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Abstract. This paper presents a holistic approach to execute tasks in
distributed smart systems. This is shown by the example of monitoring
tasks in smart camera networks. The proposed approach is general and
thus not limited to a specific scenario. A job-resource model is intro-
duced to describe the smart system and the tasks, with as much order
as necessary and as few rules as possible. Based on that model, a local
algorithm is presented, which is developed to achieve optimization trans-
parency. This means that the optimization on system-wide criteria will
not be visible to the participants. To a task, the system-wide optimiza-
tion is a virtual local single-step optimization. The algorithm is based on
proactive quotation broadcasting to the local neighborhood. Addition-
ally, it allows the parallel execution of tasks on resources and includes
the optimization of multiple-task-to-resource assignments.

Keywords: Job-resource-model · Optimization transparency · Virtual
local single-step optimization · Proactive quotation-based optimization ·
Multiple-task-to-resource assignment

1 Introduction

The scientific achievements of the past years enforced a rapid augmentation
of computerized systems, so called smart systems. From the perspective of the
authors, this smart trend is driven by standardization and modularization of sys-
tem components, the increase of computing power and capabilities of individual
system components and their interconnection. This trend makes new applica-
tions possible. The configuration space of individual systems and their possibil-
ities for collaboration have increased significantly. Former passive systems now
can actively service novel application scenarios. Example scenarios are smart
home, smart desktop-grids and distributed smart camera networks. In a smart
home a possible application may be to illuminate the kitchen by a defined lumi-
nous flux. Therefore, a smart electric stove with a lamp, a smart table lamp
or a smart ceiling lamp can be used to fulfill this task. Another example is a
smart desktop-grid with the task of executing a simulation. Therefore, different
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desktop configurations are available, like multi-core CPU and GPU. Within this
work we focus on networks with pan-tilt-zoom capable smart cameras, because
it is one of the most challenging scenarios. In a smart camera network, as
illustrated in Fig. 1(a), the task could be to observe an event with different
cameras. Figure 1(b) shows the system architecture of a smart camera. The new
possibilities to fulfill a task, increase the configuration space rapidly. So, one
question comes up: Which task has to be fulfilled by which smart system com-
ponent? The first research subject is to create a model to handle this new possi-
bility to fulfill tasks by different smart system components. The second research
subject is the optimization of task-to-smart-system-component assignment in
naturally distributed systems with only local algorithms. Both are explained in
the following Sects. 1.1 and 1.2. In the remainder of this paper, we will present
an approach to handle the first and second research subject. Therefore, a job-
resource model will be introduced in Sect. 2. Based on this model, a heuristic
approach for virtual local single-step optimization is presented in Sect. 3. This
approach is capable for parallel execution of tasks on a smart component within
a distributed system. The algorithm will be evaluated on optimization speed and
the capability to solve generalized assignment problem benchmarks in Sect. 6.

(a) Observation in a smart camera network. (b) Smart Camera

Fig. 1. Distributed smart system exemplified as distributed smart camera network.

1.1 First Research Subject: Model Creation

In smart systems, different tools are available to satisfy different tasks. The model
must be independent from the task, the optimization criterion and the smart
system component. Generally, we have to decide whether we prefer centralized,
local or hybrid algorithms in a natural distributed system. On one hand, this
model must support user-objectives such as turn on the light in the kitchen or
rather the observation of an event in a smart camera network. On the other hand,
the system has to support system-wide objectives as well as the optimization to
the resulting global criterion.

1.2 Second Research Subject: Optimization Transparency

In a distributed system using only local knowledge and local algorithms, it is
hard to optimize on global criterion. This is illustrated in Fig. 2. Here, the sce-
nario consists of three smart cameras (SC) and four events to observe. Initially
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in Fig. 2(a), only event 3 and event 4 are observed. The system objective is to
observe as many events as possible. In Fig. 2(b) the obviously best alignment of
the cameras field of view (FoV) is shown. The challenge is to optimize the con-
figuration with local knowledge and local algorithms from the situation depicted
in Fig. 2(a) as close as possible to the optimal state in Fig. 2(b). The system-
wide optimization shall be transparent to the system. This means it will not be
visible to the participants. In particular, we enforce a virtual, local single-step
optimization (VLSO).

