
Optimisation Techniques for Parallel K-Means
on MapReduce

Sami Al Ghamdi(&), Giuseppe Di Fatta, and Frederic Stahl

School of Systems Engineering, University of Reading,
Whiteknights, RG6 6AY, Reading, UK

s.a.m.alghamdi@pgr.reading.ac.uk,

{g.difatta,f.t.stahl}@reading.ac.uk

Abstract. The K-Means algorithm is one the most efficient and widely used
algorithms for clustering data. However, K-Means performance tends to get
slower as data grows larger in size. Moreover, the rapid increase in the size of
data has motivated the scientific and industrial communities to develop novel
technologies that meet the needs of storing, managing, and analysing large-scale
datasets known as Big Data. This paper describes the implementation of parallel
K-Means on the MapReduce framework, which is a distributed framework best
known for its reliability in processing large-scale datasets. Moreover, a detailed
analysis of the effect of distance computations on the performance of K-Means
on MapReduce is introduced. Finally, two optimisation techniques are suggested
to accelerate K-Means on MapReduce by reducing distance computations per
iteration to achieve the same deterministic results.

Keywords: K-Means � Parallel K-Means � Clustering � Mapreduce

1 Introduction

Clustering is the process of partitioning data points in a given dataset into groups
(clusters), where data points in one group are more similar than data points in other
groups. cluster analysis plays an important role in the Big Data problem. For example,
it has been used to analyse gene expression data, and in image segmentation to locate
objects’ borders in an image.

K-Means [1] is one of the most popular and widely used clustering algorithms.
K-means has been extensively studied and improved to cope with the rapid and
exponential increase in the size of datasets. One obvious solution is to parallelise
K-Means. K-Means have been parallelised based on different environments such as
Message Passing Interface (MPI) [2] and MapReduce [3].

For a given number of iterations, the computational complexity of K-Means is
dominated by the distance computations required to determine the nearest centre for
each data point. These operations consume most of the algorithm’s run-time because, in
each iteration, the distance from each data point to each centre has to be calculated.
Various optimisation approaches have been introduced to tackle this issue. Elkan [4]
applied the triangle inequality property to eliminate unnecessary distance computations
on high dimensional datasets. An optimisation technique based on multidimensional

© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 193–200, 2015.
DOI: 10.1007/978-3-319-23237-9_17

trees (KD-Trees) [5] was proposed by Pelleg and Moore [6] to accelerate K-Means.
Judd et al. [7] presented a parallel K-Means formulation for MPI and used two
approaches to prune unnecessary distance calculations. Pettinger and Di Fatta [8, 9]
proposed a parallel KD-Tree K-Means algorithm for MPI, which overcomes the load
imbalance problem generated by KD-Trees in distributed computing systems. Different
approaches have been proposed to improve K-Means efficiency on MapReduce by
reducing the number of iterations. However, we intend to accelerate K-Means on
MapReduce by reducing distance computations per iteration.

This paper describes the implementation of K-Means on MapReduce with a
mapper-combiner-reducer approach and how the iterative procedure is accomplished
on MapReduce. In Addition, it presents some preliminary results relative to the effect
of distance calculations on the performance of K-Means on MapReduce. Finally, two
approaches are suggested to improve the efficiency of K-Means on MapReduce.

The rest of the paper is organised as follows: Sect. 2 briefly introduces K-Means
and MapReduce, and presents a detailed description of Parallel K-Means on MapRe-
duce. Section 3 reports the experimental results. Section 4 presents the work in pro-
gress. Finally, Sect. 5 concludes the paper.

2 Parallel K-Means on MapReduce

2.1 K-Means

Given a set X of n data points in a d-dimensional space R
d , and an integer k that

represents the number of clusters, K-Means partitions X into k clusters by assigning
each xi 2 X to its nearest cluster centre, or centroid, cj 2 C, where C is the set of k
centroids. Given a set of initial centroids, data points are assigned to clusters and cluster
centroids are recalculated: this process is repeated until the algorithm converges or
meets an early termination criterion. The goal of K-Means is to minimise the objective

function known as the Sum of Squared Error ðSSEÞ ¼ Pk

j¼1

Pnj

i¼1
jjxi � cjjj2, where x is the

ith data point in the jth cluster and nj is the number of data points in the jth cluster. The
time complexity for K-Means is OðnkdÞ per iteration.

2.2 MapReduce

MapReduce [3] is a programming paradigm that is designed to, efficiently and reliably,
store and process large-scale datasets on large clusters of commodity machines.

