dimensional mapping φ(G). We show that some of these
kernels can be made private using standard mechanisms for differential privacy.

A common pattern in the design of graph kernels is to extract, aggregate and
compare features of subgraphs [24]. For example, shortest-path kernels [3] com-
pare features of the shortest paths between all pairs of nodes in two graphs.
A recent trend is to focus on leveraging attributes on nodes and edges of
graphs [15,24,29]. Privacy mechanisms for kernels on attributed graphs is beyond
the scope of this paper however, and is left for future work.

Graphlet Kernels. Graphlet kernels compare counts or distributions of small
subgraph patterns [25]. The size of the patterns is usually limited to k ∈ {3, 4, 5}
nodes to maintain efficiency. Let Hk = {Hk

1 , . . . , Hk
a} denote the set of patterns

of k nodes that are unique modulo isomorphism. Given a pair of graphs G,G′,
the k-graphlet kernel is defined by

Kk
gl(G,G′) = fk

G
�fk

G′ (1)

fk
G(i) = |{U ⊂ V : |U | = k,G[U ] ∼= Hk

i }| (2)

where G[U ] denotes the subgraph of G induced by U and G ∼= G′ denotes that G
and G′ are isomorphic. fk

G(i) is the number of subgraphs in G that are isomor-
phic to graphlet Hk

i . A common variant is the normalized kernel K̃gl(G,G′) =
f�
G fG/(‖fG‖‖fG‖) where counts are replaced by distributions over graphlets. The

exact kernel can be computed in O(ndk−1) time for k ∈ {3, 4, 5} [23].
Graphlet kernels have several other variations, including sample approxi-

mations and ones that only consider connected subgraph patterns. Shervashidze
et al. [25] showed that the features of the standard graphlet kernel can be approx-
imated by repeatedly sampling k nodes uniformly at random and identifying the
subgraph pattern induced by the sampled nodes. Specifically, the distribution
of all graphlet types of size k present in G, including disconnected ones, can be
approximated with L1-error less than γ, with probability p ≥ 1 − ρ using

m = 	
2(log 2 · a + log( 1ρ ))

γ2

 (3)

samples, where a = |Hk| is the number of unique k-node subgraph patterns.

Random Walk Kernels. Random walk kernels compare graphs based on fea-
tures of node walks [7,12]. The p-random walk kernel compares numbers of walks
of length up to p and is defined by

Kprw(G,G′) =
|V ||V ′|∑

i,j=1

[
p∑

l=0

λl(A ⊗ A′)l

]

ij

, (4)
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where A ⊗ A′ is the Kronecker product of A and A′, and λ a constant. The full
random walk kernel of Gärtner et al. [7] is recovered when p = ∞. An equivalent
formulation for undirected, unweighted graphs, is

Kprw(G,G′) =
p∑

l=0

(λ
l
2 wG(l))(λ

l
2 wG′(l)),

where wG = [wG(1), . . . , wG(p)]� is the vector with elements wG(l), the number
of walks of length l in G. When p = ∞, the kernel can be computed exactly in
O(n3) time by solving a Sylvester equation [28]. While polynomial, this is still
too expensive for many applications. For finite p, the complexity can be reduced
to O(pm), or O(pDn) in graphs of maximum degree, D [8].

2.2 Differential Privacy and Graphs

Differential privacy (DP) offers a quantitative means of managing the trade-off
between privacy and utility when releasing sanitized statistics of a database [5].
Intuitively, an adversary should not learn much more from a query, about an
individual present in the database, than she/he would if the individual was not
present. Equivalently, an adversary should not detect, with high probability, that
an individual is removed or included in the database. In DP, this is achieved by
making sure small changes to an individuals data does not have large effects on
the output of queries to the database. In tabular data, individuals are represented
by records and changes to an individual correspond to additions or removal of
rows in the table. For graph data, there are several interpretations of what
constitutes an individuals data [14]. In node differential privacy, an algorithm
is private if it does not reveal the inclusion or removal of a single node and all
its edges in the graph. In edge differential privacy, an algorithm is differentially
private if it does not reveal the inclusion or removal of a single edge.

Differential privacy requires a distance function between datasets to make
precise what is a small change to a database. In node differential privacy, this
is usually the rewiring distance, dnode(G,G′), equal to the number of nodes in
G that need to be rewired to obtain G′. In edge differential privacy, it is the
edge distance, dedge(G,G′), equal to the number of edges that need to be added
to or deleted from G to obtain G′. Two graphs are said to be neighbors if their
distance is 1. An algorithm is differentially private if the output distribution of
the algorithm applied to two neighboring graphs does not differ much.

Definition 21 (Edge/Node-differential privacy [20]). A randomized algo-
rithm A is (ε, δ)-edge(node)-differentially private if for all events S in the output
space of A and for all neighbor graphs G,G′,

Pr (A(G) ∈ S) ≤ exp(ε) × Pr (A(G′) ∈ S) + δ.

A common means of achieving differential privacy is to perturb the output
of a function f , by adding random noise. In the frequently used Laplace mech-
anism [5], the magnitude of the noise is proportional to the global sensitivity
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of the function, Sf = maxG,G′:d(G,G′)=1 |f(G) − f(G′)|. Many graph proper-
ties, including graphlet counts, have high global sensitivity [14]. This is partly
because the maximization in Sf includes graphs of unbounded degree. To this
end, Kasiviswanathan et al. [14] and Blocki et al. [2] independently proposed
schemes to provide differential privacy by bounding or truncating the degree
of graphs. In this work we adopt the restricted sensitivity of Blocki et al. [2].
There, a query on G is guaranteed to have a private response for any G, but
high accuracy only if G is part of an hypothesis set GH ⊂ G (a subset of the
space of graphs).

Definition 22 (Restricted sensitivity. Blocki et al. (2013) [2]). For a
query f over GH ⊂ G, with distance metric d(G,G′), the restricted sensitivity is

RSf (G) = max
G,G′∈GH

( |f(G) − f(G′)|
d(G,G′)

)
.

Let GH = GD be the set of graphs of maximum degree D. Blocki et al. [2]
showed that differential privacy can be achieved for f(G) by first applying a
projection μD : G → GD to G and then adding Laplace noise to f(μD(G)),
proportional to the restricted sensitivity of f . In the projection μD(G), edges
are removed from G, one by one, in a particular order until the maximum degree
is d ≤ D. We use the following result.

Theorem 21 (Laplace mechanism with restricted sensitivity [2]). The
mechanism A(f,G) = f(μD(G)) + Lap (3 · RSf (GD)/ε) for the projection func-
tion μD(G) as described in Blocki et al. [2] (Claim 13) preserves (ε, 0)-edge
differential privacy for any graph G.

In the sequel we make use of the following result on releasing multiple sta-
tistics in sequence (often called composition).

Theorem 22 (Composition. McSherry and Mironov (2009) [18]). If A1

and A2 satisfy (ε1, δ1) and (ε2, δ2)-differential privacy respectively, their sequen-
tial composition satisfies (ε1 + ε2, δ1 + δ2).

3 Private Kernels for Large Graphs

We introduce a framework for releasing differentially private graph kernels in
the edge model. We adopt the Laplace mechanism combined with restricted sen-
sitivity, see Theorem 21. Specifically, we consider the case where the hypothesis
space is the set of graphs GD with degree bounded by D and use the simple
projection scheme μD proposed by [2] (Claim 13). Projecting graphs to lower
maximum degree is advantageuous not just for function sensitivity but for the
complexity of computing the released features themselves, as seen in Sect. 2.1.
Further, as we will see in Sect. 5.3, classification accuracy is fairly insensitive to
the projection itself. A description of the framework can be seen in Algorithm1.
We can state the following result.
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Algorithm 1. Edge-private graph features

Input: G = (V, E), truncation level D
Input: Privacy level ε
Input: Queries fG(i) : G → R, i = 1, ..., a

GD := μD(G) (see Sect. 3)
fGD := [fGD (1), . . . , fGD (a)]�

f̃G := fGD + e, e(l) ∼ Lap(3a · RSf(i)(GGD )/ε)

Output: Private counts f̃G

Corollary 31. The output of Algorithm1 is (ε, 0)-differentially private.

Proof. Apply Theorems 21 and 22. ��
We note in Algorithm 1 that the magnitude of noise added to each component

i of the released feature vector is proportional both to the restricted sensitivity
RSf(i)(GD) of the feature f(i) and the number of features, a. This highlights an
interesting trade-off between the richness of representations and the privacy loss
of releasing them. Graph kernels that are well suited for classification may not
be well suited for private release.

The shortest-path kernel [3] is a popular graph kernel. It compares graphs
by counts of shortest-paths of length k for k = 1, 2, . . . , n. Let fG(k) be the
number of unordered pairs of nodes such that the shortest path between them
have length k. Now consider a path graph, G, of n = 2n′ nodes and let k = n

2 +1.
It is fairly easy to see that fG(k) = n

2 − 1. Now, construct G′ by adding an edge
between the two end nodes of the path, forming a cycle. Then, fG′(k) = 0.
Clearly dedge(G,G′) = 1, but |fG(k) − fG′(k)| ≥ n

2 − 2. Hence, RSfG(k)(GD) is
in Ω(n), for D ≥ 2, and thus unbounded in general.

We seek to release features of graphs that both have bounded restricted
sensitivity and work well for classification. We proceed to show that the graphlet
kernel and p-random walk kernel fulfill these requirements.

3.1 Private Graphlet Kernels

We define a differentially private version of the graphlet kernel, using the general
framework of Algorithm1. We address the unnormalized version of the kernel,
see (1). This is because we can easily estimate the restricted sensitivity of the
counts, but not of the distribution. Note however that we can normalize the
private counts released by our algorithm.

We begin our treatment by noting that counts of disconnected graphlets
typically have very large or unbounded sensitivity. Consider a graph G = (V,E)
and the count f3

G(1) of empty 3-node subgraphs of G. Removing a single edge e ∈
E from the graph may add as much as n−2 to f3

G(1) in the worst case. Further,
consider the distribution of subgraph patterns in the graphlet kernel. For large,
sparse graphs, the components corresponding to empty subgraph patterns will
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vastly dominate the mass of the distribution. Hence, when comparing graphs
by such distributions, the actual structure of the graph has little influence on
the comparison. For these reasons, we consider only connected graphlets in this
work. Similar to previous research [25], we limit ourselves to graphlets of k nodes
with k ∈ {3, 4, 5}.

As shown by Blocki et al. [2] (Claim 22), the restricted sensitivity of a count-
ing query fk of graphlets of size k under GD is

RSfk(GD) = kDk−1.

This result is in contrast to the shortest-path kernel, see the previous section,
as the restricted sensitivity of graphlet counts is bounded by a constant.

Let fk
G(·) be the graphlet counting function of (2). Then, with f̃k

G and f̃k
G′

the private counts produced by Algorithm1 with fk
· for G and G′ respectively,

Then, K̃gl = f̃k
G

�f̃k
G is an (ε, 0)-differentially private version of the graphlet kernel

in (1).

3.2 Private p-random Walk Kernels

We consider a differentially private version of the p-random walk kernel. The
full random walk kernel, comparing walks of infinite length, cannot be repre-
sented explicitely as finite-dimensional feature vectors. Clearly, this kernel is not
a good candidate for our framework. Further, the O(n3) time complexity of the
full kernel is prohibitively expensive for large graphs. Instead, we consider the
p-random walk kernel, comparing walks of length only up to p.

We define a differentially private version of the p-random walk kernel by
applying Algorithm1 to the counting function wG(l) of (4). We note in passing
that λ is a kernel parameter, and therefore public. We can thus release the
unnormalized counts as well as the actual kernel.

We show below that the restricted sensitivity of walk counts is similar to that
of counts of connected subgraphs. The sensitivity is a factor 2 higher because of
walks being ordered.

Proposition 31. Under the bounded-degree hypothesis GD, the restricted sensi-
tivity of counts of walks of length l, in the edge adjacency model, is

RSw(l)(GD) ≤ 2lDl−1.

Proof. Let e = (i, j) be any edge. Then, consider any walk of length l passing
through e. In such a walk, either the sequence (i, j) or (j, i) must be present
at least once. There are 2l choices for e to be placed at. Then, at each of the
remaining l − 1 steps of the walk, there are at most D nodes to choose from.
Thus, there are at most 2lDl−1 walks passing through e. ��

Applying Theorem21 and Proposition 31 to the walk counts of Algorithm 1
results in an (ε, 0)-differentially private version of the p-random walk kernel.



10 F.D. Johansson et al.

Algorithm 2. Approximate graphlet count, f̂
Input: G = (V, E), sample size s

f̂ = 0, Approximate count for each graphlet type
for j = 1 . . . , s do

Sample ej ∈ E uniformly at random
f̂ ← f̂+ counts of graphlets containing e

end for
f̂(i) ← f̂(i)

s
m

|mHi
| for all i

4 Scaling Private Graphlet Kernels

As remarked in Sect. 2.1, computing the exact counts of graphlets is often pro-
hibitively expensive for large real-world graphs, even ones with bounded degree.
Instead, we rely on approximate counting using sampling. In this section, we
define a new sampling scheme for counting connected graphlets. We then derive
privacy guarantees for the approximate counts. We show that sampling improves
both privacy and computational complexity.

We exploit the fact that our graphs have bounded degree due to the projec-
tion μD applied to guarantee differential privacy with restricted sensitivity, see
Sect. 2.2. Exact counting of graphlets in graphs of bounded degree can be done
in O(nDk−1) time [23]. Although linear in n, this is typically a slow process.
Several schemes to compute approximate counts using sampling have been pro-
posed [21,25], including MCMC methods [9].

Shervashidze et al. [25] sample k nodes uniformly at random, without replace-
ment, and determine to which pattern the subgraph induced by those nodes
belong. This method is not suitable for sampling connected graphlets of large
graphs of low bounded degree, as most induced subgraphs will be empty. While
the error of the sampled distribution of graphlets decreases quickly, see (3), the
actual values contains little information. Rejection sampling using the same sam-
pling scheme, but counting only connected subgraphs, is prohibitively slow for
large sparse graphs.

The existing methods referred to above give only approximate distributions
of connected graphlets, not approximate counts. Distributions cannot trivially
be released using the Laplace mechanism as the restricted sensitivity of the dis-
tribution is inversely proportional to the total number of connected graphlets,
which is unknown in general. We address the issues with existing methods men-
tioned above, devising a new sampling scheme for connected graphlets in order to
guarantee both privacy and utility for large graphs. Let mHi

denote the number
of edges in graphlet Hi. Our scheme counts graphlets containing edges sampled
uniformly at random with replacement, see Algorithm 2.

Theorem 41 (Approximation error of edge graphlet sampling). Con-
sider G = (V,E) with degree bounded by D, and let Ze(i) be the number of
graphlets in G of type i that contains e ∈ E. For any γ > 0, 0 < ρ < 1,
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the counts, f̂ = [f̂(1), . . . , f̂(a)]� produced by Algorithm2, have the following
property.

Pr
(∣∣∣f̂(i) − E[f̂(i)]

∣∣∣ ≥ γE[f̂(i)]
)

≤ ρ, i ∈ [a] (5)

using si = 3αi
log 2

ρ

γ2 samples with αi = maxe Ze(i)
E[Ze(i)]

. Due to space constraints, the
proof is deferred to the full version of this paper.

Observation. It is easily shown that αi ≤ m/mHi
. Given an edge e, it is possible

to compute the number of k-node graphlets containing e exactly in O(Dk−2)
time [23]. This leads to an overall complexity of O(sDk−2) for fixed γ and ρ.
The worst-case bound of α ∈ O(m) results in a complexity of O(mDk−2) or
O(nDk−1) which is equivalent to that of exact counting. However, in practice, α
is usually much smaller than the bound, see Table 1. For example, on the ROADS
dataset, the maximum number of edges is 13284 while maxi α3

i = 14.9.
As we will see next, counting graphlets by edge sampling, instead of node

sampling, also gives a natural means of analysing the effects of sampling on
privacy.

4.1 Differential Privacy with Sampling

Intuitively, sampling graphlets rather than enumerating all of them, should
increase the privacy of a particular edge, as the edge may be left out of sample.
Results on differential privacy for statistics computed on samples from graphs
are largely unexplored [1]. For tabular data, there are several results of this
nature [6], none of which are easily applied to graph data. The problem is that
in graphs, there is no straight-forward analougue to partitioning the rows of a
database table. Privacy may be achieved simply by partitioning the node set,
but then utility becomes difficult to analyze.

We record the following general results about releasing noisy statistics under
(ε, δ)-differential privacy.

Theorem 42 (Private release of noisy data). Consider a function f̂(x)
such that E[f̂(x)] = f(x), and Pr(|f̂(x) − f(x)| ≤ γ) ≥ 1 − ρ. Further, let S be
the global sensitivity of f(x). Then, A(x) := f̂(x) + Lap(S+2γ

ε ) is (ε, δ)-private
mechanism for releasing f̂(x), for δ = ρ(2 − ρ). The proof is deferred to the full
version of this paper.

Unfortunately, applying Theorem42 to statistics with multiplicative error,
like the approximate graphlet count, the noise added for privacy is too large to
be practical. Instead of using a result for general graph statistics, we use the
results of Li et al. [17], specifically for graphlet counting queries. In their work,
they show that if any record is sampled with probability β, the increase in privacy
(decrease in ε) is proportional to β. For our sampling mechanism, Algorithm2,
an edge can affect the statistics of the sample in two ways, either from being
sampled itself, or by being part of a graphlet containing a sampled edge. We show
below that by bounding the probability of this event, we can achieve increased
privacy via sampling, in line with the intuition expressed above.
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Proposition 41 (Increasing privacy of sampled graphlet counts). Let
G = (V,E) and m = |E|. The mechanism A(f̂) applying Algorithm1 with ε1 to
the output of Algorithm2 is an (ε2, δ2)-private algorithm for graphlet counts, for

ε2 ≥ log(1 + βueε1 − βl) and δ2 ≥ βuδ1, with βu = 1 −
(

(m−1)(m−2(D−1)t−1)
m2

)s

and βl = 1 − (1 − 1
m )s. The proof is deferred to the full version of this paper.

We note that applying Proposition 41 does not always result in ε2 < ε1. In
particular, ε2/ε1 grows exponentially with the number of samples s. However, as
seen in Fig. 1, a small number of samples is usually sufficient. We also note that
the privacy of a single edge increases with the total number of edges m.

5 Experiments

We evaluate the performance of our private kernels comparing to state-of-the-art
methods. Particularly, we study the effects of degree bounding and sampling.

5.1 Datasets

We have selected four datasets for evaluation, denoted PROTO, ROADS,
SOCIAL and D & D. Most existing benchmark datasets used for classification
consists of graphs that are too small [24] for the private mechanism to provide
useful output. To this end, PROTO, ROADS and SOCIAL were compiled for
the purpose of this paper1. All of the sets are divided into two classes.

PROTO is a set of connected induced subgraphs sampled using random ver-
tex expansion from synthesized population interaction networks2 [26] of Port-
land and Montgomery County. The class of each graph corresponds to the city
representing the network from which it has been sampled. ROADS is a set of
connected induced subgraphs sampled using an MCMC scheme [9], from road
network graphs of Texas and California available from SNAP3. The class of each
graph corresponds to the city representing the network from which it has been
sampled. SOCIAL is a collection of Twitter and Google+ graphs available from
SNAP (see footnote 3). We divide the set into two classes of equal size: Google+
graphs in one and Twitter graphs in the other. We use only the largest (by num-
ber of nodes) Twitter networks to obtain equally large classes, we also remove
the ego-nodes of the networks and direction of edges. Last, D & D [4] is a dataset
commonly used as a benchmark for graph classification. D & D consists of graphs
representing proteins classified according to whether they are enzymes or not.
A set of statistics for the datasets can be found in Table 1.

1 http://www.cse.chalmers.se/∼frejohk/data/graphdata aistats2015.zip.
2 http://www.vbi.vt.edu/ndssl.
3 http://snap.stanford.edu/.

http://www.cse.chalmers.se/~{}frejohk/data/graphdata_aistats2015.zip
http://www.vbi.vt.edu/ndssl
http://snap.stanford.edu/
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Table 1. Statistics of datasets. Number of graphs N , number of nodes n, number of
edges m and with α∗

k the maximum αi over k-node graphlets, with αi as in Theorem 41.
‡Computation did not finish within 2 days.

Dataset N Pos./Neg. α∗
3 α∗

4 mmax mavg nmax navg dmax davg

D&D 1178 691/487 4.3 50.6 14267 715.7 5748 284.3 19 5.5

PROTO 200 100/100 14.9 1689 10308 4321.4 1000 1000 176 9.5

ROADS 200 100/100 33.9 2291 13973 13283.7 10000 10000 12 2.7

SOCIAL 262 132/132 ‡ ‡ 1473709 104026.1 4938 1072.2 2971 80.6

5.2 Experimental Setup

We use a binary C-SVM with 10-fold cross validation. For each fold, we optimize
C w.r.t classification accuracy. We repeat this experiment 10 times and report
the average accuracy and standard error. As baselines, we use the p-random
walk (prw) kernel [7], the Weisfeiler-Lehman (wl) kernel [24] and the graphlet
(gk-ck or gk-ak, k ∈ {3, 4, 5}) kernels [25]. We select the number of samples
for gk-ak, based on (3) with γ = ρ = 0.1.

We denote our private kernels introduced in Sect. 3 by (dpprw) and (dpgk-
ck, k ∈ {3, 4}), for the private p-random walk kernel the private graphlet kernels
respectively. The sampled version of (dpgk-ck) is denoted (dpgk-sk). Motivated
by the results in Fig. 1, the sampled kernels used 50 samples for each count. We
use the unnormalized feature vector representation of the graphlet kernels as we
observe that it yields better classification accuracy in general.

To make use of the restricted sensitivity as in Definition 21 we employ the
projection μD as described in Sect. 2.2. We choose D w.r.t. maximum classifica-
tion accuracy. We use the following values of D, in the order of D & D, PROTO
and SOCIAL; prw: (9, 9, 50), gk-c3: (6, 9, 100) and gk-c4: (9, 7, 100). For the
private classification we give the results at the optimal degree truncation level
and with a fixed value of ε = 0.5. We compare the baselines to their private
counterparts at the same truncation level for the gk-ck and the prw kernel. As
a reference, we give results for all kernels without truncation.

For the computation of the prw-kernel we selected the parameter λ from
the set {1, 0.1, 0.01, 0.001} w.r.t optimal accuracy. For D & D and SOCIAL,
λ = 0.1 and for PROTO, λ = 0.01 gave the best results. To highlight the effects
of the private mechanism, we exclude walks of length 0 in the computation of
the prw-kernel as they can be released independent of ε.

5.3 Classification Results

The results of the classification experiments are found in Table 2. We observe for
all datasets that using a low bounding degree in comparison to the maximum
degree of the dataset does not significantly affect accuracy. None of the results
worsen by more than 1.5 %. In fact, for prw on PROTO, the classification accu-
racy significantly increases as the data is truncated from 83.8 % to 89.0 % when
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Table 2. Classification accuracy. The four
groups are (1) baselines, (2) results on trun-
cated graphs, (3) (0.5,0)-private kernels and
(4) private and sampled kernels. ‡Computation
time exceeded two days.

Kernel D & D PROTO SOCIAL

prw 75.4 ± 0.6 83.8 ± 1.2 83.0 ± 0.4
wl 74.9 ± 0.6 93.7 ± 5.1 79.8 ± 1.8
gk-c3 74.4 ± 1.0 98.4 ± 1.1 89.0 ± 0.7
gk-c4 73.3 ± 1.0 99.9 ± 0.2 ‡
gk-c5 74.1 ± 0.7 ‡ ‡
gk-a3 74.4 ± 0.4 74.0 ± 1.1 71.8 ± 1.7
gk-a4 74.7 ± 0.5 83.8 ± 0.9 76.2 ± 2.0
gk-a5 74.6 ± 0.5 85.0 ± 1.9 81.5 ± 1.8

prw 75.2 ± 0.9 89.0 ± 1.1 82.7 ± 0.9
gk-c3 74.2 ± 1.3 97.8 ± 2.9 88.7 ± 0.7
gk-c4 73.8 ± 0.7 99.5 ± 0.0 ‡
gk-c5 73.6 ± 1.2 ‡ ‡
dpprw 68.4 ± 1.1 86.9 ± 3.0 68.9 ± 1.9
dpgk-c3 59.3 ± 0.5 73.3 ± 1.6 77.0 ± 0.5
dpgk-c4 58.6 ± 0.1 51.0 ± 3.1 ‡
dpgk-s3 58.8 ± 0.1 74.0 ± 2.6 77.2 ± 0.7
dpgk-s4 58.7 ± 0.1 53.0 ± 2.6 52.7 ± 2.6

Fig. 1. Average L1-error in esti-
mated 4-graphlet distributions of three
datasets, for varying numbers of sam-
pled graphlets. Each marker corre-
sponds to an addition of 10 sampled
edges.

bounding the maximum degree from 159 to 9. As expected, the addition of noise
to the feature vectors of the graphs have a negative effect on the classification
accuracy.

For all datasets, the dpprw kernel achieves non-trivial results with accuracies
higher than the label distributions. On PROTO, the result is actually better
than for prw. This suggests that the dpprw kernel is a good candidate for
private graph classification. The dpgk-c3 kernel performs better than the label
distribution for PROTO and SOCIAL, using only 2 private features. For social,
this is noteworthy as it is competititve to the wl kernel. We also observe, that
as the sizes of the graphs increase, the dpgk-c3 perform better, appraoching
the baseline accuracy. For D & D we can not classify better than the label
distribution with either of the private graphlet kernels. This is likely caused by
the small size of the D & D graphs. For each dataset, dpgk-c4-kernel fails to
achieve accuracy significantly higher than the label distribution. This is likely due
to the large amounts of noise added due to both graphlet size and composition.
ROADS is not included in Table 2 as none of the private kernels were able to
classify better than the label distribution. In fact, even for the baselines, only
wl and gk-c5 were able to achieve higher accuracy than the label distribution.

5.4 Sampling the Private Graphlet Kernel

In Fig. 1 we show the average L1-error, the L1-norm of the difference between
the true and estimated 4-graphlet distributions over all graphs of each dataset
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for which we sampled si = 10, 20, 30, ..., 100 edges. We note that the number of
samples needed to obtain a low L1-error is significantly lower than the sample
complexity of Theorem 41. From Table 2 we can see that the loss of accuracy
when using approximate counts instead of true counts is negligible. Notable is
also that these results correspond to sampling far less edges than the worst case
sample complexity.

6 Related Work

The combination of privacy and learning has been approached in several con-
texts. Kasiviswanathan 2011 et al. [13] addressed the general problem of learn-
ing a concept class under differential privacy. Jain & Thakurta [10] studies the
problem of releasing a differentially private predictor in the framework of kernel
methods. The setting of these works is different from ours as we do not release
the output of a learning algorithm. Rather, we output private statistics used as
input to learning algorithms.

Rahman et al. [21] compute approximate graphlet counts through an edge
sampling scheme, but do not provide any guarantees on the approximation error.
Also, their method differs from ours in that they sample without replacement
and do not count every graphlet containing an edge.

7 Conclusions

We have proposed new mechanisms for releasing two well-known graph kernels
under differential privacy, the graphlet kernel and the p-random walk kernel.
We have given a new algorithm for approximating the graphlet kernel by edge
sampling and show that this improves both privacy and computational complex-
ity. Further, we perform an extensive empirical evaluation of our private kernels
showing that they provide privacy while retaining good accuracy on several clas-
sification tasks.

We note both theoretically and empirically that a good graph kernel does not
always make a good private graph kernel. This is because expressive features are
often strongly connected with highly sensitive functions, that are not suitable
for private release. Future work includes applying these ideas to other graph
kernels, and perhaps more importantly, to kernels on attributed graphs.
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Abstract. The strongest and the weakest t-norms that coincide with
the given t-norm on a subregion of the unit interval are discussed. The
question whether such a t-norm can be obtained as a limit of the sequence
of continuous t-norms that coincide with the original t-norm on the given
subregion is investigated.
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1 Introduction

The (left-continuous) t-norms and their dual t-conorms are special aggregation
functions and they have an indispensable role in many domains [2,4,5,10,11]. In
real-world applications it can happen that only a part of the aggregation function
is known, either it is observed from the input-output relationships in the training
data or implied by the requirements of the modelled problem. With additional
requirement that the aggregation function has to be a t-norm we are looking for
the weakest and the strongest t-norms which coincide with the original t-norm
which is known only on the interval [a, b]2 � [0, 1]2. In the case when a and b are
idempotent elements this problem was studied in [8] (see also [4]), in a broader
context of aggregation functions. We would like to extend these results also for
the case when a or b (or both) is not an idempotent element. In [9] we have
studied continuous t-norms which coincide with the original t-norm known on
[a, b]2 . In this contribution we will focus on extremal t-norms and we will be
also interested whether these t-norms can be approximated, i.e., obtained as a
limit of a sequence of continuous t-norms Ti that coincide with the t-norm T1

on [a, b]2 . Therefore we will focus on such t-norms T1 which are continuous on
[a, b]2 .

After recalling several basic notions and results in Sect. 2, we will focus on
the case when there is no non-trivial idempotent point of T1 in [a, b]2 (Sect. 3).
We will study several special cases: when a = b, when a = 0, when b = 1 and
a general case when 0 < a < b < 1. In Sect. 4 we will discuss the case when
there is a non-trivial idempotent point of T1 in [a, b]2 . We give our conclusions
in Sect. 5.

c© Springer International Publishing Switzerland 2015
V. Torra and Y. Narakawa (Eds.): MDAI 2015, LNAI 9321, pp. 21–32, 2015.
DOI: 10.1007/978-3-319-23240-9 2
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2 Basic Notions and Results

Let us recall several useful definitions and results on t-norms (see [1,7]).

Definition 1. (i) A binary function T : [0, 1]2 −→ [0, 1] is a t-norm if it is
commutative, associative, non-decreasing in both variables and 1 is its neu-
tral element.

(ii) A binary function C : [0, 1]2 −→ [0, 1] is a t-conorm if it is commutative,
associative, non-decreasing in both variables and 0 is its neutral element.

(iii) A binary function S : [0, 1]2 −→ [0, 1] is a t-subnorm if it is commutative,
associative, non-decreasing in both variables and S(x, y) ≤ min(x, y) for all
(x, y) ∈ [0, 1]2.

Thus every t-norm is also a t-subnorm. Due to the associativity, n-ary form
of any t-norm (t-conorm) is uniquely given and thus it can be extended to an
aggregation function working on

⋃
n∈N

[0, 1]n. The duality between t-norms and
t-conorms is expressed by the fact that from any t-norm T we can obtain its
dual t-conorm C by the equation

C(x, y) = 1 − T (1 − x, 1 − y)

and vice-versa. Therefore all results that we obtain for t-norms can be immedi-
ately obtained also for t-conorms.

A t-norm T is called Archimedean if for all x, y ∈ ]0, 1[ there exists an n ∈ N

such that x
(n)
T < y, where x

(n)
T = T (x, T (x, . . .)︸ ︷︷ ︸

n-times

).

A continuous t-norm is Archimedean if and only if it has only trivial idem-
potent points 0 and 1. A continuous Archimedean t-norm T is either strict, i.e.,
strictly increasing on ]0, 1]2 , or nilpotent, i.e., there exists (x, y) ∈ ]0, 1]2 such
that T (x, y) = 0.

For every t-norm it holds

TD(x, y) ≤ T (x, y) ≤ TM,

where TD is the drastic product t-norm given by TD(x, y) = 0 if max(x, y) < 1
and TD(x, y) = min(x, y) otherwise, and TM is the minimum t-norm given by
TM(x, y) = min(x, y) for all (x, y) ∈ [0, 1]2.

Proposition 1. Let t : [0, 1] −→ [0,∞] be a continuous strictly decreasing func-
tion such that t(1) = 0. Then the binary operation T : [0, 1]2 −→ [0, 1] given by

T (x, y) = t−1(min(t(0), t(x) + t(y)))

is a continuous t-norm. The function t is called an additive generator of T.

Note that every continuous Archimedean t-norm possesses a continuous addi-
tive generator. Non-continuous t-norms can be additively generated by non-
continuous additive generators.
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Definition 2. (i) Let t : [0, 1] −→ [0,∞] be a non-increasing function. Then
the function t(−1) : [0,∞] −→ [0, 1] given by

t(−1)(x) = sup{y ∈ [0, 1] | t(y) > x}
is called the pseudo-inverse of t.

(ii) A strictly decreasing function t : [0, 1] −→ [0,∞] , t(1) = 0, is called an
additive generator of a t-norm T : [0, 1]2 −→ [0, 1] if

T (x, y) = t(−1)(t(x) + t(y)))

for all (x, y) ∈ [0, 1]2.

Further we recall a construction of t-norms via the ordinal sum. The basic
stones for construction of t-norms via the ordinal sum (see [3]) are t-subnorms
(see [6]).

Proposition 2. Let (]ak, bk[)k∈K be a disjoint system of open subintervals of
[0, 1], where K is a finite or countably infinite index set. Let (Sk)k∈K be a system
of left-continuous t-subnorms such that if bk0 = 1 for some k0 ∈ K then Sk0 is a
t-norm, and if bk1 = ak2 for some k1, k2 ∈ K then either Sk2 has no zero divisors
or Sk1 is a t-norm. Then the ordinal sum T = (〈ak, bk, Sk〉 | k ∈ K) given by

T (x, y) =

{
ak + (bk − ak)Tk( x−ak

bk−ak
, y−ak

bk−ak
) if (x, y) ∈ ]ak, bk]

2
,

min(x, y) else

is a left-continuous t-norm.

Recall that each continuous t-norm can be expressed as an ordinal sum of
continuous Archimedean t-norms. In the following sections {εi}i∈N will always
be a sequence of small enough εi > 0 which converges to 0.

3 Extremal Extensions of t-norms Without a Non-trivial
Idempotent Element in [a, b]

Let the t-norm T1 be known only on [a, b]2 and let it be continuous on [a, b]2 .
In this section we will suppose that there is no non-trivial idempotent point of
T1 in [a, b] , i.e., that T1(x, x) < x for all x ∈ [a, b] \ {0, 1}. We will suppose
several subcases: when a = b, when a = 0, when b = 1 and a general case when
0 < a < b < 1.

3.1 Case When a = b

In this case T1 is known only in one point (a, a). Since all t-norms coincide on
the boundary of the unit square if a ∈ {0, 1} then the strongest t-norm that
coincides with T1 in (a, a) is the minimum t-norm and the weakest is the drastic
product t-norm. Note that the drastic product can be obtained as a limit of the
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sequence of continuous t-norms (see [7]). Similarly, since the minimum t-norm is
continuous it can be obtained as a limit of the sequence of continuous t-norms.

Suppose a ∈ ]0, 1[ . Then since a is not an idempotent element we have
T1(a, a) = q for some q ∈ [0, a[ . Due to the monotonicity the strongest t-norm
T2 that coincides with T1 in (a, a) is given by

T2(x, y) =

{
q if (x, y) ∈ [q, a]2 ,

min(x, y) otherwise.

We see that T2 is an ordinal sum on the zero t-subnorm Z on [q, a] , where Z
is given by Z(x, y) = 0 for all (x, y) ∈ [0, 1]2. The t-norm T2 can be obtained as a
limit of the sequence of continuous t-norms Ti that coincide with T1 in (a, a). Let
{Vi}i∈N be the sequence of t-norms that converges to the drastic product t-norm
(see [7]). Then we define a sequence of ordinal sum t-norms Ti = (〈q, a+ εi, Vi〉).
Then {Ti}i∈N converges to T2.

The weakest t-norm T3 that coincides with T1 in (a, a) is given by

T3(x, y) =

⎧
⎪⎨

⎪⎩

0 if min(x, y) < a,max(x, y) < 1,
min(x, y) if max(x, y) = 1,
q otherwise.

Next we would like to know whether T3 can be obtained as a limit of the
sequence of continuous t-norms that coincide with T1 in (a, a). This sequence can
be obtained as a sequence of continuous Archimedean t-norms Ti with additive
generators ti with ti(q) = 2·ti(a) which converges to a function t : [0, 1] −→ [0,∞]
which is linear on [0, q−] , on [q+, a−] and on [a+, 1−] with t(0) = 2.5, t(q−) = 2.1,
t(q) = 2, t(q+) = 1.7, t(a−) = 1.6, t(a) = t(a+) = 1, t(1−) = 0.9 and t(1) = 0.
Then {Ti}i∈N converges to T3.

3.2 Case when a = 0

Now we will focus on the interval [0, b] . Let the t-norm T1 be known and con-
tinuous on [0, b]2 . Then we will use the following result.

Lemma 1. Let S : [0, b]2 −→ [0, b] be a t-subnorm for some b ∈ [0, 1]. We define
the binary operation T ∗ : [0, 1]2 −→ [0, 1] by

T ∗(x, y) =

{
S(x, y) if max(x, y) ≤ b,

min(x, y) otherwise.

Then T ∗ is a t-norm.

The t-norm T ∗ from the previous result is an ordinal sum of a t-subnorm S1

on [0, b] , where S1 on [0, 1]2 is linearly isomorphic with S on [0, b]2 . Then we
get the following.
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Proposition 3. Let T1 : [0, 1]2 −→ [0, 1] be a t-norm. Then the strongest t-norm
T2 which coincides with T1 on [0, b]2 is given by

T2(x, y) =

{
T1(x, y) if max(x, y) ≤ b,

min(x, y) otherwise.

Now the question is whether T2 can be obtained as a limit of a sequence of
continuous t-norms Ti which coincide with T1 on [0, b]2 . This is possible only if
T1 fulfills the conditions necessary for existence of a continuous t-norm which
coincides with T1 on [0, b]2 (for more details see [9]). In such a case every contin-
uous t-norm that coincides with T1 on [0, b]2 is Archimedean on [0, b]2 and thus it
possess an additive generator s on [0, b] . Then we construct a sequence {Ti}i∈N

of t-norms where Ti = (〈0, b + εi, Vi〉), where Vi is a continuous, Archimedean
t-norm and additive generator si of Ti on [0, b + εi] satisfies si(x) = s(x) for all
x ∈ [0, b] . Then the sequence {Ti}i∈N converges to T2.

For the weakest extension we will use the following result.

Lemma 2. Let S : [0, b]2 −→ [0, b] be a t-subnorm for some b ∈ [0, 1]. We define
the binary operation T∗ : [0, 1]2 −→ [0, 1] by

T∗(x, y) =

{
min(x, y) if max(x, y) = 1,
S(min(x, b),min(y, b)) otherwise.

Then T∗ is a t-norm.

We get the following.

Proposition 4. Let T1 : [0, 1]2 −→ [0, 1] be a t-norm. Then the weakest t-norm
T3 which coincides with T1 on [0, b]2 is given by

T3(x, y) =

{
min(x, y) if max(x, y) = 1,
T1(min(x, b),min(y, b)) otherwise.

Similarly as above, if T1 fulfills the conditions necessary for existence of a
continuous t-norm which coincides with T1 on [0, b]2 then T1 has an additive
generator s on [0, b] . We will construct a sequence of continuous, Archimedean t-
norms {Ti}i∈N, with additive generators ti such that ti(x) = s(x) for all x ∈ [0, b] ,
ti is linear on [b, 1 − εi] and on [1 − εi, 1] and ti(1 − εi) = s(b) − εi. Then the
sequence {Ti}i∈N converges to T3.

3.3 Case When b = 1

Now we will focus on the interval [a, 1] . Here we recall a result from [9].

Lemma 3. Let T1 : [0, 1]2 −→ [0, 1] be a t-norm continuous on [a, 1]2 , 0 < a < 1.
Then for any t-norm T2 such that T1 coincides with T2 on [a, 1]2 , we have
T2(x, y) = T2(y, x) = T1(x, y) = T1(y, x) for all (x, y) ∈ A, where

A = {(x, y), (y, x) ∈ [0, 1]2 | there exists a z ∈ [0, 1], T1(z, a) = x, T1(z, y) ≥ a}.
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From the previous lemma we see that T2 is on A uniquely given by values of
T1 on [a, 1]2 . Moreover, since T1 is continuous on [a, 1]2 for every x ∈ [T1(a, a), a]
there exists a z ∈ [a, 1] such that x = T1(a, z) = T2(a, z). By continuity again,
considering the fact that T1(a, z) ≤ a, T1(z, 1) = z, we see that there exists a
p ∈ [a, 1] such that T1(z, p) = a. Then T1(z, y) ≥ a for all y ≥ p. Thus the set A
is a symmetric connected set which contains all points from [0, 1]2 greater than
the points from the lower border of A, where the lower border of A is the set
B = {(x, y), (y, x) ∈ [0, 1]2 | there exists a z ∈ [0, 1], T1(z, a) = x, T1(z, y) = a}.
Note that if (x, y) ∈ B then T2(x, y) = T1(a, a) (see [9]). Therefore we get the
following.

Proposition 5. Let T1 : [0, 1]2 −→ [0, 1] be a t-norm. Then the strongest t-norm
T2 which coincides with T1 on [a, 1]2 is given by

T2(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T1(a, T1(z, y)) if (x, y) ∈ A, x = T1(a, z),
T1(a, T1(z, x)) if (x, y) ∈ A, y = T1(a, z),
T1(a, a) if (x, y) ∈ [T1(a, a), 1]2 \ A,

min(x, y) otherwise.

Here A = {(x, y), (y, x) ∈ [0, 1]2 | there exists a z ∈ [0, 1], T1(a, z) = x, T1(z, y) ≥
a}.

Since T2 is continuous it is easy to see that T2 can be obtained as a limit of
a sequence of continuous t-norms that coincide with T1 on [a, 1]2 .

Example 1. Assume that T is the product t-norm and a = 1
2 . Then the strongest

t-norm that coincide with T on [a, 1]2 is given by

T ∗(x, y) =

⎧
⎪⎨

⎪⎩

x · y if x · y ≥ 1
4 ,

1
4 if (x, y) ∈ [

1
4 , 1

]2
, x · y < 1

4

min(x, y) otherwise.

Proposition 6. Let T1 : [0, 1]2 −→ [0, 1] be a t-norm. Then the weakest t-norm
T3 which coincides with T1 on [a, 1]2 is given by

T3(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T1(a, T1(z, y)) if (x, y) ∈ A, x = T1(a, z),
T1(a, T1(z, x)) if (x, y) ∈ A, y = T1(a, z),
min(x, y) if max(x, y) = 1,
0 otherwise.

Here again A = {(x, y), (y, x) ∈ [0, 1]2 | there exists a z ∈ [0, 1], T1(a, z) =
x, T1(z, y) ≥ a}.

Since the strongest t-norm T2 which coincides with T1 on [a, 1]2 is continuous
and Archimedean on [T1(a, a), 1]2 it has an additive generator s on [T1(a, a), 1] .
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We will define a sequence {Ti}i∈N of continuous, Archimedean t-norms which
are generated by respective additive generators ti such that ti(x) = s(x) for all
x ∈ [T1(a, a), 1] and ti is linear on [0, T1(a, a)] and ti(0) = s(T1(a, a)) + εi. Then
the sequence {Ti}i∈N converges to T3.

Example 2. Let us again assume that T is the product t-norm and a = 1
2 . Then

the weakest t-norm that coincide with T on [a, 1]2 is given by

T∗(x, y) =

⎧
⎪⎨

⎪⎩

x · y if x · y ≥ 1
4 ,

min(x, y) if max(x, y) = 1,min(x, y) < 1
4 ,

0 otherwise.

3.4 Case When 0 < a < b < 1

Let T1 be known and continuous on [a, b]2 . First we will focus on the strongest
and the weakest extensions of T1 to [0, b]2 . Since each t-norm on [0, b]2 is linearly
isomorphic with some t-subnorm S on [0, 1]2 we will use the following result.

Lemma 4. Let S1 : [0, 1]2 −→ [0, 1] be a t-subnorm. Then for any t-subnorm
S2 such that S1 coincides with S2 on [a, 1]2 , we have S2(x, y) = S2(y, x) =
S1(x, y) = S1(y, x) for all (x, y) ∈ A, where

A = {(x, y), (y, x) ∈ [0, 1]2 | there exists z, q ∈ [a, 1] , S1(z, q) = x, S1(z, y) ≥ a}.

Suppose that T1(a, b) = a. Then a = T1(a, T1(b, . . . , b︸ ︷︷ ︸
n-times

)) and since T1 is con-

tinuous on [a, b]2 and has no idempotents in [a, b] there exists an n ∈ N such
that T1(b, . . . , b︸ ︷︷ ︸

n-times

) = u < a. Then, however, a = T1(a, u) ≤ u < a what is a

contradiction. Thus we have always T1(a, b) < a. We have now two possibilities:
either T1(b, b) ≥ a, or T1(b, b) < a.

First supposeT1(b, b) ≥ a.Then there exists an r ∈ [a, b] such thatT1(r, r) = a.
Since T1(a, b) < a also T1(a, r) < a. We then have the following.

Lemma 5. Let T : [0, 1]2 −→ [0, 1] be a t-norm such that T is continuous on
[a, b]2 for 0 < a < b < 1, and T (a, b) < a, T (r, r) = a for some r ∈ [a, b] . Then
the values of T on A1 ∪ A2 are determined by the values of T on [a, b]2 , where
A1 = {(x, y), (y, x) ∈ [0, b]2 | there exists z ∈ [a, r] , T1(r, z) = x, T1(z, y) ≥
T1(a, r)}, A2 = {(x, y), (y, x) ∈ [0, b]2 | there exists z ∈ [a, r] , T1(a, z) =
x, T1(z, y) ≥ a}.

If we combine this with Lemma1 we see that the strongest t-norm T2 which
coincides with T1 on [a, b]2 , if T (a, b) < a and T (b, b) ≥ a is given by



28 A. Mesiarová-Zemánková

T2(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(x, y) if (x, y) ∈ [0, 1]2 \ [T1(a, a), b]2 ,

T1(x, y) if (x, y) ∈ [a, b]2 ,

T1(a,w) if T1(r, z) = x, T1(z, y) = T1(r, w), z, w ∈ [a, r] ,
T1(a,w) if T1(r, z) = y, T1(z, x) = T1(r, w), z, w ∈ [a, r] ,
T1(r, T1(z, y)) if T1(r, z) = x, z ∈ [a, b] , T1(z, y) > a,

T1(r, T1(z, x)) if T1(r, z) = y, z ∈ [a, b] , T1(z, x) > a,

T1(a, T1(z, y)) if T1(a, z) = x, z ∈ [a, r] , T1(z, y) ≥ a,

T1(a, T1(z, x)) if T1(a, z) = y, z ∈ [a, r] , T1(z, x) ≥ a,

T1(a, a) otherwise.

The t-norm T2 is an ordinal sum t-norm and T1(a, a) is its idempotent point.
If there exists a continuous t-norm that coincides with T1 on [a, b]2 then such a
t-norm has an additive generator s on [T1(a, a), b] . We construct a sequence of
t-norms Ti which are ordinal sums of one continuous, Archimedean summand on
[T1(a, a), b + εi] and Ti is generated on [T1(a, a), b + εi] by an additive generator
ti such that ti(x) = s(x) for all x ∈ [T1(a, a), b] and ti is linear on [b, b + εi] with
ti(b + εi) = 0. Then the sequence {Ti}i∈N converges to T2.

Similarly, using Lemma2 we see that the weakest t-norm T3 which coincides
with T1 on [a, b]2 , if T (a, b) < a and T (b, b) ≥ a is given by

T3(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(x, y) if max(x, y) = 1,
T2(min(x, b),min(y, b)) if (x, y) ∈ [T1(a, p), 1]2 \ [T1(a, p), b]2 ,

T2(x, y) if (x, y) ∈ A1 ∪ A2 ∪ [a, b]2 ,

0 otherwise,

where p is the smallest point from [a, b] such that T1(b, p) = a and A1 =
{(x, y), (y, x) ∈ [0, b]2 | there exists z ∈ [a, r] , T1(r, z) = x, T1(z, y) ≥ T1(a, r)},

and A2 = {(x, y), (y, x) ∈ [0, b]2 | there exists z ∈ [a, r] , T1(a, z) = x, T1(z, y) ≥
a}.

If there exists a continuous t-norm that coincides with T1 on [a, b]2 then such
a t-norm has an additive generator s on [T1(a, a), b] . We construct a sequence
of t-norms Ti with respective additive generators ti such that ti(x) = s(x) for
all x ∈ [T1(a, a), b] and ti is linear on [0, T1(a, a)] , [b, 1 − εi] and [1 − εi, 1] with
ti(0) = s(T1(a, a)) + εi, ti(1 − εi) = s(b) − εi, ti(1) = 0. Then the sequence
{Ti}i∈N converges to T3.

Finally, we will suppose that T1(b, b) < a.
Then using Lemma2 we see that the weakest t-norm T3 which coincides with

T1 on [a, b]2 , if T (a, b) < a and T (b, b) < a is given by

T3(x, y) =

⎧
⎪⎨

⎪⎩

min(x, y) if max(x, y) = 1,
T1(min(x, b),min(y, b)) if (x, y) ∈ [a, 1]2 ,

0 otherwise.
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If there exists a continuous t-norm that coincides with T1 on [a, b]2 then
this t-norm has an additive generator s on [T1(a, a), b] . Then its values on
[T1(a, a), T1(b, b)]∪ [a, b] determines T1 on [a, b]2 . However, in [9] we have shown
that values of such a generator on [T1(a, a), T1(b, b)] ∪ [a, b] are not uniquely
determined by T1 on [a, b]2 . More precisely, we can obtain a whole class of
such additive generators with s(a) = 1 which are dependent on a parameter
s(b) = w, where 1 > w > 1

2 . We will select such an additive generator for which
3s(b) > 2s(a). Then we will define a sequence of t-norms Ti generated by respec-
tive additive generators ti, where ti(x) = s(x) for x ∈ [T1(a, a), T1(b, b)] ∪ [a, b]
and ti is linear on [0, T1(a, a)] , on [T1(b, b), a − εi] , on [a − εi, a] , on [b, 1 − εi] ,
and on [1 − εi, 1] , with ti(0) = s(T1(a, a)) + εi, ti(a − εi) = s(T1(b, b)) − εi,
ti(1 − εi) = s(b) − εi, ti(1) = 0. Then the sequence {Ti}i∈N converges to T3.

In the case of the strongest extension the situation is more complicated.
Let T : [0, 1]2 −→ [0, 1] be a t-norm that coincides with T1 on [a, b]2 . Then it
is clear that for all (x, y) ∈ [T1(a, a), a]2 we have T (x, y) ≤ T1(a, a). Further,
T (x, y) ≤ T1(a, y) for all x ≤ a ≤ y. If T1(a, b) = T1(a, a) then the strongest
t-norm that coincides with T1 on [a, b]2 is given by

T2(x, y) =

{
min(x, y) if (x, y) ∈ [0, 1]2 \ [T1(a, a), b]2 ,

T1(max(a, x),max(a, y)) otherwise.

If T1 on [a, b]2 can be extended to a continuous t-norm then this t-norm has an
additive generator s on [T1(a, a), b] and values of s on [T1(a, a), T1(b, b)] ∪ [a, b]
determine the values of T1 on [a, b]2 . Since T1(a, b) = T1(a, a) we see that T1(a, a)
is an idempotent element of such a t-norm and s(a) + s(b) ≥ 2 · s(a). Thus
if we define a sequence of t-norms Ti which are ordinal sums of one continu-
ous, Archimedean summand on [T1(a, a), b + εi] , where Ti is on [T1(a, a), b + εi]
generated by respective additive generators ti, where ti(x) = s(x) for x ∈
[T1(a, a), T1(b, b)] ∪ [a, b] and ti is linear on [T1(b, b), a] and on [b, b + εi] , with
ti(b + εi) = 0, then {Ti}i∈N converges to T2.

Further, let c = T1(a, b) > T1(a, a). Then T (c, b) = T (a, T (b, b)) ≤ T1(a, a),
and we get the following:

Lemma 6. Let T1 : [0, 1]2 −→ [0, 1] be a t-norm which is continuous on [a, b]2 ,
T1(b, b) < a, T1(a, b) > T1(a, a). Then each t-norm T which coincides with T1 on
[a, b]2 is smaller than or equal to the binary function T ∗ : [0, 1]2 −→ [0, 1] given
by

T ∗(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(x, y) if (x, y) ∈ [0, 1]2 \ [T1(a, a), b]2 ,

T1(x, y) if (x, y) ∈ [a, b]2 ,

T1(a, y) if y ∈ [a, b] , x ∈ ]T1(b, b), a[ ,
T1(a, x) if x ∈ [a, b] , y ∈ ]T1(b, b), a[ ,
T1(a,w) if x = T1(b, q), T1(y, q) = T1(b, w), q, w ∈ [a, b] ,
T1(a,w) if y = T1(b, q), T1(x, q) = T1(b, w), q, w ∈ [a, b] ,
T1(a, a) otherwise.
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The binary function T ∗ is commutative, non-decreasing and has 1 as a neutral
element. However, it need not be associative.

The binary function T ∗ is associative only if the inequalities T1(x, y) =
T1(b, u), T1(u, z) = T1(b, v), T1(x, z) = T1(b, w), T1(w, y) = T1(b, c), imply v = c
for all x, y, z, u, v, w, c ∈ [a, b] . This is satisfied, for example, if there exists a
continuous t-norm which coincides with T1 on [a, b]2 , which follows from the
existence of an additive generator of such a t-norm on [T1(a, a), b] . Thus in this
case T ∗ is the strongest t-norm which coincides with T1 on [a, b]2 .

Suppose that there exists a continuous t-norm that coincides with T1 on
[a, b]2 . Then similarly as above the values of the corresponding additive generator
s on [T1(a, a), T1(b, b)] ∪ [a, b] are not determined uniquely by values of T1 on
[a, b]2 , but for s(a) = 1 we have s(b) = w for 1 > w > 1

2 . We select a sequence
of such additive generators si, where for the respective parameter si(b) = wi

we have wi = 1+εi

2 . We now define a sequence of t-norms Ti which are ordinal
sums of one continuous, Archimedean summand on [T1(a, a), b + εi] , and Ti is on
[T1(a, a), b + εi] generated by respective additive generators ti such that ti(x) =
si(x) for x ∈ [T1(a, a), T1(b, b)] ∪ [a, b] , and ti is linear on [T1(b, b), a] and on
[b, b + εi] , with ti(b + εi) = 0. Then the sequence {Ti}i∈N converges to T2.

4 Extremal Extensions of t-norms with a Non-trivial
Idempotent Element in [a, b]

Assume that the t-norm T1 is known only on [a, b]2 and is continuous on [a, b]2 . In
this section we will suppose that there is a non-trivial idempotent in [a, b] . First
suppose that a = b, i.e., T1 is known only in one point (a, a) and T1(a, a) = a.
Then it is evident that the strongest t-norm which satisfies T (a, a) = a is the
minimum t-norm. The weakest t-norm T3 with T3(a, a) = a is given by

T3(x, y) =

⎧
⎪⎨

⎪⎩

min(x, y) if max(x, y) = 1,
a if (x, y) ∈ [a, 1]2 ,max(x, y) < 1,
0 otherwise.

However, T3 cannot be obtained as a limit of a sequence of continuous t-
norms Ti with Ti(a, a) = a as for each such a continuous t-norm Ti there is
Ti(x, y) = x for all x ≤ a ≤ y.

From now on we will suppose that a < b. Let q ∈ [a, b] be an idempotent
point of T1, i.e., T1(q, q) = q. Then we have the following.

Lemma 7. Let T : [0, 1]2 −→ [0, 1] be a t-norm which is continuous on [a, b]2

and let q ∈ [a, b] be an idempotent point of T1. Then T1(x, y) = x for all x, y ∈
[a, b] , x ≤ q ≤ y.

From the previous result we see that if any t-norm T coincides with T1 on
[a, b]2 then for all x ∈ [a, q] we have T (x, z) = x for all z ∈ [q, 1] . Recall that for
every t-norm T we have T (x, y) ≤ min(x, y). Thus we get the following result.
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Proposition 7. Let T : [0, 1]2 −→ [0, 1] be a t-norm which is continuous on
[a, b]2 and let q1, q2 ∈ [a, b] be respectively the smallest and the biggest idempotent
point of T1 in [a, b] . Then the strongest t-norm T2 which coincides with T1 on
[a, b]2 is equal to an ordinal sum T2 = (〈0, q1, T 1

2 〉, 〈q1, q2, T 2
1 〉, 〈q2, 1, T 3

2 〉). Here
T 1
2 is the strongest t-norm that coincides with the t-norm T 1

1 on
[

a
q1

, 1
]
, where

T 1
1 is linearly isomorphic with T1 on [0, q1]

2
, and T 3

2 is the strongest t-norm that
coincides with the t-norm T 3

1 on
[
0, b−q2

1−q2

]
, where T 3

1 is linearly isomorphic with

T1 on [q2, 1]
2
. The t-norm T 2

1 is linearly isomorphic with T1 on [q1, q2]
2
.

Since in the previous result q1 and q2 are the smallest and the biggest idem-
potent point in [a, b] thus in [a, q1[ and in ]q2, b] there is no non-trivial idempotent
point of T1. Therefore T 1

2 and T 3
2 can be determined from the previous section.