(a) Initial situation with three smart
cameras and four observable events.

(b) Obviously best smart camera align-
ment to cover all events.

Fig. 2. Example for an initial situation within a distributed smart camera network.
The network consists of three smart cameras and four events to observe.

2 Job-Ressource-Model to Handle the First Research
Subject

To achieve universality and independence of explicit application scenarios, the
model should contain as much order as necessary and as few rules as possible.
A smart system consists of smart components. Based on the smart camera defi-
nition in [1], a smart component consists of a computing- and a communication-
unit. In addition, it can be optionally extended e.g. by sensors, actuators etc.
(Fig. 1(b)). A smart component can also consist of multiple other smart compo-
nents. Each smart component has a neighborhood RN which is connected ad-hoc
(e.g. wlan). Smart components have a neighborhood relation if they can com-
municate directly with each other. Two smart cameras are in a neighborhood
if they are in the same broadcast domain (layer-2 broadcast in the OSI-model).
Messages will not be forwarded beyond this neighborhood (routing). A smart sys-
tem is used to fulfill different objectives, so called micro- and macro-objectives.
How are they related to the smart components? Micro-objectives are individ-
ual objectives which result in a software instance i.e. a program in the main
storage of a smart component, which can be executed, and the associated data.
Macro-Objectives are superior system-objectives. As an example, we consider a
smart camera network in which two glass break sensors detect events (A and B).
This will automatically create two observation tasks. These micro-objectives are
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given to the smart camera network and are represented by software instances.
Both instances compete for the smart cameras. Which instance aquires which
camera has to be determined by the interaction of the software instances. This
interaction is defined by the macro-objective of the system. The macro-objective
could be the maximization of a system-wide observation success for example. We
developed a job-resource-model based on this objective-model. A smart system
component i will further be interpreted as a resource ri from a set of resources
R. A software instance, which pursues a micro-objective n and is bounded by
the interaction rules of macro-objectives, is further called job an, an element of
the set of all jobs A.

2.1 Resources

A resource ri is the reduced representation of a smart component, which can be
allocated by a job an to fulfill its micro-objective. A resource is defined by its
ID i and the estimated success it will provide to a job’s micro-objective running
on it. The success of job an on resource ri is denoted by Pn

i . If a resource i
knows about a micro-objective, it broadcasts information about it proactively
to its neighborhood RN i. This proactive information broadcast is also called
the resource-to-resource-interaction (R2R-interaction). A non-existing resource
(neutral element) will be denoted by r∅.

2.2 Jobs

A job an is a representation of an individual objective, respectively a software
instance. This software instance consists of a management part and an execu-
tion part. The management part is responsible for a self-organized allocation
of a resource. The execution part is e.g. a thread for person detection in single
images. A job is on a resource, if a software-instance is located on the corre-
sponding smart component. A job allocates a resource, if the execution part of
the software instance is running on the smart component. A job, which is on a
resource, has full access to the data on that resource. Jobs can interact by sending
messages and allocating a resource by displacing an other job. This job-to-job-
interaction (J2J-interaction) is defined by the rules of the macro-objectives. The
non-existing job, respectively the idle job on a resource, is denoted by a∅. The
idle job is the only job which can allocate an idle resource and will do this auto-
matically. The job-to-resource-interaction (or J2R-interaction) then is defined as
follows: a job can allocate a resource and exchanges information, if the job is on
the resource. After defining the job-resource-model we can focus on the macro-
objectives which are congruent to the second research subject in the following
section.