In this paradigm, the input data is partitioned and stored as blocks (or input-splits)
on a distributed file system such as Google File System (GFS) [10], or Hadoop Dis-
tributed File System (HDFS) [11]. The main phases in the MapRede are Map, Shuffle,
and Reduce. In addition, there is an optional optimisation phase called Combine. The
MapReduce phases are explained as follows:

In the Map phase, the user implements a map function that takes as an input the
records inside each input-split in the form of key1-value1 pairs. Each map function

194 S.A. Ghamdi et al.

processes one pair at a time. Once processed, a new set of intermediate key2-value2 pairs
is outputted by the mapper. Next, the output is spilled to the disk of the local file system
of the computing machine. In the Shuffle phase the mappers’ output is sorted, grouped by
key (key2) and shuffled to reducers. Once the mappers’ outputs are transferred across the
network, the Reduce phase proceeds where reducers receive the input as key2-list(value2)
pairs. Each reducer processes the list of values associated to each unique key2. Then,
each reducer produces results as key3-value3 pairs, which are written to the distributed
file system. The Combine phase is an optional optimisation on MapReduce. Combiners
minimise the amount of intermediate data transferred from mappers to reducers across the
network by performing a local aggregation over the intermediate data.

2.3 Parallel K-Means on MapReduce Implementation

Parallel K-Means on MapReduce (PKMMR) has been discussed in several papers (e.g.,
[12, 13]). However, in this paper we explain, in details, how counters are used to
control the iterative procedure. Moreover, we show the percentage of the average time
consumed by distance computations. PKMMR with a combiner consists of: Mapper,
Combiner, Reducer user program called Driver that controls the iterative process. In
the following sections, a data point is denoted as dp, a cluster identifier as c id, the
combiner’s partial sum and partial count as p sum and p count.

Driver Algorithm. The Driver is a process that controls the execution of each
K-Means iterations in MapReduce and determines its convergence or other early ter-
mination criteria. The pseudocode is described in Algorithm-1. The Driver controls the
iterative process through a user defined counter called global counter (line 2). The
global_counter is used as a termination condition in the while loop. The counter is
incremented in the Reducer if the algorithm does not converge or an early termination
condition is not met, otherwise, the counter is set to zero and the while loop terminates.
Besides configuring, setting, and submitting the MapReduce job, the Driver also
merges multiple reducers’ outputs into one file that contains all updated centroids.

Algorithm-1: Driver
1: Select k initial cluster centroids randomly;
2: global_counter := 1 //initialised and modified in Reducer (Algorithm-4)
3: while global_counter > 0 or a termination condition is not met do
4: Configure and setup a MapReduce job;
5: Send initial set of centroids to computing nodes,
6: Run the MapReduce job;
7: if number of reducers > 1 then
8: Merge reducers output into one file
9: end if
10: global_counter := Counter(global_counter).getValue();
11: end while

Optimisation Techniques for Parallel K-Means on MapReduce 195

Mapper Algorithm. Each Mapper processes an individual input-split received from
HDFS. Each Mapper contains three methods, setup, map and cleanup. While the map
method is invoked for each key-value pair in the input-split, setup and cleanup methods
are executed only once in each run of the Mapper. As shown in Algorithm-2, setup
loads the centroids to c_list. The map method takes as input the offset of the dp and the
dp as key-value pairs, respectively. In lines 4−10, where the most expensive operation
in the algorithm occurs, the loop iterates over the c_list and assigns the dp to its closest
centroid. Finally, the mapper outputs the c_id and an object consists of the dp and
integer 1. Because it is not guaranteed that Hadoop is going to run the Combiner,
Mapper and Reducer must be implemented such that they produce the same results
with and without a Combiner. For this reason, an integer 1 is sent with the dp (line 11)
to represent p_count in case the combiner is not executed.

Algorithm-2: Mapper
Method setup ()
1: Load centroids to c_list;

Method map (key, value)
1: Extract dp vector from value;
2: c_id := -1;
3: min_distance := ;
4: for i := 0 to c_list.size -1 do
5: distance := EuclideanDistance(c_list[i], dp)
6: if distance < min_distance then
7: min_distance := distance;
8: c_id := i;
9: end if
10: end for
11: output (c_id, (dp, 1));

Algorithm-3: Combiner
Method setup ()
1: Load centroids to c_list;

Method reduce(c_id, list<values>)
1: p_count := 0, p_sum := 0;
2: for value in values do
3: Extract dp vector from value;
4: p_sum := p_sum + the vector sum of dps in d-dimensions;
5: p_count := p_count + 1;
6: end for
7: output(c_id, (p_sum, p_count))

196 S.A. Ghamdi et al.

Combiner Algorithm. As shown in Algorithm-3, the Combiner receives from the
Mapper (key, list(values)) pairs, where key is the c_id, and list(values) is the list of dps
assigned to this c_id along with the integer 1. In lines 2−6, the Combiner performs
local aggregation where it calculates the p_sum, and p_count of dps in the list(values)
for each c_id. Next, in line 7, it outputs key-value pairs where key is the c_id, and value
is an object composed of the p_sum and p_count.