We get

T 3
2 (x, y) =

⎧
⎨

⎩
T 3
1 (x, y) if (x, y) ∈

[
0, b−q2

1−q2

]2
,

min(x, y) otherwise,

and

T 1
2 (x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T 1
1 (

a
q1

, T 1
1 (y, z)) if (x, y) ∈ A, x = T 1

1 (z, a
q1
),

T 1
1 (

a
q1

, T 1
1 (x, z)) if (x, y) ∈ A, y = T 1

1 (z, a
q1
),

min(x, y) if min(x, y) ≤ T1(a,a)
q1

,
T1(a,a)

q1
otherwise,

with A = {(x, y), (y, x) ∈ [0, 1]2 | there exists z ∈ [0, 1], x =
T 1
1 (z, a

q1
), T 1

1 (y, z) ≥ a
q1

}.

As T 1
2 and T 2

2 are continuous and T 3
2 can be obtained as a limit of continuous

t-norms that coincide on the corresponding interval, also T2 can be obtained as
a limit of a sequence of continuous t-norms that coincide with T1 on [a, b]2 .

The monotonicity and the results obtained in previous section gives us for
the weakest extension the following.

Proposition 8. Let T1 : [0, 1]2 −→ [0, 1] be a t-norm which is continuous on
[a, b]2 and let q1, q2 ∈ [a, b] be respectively the smallest and the biggest idempotent
point of T1 in [a, b] . Then the weakest t-norm T3 which coincides with T1 on [a, b]2

is given by

T3(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(x, y) if max(x, y) = 1,
min(x, y) if (x, y) ∈ [q1, 1] × [T1(a, a), q2] \ [q1, q2]

2
,

min(x, y) if (y, x) ∈ [q1, 1] × [T1(a, a), q2] \ [q1, q2]
2
,

T1(x, y) if (y, x) ∈ [q1, q2]
2
,

T1(min(x, b),min(y, b)) if (x, y) ∈ [q2, 1]
2

T1(a, T1(z, y)) if (x, y) ∈ A, x = T1(a, z),
T1(a, T1(z, x)) if (x, y) ∈ A, y = T1(a, z),
0 otherwise,
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with A = {(x, y), (y, x) ∈ [0, q1]
2 | there exists z ∈ [0, q1] , x = T1(a, z), T1(z, y)

≥ a}.

If T1(a, a) > 0 then T3 cannot be obtained as a limit of continuous t-norms
that coincide with T1 on [a, b]2 . This is fact that if q1 is an idempotent element
of a continuous t-norm T then T (x, y) = x for all x ≤ q1 ≤ y. However, we
have T3(x, y) = 0 for x ∈ [0, T1(a, a)] and y ∈ [q1, 1] . If T1(a, a) = 0 then T3 is
similarly as T2 an ordinal sum of three t-norms and the result can be composed
from results of the previous section.

5 Conclusion

We have described the strongest and the weakest t-norms that coincide with
the given t-norm T1 on [a, b]2 . These results can be applied everywhere when
we search for an extremal t-norm that coincides with the given values on some
subinterval of the unit interval.

Acknowledgement. This work was supported by grant VEGA 2/0049/14 and Pro-
gram Fellowship of SAS.
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Abstract. In this work we consider directional monotone functions and
use this idea to introduce the notion of pre-aggregation function. In par-
ticular, we propose an example of such functions inspired on Choquet
integrals.

Keywords: Pre-aggregation functions · Aggregation functions · Direc-
tional monotonicity · Fuzzy measures · Choquet integral

1 Introduction

Aggregation functions [1,2] are crucial tools nowadays to deal with many compu-
tation problems [3–9]. However, and since some very relevant operators such as
the mode are not monotone, in recent years there exists an increasing interest on
the relaxation of the monotonicity property in order to recover operators which
may be useful for applications. For instance, in [10], Wilkin and Beliakov pro-
posed the notion of weak monotonicity, which amounts to consider monotonicity
along the fixed ray defined by the first quadrant diagonal. The consideration of
monotonicity along any other fixed ray led Bustince et al. [11] to introduce the
notion of directional monotonicity. Note that monotone functions in the usual
sense are both weakly monotone and directionally monotone.

In this work we propose to define pre-aggregation function, which are func-
tions which satisfy the same boundary conditions as aggregation functions but
for which only directional monotonicity is considered. In particular, and for the
present work, we discuss a particular instance of these pre-aggregations, which

c© Springer International Publishing Switzerland 2015
V. Torra and Y. Narakawa (Eds.): MDAI 2015, LNAI 9321, pp. 33–41, 2015.
DOI: 10.1007/978-3-319-23240-9 3
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is obtained by replacing the product by an appropriate aggregation in the defi-
nition of the Choquet integral [12–15]. The usefulness of this approach has been
made clear in recent works [16,17] for classification problems.

This paper is organized as follows. In Sect. 2, we present some related pre-
liminary concepts that are necessary to understand the paper. In Sect. 3 we
introduce the notion of pre-aggregation function, discussing some properties.
A specific method of construction of pre-aggregation functions is described in
Sect. 4. We finish with some conclusions and references.

2 Preliminaries

We recall here some relevant notions and definitions which are useful for subse-
quent developments.

Definition 1. A function A : [0, 1]n → [0, 1] is said to be an n-ary aggregation
function if the following conditions hold:

(A1) A is increasing1 in each argument: for each i ∈ {1, . . . , n}, if xi ≤ y, then
A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the boundary conditions: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Definition 2. A bivariate aggregation function T : [0, 1]2 → [0, 1] is a t-norm
if, for all x, y, z ∈ [0, 1], it satisfies the following properties:

(T1) Commutativity: T (x, y) = T (y, x);
(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);
(T3) Boundary condition: T (x, 1) = x.

If T satisfies (T3) (and also (T (1, x) = x) only, then it is called a semi-copula.

Some important examples of t-norms are the following

1. Minimum TM (x, y) = min{x, y}
2. Algebraic Product TP (x, y) = xy
3. �Lukasiewickz T�L(x, y) = max{0, x + y − 1}

4. Drastic Product TDP (x, y) =

⎧
⎪⎨

⎪⎩

x if y = 1
y if x = 1
0 otherwise

5. Nilpotent Minimum TNM (x, y) =

{
min{x, y} if x + y > 1
0 otherwise

6. Hamacher Product THP (x, y) =

{
0 if x = y = 0

xy
x+y−xy otherwise

Let’s consider now the set N = {1, . . . , n} for an arbitrary positive integer n.
1 In this paper, an increasing (decreasing) function does not need to be strictly increas-
ing (decreasing).
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Definition 3. A function m : 2N → [0, 1] is a fuzzy measure if, for all X,Y ⊆
N , it satisfies the following properties:

(m1) Increasing: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

Some examples of measures are the following

Uniform measure:

mU (A) =
|A|
n

. (1)

Dirac’s measure: For a previously fixed i ∈ N , chosen according to a certain
methodology,

mi
D(A) =

{
1 if i ∈ A
0 if i �∈ A.

(2)

Additive measure (Wmean): Take W = (w1, . . . , wn) ∈ [0, 1]n such that∑n
i=1 wi = 1. Consider

mW ({i}) = wi

Then, for | A |> 1, define:

mW (A) =
∑

i∈A

wi. (3)

Symmetric measure (OWA): Take W = (w1, . . . , wn) ∈ [0, 1]n such that∑n
i=1 wi = 1. Then, for any non-empty subset A, define:

msW (A) =
|A|∑

i=1

wi. (4)

Power measure:

mPM (A) =
( |A|

n

)q

, with q > 0. (5)

Finally, we recall the definition of Choquet integral.

Definition 4. [1, Definition 1.74] Let m : 2N → [0, 1] be a fuzzy measure. The
discrete Choquet integral of x = (x1, . . . , xn) ∈ [0, 1]n with respect to m is defined
as a function Cm : [0, 1]n → [0, 1], given by

Cm(x) =
n∑

i=1

(
x(i) − x(i−1)

) · m (
A(i)

)
, (6)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the input x, that is, 0 ≤

x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is
the subset of indices of n − i + 1 largest components of x.

Now we recall the notion of directional monotonicity [11].
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Definition 5. Let r = (r1, . . . , rn) be a real n-dimensional vector, r �= 0.
A function F : [0, 1]n → [0, 1] is r-increasing if for all points (x1, . . . , xn) ∈ [0, 1]n

and for all c > 0 such that (x1 + cr1, . . . , xn + crn) ∈ [0, 1]n it holds

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn) .

Example 1. – Fuzzy implication functions (see [18]) are (−1, 1)-increasing
functions.

– Weakly increasing functions are a particular case of directionally increasing
functions, with r = (1, . . . , 1).

3 Pre-aggregation Functions

In this section we introduce the notion of pre-aggregation function and discuss
some properties and construction methods.

Definition 6. A function F : [0, 1]n → [0, 1] is said to be an n-ary pre-
aggregation function if the following conditions hold:

(PA1) There exists a real vector r ∈ [0, 1]n (r �= 0) such that F is r-
increasing.
(PA2) F satisfies the boundary conditions: F (0, . . . , 0) = 0 and
F (1, . . . , 1) = 1.

Example 2. Some examples of pre-aggregation functions are the following.

(i) Consider the mode, Mod(x1, . . . , xn), defined as the function that gives back
the value which appears most times in the considered n-tuple, or the small-
est of the values that appears most times, in case there is more than one.
Then, the mode is (1, . . . , 1)-increasing, and it is a particular case of pre-
aggregation function.

(ii) F (x, y) = x− (max{0, x− y})2 is, for instance, (0, 1)-increasing, and then it
is an example of pre-aggregation function.

If F is a pre-aggregation function with respect to a vector r we will just say
that F is an r -pre-aggregation function.

Remark 1. Note that if A : [0, 1]n → [0, 1] is an aggregation function, then A is
also a pre-aggregation function.

We can use aggregation functions to obtain directionally increasing functions
as follows.

Proposition 1. Let A : [0, 1]m → [0, 1] be an aggregation function. Let Fi :
[0, 1]n → [0, 1] (i ∈ {1, . . . ,m}) be a family of m r-pre-aggregation functions for
the same vector r ∈ [0, 1]n. Then, the function A(F1, . . . , Fm) : [0, 1]n → [0, 1],
defined as

A(F1, . . . , Fm)(x1, . . . , xn) = A(F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn))

is also an r-pre-aggregation function.
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Proof. Assume that r = (r1, . . . , rn). Then, from the r -increasingness, it follows
that, for every (x1, . . . , xn) ∈ [0, 1]n and c > 0 such that (x1+cr1, . . . , xn+crn) ∈
[0, 1]n,

Fi(x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn)

for every i ∈ {1, . . . ,m}. Since any aggregation function is increasing, the result
follows.

The following result is straightforward.

Proposition 2. Let F1, F2 : [0, 1]n → [0, 1] be two r-pre-aggregation functions
for the same vector r ∈ [0, 1]n. Then:

(i) F1+F2
2 is also an r-pre-aggregation function.

(ii) F1F2 is also an r-pre-aggregation function.

Regarding duality, we can state the following.

Proposition 3. Let F : [0, 1]n → [0, 1] be an r-pre-aggregation function for
r ∈ [0, 1]n. Then, the function

F d(x1, . . . , xn) = 1 − F (1 − x1, . . . , 1 − xn)

is also an r-pre-aggregation function.

Proof. Let r = (r1, . . . , rn). Take (x1, . . . , xn) ∈ [0, 1]n and c > 0 such that
(x1 + cr1, . . . , xn + crn) ∈ [0, 1]n. Then it holds that

F d(x1 + cr1, . . . , xn + crn) = 1 − F (1 − x1 − cr1, . . . , 1 − xn − crn)

≥ 1 − F (1 − x1, . . . , 1 − xn) = F d(x1, . . . , xn)

so the result holds.

4 A Way to Build Pre-aggregation Functions

In this section, we introduce a method to build pre-aggregation functions. This
method is inspired in the way the Choquet integral is built, replacing the product
operation in Eq. (6) by other aggregation functions.

Let m : 2N → [0, 1] be a fuzzy measure and M : [0, 1]2 → [0, 1] be a function.
Taking as basis the Choquet integral, we define the function CM

m : [0, 1]n →
[0, n] by

CM
m (x) =

n∑

i=1

M
(
x(i) − x(i−1),m

(
A(i)

))
, (7)

where N = {1, . . . , n}, (x(1), . . . , x(n)) is an increasing permutation on the input
x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0, and
A(i) = {(i), . . . , (n)} is the subset of indices of n− i+1 largest components of x.

First of all, we have the following results.
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Proposition 4. Let M : [0, 1]2 → [0, 1] be a function such that M(x, y) ≤ x for
every x, y ∈ [0, 1]. Then

CM
m (x1, . . . , xn) ≤ max(x1, . . . , xn)

for every x1, . . . , xn ∈ [0, 1].

Proof. Note that

CM
m (x1, . . . , xn) =

n∑

i=1

M
(
x(i) − x(i−1),m

(
A(i)

))

≤
n∑

i=1

(x(i) − x(i−1)) = x(n) = max(x1, . . . , xn)

so the result follows.

Proposition 5. Let M : [0, 1]2 → [0, 1] be a function such that M(x, 1) = x for
every x ∈ [0, 1]. Then

CM
m (x1, . . . , xn) ≥ min(x1, . . . , xn)

for every x1, . . . , xn ∈ [0, 1].

Proof. Note that

min(x1, . . . , xn) = x(1) = M
(
x(1) − x(0),m

(
A(1)

)) ≤ CM
m (x1, . . . , xn)

so the result follows.

Proposition 6. Assume that M : [0, 1]2 → [0, 1] is a function such that
M(x, 1) = x and M(0, y) = 0 for every x, y ∈ [0, 1]. Then, the function CM

m

is idempotent. That is, CM
m (x, . . . , x) = x for every x ∈ [0, 1].

Proof. For every (x, . . . , x) ∈ [0, 1]n it holds that

CM
m (x, . . . , x) = M(x, 1) +

n∑

i=2

M(0,m(A(i))) = x .

Proposition 7. For any function M : [0, 1]2 → [0, 1] such that M(0, 1) = 0,
M(1, 1) = 1 and which is (1, 0)-increasing, CM

m is (1, . . . , 1)-increasing.

Proof. Take as r = (1, . . . , 1). Note that in Eq. (7), for i ≥ 2, it follows that, for
any c > 0

M
(
x(i) + c − (x(i−1) + c),m

(
A(i)

))
= M

(
x(i) − x(i−1),m

(
A(i)

))

whereas, for i = 1

M
(
x(1) + c − x(0),m

(
A(1)

))
= M

(
x(1) + c,m

(
A(1)

)) ≥ M
(
x(1),m

(
A(1)

))

so CM
m is r -increasing.
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Now the following result is straight.

Theorem 1. Let M : [0, 1]2 → [0, 1] be a function such that for all x, y ∈
[0, 1] it satisfies M(x, y) ≤ x, M(x, 1) = x, M(0, y) = 0 and M is (1,0)-
increasing. Then, for any fuzzy measure m, CM

m is a pre-aggregation function
which is idempotent and averaging, i.e., min(x1, . . . , xn) ≤ CM

m (x1, . . . , xn) ≤
max(x1, . . . , xn).

Proof. It follows from Propositions 4, 5 and 7.

Taking into account that a semi-copula is an aggregation function M such
that M(1, x) = M(x, 1) = x for every x ∈ [0, 1], we have the following corollary.

Corollary 1. Let M : [0, 1]2 → [0, 1] be a function. If M is a semi-copula, then,
for any measure m, CM

m is a pre-aggregation function which is idempotent and
averaging.

Remark 2. Under the constraints of Theorem 1, we cannot ensure the monotonic-
ity of CM

m , i.e., CM
m is, in general, a proper pre-aggregation function. To see it,

observe the following:

(i) Take M(x, y) = TM (x, y). Consider N = {1, 2, 3, 4} and the uniform mea-
sure m = mU given in Eq. (1). Then, we have that

CTM
m (0.05, 0.1, 0.7, 0.9) = 0.8 ,

whereas
CTM

m (0.05, 0.1, 0.8, 0.9) = 0.7 ,

so CTM
m is not an increasing function and hence it is not an aggregation

function.
(ii) Consider the �Lukasiewicz t-norm T�L(x, y) = max{0, x + y − 1}. Again, for

N = {1, 2, 3, 4} and the uniform measure m = mU we have that

C
T�L
m (0.05, 0.1, 0.7, 0.9) = 0.15 ,

whereas
C

T�L
m (0.05, 0.2, 0.7, 0.9) = 0.05 ,

so C
T�L
m is not an increasing function and hence it is not an aggregation

function.
(iii) Regarding the drastic product TDP (x, y) = min{x, y} if max{x, y} = 1 and

0 in other case, consider N = {1, 2, 3} and the uniform measure m = mU .
Then

CTDP
m (0, 0, 1) = 0.33 ,

whereas
CTNM

m (0, 0.5, 1) = 0 ,

so CTNM
m is not an increasing function and hence it is not an aggregation

function.
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(iv) Consider the nilpotent minimum t-norm TNM (x, y) = min{x, y} if x+y > 1
and 0 in other case. Again, for N = {1, 2, 3, 4} and the uniform measure
m = mU we have that

CTNM
m (0.05, 0.1, 0.7, 0.9) = 0.55 ,

whereas
CTNM

m (0.05, 0.2, 0.7, 0.9) = 0.5 ,

so CTNM
m is not an increasing function and hence it is not an aggregation

function.
(v) Consider the Hamacher product THP (x, y) = xy

x+y−xy if (x, y) �= (0, 0) and
T (0, 0) = 0. If we consider again N = {1, 2, 3, 4} and the uniform measure
m = mU given in Eq. (1), we see that

CTHP
m (0.05, 0.1, 0.7, 0.9) = 0.5991 ,

whereas
CTHP

m (0.05, 0.1, 0.8, 0.9) = 0.5877 ,

so CTHP
m is not an increasing function and hence it is not an aggregation

function.

5 Conclusion

In this paper, based on the notion of an aggregation function, we have introduced
the concept of a pre-aggregation function. We have described a construction
method for such functions from the Choquet integral by using other t-norms
in the place of the product t-norm considered in the standard definition of the
Choquet integral.

Although due to the lack of space it has not been possible to include a
detailed experimental study, it has been shown in [16] that the use of Choquet-
like pre-aggregation functions allows to improve in some situations the behaviour
of methods such as FARC-HD. In this sense, we intend in the future to study
in a more general way the construction of pre-aggregation functions with an eye
kept on its use for specific problems.
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Abstract. This paper discusses a decision maker’s attitude regarding
risks, for example risk neutral, risk averse and risk loving in micro-
economics by the convexity and concavity of utility functions. Weighted
quasi-arithmetic means on two-dimensional regions are introduced, and
some conditions on utility functions are discussed to characterize the
decision maker’s attitude. Risk premiums on two-dimensional regions are
given and demonstrated. Some approaches to construct two-dimensional
utilities from one-dimensional ones are given, and a lot of examples of
weighted quasi-arithmetic means are shown.

1 Introduction

Weighted quasi-arithmetic means are important tools for subjective estimation
of data in decision making such as management, artificial intelligence and so
on, and they are also strongly related to utility functions in micro-economics
(Fishburn [3]). Yoshida [9–11] has studied weighted quasi-arithmetic means
of an interval by weighted aggregation operations where Kolmogorov [6] and
Nagumo [7] studied the aggregation operators and Aczél [1] developed the the-
ory regarding weighted aggregation. Yoshida [11] has discussed the relations
between weighted quasi-arithmetic means on an interval and decision maker’s
attitude regarding risks.

For a continuous strictly increasing function ϕ : [a, b] �→ (−∞,∞) as a deci-
sion maker’s utility function and a continuous function ω : [a, b] �→ (0,∞) as a
weighting function, a weighted quasi-arithmetic mean on a closed interval [a, b]
is defined by

ϕ−1

(∫ b

a

ϕ(x)ω(x) dx

/ ∫ b

a

ω(x) dx

)
. (1.1)

Equation (1.1) is mathematically a mean value given by a real number μ(∈ [a, b])
satisfying

ϕ(μ)
∫ b

a

ω(x) dx =
∫ b

a

ϕ(x)ω(x) dx (1.2)

c© Springer International Publishing Switzerland 2015
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in the mean value theorem for integration. On the other hand, since ϕ is contin-
uous and strictly increasing, decision maker’s risk averse attitude is described as
the following condition:

ϕ(E(X)) ≥ E(ϕ(X)) (1.3)

for all real valued random variables X, where E(·) denotes the expectation with
some probability measure. Its equivalent representation with density function
and normalization is

ϕ(ν)
∫ b

a

ω(x) dx ≥
∫ b

a

ϕ(x)ω(x) dx (1.4)

for all weighting functions ω, where ν(∈ [a, b]) is the risk neutral mean defined by

ν =
∫ b

a

x ω(x) dx

/∫ b

a

ω(x) dx. (1.5)

From (1.2) and (1.4), decision maker’s risk averse attitude is represented by μ ≤
ν. On the other hand, (1.3) implies the concavity of the function ϕ. Therefore the
following correspondence between the concavity of the function ϕ and weighted
quasi-arithmetic means μ and ν holds [11]:

ϕ′′ ≤ 0 ⇐⇒ μ ≤ ν. (1.6)

In this paper, we investigate weighted quasi-arithmetic means on two-
dimensional regions, and we discuss whether this kind of relation (1.6) still holds
or does not on two-dimensional regions.

In Sect. 2 we discuss a decision maker’s attitude regarding risks, for example
risk neutral, risk averse and risk loving in micro-economics by the convexity and
concavity of utility functions. In Sect. 3 we introduce weighted quasi-arithmetic
means on two-dimensional regions, and we discuss conditions on utility functions
to characterize the decision maker’s attitude. In Sect. 4, we demonstrate risk
premiums on two-dimensional regions, which is one of important concepts for
risk management in economics. In Sect. 5 we give a few approaches to construct
two-dimensional utilities from one-dimensional utilities, and we show a lot of
examples of weighted quasi-arithmetic means.

2 Risk Neutral, Risk Averse and Risk Loving

In this section, we discuss the convexity and concavity of utility functions on
two-dimensional regions to characterize the decision maker’s attitude regarding
risks.

Let a two-dimensional space R
2 = (−∞,∞)2 and let a domain D be a non-

empty open convex subset of R2. Let a utility f be a twice continuously differen-
tiable (C2-class) function on D which is strictly increasing, i.e. fx(x, y) > 0
and fy(x, y) > 0 for (x, y) ∈ D. We introduce concepts about a decision
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maker’s attitude regarding risks with his utility f . Let (Ω,P ) be a probabil-
ity space, where Ω is a non-empty sample space and P is a non-atomic prob-
ability measure on Ω. Let X be a family of all real valued random variables
X : Ω �→ R. A pair of random vectors is called a random vector in this paper.
Let X (D) = {random vectors (X,Y ) : Ω �→ D, X, Y ∈ X}.

Definition 2.1 (Risk and decision making, [2–5]).

(i) Decision making with a utility function f : D �→ R is called risk neutral if

f(E(X), E(Y )) = E(f(X,Y )) (2.1)

for all random vectors (X,Y ) ∈ X (D).
(ii) Decision making with a utility function f : D �→ R is called risk averse if

f(E(X), E(Y )) ≥ E(f(X,Y )) (2.2)

for all random vectors (X,Y ) ∈ X (D).
(iii) Decision making with a utility function f : D �→ R is called risk loving if

f(E(X), E(Y )) ≤ E(f(X,Y )) (2.3)

for all random vectors (X,Y ) ∈ X (D).

These decision maker’s attitudes are related to the concavity and the con-
vexity of his utility function f [9–11]. Hence we introduce the definitions of the
concavity and the convexity of utility functions on two-dimensional regions [8].

Definition 2.2 (Concavity and convexity).

(i) A function f : D �→ R is called concave if

f((1 − θ)x1 + θx2, (1 − θ)y1 + θy2) ≥ (1 − θ)f(x1, y1) + θf(x2, y2) (2.4)

for all (x1, y1), (x2, y2) ∈ D and all real numbers θ satisfying 0 ≤ θ ≤ 1.
(ii) A function f : D �→ R is called strictly concave if

f((1 − θ)x1 + θx2, (1 − θ)y1 + θy2) > (1 − θ)f(x1, y1) + θf(x2, y2) (2.5)

for all (x1, y1), (x2, y2) ∈ D satisfying (x1, y1) 
= (x2, y2) and all real num-
bers θ satisfying 0 < θ < 1.

(iii) A function f : D �→ R is called convex if

f((1 − θ)x1 + θx2, (1 − θ)y1 + θy2) ≤ (1 − θ)f(x1, y1) + θf(x2, y2) (2.6)

for all (x1, y1), (x2, y2) ∈ D and all real numbers θ satisfying 0 ≤ θ ≤ 1.
(iv) A function f : D �→ R is called strictly convex if

f((1 − θ)x1 + θx2, (1 − θ)y1 + θy2) < (1 − θ)f(x1, y1) + θf(x2, y2) (2.7)

for all (x1, y1), (x2, y2) ∈ D satisfying (x1, y1) 
= (x2, y2) and all real num-
bers θ satisfying 0 < θ < 1.
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The concavity and the convexity of utility functions are characterized with
differentials as follows (Rockafellar [8]).

Lemma 2.1 Let a utility f : D �→ R be a C2-class function on D such that fx >
0 and fy > 0 on D.

(i) The following (a)–(c) are equivalent:
(a) f is concave (strictly concave respectively).
(b) Its Hessian matrix

H =
(

fxx fxy

fyx fyy

)

is negative semi-definite (negative definite).
(c) f satisfies

fxx ≤ 0, fyy ≤ 0 and |H| = fxxfyy − f2
xy ≥ 0 (2.8)

(fxx < 0, fyy < 0 and |H| = fxxfyy − f2
xy > 0) (2.9)

on D.
(ii) The following (a’)–(c’) are equivalent:

(a’) f is convex (strictly convex respectively).
(b’) Its Hessian matrix

H =
(

fxx fxy

fyx fyy

)

is positive semi-definite (positive definite).
(c’) f satisfies

fxx ≥ 0, fyy ≥ 0 and |H| = fxxfyy − f2
xy ≥ 0 (2.10)

(fxx > 0, fyy > 0 and |H| = fxxfyy − f2
xy > 0) (2.11)

on D.

By Jensen’s inequality, we obtain the following lemma from Definitions 2.1
and 2.2.

Lemma 2.2

(i) If a utility function f : D �→ R is linear, i.e. f(x, y) = αx + βy + γ for
(x, y) ∈ D where real constants α, β, γ satisfying α > 0 and β > 0, then
decision making with the utility f is risk neutral.

(ii) If a utility function f : D �→ R is concave, then decision making with the
utility f is risk averse.

(iii) If a utility function f : D �→ R is convex, then decision making with the
utility f is risk loving.
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3 Weighted Quasi-Arithmetic Means on Two-Dimensional
Regions

In this section, we introduce weighted quasi-arithmetic means on two-
dimensional regions, and we discuss conditions on the decision maker’s utility
functions to characterize his attitude for risks based on the weighted quasi-
arithmetic means. Let a domain D be a non-empty open convex subset of
R

2, and let a utility f be a C2-class strictly increasing function on D. Now
we take a weighting w as a density function of a random vector (X,Y ) in
Definition 2.1, where we assume w is a once continuously differentiable (C1-
class) positive valued function on D. Denote a family of rectangle regions by
R(D) = {R = I × J | I and J are bounded closed intervals and R ⊂ D}. For a
rectangle region R ∈ R(D), weighted quasi-arithmetic means on region R with
utility f and weighting w are given by a subset Mf

w(R) of R as follows.

Mf
w(R) =

{
(x̃, ỹ) ∈ R | f(x̃, ỹ)

∫∫
R

w(x, y) dx dy =

∫∫
R

f(x, y)w(x, y) dx dy

}
. (3.1)

Then we have Mf
w(R) 
= ∅ since f is continuous on R and

min
(x̃,ỹ)∈R

f(x̃, ỹ) ≤
∫∫

R

f(x, y)w(x, y) dx dy

/ ∫∫

R

w(x, y) dx dy ≤ max
(x̃,ỹ)∈R

f(x̃, ỹ).

Since fx > 0 and fy > 0 on R, there exists an implicit function φ which satisfies
an equation

f(x̃, φ(x̃))
∫∫

R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy, (3.2)

and then φ is strictly decreasing since φ′ = − fx

fy
< 0 on Mf

w(R). Thus the set
of weighted quasi-arithmetic means Mf

w(R) = {(x, y) ∈ R | y = φ(x)} becomes
a continuous strictly decreasing curve segment on R. This curve is called indif-
ference curve for utility function f in economics.

Lemma 3.1 Let a rectangle region R ∈ R(D), and let a utility f be a C2-class
strictly increasing function on D. Let φ be an implicit function for (3.2). Then
the following (i) and (ii) hold:

(i) If f is concave (strictly concave), then its implicit function φ is convex i.e.
φ′′ ≥ 0 (strictly convex i.e. φ′′ > 0 respectively).

(ii) If f is convex (strictly convex), then its implicit function φ is concave i.e.
φ′′ ≤ 0 (strictly concave i.e. φ′′ < 0 respectively).

From Definition 2.1 we introduce the following concept depending on a rec-
tangle region and a weighting function.

Definition 3.1 Let a rectangle region R ∈ R(D). Let a utility function f : D �→
R and let a weighting function w : D �→ (0,∞).
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(i) Decision making with a utility f is called risk neutral on R with weighting
w if

f(xR, yR)
∫∫

R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy, (3.3)

where we define a point (xR, yR) on R by weighted means

xR =
∫∫

R

x w(x, y) dx dy

/ ∫∫

R

w(x, y) dx dy, (3.4)

yR =
∫∫

R

y w(x, y) dx dy

/ ∫∫

R

w(x, y) dx dy. (3.5)

(ii) Decision making with a utility f is called risk averse on R with weighting
w if

f(xR, yR)
∫∫

R

w(x, y) dx dy ≥
∫∫

R

f(x, y)w(x, y) dx dy. (3.6)

(iii) Decision making with a utility f is called risk loving on R with weighting
w if

f(xR, yR)
∫∫

R

w(x, y) dx dy ≤
∫∫

R

f(x, y)w(x, y) dx dy. (3.7)

Hence we investigate the weighted means (3.4) and (3.5) in Definition 3.1.
Let a rectangle region R ∈ R(D). Let a weighting function w : D �→ (0,∞).
From Lemma 2.2(i), we can give a risk neutral utility function g : D �→ R by
a linear function: g(x, y) = αx + βy + γ for (x, y) ∈ D with real constants
α, β, γ satisfying α > 0 and β > 0. Then its weighted quasi-arithmetic means
are reduced to

Mg
w(R) = {(x, y) ∈ R | α(x − xR) + β(y − yR) = 0}, (3.8)

where (xR, yR) is defined by (3.4) and (3.5). In (3.8), it holds clearly that
(xR, yR) ∈ Mg

w(R) for linear risk neutral utility functions g with any real parame-
ters α, β, γ satisfying α > 0 and β > 0. Therefore (xR, yR) is called an invariant
risk neutral point on R with weighting w.

Example 3.1 Fix a domain D = R
2 and a rectangle region R = [0, 1]2 and fix

a weighting function w = 1. Then the invariant risk neutral point is (xR, yR) =
( 12 , 1

2 ). Hence we investigate the following three cases.

(i) (Strictly concave utility f). Take a utility function f as

f(x, y) = −x2 − y2 + 3x + 3y (3.9)

for (x, y) ∈ R
2. Then fx > 0 and fx > 0 on R. We can easily check

f(xR, yR)
∫∫

R

dx dy =
∫∫

R

f(x, y) dx dy +
1
6
.
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Thus the utility f is risk averse on R with weighting w. Its Hessian matrix is

H =
(

fxx(x, y) fxy(x, y)
fxy(x, y) fyy(x, y)

)
=

(−2 0
0 −2

)

and the determinant is |H| = 4 > 0. Therefore the utility f is strictly
concave.

(ii) (Non-concave utility f). Take a utility function f as

f(x, y) = x2 − 2y2 + x + 5y (3.10)

for (x, y) ∈ R
2. Then fx > 0 and fx > 0 on R. We can easily check

f(xR, yR)
∫∫

R

dx dy =
∫∫

R

f(x, y) dx dy +
1
12

.

Thus the utility f is risk averse on R with weighting w. Its Hessian matrix is

H =
(

fxx(x, y) fxy(x, y)
fxy(x, y) fyy(x, y)

)
=

(
2 0
0 −4

)

and the determinant is |H| = −8 < 0. Therefore the utility f is not concave.
(iii) (Non-convex utility f). Take a utility function f as

f(x, y) = 2x2 − y2 + x + 3y (3.11)

for (x, y) ∈ R
2. Then fx > 0 and fx > 0 on R. We can easily check

f(xR, yR)
∫∫

R

dx dy =
∫∫

R

f(x, y) dx dy − 1
12

.

Thus the utility f is risk loving on R with weighting w. Its Hessian matrix is

H =
(

fxx(x, y) fxy(x, y)
fxy(x, y) fyy(x, y)

)
=

(
4 0
0 −2

)

and the determinant is |H| = −8 < 0. Therefore the utility f is not convex.

Example 3.1(ii) shows the concavity of utility f may not be a necessary
condition for the risk averse on R, and Example 3.1(iii) also shows the convexity
of utility f may not be a necessary condition for the risk loving on R. However
it is possible to give the following necessary conditions for risk averse and risk
loving (Fig. 1).

Theorem 3.1 Let a utility f be a C2-class strictly increasing function on D.

(i) If decision making with utility f is risk averse on any rectangle region R ∈
R(D) with any C1-class positive valued weighting function w on D, then it
holds that

fxx ≤ 0 and fyy ≤ 0 on D. (3.12)
(ii) If decision making with utility f is risk loving on any rectangle region R ∈

R(D) with any C1-class positive valued weighting function w on D, then it
holds that

fxx ≥ 0 and fyy ≥ 0 on D. (3.13)
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Fig. 1. Weighted quasi-arithmetic means Mf
w(R) (f(x, y) = −x2 − y2 + 3x + 3y and

w(x, y) = 1 on R = [0, 1]2)

4 Risk Premiums on Two-Dimensional Regions

Risk premiums are one of important concepts in financial theory. In this section
we discuss risk premiums on two-dimensional regions. For this purpose, we intro-
duce the following natural ordering on R

2.

Definition 4.1 (A partial order  on R
2). For two points (x, y), (x, y)(∈ R

2),
an order (x, y)  (x, y) implies x ≤ x and y ≤ y.

Let a domain D be a non-empty open convex subset of R2. Let a utility f be
a C2-class strictly increasing function on D, and let a weighting w be a C1-class
positive valued function on D. We introduce the following concept from [5].

Definition 4.2 A vector πf
w(R) ∈ [0,∞)2 satisfying the following equation is

called a risk premium for utility f :

f((xR, yR) − πf
w(R))

∫∫

R

w(x, y) dx dy =
∫∫

R

f(x, y)w(x, y) dx dy. (4.1)

We denote the set of risk premiums satisfying (4.1) by the following Πf
w(R):

Πf
w(R) = {πf

w(R) | (xR, yR) − πf
w(R) ∈ Mf

w(R), 0  πf
w(R)}, (4.2)

where 0 is the zero vector on R
2.

Hence Πf
w(R) is also written as

Πf
w(R) = {(xR, yR) − (x, y) | (x, y) ∈ Mf

w(R) ∩ R
(xR,yR)
− }, (4.3)
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where R
(xR,yR)
− is a subregion dominated by the invariant risk neutral point

(xR, yR) which is defined by

R
(xR,yR)
− = {(x, y) ∈ R | (x, y)  (xR, yR)}. (4.4)

Since f is strictly increasing, from (3.6) and (4.1) we obtain the following
theorem.

Theorem 4.1 If decision making with utility f is risk averse on R with weight-
ing w, then there exists a risk premium for utility f , i.e. Πf

w(R) 
= ∅.

Let ‖·‖ be a norm on R
2. Now we estimate risk premiums by norm ‖·‖. Since

Mf
w(R) ∩ R

(xR,yR)
− is a continuous curve, the estimated risk premiums become a

closed interval:

{‖πf
w(R)‖ | πf

w(R) ∈ Πf
w(R)} = [Πf

w(R),Π
f

w(R)], (4.5)

where the maximum risk premium Π
f

w(R) and the minimum risk premium
Πf

w(R) are given from (4.3) as follows:

Π
f

w(R) = max
(x,y)∈Mf

w(R)∩R
(xR,yR)
−

‖(xR, yR) − (x, y)‖, (4.6)

Πf
w(R) = min

(x,y)∈Mf
w(R)∩R

(xR,yR)
−

‖(xR, yR) − (x, y)‖. (4.7)

Hence we define sets of points, which are pairs of two-dimensional weighted
quasi-arithmetic means, to attain the maximum risk premium and minimum
risk premium as follows:

M
f

w(R) = arg max
(x,y)∈Mf

w(R)∩R
(xR,yR)
−

‖(xR, yR) − (x, y)‖, (4.8)

Mf
w(R) = arg min

(x,y)∈Mf
w(R)∩R

(xR,yR)
−

‖(xR, yR) − (x, y)‖. (4.9)

Using these tools, we can estimate risk premiums for risk averse utility. In
Definition 2.1, risk neutral decision making is included in risk averse decision
making and risk loving decision making. As a special case of Theorem 4.1, there-
fore, if decision making is risk neutral then the corresponding risk premium is
Πf

w(R) = {0}. Then Π
f

w(R) = Πf
w(R) = 0 and M

f

w(R) = Mf
w(R) = (xR, yR).

The following Example 4.1 illustrates this concepts.

Example 4.1 We calculate risk premiums for Example 3.1(i). Take a domain
D = R

2 and a rectangle region R = [0, 1]2, and take a weighting function w = 1.
Then the invariant risk neutral point is (xR, yR) = (12 , 1

2 ). Take a strictly concave
increasing utility function f as (3.9). Then the utility f is risk averse on R with
weighting w. From (4.3), we obtain risk premiums
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Πf
w(R) =

{(
1

2
− x,

1

2
− y

)
| −x2 − y2 + 3x + 3y =

7

3
, 0 ≤ x ≤ 1

2
, 0 ≤ y ≤ 1

2

}
. (4.10)

Take a norm ‖(x, y)‖ =
√

x2 + y2 for (x, y) ∈ R
2. Then the estimated risk

premiums becomes a closed interval:

{‖πf
w(R)‖ | πf

w(R) ∈ Πf
w(R)} = [Πf

w(R), Π
f
w(R)] =

[√
78

6
−

√
2,

√
42

6
− 1

]
. (4.11)

Hence the maximum risk premium Π
f

w(R) =
√
42
6 −1 = 0.0801234 · · · is attained

by two-dimensional weighted quasi-arithmetic means
(√

42
6 − 1, 0

)
,
(
0,

√
42
6 − 1

)

∈ M
f

w(R), and the minimum risk premium Πf
w(R) =

√
78
6 − √

2 =
0.0577466 · · · is attained by a two-dimensional weighted quasi-arithmetic mean(√

39
6 − 1,

√
39
6 − 1

)
∈ Mf

w(R).

5 Construction of Two-Dimensional Utilities
from One-Dimensional Utilities

A lot of examples of utility functions on one-dimensional domains are known
([9–11]). Hence we give a few methods, which are easily checked from the defi-
nitions, to construct utility functions g on two-dimensional regions from utility
functions on one-dimensional domains.

Lemma 5.1 Let D be a non-empty open domain in R
2, and let a rectangle

region R ∈ R(D). Let I and J be closed sub-intervals of R. Let g be a C2-class
concave (strictly concave) function on D. Let a pair of utilities (ξ, η) : I×J �→ D
be C2-class such that ξ′ > 0 and ξ′′ ≤ 0 on I and η′ > 0 and η′′ ≤ 0 on J . Then

f(x, y) = g(ξ(x), η(y)) (5.1)

is a C2-class concave (strictly concave resp.) utility function on I × J .

Corollary 5.1 Let I and J be closed sub-intervals of R. Let α and β be positive
constants. Let two utilities ξ : I �→ R and η : J �→ R be C2-class such that ξ′ > 0
and ξ′′ ≤ 0 on I and η′ > 0 and η′′ ≤ 0 on J . Then

f(x, y) = αξ(x) + βη(y) (5.2)

is a C2-class concave utility function on I × J .

Lemma 5.2 Let D be a non-empty open domain in R
2, and let I be a closed

sub-interval of R. Let g : D �→ I be a C2-class concave (strictly concave) utility
function on D. Let a utility ϕ : I �→ R be C2-class such that ϕ′ > 0 and ϕ′′ ≤ 0
on I. Then

f(x, y) = ϕ(g(x, y)) (5.3)

is a C2-class concave (strictly concave) utility function on D.
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Corollary 5.2 Let a rectangle region I × J ∈ R(D) and let α and β be positive
constants. Let K be a closed sub-interval of R such that K = {αx + βy | x ∈
I, y ∈ J}. Let a utility ϕ : K �→ R be C2-class such that ϕ′ > 0 and ϕ′′ < 0 on
K. Then

f(x, y) = ϕ(αx + βy) (5.4)

is a C2-class concave utility function on I × J .

Example 5.1 In Table 1 we list up some economic utility functions ϕ on one-
dimensional domains [10,11], and then from (5.2) and (5.4) we can construct
utility functions on two-dimensional regions by combining these functions. For
example, from (5.2) and Table 1 we can obtain a utility function on two-
dimensional domain (0,∞)2 by

f(x, y) = α log x + β log y (5.5)

for (x, y) ∈ (0,∞)2 with positive constants α and β. On the other hand from 5.4
and Table 1 we can give a utility function on two-dimensional domain R

2 by

f(x, y) = 1 − e−(αx+βy) (5.6)

for (x, y) ∈ R
2 with positive constants α and β.

Table 1. Strictly concave utility functions ϕ on one-dimensional domains

Utility function, domain and parameters ϕ(x)

Power utility (0, ∞); 0 < λ < 1
xλ

λ
Logarithmic utility (0, ∞); λ > 0 λ log x

Exponential utility (−∞, ∞); λ > 0
1 − e−λx

λ

Quadratic utility (0, λ); λ > 0 λx − 1

2
x2

Sigmoid utility (0, ∞); λ > 0
1

1 + e−λx

Concluding Remark. Lemma 2.2 shows that the concavity of utility functions
is a sufficient condition for the risk averse. However, in Example 3.1(ii) we found
that the concavity of utility functions is not a necessary and sufficient condition
for the risk averse. We need to find other conditions instead of the determinant
condition for the Hessian in Lemma 2.1(i):

|H| = fxxfyy − f2
xy ≥ 0 (5.7)

on D.
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Abstract. This paper proposes a comparison between a GAI model
and the Choquet integral w.r.t. a k-ary capacity. We show that these two
models are much closer than one would expect. Based on this comparison,
we show a new result on the GAI models: any 2-additive GAI model can
be rewritten in such a way that all utility terms in the GAI decomposition
are non-negative and monotone. This is very important in practice since
it allows reducing the number of monotonicity constraints to be enforced
in the elicitation process, from an exponential number (of the number of
attributes) to a quadratic number.

1 Introduction

Multi-Criteria Decision Making (MCDM) aims at representing the preferences of
a Decision Maker (DM) regarding how to compare some options on the basis of
their values on several attributes. The preferences of the DM can be projected
to each attribute separately. Depending on the type of assumptions on these
preferences over each attribute, two lines of MCDM model can be defined.

In the first one (called attribute-decomposable), the overall assessment of the
options can be decomposed as an aggregation function applied to partial utility
functions on each attribute. This representation implies some commensurability
among criteria in the sense that the partial utility functions return an assessment
in the common evaluation scale (e.g. [0,1] representing a satisfaction degree).
The simplest model of this form uses the weighted sum model as an aggregation
function. It is limited in the sense that it does not allow interaction among
criteria. This has led to the use of the Choquet integral w.r.t. a capacity [11], or
w.r.t. a k-ary capacity [13,14]. It has the ability to represent various important
phenomena such as veto, favour, complementarity among criteria, among others.

In the second approach (called additive-decomposable), there are still some
utility functions over the attributes, but it is not assumed that they return a
commensurate evaluation, and one assumes some additivity in the overall util-
ity. The best known model is the additive utility model. The GAI (Generalized
Additive Independence) model has been designed as a generalization of the addi-
tive utility model [6,7] to allow interaction among attributes. It has been used
c© Springer International Publishing Switzerland 2015
V. Torra and Y. Narakawa (Eds.): MDAI 2015, LNAI 9321, pp. 54–65, 2015.
DOI: 10.1007/978-3-319-23240-9 5
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in AI [1]. In [4,9,10], the GAI model is learned based on standard gambles.
In a configuration problem, a GAI model is elicited during the solution search
using the expected value of information in [3] or minmax regret in [4]. In the
OR community, a model called UTAGMS−INT very close to the GAI model
has been proposed [16]. The model is learned using linear programming. Linear
programming is also used in [2,20] to learn a GAI model.

We are especially interested in this paper in the GAI model. In the elicitation
phase, one of the main challenges is to represent the monotonicity conditions, as
the number of such conditions grows exponentially with the number of attributes.

We propose in this paper a comparison of the GAI model and k-ary capac-
ities. Section 3 shows that when the attribute are discrete, a GAI model can
be seen as a k-ary capacity. The discrete values of the attribute are mapped
the reference elements {0, 1, . . . , k} used in a k-ary capacity. The concept of
p-additivity, which is defined in Sect. 2, yield a GAI model which contains only
utility terms depending on at most p attributes. This is similar to the concept
of p additivity defined for capacities.

Section 4 addresses a problem that is crucial for the elicitation of a GAI
model. A GAI model can be learned using linear programming, as described in
[2,20] (see also [16] for UTAGMS−INT ). The linear constraints are the learning
examples provided by the DM as well as the monotonicity conditions. These
latter tell that the overall utility of the GAI model shall not decrease when
the value on any value gets improved (according to the preference projected on
each attribute separately). The main issue is that the number of such conditions
growths exponentially with the number of attributes. This is already intractable
with as few as 8 attributes. The main result of this paper shows that any 2-
additive GAI model can be rewritten in such a way that all utility terms in the
GAI decomposition are non-negative and monotone. This result implies that it is
sufficient to enforce the monotonicity conditions only on the utility terms, which
entails only a quadratic increase. This result is proved by turning a GAI model
into a 2-additive k-ary capacity.

Note that there exists some similar reasoning in the context of capacities. The
number of monotonicity constraints grows exponentially, even for a 2-additive
capacity. It has been shown in [21] that the number of extreme points (vertices) of
the set of 2-additive capacities is quadratic in the number of attributes.Hüllermeier
and Fallah Tehrani used this property by writing any 2-additive capacity as a con-
vex combination of these extreme points [18], which allows to have a quadratic
number of unknowns and a quadratic number of monotonicity constraints.

Finally, Sect. 5 shows the link between a GAI model and the Choquet integral
w.r.t. a k-ary capacity, when the attributes are intervals. We show that these
two models are very similar, one using the multi-linear extension whereas the
second uses the Lovász extension.

2 Basic Definitions

We are given a set of n attributes indexed by N = {1, . . . , n}. Each attribute
i ∈ N is represented by a set Xi which can be discrete or continuous (an interval).
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The alternatives are characterized by a value on each attribute, and are thus
represented by an element in X = X1 × · · · × Xn. We assume that we are given
a preference relation �i over each attribute i. We denote by �i and ∼i the
asymmetric and symmetric parts of �i respectively. We aim to represent the
overall assessment of a decision maker over alternatives

U : X → IR. (1)

According to partial preference �i, the best and worst elements in Xi are
denoted x�

i and x⊥
i respectively. We can assume w.l.o.g. that U returns values

in [0,1]. Then we can enforce that

U(x�
1 , . . . , x�

n ) = 1 and U(x⊥
1 , . . . , x⊥

n ) = 0. (2)

For x, y ∈ X and A ⊆ N , we denote by XA the set
∏

i∈A Xi, by xA the
restriction of x on attributes A, and by (xA, y−A) ∈ X the compound alternative
take value xi for attribute i in A, and value yi else.

Utility U is assumed to fulfil the following monotonicity conditions, which
states that it should be consistent with each relation �i:

∀x, y ∈ X with yi �i xi for every i ∈ N, U(y) ≥ U(x) (3)

There exist many different utility models of the form (1). In order to ease the
elicitation process, we need to reduce the intrinsic complexity of model U . This
can be used thanks to the concept of p-additivity, which generalizes 2-additivity
[20]. Prior to that, given x, y, z ∈ X, the discrete derivative of U w.r.t. a subset
P ⊆ N at a triplet x, y, z is defined by

ΔP U(xP , yP , z−P ) =
∑

T⊆P

(−1)|P |−|T |U(yT , xP\T , z−P ).

This generalizes the discrete derivative of on capacities defined by ΔP μ(S) =∑
T⊆P (−1)|P |−|T |μ(S ∪ T ) for S ⊆ N \ P and μ : {0, 1}N → IR [8].
For instance,

Δ{i}U(xi, yi, z−i) = U(yi, z−i) − U(xi, z−i)
Δ{i,j}U(xi,j , yi,j , z−i,j) = U(yi, yj , z−i,j) − U(xi, yj , z−i,j)

− U(yi, xj , z−i,j) + U(xi, xj , z−i,j)

We are now in a position to define p-additivity. It generalizes 2-additivity
when p = 2 [20].

Definition 1. Function U is said to be p-additive if for every P ⊆ N with
|P | ≤ p, for every xP , yP ∈ XP and every z−P , t−P ∈ X−P

ΔP U(xP , yP , z−P ) = ΔP U(xP , yP , t−P ).

In the rest of this section, we describe two known models: (k-ary) capacities
and the Choquet integral (Sect. 2.1), and the GAI model (Sect. 2.2).
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2.1 (k-ary) Capacity and the Choquet Integral

Function U can take the form [19]

U(x) = F (u1(x1), . . . , un(xn)), (4)

where ui : Xi → IR is called the utility function (also called value function)
on Xi and F : IRn → IR is an aggregation function. Utility function ui shall
be consistent with �i (i.e. ui(xi) ≥ ui(yi) whenever xi �i yi). A criterion is a
preference over an attribute and corresponds to the pair 〈Xi, ui〉. Hence function
F aggregates the values on the n criteria. The Choquet integral is one of the most
versatile aggregation function as it is able to capture various decision strategies
representing interaction among criteria [5,11,15].

Capacity and the Choquet Integral.

Definition 2. A fuzzy measure [23] or capacity [5] on N is a set function
μ : 2N → IR satisfying (1) the monotonicity conditions: μ(A) ≤ μ(B) for every
A ⊆ B, and (2) the normalization conditions: μ(∅) = 0, μ(N) = 1.

The Möbius transform (see e.g. [22]) of μ is defined by

mμ(A) =
∑

B⊆A

(−1)|A\B|μ(B). (5)

A capacity is said to be p-additive if mμ(A) = 0 for every A ⊆ N with
|A| > p, and mμ(A) �= 0 for at least one A ⊆ N with |A| = p [12]. The Choquet
integral of a ∈ IRN w.r.t. capacity μ is defined by [5]

Cμ(a) =
n∑

i=1

(
aτ(i) − aτ(i−1)

)
μ ({τ(i), · · · , τ(n)}) , (6)

where aτ(0) := 0 and τ is a permutation on N such that aτ(1) ≤ aτ(2) ≤ · · · ≤
aτ(n).

k-ary Capacity and Choquet Integral. The concept of a capacity contains
2 reference levels {0, 1} on each criteria. It has been generalized to accommodate
an arbitrary number of reference levels over each criterion. For k ∈ IN∗, we define

Qk(N) = {0, 1, 2, . . . , k}N . (7)

and ≤ on Qk(N) by
q ≤ q′ iff qi ≤ q′

i ∀i ∈ N. (8)

We can now define k-ary capacities, where a usual capacity is a 1-ary capacity.

Definition 3 [13,14]. A k-ary capacity on N is a function v : Qk(N) → IR
satisfying (1) the monotonicity conditions:
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∀q, q′ ∈ Qk(N) s.t. q ≤ q′ , v(q) ≤ v(q′), (9)

and (2) the normalization conditions: v(0, . . . , 0) = 0, v(k, . . . , k) = 1.

Let z ∈ Ω := [0, k]N . The idea of the Choquet integral of z on a k-ary
capacity is first to identify the 2n nodes in Qk(N) just around z (where the
bottom element of these 2n nodes will be denoted by q), then to look at the
restriction of the k-ary capacity on these nodes (interpreted as a non-normalized
capacity denoted by μq), and finally use the standard Choquet w.r.t. μq. Given
z, we define q ∈ Qk(N) by qi = �zi� (the floor integer part of zi). We also define
a capacity given q by

μq(S) = v((q + 1)S , q−S). (10)

Then the Choquet integral w.r.t. v at point z is defined by

Cv(z) = Cμq
(φ) (11)

where ∀i ∈ N φi = zi − qi ∈ [0, 1]. (12)

Note that zi = k, then qi = k − 1. More generally, if zi ∈ {0, . . . , k} then
any qi ∈ {zi − 1, zi, zi + 1} ∩ {0, . . . , k} will do, thanks to the properly weighted
property of the Choquet integral.

2.2 GAI Model

General Model. The Generalized Additive Independence (GAI) model [1,6,7]
takes the form of the sum of utilities over subsets of attributes:

U(x) =
∑

S∈S
uS(xS) (13)

where S is a collection of subsets of N , and uS : Xs → IR. Set S contains
all subsets of attributes that interact each other in the practical problem under
study. Hence the additive model [19] is a particular case of the GAI model where
S is composed of singletons only.

Case Where All Attributes Are Continuous. In order to determine all
utility functions uS , each attribute is discretized. For attribute i ∈ N , we keep
only X̂i ⊆ Xi with |X̂i| finite in the learning phase. The unknowns of the GAI
model are {uS(zS) : S ∈ S , zS ∈ X̂S}, where X̂S =

∏
i∈S X̂i. The elements

of X̂i are denoted by a0
i , a

1
i , . . . , a

mi
i . In order to distinguish with the model uS ,

we denote by
û := {ûS(zS) : S ∈ S , zS ∈ X̂S} (14)

the set of all unknowns.
The value of uS from ûS is obtained by interpolation. In [20], a multi-linear

interpolation is proposed: Consider xS ∈ XS . The following set

I = {i ∈ S : xi �∈ X̂i}
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contains all attributes in S not in the mesh X̂i. For i ∈ N we set

xi = argmax{zi ∈ X̂i : zi ≤ xi}
xi = argmin{zi ∈ X̂i : zi ≥ xi}

Note that xi = xi iff i �∈ I. Then [20]

uS(xS) =
∑

A⊆I

⎡

⎣
∏

i∈A

xi − xi

xi − xi

×
∏

i∈I\A

xi − xi

xi − xi

× ûS(xA, xI\A, xS\I)

⎤

⎦ , (15)

where (xA, xI\A, xS\I) is an alternative that is equal to xk if k ∈ A, to xk if
k ∈ I \ A, and to xk if k ∈ S \ I.

3 Link Between the GAI Model and a k-ary Capacity
When All Attributes Are Discrete

We consider in this section the case where all attributes are discrete. Attribute
Xi is denoted by {a0

i , a
1
i , . . . , a

mi
i }. Without loss of generality, we assume that

these elements are labelled in increasing order of preference, i.e. ami
i �i ami−1

i �i

· · · �i a0
i .

We set k = maxi∈N mi. Let φi : Xi → {0, 1, 2, . . . , k} be given by

φi(al
i) = l ∀l ∈ {0, 1, 2, . . . , k}. (16)

The conversion φ : X → Qk(N) is defined by φ(x) = (φ1(x1), . . . φn(xn)).
Given a function U (see 1) that is monotone in the sense of (3) and that satisfies
(2), we define v, for every q ∈ Qk(N), by

v(q) = U(x) if ∃x ∈ X, φ(x) = q (17)

When the condition in (17) is not fulfilled, we extend v from φ(X) to Qk(N) as
follows:

v(q) = v(m1, . . . , mn) if q ∈ Qk(N) \ φ(X). (18)

Yet v is a k-ary capacity thanks to (3). Hence we have constructed for any U a
corresponding k-ary capacity.

Compared to a k-ary capacity, a GAI model appears only as a specialization
where one assumes a special decomposition form (13). To push further the com-
parison, one could imagine introducing a decomposition (13) as in GAI models
for a Choquet integral. Transposing this decomposition property to a simple
capacity, one would say that a capacity μ is decomposable if it has the form

μ(A) =
∑

S∈S , S 	=∅
μS(S ∩ A)
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Lemma 1. For a fixed integer p, μ takes the form

μ(A) =
∑

S⊆N S 	=∅ and |S|≤k

μS(S ∩ A) (19)

iff μ is at most k-additive.

The following result can be shown.

Theorem 1. U is p-additive if and only if there exists functions uA : XA → IR,
for every A ⊆ N with |A| ≤ p, such that U takes the form (13) with S = {A ⊆
N, |A| ≤ p}.
It generalizes [20, Proposition 4], which is restricted to the case p = 2.

Then a p-additive GAI model is formally equivalent to a p-additive k-ary
capacity.

Note that the inclusion-exclusion model proposes extensions of the p-additive
Choquet integral using a t-norm instead of the minimum in the expression of
the Choquet integral w.r.t. the Möbius coefficients [17].

4 A Much Cheaper Description of the Monotonicity
Conditions When All Attributes Are Discrete

As in the previous section, we consider discrete attributes denoted by Xi =
{a0

i , . . . , a
mi
i }, where ami

i �i ami−1
i �i · · · �i a0

i .