3 Proactive Quotation-Based Scheduling to Handle
the Second Research Subject

In the previous section, we introduced an objective-model and derived a job-
resource-model from it. The objective-model distinguishes between micro- and
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macro-objectives. The micro-objectives are individual objectives and macro-
objectives are objectives regarding the whole system. The only admitted way
to enforce macro-objectives in the presented job-resource-model, is to affect the
J2J-interaction. That means the information which has to be exchanged between
jobs and the rules, when a job is allowed to displace another job. So, we need a
local algorithm which is capable to optimize system wide. Such an algorithm shall
avoid long negotiation chains within the whole system. To enlight the challenge,
we present a scene with three smart cameras in Fig. 3. SC1 and SC2 are observ-
ing the events 1 and 2. SC3 is idle. At time stamp T ′ a glass break sensor detects
an additional event 3. The micro-objective to observe this event by a smart cam-
era is represented by a job. On the right of Fig. 3, the related gantt charts to
each resource and each job are depicted. Each bar represents the duration for
how long the event can be observed. The predicted success Pn

i for executing job
an on resource ri is denoted at the end of each bar. The macro-objective is to
increase the system wide observation success:

Psys =
∑

an

Pn
i · [an allocates ri] (1)

with Iverson brackets as [statement] = 1 if statement == true and
[statement] = 0 if statement == false. It is obviously the best solution that
SC1 adjusts its FoV to observe event 3 at time stamp T ′. Then, SC2 switches
its FoV on event 1 and, additionally, SC3 turns on event 2. The challenge is to
avoid long negotiation chains such as job 3 asks job 1 to handover the resource
SC1. Then, job 1 has to ask its neighborhood to change on another smart cam-
era and so on. In general, this simple approach will result in a tree search. As
already said, we try to achieve a transparent optimization with local algorithms
in distributed smart systems. In particular, we want to achieve a virtual, local
single-step optimization (VLSO): From a job’s point of view, it shall seem to
be a local optimization, which only needs one step to complete. Such an algo-
rithm can be found in [3] and it is called Proactive Quotation-Based Scheduling
(PQB). This algorithm will be shortly introduced in the following subsection.
Afterwards, we will extend the PQB algorithm to handle a parallel execution of
several micro-objectives on single resources.

Fig. 3. Network with three smart cameras and two events. At time stamp T ′ an addi-
tional event occurs.
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3.1 Single Micro-Objective to Single Resource Association

The main idea is: Each job an allocating a resource ri locally broadcasts a
quotation Qn

i , which has to be fulfilled by another job to displace the offering
job. This is illustrated in Fig. 4, following the example in Fig. 3. The resources
proactively share the possible success of each job they know about with the
neighborhood (Fig. 4(a)). One has to consider that this information will not be
forwarded. Additionally, each job allocating a resource will send its quotation
(Fig. 4(b)). At time stamp T ′ job a3 is created. The resources again proactively
broadcast the possible success (Fig. 4(c)). Job a3 knows about the conditions
to displace job a1 because of the former quotation exchange (Fig. 4(b)). Then,
job a1 will displace job a2. In the last step job a2 will displace the idle job on
resource r3 (Fig. 4(d)). This illustration leads to the question: What was that
quotation which causes job a3 to displace job a1 and temporarily decrease the
local and system-wide observation success? The PQB-Scheduling algorithm is
based on a local mapping of possible system-wide success improvement on a
virtual local improvement of each job. In the following, a quotation Qn

i is called
sales quotation, because a virtual price has to be paid by a job ax to receive
the resource ri from job an. In this context, success is equivalent to virtual
money. A sales quotation solely implies that, if job an releases its resource ri,
the beneficiary job ax has to compensate the loss:

Qn
i = Pn

i (2)

If job an can migrate to an alternative resource ri′ , the quotation has to be
reduced by the predicted success on that resource. To create a low priced quota-
tion for the resource, the job avoids to the resource with the maximum success:

Qn
i = Pn

i − max
i′

{Pn
i′ } (3)

If job an has to ransom the alternative resource ri′ from an offering job an′ , the
possible success on resource ri′ has to be reduced by these costs. The quotation
to be broadcasted by job an on resource ri are given by:

Qn
i = Pn

i − max
i′

{Pn
i′ − Qn′

i′ } (4)

A job an that receives the quotation, has to decide if its current success is greater
than the possible success on resource ri′ . The possible success is given by the
success Pn

i′ subtracted by the costs Qn′
i′ .

