
Epidemic Fault Tolerance
for Extreme-Scale Parallel Computing

Amogh Katti(&) and Giuseppe Di Fatta

School of Systems Engineering, University of Reading,
Whiteknights, Reading, Berkshire RG6 6AY, UK
{a.p.katti,g.difatta}@reading.ac.uk

Abstract. Process failure rate in the next generation of high performance
computing systems is expected to be very high. MPI Forum is working on
providing semantics and support for fault tolerance. Run-Through Stabilization,
User-Level Failure Mitigation and Process Recovery proposals are the resulting
endeavors. Run-Through Stabilization/User Level Failure Mitigation proposals
require a fault tolerant failure detection and consensus algorithm to inform the
application of failures so that it can employ Algorithm Based Fault Tolerance for
quicker recovery and continued execution. This paper discusses the proposals in
short, the failure detectors available in the literature and their unsuitability for
realizing fault tolerance in MPI. It then outlines an inherently fault-tolerant and
scalable Epidemic (or Gossip-based) approach for failure detection and con-
sensus. Some simulations and an initial experimental analysis are presented,
which indicate that this is a promising research direction.

Keywords: Fault tolerance � Message Passing Interface (MPI) � Failure
detection � Epidemic protocols � Gossip-based protocols

1 Introduction

Future High Performance Computing (HPC) systems will be prone to frequent failures.
The System Mean Time Between Failures (SMTBF) for these systems is estimated to
be approximately equal to an hour or even less [19] in contrast to the SMTBF of five to
six hours observed for current HPC systems [21].

Checkpoint/Restart is a generic fault tolerance technique, wherein the application
state is restored from the last saved checkpoint during recovery, that can be used with
all kinds of High End Computing (HEC) applications and hence it is the prominent
fault tolerance technique in use; it is the only technique available in most of the
commercial HEC deployments. However, the technique is deemed to be ineffective for
extreme-scale systems due to the high recovery time associated with it [6, 17].

Application specific techniques like Algorithm Based Fault Tolerance (ABFT) [11]
are recommended for extreme-scale systems [7] for their efficiency in terms of resource
and energy utilization and high performance. ABFT is a technique wherein the fault
tolerance logic is embedded in the algorithm by the application developer to deal with
the loss of application state at failure. This reduces recovery time thereby increasing

© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 201–208, 2015.
DOI: 10.1007/978-3-319-23237-9_18



efficiency. Applications typically use data encoding, algorithm redesign, diskless
checkpointing, etc. ABFT techniques for recovery when failures occur.

Failure detection and notification support from the underlying programming library
is required for applications to employ ABFT. Therefore the Message Passing Inter-
face’s (MPI) [13], the dominant parallel programming interface, Fault Tolerance
Working Group (FTWG) is working on providing failure detection and notification and
recovery services to applications to enable ABFT. Run-Through Stabilization (RTS) /
User-Level Failure Mitigation (ULFM) proposal in combination with Process Recovery
proposal provide the fault tolerance semantics and interfaces to serve these purposes.

In this paper a promising research direction for this problem is presented. The
proposed approach is based on Epidemic (or Gossip-based) protocols to implement a
failure detector for extreme-scale parallel computing.

Uniform Gossip is an inherently fault tolerant and highly scalable communication
scheme. It is aptly suitable for information dissemination and data aggregation in large
scale, distributed and fault prone networked systems [3, 8]. Recently, they have also
been adopted in high performance computing tasks [18, 20].

The paper is organized as follows. FTWG’s endeavors to make MPI fault tolerant
are discussed in Sect. 2. Failure detectors available in the HPC literature are discussed
in Sect. 3. Section 4 proposes a completely distributed Gossip-based and hence
inherently fault tolerant failure detection and consensus approach. Simulations and an
initial analysis are presented in Sect. 5. The paper concludes in Sect. 6 with a dis-
cussion of the future work to comprehensively realize scalable fault tolerance in
extreme-scale parallel computing.

2 Fault Tolerance in MPI

MPI’s FTWG proposed RTS proposal to define semantics and interfaces to allow an
application execute uninterrupted despite the occurrence of faults. ULFM proposal
replaces the RTS proposal. Process Recovery proposal allows failed processes to
re-join. Only fail-stop (crash) process failures are considered by these proposals. When
a process crashes it stops communicating with rest of the processes. The three pro-
posals are briefly discussed in this section.

According to the RTS proposal [9], an implementation is expected to inform an
application of all process failures and let it run using the fault-free processes. RTS
expects an eventually perfect failure detector [5] that is both strongly accurate and
strongly complete. Strong accuracy means that a process must not be reported failed
before it actually fails and strong completeness means that every failed process must be
known to every fault-free process. The proposal weakens the completeness requirement
to allow the processes to return different failed processes by the end of failure detection.