Reducer Algorithm. After the execution of the Combiner, the Reducer receives (key,
list(values)) pairs, where key is the c_id and each value is composed of p_sum and
p_count. In lines 2−6 of Algorithm-4, instead of iterating over all the dps that belong to
a certain c_id, p_sum and p_count are accumulated and stored in total_sum and
total_count, respectively. Next, the new centroid is calculated and added to new_c_list.
In lines 9−11, a convergence criterion is tested. If the test holds, then the glo-
bal_counter is incremented by one, otherwise, the global_counter’s value does not
change (stays zero) and the algorithm is terminated by the Driver.

Algorithm-4: Reducer
Method setup ()
1: Load centroids to c_list; //holds current centroids
2: global_counter = 0;
3: Initialise new_c_list; //holds updated centroids

Method reduce(c_id, list<values>)
1: total_sum, total_count, new_centroid, old_centroid = 0;
2: for value in values do
3: Extract dp vector from value;
4: total_sum := total_sum + value.get_p_sum();
5: total_count := total_count + value.get_p_count();
6: end for
7: new_centroid := total_sum / total_count;
8: add new_centroid to new_c_list
9: if new_centroid has changed or a threshold is not reached then
10: Increment global_counter by 1
11: end if
12: output(c_id, dp)

Method cleanup()
1: Write new centroids in new_c_list to HDFS;

3 Experimental Results

To evaluate PKMMR, we run the algorithm on a Hadoop [14] 2.2.0 cluster of 1 master
node and 16 worker nodes. The master node has 2 AMD CPUs running at 3.1 GHz
with 8 cores each, and 8 × 8 GB DDR3 RAM, and 6 × 3 TB Near Line SAS disks

Optimisation Techniques for Parallel K-Means on MapReduce 197

running at 7200 rpm. Each worker node has 1 Intel CPU running at 3.1 GHz with 4
cores, and 4 × 4 GB DDR3 RAM, and a 1 × 1 TB SATA disk running at 7200 rpm.

The datasets used in the experiments are artificially generated where data points are
randomly distributed. Additionally, initial cluster centroids are randomly picked from
the dataset [1]. The number of iterations is fixed in all experiments at 10.

To show the effect of distance calculations on the performance of PKMMR, we run
the algorithm with different number of data points n, dimensions d and clusters k. The
percentage of the average time consumed by distance calculations in each iteration is
represented by the grey area in each bar in the Figs. 1-(a), (b), and (c). The white dotted
area represents the percentage of the average time consumed by other MapReduce
operations per iteration including job configuration and distribution, map tasks
(excluding distance calculations) and reduce tasks.

In each run, we compute the average run-time for one iteration by dividing the total
run-time over the number of iterations. Then, the average run-time consumed by dis-
tance calculations per iteration is computed.

(a) Avg. time consumption with variable
number of d. n=1000000, k=128.

(b) Avg. time consumption with variable
number of k. n=1000000, d=128.

(c) Avg. time consumption with variable
number of n. d=128, k=128.

Fig. 1. Percentage of the average consumed time by distance calculations per iteration with
variable number of d, k and n.

198 S.A. Ghamdi et al.

We run PKMMR with a varied number of d, while n is fixed at 1,000,000, and k is
fixed at 128. Figure 1-(a) shows that 39 % (d = 4) to 63 % (d = 128) of the average
iteration time is consumed by distance calculations.

PKMMR is also run with a variable number of k, while n is set to 1,000,000 and
d is set to 128. In Fig. 1-(b), it can be clearly seen the tremendous increase in the
percentage of consumed time by distance calculations per iteration from 11 % (k = 8) to
79 % (k = 512). In this experiment, distance calculations become a performance bot-
tleneck as the number of clusters increases, which is more likely to occur while pro-
cessing large-scale datasets.

Figure 1-(c) illustrates the percentage of the average time of distance calculations
when running PKMMR with variable number of n, while d = 128 and k = 128. As it
can be observed, distance calculations consume most of the iteration time. About 65 %
of the iteration time is spent on distance calculations when n = 1,250,000. Therefore,
reducing the number of required distance calculations will most likely accelerates the
iteration run-time and, consequently, improves the overall run-time of PKMMR.