Pn
i′,red = Pn

i′ − Qn′
i′ (5)

This approach by itself is not capable to achieve the solution we aimed for (see
Fig. 2(b)), because grouping multiple micro-objectives on one resource is not
supported. In the following, we extend the PQB-Scheduling algorithm to cope
with this challenge.
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(a) Exchange of the possible job
successes within the resource neigh-
borhoods RN i by proactively R2R-
Interaction.

(b) Exchange of quotations within the
resource neighborhoods RN i by J2J-
interaction.

(c) At time stamp T job a3 occurs. Job
a3 knows about the conditions to dis-
place job a1 because of the former quo-
tation exchange.

(d) Job a3 displaces a1. Afterward job
a1 displaces a2 and subsequently job a2

displaces the idle job a on r3.

Fig. 4. Message exchange within the proactive quotation-based scheduling.

3.2 Multiple Micro-Objective to Single Resource Assignment

The calculation of a system-wide optimal grouping of micro-objectives is a hard
problem. There are two general challenges and two problems to adapt the PQB-
Scheduling algorithm to this scenario.

General Problem 1: The success of multiple micro-objectives executed on a
single resource is the sum of the single micro-objective success within that group.
The first problem is the dependency of a single micro-objective success on the
group composition. Simply explained: If job a1 and job a2 share a resource r1,
usually P

a1⊆{a1,a2}
1 �= P a1

1 . This is caused by the sharing of resources. In example
Fig. 2(b), smart camera 2 is for instance not capable to adjust the focus on event
2 and 3 in the same quality as observing only event 2 or event 3.

General Problem 2: The next challenge is to create the groups using only local
knowledge and local algorithms. Two oppositional approaches are conceivable.
In the first approach, the jobs form groups by themselves. The second approach
is to build all possible combinations and only the micro-objective within a group
with the highest success will be actively executed. At first sight, the dynamic
grouping is preferable, because the amount of software-instance increases linearly
with the number of micro-objectives. The amount of all possible combinations
increases exponentially. Unfortunately, the dynamic grouping is hard with the
local knowledge and local algorithms restrictions we choose. An example to show
this issue is depicted in Fig. 5. In Fig. 5(a), the system view of SC1 is depicted.
SC1 is not informed about SC3 and event 5 as shown in Fig. 5(c). So, with this
different knowledge, the optimal camera alignment differs. With the knowledge
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(a) System knowledge from the
point of view of SC1.

(b) Best camera alignment from the
point of view of SC1.

(c) System knowledge from the
point of view of SC2.

(d) Best camera alignment from the
point of view of SC2.

Fig. 5. Dynamic grouping on runtime with local knowledge and local algorithms is not
possible.

of SC1, the events 1 and 2 should be grouped. With the knowledge of SC2, event
2 and 3 as well as event 4 and 5 should be grouped.

PQB-Scheduling Problem 1: When calculating a quotation in the PQB-
Scheduling approach, the splitting of a group has to be considered. In Fig. 6(a)
an example is depicted. SC3 is observing event 1 and 2. SC1 and SC2 are not
capable to observe both. The best solution will be that event 1 is observed by
SC1, event 2 by SC2 and event 3 by SC3. So, the calculated quotation must
consider the separation of event 1 and 2. Otherwise, the job that is responsible
for observing event 3 is not able to buy SC3. This will increase the search space
exponentially.