The RTS proposal has been suspended because of the implementation complexity
of the failure detection and notification mechanisms involved [2]. User-Level Failure
Mitigation (ULFM) proposal [1] supersedes the RTS proposal. Under the ULFM
proposal, no operation hangs in the presence of failures but completes by returning an
error. Asynchronous failure notification is not necessary. The proposal demands a

202 A. Katti and G. Di Fatta



weakly complete failure detector to achieve global consistency on the set of failed
processes whenever necessary.

Process Recovery proposal [15] complements the RTS/ULFM proposal. It provides
semantics and interfaces to facilitate recovery of a process that failed previously. Draft
specification for the proposal is under development.

3 Failure Detectors

MPI requires failure detection and notification services to enable ABFT. Both cen-
tralized and completely distributed failure detectors are available in the HPC literature.
Coordinator based and completely distributed Gossip-based failure detectors for
fail-stop failures are discussed in this section.

3.1 Coordinator Based Failure Detectors

A two-phase fault-aware consensus algorithm over a static tree communication
topology to construct a weekly complete failure detector was provided in [12]. A fault
tolerant algorithm, in [4], provided an improvement to support strict completeness
using an iterative formulation of the three-phase commit over a dynamic tree com-
munication topology. Both the approaches are discussed in this section.

Over a Static Tree Topology. This approach assumes that processes locally know
failed processes and participate in the consensus algorithm to consistently construct the
global list of failed processes. A two-phase algorithm over a fault-aware tree topology
constructs the global list of failed processes using reliable gather at the coordinator
during the first phase and reliable broadcast to the participant processes during the
broadcast phase. Participant failures are handles by routing around the failed processes
to find the nearest parent and child process during the gather and broadcast operations
respectively. Termination detection algorithm is used when the coordinator fails during
the broadcast phase. Processes query the immediate children of the coordinator to get
the global list of failed processes. If the coordinator fails during the gather phase or just
before the broadcast phase, the algorithm aborts without constructing the global list of
failed processes. Processes that fail during the algorithm will be detected during the
next invocation of the algorithm.

Over a Dynamic Tree Topology. This approach also assumes that processes locally
know failed processes and then participate in the consensus algorithm. A three-phase
algorithm over a fault-tolerant dynamic tree topology constructs the global list of failed
processes making sure that every process returns the same list of failed processes and thus
implements a strongly complete failure detector. First phase constructs the list of failed
processes and sends it to every participant and makes sure that every process has the
same list of failed processes by the end of the phase, second phase informs to the
participants that all the processes have the same failed process list by now and third phase
commands the participants to terminate the algorithm. Every phase starts with a message
from the coordinator and finishes when the coordinator receives acknowledgement from

Epidemic Fault Tolerance for Extreme-Scale Parallel Computing 203



all the participants for the current phase. If any participant fails during a phase, a new
instance of the broadcast starts by reconstructing the tree with the current alive processes.
Coordinator failure is handled by electing a new coordinator.

3.2 Completely Distributed Failure Detectors

Coordinator based failure detection and consensus algorithms do not scale to large
number of processes. Completely distributed failure detection can be accomplished as a
side effect of Gossiping. Gossip-based failure detectors in the distributed computing
systems literature considered for HPC are discussed in this section.

Gossip-based failure detectors can be either passive “heartbeat” failure detector or
active “ping” failure detector. A process in “heartbeat” failure detection passively waits
for Gossip messages whereas in “ping” failure detection a process actively pings other
processes.

“Heartbeat” Failure Detector. In [16] a Gossip-based failure detection algorithm
using liveness analysis is given. A process in the system periodically announces that it
is alive by sending a Gossip message to another random process in the system. This
liveness information disseminates throughout the network and ultimately every process
will have information about every other process in the system. A process is suspected
to have failed if its liveness information is old. When a majority of processes suspect a
process it is detected to have failed. When all fault free processes have detected a faulty
process consensus on its failure is reached.

“Ping” Failure Detector. A failure detection algorithm using distributed diagnosis
considering network partitioning is given in [10]. A process randomly selects another
process and pings it to find its status. If it does not receive a response from the process,
it asks a random sample of the processes in the system to ping the process as well. The
process is detected to have failed if none of the selected processes receives a response.

4 Failure Detector Maintaining Global Knowledge

Completely distributed Gossip-based heartbeat failure detection and consensus algo-
rithms are based on passive and slow liveness analysis and consume very high memory
and network bandwidth. There is need for fault tolerant yet scalable communication
schemes. In this section a novel scalable Gossip-based and inherently fault tolerant
ping type failure detector for fail-stop failures using a matrix to store global view of all
the processes in the system is proposed.