4.1 Complexity of the Monotonicity Conditions

We have described p-additive GAI models (see Definition 1). According to
Theorem 1, a p-additive GAI model (a priori) contains all terms uS with |S| ≤ p.
Then the unknowns of such a model are all terms uS(xS), with |S| ≤ p and
xS ∈ XS . Removing the empty set, we obtain the following number of unknowns
for a p-additive GAI model:

∑

S⊆N, |S|≤p, S 	=∅

∏

i∈S

(mi + 1). (20)

For instance, if mi = k for every i, then the number of unknowns becomes

p∑

i=1

(k + 1)i

(
n
i

)
. (21)

Example 1. Consider n = 10 attributes and k = 4. The following table gives the
number of unknowns, depending on the value of p.

p 1 2 3 4 5 6 7 8 9

# unknowns 50 1 175 16 175 147 425 934 925 4 216 175 13 591 175 31 169 300 50 700 550
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Consider now n = 20 attributes and k = 4. The following table gives the
number of unknowns, depending on the value of p.

p 1 2 3 4 5 6 7

# unknowns 100 4 850 147 350 3 175 475 51 625 475 657 250 475 6 713 500 475

p 8 9
# unknowns 55 920 531 725 3.83967E + 11

We see in the previous example that the number of unknowns increases
extremely fast (exponentially) with p. For practical reasons, we often restrict
ourselves to p = 2. We consider only 2-additive GAI models in the remaining of
this section.

The unknowns are identified by asking the DM some training examples that
are transformed into linear constraints on the unknowns [2,20] (see also [16] for
UTAGMS−INT ). One shall also add the monotonicity constraints on U – see
(3). These conditions can be rewritten as follows

∀i ∈ N ∀j1 ∈ {0, . . . , m1} . . . ∀ji−1 ∈ {0, . . . , mi−1}∀ji ∈ {0, . . . , mi − 1}
∀ji+1 ∈ {0, . . . , mi+1} . . . ∀jn ∈ {0, . . . , mn} (22)

U(aj1
1 , . . . , a

ji−1
i−1 , aji+1

i , a
ji+1
i+1 , . . . , ajn

n ) ≥ U(aj1
1 , . . . , a

ji−1
i−1 , aji

i , a
ji+1
i+1 , . . . , ajn

n )

The number of elementary conditions contained in (22) is equal to

∑

i∈N

[
mi ×

∏

j∈N\{i}
(mj + 1)

]
. (23)

For instance, if mi = k for every i, then the number of monotonicity conditions
becomes

n × k × (k + 1)n−1. (24)

The following example shows that this exponential increase becomes rapidly
intractable with linear programming.

Example 2. Consider k = 4 and a 2-additive GAI model. The following chart
gives the number of monotonicity constraint when n varies.

n 4 6 8 10 12 14

# of monotonicity 2 000 75 000 2 500 000 78 125 000 2 343 750 000 68 359 375 000
constraints

n 16 18 20
# of monotonicity 1.95313E + 12 5.49316E + 13 1.52588E + 15
constraints

Hence we are looking for a simpler monotonicity condition.



62 C. Labreuche and M. Grabisch

4.2 Representation Result of 2-additive GAI Models

In [16], the terms uS can take both positive and negative signs (it is into the sub-
traction between two positive numbers) Let us start from the following example
of a non-negative function U(x1, x2) having a negative term:

U(x1, x2) = 2x1 + x2 − max(x1, x2). (25)

From the relation

min(x1, x2) + max(x1, x2) = x1 + x2,

(25) can be replaced by the equivalent expression:

U(x1, x2) = x1 + min(x1, x2). (26)

In this illustrative example, the negative term has been replaced by a positive
one. Moreover all terms are monotone. One wonders now if this process can
be generalized to any 2-additive GAI model U . In other way, is it possible to
transform any 2-additive GAI model in such a way that all terms uS become
non-negative and monotone?

The main theorem of this paper shows that the previous assertion is true.

Theorem 2. Let us consider a 2-additive GAI model U that is monotone in the
sense of (3) and that satisfies (2). Then there exists non-negative and monotone
functions ui,j : Xi × Xj → [0, 1] (for every {i, j} ⊆ N) and non-negative and
monotone functions ui : Xi → [0, 1] (for every i ∈ N) such that for all x ∈ X

U(x) =
n∑

i=1

ui(xi) +
∑

{i,j}⊆N

ui,j(xi, xj). (27)

Due to space limitation, the proof of this theorem, which is quite long, is
omitted.

Theorem 2 shows that, in order to ensure monotonicity of U , it is sufficient
to enforce the monotonicity on each term uS in the GAI decomposition. Then
the number of monotonicity conditions is reduced to:

∑

i∈N

mi +
∑

{i,j}⊆N

(mi(mj + 1) + mj(mi + 1)) . (28)

For instance, if mi = k for every i, then the number of monotonicity conditions
becomes

nk
[
(n − 1)(k + 1) + 1

]
. (29)

The number of constraint only growth quadratically with the number of criteria.
The comparison between (24) and (29) is illustrated in the following example.
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Example 3. Consider k = 4 and a 2-additive GAI model. The following chart
give the number of monotonicity constraints.
n 4 6 8 10 12 14

# of monotonicity 2 000 75 000 2 500 000 78 125 000 2 343 750 000 68 359 375 000
constraints with (3)

# of monotonicity 256 624 1 152 1 840 2 688 3 696

constraints with Theorem2

n 16 18 20
# of monotonicity 1.95313E + 12 5.49316E + 13 1.52588E + 15
constraints with (3)
# of monotonicity 4 864 6 192 7 680
constraints with Theorem 2

Thanks to Theorem 2, it is now possible to handle the monotonicity con-
straints in a linear programming solver.

5 Extension of k-ary Choquet Integral

We assume in this section that every attribute is continuous and described by
an interval – see Sect. 2.2. In particular, the unknowns are the values of the
utility terms uS at a discretization X̂i = {a0

i , a
1
i , . . . , a

k
i } of Xi, for every i, with

a0
i < a1

i < · · · < ak
i . For the sake of simplicity, we assume the same size k of

discretization over each attribute.
We assume we are given the overall utility Û(x) for each element x in X̂.

The two models (GAI, denoted by UGAI, and the Choquet integral w.r.t. a k-ary
capacity, denoted by Uk−ary) interpolate differently from values {Û(x) , x ∈ X̂}.
We have already analyzed in Sect. 3, whether a k-ary capacity can be decom-
posed in the same way as a GAI model, when attributes are discrete. We have
seen in particular that a p-additive k-ary capacity corresponds to a p-additive
GAI model and vice versa. The novelty when attributes are continuous is the
interpolation. In our comparison of UGAI and Uk−ary, we focus thus on the inter-
polation power of these two models, without assuming a special decomposition
of the GAI model. This means that we focus the analysis on one term uS in the
GAI model. Henceforth we fix for N a subset S ∈ S (we set N = S). Hence
UGAI is directly given by (15) with S = N . We clearly has for every q ∈ Qp(N)

UGAI(aq1
1 , . . . , aqn

n ) = Û(aq1
1 , . . . , aqn

n ).

We assume, for every criterion i, that ak
i �i · · · �i a0

i .
Let us describe model Uk−ary (use of a Choquet integral w.r.t. a k-ary capac-

ity). After normalization by partial utility function ui (see (4)), the criteria
score shall lie in interval [0, k]. Moreover, utility function ui shall map points
a0

i , a
1
i , . . . , a

k
i to 0, 1, . . . , k respectively:

ui(al
i) = l ∀l ∈ {0, 1, 2, . . . , k}. (30)

This is similar to (16). By assuming that ui is a simple linear interpolation
between any two successive points al

i and al+1
i , we obtain
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ui(xi) =

⎧
⎪⎨

⎪⎩

0 if xi ≤ a0
i

xi−al
i

al+1
i −al

i

(l + 1) + al+1
i −xi

al+1
i −al

i

l = l + xi−al
i

al+1
i −al

i

if al
i ≤ xi < al+1

i

k if xi ≥ ak
i

(31)

The k-ary capacity v is defined for every q ∈ Qp(N) by

v(q) = Û(aq1
1 , . . . , aqn

n ).

Let x ∈ X. Setting operator [·] by [x] ∈ X and [x]i = max(min(xi, a
k
i ), a0

i ), we
have ui(xi) = ui([x]). We define q ∈ Qp(N) such that for all i ∈ N

qi =

⎧
⎨

⎩

0 if xi ≤ a0
i

l if al
i ≤ xi < al+1

i

k − 1 if xi ≥ ak−1
i

(32)

Generalizing (12), we define function φ by

∀i ∈ N φi(x) = min(ui(xi) − qi, 1) = ui([x]) − qi ∈ [0, 1]

=

⎧
⎪⎨

⎪⎩

0 if xi ≤ a0
i

xi−al
i

al+1
i −al

i

if al
i ≤ xi < al+1

i

1 if xi ≥ ak
i

(33)

Then the Choquet integral w.r.t. v for option x is given by (similar to (11)
and (10))

Uk−ary(x) = Cμq
(φ) + v(q) (34)

where the capacity μq is given by for every S ⊆ N

μq(S) = v((q + 1)S , qN\S) − v(q). (35)

The following result shows that Uk−ary is an interpolation.

Lemma 2. For every q ∈ Qp(N)

Uk−ary(aq1
1 , . . . , aqn

n ) = Û(aq1
1 , . . . , aqn

n ).

Hence UGAI and Uk−ary return the same value on X̂. The only difference
between UGAI and Uk−ary is that UGAI is the multi-linear extension of the
values {Û(x) , x ∈ X̂} (see (15)), whereas Uk−ary is the Lovász extension of the
values {Û(x) , x ∈ X̂} (see (34)).
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Abstract. Intuitionistic preference relations are becoming increasingly
important in the field of group decision making since they present a
flexible and simple way to the experts to provide their preference rela-
tions, while at the same time allowing them to accommodate a certain
degree of hesitation inherent to all decision making processes. In this
contribution, we prove the mathematical equivalence between the set
of asymmetric fuzzy preference relations and the set of reciprocal intu-
itionistic fuzzy preference relations. This result is exploited to tackle the
presence of incomplete reciprocal intuitionistic fuzzy preference relation
in decision making by developing a consistency driven estimation pro-
cedure via the corresponding equivalent incomplete asymmetric fuzzy
preference relation.

Keywords: Intuitionistic preference relation · Asymmetric fuzzy pref-
erence relation · Consistency · Uninorm · Incomplete information

1 Introduction

Much research has been carried out in decision making with preferences modelled
using fuzzy preference relations in comparison to using intuitionistic fuzzy prefer-
ence relations. This is mainly to the longer existence of the former representation
format of preferences but also to the increase computational complexity associ-
ated to the use of membership degree, non-membership degree and hesitation
degree to model experts’ subjective preferences with the latter representation
format. Notice that in decision making, intuitionistic fuzzy preference relations
are usually assumed to be reciprocal (Sect. 2).

In this paper the set of reciprocal intuitionistic fuzzy preference relations and
the set of asymmetric fuzzy preference relations are proved to be mathematically
c© Springer International Publishing Switzerland 2015
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isomorphic. The importance of this result resides in that it can be exploited to
use methodologies developed for fuzzy preference relations to the case of intu-
itionistic fuzzy preference relations and, ultimately, to overcome the computation
complexity mentioned above and to extend the use of reciprocal intuitionistic
fuzzy preference relations in decision making. Indeed, this result will allow us
to take advantage of mature and well defined methodologies developed for fuzzy
preference relations in an intuitionistic context while at the same time taking
advantage of the flexibility of reciprocal intuitionistic fuzzy preference relations
to model vagueness/uncertainty. In particular, in this paper we illustrate how
this isomorphic equivalence is used to address the presence of incomplete recip-
rocal intuitionistic fuzzy preference relations in decision making.

Incomplete information, as a result from the incapability of experts to provide
complete information about their preferences, may happens more frequently than
expected because experts do not have a precise or sufficient level of knowledge of
part of the problem, lack of time, difficulty to distinguish up to which degree one
preference is better than other, or due to the presence of conflicting alternatives,
among others [2,9]. In the literature, different approaches to deal with missing
or incomplete information for the case of using fuzzy preference relations as the
representation format of preferences have been extensively studied [24]. Most
of the existing approaches are based on a methodology that ‘builds’ the matrix
driven by the concept of consistency of information [1–5,10,12–14,16,17,25].

The case of incomplete intuitionistic fuzzy preference relations has also been
addressed in literature in [25,26]. In both cases, a methodology driven by con-
sistency was also adopted, although the way consistency of reciprocal preference
relations was modelled was different. On the one hand, in [26] a straight forward
transposition of the multiplicative consistency property for fuzzy preference rela-
tions was proposed for the case of reciprocal intuitionistic fuzzy preference rela-
tions, which later was proved to be incorrect [25] and publicly acknowledged by
the authors that proposed it [27]. On the other hand, in [25] the concept of mul-
tiplicative consistency for reciprocal intuitionistic fuzzy preference relations was
derived by formally extending the fuzzy preference relation multiplicative transi-
tivity property via the use of both the extension principle [29] and representation
theorem of fuzzy sets [28]. In this contribution, though, a different approach to
incomplete reciprocal intuitionistic fuzzy preference relations is presented based
on the aforementioned isomorphic mapping between the set of reciprocal intu-
itionistic fuzzy preference relations and the set of asymmetric fuzzy preference
relations.

The rest of the paper is set out as follows: The first part presents the two
mathematical frameworks for representing preferences (Sect. 2) and the basic
concepts needed throughout the rest of the paper (Sect. 3). The second part of the
paper demonstrates the isomorphism between the set of reciprocal intuitionistic
fuzzy preference relations and the set of asymmetric fuzzy preference relations
(Sect. 4) and its use to present a methodology to estimate missing values of
reciprocal intuitionistic fuzzy preference relations (Sect. 5). The final part of the
paper includes conclusions drawn form the results obtained (Sect. 6).
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2 Preference Relations in Decision Making

The comparison of two elements of a set of feasible alternatives (X) by an expert
can lead to the preference of one alternative to the other or to a state of indiffer-
ence between them. Obviously, there is the possibility of an expert being unable
to compare them. Two main mathematical models based on the concept of pref-
erence relation can be used in this context. In the first one, a preference relation
is defined for each one of the above three possible preference states (preference,
indifference, incomparability) [11], which is usually referred to as a preference
structure on the set of alternatives [20]. The second one integrates the three
possible preference states into a single preference relation [7]. In this paper, we
focus on the second one as per the following definition:

Definition 1 (Preference Relation). A preference relation P on a set X is
a binary relation μP : X ×X −→ D, where D is the domain of representation of
preference degrees provided by the decision maker.

For a set X of finite cardinality (#X = n) the following matrix representa-
tion of a preference relation P is used: P = (pij), with pij = μP (xi, xj) being
interpreted as the degree or intensity of preference of alternative xi over xj

(i, j ∈ {1, 2, . . . , n}). The elements of P can be of a numeric or linguistic nature,
i.e., could represent numeric or linguistic preferences, respectively [19]. The main
types of numeric preference relations used in decision making are: crisp prefer-
ence relations, additive preference relations, multiplicative preference relations,
interval-valued preference relations and intuitionistic preference relations. In this
contribution we focus on reciprocal intuitionistic fuzzy preference relations and
their equivalence to a subclass of fuzzy preference relations, the asymmetric
fuzzy preference relations.

2.1 Fuzzy Preference Relation

Recall that given a universal set U , with a generic element denoted by x, a fuzzy
set X in U is a defined as a set of ordered pairs:

X =
{
(x, μX(x))|x ∈ U

}

where μX : U → [0, 1] is called the membership function of A and μX(x)
represents the degree of membership of the element x in X. In this context,
the degree of non-membership of the element x in X is normally defined as
νX(x) = 1 − μX(x), and as a consequence the following reciprocity property
holds: μX(x)+ νX(x) = 1. The reciprocal relationship between membership and
non-membership makes the latter one unnecessary in the formulation as it can
be derived from the former.

Definition 2 (Fuzzy Preference Relation). A fuzzy preference relation R =
(rij) on a finite set of alternatives X is a relation in X ×X that is characterised
by a membership function μR : X × X −→ [0, 1].
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The following interpretation is assumed:

– rij = 1 indicates the maximum degree of preference for xi over xj

– rij ∈]0.5, 1[ indicates a definite preference for xi over xj

– rij = 1/2 indicates indifference between xi and xj

When rij + rji = 1 (∀i, j ∈ {1, . . . , n}) is imposed we have a reciprocal fuzzy
preference relation.

2.2 Intuitionistic Fuzzy Preference Relation

An intuitionistic fuzzy set X over a universe of discourse U is represented as [6]

X =
{(

x, 〈μX(x), νX(x)〉)∣∣x ∈ U
}

where μX : U −→ [0, 1] and νX : U −→ [0, 1] verify

0 ≤ μX(x) + νX(x) ≤ 1 ∀x ∈ U.

In this context, μX(x) and νX(x) are known as the degree of membership and
degree of non-membership of x to X. Obviously, an intuitionistic fuzzy set
becomes a fuzzy set when μX(x) = 1 − νX(x) ∀x ∈ U . However, when there
exists at least a value x ∈ U for which μX(x) < 1 − νX(x), an extra para-
meter known as the hesitancy degree is defined with intuitionistic fuzzy sets,
τX(x) = 1 − μX(x) − νX(x), representing the amount of lacking information in
determining the membership of x to X.

In [22], Szmidt and Kacprzyk defined the intuitionistic fuzzy preference rela-
tion as a generalisation of the concept of fuzzy preference relation.

Definition 3 (Intuitionistic Fuzzy Preference Relation). An intuitionis-
tic fuzzy preference relation B on a finite set of alternatives X = {x1, . . . , xn}
is characterised by a membership function μB : X × X → [0, 1] and a non-
membership function νB : X × X → [0, 1] such that

0 ≤ μB(xi, xj) + νB(xi, xj) ≤ 1 ∀(xi, xj) ∈ X × X.

The value μB(xi, xj) = μij is interpreted as the certainty degree up to which xi

is preferred to xj , while νB(xi, xj) = νij is interpreted as the certainty degree
up to which xi is non-preferred to xj .

As with a fuzzy preference relation, an intuitionistic fuzzy preference relation
is represented by a matrix B = (bij) with bij = 〈μij , νij〉 ∀i, j = 1, 2, . . . , n.
Obviously, when the hesitancy function is the null function we have that
μij + νij = 1 (∀i, j) and the intuitionistic fuzzy preference relation B = (bij) is
mathematically equivalent to the reciprocal fuzzy preference relation R = (rij),
with rij = μij .

An intuitionistic fuzzy preference relation is referred to as reciprocal when
the following additional conditions are imposed:

– μii = νii = 0.5 ∀i ∈ {1, . . . , n}.
– μji = νij∀i, j ∈ {1, . . . , n}.
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3 Consistency of Fuzzy Preferences

Consistency of fuzzy preference relations has been modelled using the notion
of transitivity in the pairwise comparison among any three alternatives. If xi

is preferred to xj (xi � xj) and this one to xk (xj � xk) then alternative
xi should be preferred to xk (xi � xk), which is normally referred to as weak
stochastic transitivity [18]. Any property that guarantees the transitivity of the
preferences is called a consistency property [8].

Different properties or conditions have been suggested as rational to be
verified by a consistent fuzzy preference relation [8,15]: triangle condition,
weak transitivity, max-min transitivity, max-max transitivity, restricted max-
min transitivity, restricted max-max transitivity, additive transitivity, and mul-
tiplicative transitivity. The last two properties, proposed by Tanino in [23], are
the most widely used in the context of incomplete information [8].

Definition 4 (Additive transitivity). A fuzzy preference relation R = (rij)
on a finite set of alternatives X is additive transitive if and only if

(rij − 0.5) + (rjk − 0.5) = rik − 0.5 ∀i, j, k = 1, 2, · · · , n

Additive transitivity for fuzzy preference relations is equivalent to Saaty’s
consistency property [21] for multiplicative preference relations [15]. However,
it is also a fact that additive transitivity is in conflict with the [0, 1] scale used
for providing the preference values and therefore it is not appropriate to model
consistency of fuzzy preference relations [8]. An alternative transitivity prop-
erty for fuzzy preference relations to additive transitivity was also proposed by
Tanino [23]:

Definition 5 (Multiplicative transitivity). A fuzzy preference relation R =
(rij) on a finite set of alternatives X is multiplicative transitive if and only if

rij · rjk · rki = rik · rkj · rji ∀i, k, j ∈ {1, 2, . . . n} (1)

Multiplicative transitivity extends weak stochastic transitivity, and therefore
extends the classical transitivity property of crisp preference relations.

The modelling of cardinal consistency of reciprocal fuzzy preference relations
via a functional equation was proposed in [8], and it was proved that when such
a function is almost continuous and monotonic (increasing) then it must be a
representable uninorm. Furthermore, cardinal consistency with the conjunctive
representable cross ratio uninorm

U(x, y) =

{
0, (x, y) ∈ {(0, 1), (1, 0)}

xy

xy + (1 − x)(1 − y)
, otherwise (2)

is equivalent to Tanino’s multiplicative transitivity property as per Definition 5.
As any two representable uninorms are order isomorphic, it was concluded that
multiplicative transitivity is the most appropriate property to model consistency
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of reciprocal fuzzy preference relations. This property is referred though as the
multiplicative consistency property.

Multiplicative consistency property (1) allows to estimate the (fuzzy) pref-
erence value between a pair of alternatives (xi, xj) with (i < j) using a different
intermediate alternative xk (k 	= i, j), mrkij , as

mrkij =
rik · rkj · rji

rjk · rki
(3)

so long as the denominator is not zero. The value mrkij is known as the partially
multiplicative transitivity based estimated fuzzy preference value of the pair of
alternatives (xi, xj) obtained using the intermediate alternative xk.

The following points are noted:

– Expression (1) is always true when two of the three subindexes in {i, j, k} are
equal.

– When k = i and rji 	= 0 then mriij = rij , while when rij 	= 0 then mriji = rji.
Because rji = 1 − rij , then we have that: rji 	= 0 if and only if rij 	= 1. Thus,
if k = i and (rij , rji) /∈ {(1, 0), (0, 1)} we have mriij = rij and mriji = rji.

– A similar reasoning and conclusion is obtained when k = j.
– Although it is possible to obtain the multiplicative transitivity based esti-

mated fuzzy preference value of the pair of alternatives (xi, xj) when k ∈ {i, j}
and (rij , rji) /∈ {(1, 0), (0, 1)}, it is also true that there is no indirect estima-
tion process as described above.

– When the fuzzy preference value rij is unknown its estimation will automati-
cally require that k /∈ {i, j}.

– Finally, when i = j we have by definition that rii = 0.5 and we would have
mrkii = rii whenever rik /∈ {(0, 1), (1, 0)}. Thus, this case will not be relevant
when having incomplete information.

Thus, the global multiplicative transitivity based estimated value of the fuzzy
preference value of the pair of alternatives (xi, xj) is defined as the following
average of partially multiplicative transitivity based estimated values

mrij =

∑
k∈R01

ij

mrkij

#R01
ij

;

where R01
ij = {k 	= i, j|(rik, rkj) /∈ R01}, R01 = {(1, 0), (0, 1)}, and #R01

ij is the
cardinality of R01

ij .
Given a fuzzy preference relation, R = (rij), its multiplicative transitivity

based fuzzy preference relation, MR = (mrij), can be constructed. If R is mul-
tiplicative transitive then (1) holds ∀i, j, k, and we have

rij =
rik · rkj · rji

rjk · rki
;

whenever k ∈ R01
ij . Consequently, mrkij = rij ∀i, j, k ∈ R01

ij and therefore it is
rij = mrij ∀i, j. The following alternative definition of multiplicative transitivity
for fuzzy preference relations is justified.
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Definition 6 (Multiplicative Consistency). A fuzzy preference relation R =
(rij) is multiplicative consistent if and only if R = MR.

The similarity value between the fuzzy preference relation, R, and its multi-
plicative transitivity based fuzzy preference relation, MR is defined as follows:

CL =

n∑

i,j=1; i�=j

CLij

n · (n − 1)
.

where CLij = 1 − d(rij ,mrij) ∀i, j, and d(rij ,mrij) represents the distance
between the values rij and mrij . We have the following:

– If R is multiplicative consistent then it is rij = mrij ∀i, j. Consequently,
d(rij ,mrij) = 0 ∀i, j, i.e. CL = 1.

– If CL = 1 then it is
∑n

i,j=1,i �=j CLij = n × (n − 1), and because CLij ∈
[0, 1] then CLij = 1∀i 	= j, i.e. rij = mrij ∀i 	= j. Finally, when i = j we
have mrkii = rii = 0.5 whenever rik /∈ {(0, 1), (1, 0)}, and therefore mrii =
0.5 ∀i. Thus, we have rij = mrij ∀i, j, i.e. R = MR, and R is multiplicative
consistent.

This proves that a fuzzy preference relation R is multiplicative consistent if
and only if CL = 1, and therefore provides a characterisation of multiplicative
consistency of a fuzzy preference relation based on its similarity value to its
multiplicative transitivity based fuzzy preference relation.

4 Reciprocal Intuitionistic Fuzzy Preference Relations
and Asymmetric Fuzzy Preference Relations

Let denote with B the set of reciprocal intuitionistic fuzzy preference relations:

B =
{

B = (bij)|∀ij : bij = 〈μij , νij〉, μij , νij ∈ [0, 1],

μii = νii = 0.5μij = νji, 0 ≤ μij + νij ≤ 1
}

(4)

and with R the set of fuzzy preference relations

R =
{

R = (rij)|∀ij : rij ∈ [0, 1]
}

Let f : [0, 1] × [0, 1] −→ [0, 1] be the following function f(x1, x2) = x1. We can
define the following mapping, F : B −→ R, between the set of reciprocal intuition-
istic fuzzy preference relations, B, and the set of fuzzy preference relations, R,

R = F (B) = (f(bij)) = (μij).
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We have:

– Function F is well defined, i.e. given B ∈ B it is true that f(B) ∈ R.
– Function F is an injection. Indeed, let B1 = (b1ij) and B2 = (b2ij) be two

reciprocal intuitionistic fuzzy preference relations such that F (B1) = F (B2).
Then we have that

f(b1ij) = f(b2ij) ⇔ μ1
ij = μ2

ij ∀i, j.

Because μ1
ij = ν1

ji and μ2
ij = ν2

ji then it is obvious that

ν1
ij = ν2

ij ∀i, j.

Therefore we have that

b1ij = 〈μ1
ij , ν

1
ij〉 = 〈μ2

ij , ν
2
ij〉 = b2ij ∀i, j.

Consequently, it is concluded that

B1 = B2.

– Function F is not a surjection as not all fuzzy preference relations R ∈ R
verify 0 ≤ rij + rji ≤ 1. Thus the range of function function f is the set of
asymmetric fuzzy preference relations.

Summarising:
The set of reciprocal intuitionistic fuzzy preference relations is isomorphic to the
set of asymmetric fuzzy preference relations.

5 Estimating Unknown Values in Incomplete Reciprocal
Intuitionistic Fuzzy Preference Relations

It is assumed that for incomplete reciprocal intuitionistic fuzzy preference rela-
tions, given a pair of alternatives (xi, xj) for which bij is not known, both mem-
bership and non-memberships will be unknown. Due to reciprocity, we have that
if bij is not known then bji is also not known.

If B is an incomplete reciprocal intuitionistic fuzzy preference relation, then
R = F (B) will be an incomplete asymmetric fuzzy preference relation. However,
the missing preference value rij (i 	= j) cannot be partially estimated, using an
intermediate alternative xk, via expression (1) because rji is also unknown. In
these cases we use expression (2). Thus the missing preference value rij(i 	= j)
can be partially estimated, using an intermediate alternative xk, with the value:

crkij =

{
0, (rik, rkj) ∈ {(0, 1), (1, 0)}

rik · rkj
rik · rkj + (1 − rik) · (1 − rkj)

, Otherwise. (5)
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The global multiplicative transitivity based estimated value, crij , is defined as:

crij =

∑
k∈R01

ij

crkij

#R01
ij

where H01
ij = {k ∈ R01

ij |(i, j) ∈ MV & (i, k), (k, j) ∈ EV }; MV is the set of
pairs of different alternatives for which the fuzzy preference degree is unknown
or missing; EV is the set of pairs of different alternatives with known fuzzy
preference values.

The iterative procedure to complete reciprocal fuzzy preference relations
developed in [14] can be applied to complete R and, consequently, to complete
B as the following example illustrates.

Example 1. Let X = {x1, x2, x3, x4} be a set of alternatives evaluated by a deci-
sion maker against a particular criterion using the following incomplete recipro-
cal intuitionistic fuzzy preference relation [25]:

B =

⎛

⎜⎜⎝

〈0.50, 0.50〉 〈0.40, 0.30〉 x x
〈0.30, 0.40〉 〈0.50, 0.50〉 〈0.50, 0.40〉 x

x 〈0.40, 0.50〉 〈0.50, 0.50〉 〈0.30, 0.40〉
x x 〈0.40, 0.30〉 〈0.50, 0.50〉

⎞

⎟⎟⎠

The associated incomplete asymmetric fuzzy preference relation is:

R =

⎛

⎜⎜⎝

0.5 0.4 − −
0.3 0.5 0.5 −
− 0.4 0.5 0.3
− − 0.4 0.5

⎞

⎟⎟⎠

Step 1: The set of elements that can be estimated at this stage are:

EMV1 = {(1, 3), (2, 4), (3, 1), (4, 2)} .

The computation of the estimated values cr13 and cr31 requires the intermediate
alternative k = 2, for which we have

cr213 =
r12 · r23

r12 · r23 + (1 − r12) · (1 − r23)
=

0.4 · 0.5
0.4 · 0.5 + 0.6 · 0.5

= 0.4,

and

cr231 =
r32 · r21

r32 · r21 + (1 − r32) · (1 − r21)
=

0.4 · 0.3
0.4 · 0.3 + 0.6 · 0.7

= 0.22.

The computation of the estimated values cr24 and cr42 is done using intermediate
alternative k = 3

cr324 =
r23 · r34

r23 · r34 + (1 − r23) · (1 − r34)
=

0.5 · 0.3
0.5 · 0.3 + 0.5 · 0.7

= 0.3,
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and

cr342 =
r43 · r32

r43 · r32 + (1 − r43) · (1 − r32)
=

0.4 · 0.4
0.4 · 0.4 + 0.6 · 0.6

= 0.31.

After the estimation process is applied, we have:

R =

⎛
⎜⎜⎝

0.5 0.4 0.4 −
0.3 0.5 0.5 0.3
0.22 0.4 0.5 0.3
− 0.31 0.4 0.5

⎞
⎟⎟⎠

Step 2: The remaining unknown elements can be estimated at this stage,
EMV2 = {(1, 4), (4, 1)}. The computation process of the estimated values are:

cr214 =
r12 · r24

r12 · c24 + (1 − c12) · (1 − c24)
=

0.4 · 0.3
0.4 · 0.3 + 0.6 · 0.7

= 0.22;

cr314 =
r13 · r34

r13 · r34 − (1 − r13) · (1 − r34)
=

0.4 · 0.3
0.4 · 0.3 + 0.6 · 0.7

= 0.22;

cr14 =
cr214 + cr314

2
= 0.22.

cr241 =
r42 · r21

r42 · c21 + (1 − c42) · (1 − c21)
=

0.31 · 0.3
0.31 · 0.3 + 0.69 · 0.7

= 0.16;

cr341 =
r43 · r31

r43 · r31 − (1 − r43) · (1 − r31)
=

0.4 · 0.22
0.4 · 0.22 + 0.6 · 0.78

= 0.16;

cr41 =
cr241 + cr341

2
= 0.16.

The following completed asymmetric fuzzy preference relation R is obtained:

R =

⎛

⎜⎜⎝

0.5 0.4 0.4 0.22
0.3 0.5 0.5 0.3
0.22 0.4 0.5 0.3
0.16 0.31 0.4 0.5

⎞

⎟⎟⎠

The complete reciprocal intuitionistic fuzzy preference relation is:

B = F−1(R) =

⎛

⎜⎜⎝

〈0.50, 0.50〉 〈0.40, 0.30〉 〈0.40,0.22〉 〈0.22,0.16〉
〈0.30, 0.40〉 〈0.50, 0.50〉 〈0.50, 0.40〉 〈0.30,0.31〉
〈0.22,0.40〉 〈0.40, 0.50〉 〈0.50, 0.50〉 〈0.30, 0.40〉
〈0.16,0.22〉 〈0.31,0.30〉 〈0.40, 0.30〉 〈0.50, 0.50〉

⎞

⎟⎟⎠

Notice that the completed reciprocal intuitionistic fuzzy preference relation
obtained coincides with the one in [25], where there was a typo in b41 (b14)
that appeared as 〈0.19, 0.22〉 (〈0.22, 0.19〉) instead of the correct one shown here.
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6 Conclusion

The set of asymmetric fuzzy preference relations is isomorphic to the set of recip-
rocal intuitionistic fuzzy preference relations. This result is important because
it allows to use methodologies developed for fuzzy preference relations to the
case of intuitionistic fuzzy preference relations and, ultimately, to overcome their
associated computation complexity and to extend the use of reciprocal intuition-
istic fuzzy preference relations in decision making. Indeed, this result has been
exploited here to address the issue of incomplete reciprocal intuitionistic fuzzy
preference relations in decision making.
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C.: A consistency-based procedure to estimate missing pairwise preference values.
Int. J. Intell. Syst. 23(2), 155–175 (2008)

4. Alonso, S., Herrera-Viedma, E., Chiclana, F., Herrera, F.: Individual and social
strategies to deal with ignorance situations in multi-person decision making. Int.
J. Inf. Technol. Decis. Making 8(2), 313–333 (2009b)

5. Alonso, S., Herrera-Viedma, E., Chiclana, F., Herrera, F.: A web based consensus
support system for group decision making problems and incomplete preferences.
Inf. Sci. 180(23), 4477–4495 (2010)

6. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)
7. Bezdek, J., Spillman, B., Spillman, R.: A fuzzy relation space for group decision-

theory. Fuzzy Sets Syst. 1(4), 255–268 (1978)
8. Chiclana, F., Herrera-Viedma, E., Alonso, S., Herrera, F.: Cardinal consistency

of reciprocal preference relations: a characterization of multiplicative transitivity.
IEEE Trans. Fuzzy Syst. 17(1), 14–23 (2009)

9. Ebenbach, D.H., Moore, C.: Incomplete information, inferences, and individual dif-
ferences: the case of environmental judgments. Organ. Behav. Hum. Decis. Process.
81(1), 1–27 (2000)

10. Fedrizzi, M., Giove, S.: Incomplete pairwise comparison and consistency optimiza-
tion. Eur. J. Oper. Res. 183(1), 303–313 (2007)



Reciprocal Intuitionistic Preferences and Asymmetric Fuzzy Preferences 77

11. Fishburn, P.: Utility theory for decision making. Krieger, Melbourne (1979)
12. Genc, S., Boran, F.E., Akay, D., Xu, Z.: Interval multiplicative transitivity for con-

sistency, missing values and priority weights of interval fuzzy preference relations.
Inf. Sci. 180(24), 4877–4891 (2010)

13. Herrera-Viedma, E., Alonso, S., Chiclana, F., Herrera, F.: A consensus model for
group decision making with incomplete fuzzy preference relations. IEEE Trans.
Fuzzy Syst. 15(5), 863–877 (2007a)

14. Herrera-Viedma, E., Chiclana, F., Herrera, F., Alonso, S.: Group decision-making
model with incomplete fuzzy preference relations based on additive consistency.
IEEE Trans. Syst. Man Cybern. Part B Cybern. 37(1), 176–189 (2007b)

15. Herrera-Viedma, E., Herrera, F., Chiclana, F., Luque, M.: Some issues on consis-
tency of fuzzy preference relations. Eur. J. Oper. Res. 154(1), 98–109 (2004)

16. Lee, L.-W.: Group decision making with incomplete fuzzy preference relations
based on the additive consistency and the order consistency. Expert Syst. Appl.
39(14), 11666–11676 (2012)

17. Liu, X., Pan, Y., Xu, Y., Yu, S.: Least square completion and inconsistency
repair methods for additively consistent fuzzy preference relations. Fuzzy Sets Syst.
198(1), 1–19 (2012)

18. Luce, R.D., Suppes, P.: Preferences, utility and subject probability. In: Handbook
of Mathematical Psychology, New York, vol. 3 (1965)
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Abstract. Intelligent decision support should allow integrating human
knowledge with efficient algorithms for making interpretable and useful
recommendations on real world decision problems. Attitudes and prefer-
ences articulate and come together under a decision process that should
be explicitly modeled for understanding and solving the inherent con-
flict of decision making. Here, risk attitudes are represented by means of
fuzzy-linguistic structures, and an interactive methodology is proposed
for learning preferences from a group of decision makers (DMs). The
methodology is built on a multi-criteria framework allowing imprecise
observations/measurements, where DMs reveal their attitudes in linguis-
tic form and receive from the system their associated type, characterized
by a preference order of the alternatives, together with the amount of
consensus and dissention existing among the group. Following on the sys-
tem’s feedback, DMs can negotiate on a common attitude while searching
for a satisfactory decision.

Keywords: Interval mutlicriteria · Fuzzy-linguistic structures · Human-
system interaction · Consensus-dissention · Social decision making

1 Introduction

Uncertainty is naturally present in real-world decision problems. In fact, uncer-
tainty is always present in human evaluations, measurements and judgments,
which represent the available information that has to be dealt with for gaining
relevant knowledge and making decisions. Under this view, support is required to
give decision makers (DMs) useful and insightful feedback for arriving at satis-
factory solutions. Based on multi-criteria decision modeling (see e.g. [5,13,22]),
in particular the Weighted Overlap Dominance (WOD) procedure [13] which
deals with imprecise (interval) data problems, we address the specific chal-
lenge of handling risk decision attitudes for intelligent decision support (see e.g.
[6,10,16,27,28]).

The decision support system (DSS) process dynamics that will be examined
throughout this paper is illustrated in Fig. 1, being composed by three main
phases, namely INFO, WOD and IACT:

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-23240-9 7
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1. INFO. All the available information is introduced into the system, consisting
in a fixed set of alternatives, a given set of interval-valued criteria with their
respective weights, and the risk attitudes of DMs.

2. WOD. For every DM, alternatives are ordered according to their weighted
multi-dimensional interval scores, obtaining for every pair of alternatives
either a dominance/outranking or an indifference relation.

3. IACT. The system learns the type of every DM according to an associated
preference order, measuring the amount of consensus and dissention among
types, so DMs can negotiate/rectify their attitudes, restarting the process at
INFO while searching for a satisfactory/optimal solution. The process stops
when no further consensus can be reached.

INFO 

WOD 

IACT

Fig. 1. The DSS process dynamics

Focusing on WOD, it is stated that one alternative outranks/dominates
another one if there is sufficient evidence for affirming so, otherwise they are
considered to be indifferent [7,13]. Under this approach, the verification of suf-
ficient evidence is examined in relation to the risk attitude of the DM (as it will
be examined in detail in Sect. 4). Hence, the inherent conflict of the multicrite-
ria problem, associated to the incomparability [20] among alternatives, can be
explained by learning the different attitudinal types of DMs, like opposing pos-
tures (sources of disagreement) which have to come closer together for finding
a social decision. In this way, the objective of this paper is to establish a deci-
sion support methodology that builds useful and reliable knowledge from the
linguistic interaction with DMs, aiding their negotiation process while searching
for results with greater coherence among them, maximizing group consensus by
reducing (pairwise) minimal dissention among types.

In order to do so, this paper is organized as follows. Section 2 offers an outline
of the WOD inference process as it was originally presented in [13]. Section 3
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introduces fuzzy-lingustic structures, presenting the preliminary concepts that
are used in Sect. 4 for modeling risk attitudes. In Sect. 5 the methodology for
learning the types of DMs is explained, and in Sect. 6 the DSS human-system
interaction is summarized under Algorithm 3, producing decision support while
searching for an agreement on the social solution. Finally there are some notes
and comments concerning open problems for future research.

2 Inferring Preferences from Imprecise Data

The WOD procedure [13] allows coping with the natural imprecision of real
life observations and measurements, as given by interval values. This procedure
makes use of criteria weights and risk attitude parameters to make sense of the
interval data, identifying the preference relations holding among the alternatives.
In short, the WOD procedure consists in the following.

Consider a set of decision makers D, a set of alternatives N and a set of
criteria C, such that for every alternative a ∈ N and criterion i ∈ C there is a
lower and upper bounded valuation, respectively given by xL

ai, x
U
ai ∈ [0, 1], such

that xL
ai ≤ xU

ai, scoring alternatives according to the characteristic property of
the criterion. Every criterion has an associated weight expressing its relative
importance, given by wi ∈ R

+, and every decision maker e ∈ D has a subjective
decision attitude represented by parameters βe ∈ [0, 1] and γe ∈ R

+.
Therefore, for every alternative a ∈ N , the suitability of a regarding the set

of criteria C, |C| = m, is given by the multi-dimensional (hyper) cube,

ca =
[
xL

a1, x
U
a1

] × · · · × [
xL

am, xU
am

]
. (1)

Based on this information, a pairwise comparison process is developed among
alternatives a, b ∈ N , such that

∑m
i=1 wix

U
ai ≥ ∑m

i=1 wix
U
bi. According to the

amount of overlap between ca and cb, the WOD procedure infers the preference
relation holding among a and b. There are three kinds of overlap, namely no
overlap, partial overlap and complete overlap. In the case of no overlap, such
that

m∑

i=1

wix
L
ai >

m∑

i=1

wix
U
bi, (2)

it certainly holds that a dominates b, which is represented by the outranking
relation �, such that

a � b. (3)

On the other hand, if there is partial overlap, such that

m∑

i=1

wix
L
ai >

m∑

i=1

wix
L
bi (4)

and
m∑

i=1

wix
U
ai >

m∑

i=1

wix
U
bi, (5)
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then it holds that,
a � b ⇔ P (a, b) > β. (6)

Here P (a, b) expresses a proxy for the likelihood that alternative a in fact
dominates alternative b, due to the possibility that some point in (or randomly
taken from) ca can be greater than another point from cb (see [13] for a specific
example on how to estimate such proxy). This likelihood has to be higher than
β in order for a to outrank b. Otherwise, if

P ≤ β, (7)

then both alternatives are said to be indifferent, such that

a ∼ b. (8)

Lastly, if there is complete overlap, such that

m∑

i=1

wix
L
ai <

m∑

i=1

wix
L
bi (9)

and
m∑

i=1

wix
U
ai >

m∑

i=1

wix
U
bi, (10)

then it holds that,
a � b ⇔ G(a, b) > γ, (11)

where G(a, b) expresses the likelihood that any point belonging to ca is greater
than any other point in cb (see again [13] for more details). Hence, if G(a, b) is
greater than γ, it holds that a � b. Otherwise, it either holds that b � a or a ∼ b
if it is respectively verified that G(a, b) is less than or equal to γ.

Notice that the indifference relation of the WOD procedure, due to the inter-
val nature of data, does not hold as a transitive or equivalence relation. There-
fore, the outranking order assigned on N is semi-transitive, such that for every
a, b, c ∈ N it holds that a � b, b � c �⇒ c � a (see again [13] but also [7]).

Under this framework, the parameters β and γ denote risk thresholds for
establishing an outranking relation, such that their meaning is being modeled in
direct relation to a crisp number. On the other hand, acknowledging the general
character of words, concepts and perceptions, it is necessary to take a closer look
at the correspondence between DMs’ risk attitudes and their numerical transla-
tion/estimation. Thus, a given attitude should at least refer to a set of values,
which under an explicit semantic structure, allows incorporating the gradualness
and generality of its numerical estimation.

In order to undertake computations with attitudes under the DSS (see again
Fig. 1), the estimation of linguistic values for β and γ can be examined through
the computing with words and perceptions paradigm (see [30–32], but also
[18,23]). Thus, the following analysis is based on the intuition that language is
the means to represent the subjective thinking process and the relation between
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perception and reality, enhancing the interaction with technology and the affec-
tive (decision-wise) states of DMs.

The complete procedure for the articulation of binary preference relations is
specified under the WOD Algorithm 1. In the following section fuzzy-linguistic
structures are introduced, which will be later used for undertaking a linguistic
modelization of the attitudes explaining the β and γ parameters.

Algorithm 1. WOD algorithm
Input: For every a ∈ N and i ∈ C, the hyper cubes ca, the criteria weights wi and for
every e ∈ D, the risk attitude parameters βe and γe.
Output: For every e ∈ D, a preference order on N .
(WOD −1) For every a, b ∈ N , establish an outranking or indifference relation accord-
ing to (1)-(11).

3 Fuzzy-Linguistic Structures

Fuzzy logic [30,31] allows representing the meaning of words and concepts, exam-
ining human reasoning through natural/ordinary language. Under this approach,
commonly known as the Computing with Words paradigm [9,11,14,32], words
are taken as linguistic terms that are susceptible of being represented by fuzzy
sets. Thus, through their associated membership functions, the meaning of fuzzy
sets is supported by a particular structure maintaining a specific order among
them (see e.g. [6,17,18]). Such structure is here referred to as a fuzzy-linguistic
structure.

Addressing the general character of words, and in particular of gradable
predicates that are succeptible of verification up to a certain degree, fuzzy sets
are an appropriate tool for designing the means of such verification process. In
this way, a fuzzy set representing a linguistic term can be regarded as containing
a core and a support, such that its core is the subset of the universe U where
the term is known to hold true, while its co-support consists in the subset of U
where it is known that it does not hold true. Hence, there is a space in between
the core and the co-support that can be gradually filled in by a continuous and
monotone transition (in fact, the specific form of this transition is a matter of
design [24,25]), representing the intensity in which the elements of U verify the
meaning of the fuzzy set. Thus, the elements belonging to the core are considered
to have absolute intensity, while the ones belonging to the co-support have null
intensity.

For a general valuation scale L, the membership function μ : U → L can
be expressed as an ordered quadruple of the ordinates (μ1, μ2, μ3, μ4), such that
the interval [μ1, μ4] stands as the support and the interval [μ2, μ3] stands as the
core of the fuzzy set. So, for any pair of consecutive linguistic terms lt, lt+1 ∈ L,
respectively represented by μlt and μlt+1 , the order relation � is defined such
that μlt � μlt+1 holds only if μ3

lt
≤ μ1

lt+1
and μ4

lt
≤ μ2

lt+1
. Now, fuzzy-linguistic

structures can be defined as follows.
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Definition 1. Given a set of different and consecutive linguistic labels L =
{l1, l2, ..., lT }, where each label lt ∈ L, t = 1, 2, ..., T , is represented by means of
a fuzzy set with a membership function given by μlt = (μ1

lt
, μ2

lt
, μ3

lt
, μ4

lt
), a fuzzy-

linguistic structure is such that for any pair of consecutive labels lt, lt+1 ∈ L, it
holds that μlt � μlt+1 .

In this way, a fuzzy-linguistic structure contains the reference ordered set of
linguistic terms, such that l1 and lT are respectively the minimum and maxi-
mum objects of the structure. This approach can be further developed to handle
words in a manner that is more approximate to natural language and its use of
gradable predicates, taking into consideration linguistic modifiers and linguistic
aggregation operators, following the initial proposal of [18] (see also [6]).

Linguistic modifiers can be defined as unary functions M : L → L, such that
their effect on the meaning of the terms can be either compressing or expanding
[18]. A compressing M is such that for any lt ∈ L, it holds that M(lt) ⊂ lt, while
an expanding M is such that lt ⊂ M(lt). Some examples for compressing M can
be “very”-lt, “strictly”-lt or “strongly”-lt, while for an expanding M , they can
be “around”-lt, “almost”-lt or “roughly”-lt.

For example, given a linguistic term lt ∈ L represented by means of the
membership function μlt , and given an averaging operator k, a compressing M ,
denoted by CM , is such that

CM(μlt) = (k(μ1
lt , μ

2
lt), μ

2
lt , μ

3
lt , k(μ3

lt , μ
4
lt)), (12)

and an expanding M , denoted by EM , is such that

EM(μlt) = (μ1
lt , k(μ1

lt , μ
2
lt), k(μ2

lt , μ
3
lt), μ

4
lt). (13)

On the other hand, linguistic aggregation operators allow using the existing
linguistic labels to generate new labels, such that new terms can appear in
between any pair of consecutive terms, while maintaining the order among the
linguistic components of the structure [6,18]. In this way, a new term can arise
in between any pair lt, lt+1 ∈ L, by means of an operator specifically designed
for the inclusion of new linguistic labels.

Definition 2. Given a fuzzy-linguistic structure, the in between linguistic aggre-
gation operator is a mapping LA : L2 → L such that for any pair of
consecutive terms lt, lt+1 ∈ L and their associated fuzzy sets, it holds that
CM(μlt) � LA(μlt , μlt+1) � CM(μlt+1).

In this way, given two averaging operators k1, k2, such that for any pair of
elements u1, u2 ∈ U it holds that k1(u1, u2) ≤ k2(u1, u2), LA can be taken as in
the following example, previously undertaking the compression of the consecutive
terms, as in νlt = CM(μlt) and νlt+1 = CM(μlt+1),

LA(lt, lt+1) = (ν3
lt , k1(ν

3
lt , ν

2
lt+1

), k2(ν3
lt , ν

2
lt+1

), ν2
lt+1

). (14)

Under the general framework of fuzzy-linguistic structures, the design of dif-
ferent examples for M and LA can be further developed, including more lin-
guistic terms and modifiers that preserve the order relation among every pair
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lt, lt+1 ∈ L,while enhancing the granularity of L as much as required (see [6,18]).
Its application for the representation and measurement of risk attitudes will be
explored next.

4 Measuring Risk Attitudes with Fuzzy Linguistic
Structures

Based on fuzzy-linguistic structures, the β and γ risk attitudes can be modelized
and incorporated in the articulation of preferences under the WOD interactive
decision process. The incorporation of attitudes is particularly relevant for deci-
sion support under imprecision, where attitudes play a central role (see e.g.
[28,29], but also [7]). In this sense, examining the meaning of risk as a concept
which is used by DMs, the attitude towards risk can be measured on a linguis-
tic scale built from the two opposite categories of aversion and proneness (see
[1,15,19] for a general view on the evaluation of attitudes under different bipolar
evaluation spaces).

As it has been examined in Sect. 2 and the DSS process dynamics of Fig. 1,
attitudes guide the articulation of preferences through the interaction between
the system and the group of DMs. In particular, attitudes towards risk refer to
the amount of evidence needed to affirm an outranking relation for every pair
a, b ∈ N , such that a � b (�), instead of having that a ∼ b (∼) or even that b � a
(�−1), the latter only for the case of complete overlap and the parameter γ.

Therefore, high values of β correspond with a low risk attitude, because an
outranking relation will only hold if there is a high amount of evidence existing
in favor of �. In this way, β is defined over a scale with minimum element 0,
denoting high risk, and a maximum element K = 1, denoting low risk, with
an indeterminate space of medium risk consisting of being in between high and
low risk attitudes (see Fig. 2). So, if β is close to 0, the attitude towards risk
is considered to be of risk proneness, and if β is close to 1, then the attitude
is considered to be of risk aversion, being the middle attitude regarded as risk
neutrality. Notice that here neutrality refers to a middle attitude (as in [8,19]),
although a linearity between extreme and neutral attitudes may not necessarily
hold (see e.g. [15,17]).

On the other hand, on the contrary to the partial overlap case of β, γ refers to
the three possibilities of obtaining �, ∼ or the inverse relation �−1, where every
time that � does not hold, it reciprocally holds that �−1, such that �= 〈�,∼〉.
Hence, γ is measured over a scale with a minimum element 0, denoting high
risk for affirming � (or inversely, low risk for affirming �−1), and a maximum
element K ∈ R

+, denoting low risk for affirming � (or inversely, high risk for
affirming �−1). Thus, there is some space for a medium state of risk consisting of
being in between high and low risk attitudes (see again Fig. 2), where low values
of γ denote a risk prone attitude, high values denote a risk averse attitude, and
intemediate values denote a risk neutral attitude.

Overall, the risk attitude parameters β and γ refer to the measurement of
attitudes with respect to three basic components, namely proneness, neutrality
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High      Low

0 K 

Fig. 2. Measuring risk attitudes for affirming � on a commonl linear scale for β and γ

and aversion, ordered according to a specific structure that holds among them.
Acknowledging the general character of words, those terms naturally refer to a
region or interval of the numerical scale, suggesting their correspondence with a
set of numbers instead of a correspondence with a unique number. Even more,
adjacent terms suggest a gradual intersection between them, where e.g. dimin-
ishing intensities of risk proneness may coincide with increasing intensities of
risk neutrality.

In consequence, a risk attitude R can be measured with respect to a basic
fuzzy-linguistic structure LR, composed of at least the two opposite and most
extreme linguistic labels (l1, lT ) of proneness (l1) and aversion (lT ), such that,

LR = {l1 = prone, lT = averse}. (15)

Based on this basic structure, the meaning of the terms can be modified,
where it is possible for the decision maker to express linguistic grades of risk by
attaching different words to the terms, such as “very”or “strictly” in the case
of the compressing modifiers CM , or of “roughly”or “around” in the case of
expanding EM . Besides, with the use of aggregation operators, such as the in
between operator LA, new terms can emerge from any pair of consecutive terms,
enabling the decision maker to create and use a new term for valuing attitudes.
For example, the first new term consists in being neither “prone”nor “averse”,
but “in between”them, denoting the state of l2 =risk neutrality (see Fig. 3, where
the opposite terms l1 and lT compress, making room for l2). Following the same
line of reasoning, the decision maker can be as specific as required, e.g. being
“in between neutral and prone” or “roughly strongly-averse”.

As a result, the attitude towards risk for DMs can be expressed by some (M
or LA) modifed term in LR, assigning linguistic values for computing with β
and γ parameters. In this way, for every ordinate of the fuzzy set representing a
given attitude, the WOD phase infers an order, so in the next phase the different
types of DMs can be identified, as it will be examined in the next section.

5 Learning Types for Decision Support

Following the decision process, the system computes a preference order for every
DM according to their attitudes. As it has been pointed out in Sect. 2, the
outranking order resulting from Algorithm 1 is a semi-transitive one, such that
a definite procedure can be used to further refine it and learn a weak order or
ranking.
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Fig. 3. Emergence of the middle term denoting a “neutral” attitude

Alternatives are ranked according to their relevance [7], taking into account
the amount and the importance of the alternatives that they outrank. In this
way, for every alternative a ∈ N , the relevance of a is given by σ(a), such that,

σ(a) = sa +
∑

∀b∈Sa

sb, (16)

where Sa is the set of alternatives that are dominated/outranked by a, and
sa = |Sa|.

The procedure for learning types of DMs is summarized under Algorithm 2.
First, for every DM e ∈ D, there is a linguistic term denoting e’s attitude, given
by let ∈ LR. The system then computes an (outranking semi-transitive) order
on N , resulting from the WOD evaluation of every ordinate of the membership
function representing let . All four ordinates are then aggregated into an overall
ranking by means of (16). Having identified all the rankings that follow from the
information given by DMs, the system returns the set of types Θ explaining the
different attitudes.

Thus, different attitudes can obtain the same characteristic order, implying
that the type of a DM can be completely described by a unique order and all the
attitudes associated to it.

Algorithm 2. Learning Types (LT) algorithm
Input: For every e ∈ DM , the linguistic value let denoting their risk attitude.
Output: The set of types Θ.
(LT − 1) Compute the WOD algorithm (1) for every ordinate of μlt .
(LT − 2) Aggregate the outranking orders associated to let by means of the relevance
ranking operator (16).
(LT − 3) Assign to every non-equivalent ranking a distinct type q ∈ Θ.

Therefore, types q ∈ Θ are completely described by a ranking ρq of N and
their associated risk attitudes {lt}ρq . Once the types of DMs are known, the
system can offer support for resolving conflict among them, aiming at reducing
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the number of incomparable alternatives as it will be explained in the next
section. The goal of the system focuses on using the linguistic interaction with
and within DMs for maximizing consensus and arriving at a social satisfactory
solution.

6 Intelligent Decision Support

The interactive human-system dynamics of Fig. 1 can now be addressed under
the setting described by Algorithm 2, such that the decision process is guided
towards reducing discrepancies among DMs. The system aids in identifying the
predominant types and suggesting negotiation paths to arrive at an agreement
or socially acceptable solution maximizing consensus.

Given the set of types θ, the group consensus is measured by the general
consensus index CI = 1/|Θ|. Complementing the information on consensus,
dissention degrees are introduced here to measure the distances among pairs of
types.

In this way, for every a ∈ N and q, q′ ∈ Θ, the system computes the position
of a in rankings ρq and ρq′

, denoted respectively by ρq
a and ρq′

a , and obtains the
overall dissention degree ds(q, q′), such that,

ds(q, q′) =
∑

∀a∈N

dist(ρq
a, ρq′

a ), (17)

where dist represents a given distance measure (see e.g. [2]), like e.g. the 1-norm
distance,

dist(ρq
a, ρq′

a ) = |ρq
a − ρq′

a |. (18)

The decision process aims at maximizing consensus (see Algorithm 3), based
on the previous calculation of dissention degrees among all the different pairs of
types. Thus, the system identifies all pairs q, q′ ∈ Θ with minimal dissention, so
DMs can look for an agreement among the nearest types, negotiating a common
attitude that increases the general consensus index CI. In consequence, under
the complete DSS process dynamics, attitudes not only guide the articulation of
preferences through the interaction between the system and the group of DMs,
but also (and under the same linguistic form) guide the negotiation among the
different DMs.