PQB-Scheduling Problem 2: When calculating a quotation in the PQB-
Scheduling approach, the part of a group that remains on the resource has to be
taken into account. Figure 6(b) shows an example. The SC2 is observing event 1
and 2. The best solution will be that event 1 is observed by SC1 and event 2 and
3 by SC2. So, the calculated quotation must consider the separation of event 1
and 2 and, additionally, that job a1 observing event 2 stays on SC2. Otherwise,
the job responsible for observing event 3 is not able to buy SC2. The received
quotation has to be adopted by the receiving group. Unfortunately, this term
cannot be calculated. The quotation is calculated under the constraint that no
parts of the group remain on the resource. Theoretically an alternative more
suitable quotation can exist.
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(a) PQB-Scheduling Problem 1 (b) PQB-Scheduling Problem 2

Fig. 6. Example scenarios for PQB-Scheduling Problem 1 and 2

Formal Description of General Problem 1 and 2 And PQB-Scheduling
Problem 1 and 2: Assuming a group g is allocating resource i. If group g leaves
the resource ri, the displacing job has to compensate the loss of group g. That
equals to Eq. 2.

Qg
i = P g

i (6)

If sub-groups gsub of g are able to split up on several other resources ri′ , this
success on the alternative resources P gsub

i′ has to be subtracted from Qg
i .

Qg
i = P g

i − max
i′,gsub

{
∑

i′
(P gsub

i′ )} (7)

Here, the groups offering the alternative resources i′ are donated with g′. It must
be remarked that some parts g′

sub of the displaced groups g′ can be integrated
into the sub-groups gsub.

Qg
i = P g

i − max
i′,gsub,g′

sub

{
∑

i′
(P gsub⊆{gsub∪g′

sub}
i′ )} (8)

The price Qg′
i′ has to be paid to displace a group g′ on resource i′. Again, the

following has to be noted: if a sub-group of g′ can be integrated, the price has
also to be adopted to Q

g′\g′
sub, g′

sub∪gsub

i′ .

Qg
i = P g

i − max
i′,gsub,g′

sub

{
∑

i′
(P gsub⊆{gsub∪g′

sub}
i′ − Q

g′\g′
sub, g′

sub∪gsub

i′ )} (9)

Equation 9 states a hard combinatorial problem. Additionally, as mentioned in
PQB-Scheduling Problem 2, the term Q

g′\g′
sub, g′

sub∪gsub

i′ can not be calculated
exactly on the base of Qg′

i′ , but it can be estimated. On first sight, the problems
seem to be solved with these equations. But they only represent the problems in
a formal way. The term maxi′,gsub,g′

sub
represents the computationally intensive

part. For calculating a quotation, this part represents how to spread the micro-
objectives on neighboring resources {i′, ..., I ′}.

All these equations contain groups g. But so far it is not clear where these
groups came from.
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4 Heuristic Approach for Parallel Execution of Multiple
Micro-Objectives on Resources

We have developed a heuristic solution that solves all these problems in one
stroke. The algorithm is based on a hybrid version of ‘dynamic grouping of
micro-objectives’ and the ‘parallel consideration of all combinations’. For clarity,
throughout the explanations of the following heuristic approach, we will refer
to the example depicted in Fig. 7. It shows a smart camera network initially
consisting of three smart cameras (SC1 - SC3). As depicted, only SC1 is able to
observe event 1-4 simultaneously. SC2 can only observe event 3 and 4, as well as
SC3 can only observe event 1 and 2. Initially, job a1,2,3,4 is executed on resource
r1. Resources r2 and r3 are idle. At time stamp T ′, event 5 occurs which can
only be observed by SC1.

Fig. 7. Initial situation. Reference example for the heuristic approach.

First Step: On each resource, one job is created representing all micro-
objectives which are executable on that resource: aall. In the illustrated example,
these will be a1,2,3,4 for r1, a3,4 for r2 and a1,2 for r3.

Second Step: Each job an,...,N searches for an alternative resource (initially
only aall) and creates an optimization matrix. In the left table of Table 1, the
optimization matrix of job a1,2, which is on resource r2, is depicted. The micro-
objectives m, ...,M are the ones currently allocating the resources in the neigh-
borhood ri, ..., rI . This is denoted by an ‘X’ within the table. The row ‘displaced’
will be needed later.