The algorithm detects fail-stop failures and the failures are assumed to be perma-
nent. A synchronous model of the system is assumed with bounded message delay.
Failures during the algorithm are assumed to stop at some point to allow the algorithm
to complete with successful consensus detection. Figure 1 shows pseudocode for the
algorithm.

204 A. Katti and G. Di Fatta



A process p maintains a fault matrix Fp to store the system view of all the processes
in the system. Fp[r, c] is the view at process p of the status of process c as detected by
process r. A value of 1 indicates failure and a 0 indicates alive.

Every process in the system is assumed to be alive by every process at the
beginning and hence the fault matrix is initialized with all 0’s (lines 1-5).

During a cycle of Gossip, of length Tgossip time units, process p pings a random
process to check its status. It also handles reception of Gossip message and ping
timeout events. A random process q is selected and a ping message is sent to it with the
local fault matrix Fp (lines 6-7). When a ping message is received, an asynchronous
reply is sent with the local fault matrix (lines 19-21). When the ping message times out
without receiving a reply message from q, it is detected to have failed and 1 is stored at
Fp[p, q] (line 28). On receiving a Gossip message from j, the local and the remote fault
matrices, Fp and Fj, are merged. Thus process p performs indirect failure detection
through j and propagates the failures known to j (lines 22-27).

Fig. 1. Pseudocode of the Gossip-based failure detection and consensus

Epidemic Fault Tolerance for Extreme-Scale Parallel Computing 205



Consensus on the failure of each process is checked during every Gossip cycle.
Consensus is reached when all the fault-free processes have recognized the failed
process (lines 8-18).

5 Simulations and Results

The algorithm was implemented in Java and the simulations were carried out on
PeerSim [14], a scalable network simulator based on discrete events. The latency and
bandwidth were set to nominal values as only the number of Gossip cycles required to
reach consensus were measured. Failures were simulated by restraining a process from
participating in communications.

The algorithm’s scalability and fault tolerance properties were tested. Failures were
injected into randomly chosen processes. In the first experiment a single failure was
injected at the beginning of the simulation. In the second experiment failures were
injected during the simulation to test the fault tolerance property of the algorithm.
Because processes reach consensus on the injected failure(s) at different cycles, the
cycle number of the last process reaching consensus is considered and recorded.

Figure 2 shows the relationship between the number of Gossip cycles (average over
multiple simulations) and system size to reach consensus when a single failure is
injected at the beginning of the simulation. Consensus is reached in logarithmic number
of Gossip cycles.

Figure 3 shows the transition towards consensus in terms of the relative number of
processes which have detected the failure at each cycle. A typical epidemic information
spreading can be observed.

The consensus algorithm is completely fault tolerant and it can also detect failures
that happen during its execution. Figure 4 shows the results of simulations where
failures were injected in randomly chosen processes and at random time within the first
10 cycles. The number of Gossip cycles needed to achieve consensus is still logarithm
in terms of the system size from the Gossip cycle at which the last failure was injected.

Fig. 2. Number of cycles to achieve consen-
sus with a single failure

Fig. 3. Transition towards consensus with a
single failure

206 A. Katti and G. Di Fatta



6 Conclusion and Future Work

MPI’s Fault Tolerance Working Group is working on including fault tolerance support
into the standard to enable high performance computing systems to continue execution
despite faults. Algorithm Based Fault Tolerance is the fault tolerance technique sought
of and it requires failure detection and notification services.

Failure detection and consensus methods that use a coordinator do not scale to large
number of processes. To overcome these limitations, this work has introduced a
Gossip-based approach to provide scalable and fault tolerant failure detection and
consensus. Each process builds and propagates a global view of the system. Failures
are locally detected with direct timeout events based on Gossip messages and with
indirect propagation of failures known to other processes. The experimental analysis
based on simulations have shown that consensus on failures is reached in a logarithmic
number of Gossip cycles w.r.t. the system size.

However, the proposed approach does not scale well in terms of memory
requirements because each process has to maintain not only its own view of the system
but also the views of all other processes. It also consumes a lot of network bandwidth
due to transfer of this global view with each Gossip message.

Future work includes the design of memory and network bandwidth efficient
methods for fault tolerant failure detection and consensus. In particular, fully decen-
tralised algorithms for consensus detection and synchronization are being investigated.
Supporting process re-spawning in the algorithm thereby bridging failure detection and
process recovery is also an interesting future research direction.