Algorithm 3. Minimal dissention (MD) algorithm
Input: For every e ∈ D, the risk attitudes associated to e.
Output: All pairs q, q′ ∈ Θ with minimal dissention.
(MD−1) For every e ∈ D, learn the type for e according to the LT-algorithm, identify
the pairs q, q′ ∈ Θ with minimal dissention and repeat for every new input until
CI = 1 or no further negotiation is possible (CI remains constant for a fixed number
of iterations).
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7 Conclusions

A DSS methodology has been provided with the purpose of aiding the consen-
sus/negotiation process between different DMs. The system infers individuals’
preferences from their attitudes towards risk, learns the predominant types of
DMs and measures the dissention and consensus among them. DMs can use the
knowledge generated by the system to search for a satisfactory decision or iden-
tify the source of the conflict making it impossible to arrive at a unique (optimal)
social solution.

It remains for further research to test and implement the DSS dynamic
process in a real-case scenario, exploring the difficulties that may emerge in
a real negotiation process. From a theoretical standpoint, the estimation for the
likelihood of dominance between intervals/hypercubes remains to be explored in
more detail, as well as the ranking and consensus procedures, which should be
compared with other techniqes found in literature (see e.g. [3,4,12,21,26]).
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Abstract. In many decision processes data aggregation is required. In
many models the need arises to aggregate data of varying dimension while
aggregation operators are considered for a fixed number of arguments.
In many contexts inputs to be aggregated are of a qualitative nature.
This paper analyzes the evaluation of sequences of ordinal input and
of variable length. We consider various axioms against which different
ranking methods can be compared.

Keywords: Preference structure · Archimedean preference · Average
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1 Introduction

Aggregation operators are mathematical functions that are used to fuse infor-
mation of several inputs in a single outcome which is a very common need in
particular in the area of artificial intelligence for decision making(see [12] for a
general background on aggregation theory). Real-valued non-additive measures
and their associated integrals are widely used aggregation operators. There are
many situations where inputs to be aggregated are qualitative and numerical
values are used by convenience. The aim of this paper is to generalize some
well known aggregation functionals in a purely ordinal context. In this case only
maximum and minimum are used for aggregation of different inputs.

Moreover in many cases aggregation operators are considered for a fixed
number of arguments that is too restrictive in many important models (see
examples in Sect. 2). In [5–7] and [11] are investigated extended aggregation
operators satisfying a property called arity-monotonicity and a similar approach
is considered in [4].

Let us consider a non empty set X and a relation > on X expressing a cardinal
or ordinal evaluation. We use a linear scale with a neutral point with“good”
values above and “bad” values below. We address the problem of representability
of orders defined in a infinite dimensional subset of X . The most classical
representation is the numerical representability through real-valued functions,
but we propose a general model that consider elements with different priority and
so we do not assume an Archimedean axiom. We study an additive representation
of a general preference structure without assuming an Archimedean property.
c© Springer International Publishing Switzerland 2015
V. Torra and Y. Narakawa (Eds.): MDAI 2015, LNAI 9321, pp. 90–99, 2015.
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This property is necessary for a real valued representations but in many cases
it is not empirically clear. The use of non-real representation is a strength of
a model. Considering evaluation of scientific research, in many case it can be
assumed that it is not possible to compensate an high level research product
with some low level research products (e.g. a monograph with some papers).
A research product can be evaluated by some citation indices, by considering
different bibliometric database (ISI, Scopus or Google Scholar) but we have to
consider also different evaluations practices. In a more general approach when
we consider humanities and social science we have to evaluate different kind of
products like monographs, edited volumes, chapters and translations.

In this paper we focus our attention on additive preference structure and
we study step-based structure generalizing the approach in [8]. The paper will
be set out as follows. In Sect. 2 we briefly mention some basic concepts, we
provide the necessary definitions and we introduce some examples. Sect. 3 for-
mulate our characterization of additive symmetric preference structure while
Sect. 4 is devoted to step-based symmetric preference structures that are prefer-
ence structures represented by an order weighted maximum while in Sect. 5 we
briefly discuss possible directions for future work.

2 Notations and Settings

In this section we give some basic notations and terminology and we introduce
our evaluation model from an axiomatic point of view. Some interpretations of
our model are presented.

2.1 Definitions

First we recall some definitions. N is the set of positive integers. A weak order �
on an non-empty set A is a transitive and complete binary relation on A. A total
order (also called linear order) is an antisymmetric weak order. The notations
�,�,≺,∼ are as usual. So �,∼ stand for the asymmetric and the symmetric
parts of �, respectively, i.e.,

a � b if and only if not (b � a), a ∼ b if and only if (a � b and b � a)

where a, b are elements of A. We assume that (X,>) is a bipolar scale that
is a totally ordered set with a prescribed element O separating the positive
evaluations x > O from the negative evaluation x < O. The non empty set X
can be finite or infinite. The most obvious example of a bipolar scale is the real
line and the most simple example is the set I = {−,O,+}.

For every n ∈ N we consider the set Xn and we define X =
⋃

n∈ Xn. Then
X is the set of finite sequences of any length.

If x = (x1, . . . , xn) ∈ Xn and y = (y1, . . . , ym) ∈ Xm the concatenation (x, y)
denotes (x, y) = (x1, . . . , xn, y1, . . . , ym). Moreover 1x = x and 2x = (x, x) and
nx = (x, (n − 1)x). We identify elements in X with corresponding sequences of
length 1.
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The main goal of this paper is to study weak order on the space X.
Let � be a weak order on X where the statement a � b is interpreted as meaning
that a is at least as good as b. We assume that � is increasing i.e. such that

if x, y ∈ Xn, xi ≥ yi for every i, 1 ≤ i ≤ n then x � y.

Moreover we suppose that � is symmetric weak order on X where symmetry
holds if

(x1, . . . , xn) ∼ (xπ(1), . . . , xπ(n))

for every permutation π of N = {1, . . . , n}.
A symmetric preference structure is a triple (X, >,�) with the properties

considered above.

2.2 Examples

We briefly apply the considered model to different fields.

(i) Social Choice. We consider social decisions where different individuals eval-
uate alternatives rather than rank them as in the Arrovian framework.

We are interested in different evaluating situations in which the set
of voters as well as the the set of alternatives might vary. We consider
N = {1, . . . , n} voters that are allowed to express their opinion on the can-
didates, social alternatives or proposals by assigning to each alternative an
element of the set X. Voters can assign negative and positive evaluations to
candidates and we can consider numerical evaluations, ordinal evaluations
and also the case in which a voter can approve, disapprove or being neutral
with respect to an alternative if for example X = {−,O,+}. As a result
every alternative is characterized by an element x ∈ X and we have to rank
any pair of alternatives according to their label vectors. In this case sym-
metry is often called anonymity and so we assume that every individual is
endowed with the same voting power as it is used in usual voting proce-
dures. It is important to note that in our framework when X is different
from {−,O,+} voters are able to express intensity of their preference.

(ii) Measurement of Quality. When we consider measurement of quality in par-
ticular perceived quality data are often only available at an ordinal level.
University students can be viewed as “experts” evaluating university courses
giving information about the quality of the didactics. In this case the set
N = {1, . . . , n} represents a set of of individuals, X is the set of evaluations
and the collective evaluation of course is represented by an element x ∈ X.

(iii) Research Evaluation. Two factors mainly characterize the scientific produc-
tion of a research unit (not only a individual author but also as a journal or
a university department ): the number of scientific papers and the impact
or the importance of the considered papers. Different metrics can be intro-
duced for evaluating the quality of a research product. The citation count
is often considered the prevalent measure of research quality, but the mean-
ing of citations can be ambiguous, thus citation-based statistics are not as
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objective as sometimes affirmed. At present, there are a huge number of
indexes that have been proposed to evaluate scientists’ research output and
many of them are based also on citation statistics.

These research metrics in some cases are ambiguous also because a paper
may be cited for positive or negative reasons. In a more general approach
we can evaluate a paper with a negative or positive label and then a scholar
with n papers can be represented by a vector (x1, . . . , xn) where xi is the
evaluation of the i-th paper. The symmetry property implies that the impact
or the importance of a publication is independent on the impact of the pre-
ceding publications and so there is no reputation effect.

(iv) Risk Measurement. During the last decades the field of risk measurement
has become of great importance to the finance and insurance management
and, at the same time, it leads to interesting mathematical problems.

Risk measures constitute an important and widely studied tool and dif-
ferent families of risk measures have been proposed in the literature.

The paper that lays the foundations of the axiomatic approach in defining
a risk measure is [2]. In 2007 Heyde et al. [13] introduced the natural risk
statistics that are risk measures depending on data (se also [1]). The natural
risk statistics are associated with a finite sample and satisfy a more general
subadditivity assumption then that of classical coherent risk measures, and
are robust, thus particularly suitable for external risk measurement. We
assume that the behavior of a random loss is represented by a collection
of data observation x = (x1, x2, . . . , xn) ∈ Rn (could be empirical or sub-
jective or both). In this case obviously X = R and also in that case we
have positive and negative elements in X. A risk statistics ρ is a mapping
from the data in Rn to a numerical value in R. One drawback of these risk
measures is their dependence on the space dimension n. It is important to
construct natural risk statistics defined for data samples of all sizes. In [3]
it is introduced a class of data-based risk measures on the space of infi-
nite sequences. However when data are available only at an ordinal scale,
as is common for non financial companies, a quantitative approach is not
possible.

2.3 Representation of a Symmetric Preference Structure

If (X,�) and (Y,�) are weak orders we say that (X,�) is representable in (Y,�)
if there exists a map f : X → Y such that f(x) � f(x′) if and only if x � x′.

Traditionally the literature on (utility) representations deals with real -valued
functions. It is also well known that a real representations impose restrictive
conditions on the weak order and that there are many contexts in which such
conditions are not satisfied (see for example [14]).

The interest for alternative representations is witnessed by the fact that in
modeling multidimensional preferences lexicographic structure arise quite natu-
rally. In this paper utility functions with values in a ordered Abelian group that
is a triple (G,+, >) where G is a set , + is a commutative group operation with
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neutral element 0 and > is a total order compatible with group operation i.e.
such that if a, b are elements of G and a > 0 then a + b > b.

An Abelian group G is Archimedean if for a, b ∈ G with a > 0 there exists
r ∈ N such that ra ≥ b.

3 Additive Representation of Independent Symmetric
Preference Structure

We formalize some axioms that are sufficient for the construction of an additive
representation of our preference structure.

We consider the independence axiom defined by

if x ∈ Xn, y ∈ Xm, a ∈ X, then x � y if and only if (a, x) � (a, y).

The axiom of independence considers also elements of different length. In our
model an independence condition implies that inserting an extra common coor-
dinate at any place does not change preference. Obviously we can insert any
number of common coordinates by repeated application.

Independence axioms are undoubtedly strong assumptions but in many con-
texts are seen as essential conditions. In the framework of research evaluation
independence means that if two authors share the same paper then their relative
position does not depend on the impact or the importance of the common paper.

We can note that many bibliometric indeces as the well-known h-index ([15],
[18])do not satisfy independence.

The following result provides necessary and sufficient conditions for a additive
representation of a preference structure on a Abelian ordered group.

Proposition 1. A symmetric preference structure (X, >,�) satisfies indepen-
dence axiom if and only if there exists an ordered abelian group (G,+, >) and
an increasing function f : X → G with f(O) = 0 such that if x ∈ Xn, y ∈ Xm

then

x � y if and only if
n∑

i=1

f(xi) ≥
m∑

i=1

f(yi).

Proof. It is easy to note that an additive weak order defined by a function
f : X → G where (G,+, >) is an ordered Abelian group defines a symmetric
preference structure that satisfies independence axiom.

We prove the reverse implication by considering the proof of Theorem 1 of
[17]. We assume that I = N and we identify the elements of Xn ⊆ X with
elements of X with infinite O-components with xi = O for every i > n. So the
weak order in X can be extended to a strictly finitary transitive binary relation
� in X . The relation � satisfy the assumptions of Theorem 1 in [17]. As in the
proof of Theorem 1 in [17] we define a representation function with values in a
free Abelian group by defining element o in [17] by o = O.
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If we refer to the components of a linearly ordered Abelian group
Proposition 1 proves that any preference structure is based on classes of merit
and that the classes are lexicographically ordered. Moreover in our general model
we can consider the possibility of infinite or infinitesimal differences between the
elements in X. We assume that there are elements with different priority and
that many elements with lower priority cannot compensate an element with
higher priority. Archimedean axioms are necessary whenever one want to obtain
a numerical representation.

Let us say that a symmetric preference structure (X, >,�) is Archimedean

if for every x ∈ Xn, x � O and y ∈ Xm there exists r ∈ N such that rx � y.

Proposition 2. A symmetric preference structure (X, >,�) is Archimedean
and satisfy independence axiom if and only if there exists an increasing func-
tion f : X → R with f(O) = 0 and such that if x ∈ Xn, y ∈ Xm then

x � y if and only if
n∑

i=1

f(xi) ≥
m∑

i=1

f(yi).

Proof. If there exists a real-valued representation function for a symmetric pre-
ference structure (X, >,�) it is straightforward to prove that (X, >,�) is an
Archimedean structure.

Conversely let (X, >,�) be a symmetric preference structure that satisfy
independence and Archimedean axioms. By Proposition 1 there exists an ordered
Abelian group (G,+, >) and an increasing function f : X → G with f(O) = 0
and such that if x ∈ Xn, y ∈ Xm then x � y if and only if

∑n
i=1 f(xi) ≥∑m

i=1 f(yi). By the proof of Theorem 1 of [17] the range f(X) is a subgroup of
the group G. If a, b ∈ f(X) wih a > 0 then a =

∑n
i=1 f(xi) and b =

∑m
i=1 u(yi).

Let x = (x1, . . . , xn) and y = (y1, . . . , ym). By Archimedean property of X there
exists r ∈ N such that rx � y since x > O and so it is easy to prove that ra � b.
We note also that by Hölder’s theorem every Archimedean totally ordered group
is order-isomorphic to a subgroup of the additive group of real numbers with the
natural order and then we can assume that the function f is real-valued.

Now we consider average utility as in [16] that is characterized by the following
axioms of weak separability, weak archimedeaness and replication equivalence.
The weak separability axiom is satisfied when

if x, y ∈ Xn, a ∈ X, then x � y if and only if (a, x) � (a, y),

while the weak Archimedean axiom holds when

if x, y ∈ Xn, v, w ∈ Xm, x � y there exists r ∈ N such that (rx, v) � (ry, w).

The replication equivalence axiom holds

if for every x ∈ X n ∈ N x ∼ nx.

The next proposition [16] characterizes average utility.
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Proposition 3. A symmetric preference structure (X, >,�) is Archimedean
and satisfy weak independence axiom, weak Archimedeaness and replication equi-
valence axiom if and only if there exists an increasing function f : X → R with
f(O) = 0 and such that if x ∈ Xn, y ∈ Xm then

x � y if and only if
∑n

i=1 f(xi)
n

≥
∑m

i=1 f(xi)
m

.

Proof. We refer to the proof of Theorem 7 in [16] where the element O plays the
role of neutral element for concatenation operation. Our weak Archimedeaness
is Archimedean axiom in [16] while our weak independence is joint independence
in [16] .

4 Step-Based Preference Structure

In [8] Chambers and Miller introduced from an axiomatic point of view a class of
measures of scholarly influence that they called step-based indices. The axioms
that characterize this class are satisfied by the h-index and also by some other
natural indices such as the maximum-index, the i10-index and the publication
count. These axioms are defined by lattice operations and are linked to maxitive
and minitive properties in Aggregation Theory(see [9] and [10]). We generalize
the approach in [8] considering evaluation in a totally ordered set and charac-
terizing our step-based ordinal structure by weaker axioms.

Throughout this section we consider only positive evaluations and so we have
that x ≥ O for every x ∈ X. We assume also that an element x ∈ Xn is equiva-
lent to an element x ∈ Xm, m > n with m − n O - elements.

For x = (x1, . . . , xn) ∈ Xn and y ∈ X we write

x/i y = (x1, . . . , xi−1, y, xi+1, . . . , xn)

and we say that a symmetric preference structure (X, >,�) is size-bounded if
for every n ∈ N there exists un ∈ N such that

x/i y = (x1, . . . , xi−1, un, xi+1, . . . , xn) � x

for very 1 ≤ i ≤ n. Then for every x ∈ Xn we have nun � x.
If x = (x1, . . . , xn) ∈ Xn we denote by (·) a permutation on N = {1, . . . , n}

which arranges the elements of the vector by increasing values that is x(1) ≥
x(2) ≥, . . . ,≥ x(n) and if x, y ∈ Xn we define

x ∨s y = (x(1) ∨ y(1), . . . , x(n) ∨ y(n)), x ∧s y = (x(1) ∧ y(1), . . . , x(n) ∧ y(n))

A preference structure (X, >,�) satisfy S-maxitivity(symmetric maxitivity)
axiom

if x, y ∈ Xn and x � y then x ∨s y ∼ x

and satisfy the S-minitivity (simmetric minitivity) axiom

if x, y ∈ Xn and x � y then x ∧s y ∼ y.
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The following result characterizes our ordinal step-based symmetric preference
structures.

Proposition 4. Let (X, >,�) be a symmetric and size-bounded preference
structure that satisfies S-maxitivity and S-minitivity axioms. Then there exists
a totally ordered set (Q,>), a sequence of functions fi : X → Q and a sequence
wi in Q such that if x ∈ Xn, y ∈ Xm then

x � y if and only if
∨

1≤i≤n

fi(x(i)) ∧ wi ≥
∨

1≤i≤m

fi(y(i)) ∧ wi

Proof. Since (X,�) is linearly ordered we can consider the set of equivalence
class X/ ∼ that can be bijectively mapped in a qualitative scale (Q,>).

Let fi(x) the equivalence class of ix for every x ∈ X and wi the equivalence
class of iui. It is important to note that the equivalence class fi(x) does not
depend on n if we consider the element ix as an element of Xn with n − iO -
components. The same remark is applicable also for wi. We consider an element
x ∈ Xn and we assume that x(1) > x(2) > . . . > x(n) since the proof in the
general case is similar. We can prove that

x =
∨

1≤i≤n

ix(i) ∧ iui

where (iui, 0, . . . , 0) is an element of Xn . The equivalence class of ix(i) is fi(x(i))
by definition while the equivalence class of (iui, 0, . . . , 0) is wi so by S-minitivity
the equivalence class of ix(i) ∧ iui is fn(x(i)) ∧ wi. Moreover by S-maxitivity the
equivalence class of the element x is

∨

1≤i≤n

fn(x(i)) ∧ wi.

We have introduced and characterized ordered weighted maximum aggrega-
tion operators in our framework . As in the well-known case of the h-index (see
[18]) the considered preference structure is one for which there is an increasing
set of steps and the evaluations is determined by the best step that an element
x achieves. that is the value n for which is assumed the maximum value. If the
maximum value is fn(x(n)) ∧ wn the element x ∈ Xn reaches the first step , if
the maximum value is fn−1(x(n−1)) ∧ wn−1 the element x ∈ Xn achieves the
second step and so on.

5 Concluding Remarks

We have defined and axiomatically characterized preference relations on
sequences of variable length. We consider positive and negative scores and we
do not consider only real-valued representation as is usually done.

Then we do not assume an Archimedean axiom and we consider an ordinal
context. A symmetry property characterizes our preference relations and in our
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framework we study compensative and non-compensative aggregation operators.
This paper has tried to point out some potential application fields for our classes
of aggregation operators.

An obvious topic for future research is to analyze other functionals for
sequences of variable length. Moreover sometimes we need to evaluate objects
with a scale that is not totally ordered and then we have to consider also the
case of sequences with values in a complete lattice.
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Abstract. k-means clustering (KM) algorithm, also called hard c-means
clustering (HCM) algorithm, is a very powerful clustering algorithm
[1,2], but it has a serious problem of strong initial value dependence.
To decrease the dependence, Arthur and Vassilvitskii proposed an algo-
rithm of k-means++ clustering (KM++) algorithm on 2007 [3]. By the
way, there are many case that each object is allocated on an unit sphere,
e.g. text clustering. Dhillon and Modha proposed the primitive spher-
ical k-means clustering algorithm to classify such objects on 2007 [4]
and Honik, Kober, and Buchta proposed new spherical k-means cluster-
ing (SKM) algorithm on 2012 [5]. However, both of the algorithms also
have the same problem of initial value dependence as KM. Therefore,
the paper discuss the following points: (1) the dissimilarity of SKM is
extended to satisfy the triangle inequality, and (2) spherical k-means++
clustering (SKM++) algorithm which works well for the problem is pro-
posed. The paper shows that the effectiveness of SKM++ is theoretically
guaranteed.

1 Introduction

Recently, information from large-scaled social data sets has great effect on many
aspects of society. We can mention recommendation systems as an example.
When a person uses online markets, the recommendation system estimates com-
modities that he prefers from his purchase history and show the commodities on
the display.

Some data mining tools to retrieve useful information from such social data
sets play very important role in such systems. One of the most representative tool
is spherical k-means clustering (SKM) algorithm by Honik, Kober, and Buchta
on 2012 [5] based on k-means clustering (KM) [1,2] and the primitive spherical
k-means clustering [4]. The cosine correlation is used as the dissimilarity between
each datum and the cluster center in the SKM algorithm. Therefore it can be
considered that all data are on the unit sphere, that is, the norm of the data
handled by the algorithm is normalized to one. It is sufficient because many
data in the social data sets are normalized when we retrieve useful information
from the social data set. The SKM algorithm is very useful and it implemented
on some powerful software, e.g. R of a free software environment for statistical
computing and graphics.

c© Springer International Publishing Switzerland 2015
V. Torra and Y. Narakawa (Eds.): MDAI 2015, LNAI 9321, pp. 103–114, 2015.
DOI: 10.1007/978-3-319-23240-9 9
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However, both of SKM and the primitive spherical k-means clustering have
a serious problem, that is, strong initial value dependence (i.v.d.). Therefore,
this paper shows an algorithm which works well for the i.v.d. problem, called
spherical k-means++ clustering (SKM++) algorithm. This work is inspired by k-
means++ clustering (KM++) algorithm by Arthur and Vassilvitskii on 2007 [3].

First, we extend the dissimilarity between data in SKM to satisfy the triangle
inequality. Second, clustering results by the SKM with the extended dissimilarity
is equivalent to the original SKM. This fact is necessary to construct SKM++.
Third, we show a way to select initial values in the clustering process, and prove
that the way decreases the i.v.d. of SKM. Forth, we show that i.v.d. of SKM++
is theoretically estimated as a half of KM++.

2 Preparation

Let n be the number of object and x ∈ �p be each object. Without loss of
generality, we can assume that ‖x‖ = 1 to simplify the discussion. X = {x}
means a set of objects. Let c, v ∈ �p, and V be the number of clusters, a cluster
center, and a set of cluster centers, respectively. Cv = {arg minx d(x, v) | x ∈ X}
means a cluster with a cluster center v. Moreover, let Ci (i = 1, . . . , c), vi ∈ �p,
and V ∗ = {vi ∈ �p} be the i-th optimal cluster, a center of Ci (the optimal
solution), and a set of vi (a set of optimal solutions).

2.1 Spherical k-Means Clustering

Spherical k-means clustering (SKM) is a very useful tool to classify the data
whose norms are normalized as one. In this case, all data are allocated on the
unit sphere. One of the most representative example is text mining. Now text
mining is paid a lot of attention as an important methodology to analyze online
data, e.g. social network service (SNS). Therefore, It is no exaggeration to say
that SKM is more important than k-means clustering (KM).

SKM algorithm is constructed to minimize the following objective function:

JSKM(V ) =
∑

v∈V

∑

x∈Cv

d1(x, v).

(d1(x, v) = 1 − 〈x, v〉)

Minimization of JSKM(V ) is equivalent to maximization of
∑

v∈V

∑
x∈Cv 〈x, v〉

from

JSKM(V ) =
∑

v∈V

∑

x∈Cv

d1(x, v) =
∑

v∈V

∑

x∈Cv

(1 − 〈x, v〉) = |X| −
∑

v∈V

∑

x∈Cv

〈x, v〉.
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Algorithm 1. Spherical k-Means Clustering (SKM)

SKM1. Give the initial value of V .
SKM2. Allocate each x ∈ X to a cluster C whose cluster center v is closest to x than

other cluster centers as follows:

Cv = {x | d1(x, v) = d1(x, V ), v ∈ V }.
SKM3. Update each cluster center v as follows:

v = mean(Cv) =

∑
x∈Cv x

‖∑x∈Cv x‖ .

The operator is called Fischer mean.
SKM4 If a given stop criterion satisfies, finish the algorithm. Otherwise, go back to

SKM2.

3 Extension of Dissimilarity in SKM

We call an algorithm α-SKM in which the dissimilarity d1 of SKM is extended
as follows:

d(x, v) = α − 〈x, v〉. (α ≥ 1)

That is, α-SKM is the algorithm using d instead of d1 and d1 is a special case
of d. The objective function is as follows:

J(V ) =
∑

v∈V

∑

x∈Cv

d(x, v) = |X|α −
∑

v∈V

∑

x∈Cv

〈x, v〉.

Minimization of Jα-SKM(V ) is equivalent to maximization of
∑

v∈V

∑
x∈Cv 〈x, v〉,

and finally, α-SKM is equivalent to SKM. Therefore, the α-SKM algorithm is
the same as SKM and the following discussion for α-SKM can be applicable to
SKM.

At a glance, it looks like the extension is meaningless. However, Lemma 1
shows that d satisfies the triangle inequality when α ≥ 3/2, and the fact plays
very important role for considering SKM++.

Lemma 1. d satisfies the triangle inequality when α ≥ 3/2.

Proof. Let a, b, and c (0 ≤ a, b, c < π) be angles between x and y, y and z, and
x and z, respectively. Then we get

d(x, z) ≤ d(x, y) + d(y, z) ⇔ α − 〈x, z〉 ≤ α − 〈x, y〉 + α − 〈y, z〉
⇔ 〈x, y〉 + 〈y, z〉 − 〈x, z〉 ≤ α

⇔ cos(a) + cos(b) − cos(c) ≤ α.



106 Y. Endo and S. Miyamoto

x, y, and z are all on the unit sphere so that a, b, and c satisfy the triangle
inequality, that is, a + b ≥ c. Thus this problem is rewritten as following an
optimization problem:

maximize cos(a) + cos(b) − cos(c),
subject to 0 ≤ a, b, c < π, c ≤ a + b.

Let’s consider the following four cases:

1. 0 ≤ a, b < π/2.
2. π/2 ≤ a, b < π.
3. 0 ≤ a ≤ π/2, π/2 ≤ b ≤ π, and π/2 ≤ a + b ≤ π.
4. 0 ≤ a ≤ π/2, π/2 ≤ b ≤ π, and π ≤ a + b ≤ (3/2)π.

In the first case,

c ≤ a + b ⇒ cos(a + b) ≤ cos(c)

from 0 ≤ c < π. Let g(a, b) = cos(a) + cos(b) − cos(a + b). From

∂g(a, b)
∂a

= − sin(a) + sin(a + b) = 2 cos(a +
b

2
) sin(

b

2
)

and 0 ≤ a + b/2 ≤ (3/4)π, we know that g takes the maximum value h(b):

h(b) = g(
π

2
− b

2
, b) = 2 sin(

b

2
) + cos(b)

when a + b/2 = π/2. From

∂h(b)
∂b

= cos(
b

2
) − sin(b) = 2 cos(

3
4
b +

π

4
) cos(

b

4
+

π

4
),

and π/4 ≤ (3/4)b + π/4 < (5/8)π and π/4 ≤ b/4 + π/4 < (3/8)π, we know
that h(b) takes the maximum value when (3/4)b + π/4 = π/2, that is, b = π/3.
Finally,

cos(a) + cos(b) − cos(c) ≤ g(a, b) ≤ 3
2

when a = b = π/3 under the consideration of the symmetry of a and b.
In the second case, c ≤ π from π/2 ≤ a, b < π and c ≤ a + b. Therefore,

max cos(a) = max cos(b) = 0 and min cos(c) = −1. Finally,

cos(a) + cos(b) − cos(c) ≤ 1 <
3
2
.

In the third case,

c ≤ a + b ⇒ cos(a + b) ≤ cos(c)

from 0 ≤ c ≤ a + b ≤ π. From the same discussion of the first case, the lemma
holds true.
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In the forth case, cos(a) and cos(b) are monotonic decrease, then cos(a) +
cos(b) is also monotonic decrease. Thus, cos(a)+cos(b) is maximum when a+b =
π from π ≤ a + b ≤ (3/2)π, and the maximum value is cos(a) + cos(π − a) = 0.
On the other hand, cos(c) > −1 from c ≤ a + b ≤ (3/2)π. Finally,

cos(a) + cos(b) − cos(c) < 1.

From the above discussion, the lemma holds true. Q.E.D.

From the above lemma, we can assume that α ≥ 3/2.

4 Analysis

4.1 Preliminary Step

Our aim is to show that SKM++ decreases the initial value dependence in
comparison with SKM. We try to analyze it by a similar flow of Ref. [6].

Lemma 2. For any cluster C and any object z,

∑

x∈C

d(x, z) −
∑

x∈C

d(x,mean(C)) =

∥∥∥∥∥
∑

x∈C

x

∥∥∥∥∥ d(mean(C), z) −
∥∥∥∥∥
∑

x∈C

x

∥∥∥∥∥ (α − 1).

Proof
∑

x∈C

d(x, z) −
∑

x∈C

d(x,mean(C)) =
∑

x∈C

〈x,mean(C)〉 −
∑

x∈C

〈x, z〉

=

∥∥∥∥∥
∑

x∈C

x

∥∥∥∥∥ d(mean(C), z) −
∥∥∥∥∥
∑

x∈C

x

∥∥∥∥∥ (α − 1).

Q.E.D.

Lemma 3. Let z be an object selected randomly from an arbitrary cluster C.
For the expectation E(J(C, z)) of the value of objective function J(C, z) =∑

x∈C d(x, z), the following relation holds true:

E(J(C, z)) =
(

1 +
‖∑

x∈C x‖
|C|

)
J(C) −

∥∥∥∥∥
∑

x∈C

x

∥∥∥∥∥ (α − 1).

Here J(C) means the value of the objective function with a cluster C and J(C) =
J(C,mean(C)) =

∑
x∈C d(x,mean(C)).
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Proof

E(J(C, z)) =
1

|C|
∑
z∈C

J(C, z)

=
1

|C|
∑
z∈C

⎛
⎝∑

x∈C

d(x,mean(C)) +

∥∥∥∥∥∥
∑
x∈C

x

∥∥∥∥∥∥ d(mean(C), z) −
∥∥∥∥∥∥
∑
x∈C

x

∥∥∥∥∥∥ (α − 1)

⎞
⎠

=

(
1 +

∥∥∑
x∈C x

∥∥
|C|

)
J(C) −

∥∥∥∥∥∥
∑
x∈C

x

∥∥∥∥∥∥ (α − 1).

Q.E.D.

Lemma 4. Let z be an object selected randomly from an arbitrary cluster C.
For the expectation E(J(C, z)) of the value of objective function J(C, z), the
following relation holds true:

E(J(C, z)) ≤ 2J(C).

Proof. It holds true from Lemma 3 and the following relation:

‖x‖ = 1 ⇒
∥∥∥∥∥
∑

x∈C

x

∥∥∥∥∥ ≤ |C|.

Q.E.D.

Lemma 5. For any objects x and y, and any set Z, if α ≥ 3/2 the following
relation holds true:

D(x,Z) ≤ d(x, y) + D(y, Z).

Here D(x,Z) means the dissimilarity between a point x and a set Z and D(x,Z) =
minz∈Z d(x, z).

Proof. We define z† = arg minz∈Z d(x, z), and z‡ = arg minz∈Z d(y, z).
When z† = z‡, we get the following relation from Lemma 1:

D(x,Z) = d(x, z†) ≤ d(x, y) + d(y, z†)
= d(x, y) + D(y, Z).

When z† �= z‡, we get the following relation from Lemma 1:

D(x,Z) = d(x, z†) ≤ d(x, z‡)

≤ d(x, y) + d(y, z‡)
= d(x, y) + D(y, Z).

Q.E.D.
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Lemma 6. Cluster centers are selected according to the following process:

Step 1. Let the number of iterations t = 1. Select v ∈ X at random and let the
initial set of cluster centers V t = {v}.

Step 2. Select x with the probability proportional to D(x, V t) as a new cluster
center. Let V t+1 = V t ∪ {x}.

Step 3. t := t + 1. If t = k, finish the algorithm. Otherwise, go back to Step 2.

We assume that the t-th iteration has finished (t < k) and Let V t be a set
of cluster centers selected until the end of t-th iteration, and z ∈ Ci be the next
selected cluster center. That is, V t+1 = V t ∪{z}. For the conditional expectation
of J(Ci, V

t ∪ {z}) = J(Ci, V
t+1),

E(J(Ci, V
t+1) | V t, {z ∈ Ci}) ≤ 4J(Ci).

Proof. The probability to select z is represented as D(z,V t)∑
z∈Ci

D(z,V t) = D(z,V t)
J(Ci,V t)

because z is selected with the probability proportional to D(z, V t) and z ∈ Ci.
Moreover we get

E(J(Ci, V
t+1) | V t, {z ∈ Ci}) =

∑

z∈Ci

D(z, V t)
J(Ci, V t)

∑

x∈Ci

min{J(x, V t), d(x, z)}

from

J(Ci, V
t+1) = J(Ci, V

t ∪ {z}) =
∑

x∈Ci

min{J(x, V t), d(x, z)}.

Here we know that the following relation holds true from Lemma 5:

D(z, V t) ≤ d(z, x) + D(x, V t)

because α ≥ 3/2. Thus we get the following relation:
∑

x∈Ci

D(z, V t) ≤
∑

x∈Ci

d(z, x) +
∑

x∈Ci

D(x, V t)

= J(Ci, z) + J(Ci, V
t).

Therefore,

D(z, V t) ≤ 1
|Ci|

(
J(Ci, z) + J(Ci, V

t)
)
.

Finally, we get the following relation from the above relation and Lemma 4:

E(J(Ci, V
t+1) | V t, {z ∈ Ci})

≤
∑

z∈Ci

1
|Ci|

(∑
x∈Ci

J(Ci, z) +
∑

x∈Ci
D(x, V t)

)

J(Ci, V t)

∑

x∈Ci

min{J(x, V t), d(x, z)}

=
2

|Ci|
∑

z∈Ci

J(Ci, z) = 2E(J(Ci, z)) ≤ 4J(Ci).

Q.E.D.
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4.2 Main Step

Here, we introduce the following symbols. Let Ht = {i | 1 ≤ i ≤ k, Ci∪V t �= φ},
U t = {i | 1 ≤ i ≤ k}\Ht, and W t = t − |Ht| be a set of “hit” clusters at the end
of t-th iteration, a set of “uncovered” clusters at the end of t-th iteration, and
the number of “wasted” iterations at the end of t-th iteration, respectively.

First, Lemma 7 for Ht holds true.

Lemma 7. For any t ≤ k,

E

(
∑

i∈Ht

J(Ci, V
t)

)
≤ 4J∗

Here J∗ means the optimal value of the objective function J(V ) and J∗ =∑c
i=1

∑
x∈Ci

d(x, vi).

Proof. Let Ct be a cluster selected at the t-th iteration. The following relation
holds true from V 0 = φ and Lemma 4:

E(J(C1, z1)) = E(C1, V
1 | V 0, {z1 ∈ C1}) ≤ 2J(C1) ≤ 4J(C1).

Therefore, we get the following relation from Lemma 6:

E

⎛
⎝∑

i∈Ht

J(Ci, V
t)

⎞
⎠ = E(J(C1, V 1) | V 0, {z1 ∈ C1})+ . . .+ E(J(Ct, V

t) | V t−1, {zt ∈ Ct})

≤ 4
t∑

i=1

J(Ci) ≤ 4
k∑

i=1

J(Ci) = 4J∗.

Q.E.D.

Next, we consider the following function for U t:

Θt =
W t

∑
i∈Ut J(Ci, V

t)
|U t|

Let assume that the t-th iteration has finished. We can consider the following
two cases for a cluster center selected at the (t + 1)-th iteration:

1. The cluster center is selected from U t.
2. The cluster center is selected from Ht.

The desirable case is former.
For the former case, the following lemma holds true.

Lemma 8. Let Rt = {q | q is an index of the cluster which is randomly selected
from Ur at the r − th iteration, r = 1, . . . , t} and we assume that a cluster
center is selected from Cj at the (t + 1)-th iteration. Then, we get the following
relation:

E(Θt+1 − Θt | Rt, {j ∈ U t}) ≤ 0.
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Proof. If j ∈ U t, we get Ht+1 = Ht ∪ {j}, W t+1 = W t, and U t+1 = U t\{j}.
Thus,

Θt+1 =
W t+1

∑
i∈Ut+1 J(Ci, V

t+1)
|U t+1|

=
W t

(∑
i∈Ut J(Ci, V

t) − J(Cj , V
t)

)

|U t| − 1
.

If j is randomly selected from U t, we get the following relation:

E(J(Cj , V
t) | Rt, {j ∈ U t}) =

∑

j∈Ut

J(Cj , V
t)∑

i∈Ut J(Ci, V t)
J(Cj , V

t)

≥ 1
|U t|

∑

i∈Ut

J(Ci, V
t)

from Cauchy-Schwarz inequality and the fact that the probability to select Cj

from clusters whose indices belong to U t is as follows:

J(Cj , V
t)∑

i∈Ut J(Ci, V t)
.

Hence,

E(Θt+1 | Rt, {j ∈ U t}) = E

(
W t+1

∑
i∈Ut+1 J(Ci, V

t)
|U t+1| | Rt, {j ∈ U t}

)

=
W t

∑
i∈Ut J(Ci, V

t)
|U t| = Θt.

Finally, we get the following relation:

E(Θt+1 | Rt, {j ∈ U t}) − Θt = E(Θt+1 − Θt | Rt, {j ∈ U t}) ≤ 0.

Q.E.D.

For the latter case, the following lemma holds true.

Lemma 9. If j ∈ Ht,

Θt+1 − Θt =
∑

i∈Ut J(Ci, V
t)

|U t| .

Proof. If j ∈ Ht, we get Ht+1 = Ht, W t+1 = W t + 1, and U t+1 = U t. Thus,

Θt+1 − Θt =
W t+1

∑
i∈Ut+1 J(Ci, V

t+1)
|U t+1| − W t

∑
i∈Ut J(Ci, V

t)
|U t|

=
∑

i∈Ut J(Ci, V
t)

|U t| .

Q.E.D.
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From the above two cases, the following lemma holds true.

Lemma 10. For any t (0 ≤ t ≤ k − 1),

E(Θt+1 − Θt | Rt) ≤
∑

i∈Ht J(Ci, V
t)

k − t
.

Proof. From Lemmas 8 and 9, we get the following relation:

E(Θt+1 − Θt | Rt) =
∑

i∈Ht J(Ci, V
t)

J(V t)
E(Θt+1 − Θt | Rt, {j ∈ Ht})

+
∑

i∈Ut J(Ci, V
t)

J(V t)
E(Θt+1 − Θt | Rt, {j ∈ U t})

≤
∑

i∈Ht J(Ci, V
t)

k − t
.

Q.E.D.

From the above lemmas, we can derive the following theorem.

Theorem 1. If V is selected by the process in Lemma 6, the following relation
holds true:

E(J(V )) ≤ 4(ln k + 2)J∗.

Proof. From the following property of Θt:

lim
t→k

Θt =
∑

i∈Uk

J(Ci)

∑

i∈Hk

J(Ci, V
k) +

∑

i∈Uk

J(Ci, V
k) = J(V ),

and Lemmas 7 and 10,

E(J(V )) = E

(
∑

i∈Hk

J(Ci, V )

)
+ E

(
∑

i∈Uk

J(Ci, V )

)

≤ 4(ln k + 2)J∗.

Q.E.D.

5 Spherical k-Means++

From the above theoretical discussion, we can construct the following algorithm
by substituting d for d1 in SKM as dissimilarity and introducing the process
in Lemma 6 as selection of initial values. We show the SKM++ algorithm in
Algorithm 2.
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Algorithm 2. Spherical k-Means++ Clustering (SKM++)

SKM++1. Give the initial values V by the following process:
SKM++1-1.
Step 1. Set the number of iteration as t = 1. Select v ∈ X at random, and let the

initial set of cluster centers V t = {v}.

SKM++1-2. Select x with the probability of D(x,V t)
J(V t)

. Let x be a new cluster

center and V t+1 = V t ∪ {x}.
SKM++1-3. Let t := t + 1. If t = k, finish the process. Otherwise, go back to

SKM++1-2.
SKM++2. Allocate each x ∈ X to a cluster Cv whose cluster center v is closest to

x than other cluster centers as follows:

Cv = {x | d(x, v) = d(x, V ), v ∈ V }
SKM++3. Update each cluster center v as follows:

v = mean(Cv) =

∑
x∈Cv x

‖∑x∈Cv x‖ .

SKM++4. If a given stop criterion satisfies, finish the algorithm. Otherwise, go back
to SKM2++.

Theorem 1 shows that the maximum value of the expectation of the objective
function of SKM is 4(ln k+2) times as large as the optimal value of the objective
function of SKM by the SKM++ algorithm. On the other hand, it is proved
that the maximum value of the expectation of the objective function of KM is
8(ln k + 2) times as large as the optimal value of the objective function of KM
by the KM++ algorithm.

It means that i.v.d. of SKM++ is theoretically estimated as a half of KM++.

6 Conclusion

This paper show a new clustering algorithm SKM++. SKM++ is very useful
for the problem of initial value dependence. Importance of SKM will increase
because the scale of data on the Internet will make large and a lot of such data
allocate on the unit sphere. From such a viewpoint, it is expected that SKM++
is more emphasized than KM++.

Acknowledgment. This work has partly been supported by JSPS KAKENHI Grant
Numbers 26330270 and 26330271.
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On Possibilistic Clustering Methods Based
on Shannon/Tsallis-Entropy for Spherical Data

and Categorical Multivariate Data
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Abstract. In this paper, four possibilistic clustering methods are pro-
posed. First, we propose two possibilistic clustering methods for spherical
data — one based on Shannon entropy, and the other on Tsallis entropy.
These methods are derived by subtracting the cosine correlation between
an object and a cluster center from 1, to obtain the object-cluster dis-
similarity. These methods are derived from the proposed spherical data
methods by considering analogies between the spherical and categori-
cal multivariate fuzzy clustering methods, in which the fuzzy methods’
object-cluster similarity calculation is modified to accommodate the pro-
posed possibilistic methods. The validity of the proposed methods is ver-
ified through numerical examples.

Keywords: Possibilistic clustering · Spherical data · Categorical
multivariate data

1 Introduction

Fuzzy c-means (FCM), proposed by Bezdek [1], is the most popular algorithm
for performing fuzzy clustering on linear data. FCM is fuzzified through its
membership in the hard c-means (HCM) objective function [2]. Other HCM
fuzzification methods include entropy-regularized FCM (eFCM) [3] and Tsallis
entropy-based FCM (tFCM) [4].

FCM and its variants are useful clustering methods; however, their member-
ships do not always correspond well to the degree of belonging of the data. To
address this weakness of FCM, Krishnapuram and Keller [5] proposed a possi-
bilistic c-means (PCM) algorithm that uses a possibilistic membership function.
Krishnapuram and Keller [6], and Ménard et al. [4] proposed other possibilistic
clustering techniques that employ Shannon entropy and Tsallis entropy, respec-
tively. In this study, these two methods are respectively referred to as entropy-
regularized PCM (ePCM) and Tsallis-entropy-regularized PCM (tPCM).

All the aforementioned clustering methods are designed for linear data. In
other application domains, linear data clustering methods may yield poor results.
For example, information retrieval applications show that cosine similarity is a
more accurate similarity measure for clustering text documents than Euclidean
c© Springer International Publishing Switzerland 2015
V. Torra and Y. Narakawa (Eds.): MDAI 2015, LNAI 9321, pp. 115–128, 2015.
DOI: 10.1007/978-3-319-23240-9 10
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distortion of dissimilarity [7]. Such domains require spherical data use, and only
consider the directions of the unit vectors. In particular, spherical K-means [8]
and its fuzzified variants [9–13] are designed to process spherical data. However,
a possibilistic approach for clustering spherical data has not been proposed in
the literatures; this was a motivation for this work. The spherical clustering
methods that correspond to eFCM and tFCM are denoted as eFCS and tFCS
in this paper.

In recent studies [13–17], various fuzzy clustering methods have been pro-
posed for categorical multivariate data (FCCM). In these methods, a categorical
multivariate dataset is provided in the form of a cross-classification table, contin-
gency table, or co-occurrence matrix. Because the optimization problems [13,15]
are similar to spherical clustering, these FCCM methods can be extended
into possibilistic clustering, which was another motivation for this work. The
method described in [15] is referred to as entropy-regularized FCCM (eFCCM),
and the method described in [13] is referred to as Tsallis entropy-regularized
FCCM (tFCCM), in order to distinguish these methods in this paper.

In this study, four possibilistic clustering methods are proposed — two for
spherical data and two for categorical multivariate data. First, we propose
the possibilistic clustering methods for spherical data: entropy-regularized pos-
sibilistic clustering for spherical data (ePCS) and Tsallis entropy-regularized
possibilistic clustering for spherical data (tPCS). These methods are derived by
subtracting the cosine correlation between an object and a cluster center from 1,
to obtain the object-cluster dissimilarity; this value is used in place of the squared
Euclidean distance between an object and an cluster center, which is commonly
used in conventional linear data methods. Second, we propose two possibilistic
clustering methods for categorical multivariate data: entropy-regularized possi-
bilistic clustering for categorical multivariate data (ePCCM) and Tsallis entropy-
regularized possibilistic clustering for categorical multivariate data (tPCCM).
These methods are derived from the proposed spherical data methods (ePCS
and tPCS) by considering analogies between the fuzzy methods for spherical
data and categorical multivariate data; here, the object-cluster similarity calcu-
lation in the fuzzy methods is modified to accommodate the proposed possibilis-
tic methods. The validity of the proposed methods is verified through numerical
examples.

The rest of this paper is organized as follows. In Sect. 2, the notation and the
conventional methods are introduced. Section 3 presents the proposed methods,
and Sect. 4 provides some numerical examples. Section 5 contains our concluding
remarks.

2 Preliminaries

2.1 Notation, Fuzzyc-Means, and Its Variants

Let X = {xk ∈ R
p | k ∈ {1, · · · , N}} be a dataset of p-dimensional points,

referred to as linear data. The membership of xk that belongs to the i-th cluster
is denoted by ui,k (i ∈ {1, · · · , C}, k ∈ {1, · · · , N}) and the set of ui,k is denoted
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by u, which is also known as the partition matrix. The cluster center set is denoted
by v = {vi | vi ∈ R

p, i ∈ {1, · · · , C}}. The squared Euclidean distance between
the k-th datum and the i-th cluster center is denoted by di,k = ‖xk − vi‖22.

One approach for membership fuzzification is to regularize the objective func-
tion of HCM by introducing a regularization term with a positive parameter
λ into the objective function. This approach was successfully implemented by
Miyamoto and Mukaidono [3]. Using the entropy term, the entropy-regularized
FCM (eFCM) is defined as

minimize
u,v

C∑

i=1

N∑

k=1

ui,kdi,k + λ−1
C∑

i=1

N∑

k=1

ui,k log(ui,k) (1)

subject to
C∑

i=1

ui,k = 1. (2)

Ménard adopted Tsallis entropy [20] instead of Shannon entropy to perform
fuzzy clustering, and proposed tFCM [4] defined as

minimize
u,v

C∑

i=1

N∑

k=1

um
i,kdi,k +

λ−1

m − 1

C∑

i=1

N∑

k=1

[um
i,k − ui,k] (3)

subject to Eq. (2).

2.2 Possibilistic Clustering

To improve the fidelity of fuzzy clustering, Krishnapuram and Keller [5] relaxed
the constrained condition Eq. (2), which yielded a possibilistic membership func-
tion. The memberships for a certain cluster and its cluster center are released
from constraint Eq. (2), and are obtained independent of these for other clus-
ters. Hereafter, we only consider cases in which C = 1, where the number 1
signifies that only one cluster is searched for at a time. With this setting, cluster
fusion [18] is useful, given that many cluster centers become nearer to each other
as iteration proceeds; the distance between two clusters frequently approaches
zero. The cluster fusion is described in the following algorithm:

Algorithm 1

1. Select a subset of objects as initial cluster centers. It is possible to select all
objects: C = N ; vi = xi (i ∈ {1, · · · , C}).

2. Perform possibilistic clustering, and obtain C cluster centers.
3. Merge cluster centers that have negligible distances between them.

Krishnapuram and Keller [6], and Ménard [4] proposed possibilistic clustering
methods using entropy, defined as

minimize
u,v

N∑

k=1

u1,kd1,k + λ−1
N∑

k=1

u1,k log(u1,k) − λ−1
N∑

k=1

u1,k, (4)
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minimize
u,v

N∑

k=1

um
1,kd1,k +

λ−1

m − 1

N∑

k=1

(um
1,k − u1,k) − λ−1

N∑

k=1

u1,k. (5)

These two methods are referred to as ePCM and tPCM because the usual
(Shannon) entropy and Tsallis entropy are employed in these methods, respec-
tively. The optimal solutions for the membership and cluster center are
described as

u1,k = exp(−λd1,k), (6)

v1 =(
N∑

k=1

u1,kxk)/(
N∑

k=1

u1,k) (7)

for ePCM, and

u1,k =(1 − λ (1 − m) d1,k)
1

1−m , (8)

v1 =(
N∑

k=1

um
1,kxk)/(

N∑

k=1

um
1,k) (9)

for tPCM. These equations are alternatively iterated during the second step in
Algorithm 1. Ménard denoted the third term in Eqs. (4) and (5) as a possibilistic
constraint, and showed that these two methods were derived by adding this
constraint to the eFCM and tFCM objective functions in Eqs. (1) and (3).

2.3 Fuzzy Clustering for Spherical Data

If objects are on the unit hypersphere, 1 − xT
kvi can be used as the dissimilarity

between an object xk and a cluster center vi. Such objects are referred to as
spherical data. Two methods that correspond to Eqs. (1) and (3) are obtained
for the following optimization problems:

minimize
u,v

C∑

i=1

N∑

k=1

ui,k(1 − xT
kvi) + λ−1

C∑

i=1

N∑

k=1

ui,k log(ui,k), (10)

minimize
u,v

C∑

i=1

N∑

k=1

um
i,k(1 − xT

kvi) +
λ−1

m − 1

C∑

i=1

N∑

k=1

[um
i,k − ui,k], (11)

respectively, subject to Eq. (2) and

‖vi‖2 = 1, (12)

referred to as eFCS [9] and tFCS [13], respectively. It is shown in [19] that eFCS
optimization problem in Eq. (10) can be equivalently described as the following
maximizing problem
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maximize
u,v

C∑

i=1

N∑

k=1

ui,kxT
kvi − λ−1

C∑

i=1

N∑

k=1

ui,k log(ui,k). (13)

However, to the best of our knowledge, a possibilistic approach to spherical
clustering has not yet been investigated.

2.4 Fuzzy Clustering for Categorical Multivariate Data

Assume that for datasets X = {xk | k ∈ {1, . . . , N}} and Y = {y� | � ∈
{1, . . . , M}}, the co-occurrence information between xk and y�, Rk,� is given.
R is the matrix whose (k, �)-th element is Rk,�. We refer to X and Y as the
row and column datasets, respectively, because the k-th row of R represents
the similarities between xk and y�, and the �-th column of R represents the
similarities between y� and xk. The membership of datum xk belonging to the
i-th cluster is denoted by ui,k. The (i, k)-th element of matrix u is denoted by
ui,k, and u satisfies the constraint in Eq. (2). The membership of datum y�

belonging to the i-th cluster is denoted by wi,�. The (i, �)-th element of matrix
w is denoted by wi,�, and w satisfies the constraint

M∑

�=1

wi,� = 1. (14)

The eFCCM [15] is obtained by solving the following optimization problem:

maximize
u,w

C∑

i=1

N∑

k=1

M∑

�=1

ui,k log(wi,�)Rk,� − λ−1
C∑

i=1

N∑

k=1

ui,k log(ui,k) (15)

subject to Eqs. (2) and (14), where λ > 0 is a fuzzification parameter. The
tFCCM [13] are obtained by solving the following optimization problem

maximize
u,w

C∑

i=1

N∑

k=1

M∑

�=1

um
i,k log(wi,�)Rk,� − λ−1

m − 1

C∑

i=1

N∑

k=1

[um
i,k − ui,k] (16)

subject to Eqs. (2) and (14), where λ > 0 and m > 1 are fuzzification parameters.
Because the optimization problem described in Eq. (15) is similar to Eqs. (1)
and (10), and because the optimization problem described in Eq. (16) is similar
to Eqs. (3) and (11), it is possible to generalize FCCM in the same manner in
which eFCM was modified into ePCM. This fact motivated this work.

3 Proposed Method

3.1 Modifying ePCM and tPCM

In this subsection, we modify ePCM and tPCM as a preparatory procedure to
derive the proposed methods.
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ePCM and tPCM objective functions are slightly generalized from Eqs. (4)
and (5) to

minimize
u,v

N∑

k=1

u1,kd1,k + λ−1
N∑

k=1

u1,k log(u1,k) − α
N∑

k=1

u1,k, (17)

minimize
u,v

N∑

k=1

um
1,kd1,k +

λ−1

m − 1

N∑

k=1

(um
1,k − u1,k) − α

N∑

k=1

u1,k, (18)

where the factor of the last term in the original problems in Eqs. (4) and (5),
λ−1, is replaced by another parameter α ∈ (−∞,+∞) for modified ePCM and
α ∈ (−1/(λ(m−1)),+∞) for modified tPCM. These optimal solutions for mem-
bership are described as

u1,k =β exp(−λd1,k), (19)

for modified ePCM, where β = exp(λα − 1) ∈ (0,+∞), and

u1,k =β(1 − λ(1 − m)d1,k)1/(1−m), (20)

for modified tPCM, where β = (1 + αλ (m − 1))/m)1/(m−1) ∈ (0,+∞), and the
optimal solutions of cluster center are the same as the original forms in Eqs. (7)
and (9). We can observe that α = λ−1 recovers the original problems. We note
that the membership value is 1 at d1,k = 0 for the original membership form;
this is not the case in Eqs. (19) and (20), except for the case in which α = λ−1.
However, this does not imply that the modified ePCM and the modified tPCM
do not contain defects. First, in the possibilistic theory, the maximal membership
value does not need to be 1. Second, such a modification does not affect cluster
center updating, as explained in the following procedure. Denote the membership
and the cluster center in the modified ePCM as ũ and ṽ to distinguish them from
those in the original ePCM. Then, we have

ṽ1 =
∑N

k=1 ũ1,kxk∑N
k=1 ũ1,k

=
∑N

k=1 βu1,kxk∑N
k=1 βu1,k

=
β

∑N
k=1 u1,kxk

β
∑N

k=1 u1,k

= v1, (21)

which means that such a modification does not affect the updating of the cluster
centers, and simply changes the scale of membership. The case of tPCM also
leads to the same result. Hereafter, the modified versions of ePCM and tPCM
are used to derive the proposed methods.

3.2 Possibilistic Clustering for Spherical Data

In this subsection, we propose two possibilistic clustering methods for spherical
data, ePCS and tPCS.

ePCS is obtained by solving the optimization problem

minimize
u,v

N∑

k=1

u1,k(1 − xT
kv1) + λ−1

N∑

k=1

u1,k log(u1,k) − α

N∑

k=1

u1,k, (22)
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subject to Eq. (12). This optimization problem is derived by subtracting the
cosine correlation between an object and a cluster center from 1 (1 − xT

kv1) to
obtain the object-cluster dissimilarity, instead of using the squared Euclidean
distance between an object and a cluster center (‖xk − v1‖22) applied in ePCM,
which was described in Eq. (17). The optimal solutions for the membership and
cluster center are described as

u1,k = β exp(λxT
kv1), (23)

v1 = (
N∑

k=1

u1,kxk)/(‖
N∑

k=1

u1,kxk‖2), (24)

where β = exp(−λ − 1 + λα). ePCS is also derived from eFCS by subtracting
the possibilistic constraint term α

∑N
k=1 u1,k from the eFCS objective function

described in Eq. (10), omitting the probabilistic constraint in Eq. (2), and consid-
ering the spherical constraint in Eq. (12). The ePCS membership in Eq. (23) is
described for arbitrary object x as u1(x) = β exp(λxTv1); this is the unnor-
malized von Mises-Fisher distribution. This membership function for a one-
dimensional sphere is depicted in Fig. 1 for several parameter values of λ, where
β is set such that maxx u1(x) = 1. The ePCS optimization problem is described
as the following maximizing problem:

Eq. (22) ⇔ maximize
u,v

N∑

k=1

u1,kxT
kv1 − λ−1

N∑

k=1

u1,k log(u1,k) + (α − 1)
N∑

k=1

u1,k

⇔ maximize
u,v

N∑

k=1

u1,kxT
kv1 − λ−1

N∑

k=1

u1,k log(u1,k) + α′
N∑

k=1

u1,k, (25)

where α′ = α−1. This optimization problem is also obtained from the maximiz-
ing problem of eFCS in Eq. (13), by adding the possibilistic constraint term
α′ ∑N

k=1 u1,k from the ePCS objective function described in Eq. (13), while
omitting the probabilistic constraint in Eq. (2) and considering the spherical
constraint in Eq. (12). This maximizing problem is used to derive ePCCM in
the next subsection.