4 Work in Progress

We intend to accelerate the performance of K-Means on MapReduce by applying two
methods to reduce the distance computations in each iteration. Firstly, triangle
inequality optimisation techniques are going to be implemented and tested with high
dimensional datasets. However, such techniques usually require extra information to be
stored and transferred from one iteration to the next. As a consequence, large I/O and
communication overheads may hinder the effectiveness of this approach if not taken
into careful consideration. Secondly, efficient data structures, such as KD-trees or other
space-partitioning data structures [15], will be adapted to MapReduce and used with
K-Means. Two issues will be investigated in this approach. First, inefficient perfor-
mance with high dimensional datasets that has been reported in [6]. Second, load
imbalance that was addressed in [8, 9].

5 Conclusions

In this paper we have described the implementation of parallel K-Means on the Ma-
pReduce framework. Additionally, a detailed explanation of the steps to control the
iterative procedure in MapReduce has been presented. Moreover, a detailed analysis of
the average time consumed by distance calculations per iteration has been discussed.
From the preliminary results, it can be clearly seen that most of the iteration time is
consumed by distance calculations. Hence, reducing this time might contribute in
accelerating K-Means on the MapReduce framework. Two approaches are under
investigations, which are, respectively, based on the triangle inequality property and
space-partitioning data structures.

Optimisation Techniques for Parallel K-Means on MapReduce 199

References

1. Lloyd, S.: Least Squares Quantization in PCM. IEEE Trans. Inf. Theor. 28(2), 129–137
(1982)

2. Dhillon, I.S., Modha, D.S.: A data-clustering algorithm on distributed memory
multiprocessors. In: Zaki, M.J., Ho, C.-T. (eds.) KDD 1999. LNCS (LNAI), vol. 1759,
pp. 245–260. Springer, Heidelberg (2000)

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In:
Proceedings of the 6th Conference on Symposium on Operating Systems Design &
Implementation, 6, p. 10. Berkeley, CA, USA (2004)

4. Elkan, C.: Using the triangle inequality to accelerate k-means. In: presented at the
International Conference on Machine Learning - ICML, pp. 147–153 (2003)

5. Bentley, J.: Multidimensional binary search trees used for associative searching. Commun.
ACM 18(9), 509–517 (1975)

6. Pelleg, D., Moore, A.: Accelerating exact K-means algorithms with geometric reasoning. In:
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 277−281, New York, NY, USA (1999)

7. Judd, D., Mckinley, P.K., Jain, A.K.: Large-scale parallel data clustering. IEEE Trans.
Pattern Anal. Mach. Intell. 20, 871–876 (1998)

8. Pettinger, D., Di Fatta, G.: Scalability of efficient parallel K-means. In: 2009 5th IEEE
International Conference on E-Science Workshops, pp. 96–101 (2009)

9. Di Fatta, G., Pettinger, D.: Dynamic load balancing in parallel KD-tree K-means. In: IEEE
International Conference on Scalable Computing and Communications, pp. 2478–2485
(2010)

10. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. In: Proceedings of the 19th
ACM Symposium on Operating Systems Principles, pp. 29–43. New York, NY, USA
(2003)

11. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. Washington, DC, USA (2010)

12. Zhao, W., Ma, H., He, Q.: Parallel K-means clustering based on mapreduce. In: Jaatun, M.
G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS, vol. 5931, pp. 674–679. Springer,
Heidelberg (2009)

13. White, B., Yeh, T., Lin, J., Davis, L.: Web-scale computer vision using mapreduce for
multimedia data mining. In: Proceedings of the Tenth International Workshop on
Multimedia Data Mining, pp. 9:1–9:10. New York, NY, USA (2010)

14. Apache Hadoop. http://hadoop.apache.org/. Accessed on 03 January 2015
15. Pettinger, D., Di Fatta, G.: Space partitioning for scalable K-means. In: IEEE The Ninth

International Conference on Machine Learning and Applications (ICMLA 2010),
pp. 319-324. Washington DC, USA, 12–14 December 2010

200 S.A. Ghamdi et al.

http://hadoop.apache.org/

	Optimisation Techniques for Parallel K-Means on MapReduce
	Abstract
	1 Introduction
	2 Parallel K-Means on MapReduce
	2.1 K-Means
	2.2 MapReduce
	2.3 Parallel K-Means on MapReduce Implementation

	3 Experimental Results
	4 Work in Progress
	5 Conclusions
	References