References

1. Bland, W., Bosilca, G., Bouteiller, A., Herault, T., Dongarra, J.: A proposal for User-Level
Failure Mitigation in the MPI-3 standard. University of Tennessee, Department of Electrical
Engineering and Computer Science (2012)

2. Bland,W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.J.: Post-failure recovery ofMPI
communication capability: Design and rationale. Int. J. High Perform. Comput. Appl. (2013)

Fig. 4. Number of cycles to consensus with 4 failures injected during the simulations

Epidemic Fault Tolerance for Extreme-Scale Parallel Computing 207



3. Blasa, F., Cafiero, S., Fortino, G., Di Fatta, G.: Symmetric push-sum protocol for
decentralised aggregation (2011)

4. Buntinas, D.: Scalable distributed consensus to support MPI fault tolerance. In: 26th IEEE
International Conference on Parallel & Distributed Processing Symposium (IPDPS), May
2012, pp. 1240–1249 (2012)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
J. ACM (JACM) 43(2), 225–267 (1996)

6. Daly, J.T., Lead, R.: Application resilience for truculent systems. In: Workshop on Fault
Tolerance for Extreme-Scale Computing, Albuquerque, NM – 19–20 March 2009,
ANL/MCS-TM-312 (2009)

7. Daly, J., Harrod, B., Hoang, T., Nowell, L., Adolf, B., Borkar, S., Wu, J.: Inter-Agency
Workshop on HPC resilience at extreme scale. In: National Security Agency Advanced
Computing Systems, February 2012 (2012)

8. Di Fatta, G., Blasa, F., Cafiero, S., Fortino, G.: Fault tolerant decentralised K-Means
clustering for asynchronous large-scale networks. J. Parallel Distrib. Comput. 73(3), 317–
329 (2013)

9. Fault Tolerance Working Group. Run-though stabilization interfaces and semantics. In: svn.
mpi-forum. org/trac/mpi-forum-web/wiki/ft/run through stabilization (2012)

10. Gupta, I., Chandra, T.D., Goldszmidt, G.S.: On scalable and efficient distributed failure
detectors. In: Proceedings of the Twentieth Annual ACM Symposium on Principles of
Distributed Computing, August 2001, pp. 170–179. ACM (2001)

11. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix operations. IEEE
Trans. Comput. 100(6), 518–528 (1984)

12. Hursey, J., Naughton, T., Vallee, G., Graham, R.L.: A log-scaling fault tolerant agreement
algorithm for a fault tolerant MPI. In: Cotronis, Y., Danalis, A., Nikolopoulos, D.S., Dongarra,
J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp. 255–263. Springer, Heidelberg (2011)

13. Message Passing Interface Forum: MPI: A Message Passing Interface. In: Proceedings of
Supercomputing 1993, pp. 878–883. IEEE Computer Society Press (1993)

14. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: IEEE Ninth International
Conference on Peer-to-Peer Computing, P2P 2009, pp. 99–100. IEEE (2009)

15. Process Recovery Proposal. https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/ft/process_
recovery_2. Accessed: 14 May 2015

16. Ranganathan, S., George, A.D., Todd, R.W., Chidester, M.C.: Gossip-style failure detection
and distributed consensus for scalable heterogeneous clusters. Cluster Comput. 4(3),
197–209 (2001)

17. Schroeder, B., Gibson, G.A.: Understanding failures in petascale computers. In: Journal of
Physics: Conference Series, vol. 78(1), p. 012022. IOP Publishing, July 2007

18. Soltero, P., Bridges, P., Arnold, D., Lang, M.: A Gossip-based approach to exascale system
services. In: Proceedings of the 3rd International Workshop on Runtime and Operating
Systems for Supercomputers, p. 3. ACM, June 2013

19. Song, H., Leangsuksun, C., Nassar, R., Gottumukkala, N.R., Scott, S.: Availability
modeling and analysis on high performance cluster computing systems. In: The First
International Conference on Availability, Reliability and Security, ARES 2006, April 2006,
p.8. IEEE (2006)

20. Straková, H., Niederbrucker, G., Gansterer, W.N.: Fault tolerance properties of gossip-based
distributed orthogonal iteration methods. Procedia Comput. Sci. 18, 189–198 (2013)

21. Taerat, N., Nakisinehaboon, N., Chandler, C., Elliot, J., Leangsuksun, C., Ostrouchov, G.,
Scott, S.L.: Using log information to perform statistical analysis on failures encountered by
large-scale HPC deployments. In: Proceedings of the 2008 High Availability and
Performance Computing Workshop, vol. 4, pp. 29–43 (2008)

208 A. Katti and G. Di Fatta

https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/ft/process_recovery_2
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/ft/process_recovery_2

	Epidemic Fault Tolerance for Extreme-Scale Parallel Computing
	Abstract
	1 Introduction
	2 Fault Tolerance in MPI
	3 Failure Detectors
	3.1 Coordinator Based Failure Detectors
	3.2 Completely Distributed Failure Detectors

	4 Failure Detector Maintaining Global Knowledge
	5 Simulations and Results
	6 Conclusion and Future Work
	References