The tPCS method is obtained by solving the optimization problem

minimize
u,v

N∑

k=1

um
1,k(1 − xT

kv1) +
λ−1

m − 1

N∑

k=1

(um
1,k − u1,k) − α

N∑

k=1

u1,k, (26)

subject to Eq. (12). This optimization problem is derived by subtracting the
cosine correlation between an object and a cluster center from 1 (1 − xT

kv1) to
obtain the object-cluster dissimilarity. This value replaces the squared Euclidean
distance between an object and an cluster center (‖xk−v1‖22), which is used in the
tPCM method described in Eq. (5). The optimal solutions for the membership
and cluster center are described as

u1,k = β(1 − λ(1 − m)(1 − xT
kv1))

1
1−m , (27)
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v1 =(
N∑

k=1

um
1,kxk)/(‖

N∑

k=1

um
1,kxk‖2), (28)

where β = ((1 − αλ(1 − m))/m)1/(m−1). tPCS is also derived from tFCS by
subtracting the possibilistic constraint term α

∑N
k=1 u1,k from tFCS objective

function described in Eq. (10), omitting the probabilistic constraint in Eq. (2),
and considering the spherical constraint in Eq. (12). The membership is rewritten
using λ′ = λ/(1 − λ(1 − m)) and β′ = β(λ/λ′)1/(1−m) as

u1,k =β′(1 + λ′(1 − m)xT
kv1)1/(1−m). (29)

This membership in Eq. (29) is described for arbitrary object x as u1(x) =
β′(1 + λ′(1 − m)xTv1)1/(1−m); this is a deformation of the unnormalized von
Mises-Fisher distribution when λ = 1, i.e., u1(x) recovers a von Mises-Fisher
distribution with m → 1, which is similar to the method used by the Tsallis
distribution [20] to recover a Gaussian distribution. This membership function
for a one-dimensional sphere is depicted in Figs. 2 and 3 for several parameter
values of (λ,m), where β is set such that maxx u1(x) = 1. The tPCS optimization
problem is described as the following maximizing problem:

Eq. (26) ⇔ maximize
u,v

N∑

k=1

um
1,kxT

kv1 − 1 + λ(m − 1)
λ(m − 1)

N∑

k=1

[um
1,k − u1,k]

+ (α − 1)
N∑

k=1

u1,k

⇔ maximize
u,v

N∑

k=1

um
1,kxT

kv1 − λ′−1

m − 1

N∑

k=1

[um
1,k − u1,k] + α′

N∑

k=1

u1,k, (30)

where α′ = α − 1 and λ′ = λ/(1 − λ(1 − m)). This maximizing problem is used
to derive tPCCM in the next subsection.

3.3 Possibilistic Clustering for Categorical Multivariate Data

In this subsection, we propose two possibilistic clustering methods for categorical
multivariate data, ePCCM and tPCCM.

First, we reconfigure the objective function of eFCCM described in Eq. (15) as

C∑
i=1

N∑
k=1

M∑
�=1

ui,k(log(wi,�)Rk,� − log(Γ(Rk,� + 1))) − λ−1
C∑

i=1

N∑
k=1

ui,k log(ui,k), (31)

by adding the term

−
C∑

i=1

N∑

k=1

M∑

�=1

ui,k log(Γ(Rk,� + 1)) (32)

to the original objective function. This term originates from the third term of
the following lower bound, for the log-likelihood of a multinomial mixture model
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−
N∑

k=1

C∑

i=1

ui,k log(ui,k)
N∑

k=1

C∑

i=1

ui,k + log(Γ(
M∑

�=1

Rk,� + 1)

−
N∑

k=1

C∑

i=1

ui,k

M∑

�=1

log(Γ(Rk,� + 1) +
N∑

k=1

C∑

i=1

ui,k

M∑

�=1

log(wi,�)Rk,� (33)

≤
N∑

k=1

C∑

i=1

ui,k log(
1

ui,k

Γ(
∑M

�=1 Rk,� + 1)
∏M

�=1 Γ(Rk,� + 1)

M∏

�=1

w
Rk,�

i,� ) (34)

=
N∑

k=1

log(
C∑

i=1

Γ(
∑M

�=1 Rk,� + 1)
∏M

�=1 Γ(Rk,� + 1)

M∏

�=1

w
Rk,�

i,� ). (35)

The added term described in Eq. (32) does not affect the optimal solution of
eFCCM because of the constraint described in Eq. (2), whereas it plays a role in
constituting the membership function in a possibilistic manner; this is discussed
later.

Next, similar to the manner in which ePCS is derived from eFCS, the
ePCCM optimization problem is constructed from eFCCM. The objective func-
tion of the eFCS maximizing problem described in Eq. (13) is quite simi-
lar to that of eFCCM in Eq. (31) if si,k = xT

kvi in eFCS (Eq. (13)) and
si,k =

∑M
�=1 log(wi,�)Rk,� − log(Γ(Rk,� + 1)) in eFCCM (Eq. (31)). Based on

this information, an ePCCM optimization problem is proposed as

maximize
u,w

N∑

k=1

M∑

�=1

u1,k(log(w1,�)Rk,� − log(Γ(Rk,� + 1))) − λ−1
N∑

k=1

u1,k log(u1,k)

+ α

N∑

k=1

u1,k (36)

subject to the constraint in Eq. (14), which is obtained from the eFCCM objec-
tive function in Eq. (31) by setting C = 1, omitting the constraint in Eq. (2),
and adding the possibilistic constraint α

∑N
k=1 u1,k to the eFCCM objective func-

tion. By solving this optimization problem, we obtain the optimal solutions for
memberships (u,w) as

u1,k =β exp(λ
M∑

�=1

log(w1,�)Rk,� − log(Γ(Rk,� + 1))), (37)

w1,� =(
N∑

k=1

u1,kRk,�)/(
M∑

r=1

N∑

k=1

u1,kRk,r), (38)

where β = exp(−λ − 1 + αλ). The ePCCM membership in Eq. (37) is described
for arbitrary object R = (R1, · · · , RM ) as u1(R) = β exp(λ

∑M
�=1 log(w1,�) −

log(Γ(R� + 1))) is the unnormalized multinomial distribution when λ = 1. This
membership function for M = 2 and w1 = (0.2, 0.8) is depicted in Fig. 4 for
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several parameter values of λ, where β is set such that maxR u1(R) = 1. Here,
we can observe the purpose of adding the term in Eq. (32). If this term is omitted,
such a membership function is described as

u1(R) =β exp(λ
M∑

�=1

log(w1,�)R�), (39)

and is depicted in Fig. 5 for λ = 1 where β is set such that maxR u1(R) = 1.
From this figure, we can observe that such membership functions cannot capture
the mode of densities; when the mode with w1 < 0.5 is at the minimal value of
R1, R1 = 0, the mode with w1 > 0.5 is at the maximal value of R1, R1 = 20,
and the mode with w1 = 0.5 is disappears. On the other hand, by adding the
term in Eq. (32), we can observe in Fig. 4 that the membership functions can
capture the mode of densities.

The tPCCM optimization problem is obtained from ePCCM in a similar
manner to how tPCS is derived from ePCS, i.e., by replacing ui,k in the first
term of Eq. (36) and Shannon entropy in the second term of Eq. (36) by um

i,k

and Tsallis entropy, respectively, as

maximize
u,w

N∑
k=1

M∑
�=1

um
1,k(log(w1,�)Rk,� − log(Γ(Rk,� + 1))) − λ−1

m − 1

N∑
k=1

[um
1,k − u1,k]

+ α
N∑

k=1

u1,k (40)

subject to the constraint in Eq. (14). By solving this optimization problem, we
obtain the optimal solutions of memberships as

u1,k =β(1 + (1 − m)λ
M∑

�=1

log(w1,�)Rk,� − log(Γ(Rk,� + 1)))1/(1−m), (41)

w1,� =(
N∑

k=1

um
1,kRk,�)/(

M∑

r=1

N∑

k=1

um
1,kRk,r), (42)

where β = ((1 − αλ(1 − m))/m)1/(m−1). This membership in Eq. (41)
is derived for arbitrary object R = (R1, · · · , RM ), as uk = β(1 + (1 −
m)λ

∑M
�=1 log(w1,�)R� − log(Γ(R� + 1)))1/(1−m), which is a deformation of the

unnormalized multinomial distribution when λ = 1, i.e., u1(x) recovers multino-
mial distribution with m → 1 by setting an adequate normalization factor β. This
membership function for M = 2 and w1 = (0.2, 0.8) is depicted in Figs. 6 and 7
for several parameter values of (λ,m) where β is set such that maxR u1(R) = 1.

4 Numerical Example

This section provides numerical examples based on artificial and actual datasets.
The first example illustrates the performance of ePCS and tPCS using a dataset
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Fig. 1. ePCS membership
functions
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Fig. 2. tPCS membership
functions with m = 2
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Fig. 3. tPCS membership
functions with λ′ = 1
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Fig. 4. ePCCM member-
ship functions
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Fig. 5. Incomplete ePCCM
membership functions
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Fig. 6. tPCCM member-
ship functions with m = 2
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Fig. 7. tPCCM member-
ship functions with λ = 1
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Fig. 10. Artificial dataset #2
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Fig. 11. Results for Artificial
dataset #2 obtained with ePCCM
and tPCCM

containing three clusters, each of which contains 50 points in the first quadrant
of the unit sphere (Fig. 8). Using the parameter settings λ = 1.0 for ePCS and
(λ,m) = (1.0, 1.5) for tPCS, both methods partitioned this dataset adequately,
as shown in Fig. 9, where squares, circles, and triangles indicate the maximal
memberships generated by both algorithms during the test.

The second example illustrates the performance of ePCCM and tPCCM
using an artificial dataset containing four clusters, all of which contain 50 points
obtained from a random sampling of multinomial distributions with parameters
(0.8, 0.1, 0.1), (0.1, 0.8, 0.1), (0.1, 0.1, 0.8), and (1/3, 1/3, 1/3) (Fig. 10). With the
parameter settings λ = 1.0 for ePCCM and (λ,m) = (1.0, 1.5) for tPCCM, both
methods partitioned this dataset adequately, as shown in Fig. 11. The maximal
membership of the data is depicted by squares, circles, triangles, and reverse
triangles.

5 Conclusions

In this study, four possibilistic clustering methods were proposed. First, we pro-
posed two possibilistic clustering methods for spherical data — one based on
Shannon entropy, and one based on Tsallis entropy. It was shown that the mem-
bership functions recovered the unnormalized von Mises-Fisher distribution and
its deformation. Second, we proposed two possibilistic clustering methods for
categorical multivariate data. It was shown that these membership functions
recovered the unnormalized multinomial distribution and its deformation. The
validity of the proposed methods was confirmed through numerical examples.

In future work, we will (1) apply the proposed methods to larger and more
complex datasets, (2) investigate how fuzzification parameters affect clustering
accuracy and propose a method to automatically set the best parameter values,
(3) apply the fuzzified method used in [16], (4) compare the proposed methods
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with other clustering methods, (5) apply the sequential cluster extraction [24],
which is another algorithm for possibilistic clustering, and (6) develop a possi-
bilistic clustering approach for other data types.
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Abstract. This paper attempts to unify the theory of a certain class
of modified variants and another class of manipulated versions of the
fuzzy c-means algorithm. Starting from the objective function of the
so-called fuzzy c-means algorithm with generalized improved partition
(GIFP-FCM), and defining its rewarding term in a more flexible way,
we obtain a unified algorithm that can model all algorithm variants in
question including the wide family of suppressed and generalized sup-
pressed FCM. Numerical tests were carried out to provide a comparison
of the modeled algorithms in terms of accuracy and cluster size insen-
sitivity. The suppression of the probabilistic fuzzy partition obtained at
high values of the fuzzy exponent m proved the most effective.

Keywords: Fuzzy c-means algorithm · Improved partition · Suppressed
fuzzy c-means algorithm

1 Introduction

C-means clustering algorithms belong to unsupervised classification methods
which group a set of input vectors into a previously defined number (c) of classes.
Initially there was the hard c-means (HCM) algorithm [9], which employed the
bivalent (crisp) logic to describe partitions. HCM usually converges quickly, but
is considerably sensitive to initialization, and frequently gets stuck in local min-
ima leading to mediocre partitions.

The introduction of fuzzy logic [12] into clustering problems led to the defi-
nition of the fuzzy partition, in which every input vector can belong to several
classes with various degrees of membership. The first c-means clustering algo-
rithm that employs fuzzy partitions is the so-called fuzzy c-means (FCM) intro-
duced by Bezdek [1], which uses a probabilistic constraint to define the fuzzy
membership functions. FCM reportedly creates finer partitions than HCM, has
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Fig. 1. Fuzzy membership functions produced by FCM in a single dimensional problem.
The multimodality escalates as the fuzzy exponent m grows.

a reduced sensitivity to initial cluster prototypes, but it converges much slower.
In spite of this drawback, FCM is one of the most popular clustering algorithms,
not only in engineering studies, but also in a series of sciences from biology to
sociology.

The fuzzy membership functions provided by FCM are multimodal, the phe-
nomenon being exhibited in Fig. 1. Those input data, which are at approximately
equal distance from two cluster prototypes, receive illogically high fuzzy mem-
berships with respect to distant clusters. Improved partition were introduced in
the theory of fuzzy c-means clustering to alleviate the effects of this multimodal-
ity. The so-called FCM with improved partition (IFP-FCM) added a term to
the objective function of FCM that pushed fuzzy membership functions away
from 1/2 [4]. This method later received a generalization [14], which not just
forces fuzzy membership functions towards 0 or 1, but it also has a metric-based
foundation.

The suppressed fuzzy c-means (s-FCM) algorithm, introduced by Fan et al.
[2], proposed to make a step from FCM towards HCM, by manipulating with the
fuzzy membership functions computed in each iteration of the FCM’s alternating
optimization (AO) scheme. The authors defined a previously set constant sup-
pression rate α ∈ [0, 1], which determined the behavior of the algorithm. In each
iteration, after having determined the new fuzzy membership functions for input
vector with index k, denoted by u1k, u2k, . . . , uck, the algorithm looks for the
largest (winner) membership value uw, with w = arg max{uik|i = 1, 2, . . . , c},
suppresses all non-winner memberships by multiplication with α and raises the
winner membership value uw in such a way that the probabilistic constraint is
not affected. Several selection rules for the suppression rate have been introduced
later (e.g. [3,5,8]), most of them proposing to compute α using the current clus-
ter prototypes and median or average distance between input vectors. Further
on, s-FCM also has several generalized versions that assign each input vector a
dedicated, context-dependent suppression rate in each iteration [11].

This paper introduces an optimal clustering model based on the minimization
of a quadratic objective function, which can act like any of the above mentioned
c-means clustering algorithm. The flexibility is achieved using separate parame-
ter selection rules for each algorithm. Besides giving a unified framework for
many existing methods, we also show that suppressed fuzzy c-means clustering
models are optimal, which is not an obvious fact based on their definition.
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The rest of this paper is structured as follows. Section 2 takes into account
the existing c-means clustering models with improved partition. Section 3 intro-
duces a unified framework for the implementation of improved partition c-means
clustering models. Section 4 gives a comparative evaluation of improved and sup-
pressed partitions. Conclusions are given in the last section.

2 Background

2.1 The Fuzzy c-Means Algorithm

The conventional fuzzy c-means (FCM) algorithm partitions a set of object data
X = {x1,x2, . . . ,xn} into a number of c clusters based on the minimization of
a quadratic objective function, defined as:

JFCM =
c∑

i=1

n∑

k=1

um
ik||xk − vi||2A =

c∑

i=1

n∑

k=1

um
ikd2ik, (1)

where vi represents the prototype or centroid of cluster i (i = 1 . . . c), uik ∈ [0, 1]
is the fuzzy membership function showing the degree to which vector xk belongs
to cluster i, m > 1 is the fuzzyfication parameter, and dik represents the distance
(any inner product norm defined by a symmetrical positive definite matrix A)
between xk and vi. FCM uses a probabilistic partition, meaning that the fuzzy
memberships assigned to any input vector xk with respect to clusters satisfy the
probability constraint

∑c
i=1 uik = 1. The minimization of the objective function

JFCM is achieved by alternately applying the optimization of JFCM over {uik}
with vi fixed, i = 1 . . . c, and the optimization of JFCM over {vi} with uik fixed,
i = 1 . . . c, k = 1 . . . n [1]. In each loop, the optimal values are deduced from the
zero gradient conditions and Lagrange multipliers, and obtained as follows:

u�
ik =

d
−2/(m−1)
ik∑c

j=1 d
−2/(m−1)
jk

∀ i = 1 . . . c,∀ k = 1 . . . n, (2)

v�
i =

∑n
k=1 um

ikxk∑n
k=1 um

ik

∀ i = 1 . . . c. (3)

According to the alternating optimization (AO) scheme of the FCM algo-
rithm, Eqs. (2) and (3) are alternately applied, until cluster prototypes stabilize.

Hard c-means [9] is a special case of FCM, which uses m = 1, and thus the
memberships are obtained by the winner-takes-all rule. Each cluster prototype
will be the average of the input vectors assigned to the given cluster.

2.2 Fuzzy c-Means with Improved Partition

Partitions provided by FCM have an undesired property: in the proximity of
the boundary between two neighbor clusters, fuzzy memberships with respect
to other clusters have local maxima, instead of being close to zero. To suppress
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this phenomenon without losing the fuzzy nature of the algorithm, Höppner and
Klawonn [4] introduced the so-called FCM with improved partition (IFP-FCM),
which is derived from an objective function that additionally contains a reward-
ing term:

JIFP−FCM =
c∑

i=1

n∑

k=1

um
ikd2ik −

n∑

k=1

ak

c∑

i=1

(uik − 1/2)2, (4)

where parameters ak are positive numbers. The second term has the effect of
pushing the fuzzy membership values uik (i = 1 . . . c, k = 1 . . . n) towards 0 or 1,
while maintaining the probabilistic constraint. Later, Zhu et al. [14] introduced
a generalized version of this algorithm, derived from the objective function

JGIFP−FCM =
c∑

i=1

n∑

k=1

um
ikd2ik +

n∑

k=1

ak

c∑

i=1

uik(1 − um−1
ik ), (5)

whose optimization leads to the partition update formula

u�
ik =

(d2ik − ak)−1/(m−1)

c∑
j=1

(d2jk − ak)−1/(m−1)

∀ i = 1 . . . c,∀ k = 1 . . . n. (6)

Equation (6) explains us the behavior of GIFP-FCM: for any input vector
xk, the square of its distances measured from all cluster prototypes are virtually
reduced by a constant positive value ak. The authors also proposed a formula for
the choice of ak: ak = ω min

i
{d2ik|i = 1 . . . c}, with ω ∈ [0.9, 0.99], thus keeping the

square of all distorted distances positive. Using ω = 1 would reduce GIFP-FCM
to HCM.

Both versions of the improved clustering models keep FCM’s prototype
update formula given in Eq. (3).

2.3 Suppression of Fuzzy c-Means

The suppressed fuzzy c-means (s-FCM) algorithm [2] had the declared goal of
reducing the execution time of FCM by improving its convergence speed, while
preserving its fine partition quality. The s-FCM algorithm does not minimize
JFCM, and it was not introduced as an algorithm that minimizes any objective
function. Instead of that, it manipulates with the AO scheme of FCM, by insert-
ing an extra computational step in each iteration, placed between the partition
update formula (2) and prototype update formula (3). This new step deforms
the partition (fuzzy membership functions) according to the following rule:

μik =

{
1 − α + αuik if i = wk ≡ arg max

j
{ujk}

αuik otherwise
, (7)

where μik (i = 1 . . . c, k = 1 . . . n) represents the fuzzy memberships obtained
after suppression. During the iterations of s-FCM, these suppressed membership
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values μik will replace uik in Eq. (3). Suppression rate α = 1 makes s-FCM
identical with FCM, while α = 0 with HCM. Any other values of α lead to
algorithms that differ from all above mentioned ones.

Although wk depends on the index of the input vector xk, in the following
we will denote it by w for the sake of simplicity of formulas. Likewise, the largest
fuzzy membership value assigned to vector xk will be denoted by uw instead of
uwkk, which is not supposed to be confusing, as all formulas are referring to each
single input vector separately.

Later, several papers [3,5,13] proposed various schemes to select the parame-
ter of suppression, α, either as a constant, or a value updated once per iteration.

In an earlier paper [10], we have shown that for any α > 0, the suppression
given in Eq. (7) is equivalent with virtually reducing the distance between xk

and its winner cluster prototype vw, from dwk = ||xk − vw|| to:

d′
wk =

dwk
(
1 + 1−α

αuw

)(m−1)/2
=

dwk√(
1 + 1−α

αuw

)m−1
, (8)

where the denominator is a positive power of a number greater or equal to 1.
All other distances dik, i ∈ {1, 2, . . . , c} \ {w} remain unmodified. The so-called
quasi learning rate of the s-FCM algorithm was defined as η = 1−d′

wk/dwk, just
as in case of competitive clustering algorithms [6], and obtained as

η =

{
1 −

(
1 + 1−α

αuw

)(1−m)/2

if α �= 0
1 if α = 0

. (9)

Although the suppression rate was introduced as a constant α, the quasi
learning rate depends on three variables: fuzzy exponent m, winner (highest)
fuzzy membership value for the given vector uw, and the suppression rate α.

The formulas given in Eqs. (8) and (9) were later used to introduce so-called
generalized suppressed FCM (gs-FCM) algorithms that apply context-dependent
suppression rates αk for each input vector xk in each iteration, according to some
suppression rules [11].

In the following, we will show that all algorithms mentioned in this section
are related and can be described within a certain framework of fuzzy c-means
algorithms with manipulated partition.

3 The Unified Framework

Let us introduce the unified clustering algorithm now. The objective function is
quite similar to the one of GIFP-FCM, but there is a slight modification:

J =
c∑

i=1

n∑

k=1

um
ikd2ik +

n∑

k=1

sik

c∑

i=1

uik(1 − um−1
ik ), (10)
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where the slight modification consists in the nature of the rewarding parameter
denoted this time by sik: we made it dependent on both the cluster (i) and the
input vector (k) it refers to. The objective function is minimized under the prob-
abilistic constraint

∑c
i=1 uik = 1, ∀k = 1 . . . n. For any k = 1 . . . n, parameters

sik (i = 1 . . . c) are treated as constants during each iteration, being determined
at the beginning of the loop based on the distances d1k, d2k, . . . dck. There is one
strict condition to be held: ∀i = 1 . . . c, ∀k = 1 . . . n, sik ≤ min{d2jk|j = 1 . . . c}.
Without this condition some squared distances could become negative, causing
certain fuzzy membership functions have complex (imaginary) values.

The alternating optimization formulas of this objective function, similarly to
those of GIFP-FCM, are obtained as:

u�
ik =

(d2ik − sik)−1/(m−1)

∑c
j=1(d

2
jk − sjk)−1/(m−1)

∀ i = 1 . . . c,∀ k = 1 . . . n, (11)

v�
i =

∑n
k=1 um

ikxk∑n
k=1 um

ik

∀ i = 1 . . . c. (12)

The above optimization formulas should be applied until convergence occurs,
just as in case of the FCM algorithm.

Now we will show this objective function and its optimization scheme is
compatible with all algorithms mentioned in the previous section:

1. The most obvious choice is setting each sik = ω min{d2jk|j = 1 . . . c} = ak,
∀ i = 1 . . . c, ∀ k = 1 . . . n, with previously set ω ∈ [0.9, 0.99]. This way we
obtain the GIFP-FCM algorithm, as introduced in [4]. Setting ω = 1 would
reduce the algorithm to HCM.

2. If we denote by w the index of the cluster whose prototype is closest to vector
xk, that is, w = arg min

j
{djk, j = 1, 2, . . . , c}, and we set

sik =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2ik

⎡

⎢⎣1 −
⎛

⎝ αdq
ik

αdq
ik+(1−α)

c∑

j=1
dq
jk

⎞

⎠
m−1

⎤

⎥⎦ if i = w

0 if i �= w

, (13)

with fuzzy exponent m > 1, q = −2/(m − 1), and α ∈ (0, 1], we obtain a
clustering algorithm equivalent to the suppressed FCM at suppression rate
α. The above formula reduces a lot in the very popular case of m = 2:

sik =

⎧
⎪⎪⎨

⎪⎪⎩

d2ik

(1−α)
c∑

j=1
d−2
jk

(1−α)
c∑

j=1
d−2
jk +αd−2

ik

if i = w

0 if i �= w

. (14)

It is easy to admit that α = 1 reduces the above formula to sik = 0 and the
algorithm to FCM. In order to get the HCM algorithm (equivalent to the
α = 0 case), one needs to set

sik =
{

d2ik if i = w
0 if i �= w

. (15)
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3. Clustering models that use the same suppression rate α for each input vector,
which is updated at the beginning if each loop, based on cluster prototype
positions v1,v2, . . . ,vc, and distances dik (i = 1, . . . , c; k = 1, . . . , n), can be
modeled as follows: in each iteration, first compute the suppression rate α
according to the rule prescribed by the algorithm, and then apply Eq. (13)
to get the necessary sik values.

4. If we wish to model the generalized s-FCM algorithm of type θ [11], namely
the one with constant learning rate η = θ ∈ [0, 1], we need to set:

sik =
{

d2ikθ(2 − θ) if i = w
0 if i �= w

. (16)

Obviously, θ = 0 causes sik = 0, which corresponds to the FCM algorithm,
while θ = 1 reduces our algorithm to HCM.

5. We may also want to model the family of generalized s-FCM algorithms
defined by η = f(u(FCM)

w ) introduced in [11], where u
(FCM)
w stands for the

greatest valued fuzzy membership assigned to input vector xk by the FCM
algorithm using the same fuzzy exponent m:

u(FCM)
w =

(min{djk|j = 1, . . . , c})−2/(m−1)

c∑
j=1

d
−2/(m−1)
jk

=
d

−2/(m−1)
wk

c∑
j=1

d
−2/(m−1)
jk

. (17)

In [11], we defined for example the gs-FCM algorithm of type ρ described by
η = 1 − ρu

(FCM)
w , and gs-FCM of type β given by η = 1 − (u(FCM)

w )β/(1−β).
No matter which one the function f(·) is, to achieve the behavior of the
algorithm, we need to set:

sik =

{
d2ik

[
1 −

(
1 − f2

(
u
(FCM)
w

))]
if i = w

0 if i �= w
, (18)

where u
(FCM)
w can be computed from distances dik (i = 1, . . . , c) using

Eq. (17).
6. For the family of generalized s-FCM algorithms defined by direct formula

between the largest fuzzy membership before (uw) and after (μw) suppression,
we may proceed as follows. Let the general suppression formula be μw =
g(uw). We need to define sik as:

sik =

⎧
⎨

⎩
d2ik

[
1 −

(
uw(1−g(uw))
g(uw)(1−uw)

)m−1
]

if i = w

0 if i �= w
.

For example, the gs-FCM algorithm of type τ , whose definition formula μw =
(uw + τ)/(1 + uwτ), with τ ∈ [0, 1], was inspired by the relativistic addition
of velocities, is achieved via defining sik as:

sik =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d2ik

⎡

⎢⎣1 −
⎛

⎝ (1−τ)dq
ik

dq
ik+τ

c∑

j=1
dq
jk

⎞

⎠
m−1

⎤

⎥⎦ if i = w

0 if i �= w

,
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Data: Input data X = {x1,x2, . . . ,xn}
Data: Fuzzy exponent m > 1
Result: Cluster prototype vectors v1, v2, . . . vc

Result: Labels ξk ∈ {1, 2, . . . , c}, ∀k = 1 . . . n
repeat

for i ∈ {1, 2, ...c} do

V
(up)
i ← 0; V

(dn)
i ← 0

end
q ← −2/(m − 1)
Updating partition

for k ∈ {1, 2, ...n} do
w ← arg min

i
{dik|i = 1, . . . , c}

if dwk = 0 then
for i ∈ {1, 2, ...c} do

ui ← 0
end
uw ← 1

end
else

u
(FCM)
w = dq

wk/
∑c

j=1 dq
jk

Use chosen formula to find sik (i = 1 . . . c) using u
(FCM)
w

for i ∈ {1, 2, ...c} do
δi = d2

ik − sik
end
Σu ← 0
for i ∈ {1, 2, ...c} do

ui ← δ
q/2
i

Σu ← Σu + ui

end
for i ∈ {1, 2, ...c} do

ui ← ui/Σu

end

end
for i ∈ {1, 2, ...c} do

V
(up)
i ← V

(up)
i + um

i xk

V
(dn)
i ← V

(dn)
i + um

i

end

end
Updating cluster prototypes;
for i ∈ {1, 2, ...c} do

vi ← V
(up)
i /V

(dn)
i

end

until convergence occurs;
Labeling each input vector

for k ∈ {1, 2, ...n} do
ξk ← arg mini{||xk − vi||}

end
Algorithm 1: The unified algorithm, in a memory efficient implementation,
similarly to [7]. Partition information uik and rewarding parameters sik, need
not be stored for each input vector separately.
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with q = −2/(m − 1), which in the popular case of fuzzy exponent m = 2
reduces to

sik =

⎧
⎪⎪⎨

⎪⎪⎩

d2ik

c∑

j=1
d−2
jk −d−2

ik

c∑

j=1
d−2
jk +d−2

ik /τ
if i = w

0 if i �= w

.

A memory efficient implementation of the unified algorithm is summarized
in Algorithm 1. As all variants of FCM modeled within the proposed framework
take a step from the base fuzzy c-means algorithm towards hard c-means, let us
refer to the unified framework as hardened fuzzy c-means clustering algorithm
(HFCM).

4 Comparative Evaluation

The aim of this section is to show how the algorithms modeled by HFCM influ-
ence the fuzzy membership functions and evaluate the way they alleviate the
effects of membership function multimodality.

First we consider an input data set consisting of all scalar integer values from
0 to 1000, and set as base algorithm the FCM with fuzzy exponent m = 3. Now
let us apply three different ways of stepping towards HCM: (1) using a lower
fuzzy exponent in FCM, e.g. m = 2; (2) apply suppression of this base FCM
with a constant 0 < α < 1; (3) add a rewarding term to this base FCM to act
like GIFP-FCM at constant 0 < ω < 1.

Figure 2 shows some examples of obtained fuzzy membership functions for all
input values. The base algorithm roughly produces triangular membership func-
tions. Reducing the value of the fuzzy exponent m within the FCM algorithm
changes the aspect of membership functions toward the bell-like shape, mean-
ing that input data in the proximity of cluster prototypes belong to that given
cluster with membership close to 1. This kind of shape change does not occur in
any nontrivial case of HFCM. Suppression at any fixed rate 0 < α < 1 causes a
sudden step in the membership functions in the vicinity of those input data that
are at equal distance from two (or more) cluster prototypes. Otherwise, suppres-
sion maintains the triangular fuzzy membership functions. On the other hand,
GIFP-FCM produces fuzzy membership functions with the shape of a dome with
sharp peak. All variants visibly suppress the strength of multimodality.

Now let us create a test scenario to investigate the alleviated multimodality.
We will have a set of n = n1+n2+n3 two-dimensional vectors, organized in three
compact groups, with their centers in (0,−3), (0, 3), and (10, 0), respectively,
each group normally distributed with a unit variance. The first two groups will
contain an equal number of vectors, n1 = n2 = 2000, while the third group will
be much smaller. We will cluster the input data set into c = 3 clusters using
s-FCM and GIFP-FCM with various parameter values. In any of the cases, if
n3 is too small, it will be neglected by the clustering algorithm, and all three
cluster prototypes will be situated in the area covered by the vectors of the first
two groups. We will investigate what is the minimum size of the third cluster
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Fig. 2. Improved partitions in various tested scenarios. Stepping from FCM (m =
3) towards HCM: via keeping the algorithm but moving fuzzy exponent towards 1,
via keeping fuzzy exponent but suppressing (s-FCM algorithm), and via providing
generalized improved partitions (GIFP-FCM algorithm).

needed for a correct clustering. The lower this limit value is, the more efficient
the suppression of the multimodality effect will be. What we need to know from
the beginning, the FCM algorithm at m = 3 cannot distinguish the third group
from the other two if n3 < 119 even if we initialize the cluster prototypes with
their ideal position, which actually means cheating in the favor of the algorithm.
For m = 5, the limit condition is n3 < 241.

We have employed s-FCM and GIFP-FCM in various circumstances to cluster
the above presented data set. But in this case cluster prototypes were initialized
in a fair way to optimally cover the area of input data. Table 1 exhibits the lowest
values of n3 for which the third cluster was successfully distinguished. As it was
expected, the limit value of n3 is lower as the applied algorithm approaches
HCM (α decreases and ω increases). However, there is something strange in
the outcome of s-FCM indicating, that better accuracy is achieved in case of
choosing a higher fuzzy exponent m and suppressing that partition.

In order to provide a fair comparison between suppressed and improved par-
titions, we need to match the α and ω values somehow. For this purpose we
employed the means of sik rewarding parameters and asserted that for any ω
that value of α should be chosen, for which their corresponding swk values are
equal. In case of m = 3, the formula of corresponding suppression rate is

α =
uw

√
1 − ω − (1 − uw)(1 − ω)

u2
w − (1 − ω)(1 − uw)2

. (19)

Supposing a fixed winner fuzzy membership of uw = 0.9, we obtain the compar-
ison indicated in Table 2: s-FCM seems to be significantly more effective.
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Table 1. Limit values of n3, for which the clusters are identified correctly in case of
tested algorithms is various circumstances

Algorithm m = 2 m = 2.5 m = 3 m = 3.5 m = 4 m = 5

FCM 96 149 188 258 266 310

m α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

s-FCM 3 10 15 24 38 60 106

s-FCM 5 3 3 8 18 38 98

m ω = 0.99 ω = 0.95 ω = 0.9 ω = 0.8 ω = 0.7 ω = 0.5

GIFP-FCM 3 3 12 23 42 66 98

GIFP-FCM 5 6 22 40 75 130 167

All algorithms modeled within the unified framework belong to the same
class of optimality. All of them minimize the same objective function. All of
them make exclusively optimal steps when updating the partition and cluster
prototypes using Eqs. (11) and (12). However, changing rewarding term values
at the beginning of each iteration adjusts the problem to be optimized.

Table 2. Limit values of n3 in case of matched parametrization

Fixed ω for GIFP-FCM 0.99 0.95 0.9 0.8 0.7 0.5 0.3

Corresponding α for s-FCM 0.110 0.242 0.339 0.473 0.574 0.728 0.838

GIFP-FCM at m = 3 3 12 23 42 66 98 139

s-FCM at m = 3 2 2 6 12 22 42 73

5 Conclusions

In this paper we proposed a unified framework for several kinds of FCM algo-
rithms with improved partition. Starting from the objective function of the
GIFP-FCM algorithm, and generalizing its rewarding term, were able to define
parameter settings which make the behavior of the unified algorithm rigorously
correspond to the ones of suppressed FCM, and various kinds of generalized
suppressed FCM, e.g. with constant learning rate, with learning rate defined as
function of winner fuzzy membership, or with direct formula between winner
fuzzy membership before and after suppression. The unified algorithm has also
shown that all s-FCM variants fall in the same class of optimal algorithms as
GIFP-FCM. Numerical tests have shown the superiority of partition suppression
over partition improvement, in terms of cluster size insensitivity.
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References

1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum, New York (1981)

2. Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed fuzzy c-means clustering algorithm.
Pattern Recogn. Lett. 24, 1607–1612 (2003)

3. Fan, J.L., Li, J.: A fixed suppressed rate selection method for suppressed fuzzy
c-means clustering algorithm. Appl. Math. 5, 1275–1283 (2014)
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Abstract. Maximum variance unfolding (MVU) is one of the most
prominent manifold learning techniques for nonlinear dimensionality
reduction. Despite its effectiveness it has proven to be considerably slow
on large data sets, for which fast extensions have been developed. In
this paper we present a novel algorithm which combines classical MVU
and multi-output kernel ridge regression (KRR). The proposed method,
called Selective MVU, is based on a three-step procedure. First, a subset
of distinguished points indicated as central prototypes is selected. Then,
MVU is applied to find the prototypes embedding in the low-dimensional
space. Finally, KRR is used to reconstruct the projections of the remain-
ing samples. Preliminary results on benchmark data sets highlight the
usefulness of Selective MVU which exhibits promising performances in
terms of quality of the data embedding compared to renowned MVU
variants and other state-of-the-art nonlinear methods.

Keywords: Nonlinear dimensionality reduction · Manifold learning ·
Maximum variance unfolding · Prototype selection

1 Introduction

Dimensionality reduction is the process of converting high dimensional data into
meaningful representations of reduced dimensionality. As a preliminary step it
plays a fundamental role in several machine learning tasks by favoring data
visualization, clustering and classification. Dimensionality reduction techniques
are usually divided into linear and nonlinear approaches. Within the family of
nonlinear methods manifold learning algorithms have drawn great interest by
attempting to recover the low dimensional manifold along which data are sup-
posed to lie. These include, among others, Isometric feature mapping [1], Locally
linear embedding [2], Laplacian eigenmaps [3], Local tangent space alignment [4]
and Maximum variance unfolding [5].

Maximum variance unfolding (MVU), also known as Semidefinite embedding,
relies on the notion of isometry which can be defined as a smooth invertible
mapping that behaves locally like a rotation plus a translation. The final low-
dimensional embedding is therefore locally-distance preserving, since it is derived
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by keeping unchanged the distances and angles between neighboring points. The
unfolding process requires the solution of a semidefinite program (SDP) which
maximizes the variance of the points in the feature space, represented by the
trace of the corresponding Gram matrix, under linear equality constraints which
impose the local-isometry conditions.

Despite its effectiveness MVU turns out to be considerably slow when the
number of points increases since solving large semidefinite programs is time-
consuming. To overcome this drawback different approaches can be followed.
One may resort to greedy optimization procedures, as those described in [6]
and [7], able to efficiently achieve the global optimum of semidefinite programs
on large data sets, or to iterative algorithms which transform graph embeddings
into MVU feasible solutions [8]. A further strategy to speed up the algorithm is
to reduce the original SDP to a smaller problem by means of the Gram matrix
factorization. Based on this last approach two fast variants have been developed.
In the first the Gram matrix is reconstructed from a smaller submatrix of inner
products between randomly chosen landmarks [9]. In the second variant matrix
factorization is obtained by expanding the solution of the initial SDP in terms
of the bottom eigenvectors of the graph Laplacian [10].

In this paper we present a novel method for nonlinear dimensionality reduc-
tion which combines MVU and kernel ridge regression [11] and [12]. The pro-
posed algorithm, called Selective MVU, is based on a three-step procedure.
A subset of distinguished points, indicated as prototypes, is first selected from the
original data set. Classical MVU is then applied on the collection of prototypes
to find their embedding in the low d-dimensional space. The projections of the
remaining points are finally derived by learning the nonlinear mapping through
multi-output kernel ridge regression (KRR), which has been successfully used
as out-of-sample extension for manifold learning [13]. The proposed algorithm
enables significant computational savings compared to classical MVU that is in
this case applied only to the set of representative points. It draws inspiration from
both landmark methods for fast embedding [14] and [9], which place a point in
the feature space according to its distance from the projected landmarks, and the
spectral regression paradigm [15], in which the subspace learning problem is cast
into a regression framework. To designate the collection of prototypes we also
propose a novel method based on K-means algorithm that behaves more effec-
tively than random selection. Experiments on eight benchmark data sets high-
light the usefulness of Selective MVU which provides promising results compared
to well-known MVU fast variants and other prominent nonlinear dimensionality
reduction techniques.

The remainder of the paper is organized as follows. Section 2 briefly recalls
maximum variance unfolding. Section 3 presents the novel Selective MVU
algorithm and the prototype selection method. Computational experiments and
results are described in Sect. 4. Conclusions and future developments are dis-
cussed in Sect. 5.
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2 Maximum Variance Unfolding

Maximum variance unfolding imposes local-isometry constraints aimed at pre-
serving both distances and angles between points and their neighbors, in order
to find low-dimensional projections which faithfully represent the input data.

Let Sm = {xi, i ∈ M = {1, 2, . . . ,m}} ⊂ �n be a set of m points approxi-
mately confined to a nonlinear manifold of intrinsic dimension d (d � n). The
unfolding process starts with the construction of the neighborhood graph in
which nodes represent data points and edges neighborhood relations. Then,
it requires the solution of a quadratic optimization problem which maximizes
the variance of the embedding subject to the local-isometry conditions. In
practice, the problem is reformulated as the following semidefinite program
over the Gram matrix Gm = [gij ] of the points in the feature space, with
gij = 〈zi, zj〉 ,∀i, j ∈ M,

max
G

tr (G) (SD)

s.to gii + gjj − 2gij = d2ij ∀i, j ∈ M, ηij = 1, (1)
∑

i,j∈M
gij = 0, (2)

G 	 0, (3)

where dij = ‖xi − xj‖ and the coefficient ηij ∈ {0, 1} takes the value 1 if xj

is among the k-nearest neighbors of xi or xi and xj are common neighbors of
another point in the data set. The first constraints of problem SD preserve the
distances between neighboring points. The second yields a unique solution by
centering the projections on the origin and the third forces the Gram matrix to
be positive semidefinite. The objective function, finally, maximizes the trace of
G which is tantamount to maximizing the total variance of the points in the
low-dimensional space.

Once the matrix G is learned via semidefinite programming the final embed-
ding is obtained by computing its d largest eigenvalues and setting the projec-
tions to Z = VΛ1/2, where Zm×d is the matrix of embedded vectors zi, Λd is
the square diagonal matrix of leading eigenvalues and Vm×d is the matrix of
corresponding eigenvectors.

Although efficient solvers for semidefinite programming exist, problem SD
hardly scales to large data sets. The computational effort increases with the
number of constraints and the size of G. It is possible to show, however, that for
well-sampled manifolds the Gram matrix can be reasonably approximated as the
product of smaller matrices G ≈ QYQ′, where Qm×l (l � m) must be properly
determined. This results in a semidefinite program over the square matrix Y
of size l, which has to be optimized under the local distance constraints. The
low-rank expansion of G represents the key point of two fast MVU extensions
given by Landmark MVU (L-MVU) [9] and Graph Laplacian Regularized MVU
(GL-MVU) [10].
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3 Selective MVU

The distinctive traits of MVU are the maximization of the variance of the embed-
ding and the preservation of the distances between neighboring points. L-MVU
and GL-MVU algorithms represent a substantial improvement over classical
MVU from the computational viewpoint. However, they both diverge from the
original paradigm due to the Gram matrix factorization.

In this paper we present a novel MVU extension, called Selective MVU
(S-MVU), in which the required computing effort is reduced according to a
different framework. Instead of resorting to modified MVU formulations applied
to the entire set of data, the proposed method uses classical MVU to find the
embedding of a collection of distinguished points indicated as prototypes. The
low-dimensional coordinates of the remaining samples are then reconstructed via
multi-output kernel ridge regression (KRR) [13]. The aim of this study, therefore,
is to empirically investigate whether the solution of the original MVU model over
a subset of representative points combined with an accurate regression method
for learning the nonlinear mapping may provide higher quality low-dimensional
projections compared to both MVU fast variants. The proposed Selective MVU
algorithm can be summarized as follows.

Procedure. Selective MVU (S-MVU)

1. Define a collection P ⊆ Sm of prototypes, where card(P ) = p. Let P ⊆ M
be the set of their indices.

2. Find the embedding of P by solving problem SD over the corresponding
Gram matrix Gp = [gij ], where gij = 〈zi, zj〉 ,∀i, j ∈ P. Then, set Z =
VΛ1/2, where Zp×d contains the projections of the prototypes in the feature
space, Λd collects the d leading eigenvalues of G and Vp×d the corresponding
eigenvectors.

3. Learn the mapping via multi-output kernel ridge regression. To this aim,
define a Mercer kernel ρ : �n × �n → � inducing a nonlinear projection
φ : �n → H from the original input space �n to a Hilbert space H. Formulate
the kernel ridge regression model as min ‖Z − 〈Φ,W〉‖2F + λ ‖W‖2H, where
‖ · ‖F is the Frobenius norm of a matrix, the vector Φ collects the images
φ (xi), i ∈ P, in H and the parameter λ controls the trade-off between the
error and the penalty term. The regression coefficients can be computed in
close form as W = Φ′ (U + λIp)

−1 Z, where Ip is the identity matrix of size p
and Up = [uij ] is the kernel matrix associated to ρ, with uij = 〈φ (xi) , φ (xj)〉,
∀i, j ∈ P.

4. Embed the other points xk, k ∈ M\{P}, by setting zk = 〈W′, φ (xk)〉 =
Z′ (U + λIp)

−1 T (xk), where the generic element of the p-dimensional vector
T is given by tj = 〈φ (xj) , φ (xk)〉, j ∈ P.

Notice that, the distance-preserving constraints of problem SD are in this case
imposed only to the collection of prototypes, which are the pivotal elements for
data embedding.
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Fig. 1. Embedding of two artificial data sets. Panels (a) and (d) illustrate the Swiss
roll and the S-curve data sets in the original three-dimensional space. Panels (b) and
(e) show the two-dimensional projection of the randomly selected prototypes by means
of MVU. Panels (c) and (f) depict the final mapping obtained by applying KRR on
the embedded prototypes.

To illustrate the projection based on Selective MVU we applied the proposed
algorithm to two artificial data sets obtained by sampling 6000 points from a
Swiss roll and a S-curve surface, respectively. In particular, we computed the
two-dimensional embedding from the three-dimensional space by setting k = 6,
using the radial basis function (RBF) kernel for KRR and randomly choosing
10% of the available points as prototypes. The projections obtained by S-MVU
are depicted in Fig. 1. As we may observe, although based on a very small number
of representative points the final mapping of both data sets faithfully correspond
to the structure of the manifold in the native three-dimensional space.

3.1 Central Prototypes Selection

The most straightforward way to designate the set of prototypes is to select
them randomly. Random selection is usually applied to identify landmark points
in landmarks-based manifold learning algorithms [14] and [9]. However, it may
generate misleading data projections [16] and [17], especially when data are
affected by noise.

To find the collection of representative points we resorted to a simple but
effective procedure based on clustering. In particular, we first applied K-means
algorithm to partition the points into K distinct clusters. From each cluster we
then selected a predefined number of central prototypes, defined as the points for
which the maximum distance from the other points in the cluster is minimized.
The algorithm can be summarized as follows:

Procedure. Central Prototypes Selection (CPS)

1. Let γ = p/m be the fraction of points in Sm to use as prototypes.
2. Identify a set of K points as initial seeds and partition Sm into K clusters by

applying K-means algorithm.
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3. For each cluster Ch, h = 1, 2, . . . ,K, sort the points in ascending order based
on their maximum distance from the other points in the cluster. Select the
first �γ · card(Ch)� points from the list, where � · � denotes the integer part,
and insert them in the set P of desired prototypes.

The initial seeds for K-means clustering at step 2 were computed through
a multivariate variant of the algorithm proposed in [18], which introduces a
measure of distance between cluster centers and virtually reduces to zero the
variance of different runs. Indeed, it provides the same initial clusters across
multiple experiments by excluding any form of randomness. The algorithm was
originally conceived for clustering along a single dimension. The multivariate
extension considered in this study is described by the following procedure.

Procedure. Seeds Selection (SS)

1. Sort the points in Sm in terms of increasing magnitude, given by their norms
‖xi‖, i ∈ M. Let F be the set of sorted points.

2. Compute the distances Dj =
∥∥xj+1 − xj

∥∥, j = 1, 2, . . . ,m − 1, between all
pairs of consecutive points, where xj denotes point x at position j in F .

3. Identify the indices
{
j1, j2, . . . , j(K−1)

}
corresponding to the K − 1 high-

est distance values and sort them in ascending order. Define the sets of
indices U =

{
j1, j2, . . . , j(K−1), jK

}
and V =

{
j0, j1 + 1, . . . , j(K−1) + 1

}
of

the points serving as upper and lower bounds, respectively, where jK = m
and j0 = 1.

4. Compute the K initial seeds as the mean vectors between the upper and lower
bound points defined above.

To highlight the usefulness of central prototypes selection we considered a
data set composed by 6000 points randomly sampled from a Swiss roll mani-
fold with 1% of uniform distributed outliers, and computed the low-dimensional
embedding by means of alternative techniques. In particular, we analyzed the
effect of randomness in the worst case scenario when outliers are used as land-
marks in L-MVU and prototypes in S-MVU. The different embeddings, obtained
by setting k = 6 for all methods, are illustrated in Fig. 2. As one may notice,
the presence of noise interferes with the unfolding process and induces a major
distortion when the projections are based on the outliers (Panels d and e). The
use of central prototypes in S-MVU, however, mitigates this effect preserving
the structure of the underlying manifold (Panel f ). As shown in Fig. 2, a major
robustness of S-MVU compared to GL-MVU and L-MVU was also observed
when injecting 10% of outliers (Panels g, h and i).

3.2 Complexity of Selective MVU

Classical MVU runs in O
(
m3 + c3

)
over a set of m points, where c is the number

of constraints in the semidefinite program [5]. The time-complexity of KRR is
O

(
p3

)
[13] whereas the prototype selection procedure runs in O

(
m2 + mKIn

)
,

where I is the number of iterations in the K-means algorithm and the quadratic
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Fig. 2. Embedding of a Swiss roll with noise. Panel (a) represents the Swiss roll com-
posed by 6000 points with 1% of uniform distributed outliers (60 outliers). Panels
(b) and (c) describe the projections obtained by GL-MVU (12 Laplacian eigenvectors
used) and L-MVU (30 landmarks used). Panels (d) and (e) illustrate the mapping of
L-MVU (30 outliers used as landmarks) and S-MVU (600 prototypes composed by the
60 outliers and 540 randomly chosen points). Panel (f) shows the embedding of S-MVU
based on 600 central prototypes. Finally, panels (g), (h) and (i) display the unfolding
of GL-MVU, L-MVU and S-MVU, respectively, on the Swiss roll data set with 10% of
outliers.

term refers to the intra-clusters distances computation. The overall complexity
of S-MVU is, therefore, O

(
m2 + mKIn + p3 + c3

)
. Major computational advan-

tages are obtained when p � m, where p can be naturally expressed as a fraction
γ ∈ (0, 1] of the available points, p = �γm�. Experiments on artificial manifold
data sets and on medium-size data sets from the UCI Repository [19] empiri-
cally showed that γ can be fixed to a very small value (γ ≈ 0.1) to obtain a fast
low-dimensional unfolding at the expense of a reduced loss in the quality of the
embedding.

4 Experiments and Results

To evaluate the usefulness of Selective MVU we resorted to a variety of criteria
based on the concept of loss of quality, which is supposed to be strongly related
to the preservation of the data geometry [20]. Most of these criteria can be
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divided into local and global approaches which are focused, respectively, on the
local neighborhood and the global structure preservation.

Computational tests were performed on eight benchmark data sets mostly
available at [19] and given by Page Blocks, Wall-Following Robot Navigation
(Wall), Gisette, Isolet, U.S. Postal Service Handwritten Digits (USPS), Human
Activity Recognition Using Smartphones (Smartphones), Pen-Based Recogni-
tion of Handwritten Digits (Penbased) and EEG Eye State (EEG). Prior to the
experiments missing values were removed and data were standardized. These
data sets are described in Table 1 in terms of number of points, attributes and
dimensionality d∗ of the embedding space. This last was estimated by analyz-
ing the difference between consecutive eigenvalues in the eigenspectrum of the
landmark Gram matrix in L-MVU, as suggested in [9].

Despite MVU behaves like local methods by preserving distances and angles
between neighboring points it can be also regarded as a global technique
since it maximizes the overall variance of the embedding. Besides L-MVU and
GL-MVU the proposed algorithm was therefore compared to three state-of-the-
art local and global approaches. Among local methods we considered Locally
linear embedding (LLE) and Local tangent space alignment (LTSA). The for-
mer emerged as the most effective manifold learning algorithm for microarray
data embedding [21]; the latter received great attention for its simple geomet-
ric intuition and straightforward implementation. Among global techniques we
focused on Kernel PCA (KPCA) with RBF kernel, which has been related to
MVU in a recent taxonomy proposed in [22]. Indeed, both methods are spectral
techniques which convert the dimensionality reduction problem into the eigen-
decomposition of a kernel matrix.

In the following experiments some parameters were fixed. The number of
Laplacian eigenvectors in GL-MVU was set to 12 whereas 30 landmarks were
used in L-MVU to limit the computing time. The percentage of points taken as
prototypes in S-MVU was fixed to 0.1 for all data sets except for EEG, for which
it was set to 0.05. The number of clusters in procedure CPS was found through

Table 1. Description of the data sets. The last column indicates the estimated dimen-
sionality of the embedding space.

ID Data set Points Attributes d∗

1 Pageblocks 5406 10 5

2 Wall 5456 24 6

3 Gisette 7000 5000 10

4 Isolet 7797 617 6

5 USPS 9298 256 6

6 Smartphones 10299 561 5

7 Penbased 10992 16 6

8 EEG 14980 14 6
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a grid search so to minimize the neighborhood size for which the connection of
the neighborhood graph was achieved. Finally, the RBF kernel was applied in
the KRR model by setting λ = 0.1 and fixing the RBF parameter to 10j for a
given j in the interval [−3,−1]. The same RBF parameter’s values were tested
for KPCA. All methods were implemented in MATLAB. Computations were run
on a 3.40 GHz quad-core processor with 16 GB RAM.

To analyse the local neighborhood preservation we resorted to two local cri-
teria which measure the degree of overlap between the neighboring sets of a
point and of its embedding. The first is represented by the Local-Continuity
Meta-Criterion (QL) [23], which is defined as the average size of the overlap
of the neighboring sets. The second is given by Trustworthiness and Continu-
ity (QTC) [24], which is based on the exchange of indices of neighboring sam-
ples in the input and the feature space according to the pairwise Euclidean

Fig. 3. Local and global quality assessment. Each panel indicates the performance of
the competing algorithms on the eight data sets.
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distances. QTC is defined as a linear combination of two measures which evalu-
ate, respectively, the degree of trustworthiness that points farther away enter the
neighborhood of a sample in the embedding and the degree of continuity that
points originally included in the neighborhood are pushed farther away. The
coefficient of the linear combination was here fixed to 0.5. The above criteria
have proven to be good estimates of the embedding quality. In particular, the
greater their values are in the interval [0, 1], the better is the projection.

The global structure holding performance was, instead, analyzed by means of
a global metric recently proposed in [25]. This metric, here denoted as QG, eval-
uates the difference of the transforming scales of the embedding set compared to
the original data manifold along various directions. This is achieved by comput-
ing a shortest path tree of the neighborhood graph and using the Spearman’s
rank order correlation coefficient defined on the rankings of the main branches
lengths. The original global manifold is well preserved in the data embedding as
the value of QG approaches 1.

The results obtained by the competing techniques are depicted in Fig. 3,
where each panel collects the performances for a given measure. The comput-
ing time for data embedding recorded by selecting for each method the mini-
mum number of neighbors generating a connected neighborhood graph (provided
k ≥ 4), and once K has been fixed for S-MVU, is shown in Fig. 4. Since the afore-
mentioned criteria are highly sensitive to the neighborhood size, to perform a
fair comparison we computed QL, QTC and QG for a fixed value of k that was
set equal to the number of neighbors for which the corresponding neighborhood
graph turned out to be connected for all methods.

According to the local quality assessment the embedding generated by
S-MVU and KPCA more faithfully preserved the local neighborhood structure of

Fig. 4. Computing time (secs) for embedding each of the eight data sets.
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the original manifold. In particular, S-MVU dominated both MVU extensions,
LLE and LTSA, and provided better results on the majority of the data sets
(6 out of 8) compared to KPCA. The proposed algorithm exhibited also notable
performances in terms of global structure preservation, as indicated by QG.
Therefore, the embedding set of S-MVU encountered a smaller distortion of the
global shape of the manifold on most data sets. It is worth to notice that, whereas
L-MVU and LLE performed generally better than GL-MVU and LTSA accord-
ing to the local measures, they were often dominated by the latter based on the
global metric. The proposed S-MVU algorithm, instead, behaved well both in
terms of local and global quality assessment.

5 Conclusions and Future Extensions

In this paper we described a novel method for nonlinear dimensionality reduction
indicated as Selective MVU (S-MVU). In the proposed algorithm the unfolding
process is guided by a subset of distinguished points called central prototypes,
whose embedding is computed by means of classical MVU. The projections
of the remaining samples are thereafter reconstructed via multi-output kernel
ridge regression. S-MVU was empirically compared to two well-known fast MVU
extensions and to three prominent nonlinear dimensionality reduction meth-
ods. On several benchmark data sets it achieved noteworthy performances and
emerged as a valid alternative to state-of-the-art techniques in terms of quality
of the data projection.

The present study can be extended in several directions. First, novel
procedures for selecting the representative points or embedding the set of non-
prototypes samples could be developed. It would be also worthwhile to inves-
tigate the effectiveness of greedy optimization algorithms for solving problem
SD in Selective MVU to speed up the unfolding process. Finally, further com-
putational tests could be performed by comparing the accuracy that alternative
classification algorithms achieve on the different data projections.
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Abstract. In this work, we are addressing the problem of cooperative
multi-agent learning for distributed decision making in non stationary
environments. Our principal focus is to improve learning by exchanging
information between local neighbors (agents) and to ensure the adap-
tion to the new environmental form without ignoring knowledge already
acquired. First, a distributed dynamic correlation matrix based on multi-
Q learning method, presented in [1], is evaluated. To overcome the
shortcomings of this method, a new multi-agent reinforcement learning
approach and a new cooperative action selection strategy are developed.
Several simulation tests are conducted using a cooperative foraging task
with a single moving target and show the efficiency of the proposed meth-
ods in the case of large, unknown and temporary dynamic environments.

Keywords: Cooperative multi-agent learning · Distributed decision
making · Reinforcement learning · Cooperative foraging task · Exchang-
ing information · Adaptation to environmental changes · Large ·
Unknown and dynamic environments

1 Introduction

Multi-robot systems (MRSs) have drawn considerable attentions to both indus-
try and academia in the last two decades. A team of robots, though may be not
powerful individually, can effectively compensate and compromise their limita-
tions by cooperation [2]. The multi-robot system could accomplish a task in a
faster, cheaper and more efficient way than a single robot. However, the complex-
ity of many required tasks makes them difficult to solve with preprogrammed
agent behaviors. The robots must instead discover a solution on their own, using
learning. A significant part of the research on multi-agent learning concerns rein-
forcement learning techniques. Robots uses multi-agent reinforcement learning
(MARL) to acquire a wide spectrum of skills including navigation [1–8], object
transportation [9] and playing soccer [10].

MARL is, however, faced with several problems including, the necessity of
a huge number of learning trials especially if the state space is high and the
need of a particular parameter settings. The tradeoff between exploration and
exploitation is also a popular challenge of RL. Each agent faces the following
c© Springer International Publishing Switzerland 2015
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dilemma: either it chooses a random action in order to explore new area and
enlarge its knowledge about the environment (exploration), or it chooses an
action which looks optimal given the past observations and rewards (exploita-
tion) [3,4,8]. Algorithms such as ε-greedy, Boltzmann distribution, Simulated
annealing, Probability Matching and Optimistic Initial Values are proposed to
solve this dilemma [3]. However, they are designed for simply assuming the envi-
ronment is stationary.

Learning in unknown and non stationary environments is yet more challeng-
ing. In this case, each agent needs to constantly explore the environment in order
to integrate the most recent changes into its knowledge of the world but such
exploration should not be done excessively that performance is greatly degraded.
Many previous works which deal with reinforcement learning in multi-robot sys-
tems [11,12] keep a significant exploration rate to ensure the convergence of the
learning algorithm. However, this exploration is randomly and doesn’t directly
benefit from other robots’ knowledge. This will lead to unnecessary exploration
intervals and therefore the slowdown of the system’s convergence. Other distrib-
uted methods where agents help each other by exchanging information between
them like those using joint-Qtables (as examples: the policy averaging (PA)
method [13] and the experience counting (EC) method [6,7]) or the DDCM
method [14] are promising in stationary environments but fail to solve non sta-
tionary problems. As the environment changes, some previous knowledge become
incorrect. Even if an agent detects the change, it still uses incorrect information
received from other collaborators. A successful adaptation to the new environ-
mental form is then difficult, even impossible, especially when there is a limited
communication range between agents. An example of a distributed RL method
using local coordination is the D-DCM-Multi-Q method (a distributed dynamic
correlation matrix based multi-Q method) [1]. The cooperation is ensured by
considering the correlated Q-values of neighboring robots in addition to each
individual robot’s Q-value when updating this individual information.

The present work is motivated by the same problem as in [1]: a group of
autonomous mobile agents should learn and collaborate together in order to effi-
ciently perform a cooperative foraging task in a large, unknown and temporary
dynamic environment. Our previous work, presented in [15], deals with non sta-
tionary environments but is restricted to single-agent systems. The present paper
extends it to multi-agent systems. Improving multi-agent learning in dynamic
environment is more difficult due to the problem of coordination and new ideas
are proposed to deal with it, especially accelerating learning by exchanging
information between local neighboring agents. Moreover, agents should be able
to adapt to the new environmental form without ignoring knowledge already
acquired. Firstly, we will demonstrate the shortcomings of the D-DCM-MultiQ
approach in both stationary and non-stationary environments. To overcome
these limitations, a new model-free approach, called CMRL-MRMT (The Coop-
erative Multi-agent learning approach based on the most Recently Modified
Transitions), is developed. This method is inspired from the D-DCM-MultiQ
approach as regards the distribution of learning over several cooperative agents
but uses the most recently modified Qvalues in order to facilitate dealing with
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the dynamics of the environment. A new cooperative action selection strategy,
called CG-MPA (the Cooperative Greedy policy favoring the most promising
actions), is also established. The most promising action is whose Qvalue is the
highest and the most recently modified and which leads to a more promising
State. A more promising next state is the least recently visited state whose
hightest Qvalue is greater than that of the actual state. Using this EEP, the
exploration is done only if needed wich ensures a quick adaptation to changes
as well as the convergence to a constant solution when the environment remains
stationnary.

The rest of the paper is organized as follows. Problem statement is described
in Sect. 2. In Sect. 3, the D-DCM-Multi-Q approach is presented and briefly
reviewed. Section 4 is dedicated to present our suggestions for improvement. Sev-
eral experiences are conducted in Sect. 5 showing the efficiency of our proposals.
Some concluding remarks and future works are discussed in Sect. 6.

2 Problem Statement

Our objective is to provide learning capabilities to a group of agents in order
to perform a common task in a distributed manner. The work assigned to the
agents is a multi-agent foraging task with a single moving target in a large and
discrete 2D environment. Agents make decisions only based on the interaction
with the environment as well as the interaction with local neighbors. The general
state transition process of the system is a tuple of (n, S, A, T, R), where n is the
number of agent’s neighbors. S is a set of states which is defined as S = [s1, .., sm],
where m is the number of states. A is a set of actions available to an agent,which
is defined as A = [a1, .., ap]. R : S× A −→ r is the reward function for an agent
and T is a state transition function (T is a probability distribution over S) [16].
The action set for each agent are defined as “up”, “right”, “down” and “left”.
It is assumed that all agents are initially in the nest (the starting position), and
each agent can locate itself using its on-board sensors such as encoders and can
detect the target or obstacles using sonar sensors. Each robot has limited onboard
communication range and can share its state information with its neighbors that
are within its communication range. The foraging task may be abstractly viewed
as a sequence of two alternating tasks for each agent:

– A hunting phase: The agents Start from the nest and try to catch the moving
prey(target) together. Agents cannot pass through any obstacles but more
than one agent can occupy the same cell. Unlike [1], the prey will no longer
move at each time step (intensive displacements) but performs several suc-
cessive displacements after N iterations. Once one agent captures the prey
(occupy the same cell as the prey), the prey stops moving and this agent will
wait for other agents to reach the target (Waiting Phase).

– Ferrying phase: Once all agents capture the prey, they start a collective trans-
port phase from their actual position to the nest. As agents must follow the
same path, they select the shortest path among all agents’ hunting paths.
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3 A Review of the D-DCM-MultiQ Method

D-DCM-MultiQ is a distributed reinforcement learning method for multi-agent
cooperation proposed by Hongliang Guo and Yan Meng [1]. In this method, the
Q-value of the ith agent at the state si is updated with its own state value as well
as the state values of its neighboring agents at the next state s’i. The updated
equation of the ith agent’s Q-value is as follows:

Qk+1,i (si, ai) = (1 − αk) Qk,i (si, ai) + αk∗⎛

⎝Rk,i (si, ai) + γ
N∑

j=1

f (i, j) maxaj
Q

k,j

(
s

′
i, aj

)
⎞

⎠ (1)

In what follows, we explain the failure of this method to solve the hunting task
in both stationary and non stationary environments.

3.1 Failure to Complete the Hunting Task (Blockage of Learning)

By exploiting the knowledge of its neighbors, an agent can spread promising
information (related to the prey) to intermediate states even before detecting
the prey. However, the Boltzmann action selection strategy, which is applied
in [1], isn’t cooperative. When choosing the next action to perform, the agent
can only exploit its own information. Therefore, the selected action may be
not the best; i.e. it doesn’t lead to another state having higher Qvalues than the
actual state. The agent will loop repeatedly between two intermediate states. The
opportunity to exit from the loop is very low since, using the same parameter
settings as in [1] (Reward = −90 if the agent hits obstacles, 180 if it reaches
the goal and −1 otherwise), the probability assigned to the transition causing
the blockage is much higher than other probabilities. The blockage can occur
before the convergence of the multi-agent system at any stage of learning: near
the target since first episodes and away from the target when the Boltzmann
Temperature decreases.

3.2 Inappropriate Dynamic Scenario

When dealing with a non stationary environment, Hongliang Guo and Yan
Meng [1] represent the state space of each agent by the relative position between
its current position and the target’s position. Such a representation is employed
in order to reduce the number of state-action pairs compared with the num-
ber using absolute positions for state definitions. For example, for the agent at
(3, 4) and the target at (4, 3), the state, defined as (1,−1), is the same as the
one where the agent at (6, 5) and the target at (7, 4). Conducted experiments
in [1] demonstrate that the D-DCM-MultiQ algorithm converges in the dynamic
case with small oscillations. This oscillation is caused by the random movement
of the target which may lead to probabilistic rewards into the agents’ Qvalues.
However:
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– The representation of the state space by relative positions is possible only if the
environment is without obstacles given that obstacles may limit the observ-
ability of the agent. That’s why the efficiency of this representation doesn’t
suit the majority of robotic applications: presence of obstacles, interference
between robots, etc.

– The successful adaptation of the robotic system to the environmental changes
isn’t ensured by the D-DCM-MultiQ method and the Boltzmann policy, as
outlined in [1], but by the random movements of the target. More clearly, the
scenario adopted in [1,14] assumes that, at each time step, the target has
the equal probability to move to one of its neighboring grids or stay at the
original grid and that it still moves even after being captured by one or more
robots; the episode finishes only if the target is grabbed by all agents. As the
environment is small (a 10 × 10 grid environment without obstacles) and the
target is able to move at any time step, even if the agent fails to catch the
target, the target ends up by finding itself in the same cell as the blocked
agent and then makes it move again.

Consequently, by expanding the environment’s size and decreasing the move-
ment of the target over time, the D-DCM-MultiQ method is no longer able to
deal with non stationary problems. On another hand, by using the Boltzmann
policy and the D-DCM-MultiQ method, blocking situations which are observed
in static environments are increased in the dynamic case: when an agent detects
the disappearance of the target, it still uses its previous knowledge related to
the ancient position of this target. As a result, incorrect information is spread-
ing. Moreover, by adopting the Boltzmann policy, actions having the highest
Qvalue are all the more privileged as the learning progresses and the Boltzmann
temperature decreases.

4 Our Proposed Learning Approach for Cooperative
Multi-agents Systems in Dynamic Environments

We aim to find a solution that solves the blockage caused by the non-continuous
propagation of the goal’s reward and improves the cooperation between neigh-
boring agents to ensure an efficient adaptation to environment’s changes without
ignoring knowledge already acquired.

4.1 First Proposal: The Action Selection Strategy

As we are interested in cooperative multi-agent systems, we aim to ensure that
each agent gets the most out of its neighboring knowledge in order to limit
the risk of blockage. One possible solution is to introduce the information of
neighboring agents in the exploration/exploitation policy (EEP) in addition to
when updating the agent’s state-action pair. More clearly, at each learning step,
the agent chooses the next action to perform based on its own information as well
as the information of its neighbors which increases the efficiency of the selected
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action since the propagation of promising information from the target will be
correctly followed.

In another hand,when the environment changes, some previous information
becomes invalid. Thus, it’s useful to give a top priority to recent learning steps.

To this end, we propose a new EEP, called CG-MPA (the Cooperative
Boltzmann policy favoring the most promising actions). This EEP, summur-
ized in Algorithm 1 (Fig. 1), promotes the action whose Qvalue is the highest
and the most recently modified and which leads to a more promising State.

Fig. 1. The CG-MPA policy

As shown in Fig. 1, the list L stores the most promising actions in the current
state s while the list L′ stores the actions of L leading to a more promising next
state s′.

Each learner stores a table Q : S ×A → R. In RL problems, the action-value
function is defined as the expected infinite discounted sum of rewards that the
agent will gain if it chooses the action a in the state s and follows the optimal
policy. In addition to that, a second table lastChange : S ×A → R is used. This
table memorizes, for each pair (s, a), the moment of the last modification of the
corresponding Qvalue. The update of LastChange is as follows:

– Initially, LastChange(s,a)=0, for all (s,a) SxA.
– At each time step t, after updating the last experimented transiton (s, a),

if(Qt(s, a) �= Qt−1(s, a)) : LastChange(s, a) = t (2)
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For each action a in the actual state s, the agent has to determine the neighbor
having the most recently modified Qvalue Qneighbora(s), as mentioned in step
1 of the algorithm 1. As a result, M Qvalues are obtained relatively to the M
possible actions in the state s. Then, it selects the highest Qvalue of them, as
shown in step2. The obtained value, maxQ(s), presents the highest and the most
recently modified Qvalue of the state s.

As mentioned in step 4, in the case that the list L contains a single action a
leading to the goal state, this action will be immediately chosen without using
the second list L′. Consequently, the position of the goal must be known without
really executing a in s. One possible solution is to store the position of the goal
starget and update it as follows:

– Initially starget=null
– After reaching the goal, update starget; starget ← actualPosition
– If the agent visits the ancient goal position without hitting the prey, update

starget; starget ← null

According to step 7, the agent has to identify the next state s′ resulting from
executing action a in the actual state s. Action a isn’t really experienced and
according to reinforcement learning properties, an agent can determine the char-
acteristics of any state only after visiting it. However, in our case study, agents
move in a discrete and a two-dimensional space, defined by the coordinates
(x, y), by performing the following actions: “up”, “right”, “down” and “left”.
So, to calculate the coordinates of the next state, agents don’t need to move
neither to know the nature of that state (an obstacle, the prey or an intermedi-
ate state). In the contrary, knowing the next action to perform, the coordinates
of the next state is automatically deduced from those of the actual state (For
example: Next-action= up −→ Next-state=(x − 1, y)).

As noted in step 9, each action in the list L will be stored in the second
list L′ only if the agent trying the action a in the actual state s will move to a
more promising state s′, i.e., a state s′ having a higher Qvalue than the current
state s. The chosen action will be then one of those stored in L′ (step 11). In the
worse case (L′ is empty), the agent will resort to an exploration.

In order to promote the exploration of new areas, we can alternate between
a random selection and a selection favoring the least recently tested states. To
do that, each agent memorizes a table Anc : S → R, storing the seniority of
each visited state. Anc(s) = t means that the last visit of state s was occurred
at time t. As mentioned in step 15, when the agent chooses the next action to
perform according to the least visited states, it should avoid known obstacles.
This is in the aim to avoid stuck near corners (for example: L obstacle or the
extremities of the environment, etc.). The random exploration (step 17) is with-
out avoiding known obstacles. This is in order to detect moving obstacles and
to find new areas that become recently reachable.

To avoid obstacles, a specific distribution of reward is needed:

– R < 0 if the agent hits an obstacle,
– R > 0 if the agent captures the prey,
– R = 0 otherwise.
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By this definition, actions related to negative Qvalues are actions leading to
collision with obstacles.

4.2 Second Proposal: The Proposed Learning Method Strategy

To ensure an efficient adaptation to the environmental changes, we propose a
new reinforcement learning approach, entitled CMRL-MRMT (The Cooperative
Multi-agent learning approach based on the most Recently Modified Transi-
tions). This method is inspired from the D-DCM-MultiQ approach as regards
the distribution of learning over local neighboring agents but uses the most
recently modified Qvalues in order to facilitate dealing with non-stationarity.
The Q-value of the ith agent is updated through the following equation:

Qt,i(s, a) = (1 − α) Qt−1,i (s, a) + α( Rt,i(s, a) + γmaxbQt,k (s′, b)) (3)

where Qt,i(s, a) represents the Q-value of the ith agent at the time step t rel-
atively to the state s and the action a. Rt,i(s, a) is the immediate reward
of the ith agent at time step t after executing the action a at the state
s and s′ is its actual state. γ is the decaying factor and α is the learn-
ing rate. maxbQt,k (s′, b) represents the most promising Qvalue at the state
s’; k = argmaxj (LastChangedj (s′, b)), where b ∈ A, j refers to each agent
in the neighborhood including the ith agent and k refers to the agent having
the most recently modified Qvalue of the transition (s′, b). There’s M=|A |most
recently modified Qvalues relative to M possible transitions at the state s′. The
most promising Qvalue at the state s′ is therefore the highest of these M values.

The learning algorithm is described in Fig. 2.

5 Experiments and Analysis

In this section, we will evaluate the impact of our proposed learning strategies
on a distributed multi-agent system. As described earlier, the testing scenario
is a cooperative foraging task with a single moving target (prey). We aim to
evaluate our learning algorithm in a wide unknown environment. For that, we
extend our testing environment from 10 × 10 (as in [1]) to 30 × 30 grid world.

The testing scenario is simulated using Simbad, a java3d robot simulator [17].
As shown in Fig. 3, the cell, called the nest, is the starting position. A ball,
situated at the bottom right corner, refers to the prey. The maze is surrounded
by walls and contains obstacles.

In the following experiments, the decline factor γ and the learning rate α are
defined as 0.9 for all the agents. The neighborhood range for each agent is defined
as 9 (< size

3 ). For the rewards, it is defined as 0 for each regular action without
hitting any obstacle or the target. If an agent hits a wall, it gets a penalty of
-90 and if it captures the prey, it gets a reward of 180. All entries of the tables
Q and LastChange are initialized to zero.

For each test, 40 runs are conducted. Every run consists of 200 episodes
and starts initially with an environment in the form of the Fig. 3-a. After 100
episodes, the environment changes to the form of Fig. 3-b.
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Fig. 2. The pseudo code of the CMRL-MRMT algorithm

5.1 Impact of Least Recently Visited States on the Selection
of the Next State

In this section, the impact of the selection of actions leading to least recently
visited states on the learning performance is studied. Two systems of three agents
are compared. The CG-MPA policy is adopted with varying the value of the
parameter p. As described earlier, p defines the probability to choose a random
action instead of that leading to the least recently visited states:

– 1st system with p=1 (a fully random choice)
– 2nd system with p=0.5 (50 % a random choice and 50 % the selection of the

least recently visited state with avoiding known obstacles)

Fig. 3. The testing environment with four agents
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Fig. 4. The number of time steps needed on each epsisode over time (average of forty
experiences)

From Fig. 4-a, we can see that, in both systems, the exploration is important
only when it’s needed, i.e., when an unordered backward-propagation of the
goal’s reward is detected. This can happen during first episodes ([0-50] episodes)
given that the environment is unknown and after the displacement of the prey
([101-117] episodes) to ensure the adaptation to the new form of the enviornment.
Using the CMRL-MRMT algorithm, both systems converges to a near-optimal
solution during the first 100 episodes (a static environment) as well as after the
environment’s change. The constructed path is also constant:

– Before the displacement of the prey: about 117 iterations for the 1st system
and 118 iterations for the 2nd system (the length of the optimal path is 116
iterations)

– After the displacement of the prey: about 90 iterations for the 1st system
and 89 iterations for the 2nd system (the length of the optimal path is 82
iterations)

However, the exploration favoring least recently visited states accelerates consid-
erably learning. Using the CG-LRVS policy, a reduction of time steps needed for
the convergence is ensured in the stationary case as well as after the displacement
of the prey.

5.2 Impact of Increasing the Number of Agents on Learning
Performance

We aim to study the impact of increasing the agents’ number on the learning
performance. For that, two systems of three and eight agents are considered.
Figure 4-b shows that, during first four episodes, the 8 agents’ system is slower
than the 3 agents’system since more agents try to find the target and because
learning is still at the beginning. However, learning is considerably accelerated
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by increasing the agents’ number during the first 100 episodes. The number
of episodes and time steps needed for the adaptation to the new form of the
environment is also decreased.

These relevant results remained valid when changing the size of the environ-
ment. Several tests have been conducted while varying the environment’s size
from 10 × 10 cells to 40 × 40 cells and have demonstrate the effeciency of our
method.

6 Conclusion

In this paper, the problem of cooperative multi-agent learning for distributed
decision making is studied. We have shown the shortcomings of the D-DCM-
Multi-Q learning approach in both stationary and dynamic environments.

As a solution, we have formalized a new learning approach where the update
of Qvalues depends principally on most recently modified information. A new
EEP is also established by which the exploration is priviliged only if an unordered
backward-propagation of the goal’s reward is detected. Combining these two pro-
posals is necessary for the successful completion of the learning task. It allows
the learners to avoid blocking situations, to adapt to the new changes and to
converge to a constant and near-optimal path when the environment remains sta-
tionary. On another hand, an exploration favoring least recently visited states is
considered. This one is not essential for the system convergence but is extremely
useful in terms of accelerating learning in presence of large state spaces and
therefore increasing the system efficiency. Our method was validated through a
cooperative foraging task containing a temporary moving target. Several satisfac-
tory results are shown demonstrating the effectiveness of this approach. These
relevant results remain valid when changing the location of obstacles. Agents
succeed to construct a new path if the old one is blocked by obstacles. However,
they can’t detect the existance of a shortcut since the exploration of new areas
is only possible if the actual solution is no longer adequate. In our futur works,
we expect to further improve our method to overcome this limitation. Testing
more complex scenarios, as continuous state spaces, is also interesting.
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Abstract. We present a novel method of query execution in similarity-
based databases which adopts techniques commonly used in traditional
programming language compilers. Our method is based on decomposition
of relational algebra operators into a small set of simple operations which
are subject of further optimizations. It shows up that with a small set
of optimizations rules our system itself is able to infer efficient algorithms
for data processing. Furthermore, operations we propose are compatible
with the map/reduce approach to data processing, and thus, allows for
implicitly parallel or distributed data processing.

Keywords: Domain similarities · Relational model of data · Query
execution · Query optimization · Fuzzy logic · Parallel data processing

1 Introduction

In this paper we deal with database systems based on generalization of the Codd
data model [4,6] which allows queries with imprecise matches. This general-
ization results by considering complete residuated lattices as a structure rep-
resenting degrees to which particular tuple (row in data table) satisfies given
condition. We may consider, for instance, a database query “show all cars which
cost $10,000”. Traditional database system will return a list of all cars costing
exactly $10,000, if there is a car for $9.900, it will not be included into the result,
even though that from the viewpoint of the user it might be a reasonable result.
Generalization we use allows approximate queries like “show all cars which cost
about $10,000” and result of such query is a set of tuples with ranks indicat-
ing proximity of a tuple to the given query. If the car costs $10,000 the rank
of the tuple will be 1, if not, the rank will be lower. In essence, the ranks have
comparative meaning—higher ranks represent better matches. Let us note that
our model is not an extension built on top of the classic model like most of
query systems going in this direction. Unlike other approaches [7,11,15,16,20],
the model is not aimed solely on ranking and querying. Indeed, the formaliza-
tion of similarities and use of the general scales of ranks allows us to properly

Supported by grant no. 202/12/P167 of the Czech Science Foundation and IGA UP
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formalize various similarity-based dependencies in data, e.g., functional depen-
dencies and keys [4,6].

The aim of this paper is to propose a general framework for database query
processing which allows implicit query optimizations and efficient data retrieval.
In order to achieve this goal we adopt techniques used by traditional compilers.

The paper is organized as follows. First, we provide a short survey on exist-
ing approaches and introduction to the generalized relational model of data we
use. Afterwards, we introduce operations for data processing and their relation-
ship to the relational algebra. Subsequently, we describe optimizations that are
used to improve data processing. The paper is concluded with the section on
parallelization and experimental evaluation of our approach.

Related Works. In previous works, the data model was studied in terms
of relational algebra and calculus [4,6], query language was proposed [18] as well
as algorithms for some particular types of queries [19]. In [3] is presented an app-
roach which maps operators of the generalized relational model [4,6] to operation
of the RDBMS Oracle. This approach exploits robustness of the RDBMS, how-
ever is not efficient, since the RDBMS does not have any information about
the generalized relational model and is unable to perform optimizations. In [19]
are presented basic optimizations techniques for some common types of queries,
especially those with the top-k operator (returning top k best matching results)
where it is possible to use a variant of the Fagin’s algorithm [11]. Several similar
database systems involving ranking in relational databases, including the prob-
ably the best known RankSQL [20] are using a rank-relational model (a model
built on top of the Codd model) in which tuples in relations are annotated by
numerical scores computed from so-called predicate scores by monotone scor-
ing functions. Since our model is more general it is not always possible to use
algorithms from these database management systems along with our model.

2 Generalized Relational Model of Data

We outline here the foundations of our model and introduce basic notions nec-
essary for understanding of the basic type of queries considered in this paper,
more details can be found in [4,6,19].

Our model can be seen as a generalization of the classic RM which results
by substituting the two-element Boolean algebra which is the implicit struc-
ture of yes/no matches in the classic RM by a more general structure, namely
a (complete) residuated lattice [12].

Model we use departs from the yes/no matches and allows general “degrees
of matches” upon which we build the generalized relational model. In the classic
RM, the concept of a relation on a relation scheme R (a finite set of attributes),
which is considered as a finite subset of a cartesian product

∏
y∈R Dy of domains

Dy of attributes y ∈ R can be identified with an indicator function

D :
∏

y∈R Dy → {0, 1} (1)
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so that for only finitely many tuples r ∈ ∏
y∈R Dy we have D(r) = 1. If D is

viewed as a result of query Q, then D(r) = 1 is interpreted so that “the tuple r
matches the query Q”. In our model, we replace {0, 1} by a set L of degrees which
is assumed to be equipped with a partial order ≤ so that 〈L,≤〉 is a complete
lattice, i.e., an arbitrary subset of L has its infimum (greatest lower bound)
and supremum (least upper bound) in L. We adhere to the comparative meaning
of degrees from L (higher degrees represent better matches) as it is usual in fuzzy
logics in the narrow sense (FLns), see [10,13,14]. Under this assumption, we may
replace (1) by

D :
∏

y∈R Dy → L (2)

so that for only finitely many tuples r ∈ ∏
y∈R Dy we have D(r) �= 0. Clearly,

(2) is a map which assigns to each r a value D(r) from L, we call the value
the rank of r in D and if D is interpreted as a result of a query Q, then D(r) is
the degree to which r matches the query Q. The notion of a relation of a relation
scheme which appears in the ordinary RM can be then seen as a particular case
for L = {0, 1} with its natural ordering (i.e., 0 < 1).

Furthermore, the lattice of degrees should be equipped with operations to
aggregate degrees. Thus, reasonable choice for a structure of degrees which
replaces the two-element Boolean algebra in our model is a complete residu-
ated lattice L = 〈L,∧,∨,⊗,→, 0, 1〉 where 〈L,∧,∨, 0, 1〉 is a complete lattice,
i.e., partially ordered set in which arbitrary infima and suprema exists, 0 and
1 denote the least and greatest element, respectively. Operations ⊗ and → are
binary operations on L such that 〈L,⊗, 1〉 is a commutative monoid, i.e., is com-
mutative, associative, neutral with respect to 1 (full match), and operations ⊗,
→ satisfy the following adjointness property :

a ⊗ b ≤ c iff a ≤ b → c (3)

for all a, b, c ∈ L (≤ denotes lattice ordering). Recall that the adjointness of ⊗
and → is a crucial property of structures of degrees used in FLns, see [2,12,14].
Typical choice for L is a real unit interval with �Lukasiewicz operations (i.e.,
a ⊗ b = max(a + b − 1, 0) and a → b = min(1 − a + b, 1)), Gödel operations
(i.e., a ⊗ b = min(a, b) and a → b = 1 if a ≤ b, otherwise a → b = b), or product
operations (i.e., a ⊗ b = a · b and a → b = 1 if a ≤ b, otherwise a → b = b

a ).
Nonetheless, class of residuated lattices is larger and includes other popular
t-norm based structures [17], finite structures, and various nonlinear structures.

These operations and in particular (truth functions of) general conjunctions,
i.e., operations ⊗, appear in our model as we consider counterparts to relational
operations like the natural join. Indeed, in the ordinary RM, for relations D1 and
D2 on relation schemes R ∪ S and S ∪ T such that R,S, T are pairwise disjoint,
we consider the natural join of D1 and D2 as a relation on R ∪ S ∪ T , denoted
by D1 �� D2 which consists of concatenation of all joinable tuples from D1 and
D2. Identifying the relations with their indicator functions as in (1) and using
the usual notation for tuple concatenation (i.e., rs stands for the set-theoretic
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union of maps r and s, see [21]), we have (D1 �� D2)(rst) = 1 iff D1(rs) = 1 and
D2(st) = 1. Therefore, we may rewrite the natural join as follows

(D1 �� D2)(rst) = D1(rs) ⊗ D2(st), (4)

where ⊗ is a binary operation ⊗ : {0, 1}2 → {0, 1} which coincides with the truth
function of the logical connective “conjunction” in the usual sense (i.e., 1⊗1 = 1
and 1 ⊗ 0 = 0 ⊗ 1 = 0 ⊗ 0 = 0).

Thus, for considering analogues of natural joins in our model, we use a gen-
eralization of ⊗. Note that ⊗ is distributive over arbitrary suprema, i.e.,

a ⊗ ∨
i∈I bi =

∨
i∈I(a ⊗ bi) (5)

holds true for any a ∈ L and all bi ∈ L (i ∈ I). As a consequence, ⊗ is monotone
which is a desirable property since then better results of subqueries (e.g., D1

and D2) yield better results of composed queries whose results are computed by
⊗ as in case of (4).

The need to have a reasonable generalization of a natural join in our model
justifies the presence of ⊗. Analogously, one can say that → is crucial for express-
ing a “graded containment” which is essential, e.g., for expressing universal
queries of the form “all As are Bs”.

There are wide benefits of using complete residuated lattices as structures for
degrees of matches. First, the structures are reasonably strong (the adjointness
ensures that L and ⊗ and → have reasonable properties). Second, with resid-
uated lattices we get reasonable logical background for our model. As a conse-
quence, database instances can be seen as safe interpretations of (many-sorted)
predicate languages [8,14], predicate formulas (with free variables) can be seen
as prescribing queries in our model, and evaluation of the formulas in structures
can be seen as a way of query evaluation, see [6] for details.

Following the previous arguments, the basic notion which appears in our
model and which replaces the ordinary notion of a relation on a relation scheme
is introduced as follows.

Definition 1 (Ranked Data Tables). Let L be a complete residuated lattice,
R ⊆ Y be a finite set of attributes (a relation scheme). Then, any map D
of the form (2) such for only finitely many tuples r ∈ ∏

y∈R Dy we have D(r) �= 0
is called a ranked data table (an RDT). The number of tuples D(r) �= 0 is called
a size of RDT.

In order to be able to express similarity-based queries, each domain Dy is
equipped with a similarity L-relation [2], i.e., a map ≈y: Dy × Dy → L which
assigns to each value d1, d2 ∈ Dy a degree d1 ≈y d2 to which d1 is similar to d2.
We assume that each ≈y is at least reflexive (d ≈y d = 1 for all d ∈ Dy) and
symmetric (d1 ≈y d2 = d2 ≈y d1 for all d1, d2 ∈ Dy).

3 Query Processing

Queries in the generalized relational model may be represented as so called rela-
tional expressions. The same way as the ordinary expressions consist of variables
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and operators, relational expressions consist of relational variables containing
RDTs as their values and relational operators taking an RDT as its input and
evaluating again to an RDT. In this paper we outline only the most important
relational expressions we consider in our model.

The simplest relational expression one can consider is a relational variable,
in other words, it is a variable which has an RDT as its value. Relational variable
typically represents data stored in the database and shall be denoted Dtable.

Restriction is represented by an operator σθ(R) having two arguments θ and
R representing a condition and a relational expression, respectively. Restriction
operator takes each tuple r from the RDT D which is a value of the relational
expression R and returns the same tuple with a rank which is given by D(r) ⊗
||θ||r. In other words, it assigns to each tuple the degree to which r satisfies
condition θ, e.g. σprice≈10,000(Dcars).

Projection is expressed by an operator πS(R) with two parameters R and
S representing relational expression and a subset of the relation scheme of R,
respectively. For each tuple r from R is returned a new tuple s containing all
attributes from S and their values from tuple r. Notice, that it may happen
that some tuple appears in the result set multiple times. In order to preserve
all demanded features of RDTs we take supremum of their ranks and return
the tuple only once.

Set-theoretic nature of RDTs allows to introduce a wide range of opera-
tions, like union, intersection, strong intersection, etc. These operators have
two arguments, relational expressions R1, R2 evaluating to RDTs D1 and D2

with the same relation scheme. For each tuple r is computed new rank as
D1(r) � D2(r), where � is a binary operation defined on L. Union operator
is defined with ∨, intersection is defined with ∧, strong intersection with ⊗, etc.

The last important operator is natural join but its meaning was already
discussed in Sect. 2, therefore we omit its detailed description in this section.

3.1 Compilation

Query processing in database management systems typically consists of several
steps. (i) Query is transformed from a query language (e.g., SQL, RESIQL [18])
into a relational algebra expression. (ii) Afterwards, rules of relational algebra
are used to create more efficient expression. (iii) The relational expression is
transformed into an execution plan which consists of so called physical operators
directly working with the data. (iv) Finally, data are retrieved using physical
operators. In this paper we primarily focus on step (iii) and by extension on
step (iv).

Typically, database management system has a set of physical operators for
particular use cases, e.g., for natural joins, access to the sorted data table, etc.
and the database system creates an execution plan by picking the most suit-
able combination of these operators. In case of similarity-based databases only
a relatively small number of algorithms for physical operators is known, and fur-
thermore, these algorithms often solves only a particular problem, for instance,
return top-k results. Moreover, often further conditions have to be fulfilled, for
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instance, input data have to be in some particular order, random access to
tuples is required, etc. Further, in case of similarity-based databases we may
encounter new combinations of operators which were not yet thoroughly stud-
ied, for instance, similarity-based joins or similarity-based semijoins.

Our approach to query processing is different than the usual one. It is based
on the idea that relational algebra operators are transformed into a small set
of simple relational operations which can be subject of further optimizations.
The basic building blocks are operators for and emit. The for operator has
two parameters (i) the input relational expression and (ii) a body. For each tuple
from the input relational expression, it performs operations in the body. It may
be, for instance, another for or the emit operator. The emit operator simply
emits a new tuple which is described by its argument and all emitted tuples
are collected and returned by the for operator. Within the emit operator it
is possible to apply on each tuple a transformation function f which is a map
f : Γy∈RDy → Γy∈SDy where Γy∈RDy denotes set of all RDTs of size 1 with
a relation scheme R. In other words, map f transforms one tuple to another.

Various combinations of these two operators are able to express the basic
operators of the relational algebra. Restriction σθ(R) where θ is a condition
ri ≈ c and R is a relational expression evaluating to an RDT D with the relation
scheme {r1, . . . , rn} can be expressed with operators for and emit as follows:

for u in R
emit (rank : D(u) ⊗ (u(ri) ≈ c), r1 : u(r1), ..., rn : u(rn))

Basically, for takes every tuple from R and evaluates its body, in this case, it
evaluates operator emit which emits a new tuple where new rank is assigned to
the tuple, according to the degree to which the tuple satisfies the given condition.
If the rank of the tuple is 0, it is not emitted, since it means that the tuple does
not satisfies condition at all.

Notice that these two operators have very similar meaning like the map func-
tion in Lisp, or other programming languages. Later we are to use this fact for
automatic query parallelization. To make the notation simple and comprehen-
sible, we depict transformation function as a sequence of attribute-value pairs
(attr1 : value1, . . . , attrn : valuen). Further, we use the same notation for ranks
and for attributes, even though the rank is not an attribute.

We can nest multiple for operators together. This may be used for instance
to represent joins—natural joins and cross joins. The natural join R1 �� R2

of two relational expression evaluating to RDTs D1 and D2 with relation schemes
{r1 . . . , rn, t1, . . . , tn} and {s1, . . . , sn, t1, . . . , tn}, respectively, with common
attributes t1, . . . , tn, can be expressed as an expression:

for u in R1

for v in R2

emit (rank : D1(u) ⊗ D2(v) ⊗ u(t1) = v(t1) ⊗ · · · ⊗ u(tn) = v(tn),
r1 : u(r1), ..., rn : u(rn),
t1 : u(t1), ..., tn : u(tn),
s1 : v(s1), ..., sn : v(sn))
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Interpretation of this expression is straightforward, both for operators iter-
ate over all combination of tuples from R1 and R2 and emit tuples which are
their concatenations and are joinable, in other words, values in their common
attributes are equal. Similarly, cross join is a special case of the natural join
of two relational expression over disjoint schemes and is compiled analogously.

With appropriate transformation function we may represent other relational
operators which are not discussed in this paper, e.g. extension, renaming, etc.

For projection the for and emit operators are not fully sufficient. It may
happen that some tuple is emitted multiple times, which is in conflict with
the definition of an RDT. Therefore, if some tuple is emitted multiple times, we
consider tuple with rank equal to suprema of ranks of all duplicate tuples. For this
purpose we introduce a new operator reduce having two arguments—relational
expression and an aggregation function f : 2L → L. First, the relational expres-
sion is evaluated. Afterwards, tuples having the same values of all attributes are
grouped and for each group new rank is computed with an aggregation function.
Next, for each group is emitted a new tuple with an aggregated rank.

Using the reduce operator along with for and emit it is possible to represent
the projection π{r1,...,rm}(R) as follows:

reduce
∨

for u in R
emit (rank : D(u), r1 : u(r1), ..., rm : u(rm))

It iterates over all tuples from RDT D which is a value of R, emits new
tuples and for same tuples it aggregates their ranks, i.e., in this case

∨
com-

putes a suprema of ranks. Note, that if {r1, . . . , rm} contains a candidate key,
the reduce operator may be omitted, since it is ensured that there are no
duplicities.

The reduce operator has a wide range of applications and by choosing proper
aggregation function we may represent set-theoretic operators, for instance,
union R1 ∪ R2 of two relational expression R1 and R2 with the same relation
scheme may be represented as:

reduce
∨

for u in R1

emit u
for v in R2

emit v

Intersection and other set-theoretic operations may be represented analo-
gously, however, we have to pay attention to an aggregation function. It may
happen, that some tuple is present only in one of the relations which implies it
has a zero rank in the second relation, and thus, the resulting rank has to be
zero as well. To solve this issue, we introduce the following aggregation function:∧n : 2L → L such that

∧
n(X) =

0, if |X| < n∧
x∈X x, otherwise.
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In other words, this aggregation function has the same meaning as the usual
one, it computes infima of all values, however more than n values have to be
aggregated, otherwise its value is zero. Hence, intersection of two relational
expressions may be represented analogously as an union but with reduce

∧2.

3.2 Optimizations

The optimization scheme we propose is based on three basic rules that transform
combinations of operators to a more optimal one. We shall call these rules—
composition, filtering, and index selection.

Composition. The first rule combines two for operators into a single one. Let
us assume a relational expression R1 that is represented by the for operator
with a body that contains an emit operator with a transformation function f1.
Note that the emit operator may be nested inside another operator. Further,
let us assume a relational expression R2 that is represented by the for operator
with an argument R1 and with a body containing solely the emit operator with
a transformation function f2, like in the following case:

R1: for u in R
body

emit f1(u)
R2: for v in R1

emit f2(v)

This means, relational expression R2 applies transformation function f2 on
every tuple from R1. Hence, relational expression R2 can be replaced with
the relational expression R1 where the emit transformation function is replaced
with a composition of functions f2 ◦ f1:

R2: for u in R
body

emit f2(f1(u))

For instance, let us consider two restrictions σri≈ci(σrj≈cj (D)) on RDT D with
relation scheme {r1, . . . rn}. This expression is represented by two for-loops

R1: for u in D
emit (rank : D(u) ⊗ (u(ri) ≈ ci), r1 : u(r1), ..., rn : u(rn))

R2: for v in R1

emit (rank : D(v) ⊗ (v(rj) ≈ cj), r1 : v(r1), ..., rn : v(rn))

The composition rule transforms these two expressions into the following one:

R2: for u in D
emit (rank : D(u) ⊗ (u(ri) ≈ ci) ⊗ (u(rj) ≈ cj),

r1 : u(r1), ..., rn : u(rn))
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Notice that the simplified expression corresponds to the restriction
σ(ri≈ci)⊗(rj≈cj)(D) which is equivalent to σri≈ci(σrj≈cj (D)) from the point view
of the relational algebra, see [5]. Nonetheless, this is only an example and the
composition rule is able to correctly deal with other combinations of operators,
e.g., joins and restrictions.

Filtering. The second rule takes care of abandoning useless computation. In
case of natural joins (or as a consequence of the composition rule) expressions
usually contains multiple nested loops. However the decision whether the tuple
will be emitted or not is made within the emit operator which always lies in the
innermost for-cycle, apparently, this is a source of inefficiency.

It is desirable to skip the computation in the inner loops if it is clear that the
final rank of the tuple will be zero no matter what is in the inner loops. To solve
this problem we utilize the fact that the emit operator is the only place where
the rank is assigned, furthermore, if the expression which determines the rank is
a composition of subexpressions which are aggregated by a monotone function
(e.g., ⊗ or ∧) we can determine from subexpressions if the final rank will be
zero, or not. This follows from the monotonicity of the aggregation function, if
one subexpression is zero, the final rank have to be also zero.

We introduce a new operator filter having two arguments—an expression
representing condition which has to be satisfied and a body. This operator per-
forms operations in its body if the expression is not 0, i.e., it works as an if
command in many programming languages. To reduce useless computation as
much as possible, the filter operator is always placed into the outer most for-
loop which contains all variables necessary for condition evaluation. For placing
the filter into an appropriate place it is possible to use known algorithms for
loop-invariant code motion which is a common technique used by conventional
compilers, for more details see, for instance, [1].

For example, expression σri=c(D1 �� D2) where D1 and D2 are RDTs with
disjoint schemes may be compiled into the following form:

for u in D1

filter (u(ri) ≈ c)
for v in D2

emit (rank : D1(u) ⊗ D2(v) ⊗ (u(ri) ≈ c),
r1 : u(r1), ..., rn : u(rn),
s1 : v(s1), ..., sn : v(sn))

With the filter operator is the expression more efficient since it consid-
ers only reasonable tuples which possibly may have non-zero ranks and skips
irrelevant inner loops.

Index Selection. Database systems traditionally uses indexes to efficiently
retrieve tuples from the physical storage. For similarity-based databases it is
possible to utilize such methods as well [19]. Thus, we introduce the third rule
and a new operator index having two arguments—relational variable (physical
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data table) and a condition. This operator returns tuples satisfying the given
condition. In this paper we do not address how the data are obtained, we only
assume that there is an efficient method of retrieving tuples satisfying the given
condition.

In our representation it is easy to identify opportunities for index application.
If the operator for has a relational variable as its argument and if its body
contains a filter operator with a condition that can utilize existing index,
the relational variable in the for-loop may be replaced with an index operator
and filter operator may be optionally removed. For example, similarity-based
join σri≈si

(D1 �� D2) involving two RDTs D1 and D2 with relation schemes
{r1 . . . , rn} and {s1, . . . , sn}, respectively, and an index on attribute ri will be
transformed as follows:

for u in D1

for v in index(D2, u(ri) ≈ v(si))
filter (u(ri) ≈ v(si))

emit (rank : D1(u) ⊗ D2(v) ⊗ (u(ri) ≈ v(si)),
r1 : u(r1), ..., rn : u(rn),
s1 : v(s1), ..., sn : v(sn))

This example shows that with the set of simple rules that were described
in this section we were able to automatically infer a variant of the nested-loop join
algorithm for similarity-based join which efficiently uses indexes. More complex
expressions would be optimized in a very similar way as well. Note that in this
example we preserved the filter operator in the expression for greater clarity,
but it could be removed.

Rule Application Order. The rules are applied in the following order.
(1) The composition is applied on all suitable for-loops and all chained loops
are transformed into the nested ones. (2) Filtering is applied on all suitable
for-loops, this assures that each for-loop contains appropriate filter opera-
tor in its body. (3) Index selection is applied on suitable filters and arguments
of for-loops.

4 Parallel Query Processing and Experimental Evaluation

As the multicore processors become commonly available it is important to take
the parallelization of query processing into account. The set of operations we
introduce is well-suited for parallelization because there is no shared mutable
state that could be source of obstacles. Apparently, each for operator may par-
titionate its input data into multiple groups and each group can be processed
separately in its own thread. The aggregation procedure reduce can be processed
by multiple threads as well, for instance, in the following steps. First, tuples
are split into groups and assigned to separate threads where tuples are pre-
sorted and partially aggregated, afterwards, partially aggregated tuples from
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each thread are aggregated into a final dataset. This approach is in fact very
similar to the Map/Reduce system [9] which is commonly used to process large
datasets. We have successfully adopted this approach to process database queries
on a shared memory computer.

Each for operator is a represented as a map-task reading input data and
(i) if the body contains emit, new tuple is emitted, (ii) if the body contains for,
the tuple is passed to another map-task, and (iii) if the body contains filter
the condition is evaluated and if the value is not 0, the computation continues
with the option (i) or (ii). Finally, data are passed to a reduce-task which collects
(and optionally aggregates) tuples which are emitted by map-task. The data flow
is outlined in the next figure depicting two nested loops and a projection. Note
that each task may be performed by multiple threads.

ReduceMap Map

The discussed optimization framework was implemented as a part of the
RESIQL database and this allowed us to evaluate its efficiency using the real
data. The following table presents results of experiments involving complex
queries (each query contained at least one projection, at least one restriction,
and at least one natural join) and real-world datasets from the UCI Machine
Learning Repository and our own dataset (cars).

unoptimized optimized

dataset size tuples time tuples time time (8 procs.)

adult 48,842 829,821 5.6 s 292,938 3.9 s 1.9 s

bank 45,211 2.04 × 109 151 min 65,705 2.3 s 1.2 s

cars 4,707 65,898 458 ms 43,964 323 ms 178 ms

wine quality 6,497 28,302,400 143.6 s 352,841 7.1 s 2.9 s

All experiments were performed twice—with and without the optimization
framework. Along with the time required to get the results we also focused on
number of tuples that were fetched from the physical storage, since this is a very
time demanding operation. Results clearly confirm benefits of our approach. On
the other hand, parallel execution on a computer with 8 CPU cores brings only
speedup of factor 2. But we have to take into account that the results in this
case are skewed since parts of the computation (e.g., query preparation) have to
be always performed in a single thread.

We have tested our approach on a shared memory computer, however, it
can be used in a straightforward way to compile queries for other computational
models and systems, for instance, for already mentioned Map/Reduce systems [9]
like Apache Hadoop, or for systems based on Resilient Distributed Datasets [22]
like Apache Spark. Indeed, it suffices to skip the last step of query processing
which interprets the query and emit Java/Scala code instead and leave the query
processing on a framework.
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Abstract. Noise is added by privacy-preserving methods or anonymiza-
tion processes to prevent adversaries from re-identifying users in anony-
mous networks. The noise introduced by the anonymization steps may
also affect the data, reducing its utility for subsequent data mining
processes. Graph modification approaches are one of the most used and
well-known methods to protect the privacy of the data. These methods
converts the data by edges or vertices modifications before releasing the
perturbed data. In this paper we want to analyse the edge modification
techniques found in the literature covering this topic, and then empiri-
cally evaluate the information loss introduced by each of these methods.
We want to point out how these methods affect the main properties and
characteristics of the network, since it will help us to choose the best one
to achieve a desired privacy level while preserving data utility.

Keywords: Privacy · Social networks · Graphs · Data utility · Graph
mining

1 Introduction

In recent years, a huge amount of social and human interaction networks have
been made publicly available. Embedded within this data there is user’s private
information which must be preserved before releasing this data to third parties and
researchers. The study of Ferri et al. [13] reveals that up to 90 % of user groups
are concerned by data owners sharing data about them. Backstrom et al. [2] point
out that the simple technique of anonymizing graphs by removing the identities of
the vertices before publishing the actual graph does not always guarantee privacy.
They show that an adversary can infer the identity of the vertices by solving a set
of restricted graph isomorphism problems.

Therefore, anonymization processes become an important concern in this sce-
nario. These methods add noise into the original data to hinder re-identification
processes. Nevertheless, the noise introduced by the anonymization steps may also
affect the data, reducing its utility for subsequent data mining processes. Usually,
the larger the data modification, the harder the re-identification but also the less
the data utility. Thus, it is necessary to preserve the integrity of the data to ensure
that the data mining step is not altered by the anonymization step. The analysis
c© Springer International Publishing Switzerland 2015
V. Torra and Y. Narakawa (Eds.): MDAI 2015, LNAI 9321, pp. 180–191, 2015.
DOI: 10.1007/978-3-319-23240-9 15
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performed on the obfuscated data should produce results as close as possible to
the ones the original data would have led to.

Several methods appeared recently to preserve the privacy of the data con-
tained in a graph. One of the most used and well-known approaches is based
on “graph modification”. These methods first transform the data by edges or
vertices modifications (adding and/or deleting) and then release the perturbed
data. The data is thus made available for unconstrained analysis. There are two
main approaches in the privacy-preserving literature [23]: (a) random perturba-
tion of the graph structure by randomly adding/removing/switching edges and
often referred to as edge randomization [4,6,16,17,24,25]; and (b) constrained
perturbation of the graph structure via sequential edge modifications in order to
fulfil some desired constraints – for example k-anonymity-based approaches that
modify the graph so that every node is in the end indistinguishable from k − 1
other nodes (in terms of node degree for instance) [7,10,18–20,28,29].

All aforementioned algorithms use edge modification techniques, i.e. add,
remove and/or switch edges to achieve a desired privacy level. Nevertheless,
it is inevitable to introduce noise in the data, producing a certain amount of
information loss, and consequently, deteriorating the utility of the anonymous
data. Some authors claim that only adding edges better preserves the data utility,
since none true relationship is removed. On the contrary, some other authors
claim that removing an edge affects the structure of the graph to a smaller
degree than adding an edge [5].

In this paper we want to analyse the edge modification techniques found in
the literature covering this topic, and then empirically evaluate the information
loss introduced by each of these methods during the perturbation process. We
want to understand how these edge modifications affect the main properties
and characteristics of the network. This will help us to choose the best edge
modification technique to achieve a desired privacy level while keeping data
utility and reducing information loss.

1.1 Our Contributions

In this paper we present an empirical evaluation of the basic edge modification
techniques, which can help us to increase data utility in anonymous networks. We
focus on simple, undirected and unlabelled graphs. Since these graphs have no
attributes or labels in the edges, information is only in the structure of the graph
itself and, due to this, evaluating edge modification techniques is an critical way
to reduce information loss. We offer the following results:

– We analyse the most used and well-known edge modification techniques found
in the graph privacy literature.

– We conduct an empirical evaluation of these techniques on several synthetic
and real graphs, comparing information loss based on different graph’s prop-
erties.

– We demonstrate that graph’s structure must be considered in order to select
the best edge modification technique, and it conducts the process to reduce
the information loss and increase the data utility.
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Fig. 1. Basic operations for edge modification.

1.2 Notation

Let G = (V,E) be a simple, undirected and unlabelled graph, where V is the set
of vertices and E the set of edges in G. We define n = |V | to denote the number
of vertices and m = |E| to denote the number of edges. We use {i, j} to define an
undirected edge from vertex vi to vj and deg(vi) to denote the degree of vertex
vi. Finally, we designate G = (V,E) and G̃ = (Ṽ , Ẽ) to refer the original and the
perturbed graphs, respectively. Note that in this work we use the terms graph
and network indistinguishably.

1.3 Roadmap

This paper is organized as follows. In Sect. 2, we review the basic edge mod-
ification techniques for privacy-preserving on graphs. Section 3 introduces our
experimental framework to analyse and compare the edge modification tech-
niques on both synthetic and real networks. Then, in Sect. 4, we discuss the
results in terms of information loss and data utility. Lastly, in Sect. 5, we present
the conclusions of this work and some future remarks.

2 Edge Modification Techniques

We define four basic edge modification processes to change the network’s struc-
ture by adding, removing or switching edges. These methods are the most basic
ones, and they can be combined in order to create complex combinations. We are
interested in them since they allow us to model, in a general and conceptual way,
most of the privacy-preserving methods based on edge-modification processes.
In the following lines we will introduce these basic methods, also called pertur-
bation methods, due to the fact that they can model the perturbation introduced
in anonymous data during the anonymization process.

There are four basic edge modifications illustrated in Fig. 1. Dashed lines
represent existing edges which will be deleted and solid lines constitute the edges
which will be added. Node color indicates whether a node changes its degree
(dark grey) or not (light grey) after the edge modification has been carried out.
These are:
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– Edge add simply consists on adding a new edge {vi, vj} �∈ E. Figure 1a illus-
trates this operation. The number of the edges will increase (m̃ > m) when
anonymization percentage increases. True relationships will be preserved in
perturbed data.

– Edge del removes an existing edge {vi, vj} ∈ E, as depicted in Fig. 1b. Con-
trary to the previous method, the number of edges decreases m̃ < m and
no fake relationships are included in the anonymous data, but several true
relations are deleted from original data.

– Edge add/del is a combination of the previous pair methods. It simply consists
of deleting an existing edge {vi, vj} ∈ E and adding a new one {vk, vp} �∈ E.
Figure 1c illustrates this operation. In this case some true relations are deleted
and some fake ones are created, but the total number of edges is preserved
(m̃ = m). All vertices involved in this operation change their degree.

– Edge switch occurs between three nodes vi, vj , vp ∈ V such that {vi, vj} ∈ E
and {vi, vp} �∈ E. It is defined as deleting edge {vi, vj} and creating a new
edge {vi, vp} as shown in Fig. 1d. As in the previous case, some true relations
are removed, some fake ones are created and the number of edges is also
preserved (m̃ = m). However, two vertices change their degree (vj and vp)
while the third one (vi) does not.

For all perturbation methods, the number of vertices remains the same but
the degree distribution changes. As previously stated, most of the anonymization
methods rely on one (or more) of these basic edge modification operations. We
believe that this covers the basic behavior of edge-modification-based methods
for graph anonymization, even though some of them do not apply edge modifi-
cation to the entire edge set.

As aforementioned, some algorithms are based on Edge add [10,19,21,28],
since their authors usually claim that this edge modification technique bet-
ter retain data utility. A similar situation occurs with Edge del [4,5]. Several
random-based anonymization methods are based on the concept of Edge add/del
[17,24,25] and most k-anonymity methods can be also modelled through the
this concept [18,22,28,29]. Lastly, Edge switch is also used in many algorithms,
such as [7,16,20,25]. Other methods consider to alter the vertex set to achieve
anonymity. This concept is known as noise node addition [9,11,26]. We do not
consider this algorithms in this paper due to space constraints and we propose
it for future work.

3 Evaluating Framework

In this section we will post the experimental framework we have used to analyse
and compare the information loss induced by our four edge modification tech-
niques. Our experimental framework considers 10 independent executions of the
edge modification methods with a perturbation parameter p in range between
0 % (original graph) and 25 % of total number of edges, i.e., 0 ≤ p ≤ 25.

The process is the following: Firstly, we generate 10 independent sets of per-
turbed networks (from 0 % to 25 %) using each one of our edge modification
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Fig. 2. Framework for evaluating information loss induced by edge modification tech-
niques.

techniques (also called perturbation methods). Secondly, we compute the error
between the original (G) and each perturbed network (G̃) using several measures
(defined in Sect. 3.2). Thirdly, we compute the average error over the 10 inde-
pendent sets. We repeat the same process for all our tested networks (detailed
in Sect. 3.1). This framework is depicted in Fig. 2.

3.1 Tested Networks

We use both synthetic and real networks in our experiments. We use software
igraph1 to generate two kinds of random graphs.

– Erdös-Rényi Model [12] is a classical random graph model. It defines a random
graph as n vertices connected by m edges that are chosen randomly from the
n(n − 1)/2 possible edges. In our experiments, we set n=1,000 and m=5,000.
This dataset is denoted as “ER-1000”.

– Barabási-Albert Model [3], also called scale-free model, is a network whose
degree distribution follows a power-law. That is, for degree d, its probability
density function is P (k) = d−γ . In our experiments, we set the number of
vertices to be 1,000 and γ=1, i.e. linear preferential attachment. This dataset
is denoted as “BA-1000”.

Additionally, four different real networks are used in our experiments.
Although all these sets are unlabelled, we have selected these datasets because
they have different graph’s properties. Table 1 shows a summary of their main
features. They are the following ones:

– Zachary’s Karate Club [27] is a network widely used in literature. The graph
shows the relationships among 34 members of a karate club.

– Jazz musicians [14] is a collaboration graph of jazz musicians and their rela-
tionship.

– URV email [15] is the email communication network at the University Rovira
i Virgili in Tarragona (Spain). Nodes are users and each edge represents that
at least one email has been sent.

– Political blogosphere data (polblogs) [1] compiles the data on the links among
US political blogs.

1 Available at: http://igraph.org/.

http://igraph.org/
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Table 1. Network’ properties. For each dataset we present the number of vertices (n),
number of edges (m), average degree (deg), average distance (dist) and diameter (D).

Dataset n m deg dist D

ER-1000 1,000 4,969 9.938 3.263 5

BA-1000 1,000 4,985 9.970 2.481 4

Zachary’s Karate Club 34 78 4.588 2.408 5

Jazz musicians 198 2,742 27.697 2.235 6

URV email 1,133 5,451 9.622 3.606 8

Polblogs 1,222 16,714 27.31 2.737 8

3.2 Information Loss Measures

According to the authors in [8], we use some structural and spectral measures
which are strongly or moderately correlated to clustering specific processes. We
claim that choosing these measures our results will be applicable not only to
graph’s properties, but also to clustering and community detection processes.
The first graph structural measure is average distance (dist), which is defined as
the average of the distances between each pair of vertices in the graph. Transi-
tivity (T ) is one type of clustering coefficient, which measures and characterizes
the presence of local loops near a vertex. It measures the paths’ percentage of
length 2 which are also triangles. The above measures evaluate the entire graph
as a unique score. We compute the error on these graph metrics as follows:

εm(G, G̃) = |m(G) − m(G̃p)| (1)

where m is one of the graph characteristic metrics, G is the original graph and
G̃p is the p-percent perturbed graph, where 0 ≤ p ≤ 25.

The following metrics evaluate specific structural properties for each vertex
of the graph: the first one is betweenness centrality (CB), which measures the
fraction of the shortest paths that go through each vertex. This measure indicates
the centrality of a vertex based on the flow between other vertices in the graph.
A vertex with a high value indicates that this vertex is part of many of the
shortest paths in the graph, which will be a key vertex in the graph structure.
The second one is closeness centrality (CC) and is defined as the inverse of
the average distance to all accessible vertices. Finally, the third one is degree
centrality (CD), which evaluates the centrality of each vertex associated with
its degree, i.e. the fraction of vertices connected to it. We compute the error on
vertex metrics by:

εm(G, G̃) =

√
1
n

((g1 − g̃1)2 + . . . + (gn − g̃n)2) (2)

where gi is the value of the metric m for the vertex vi of G and g̃i is the value
of the metric m for the vertex vi of G̃.
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Fig. 3. Degree distribution on our synthetic networks. Horizontal axis represent the
whole vertex set and vertical axis their degree values.

Moreover, one spectral measure which is closely related to many graph char-
acteristics [25] is used. The largest eigenvalue of the adjacency matrix A (λ1)
where λi are the eigenvalues of A and λ1 ≥ λ2 ≥ . . . ≥ λn. The eigenvalues of A
encode information about the cycles of a graph as well as its diameter.

4 Experimental Results

In this section we will discuss the results of our four edge modification tech-
niques. Results are presented in Table 2. Each cell indicates the error value for
the corresponding measure and method computed by Eqs. 1 and 2. Values are
averaged from 10 independent executions. The lower the value, the better the
method. Although deviation is undesirable, it is inevitable due to the graph’s
alteration process.

The first two tested networks are the synthetic ones. As we have commented
previously, ER-1000 has been created using Erdös-Rényi model. Its degree his-
togram does not follow de power-law, as it can be seen in Fig. 3a. Most of the
vertices have degree values between 7 and 13, while few have degree values lower
than 7 or higher than 13. Edge add/del and Edge switch present the best values
on almost all metrics used on our experiments, as we can see in Table 2. Last
column corresponds to the cumulative normalized error (ε), which points out
that Edge switch achieves the lowest information loss, closely followed by Edge
add/del. Both Edge add and Edge del get worse results. On the contrary, the
second network, BA-1000, has been constructed by applying scale-free model
and its degree distribution follows a power-law. Figure 3b points out clearly a
large number of vertices with small degree value and few vertices with very high
degree value. It is important to underline the scale difference between this figure
and the previous one. In this case, Edge add and Edge switch reach results with
the lowest information loss. As in the previous case, the difference between these
two methods and the other ones (Edge del and Edge add/del) is considerable.
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Table 2. Results for Edge add (Add), Edge Del (Del), Edge add/del (Add/del) and
Edge Switch (Switch) methods. For each dataset and method, we compare the results
obtained on dist, T , CB , CC , CD and λ1. Last column corresponds to the cumulative
normalized error (ε) for each method on all evaluated metrics.

Network Method dist T CB CC CD λ1 ε

ER-1000 Add 0.1402 0.0012 0.0005 0.0149 0.0016 1.2454 4.407

Del 0.1833 0.0013 0.0006 0.0197 0.0016 1.2262 5.984

Add/del 0.0005 0.0002 0.0007 0.0073 0.0015 0.0122 1.077

Switch 0.0003 0.0001 0.0005 0.0055 0.0010 0.0048 0.020

BA-1000 Add 0.0118 0.0025 0.0005 0.0030 0.0016 0.6507 0.667

Del 0.1111 0.0038 0.0007 0.0315 0.0034 3.5769 6.000

Add/del 0.0902 0.0014 0.0016 0.0230 0.0034 2.9250 4.279

Switch 0.0488 0.0011 0.0005 0.0162 0.0019 1.4601 1.114

Karate Add 0.1799 0.0060 0.0268 0.0428 0.0270 0.4312 2.772

Del 0.1393 0.0223 0.0204 0.0696 0.0296 0.6171 4.104

Add/del 0.0393 0.0166 0.0311 0.0404 0.0331 0.2352 2.730

Switch 0.0935 0.0291 0.0297 0.0424 0.0233 0.1056 2.365

Jazz Add 0.2290 0.0486 0.0073 0.0532 0.0199 1.9575 2.814

Del 0.0653 0.0658 0.0021 0.0940 0.0223 4.7641 3.265

Add/del 0.1888 0.1115 0.0077 0.0497 0.0179 2.9508 3.817

Switch 0.1859 0.1129 0.0068 0.0451 0.0111 2.1005 2.622

URV email Add 0.2142 0.0179 0.0011 0.0193 0.0014 0.5120 1.000

Del 0.1238 0.0208 0.0007 0.2177 0.0017 2.3656 3.309

Add/del 0.1028 0.0387 0.0013 0.1587 0.0016 1.9539 3.321

Switch 0.1319 0.0429 0.0011 0.1481 0.0010 1.3955 2.385

Polblogs Add 0.1738 0.0114 0.0013 0.1649 0.0031 1.0974 2.000

Del 0.0569 0.0280 0.0005 0.1502 0.0050 9.0615 3.258

AddDel 0.1158 0.0389 0.0015 0.1177 0.0045 7.8086 2.934

Switch 0.1620 0.0459 0.0014 0.0991 0.0025 6.1445 2.531

The first tested real network is Zachary’s Karate Club. Although Edge switch
achieves the best values, Edge add and Edge add/del get values close to theirs.
For instance, we can deepen on behaviour of λ1 error in Fig. 4a. The p = 0 value
(x-axis) represents the value of this metric on the original graph. Thus, values
close to this point indicate low noise on perturbed data. As we can see, Edge
switch remains closer to the original value than the other methods.

Jazz musicians is our second tested real network. The differences among our
four methods are smaller using this dataset than the aforementioned exper-
iments. Edge del reaches better results than previous cases and the method
which introduces the most information loss is Edge add/del. However, Edge add
and Edge switch get slightly lower information loss. For example, we analyse
average distance in depth, which usually increases when applying Edge del and
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Fig. 4. Examples of the error evolution computed on our experimental framework.
Perturbation parameter p varies along the horizontal axis from 0 % (original graph)
to 25 %.

decreases when applying Edge add. It is obvious, since removing edges increases
paths between vertices and adding new edges decreases paths. Nevertheless, it is
interesting to see that perturbation introduced by removing edges is lower than
others in this case, as can be seen in Fig. 4b.

Lastly, URV email and Polblogs represent the largest real networks in our
experiments. Their structure is similar to BA-1000, since they are both scale-
free networks but with parameter γ ≈ 0.5. Results on URV email are similar to
ones on BA-1000; Edge add achieves the best results, followed by Edge switch,
and again Edge del and Edge add/del get the worst results. We can observe
this behaviour in Fig. 4c, where Edge add obtains the lowest error on closeness
centrality. The difference is quite important compared to Edge add/del and Edge
switch, but even larger compared to Edge del. Similar behaviour can be observed
on Polblogs dataset. Edge add achieves the best values, but Edge del and Edge
switch also get also good values, close to the ones obtained by Edge add.

Figure 4d depicts transitivity, where all edge modification methods decrease
values obtained on original network. As shown, Edge add gets values closer
to the original ones on all perturbation percentage. Edge del and Edge switch
obtain similar cumulative normalized error on this dataset, suggesting that both
introduce similar noise on tested metrics.
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As conclusions, we note that Edge switch gets lower information loss when
it is applied to networks which do not fulfil the scale-free model, i.e. ER-1000
and Jazz musicians. On the other side, Edge add obtains the lowest information
loss when dealing with scale-free networks, such as BA-1000, URV email and
Polblogs. Edge switch also achieves good results on scale-free networks. That
is not surprising, since Edge switch preserves the degree distribution keeping
some related measures close to the original values. On the contrary, Edge del
and Edge add/del introduce more perturbation on almost all analysed networks,
except Polblogs where Edge del scores the second position and ER-1000 where
Edge add/del also succeed to obtain the second position.

5 Conclusions

In this paper we have evaluated the basic edge modification techniques, which are
commonly used on privacy-preserving algorithms. We have presented four basic
types of edge modification methods, and a framework to assess the behaviour
of some graph’s properties during perturbation processes induced by these four
edge modification methods. Our framework includes some experimental results
both on synthetic and real-world networks.

As we have demonstrated, Edge switch better preserves graph’s properties
on networks with a degree distribution which does not follow the power-law.
On the contrary, Edge add is the best method to keep graph’s properties when
perturbing scale-free networks. Edge del and Edge add/del introduce more noise
during perturbation processes on both type of networks.

Many interesting directions for future research have been uncovered by this
work. It would be interesting to also consider methods based on noise node addi-
tion [11] and information loss measures based on real graph-mining processes,
such as clustering or community detection. It would be also very interesting
to extend this analysis to other graph’s types (directed or labelled graphs, for
instance).
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Abstract. In surveys collecting individual data (microdata), each
respondent is usually required to report values for a set of attributes.
If some of these attributes contain sensitive information, the respondent
must trust the collector not to make any inappropriate use of the data
and, in case any data are to be publicly released, to properly anonymize
them to avoid disclosing sensitive information. If the respondent does not
trust the data collector, she may report inaccurately or report nothing
at all. The reduce the need for trust, local anonymization is an alterna-
tive whereby each respondent anonymizes her data prior to sending them
to the data collector. However, local anonymization by each respondent
without seeing other respondents’ data makes it hard to find a good
trade-off minimizing information loss and disclosure risk. We propose a
distributed anonymization approach where users collaborate to attain an
appropriate level of disclosure protection (and, thus, of information loss).
Under our scheme, the final anonymized data are only as accurate as the
information released by each respondent; hence, no trust needs to be
assumed towards the data collector or any other respondent. Further, if
respondents are interested in forming an accurate data set, the proposed
collaborative anonymization protocols are self-enforcing and co-utile.

Keywords: Information security and privacy · Utility and decision
theory · Co-utility

1 Introduction

A microdata file contains data collected from individual respondents. Because
of the level of detail in the data, they can be useful for a variety of secondary
analyses by third parties other than the data collector. However, releasing the
original data is not feasible because it would lead to a violation of the privacy
of respondents. Statistical disclosure control (SDC), a.k.a. statistical disclosure
limitation, for microdata seeks to produce an anonymized version of the micro-
data file such that it enables valid statistical analyses but thwarts inference of
confidential information about any specific individual.
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The mainstream literature on SDC for microdata (e.g. see [7]) focuses on
centralized anonymization, which features a trusted data collector. The data
collector (e.g. National Statistical Institute) gathers original data from the
respondents and takes care of anonymizing them. While avoiding the computa-
tional burden of anonymization is confortable to respondents, it has the downside
that they need to trust the data collector.

Local anonymization is an alternative disclosure limitation paradigm suitable
for scenarios where the respondents do not trust (or trust only partially) the data
collector. Each respondent anonymizes her own data before handing them to the
data collector. In comparison to centralized anonymization, local anonymization
usually results in greater information loss. The reason is that each respondent
needs to protect her data without seeing the other respondents’ data, which
makes it difficult for her to find a good trade-off between the disclosure risk
limitation achieved and the information loss incurred.

1.1 Contribution and Plan of this Paper

To overcome the limitations of the centralized and the local anonymization par-
adigms, we propose the notion of collaborative anonymization, which is in line
with the novel notion of co-utility [4]. Co-utility models the interaction among
a set of peers, each one with a selfish goal, in which peers help each other ratio-
nally. For collaboration to arise rationally, the best strategy for a peer to reach
her goal must be to help another peer in reaching his goal. The advantage of
co-utility is that it leads to a system that works smoothly without the need of
external enforcement.

The rest of the paper is organized in the following manner. Section 2 provides
a brief review of related work. Section 3 lists the requirements of collaborative
anonymization and justifies why it is rationally preferable to centralized and local
anonymization. Section 4 describes a collaborative anonymization technique that
hides each respondent within a group of respondents. Section 5 describes a collab-
orative anonymization technique that masks the value of the confidential data.
Conclusions and future research issues are summarized in Sect. 6. The Appen-
dix gives background on several concepts this papers builds on: k-anonymity
(Appendix A), reverse mapping (Appendix B) and co-utility (Appendix C).

2 Related Work

This work seeks to empower each respondent to anonymize her own data while
preserving utility as in the centralized paradigm.

Related works exist that consider privacy-conscious data set owners, rather
than privacy-conscious respondents. When dealing with privacy-conscious data
set owners, one faces a data integration problem where the data owners do not
want to share data that are more specific than those in the final anonymized data
set to be jointly obtained. In [17] a top-down generalization approach for two
owners of vertically partitioned data sets is proposed. Both owners start with the
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maximum level of generalization, and they iteratively and collaboratively refine
the generalization. In [8,9] the same problem is tackled by using cryptographic
techniques. In [10] the anonymization of horizontally partitioned data sets is
considered. The main difference between the above proposals and our work is
that the number of respondents is usually much greater than the number of
data set owners (the latter are a small number in most realistic data integration
settings). In our case, there is a different respondent for each data record being
collected, which makes proposals oriented to a few data set owners unusable.

Among the related works specifically addressing respondent privacy, the local
anonymization paradigm is closest to our approach in terms of trust require-
ments. Several local anonymization methods have been proposed. Many basic
SDC techniques such as global recoding, top and bottom coding, and noise addi-
tion can be applied locally (check [7] for details on such techniques). There are,
however, some techniques specifically designed for local anonymization that, in
addition to helping a respondent to hide her response, allow the data collec-
tor to get an accurate estimation of the distribution of responses for groups
of respondents. In randomized response [18], the respondent flips a coin before
answering a sensitive dichotomous question (like “Have you taken drugs this
month?”); if the coin comes up tails, the responder answers “yes”, otherwise she
answers truthfully. This protects the privacy of respondents, because the survey
collector cannot determine whether a particular respondent’s “yes” is random or
truthful; but he knows that the “no” answers are truthful, so that he can esti-
mate the real proportion of “no” as twice as much as the observed proportion
of “no” (from which the real proportion of “yes” follows). FRAPP [1] can be
seen as a generalization of random response. In FRAPP, the respondent reports
the real value with some probability and, otherwise, it returns a random value
from a known distribution. In AROMA [15] each respondent hides her confiden-
tial data within a set of possible confidential values drawn from some known
distribution. In any case, to obtain an accurate result, the output of a query
performed on the anonymized data must be adjusted according to the known
distribution used to mask the actual data. While some kind of adjustment of
the query results may also be needed in the centralized paradigm (e.g. when
the generalization used for quasi-identifiers in a k-anonymous data set does not
match the query; see Appendix A about quasi-identifiers and k-anonymity), the
randomness introduced by local anonymization makes the estimate less accurate
than in centralized anonymization.

An advantage of local anonymization, though, is that the respondent is given
some capability to decide the amount of anonymization required, which is likely
to increase her disposition to provide truthful data (rather than fake data). Yet,
most privacy models/techniques give uniform disclosure limitation guarantees to
all respondents, which may not suit the different perceptions of disclosure risk of
the various respondents. To address this concern, [20] proposed a privacy model
in which each individual determines the amount of protection required for her
data.
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3 Collaborative Anonymization: Requirements
and Justification

A problem with centralized anonymization is that, if a respondent does not trust
the data collector to properly use and/or anonymize her data, she may decide
to provide false data (hence causing a response bias) or no data at all (hence
causing a non-response bias). Local (also known as independent) anonymization
is an alternative that is not free from problems either. As shown in Appendix B,
permutation is essential to anonymization, but the permutation caused by a cer-
tain amount of masking depends not only on one’s own record but on the values
of the records of the other respondents. Hence, for a respondent anonymizing
her own record in isolation it is hard to determine the amount of masking that
yields a good trade-off between disclosure risk and information loss, i.e. that
causes enough permutation but not more than enough permutation. A natural
tendency is for each respondent to play it safe and overdo the masking just in
case, which incurs more information loss than necessary.

To deal with the above shortcomings of centralized and local anonymiza-
tion, we propose a new paradigm that we call collaborative data anonymiza-
tion. Consider a set of respondents R1, . . . , Rm whose data are to be collected.
Each respondent is asked to report information about a set of attributes (some
of them containing confidential/sensitive information). Since respondents place
limited trust on the data collector, they may refuse to provide the collector
with non-anonymized data. A more realistic goal is to generate, in a collabora-
tive and distributed manner, an anonymized data set that satisfies the following
two requirements: (i) it incurs no more information loss than the data set that
would be obtained with the centralized paradigm for the same privacy level, and
(ii) neither the respondents nor the data collector gain more knowledge about
the confidential/sensitive attributes of a specific respondent than the knowledge
contained in the final anonymized data set.

In general, the motivations for a respondent to contribute her data are not
completely clear. A rational respondent will only contribute if the benefit she
gets from participating compensates her privacy loss. It is not in our hands
to determine what the motivations of the respondents are. However, since our
collaborative approach achieves the same data utility as the centralized approach
while improving the respondent’s privacy vs the data collector, any respondent
willing to participate under the centralized approach should be even more willing
to participate under our collaborative scheme. More precisely, we can distinguish
several types of respondents depending on their interests in the collected data
and in their own privacy:

– A respondent without any interest in the collected data set is better off by
declining to contribute.

– A respondent who is interested in the collected data and has no privacy con-
cerns can directly supply her data and needs no anonymization (neither local,
nor centralized nor collaborative).

– A respondent who is interested in the collected data but has privacy con-
cerns will prefer the collaborative approach to the centralized and the local
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approaches. Indeed, the collaborative approach outperforms the centralized
approach in that the former offers privacy vs the data collector. Also, the col-
laborative approach outperforms the local approach in that it yields a collected
anonymized data set with less information loss, that is, with higher utility.

Remark (co-utile anonymization). Note that the level of privacy protection
obtained by a respondent affects the privacy protection that other respondents
get. A basic approach for preserving the privacy of a specific respondent is based
on hiding that respondent within a group of respondents. None of the respon-
dents in such a group is interested making any of the respondents in the group
re-identifiable, because that makes her own data more easily re-identifiable. For
example, if one record in a k-anonymous group is re-identified, the probability
of successful re-identification for the other group members increases from 1/k to
1/(k− 1). This fact suggests that a respondent is interested not only in protect-
ing her privacy, but also in helping other respondents in preserving theirs. This
is the fundamental principle behind the notion of co-utility (see Appendix C):
the best strategy to attain one’s goal is to help others in attaining theirs. The
fact that privacy protection turns out to be co-utile ensures that respondents
will be willing to collaborate with each other to improve the protection of all the
group.

4 Collaborative k-Anonymity

This section describes how to generate a k-anonymous data set in a distributed
manner, such that none of the respondents releases more information than the
one available on her in the final k-anonymous data set. To this end, some com-
munication between the respondents is needed to determine the k-anonymous
groups.

In general, there can be several combinations of attributes in a data set
that together act like a quasi-identifier, that is, such that each combination
of attributes can be used to re-identify respondents; for example, one might
have a quasi-identifier (Age, Gender, Birthplace) and another quasi-identifer
(Instruction level, City of residence, Nationality). Without loss of generality and
for the sake of simplicity, we will assume there is a single quasi-identifier that
contains all the attributes that can potentially be used in record re-identification.
Note that this is the worst-case scenario. Let QI be the set of attributes in this
quasi-identifier.

Quasi-identifier attributes are usually assumed to contain no confidential
information, that is, the set of quasi-identifier attributes is assumed to be disjoint
from the set of confidential/sensitive attributes. This assumption is reasonable,
because it is equivalent to saying that the attacker’s background information
does not include sensitive information on any respondent (indeed, the attacker
wants to learn sensitive information, so it is reasonable to assume that he does
not yet know it). Certainly, there might be special cases in which the attacker
knows and uses sensitive data for re-identification, but we will stick to the usual
setting in which this does not happen.
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Since the attributes in QI are non-confidential, respondents can share their
values among themselves and with the data collector, so that all of them get the
complete list of QI attribute values. Based on that list, the data collector or any
respondent can generate the k-anonymous groups. We propose to delegate the
generation of the k-anonymous groups to the data collector. There are two main
reasons for this:

– Utility. The actual k-anonymous partition chosen may have an important
impact over analyses that can be accurately performed on the k-anonymous
data. The data collector is probably the one who knows best (even if often
only partially) the intended use of the data and, thus, the one who can make
the most appropriate partition in k-anonymous groups.

– Performance. Generating the k-anonymous groups is the most computation-
ally intensive part of k-anonymity enforcement. Hence, by delegating this task
to the data collector, respondents relieve themselves from this burden.

When respondents have some interest in using the anonymized data set, it is
plausible to assume that any respondent will rationally collaborate to generate
it. The level of protection that a respondent in a given k-anonymous group gets
is dependent on the level of protection that the other respondents in the group
get: as justified above in Sect. 3, k-anonymization is co-utile.

On the other side, the data collector may try to deviate from the algorithm.
Because the generation of the k-anonymous partition has been delegated to
the data collector, respondents must make sure before reporting confidential
information that the partition computed and returned by the data collector
satisfies the requirements of k-anonymity. That is, each respondent must check
that her k-anonymous group comprises k or more respondents.

After verifying the partition returned by the data collector, the respon-
dent uploads to the data collector the quasi-identifier attribute values of her
k-anonymous group together with her confidential data. This communication
must be done through an anonymous channel (e.g. Tor [2]) to prevent anyone
(the data collector, an intruder or anyone else) from tracking the confidential
data to any respondent.

The above described steps to collaboratively generate a k-anonymous data
set are formalized in Protocol 1.

Protocol 1

1. Let R1, . . . , Rm be the set of respondents. Let (qii, ci) be the quasi-identifier
and confidential attribute values of Ri, for i = 1, · · · ,m.

2. Each Ri uploads her qii to a central data store so that anyone can query for
qii.

3. The data collector generates a k-anonymous partition {P1, . . . , Pp} and
uploads it to the central data store.

4. Each Ri checks that her k-anonymous group Pg(Ri) contains k or more of the
original quasi-identifiers.
If that is not the case, Ri refuses to provide any confidential data and exits
the protocol.
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5. Each Ri sends (Pg(Ri), ci) to the data collector through an anonymous channel.
6. With the confidential data collected, the data collector generates the k-

anonymous data set.

Protocol 1 is compatible with any strategy to generate the k-anonymous
partition. Possible strategies include:

– Methods reducing the detail of the quasi-identifier attributes. Options here are
generalization and supression [11,12,14], or microaggregation [5].

– Methods breaking the connection between quasi-identifier attributes and con-
fidential attributes. Among these we have Anatomy [19] (that splits the data
into two tables, one containing the original quasi-identifier values and the
other the original confidential attribute values, with both tables being con-
nected through a group identifier attribute) and probabilistic k-anonymity [16]
(that seeks to break the relation between quasi-identifiers and confidential
attributes by means of a within-group permutation).

In fact, since the data collector and the respondents all know the exact val-
ues of the quasi-identifiers and the confidential attributes in each k-anonymous
group, each of them can generate the k-anonymous data that suits her best.

In essence, the proposed protocol offers the same privacy protection as
local anonymization (confidential data are only provided by the respondents
in an anonymized form) while maintaining the data utility of centralized k-
anonymization. At the respondents’ side, there are only some minor additional
communication and integrity checking costs.

We illustrate the steps of Protocol 1 for the respondents listed in the leftmost
table of Fig. 1. In Step 2 each respondent uploads her quasi-identifiers. The
uploaded data are shown in the center-left table of Fig. 1. At Step 3 the data
collector analyzes the data uploaded in Step 2 and generates the partition in
k-anonymous groups (for k = 4); that is, for each Ri, the data collector fixes
the value of g(Ri), the group assigned to Ri). This partition is shown in the
center-right table of Fig. 1. For clarity, the records have been arranged in a way
that the k-anonymous group P1 contains the first k = 4 records and group P2

contains the last k = 4 records; that is, Pg(R1) = Pg(R2) = Pg(R3) = Pg(R4) = P1

and Pg(R5) = Pg(R6) = Pg(R7) = Pg(R8) = P2. In Step 4 each respondent checks
that her group contains k or more of the quasi-identifier values uploaded in Step
2. Since this condition holds for all respondents in the example of the figure,
respondents proceed to Step 5. In Step 5 each respondent uploads, through an
anonymous channel, the group identifier she has been assigned, Pg(Ri), together
with her value for the confidential/sensitive attribute. The result is shown in
the rightmost table of Fig. 1. Here the layout of the rightmost table can be
misleading: although we list in the i-th row the salary of Ri for i = 1, · · · 4,
any permutation of the four salaries could be listed (all four salaries in the P1

group are indistinguishable). A similar comment holds for rows 5–8, in which
we could list any permutation of the salaries in the P2 group. At this point,
the data collector (and the respondents) can generate the k-anonymous data set
using the method they like best using that they see all tables in Fig. 1 except
the leftmost one.
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QI Sensitive Step 2 Step 3 Step 5
Zip Age Salary Zip Age Zip Age Salary

R1 13053 28 35000 13053 28

P1

13053 28 P1 35000
R2 13068 29 30000 13068 29 13068 29 P1 30000
R3 13068 21 20000 13068 21 13068 21 P1 20000
R4 13053 23 27000 13053 23 13053 23 P1 27000
R5 14853 50 40000 14853 50

P2

14853 50 P2 40000
R6 14853 55 43000 14853 55 14853 55 P2 43000
R7 14850 47 48000 14850 47 14850 47 P2 48000
R8 14850 49 45000 14850 49 14850 49 P2 45000

Fig. 1. Distributed collaborative k-anonymization. Step numbers refer to Protocol 1.
Each row in the leftmost table is only seen by the corresponding respondent. The other
three tables are entirely seen by all respondents and the data collector.

Distributed anonymization based on hiding in a group via manipulation of
the quasi-identifiers has an important flaw. An attacker may try to simulate one
or more respondents, in order to gain more insight into the k-anonymous groups.
To thwart this kind of attack, we need to make sure that every respondent has a
verified identity, possibly by having all respondents registered with some trusted
authority. If that is not feasible, some mitigation measures can be put in place
to make it more difficult for an attacker to adaptively fabricate quasi-identifier
values similar to those of a target respondent in order to track her:

– One option is for the data store manager (maybe the data collector) to unlock
the access to the quasi-identifiers list (of Step 2) only after every respondent
has uploaded her quasi-identifiers. In this way, the attacker must generate his
quasi-identifier values without knowing the quasi-identifier values of the other
respondents. This option has the shortcoming that respondents need to trust
the data store manager to perform the above access control.

– An alternative that does not require trust in any central entity is to have
each respondent upload a commitment (in the cryptographic sense, [6]) to her
quasi-identifiers before any actual quasi-identifier is uploaded. In this way,
each respondent can check that none of the uploaded values was forged to
target a specific respondent.

In the following section, we explore distributed anonymization based on
masking the confidential attributes, rather than on hiding in a group via quasi-
identifier manipulation.

5 Collaborative Masking of Confidential Data

Although k-anonymity is a popular privacy model, it has some important limita-
tions. First of all, attribute disclosure is possible, even without re-identification,
if the variability of the confidential attribute(s) within a k-anonymous group is
small. Also, k-anonymity assumes that confidential attributes are not used in
re-identification (i.e. that no confidential attribute is also a quasi-identifier), but
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this may not be the case if the attacker knows some confidential data. Moreover,
we mentioned in the previous section that in our distributed generation of the k-
anonymous data set, an attacker might simulate respondents to gain more insight
into the k-anonymous groups. To deal with these issues, this section takes a dif-
ferent approach to generate the anonymized data set: instead of hiding within a
group of respondents, each respondent masks her confidential data.

In this section, we relax the assumption that the set of quasi-identifier
attributes and the set of confidential attributes are disjoint. The only assumption
we make is that releasing the marginal distribution of a confidential attribute
is not disclosive. What needs to be masked is the relation between a confi-
dential attribute and any other attribute. Thus, we consider a data set with
attributes (A,C1, . . . , Cd) where Cj are confidential attributes for j = 1, · · · , d
and A groups all non-confidential attributes.

Since the marginal distribution of confidential attributes is not disclosive,
respondents can share the contents of each confidential attribute among them-
selves and with the data collector, so that all of them get the complete list of
values for each confidential attribute. In this way, each respondent can evaluate
the sensitivity of her value for each confidential attribute by taking into account
the values of the other respondents for that attribute. From this sensitivity eval-
uation, the respondent can make a more informed decision regarding the amount
of masking she needs to use.

Thus, we assume that each respondent Ri makes a decision about the amount
of masking required for her confidential data and reports to the data collector
the tuple (ai, c′

1i . . . , c
′
di), where ai is the original value of the non-confidential

attributes and c′
1i the masked value of confidential attribute Ci. The fact that

each respondent freely and informedly decides on the amount of masking required
for her confidential data is a strong privacy guarantee (the respondent can enforce
the level of permutation she wishes with respect to the original values). In fact,
even if the data collector or any other entity recommend a specific amount of
masking, respondents are free to ignore this recommendation. For a rational
respondent, the selected level of masking is based on both privacy and utility
considerations.

The reported masked data can be directly used to generate the masked
data set. Better yet, by applying reverse mapping (see Appendix B for back-
ground on reverse mapping), the original marginal distribution of each confiden-
tial attribute can be recovered. This reverse mapping can be performed by the
data collector and also by each respondent (because all respondents know the
marginal distribution of the original attributes).

The previous discussion is formalized in Protocol 2.

Protocol 2

1. Let R1, . . . , Rm be the set of respondents. Let (ai, ci1 . . . , cid) be the attribute
values of Ri.

2. For each confidential attribute Cj, each respondent Ri uploads cij to a central
data store through an anonymous channel.
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3. For each confidential attribute Cj, each respondent Ri analyzes all attribute
values and decides on the amount of masking required for cij. Let c′

ij be the
masked value.

4. Each respondent Ri uploads (ai, c′
i1 . . . , c

′
id) to the data store.

5. The data collector applies reverse mapping to the data uploaded in Step 4 in
order to obtain the final anonymized data set. (The same can be done by each
respondent.)

Although the reasons why Protocol 2 is safe have already been presented in
the discussion prior to the algorithm formalization, a more systematic analysis
is presented in the following proposition.

Proposition 1. At the end of Protocol 2, nobody learns information about any
respondent Ri that is more accurate than the masked data reported by Ri in
Step 4.

Proof. Apart from the release of the masked data in Step 4, the only step in
which Ri releases data is Step 2. Since the data released in Step 2 are not
anonymized, we need to make sure they cannot be linked back to Ri.

Because the uploads in Step 2 are performed through an anonymous channel,
there is no way for an attacker to track the data transfers to any particular
respondent. What is more, since each cij is separately uploaded through the
anonymous channel, there is no way for the attacker to link to one another the
values cij , j = 1, · · · , d corresponding to the same respondent Ri (if the attacker
could link such values, he could reconstruct the original record of Ri).

Finally, since by assumption releasing the marginal distribution of each confi-
dential attribute is not disclosive, there is no risk in uploading each cij in Step 2.
The reason is that each cij carries less information than the marginal distribu-
tion of attribute Cj . (The release of a cij could be problematic if Cj contains
confidential information and, at the same time, can be used in re-identification,
but assuming that the marginals are not disclosive rules out this situation). �

We illustrate the steps of Algorithm 2 for the respondents listed in the left-
most table of of Fig. 2. We assume that Age and Salary are the confidential
attributes. In Step 2 each respondent uploads to the central data store each of
her values for the confidential attributes. Each respondent performs a separate
upload through an anonymous channel for each of the confidential attributes.
At the end of Step 2, the marginal distribution of the confidential attributes is
available to the data collector and all respondents in the central data store, as
illustrated in the center-left table of Fig. 2. In Step 3 each respondent can ana-
lyze the marginal distributions and decide on the amount of masking required
for each confidential attribute. In this example Age is masked by adding a
random value between −5 and 5, and Salary is masked by adding a random
value between −5000 and 5000. Of course, each respondent could have applied
a different masking. In Step 4 each respondent uploads the masked confidential
attributes together with the rest of attributes (the non-confidential ones). This
upload need not be done through an anonymous channel, because all confiden-
tial data are masked. The data set uploaded by respondents to the central data
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store at the end of Step 4 is shown in the center-right table of Fig. 2. In the final
step, the data collector applies reverse mapping to each confidential attribute to
recover the original marginal distributions, as illustrated in the rightmost table
of Fig. 2.

Sensitive Step 2 Step 4 Step 5
Zip Age Salary Age Salary Zip Age Salary Zip Age Salary

R1 13053 28 35000 28 35000 13053 29 37306 13053 29 40000
R2 13068 29 30000 29 30000 13068 24 27765 13068 28 27000
R3 13068 21 20000 21 20000 13068 18 18951 13068 21 20000
R4 13053 23 27000 23 27000 13053 19 28151 13053 23 30000
R5 14853 50 40000 50 40000 14853 51 36879 14853 50 35000
R6 14853 55 43000 55 43000 14853 50 42631 14853 49 45000
R7 14850 47 48000 47 48000 14850 52 45585 14850 55 48000
R8 14850 49 45000 49 45000 14850 49 40390 14850 47 43000

Fig. 2. Distributed collaborative masking of the confidential attributes. Step numbers
refer to Protocol 2. Each row in the leftmost table is only seen by the correspoding
respondent. The other three tables are entirely seen by all respondents and the data
collector.

6 Conclusions and Future Research

We have sketched two protocols for collaborative microdata anonymization. The
first one assumes a clear separation between confidential attributes and quasi-
identifiers, and seeks to attain k-anonymity. In the second one, no separation
between quasi-identifiers and confidential attributes is assumed, and the goal is
to sufficiently mask the confidential attributes. The main difference between both
methods lies on the attributes that are masked to preserve privacy. On the one
hand, collaborative k-anonymity masks the quasi-identifiers, thereby thwarting
exact re-identification based on them. In this way, it should be preferred when
we want to keep the values of the confidential attributes unmodified and limiting
the probability of re-identification based on a preselected set of quasi-identifiers
is viewed as sufficient protection. On the other hand, collaborative masking of
confidential attributes only masks the values of the confidential attributes; hence,
even if re-identification happens, the attacker is uncertain about the value of the
confidential attributes. Thus, this protocol should be preferred when respondents
are not comfortable with releasing fully accurate confidential data. For instance,
this could be the case if the set of quasi-identifiers is not clear, a situation that
occurs when intruders may know some confidential pieces of information (so that
every attribute might be a quasi-identifier).

Compared to local anonymization, collaborative anonymization incurs less
information loss and achieves the same privacy vs the data collector. Compared
to centralized anonymization, collaborative anonymization requires less trust in
the data collector and achieves the same data utility. Therefore, collaborative
anonymization should be preferred by rational respondents to both local and
centralized anonymization.
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In a survey, the motivations for respondents to report data and report them
truthfully to the data collector are in general unclear. As a rule, a rational
respondent is willing to participate only if the benefit she obtains is greater than
the potential harm due to privacy loss. If respondents are interested in the col-
lected data set and they wish it to be as accurate as possible, then collaborative
anonymization protocols are co-utile.

Future work will be devoted to develop collaborative anonymization proto-
cols for a broader range of privacy models (beyond k-anonymity) and disclosure
limitation techniques.
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A k-Anonymity

k-Anonymity [14] is a privacy model that seeks to thwart re-identification of
anonymized records. Central to k-anonymity is the notion of quasi-identifier
attributes, also known as key attributes. Quasi-identifiers are attributes that,
when considered separately, do not identify the respondent behind a record, but,
which used in combination may allow an attacker to uniquely link that record
to an external database containing identifiers (this database is the attacker’s
background knowledge). Such a unique linkage is called re-identification.

With the above setting in mind, k-anonymity can be defined as follows.

Definition 1 (k-Anonymity). A protected data set is said to satisfy k-
anonymity for k > 1 if, for each combination of values of quasi-identifier
attributes, at least k records exist in the data set sharing that combination.

If the quasi-identifiers considered by the data protector to enforce k-
anonymity coincide with the quasi-identifiers that an attacker can use to link
with his background knowledge, then k-anonymity reduces the probability of
successful re-identification to 1/k.

Of course, which attributes should be labeled as quasi-identifiers is debatable.
At the very least, attributes that can be found in a public non-de-identified data
sets (e.g. electoral rolls, phonebooks, etc.) must be taken as quasi-identifiers.
However, this is not enough to prevent re-identification by attackers with addi-
tional knowledge.

B Reverse Mapping

Reverse mapping [3,13] is a post-masking technique that can be applied to any
anonymized data set. The result is a reverse-mapped data set, constructed by
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taking each attribute of the anonymized data set at a time, and replacing the
value of each record by the value in the original data set with equal rank.

Thus, reverse mapping requires knowing the marginal distribution of each
of the attributes in the original data set. Hence, if the data collector wants
to allow reverse mapping by parties other than himself, he must release those
marginal distributions. And, for those distributions to be releasable, they must
be assumed to be non-disclosive. The good news is that this is quite a reasonable
assumption, as the distribution of an attribute essentially conveys statistical
information (it is, in principle, unrelated to any specific individual). For the
extreme cases in which a single value can be associated to a specific individual
(e.g. the turnover of the largest company in a specific sector), prior masking of
the marginal distribution would be needed (e.g. by top coding it).

The interesting point about the reverse mapping transformation is that it
allows viewing any microdata anonymization method as being functionally equiv-
alent to permutation (mapping the original data set to the reverse-mapped data
set) plus a small amount of noise (mapping the reverse-mapped data set to the
anonymized data set). The noise is necessarily small because it does not mod-
ify the ranks of the values: by construction, ranks in the reverse-mapped and
the anonymized data set are the same. Therefore, the essential anonymization
principle turns out to be permutation.

C Co-utility

Consider a set of self-interested peers (having each a utility function, that is, a
specific goal or a defined preference relation between a set of possible outcomes)
that act strategically (each peer acts to seek an outcome that maximizes her
utility, according to her knowledge of the environment).

Co-utility [4] models a kind of interaction between the peers in which it is in
the best interest of each of them to help another peer in reaching her goal. The
primary advantage of a co-utile system is that it does not require any external
mechanism to enforce a particular outcome or coordinate the actions of the peers.

Co-utility can be formalized using game theory. To guarantee a specific
interaction outcome without external enforcement, the outcome must be self-
enforcing; in game-theoretic terms, it must be an equilibrium. An outcome is
an equilibrium if no agent (peer) has incentives to change her strategy in that
outcome; in other words, provided that all other agents keep their strategies
unchanged, no agent can increase her utility by modifying her strategy.

If the utility of an outcome for an agent depended on the preferences of
another agent, attaining an equilibrium would require each agent to report her
preferences. On one side, this would increase the complexity of the system,
because an agent may report untruthful preferences if she believes that doing
so is going to yield a better outcome for her. On the other side, gathering all
agents’ preferences by a specific party or agent should be avoided if we want
a truly distributed interaction. Following the above rationale, we define games
amenable to co-utility as those in which the utility of each agent is independent
of the preferences of other agents.
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Definition 2 (Co-utility amenable game). Let G be a sequential Bayesian
game for n agents. We say that G is a co-utility-amenable game if the utility
of any agent is independent of the types of the other agents, i.e., ∀ i, j, with
i �= j and ∀ tj , t

′
j ∈ Tj, we have that ui(s1, . . . , sj , . . . , sn, t1, . . . , tj , . . . , tn) =

ui(s1, . . . , sj , . . . , sn, t1, . . . , t′j , . . . , tn).

Having defined a co-utility amenable game, we are ready to define when a
protocol P that produces as output a strategy profile of the game is co-utile. An
agent can be reluctant to play a strategy that is beneficial to herself if the strategy
provides a much larger benefit to another agent. Because of that, different levels
of co-utility can be distinguished, depending on whether agents maximize or
just increase their utility by following the protocol. In strict co-utility each agent
maximizes her utility and, thus, there is no reason for any agent to not to follow
the protocol.

Definition 3 (Strict co-utility). Let G be a co-utility amenable game for n
agents. Let P be a self-enforcing protocol for G. We say P is a strictly co-utile
protocol if ∀ i ∈ {1, . . . , n}, and ∀ s′

1 ∈ S1, . . . , s
′
n ∈ Sn and ∀ t1 ∈ T1, . . . , tn ∈

Tn, we have that ui(s1, . . . , sn, t1, . . . , tn) ≥ ui(s′
1, . . . , s

′
n, t1, . . . , tn), where the

outcome of P is (s1, . . . , sn).

Designing co-utile protocols is usually a matter of finding a group of peers
with a sufficiently aligned set of preferences. As the focus of this paper is on data
anonymization, we consider a set of privacy-conscious peers that are required
to report some data, for instance, to answer a certain survey. Now, a rational
privacy-conscious peer will report false data or report no data at all unless she
has some interest in the pooled responses by all peer to be as accurate as possible.
Hence, we will make the assumption that all peers are interested in obtaining
an accurate data set.

Under the above assumption, one possible approach to designing a co-utile
protocol can be based on each peer hiding within a group of peers when reporting
her record. Note that hiding one’s identity when reporting one’s record helps
other peers in the group to hide their own identities. Conversely, it is hard to
hide in a group where none of the other members is anonymous.
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Abstract. Microaggregation is an anonymization technique consisting
on partitioning the data into clusters no smaller than k elements and
then replacing the whole cluster by its prototypical representant. Most
of microaggregation techniques work on numerical attributes. However,
many data sets are described by heterogeneous types of data, i.e., numer-
ical and categorical attributes. In this paper we propose a new microag-
gregation method for achieving a compliant k-anonymous masked file
for categorical microdata based on generalization. The goal is to build
a generalized description satisfied by at least k domain objects and to
replace these domain objects by the description. The way to construct
that generalization is similar that the one used in growing decision trees.
Records that cannot be generalized satisfactorily are discarded, therefore
some information is lost. In the experiments we performed we prove that
the new approach gives good results.

Keywords: k-anonymity · Generalization

1 Introduction

Data privacy is a key issue when data bases are published to disseminate infor-
mation: it is important to protect the individuals and entities and, at the same
time, the data base has to be useful to extract representative information from
it. For this reason, the research on protection methods becomes of capital impor-
tance.

Masking methods form a family of methods that given a data base modify
it previous to its release so that published information is similar to the original
one but not equal. In this way, disclosure is more difficult but data is still useful
for analysis (i.e., information loss is low). To evaluate how good is a protection
method, there are two commonly used measures: information loss and disclosure
risk. As both measures are in contradiction, it is necessary to achieve a trade-off
between the two aspects. Different methods have been developed which differ on
how data is modified. They have different performance with respect to the level
of disclosure risk and information loss they achieve. See e.g. [6,10] for details on
data privacy and masking methods.
c© Springer International Publishing Switzerland 2015
V. Torra and Y. Narakawa (Eds.): MDAI 2015, LNAI 9321, pp. 207–218, 2015.
DOI: 10.1007/978-3-319-23240-9 17
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There are three general categories of protection methods: perturbative,
non-perturbative and synthetic data generators. Perturbative methods perform
some distortion of the original data by adding some error. Microaggregation,
rank swapping and noise addition are examples of perturbative methods. Non-
perturbative methods do not rely on distortion of the original data but on partial
suppressions or reductions of detail. These methods include different algorithms
based on generalization and suppression. Finally, synthetic data generators meth-
ods generate synthetic data that preserve some desired characteristics of the orig-
inal data. In this paper we focus on masking methods and, more particularly,
we introduce a non-perturbative method based on generalization.

Different definitions exist for assessing disclosure risk or for establishing when
a data set can be released without compromising sensitive information. Identity
and attribute disclosure are the two main types of disclosure. Record linkage has
been used extensively for identity disclosure risk assessment [19,21]. See [1] for
a study of the worst-case scenario using record linkage. Differential privacy [7]
and k-anonymity, [17] are two definitions to establish a suitable level of privacy,
the former focusing on attribute disclosure and the latter on identity disclosure.
k-Anonimity is satisfied when for each records there are other k − 1 identical
records, which avoids re-identification.

Files compliant with k-anonymity can be constructed by means of generaliza-
tion, supression and microaggregation. See e.g. Mondrian and Incognito [12,13]
as methods to achieve k-anonymity based on generalization. On the contrary, [5]
is about the use of microaggregation for achieving k-anonymity.

In order that these methods lead to a file compliant with k-anonymity, they
have to be applied to all the variables available to the intruder. When applied
to subsets of these variables, k-anonymity is not ensured. In this type of situa-
tions disclosure risk assessment needs to be evaluated. Some microaggregation
algorithms and Mondrian [15] have been used in this way.

Concerning the data included in the data bases, objects are represented by
attributes. Different types of attributes have been considered in the literature on
masking methods. For example, to name a few, there are methods for numerical,
categorical (ordinal and nominal), time series, dates, text. In this work we focus
on the case of categorical attributes.

Mondrian and Incognito [12,13], mentioned above, are examples of algorithms
available for categorical data. [15] propose an algorithm to protect categorical
attributes using clustering techniques. The original data are used to create clus-
ters and then each cluster is protected independently. Li and Sankar [14] pro-
pose a protection method in two steps: first a linear programming formulation
is applied in order to preserve the first-order marginal distribution, and then a
simple Bayes-based swapping procedure assures the preservation of the joint dis-
tribution. Guo and Wu [8] investigate whether data mining or statistical analysis
tasks can be conducted on randomized data when distortion parameters are not
disclosed to data miners. There are also some approaches focusing on categor-
ical attributes that use generalization. Thus, Wang et al. [20] explore the data
generalization concept as a way to hide detailed information. Once the data is
masked, standard data mining techniques can be applied without modification.
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Some other authors, as Samarati and Sweeney [17] use ontologies of concepts
that allow the generalization of the values of an attribute.

In this paper we propose a new method for achieving a compliant k-
anonymous masked file for categorical microdata. The approach is based on
generalization, building generalizations that accommodate k records and thus
achieving k-anonymity. At the same time records that cannot be generalized
satisfactorily are discarded. Compared with other methods in the literature, our
approach is able to deal with missing values, and we do not need to start with an
ontology of generalizations. In addition, our method is evaluated satisfactorily
with respect to the performance of classifiers built from the protected data set.
Note that classifiers are standard tools in machine learning to build models of
the data.

The structure of the paper is as follows. In Sect. 2 we introduce the notation
we use. In Sect. 3 the algorithm we propose for k-anonymization is explained in
detail. In Sect. 4 we present the experiments we carried out on the Adult data
set from the UCI Machine Learning Repository. The paper finishes with some
conclusions.

2 Preliminaries

In this work we follow the notation and approach of common literature on micro-
data protection. Concerning the attributes, they can be divided into three classes:

– Identifiers are the attributes that unambiguously identify a single individual
or entity (for instance, the passport number), so they are usually removed or
encrypted.

– Quasi-identifiers attributes that are those that identify an individual with
some degree of ambiguity, but a combination of quasi-identifiers provides an
unambiguous identification of some records, so they have to be masked.

– Confidential attributes that are those containing sensitive information that
could be useful for statitic analysis, so they are usually not modified.

In [17] authors prove that removing the identifiers is no enough to protect
the identity of an individual. Therefore, the protection must be done on the
quasi-identifiers.

3 An Algorithm for k-Anonymization

In this section we introduce an algorithm for k-anonymization. It is based on
the generalization of a set of original records. Such generalization plays the role
of a representative of a cluster in other microaggregation methods. The main
goal is to search for a subset of records similar enough and set the attributes
with different values to an indifferent value. The algorithm allows to choose the
generalization degree, that is, how many attributes can have indifferent values.
However, because we do not want to obtain generalizations very different of the
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Function ANONYMIZE (DB, K, C, long)
;; DB := all records
;; C := set of confidential attributes
;; long := minimum length for the new registers
Pt := set of patterns (initially ∅)
PC := correct partition according to the confidential attributes
analize-partition(DB, K, PC , c1, long)

end-function

Fig. 1. Initializations of the generalized-based k-anonymization. The main part of the
process is to call the Analyze-partition function.

original records, in the experiments we work with anonymized records having
only one or two indifferent values.

Figure 1 shows the Anonymize algorithm proposed to anonymize a data base.
The input parameters are K, C and long, where K is the minimum number of
records that have to be put together; C is the set of attributes that the algorithm
considers as confidential, i.e., they have not been modified during the process of
anonymization; and, long is the minimum length of the anonymized records, i.e.,
it controls number of indifferent values in order to prevent from too generalized
records.

Fig. 2. Correct partition PC induced taking into account two attributes: color and size.
The correct partition has as many sets as the combination of values of both attributes.
Numbers indicate how many records are contained in each partition set (Color figure
online).

To illustrate the algorithm, let us suppose a data base composed of 35
records described by four attributes texture, material, color and size and that
both color and size are confidential attributes. Figure 2 shows the values that
these attributes can take. The first step is to build PC , namely the correct parti-
tion, having as many sets as the number of possible combinations of values hold
by the confidential attributes. In the example, PC is composed of 4 sets since
there are two confidential attributes taking two different values each. Let us sup-
pose that the class C1 has 7 records, the class C2 has 3 records, the class C3 has
12 records, and the class C4 has 13 records. All the sets of PC having less than K
records are discarded. If we take K = 5, the records in the class C2 are rejected.
Notice that the rejection of these records can be seen as the rejection of outliers,
since it means that there are few records with a given combination, so they could
be easily re-identified. Then function Analyze-partition is called for each set of
PC . This function can be called several ways taking different conditions. This
possibility will be explained in detail in Sect. 4.
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Function Analize-partition (DB, K, Pi, condition, long)
loop

for each set Ci of Pi do
if Cardinality(Ci) ≥ k then

ident := analize-set(K, Ci, condition, long)
end-if
if ident = ∅ then end process

else DB := DB - ident
P ′
i := update(Pi)

Analize-partition (DB, P ′
i , condition, long)

end-if
end-for

end-loop

end-function

Fig. 3. The main goal of the Analize-partition function is to recursively call the function
Analize-set for partition sets having more than K records.

Analyze-partition (Fig. 3) is a recursive function with three input parameters:
a set of records DB (initially the whole data base), a partition Pi(initially PC)
and a condition. This function is a loop that analyzes each set Ci of Pi and, if
the cardinality of that set is bigger than K, the function Analyze-set is called
and returns the subset of records that are identified by some new created pat-
tern. When no new records have been identified, the process ends; otherwise
Analyze-partition is recursively called with an update of DB obtained by reject-
ing the newly identified records; and P ′

n that is Pn without the identified records.
The intuition behind this procedure is to induce partitions from the remaining
records, i.e., those that have not still been used for generalization. Because at
each step the number of records decreases, some sets of the partition can have a
cardinality lower than K.

Analyze-set is also a recursive function (Fig. 4). In the first step, Analyze-set
constructs a pattern AU using the anti-unification concept [2]. Such pattern is
a record formed by all the attributes that have the same value in all the records
in Ci. In this context, we call description length to the number of attributes
describing AU . The remaining attributes are considered indifferent. If AU is
either empty or has a length below long the input set has to be partitioned
in subsets; otherwise there is a pattern long enough that satisfies more than
K records. Notice that if AU is empty it means that the records in Ci have
not attributes with common values. When the length of AU is lower than long
it means that the pattern that could be extracted is too general, i.e., many
attributes should have indifferent value. For instance, Fig. 5 shows the descrip-
tion of two records, namely adult-8 and adult-10, described with 9 attributes
(description-length = 9). Both objects have in common the value of only three
of these attributes (i.e., the length of AU is 3), therefore this generalization
is not useful since it has lost many information with respect to the complete
description of a record.
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Function Analize-set (K, Ci, condition, long)
AU := anti-unification(Ci)
if Ac = ∅ or description-length(AU) < long then

PA := set of partitions on Ci induced by each quasi-confidential
Pcond := subset of PA selected according to condition
for each Pai ∈ Pcond do

for each set Cj of Pai do
if Cardinality(Cj) ≥ k then

analize-set(K, Cj , condition, long)
end-if

end-for
else Pt := Pt ∪ {AU}

return Ci

end-if
end-function

Fig. 4. The recursive function Analyze-set constructs the patterns that generalize more
than K records.

When the elements in Ci have at least long attributes with the same value,
the function constructs a pattern (i.e., the anti-unification of the elements in Ci)
and finishes by returning the set Ci.

Let us suppose now that in Analyze-set there is the situation such that AU
is lower than long and non-empty. The next step is, for each quasi-confidential
attribute Ai describing the records, to induce a partition of the elements in Ci

according to the values of Ai. The idea is to take a small number of records
trying to find more commonalities among them, i.e., AU with an appropriate
length. The way to do this is to take one of the remaining attributes and induce
a partition according to the values that this attribute can take. Each partition
has a certain number of sets. A partition with a high number of sets corresponds
to a situation where each set has a small number of records but it is more likely
than these records have many common attributes. Therefore, AU is specific and
satisfied by a small number of records. Conversely partitions with small number
of sets corresponds to a situation where each set has a high number of records

Fig. 5. The records Adult-8 and Adult-8 are described by 9 attributes, however in only
three of them they have the same value. The AU record shows these common attributes
and their value.
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Fig. 6. From a set Ci of a partition, it can be induced a partition for each attribute
Aj taking into account the values that such attribute holds in each one of the records
of the set.

but it is more likely than these records have not many common attributes. This
means that if we are able to find an AU of appropriate length (higher than long),
it will generalize many objects. However, most of time this will not be the case
and Analyze-set should be called again in order to reduce the number of records
included in a set.

Let PA be the set of all the induced partitions. This set could be ordered in
several ways, so the input parameter condition indicates how the partitions in
PA have to be sorted. There are two simple sorts:

– to use < as condition, meaning that partitions with the lowest number of sets
are given first. In the example of Fig. 6 the attributes should be ordered in
the following way: A2, A4, A1, A5, A3 and A6;

– to use > as condition, meaning that partitions with the highest number of
sets are given first. In the example of Fig. 6 the attributes should be ordered
in the following way: A6, A3, A1, A5, A2 and A4.

Because several attributes can induce partitions with the same number of
sets, let Pcond be the subset of PA of the partitions with the same number of sets
selected according to condition. In the example show in Fig. 6, P< = {A2, A4}
and P> = {A6}.

Given a partition Pai
∈ Pcond, for each set Cj of Pai

with cardinality higher
than K, the function Analyze-set is recursively called. At the end of the process,
Analyze-set has build a set of patterns each one representing the anonymization
of at least K original records.

During the anonymization process, the sets with cardinality lower than K
are discarded. This means that, at the end of the process, some records that do
not satisfy any of the patterns can remain. For this reason, what we propose is to
repeat the whole process on the subset of no identified records using a different
condition (see Sect. 4).
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Notice that, some records can satisfy more than one pattern. This implies
that the risk of re-identification can be, for some records, much less than 1/K
because the anonymity set for them can be K or 2K, or even larger.

4 Experiments

We performed experiments on the Adult data set from the Machine Learning
Repository [3]. This data set is composed of 48842 records (with unknown values)
described by 14 atributes. As it was done by Iyengar [11] we considered only eight
of these attributes: age, workclass, education, marital status, occupation, race,
sex, native country and, in addition, the class label salary. The attribute age is
numerical and we discretized it in intervals of 5 (i.e., [20–25), [25, 30) and so on).
We also considered the labels low-19 and high-90 to include those records placed
on both sides of the global age range. All the other attributes are considered
categorical. As in [4] we considered the class salary as confidential, being all the
other attributes quasi-confidential. Commonly, authors [4,11] discard around
3000 records due to unknown values. In our experiments we do not need to do so
because the algorithm is able to deal with unknown values. The data set as it is
downloaded from the Machine Learning Repository, is already split in a training
set having 32561 records, and a test set having 16281 records.

In the experiments, we address the classification task. The goal is to classify
people with salary up to 50 K and down to 50K. Therefore the correct partition
has only two sets. To use the anonymization algorithm we need to fix the input
parameters K and long and also to determine the condition under which the
partitions are selected. We experimented with K = 5, 10, 20 and 30. Concerning
long, we have set it to 2, that is to say, the maximum number of attributes that
can have value indifferent in the patterns is 2. We also experimented with two
combinations of condition:

– Combination (<,>): first Analyze-partition is called with <. At the end of the
process, the remaining records are used as input of Analyze-partition using >
as condition;

– Combination (>,<): first Analyze-partition is called with >. At the end of the
process,the remaining records are used as input of Analyze-partition using <
as condition.

Once the anonymization process is finished, what we observe first is that
many records are discarded since they are not satisfied by any pattern. Thus,
when K = 5 the number of discarded records goes from around 2500 to around
3300 depending on the combination of conditions. When K increases the number
of discarded records also increases, since as long as the process advances, the sets
of the partitions have low cardinality. This represents the lost of between a 7%
when K = 5 and to the 30% when K = 30 of the records of the training set.
Because we want to address the classification task, we have to evaluate how this
lost affects the predictivity of the model we obtain after anonymization.
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A simple way to test the equivalence of the original data base and the
anonymized one for the classification task, is to induce a domain model (for
instance, using a decision tree) for each data base and then evaluate the accu-
racy of the models on a test set. To construct the models of both the anonymized
data base and the original one, we used the J48 inductive learning method, a
clone of C4.5 [16] provided by Weka [9]. To test the accuracy of the models, we
cannot use 10-fold cross-validation on the anonymized data base, but we have to
use original records as test set. This is because we want to evaluate how well the
model induced from the patterns represents the original records. Notice that a
cross-validation on the anonymized data base will test the patterns (generalized
records) instead of the original records. Thus, we carry out experiments with
three test sets:

– Experiment 1 : We randomly selected a subset of 11486 records, namely S1,
from the original data base to act as test set.

– Experiment 2 : The test set of 16281 records, namely uci, as it was downloaded
from the UCI Repository.

– Experiment 3 : The whole original data base (DB) is used as test set.

Therefore the process we carry out in the experiments has been the following:

1. To induce a decision tree from DB and evaluate the accuracy of that model
on S1, DB itself, and uci;

2. To anonymize DB using the combination (<,>), then induce a decision tree
from the patterns that have been generated and, finally, evaluate the accuracy
of that model on S1, DB, and uci;

3. To anonymize DB using the combination (>,<), then induce a decision tree
from the patterns that have been generated and, finally, evaluate the accuracy
of that model on S1, DB, and uci.

Table 1 shows the accuracies obtained by each model with different values
of K on each one of the test sets. Concerning the accuracy, we see that the
combination (>,<) is better than (<,>) for all K except for K = 30. We have
not any satisfactory explanation for this. However our intuition is that because
the combination (>,<) selects first the partitions having highest number of sets,
the cardinality of these sets will be low. Probably, small sets are composed of
more similar objects whose anti-unification will give a satisfactorily long pattern.

The combination (<,>) tries to avoid overfitting by selecting the attributes
inducing partitions with small number of sets. However, these sets have with
high probability, records with very different descriptions.

When K = 20, both combinations have similar accuracy to the one given by
the model obtained from DB. Notice that, despite for K = 20 there are more
than 7000 records discarded, the accuracy is the best of all the combinations
we tested. This is an unexpected result since it means that the anonymization
is able to construct a satisfactory model of the domain with less records. Our
explanation for this result is that the original database probably contains many
outliers, i.e., records that have very particular combinations of values.
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Table 1. Accuracy for K = 5, 10, 20 and 30 of the models with the original records
(DB) and the anonymized ones ((<,>) and (>,<)) on three different test sets: S1
with around 16000 records randomly selected; the training set provided by the UCI
Machine Learning Repository (uci); and, the whole data set (DB).

model test K = 5 K = 10 K = 20 K = 30

DB S1 83.32 83.32 83.32 83.32

(<,>) S1 73.19 72.51 80.38 80.58

(>,<) S1 81.28 81.51 82.05 72.18

DB uci 83.12 83.12 83.12 83.12

(<,>) uci 73.23 72.38 80.34 80.82

(>,<) uci 81.01 81.75 81.82 72.18

DB DB 83.42 83.42 83.42 83.42

(<,>) DB 73.01 72.12 80.27 80.71

(>,<) DB 81.42 81.66 81.72 71.73

Table 2 shows the number of patterns generated by each combination and
the number of discarded records for different values of K. The combination
(>,<) tends to discard lower number of records than the combination (<,>).
The combination (<,>) seems to produce a high partitioning of the sets and,
consequently, a higher number of discarded records than using (>,<) since they
achieve cardinality lower than K. Specially interesting is the combination (>,<)
with both K = 20 and K = 30 that generate lesser than 1000 patterns and,
however, the induced model has an accuracy very near to the one obtained with
the whole data set.

Table 2. Number of patterns (patterns) and number of discarded records (rest) for
each one of the combinations.

K = 5 K = 10 K = 20 K = 30

model patterns rest patterns rest patterns rest patterns rest

(<,>) 2779 3299 1542 5231 821 7681 570 9671

(>,<) 10453 2578 4956 5042 2307 7396 1343 9613

5 Conclusions

In this paper we introduce a new method for k-anonymization of data bases
where records are represented with attributes with categorical values. The app-
roach is based on generalization, particularly we used the concept of anti-
unification consisting on take only those attributes that take the same value
in all the records of a given set. This approach is different from other gener-
alization approaches in two main issues: first it is able to deal with unknown
values; and, second it is not necessary to construct an ontology generalizing the
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values of the attributes. At the end of the process, we obtain an anonymized data
base consisting on a set of patterns that have the same form than the original
records but they are generalized. The generalization consists on setting some of
the attributes to value unknown meaning that it is no important the value that
they take. Because we only permit one or two unknown values in each pattern,
we can assure that there is no overgeneralization, so we do not lost too much
information.

There are some original records that cannot be generalized satisfactorily with
any patterns, so they are discarded. We experimentally proved that the rejection
of a (sometimes high) percentage of original records does not highly affect the
predictive accuracy in classification tasks.

As future work we consider the application of this approach for microaggre-
gation, in the sense that different subsets of attributes are generalized differently.
This approach has already considered in [15] for other generalization algorithms
with good results. In this microaggregation approach the analysis of disclosure
risk is meaningful. In addition, as records may be generalized in several ways,
the model described in [18] may be useful to study a worse case scenario.
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Abstract. It is known that determining the satisfiability of n-valued
�Lukasiewicz rules is NP-complete for n ≥ 4, as well as that it can be
solved in time linear in the length of the formula in the Boolean case
(when n = 2). However, the complexity for n = 3 is an open prob-
lem. In this paper we formally prove that the satisfiability problem for
3-valued �Lukasiewicz rules is NP-complete. Moreover, we also prove that
when the consequent of the rule has at most one element, the problem
is polynomially solvable.

1 Introduction

The proof theory of many-valued logics has been deeply studied for a wide vari-
ety of logics [1,8,9]. Nevertheless, the development of satisfiability solvers has
received less attention despite of the fact that, without competitive solvers, it is
extremely difficult to apply many-valued logics to solve real-world problems.

Given the recent development of Satisfiability Modulo Theory-based (SMT-
based) solvers for many-valued logics [2–4,10,11], there is the need to empirically
evaluate and compare them with other existing approaches. Because of that we
are interested in developing instance generators that produce instances of varying
difficulty, as well as in analyzing the complexity of relevant fragments of many-
valued logics. It is extremely difficult to advance in the development of fast
satisfiability solvers without the availability of challenging benchmarks.

Before describing the related work and contributions of the present paper, let
us recall that developing satisfiability solvers for �Lukasiewicz logics is particularly
interesting because SAT �L � SATBool, where SAT �L is the set of formulas in
�Lukasiewicz logic that evaluate to 1 for some interpretation, and SATBool is
the set of satisfiable Boolean formulas [8]. This implies that some propositional
formulas are satisfiable in �Lukasiewicz logic whereas they are unsatisfiable in
Boolean logic. However, in other relevant many-valued logics such as Gödel (G)
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and Product (Π) we have that SATG = SATΠ = SATBool and, therefore,
satisfiability testing in these logics can be proved directly with a Boolean SAT
solver.

We have recently investigated, in [5], how the Conjunctive Normal Forms
(CNFs) used by Boolean SAT solvers can be extended to �Lukasiewicz logics.
In a first attempt, we replaced the classical disjunction in Boolean CNFs with
�Lukasiewicz strong disjunction, and interpreted negation using �Lukasiewicz nega-
tion. Interestingly, we proved that the satisfiability problem of these clausal forms
has linear-time complexity,1 regardless of the size of the clauses and the cardi-
nality of the truth value set (assuming it is greater than two). This result is
surprising because deciding the satisfiability of Boolean CNFs is NP-complete
when there are clauses with at least three literals [7]. So, we identified a prob-
lem that is NP-complete in the Boolean case but has linear-time complexity in
�Lukasiewicz logic.

With the aim of producing computationally difficult instances, we defined a
new class of clausal forms, called �Lukasiewicz (�L-)clausal forms, that are CNFs
in which, besides replacing classical disjunction with �Lukasiewicz strong disjunc-
tion, we allow negations above the literal level; i.e., clauses are strong disjunctions
of terms, and terms are either literals or negated strong disjunctions of literals.
We proved that, in this case, 3-SAT is NP-complete whereas 2-SAT has linear-
time complexity.2 Hence, we defined problems in �Lukasiewicz logic that have the
same complexity as their Boolean counterparts.

Independently of our work, Borgwardt et al. [6] investigated the complexity
of finitely-valued �Lukasiewicz rules (c.f. Sect. 2), and proved that the problem of
deciding the satisfiability of such rules is NP-complete when the cardinality of the
truth value set is at least four, but they left as an open problem the complexity
of 3-valued �Lukasiewicz rules. Analyzing the complexity of �Lukasiewicz rules is
appealing because this problem has linear-time complexity in the Boolean case
whereas it is NP-complete for n-valued �Lukasiewicz logics in which n ≥ 4.

In this paper we prove that the satisfiability problem for 3-valued �Lukasiewicz
rules is NP-complete, solving this way an open problem. Moreover, we also prove
that if the consequent of the rule has at most one element, the problem is poly-
nomially solvable.

The paper is structured as follows. Section 2 defines basic concepts in
�Lukasiewicz logics, and n-valued �Lukasiewicz rules. Section 3 shows that the
satisfiability problem for 3-valued �Lukasiewicz rules is NP-complete, but it is
polynomially solvable in any finitely-valued �Lukasiewicz logic if the consequent
of the rule has at most one element. Section 4 concludes and points out future
research directions.

1 In the following, when we say linear-time complexity we mean that the complexity
is linear in the size of the formula.

2 When the number of literals per clause is fixed to k, the corresponding SAT problem
is called k-SAT.
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2 Preliminaries

This section formally defines the finitely-valued and infinitely-valued logics of
�Lukasiewicz, as well as the language of �Lukasiewicz rules.

Definition 1. A propositional language is a pair L = 〈Θ,α〉, where Θ is a
set of logical connectives and α : Θ → N defines the arity of each connective.
Connectives with arity 0 are called constants. A language 〈Θ,α〉 with a finite set
of connectives Θ = {θ1, . . . , θr} is denoted by 〈θ1/α(θ1), . . . , θr/α(θr)〉.

Given a set of propositional variables V, the set LV of L-formulas over V is
inductively defined as the smallest set with the following properties: (i) V ⊆ LV ;
(ii) if θ ∈ Θ and α(θ) = 0, then θ ∈ LV ; and (iii) if φ1, . . . , φm ∈ LV , θ ∈ Θ and
α(θ) = m, then θ(φ1, . . . , φm) ∈ LV .

Definition 2. A many-valued logic L is a triplet 〈L, N,A〉 where L =<
Θ,α > is a propositional language, N is a truth value set, and A is an inter-
pretation of the operation symbols that assigns to each θ ∈ Θ a function
Aθ : Nα(θ) → N .

Many-valued logics are equipped with a non-empty subset D of N called the
designated truth values, which are the truth values that are considered to affirm
satisfiability.

Definition 3. Let L be a many-valued logic. An interpretation on L is a
function I : V → N . I is extended to arbitrary formulas φ in the usual way:

1. If φ is a logical constant, then I(φ) = Aφ.
2. If φ = θ(φ1, . . . , φr), then I(θ(φ1, . . . , φr)) = Aθ(I(φ1), . . . , I(φr)).

A formula φ is satisfiable iff there is an interpretation such that I(φ) ∈ D.

Through this work, we focus on a particular family of many-valued logics:
the �Lukasiewicz logics. These were born from the generalization of a three valued
logic proposed by J. �Lukasiewicz in the early 20th century, and have been deeply
studied both from theoretical and practical points of view. For a deeper study
on these matters, see for instance [8].

The language of �Lukasiewicz logic is given by

L�Luk = 〈⊥/0,	/0,¬/1,→ /2,∧/2,∨/2,�/2,⊕/2〉.

We refer to ⊥ as bottom, to 	 as top, to ¬ as negation, to → as implication, to
∧ as weak conjunction, to ∨ as weak disjunction, to � as (strong) conjunction,
and to ⊕ as (strong) disjunction.

Definition 4. The infinitely-valued �Lukasiewicz logic, denoted by [0, 1]�L
is the many-valued logic 〈L�Luk , N,A〉 equipped with the set of designated values
D = {1}, where N is the real unit interval [0, 1], and the interpretation of the
operation symbols A is given by:
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A⊥ = 0
A� = 1

A¬(x) = 1 − x

A→(x, y) = min{1, 1 − x + y}

A∧(x, y) = min{x, y}
A∨(x, y) = max{x, y}
A�(x, y) = max{0, x + y − 1}
A⊕(x, y) = min{1, x + y}

The n-valued �Lukasiewicz logic, denoted by �Ln, is the logic defined from
the infinitely-valued �Lukasiewicz logic by restricting the universe of evaluation
to the set Nn = {0, 1

n−1 , ..., n−1
n−1}. That is to say, �Ln = 〈L�Luk, Nn, A�L〉 equipped

with D = {1}. Note that the operations are well defined because Nn is a subalge-
bra of [0, 1] with the interpretation of the operation symbols A (for any operation
A∗ and any value/pair of values of Nn, the result of A∗ over this/these values
also belongs to Nn).

The function interpreting negation is called �Lukasiewicz negation, the func-
tion interpreting strong conjunction is called �Lukasiewicz t-norm, the function
interpreting implication is called its residuum, and the function interpreting
strong disjunction is called �Lukasiewicz t-conorm.

We say that a logic L is a �Lukasiewicz logic if it is either [0, 1]�L or �Ln for
some natural number n.

Given a �Lukasiewicz logic L, we denote by SATL the set of satisfiable for-
mulas in L; i.e.,

SATL = {ϕ : I(ϕ) = 1 for some interpretation I on L}.

The problem of deciding whether or not a formula belongs to the set SATL is
called the L-satisfiability problem.

Definition 5. Given a finite truth value set Nn, an n-valued �Lukasiewicz rule
is an expression of one of the following two forms:

– x1 � · · · � xk → y1 � · · · � ym ≥ r
– x1 � · · · � xk → ⊥ ≥ r′

where k ≥ 0,m ≥ 1, r, r′ ∈ Nn, and x1, . . . , xk, y1, . . . , ym are propositional
variables (if k = 0, x1 � ... � xk stands for 	).

Definition 6. An interpretation I satisfies a �Lukasiewicz rule of the form

x1 � · · · � xk → y1 � · · · � ym ≥ r

iff I(x1 � · · · � xk → y1 � · · · � ym) ≥ r, and a �Lukasiewicz rule of the form

x1 � · · · � xk → ⊥ ≥ r′

iff 1 − I(x1 � · · · � xk) ≥ r′.
A set of n-valued �Lukasiewicz rules is satisfiable iff there exists an interpre-

tation that satisfies all the rules.
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Remark 1. �Lukasiewicz rules are called fuzzy Horn clauses by Borgwardt
et al. [6], but we prefer not to refer to them as Horn clauses for the fol-
lowing reason: In Boolean propositional logic, a Horn clause is defined as a
clause having at most one positive literal. Given a finite set of m Boolean Horn
clauses of the form x1, . . . , xk → yi, where 1 ≤ i ≤ m and all the clauses
have the same antecedent, we have that such a set is equivalent to the clause
x1, . . . , xk → y1, . . . , ym, whose extension to �Lukasiewicz logic corresponds to
the first type of �Lukasiewicz rules. However, in Lukasiewicz logic, a finite set of
m rules of the form x1 � · · · � xk → yi ≥ r, where 1 ≤ i ≤ m, is not equivalent
to the rule x1 � · · · � xk → y1 � · · · � ym ≥ r.

In Sect. 3, we show that deciding the satisfiability of a set of 3-valued
�Lukasiewicz rules containing only rules of the form x1 � · · · � xk → yi ≥ r or
x1�· · ·�xl → ⊥ ≥ r′ has linear-time complexity as in the Boolean case. However,
deciding the satisfiability of the rules defined by Borgwardt et al. is polynomially
solvable in the Boolean case, but is NP-complete in the �Lukasiewicz case.

Remark 2. Observe that �Lukasiewicz rules of the form x1 � · · · � xk → y1 �
· · · � ym ≥ r can be represented using strong disjunctions instead of strong
conjuntions as ¬x1 ⊕ · · · ⊕ ¬xk ⊕ ¬(¬y1 ⊕ · · · ⊕ ¬ym) ≥ r, and �Lukasiewicz rules
of the form x1�· · ·�xk′ → ⊥ ≥ r′ can be represented as ¬x1⊕· · ·⊕¬xk′ ≥ r′. So,
�Lukasiewicz rules are a fragment of the �Lukasiewicz clausal forms defined in [5].

3 Complexity of the Satisfiability Problem of 3-Valued
�Lukasiewicz Rules

In this section we prove that the satisfiability problem of 3-valued �Lukasiewicz
rules is NP-complete, and give one subcase in which it can be solved in polyno-
mial time.

Theorem 1. The satisfiability problem of 3-valued �Lukasiewicz rules is NP-
complete.

Proof. We will show that (i) this problem belongs to NP, and (ii) the Boolean
3-SAT problem is polynomially reducible to our problem.

The satisfiability problem of 3-valued �Lukasiewicz rules clearly belongs to
NP: given a set of rules, a nondeterministic algorithm can guess a satisfying
interpretation and check that it satisfies the formula in polynomial time.

For what respects the second claim, let φ =
∧n

i=1(l
1
i ∨ l2i ∨ l3i ) be a Boolean

3-SAT instance, where l1i , l
2
i , l

3
i are literals over the set of Boolean variables

{x1, . . . , xm}. We construct the following set φ′ of 3-valued �Lukasiewicz rules
from φ, over the set of three-valued variables {y1, y

′
1, . . . , ym, y′

m}3 as follows:

3 Observe that only literals with positive polarity appear in �Lukasiewicz rules, but
the 3-SAT instance φ can contain occurrences of both positive and negative literals.
Thus, we introduce the variable y′

k to simulate the literal ¬xk, whereas yk will
simulate the literal xk.
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1. For every Boolean variable xk, 1 ≤ k ≤ m, we add to φ′ the following two
rules:
Ak) yk � y′

k → ⊥ ≥ 1
2

Bk) → yk � y′
k ≥ 1

2

Observe that any interpretation I that satisfies the previous two rules has
a very determined behaviour. From Bk), it must hold that I(yk � y′

k) ≥ 1
2 ,

and thus, by definition of the �Lukasiewicz conjunction operation, either both
yk and y′

k are interpreted to 1 or one of them is interpreted to 1
2 , while the

other is interpreted to 1. Moreover, if I must satisfy also rule Ak), it is not
possible that yk and y′

k are both interpreted to 1, so the only interpretations
that meet all the requirements are those that send one of these variables to 1
and the other to 1

2 . In other words, exactly one of yk and y′
k is evaluated to 1

in a satisfying interpretation, while the other is evaluated to 1
2 . The intuition

behind this is that I(yk) = 1 means that xk is true, and I(y′
k) = 1 means

that xk is false.
2. Let ρ be the function that maps (Boolean) literals to three-valued variables

given by:

ρ(lji ) =
{

yk if lji = xk

y′
k if lji = ¬xk

Then, for every clause δi = l1i ∨ l2i ∨ l3i in φ, we add to φ′ the rule

Cδi) ρ(¬l1i ) � ρ(¬l2i ) � ρ(¬l3i ) → ⊥ ≥ 1
2

Observe that this rule is only falsified if ρ(¬l1i ) = ρ(¬l2i ) = ρ(¬l3i ) = 1. This
is equivalent to say that any interpretation that satisfies Cδi) must send at
least one ρ(¬l1i ), ρ(¬l2i ) or ρ(¬l3i ) to a value that is less than or equal to 1

2
(and if this interpretation also satisfies the family or rules {Ak), Bk)}1≤k≤m,
this value will be in fact equal to 1

2 ). Notice that the clause l1i ∨ l2i ∨ l3i is only
falsified if a Boolean interpretation sets l1i , l

2
i , l

3
i to false . Also notice that the

clause l1i ∨ l2i ∨ l3i is equivalent to the Boolean rule ¬l1i ∧ ¬l2i ∧ ¬l3i → ⊥.

This reduction can clearly be performed in polynomial time, and the size of
φ′ is linear in the size of φ. We also prove that φ′ is satisfiable if and only if φ is
satisfiable.

First, let I ′ be an evaluation on �L3 such that I ′ satisfies φ′. By construction
of φ′, from rules Ak) and Bk) we have that either I ′(yk) = 1 and I ′(y′

k) = 1
2

or I ′(y′
k) = 1 and I ′(yk) = 1

2 (for each 1 ≤ k ≤ m). Moreover, for each δi =
l1i ∨ l2i ∨ l3i of φ, rule Cδi) implies that I ′ sets to 1

2 at least one of the literals
ρ(¬l1i ), ρ(¬l2i ), ρ(¬l3i ). Let then I be the Boolean interpretation defined by

I(xk) =
{

true if I ′(yk) = 1
false if I ′(y′

k) = 1

I satisfies at least one literal from each clause of φ. Indeed, consider without loss
of generality that I ′(ρ(¬l1i )) = 1

2 .

– If l1i = xj , for some 1 ≤ j ≤ m, then ρ(¬l1i ) = y′
j , and so, it is mandatory that

I ′(yj) = 1, making I(xj) = I(l1i ) = true.
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– If l1i = ¬xj then ρ(¬l1i ) = yj , and similarly, I ′(y′
j) = 1. This implies that

I(xj) = false, making I(l1i ) = true.

Then, I is a Boolean evaluation satisfying φ.
For the other direction, assume that I is a Boolean interpretation satisfying

φ. We construct a three-valued interpretation I ′ from I as follows:

I ′(yk) =
{

1 if I(xk) = true
1
2 if I(xk) = false I ′(yk

′) =
{

1
2 if I(xk) = true
1 if I(xk) = false

I ′ is constructed in such a way that it naturally satisfies the family of rules
{Ak),Bk)}1≤k≤m. On the other hand, for every clause δi = l1i ∨ l2i ∨ l3i in φ, since
I satisfies φ, at least one of the literals l1i , l

2
i , l

3
i is set to true. Assume without

loss of generality that the satisfied literal is l1i . There are two possibilities:

– If l1i = xs for some 1 ≤ s ≤ m, (and so, I(xs) = true), I ′ satisfies rule Cδi)
because I ′(y′

s) = 1
2 due to the fact that I(xs) = true.

– If l1i = ¬xs for some 1 ≤ s ≤ m, (and so, I(xs) = false), I ′ satisfies rule Cδi)
because I ′(ys) = 1

2 due to the fact that I(xs) = false.

In all these cases, I ′ satisfies φ′, which concludes the proof.

Remark 3. Observe that all the �Lukasiewicz rules used in the reduction have
either the consequent or the antecedent empty. So, the satisfiability problem of
this fragment of 3-valued �Lukasiewicz rules is NP-complete too. Also observe that
this fragment corresponds to �Lukasiewicz clausal forms only containing clauses
of the form (¬x1 ⊕ · · · ⊕ ¬xk) ≥ r and of the form (¬x1 ⊕ · · · ⊕ ¬xk′) ≤ r′.

Theorem 2. The problem of deciding the satisfiability of a finite set φ of
3-valued �Lukasiewicz rules containing only rules of the form x1�· · ·�xk → yi ≥ r
or x1 � · · · � xl → ⊥ ≥ r′ is polynomially solvable.

Proof. We can assume that there is no rule in which r = 0 or r′ = 0 because
such rules are tautologies and can be removed. Assume that r and r′ are either
1
2 or 1. If φ contains a rule of the form xj → ⊥ ≥ 1, then xj should be evaluated
to 0 and, therefore, all the rules having xj in the antecedent can be removed,
and all the occurrences of xj in the consequent of a rule can be substituted by ⊥.
This process is repeated until there are no more rules of the form xj → ⊥ ≥ 1
or the empty rule is derived. If the empty rule is derived, it means that φ is
unsatisfiable. Otherwise, we continue simplifying φ as follows: if φ contains a
rule of the form → yi ≥ 1, then yi should be evaluated to 1 and, therefore, all
the rules having yi in the consequent can be removed, and all the occurrences of
yi in the antecedent of a rule can be removed too. This process is repeated until
there are no more rules of the form → yi ≥ 1 or the empty rule is derived. If the
empty rule is derived, it means that φ is unsatisfiable.

Otherwise, φ is satisfied by the interpretation I that sets to 1
2 all the variables.

To see this, observe that the only remaining rules with exactly one literal are
either of the form xj → ⊥ ≥ 1

2 or → yi ≥ 1
2 and, hence, they are satisfied by I.
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Besides, any rule containing more than one literal is also satisfied by I: when
there are at least two literals in the antecedent, the rule evaluates to 1 under I
because 1

2 � 1
2 = 0; and when there is a literal in the antecedent and one literal in

the consequent, the rule evaluates also to 1 under I because min{1, 1− 1
2+ 1

2} = 1.
Since the number of rules with exactly one literal that can be derived is

bounded by the total number of rules, deciding the satisfiability of φ can be
performed in polynomial time.

Theorem 2 proves that the satisfiability problem of the generalization of Horn
clauses to our setting is polynomial solvable. We claim that a linear-time algo-
rithm could be implemented by adapting the Boolean linear-time unit propaga-
tion algorithm for Boolean CNFs described in [12].

4 Conclusions

We proved that the satisfiability problem of 3-valued �Lukasiewicz rules is NP-
complete, but is polynomially solvable when the rules have at most one literal in
the consequent. Actually, to get intractable instances it is enough to require that
the rules have an empty antecedent or an empty consequent. These results solve
an open problem posed by Borgwardt et al. in [6], and the 3-valued �Lukasiewicz
rules become a challenging benchmark for �Lukasiewicz satisfiability solvers.

As future work we propose to analyze the complexity of infinitely-valued
�Lukasiewicz rules, as well as identify —when testing the satisfiability of 3-valued
�Lukasiewicz rules with a fixed number of variables per rule, and generated uni-
formly at random— an easy-hard-easy pattern, and a phase transition phe-
nomenon as the clause-to-variable ratio varies, similar to the ones identified
for �Lukasiewicz clausal forms in [5].
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Abstract. Uncertainty plays an important role in decision making.
People try to avoid risks introduced by uncertainty. Probability theory
can model these risks, and information theory can measure these risks.
Another type of uncertainty is ambiguity; where people are not aware
of the probabilities. People also attempt to avoid ambiguity. Subjective
logic can model ambiguity-based uncertainty using opinions. We look at
extensions of information theory to measure the uncertainty of opinions.

1 Introduction

Uncertainty exists in human decision making, where the results of our actions
cannot be predicted, or we are not aware of the complete circumstances sur-
rounding the decision. The unpredictability of the outcome of a test can be
modelled using probability theory. For example, both calling heads/tails on the
next coin flip (unpredictable) and guessing the side of a covered coin (unknown
state), are naturally modelled as decisions with probabilities of a half. We name
this kind of unpredictability as risk-based uncertainty.

Information theory [10] allows measuring how uncertain we are about the
effects of a decision, in the form of entropy. People tend to be risk-averse [2], and
they prefer to make decisions under low entropy. Concretely, most people prefer
1,000$ over an all-or-nothing coin flip for 2,000$. The former option has 0 bits
entropy, and the latter has 1 bit entropy.

There is a type of uncertainty stronger than risk – ambiguity or Knightian
uncertainty [5] – where the probabilities themselves are unknown. An example
would be a coin with an unknown bias. Subjective logic is a formalism that
addresses this type of uncertainty. People also tend to be ambiguity-avoiding;
the Ellsberg paradox [2] (Sect. 2) shows that people may prefer a bigger known
risk over a smaller unknown risk.

In this paper, we generalise information theory to cover subjective logic.
As a consequence, entropy can be used to measure both types of uncertainty
(rather than merely risk). Moreover, the information theory paradigm comes
with a body of results, which may become useful for reasoning about ambiguity-
based uncertainty. Cross entropy is an example of such a useful concept from
information theory, as it allows measuring the difference between two settings
with either type of uncertainty.

c© Springer International Publishing Switzerland 2015
V. Torra and Y. Narakawa (Eds.): MDAI 2015, LNAI 9321, pp. 230–242, 2015.
DOI: 10.1007/978-3-319-23240-9 19
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Table 1. Two sets of choices that comprise the Ellsberg paradox.

Red Black Yellow

Option 1A $100 $0 $0
Option 1B $0 $100 $0

(a) Options for first choice

Red Black Yellow

Option 2A $100 $0 $100
Option 2B $0 $100 $100

(b) Options for second choice

There are four types of extensions that we propose. The first two, pignistic
entropy and aggregate uncertainty entropy, flatten ambiguity-based uncertainty
to risk-based uncertainty. Pignistic entropy models a perfectly rational agent,
interested in the expected risk, given an ambiguous situation; whereas aggregate
uncertainty entropy models a paranoid agent, that assumes the worst-case rea-
sonable risk. The final two, belief entropy and conceivability entropy, properly
extend information theory to model ambiguity-based uncertainty. Both methods
are based on extending surprisal. For belief entropy, surprisal is based on the
beliefs of the agent; whereas for conceivability entropy, surprisal decreases with
uncertainty. All four types coincide when there is no ambiguity-based uncer-
tainty.

2 Ellsberg Paradox

The Ellsberg paradox [2] is a motivating example for uncertainty representa-
tion in subjective logic. The Ellsberg paradox shows that people make different
decisions than rational risk-avoiding agents. We use the Ellsberg paradox as a
running example throughout this paper.

Suppose you are shown an urn with 90 balls in it and you are told that 30
are red and that the remaining 60 balls are either black or yellow. One ball is
selected at random and you are given the following choice: Option 1 A gives you
$100 if a red ball was drawn and $0 of either a black or a yellow ball was drawn;
option 1B gives you $100 if a black ball was drawn and $0 if a red or a yellow
was drawn. Table 1a summarises the possible outcomes given the choices.

Experiments show that people strongly favour option 1 A over option 1B [2].
Assuming that people are rational, this implies that people believe that black
balls are less probable than red.

Options 2 A and 2B are based on the exact same set-up. The amount of balls
of each colour is equal to variant 1. Option 2 A pays $100 when either red or
yellow is drawn, whereas 2B pays $100 when either black or yellow is drawn.
Table 1b summaries these outcomes.

Experiments show that people strongly favour option 2B over option 2A [2].
Assuming that people are rational, this implies that people believe that the
black balls are more probable than red. However, the set-up remains unchanged
between variant 1 and 2. Thus, the choices made by the people cannot be
explained as rational estimates of probabilities.

It is impossible to explain the choices using risk-based uncertainty, since
the risks are perfectly symmetrical. The common explanation of the difference
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between variant 1 and 2 is ambiguity-based uncertainty. In variant 1, option 1a
has no ambiguity-based uncertainty, as the odds are known to be one in three.
In variant 2, option 2b is the ambiguity-free option, as the odds are known to be
two in three. Options 1b and 2a have ambiguity-based uncertainty, as the real
odds could be as low as 0 or 1/3, respectively (if there are no black balls), or as
high as 2/3 or 1, respectively (if there are no yellow balls).

The Ellsberg paradox is the running example throughout this paper. We
relate concepts from subjectively logic and the four types of entropy directly to
the four choices of the Ellsberg paradox. A good entropy measure can describe
the core difference between options 1 A or 2B and options 1B or 2A.

3 Opinion Representation in Subjective Logic

Random events have a set of possible outcomes. Each of these outcomes is
assigned some probability. A user with incomplete knowledge, however, may not
know these probabilities. Subjective logic introduces opinions to model users
that estimate these probabilities.

The domain of an opinion is the set of outcomes of the underlying event. The
elements of the domain are exclusive and exhaustive. The user realises that the
underlying event can have only one outcome, and includes all possible outcomes
in the domain.

A probability distribution assigns a (non-negative) probability to each of the
outcomes. An opinion assigns a (non-negative) belief to each of the outcomes.
Unlike the probability distribution, the sum of the beliefs may be less than one.
The remainder is uncertainty.

An opinion of user A about an event with domain X is denoted ωA
X . An opin-

ion consists of a belief mass function bAX : X → [0, 1], such that
∑

x∈X bAX(x) ≤ 1,
and a base rate function aA

X : X → [0, 1], such that
∑

x∈X aA
X(x) = 1. The uncer-

tainty uA
X is defined 1−∑

x∈X bAX(x). For the domain X = {x1, . . . , xn}, we may
denote an opinion as ωA

X = (b1, . . . , bn), to mean bAX(x1) = b1, . . . b
A
X(xn) = bn.

The base rates denote the projected probabilities, in case of uncertainty. With
a base rate, every opinion uniquely denotes a probability distribution, which
we call the pignistic probabilities. The pignistic probability mass for x ∈ X is
computed pAX(x) = bAX(x) + uA

X · aA
X(x).

Barycentric coordinate systems can be used to visualise opinions. In a barycen-
tric coordinate system the location of a point is specified as the centre of mass, or
barycentre, of masses placed at its vertices [8]. A barycentric coordinate system
with n axes is represented on a simplex with n vertices which has dimensionality
(n − 1). A triangle is a 2D simplex which has 3 vertices and is thus a barycentric
system with 3 axes. A binomial opinion can be visualised as a point in a barycen-
tric coordinate system of 3 axes represented by a 2D simplex which is in fact an
equal sided triangle, as in Fig. 1. Here, the belief, disbelief and uncertainty axes go
perpendicularly from each edge towards the respective opposite vertices denoted
x, x and uncertainty. The base rate aA

X(x) is a point on the base line, and the pro-
jected probability pAX(x) is determined by projecting the opinion point to the base
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ωx

Px ax

dxbx

uX

x vertexx vertex

X vertex       (uncertainty)

(a) Visualisation binomial opinion

ωX

PX aX
x3 vertex x1 vertex

uX

x2 vertex

X vertex       (uncertainty)

(b) Visualisation trinomial opinion

Fig. 1. Barycentric visualisations of opinions.

line in parallel with the base rate director. The binomial opinion ωx = (1/5, 2/5)
with projected probability pAX(x) = 1/2 is shown as an example.

In case the opinion point is located at the left or right vertex of the triangle,
i.e. with bAX(x) = 1 or bAX(x) = 1 (and uA

X = 0), then the opinion is equivalent
to boolean TRUE or FALSE, in which case subjective logic becomes equivalent to
binary logic. In case the opinion point is located on the baseline of the triangle, i.e.
with uA

X = 0, then the opinion is equivalent to a traditional probability, in which
case subjective logic becomes equivalent to probabilistic logic.

In general, a multinomial opinion can be represented as a point inside a regular
simplex. In particular, a ternary multinomial opinion can be represented inside a
tetrahedron with a barycentric system of 4 axes, as shown in Fig. 1.

The tetrahedron is a 3D simplex. Assume the 3-domain X = {x1, x2, x3}.
Figure 1 shows a tetrahedron with the example multinomial opinion ωX =
(1/5, 1/5, 1/5), and base rate distribution (6/8, 1/8, 1/8). The belief axes for x1, x2 and
x3 are omitted due to the difficulty of 3D visualisation.

Running Example 1. The Ellsberg paradox can be expressed elegantly in subjec-
tive logic. We can let the domain be {win, lose}. For choice 1A, the opinion is
(1/3, 2/3); for 1B (0, 1/3); for 2A (1/3, 0); and for 2B (2/3, 1/3). The base rate a(win) =
1/2 is the most natural base rate – black balls are no more or less likely than yellow
balls – but we generally consider arbitrary base rates for the Ellsberg paradox. The
choices 1 A and 2B lead to opinions without uncertainty; their generalised entropy
measure, therefore, equals the standard entropy measure. The choices 1B and 2 A
have an amount of uncertainty; their various generalised entropy measures lead
to different figures.

4 Information Theory

Subjective logic has an extensive set of operations that allow calculus with opin-
ions. One particular operation represents constructing opinions based on recom-
mendations. In [11], the authors show the use of (standard) information theory in
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measuring the usefulness of recommendations and the derived opinions. Informa-
tion theory, opinions and uncertainty are intimately linked.

Before we introduce some extensions of information theory to cover subjective
logic, we introduce the important standard notions. A more detailed discussion
and treatment can be found, e.g., in [7].

Definition 1 (Surprisal). The surprisal (or self-information) of an outcome x
of a discrete random variable X is IX(x) = − log(pX(x)).

Surprisal measures the degree to which an outcome is surprising. The more sur-
prising an outcome is, the more informative it is. In information theory, surprisal
of an outcome is completely determined by the probability it happens. Usually,
an outcome is more surprising if it is less likely to happen.

Definition 2 (Entropy). The entropy of a discrete random variable X is the
expected surprisal H(X) = −∑

x pX(x) log(pX(x)).

Entropy measures the expected information carried with a random variable. In
information theory, entropy of a random variable is decided by the uncertainty of
its outcome in one test. A random variable has more entropy if all of its outcomes
have more similar probabilities to happen.

Definition 3 (Cross Entropy). The cross entropy of two discrete random vari-
ables X,Y is H(X,Y ) = −∑

x pX(x) log(pY (x)).

The cross entropy measures the amount of surprisal obtained when you believe
an event is distributed as Y , but in reality is distributed as X. This amount is
not typically symmetric in Y and X. The cross entropy is minimised when Y is
selected to be equal to X, in which case the believed distribution equals reality.

5 Pignistic Entropy

Subjective logic opinions model the subjective opinions of users. Users make deci-
sions based on their opinions. We can imagine a user forced to make a decision,
where he would decide one way if the probability is above a certain threshold, and
the other way otherwise. The cut-off for the decision is called the pignistic proba-
bility of a belief in an opinion.

A user may have an opinion about a potentially unfair coin. The user believes
that even unfair coins provide heads or tails at least 30% of the time. Hence, his
opinion ω is (3/10, 3/10) (with uncertainty 4/10). Since the user has no reason to pre-
fer heads over tails (or vice versa), if he is forced to pick a probability distribution,
then he assigns 1/2 to both.

Pignistic entropy of an opinion ωA
X characterised by belief mass function bAX

and base rate aA
X is based on the entropy of the associated pignistic probability

distribution:

Definition 4 (Pignistic Entropy). The pignistic entropy Hp(ωA
X) is defined:

−∑
x pAX(x) log(pAX(x)) = −∑

x

(
bAX(x) + uA

X · aA
X(x)

)
log

(
bAX(x) + uA

X · aA
X(x)

)
.
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The pignistic entropy is insensitive towards the change of uncertainty in an
opinion:

Proposition 1. Let ωA
X and ωB

X be two opinions, such that uA
X > uB

X and for all
x, pAX(x) = pBX(x), then Hp(ωA

X) = Hp(ωB
X).

Proof. Proposition follows from the fact that Hp is completely determined by the
pignistic probabilities, which are equal for ωA

X and ωB
X .

Running Example 2. The pignistic entropy models the way a rational agent would
approach the Ellsberg paradox. As depicted in Table 1, if the base rate for black
versus yellow is 50-50, then options 1 A and 1B have equal pignistic entropy, and
options 2 A and 2B also have equal pignistic entropy. If the base rate is skewed
towards black, then 1B and 2B are the superior choices, and 1 A and 2A if it is
not. As expected, the pignistic entropy does not reflect the inherent desire to avoid
ambiguity.

Entropy can not just be used to measure how much information there is, but
also to compare the difference between two opinions. The cross entropy between
ωA
X and ωB

X describes how well ωB
X predicts ωA

X :

Definition 5 (Pignistic Cross Entropy). The pignistic cross entropy between
ωA
X and ωB

X , Hp(ωA
X , ωB

X) is defined: −∑
x pAX(x) log(pBX(x)).

The pignistic cross entropy is insensitive towards the difference between the
uncertainty of two opinions:

Proposition 2. LetωA
X andωA′

X be two opinions, such that uA
X > uA′

X and for all x,
pAX(x) = pA

′
X (x), and idem for ωB

X and ωB′
X . Then Hp(ωA

X , ωB
X) = Hp(ωA′

X , ωB
X) =

Hp(ωA
X , ωB′

X ) = Hp(ωA′
X , ωB′

X ).

Proof. Proposition follows from the fact that Hp is completely determined by the
pignistic probabilities, which are equal for ωA

X and ωA′
X , and for ωB

X and ωB′
X .

The pignistic cross entropy between two identical opinions is equal to the
entropy of one of the opinions:

Proposition 3. Hp(ωX , ωX) = Hp(ωX)

To give an example of pignistic cross entropy, consider five opinions (with
belief and disbelief): ωA

X = (7/10, 3/10), ωB
X = (3/10, 7/10), ωC

X = (1/2, 1/10),
ωD
X = (1/10, 1/2), ωE

X = (0, 0). We suppose the base rate is 1/2. Their pignistic cross
entropies are presented in Table 3. As ωA

X (ωB
X) and ωC

X (ωD
X) have the same pig-

nistic probability distributions, their cross entropy is minimal. In this sense, the
uncertainty component in ωC

X (ωD
X), which makes them different from ωA

X (ωB
X),

is eliminated. Note that cross entropy between ωE
X , which represents complete

uncertainty, and any other opinions are the same. It implies that they are equally
different when compared with the complete uncertain opinion. Such difference is
actually smaller than that between two completely opposite opinions (e.g., ωA

X

and ωB
X). Also note that the pignistic cross entropy measure is not symmetric.
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Table 2. Pignistic entropy of the options in the Ellsberg paradox.

Choice A Choice B

Option 1 −1/3 log 1/3 − 2/3 log 2/3 −2/3·a log(2/3·a) − (1 − 2/3·a) log(1 − 2/3·a)
Option 2

−(1/3 + 2/3·a) log(1/3 + 2/3·a)
−2/3·(1 − a) log(2/3·(1 − a))

−2/3 log 2/3 − 1/3 log 1/3

Table 3. Pignistic cross entropy among five opinions.

ωA
X ωB

X ωC
X ωD

X ωE
X

ωA
X 0.8813 1.3702 0.8813 1.3702 1.0000

ωB
X 1.3702 0.8813 1.3702 0.8813 1.0000

ωC
X 0.8813 1.3702 0.8813 1.3702 1.0000

ωD
X 1.3702 0.8813 1.3702 0.8813 1.0000

ωE
X 1.1258 1.1258 1.1258 1.1258 1.0000

The pignistic (cross) entropy ignores the uncertainty present in an opinion,
and converts uncertainty to pignistic probability, before measuring the (cross)
entropy. Pignistic entropy, therefore, accurately measures the entropy of the deci-
sions of users with an opinion, but not the entropy of the opinion itself (nor the
cross entropy between opinions). In the remainder of the paper, we want to study
the entropy of the opinions including the uncertainty.

6 Aggregate Uncertainty Entropy

Dempster-Shafer theory [1] shares similarities with subjective logic. Dempster-
Shafer theory also deals with beliefs and uncertainty. Extensions of information
theory for Dempster-Shafer theory currently exist. The major variant is the aggre-
gate uncertainty [6]. In this section, we discuss aggregate uncertainty, and trans-
late it to subjective logic (Table 2).

A particular downside of pignistic entropy, is that an uncertainty plays no role
in the amount of entropy. Intuitively, we should expect a more uncertain opinion
not to have less entropy. The aggregate uncertainty entropy is the minimal exten-
sion of pignistic entropy that satisfies this requirement [6]:

Definition 6 (Aggregate Uncertainty Entropy). Let FA
X be the set of func-

tions f with, for all x, bAX(x) ≤ f(x) ≤ 1 and
∑

x f(x) = 1. The aggregate uncer-
tainty entropy Hau(ωA

X) is defined: −maxf∈FA
X

∑
x f(x) log(f(x)).

The aggregate uncertainty entropy cannot decrease whenever uncertainty
increases, even if the ratio of beliefs is affected:

Proposition 4. Let ωA
X and ωB

X be two opinions, such that for all x, bAX(x) >
bBX(x), then Hau(ωA

X) ≤ Hau(ωB
X).
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Proof. As bAX(x) > bBX(x), FA
X ⊆ FB

X , meaning maximal f in FA
X is in FB

X .

The functions fA
X are all probability mass functions. Each probability mass

function fA
X has the property that it assigns a probability at least as great as the

belief to each outcome. Thus, FA
X is essentially the set of probability distributions

that we believe may be the case. If we take the maximal element of the entropy
using the different probabilities, then we satisfy the requirement that increasing
uncertainty can never decrease entropy.

Running Example 3. The aggregate uncertainty entropy models the way a para-
noid agent would approach the Ellsberg paradox. Specifically, the agent assumes
that the Shannon entropy is maximised under constraints of his beliefs. For 1A
and 2B, the beliefs fix the probabilities, but for 1B and 2A, the entropy is max-
imised by letting the probability of winning (and losing) be 1/2. As depicted in
Table 1, the aggregate uncertainty entropy is independent of base rates (as it
is based on Dempster-Shafer theory), and 1A and 2B score significantly better
than 1B and 2A. This approach to the problem uses no notions of ambiguity,
and has been suggested previously [3]. The problem with this view, is that the
Ellsberg’s experiment is purposely set-up to ensure the set-up remains unchanged
between the two variants, whereas the maximal entropy cases of 1B and 2 A are
inconsistent.

Definition 7 (Aggregate Uncertainty Cross Entropy). Let FA
X and FB

X as
before, and f, g be argmaxf∈FA

X

∑
x f(x) log(f(x)), argmaxg∈FB

X

∑
x g(x) log(g(x))

The aggregate uncertainty cross entropy between ωA
X and ωB

X , Hau(ωA
X , ωB

X) is
defined: −∑

x f(x) log(g(x)).

The aggregate uncertainty cross entropy between two identical opinions is
equal to the entropy of one of the opinions:

Proposition 5. Hau(ωA
X , ωA

X) = Hau(ωA
X)

We compute aggregate uncertainty cross entropy between the opinions intro-
duced in Table 3, and the results are presented in Table 4b. As argmaxf∈FA

X∑
x f(x) log(f(x)) are the same for ωC

X , ωD
X , ωE

X , namely f(x) = 0.5 for all x,

Table 4. Ellsberg paradox and cross entropy for aggregate uncertainty entropy.

Choice A Choice B

Option 1 0.9183 1
Option 2 1 0.9183

(a) Ellsberg paradox.

ωA
X ωB

X ωC
X ωD

X ωE
X

ωA
X 0.8813 1.3702 1.0000 1.0000 1.0000

ωB
X 1.3702 0.8813 1.0000 1.0000 1.0000

ωC
X 1.1258 1.1258 1.0000 1.0000 1.0000

ωD
X 1.1258 1.1258 1.0000 1.0000 1.0000

ωE
X 1.1258 1.1258 1.0000 1.0000 1.0000

(b) Cross entropy
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any of five opinions has the same cross entropy with them. Also, due to sym-
metry between ωA

X and ωB
X , other three opinions have equal cross entropy with

them. Using this cross entropy measure, opinions with partial uncertainty (ωC
X ,

ωD
X) seems to be the same as that with complete uncertainty (ωE

X). Because they
have the same distance with the other two deterministic opinions.

There are two major downsides to the aggregate uncertainty entropy. The first
is theoretical, namely that the aggregate uncertainty is not a closed form expres-
sion. There is, however, research that addresses this specific problem to some
degree [9]. The second downside is that the measure applies to Dempster-Shafer
theory, which has a subtly different interpretation of uncertainty (specifically, that
the probability mass must be over the belief mass). In the next two sections, we
study how subjective logic’s interpretation of uncertainty impacts the definition
of entropy.

7 Ambiguity Entropy

Rather than using the entropy based on risk as a proxy for ambiguity-based uncer-
tainty entropy, we can directly encode beliefs and ambiguity-based uncertainty
into surprisal. An interesting question is whether uncertainty leads to surprisal.
Two opposing interpretations are that total uncertainty means that everything is
maximally surprising, or that nothing is surprising at all. We demonstrate that
which interpretation is appropriate depends on the context.

Before introducing the two types of ambiguity entropy, we introduce an over-
arching definition of surprisal: − log(bAX(x) + c · uA

X). The definition contains a
parameter c ∈ [0, 1], which determines the amount of surprisal from uncertainty.
The special cases for c are when c = 0 (or c ≈ 0) and when c = 1. If the uncertainty
is zero, then all choices of c collapse into one, which equals the standard definition
of surprisal. If the uncertainty is non-zero, then possible interpretations of sur-
prisal start to diverge. In the next two sections, we formally analyse the two edge
cases, belief entropy and conceivability entropy.

In [4], Klir explores a similar idea, where belief entropy parallels confusion
ambiguity and conceivability entropy parallels dissonance ambiguity. The fun-
damental difference is that [4] considers Dempster-Shafer theory, and therefore
cannot use the base-rate that subjective logic has. As a consequence, his notions
cannot use projected probabilities. His notions are further removed from classical
notions in information theory, as he cannot use the expected surprisal.

7.1 Belief Entropy

A user has an opinion with beliefs. If the belief in an outcome is low, then the user
thinks it is unlikely that the outcome will happen. To encode this, we can define
surprisal based on the belief mass, by letting the belief in x be: − log(bAX(x)). This
equates to − log(bAX(x) + c · uA

X), when c = 0.
We take the natural definition of entropy as the expected surprisal. Entropy

of an opinion should measure the expected surprisal of beliefs.
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Definition 8 (Belief Entropy). The belief entropy Hb(ωA
X) is defined as:

−∑
x pAX(x) log(bAX(x)).

The belief entropy has several nice properties. The first property is that, with
the pignistic probabilities remaining constant, the entropy strictly increases when
the uncertainty increases:

Proposition 6. Let ωA
X and ωB

X be two opinions, such that uA
X > uB

X and for all
x, pAX(x) = pBX(x), then Hb(ωA

X) > Hb(ωB
X).

The second property is that, unlike aggregate uncertainty entropy, the entropy
of a completely uncertain opinion is strictly larger than the entropy of any pignistic
entropy:

Proposition 7. Let ωA
X be complete uncertainty; uA

X = 1. Then Hb(ωA
X) >

Hp(ωB
X), for all ωB

X .

As the entropy of uncertainty strictly exceeds the entropy of any other opinion in
subjective logic, uncertainty contains less information than any other opinion.

Running Example 4. The belief entropy directly models the beliefs on the agent,
where ambiguity reduces the sum of the beliefs. Table 1 shows the belief entropies
associated with each of the choices. It is interesting to note that 1B and 2 A are
both assigned infinite belief entropy. The reason is that the participant has no
reason to assume it is even possible to win, so the surprisal upon winning is the
global maximum of surprisal; positive infinity.

Table 5. Ellsberg paradox and cross entropy for belief entropy.

Choice A Choice B

Option 1 0.9183 ∞
Option 2 ∞ 0.9183

(a) Ellsberg paradox.

ωA
X ωB

X ωC
X ωD

X ωE
X

ωA
X 0.8813 1.3702 1.6966 2.6253 ∞

ωB
X 1.3702 0.8813 2.6253 1.6966 ∞

ωC
X 0.8813 1.3702 1.6966 2.6253 ∞

ωD
X 1.3702 0.8813 2.6253 1.6966 ∞

ωE
X 1.1258 1.1258 2.1610 2.1610 ∞

(b) Cross entropy

Note that in Table 5a, choices 1B and 2 A have infinite entropy. The reason is
that they contain the terms −2/3a log(0) and 2/3(1 − a) log(0), which equate to
infinity except when a = 0 or a = 1, respectively. Intuitively, the cause is that we
have zero belief in winning or losing, respectively, although both winning and los-
ing have a non-zero probability of occurring (except for extreme base rates). The
interesting aspect of the extreme base rates is that they would remove the ambigu-
ity uncertainty altogether. Since we would know the outcome under uncertainty,
there is no ambiguity-based uncertainty to measure.

That choices 1B and 2 A have infinite entropy may be desirable for one reason:
the entropy exceeds that of any opinions without zero-belief events. However, the
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downside is that a one-in-a-million event with zero belief and a certain event with
zero belief yield the exact same entropy: infinite bits. Consider the general defini-
tion of ambiguity surprisal, − log(bAX(x)+ c ·uA

X), where c converges to 0 (and the
expected surprisal to belief entropy), then the entropy converges to infinity slowly.
We can consider c = ε, for some small ε > 0, then the entropy remains finite.
The addition of ε hardly affects the entropy of opinions without zero-beliefs. For
example, (0.5, 0.1), with base rate 1/2, has −0.7 log(0.5 + ε) − 0.3 log(0.1 + ε) ≈
−0.7 log(0.5) − 0.3 log(0.1) ≈ 1.6966 bits entropy. For opinions with zero-beliefs,
we get a more fine-grained measure of entropy. For example, (0.5, 0) and (0, 0),
both with base rate 1/2, have −0.75 log(0.5 + ε) − 0.25 log(ε) ≈ −0.25 log(ε) and
−0.5 log(ε)−0.5 log(ε) = − log(ε) bits of entropy, and the latter is four times more
bits entropy. Thus, the belief entropy can be made more fine-grained without loss
of generality.

The belief entropy can be extended to belief cross entropy:

Definition 9 (Belief Cross Entropy).The belief cross entropy between ωA
X and

ωB
X , Hb(ωA

X , ωB
X) is defined: −∑

x pAX(x) log(bBX(x)).

We compute the belief cross entropy between the opinions introduced in
Table 3, and the results are presented in Table 5b. Some equalities in the table
can be easily derived, based on the Definition 9. Note that cross entropy between
any opinions and ωE

X , which means complete uncertainty, is infinity. This is not
reasonable, as explained below.

The belief cross entropy measures the information distance from one opinion
to the other. Intuitively, when an uncertain opinion conflicts with another opinion,
this may not surprise us, whereas two conflicting and certain opinions would be
a surprise. Unfortunately, this is not the intuition captured by the definition of
belief cross entropy. Belief cross entropy measures the information gap between
two opinions, and uncertainty introduced large quantities of entropy, allowing for
bigger information gaps. In the next section, we introduce a measure of entropy
that models the intuition of entropy that is suitable for cross entropy.

7.2 Conceivability Entropy

In belief entropy, the belief in an outcome determines the surprisal. However, we
can imagine that users are not surprised when they are uncertain. To encode this,
we can define surprisal based on the belief mass plus the uncertainty, by letting
the belief in x be: − log(bAX(x)). This equates to − log(bAX(x)+c ·uA

X), when c = 1.
Note that bAX(x) + uA

X = 1 − ∑
x′ �=x bAX(x), so conceivability can be seen as the

converse of belief.
The entropy can be derived from the surprisal:

Definition 10 (Conceivability Entropy). The conceivability entropy Hc(ωA
X)

is defined: −∑
x pAX(x) log(bAX(x) + uA

X).

When the opinion is complete uncertainty, surprisal is zero, as all outcomes are
fully conceivable. For this reason, viewing surprisal as the opposite of informa-
tion does not make sense here (unlike the other notions of entropy, such as belief
entropy and Shannon entropy),
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Table 6. Ellsberg paradox and cross entropy for conceivability entropy.

Choice A Choice B

Option 1 0.9183 2/3a log(2/3)
Option 2 2/3(1 − a) log(2/3) 0.9183

(a) Ellsberg paradox.

ωA
X ωB

X ωC
X ωD

X ωE
X

ωA
X 0.8813 1.3702 0.4064 0.7456 0

ωB
X 1.3702 0.8813 0.7456 0.4064 0

ωC
X 0.8813 1.3702 0.4064 0.7456 0

ωD
X 1.3702 0.8813 0.7456 0.4064 0

ωE
X 1.1258 1.1258 0.5760 0.5760 0

(b) Cross entropy

However, the conceivability entropy notion is suitable for cross entropy:

Definition 11 (Conceivability Cross Entropy). The conceivability cross
entropy between ωA

X and ωB
X ,Hc(ωA

X , ωB
X) is defined:−∑

x pAX(x) log(bBX(x)+uB
X).

Conceivability cross entropy is a more useful measure of distance between opin-
ions than belief cross entropy. More uncertain opinions tend to have a shorter
distance. The reason why conceivability cross entropy is a better measure for
distance, is that we want to measure whether it is “conceivable” that an opinion
describes another opinion. We can see the concrete numbers in Table 6b. The cross
entropy of opinions with similar pignistic probabilities is lower, but the amount of
uncertainty correlates more strongly. The distance from any opinion to complete
uncertainty is 0.

8 Conclusion

To understand decision making, not only must we analyse uncertainty introduced
by risk, but also the uncertainty about risk (ambiguity). Standard notions of Shan-
non entropy in information theory can measure the former, but not the latter. We
extend information theory to capture subjective logic – a framework to deal with
uncertainty about ambiguity – in four ways.

Two of the extensions of information theory remove ambiguity before mea-
suring entropy. The first extension, pignistic entropy, models rational agents. The
second extension, aggregate uncertainty entropy, models paranoid agents.

However, the interesting extensions model ambiguity, rather than remove it.
The final two extensions, belief entropy and conceivability entropy, are two sides
of the same coin. Belief entropy is suitable for measuring entropy of both risk and
ambiguity. Conceivability entropy is more suited for measuring cross entropy.

All extensions are related using Ellsberg paradox as a running example, and
the different entropies provide insights into the paradox. Moreover, the different
entropies can be generalised to cross entropy – a measure of the quality of an opin-
ion, given a valid opinion. Cross entropy can be used for analysing the quality of
opinions in systems that use subjective logic.
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