Third Step: The micro-objectives n, ..., N will be randomly assigned to the
resources ri, ..., rI . The micro-objectives m, ...,M can only remain on the
resource or change to r∅. This assignment is also random. Unallowed assignments
are marked with a ‘-’ in the optimization matrix. If one of the micro-objectives
n, ..., N is already executed on a resource, the corresponding ‘X’ has to be deleted
and it has to be marked in the line ‘displaced’. Every row in the matrix with
a micro-objective of n, ..., N represents a possible group of micro-objectives on
that resource. Only these rows will be considered for the calculation of the matrix



Task Execution in Distributed Smart Systems 113

success. In the right table of Table 1, this is shown for job a1,2 on resource r2.
This local solution will be rated. The success of that group and the costs to buy
the resource has to be calculated: P gsub⊆{gsub∪g′

sub}
i′ − Q

g′\g′
sub, g′

sub∪gsub

i′ . In the
example, this will be P 1,2

3 − Q
a∅

3 . For any displaced job, an extra charge of
the success of that objective within the group on that resource has to be paid,
P an⊆g
i . In the example, this will be P

1⊆{1,2,3,4}
1 and P

2⊆{1,2,3,4}
1 . The third step

is repeated multiple times to find the matrix with the highest success. This
exploration needs a heuristic. We used stochastic tunneling (ST) [10]. In the ST
heuristic a change in the optimization-matrix will occur with a certain proba-
bility which depends on the current success compared to the former success of
that matrix.

Fourth Step: This step starts, when the former step has terminated. If the
success of the matrix calculated in the former step is greater than 0, the following
will happen: Each row represents an assignment of micro-objectives to a resource.
If the micro-objectives n, ..., N are assigned to a single resource ri′ , (not including
any element of {m, ...,M} which is not also included in {n, ..., N}) this job will
displace the offering job on that resource ri′ . If the micro-objectives n, ..., N are
associated to different resources, corresponding to each of these associations,
a time-limited job is created, which starts in the second step of this algorithm.
Time-limited means that the job will remove itself from the system when a timer
expires. The time-limit will be reset after allocating a resource and will not be
decreased until it is displaced. In the example, this means, job a1,2 may displace
a∅ on resource r3, if the success of that matrix is greater than 0. Keep in mind,
the extra charge (see displace row) may be higher than the success, so job a1,2
will not displace a∅ on resource r3.

An additional advantage of this heuristic is, it also can be used to calculate
a quotation. Only the listed resources do not include the resource allocated by
the job itself. Below on the left of Table 2, the optimal optimization-matrix for
calculating the quotation by job a1,2,3,4 allocating resource r1 is depicted.

Now assuming the time stamp T ′ and event 5 occurs. On the right of Table 2,
the optimization matrix of job a5 is depicted. Someone might mention that the
micro-objectives 1 to 4 on the right of Table 2 are assigned to the idle resource

Table 1. Left: Optimization matrix in the second step. Right: Optimization matrix in
the third step.



114 U. Jänen et al.

Table 2. Left: Optimization matrix to calculate the quotation by job a1,2,3,4 on
resource r1. Right: Optimization matrix to illustrate how job a5 takes over r1.

r∅. It has to be considered that a5 is not responsible for job a1,2,3,4. To job a5 it
seems to be a virtual single-step optimization. a1,2,3,4 takes care of the fallback
resources by itself by calculating the quotation.

5 Related Work

In this section, the related work is discussed. First, the job-resource model is
considered. The name of the model is influenced by scheduling theories [2]. The
scheduling theory focuses on the amount of tasks and machines, their type and
their arrival rate to classify the scheduling problem. The presented job-resource
model is more general and focused on distributed smart systems. A job can
be considered as a software agent, respectively intelligent agent, in multi-agent
systems as described in [11]. The approach of using software agents in the execu-
tion of tasks is well established. In Monari et al. [5], an agent-based multi-sensor
process for each object to be tracked in a smart camera network is created. An
agent is focused on the execution of computer vision like data association and
fusion. They used a well defined system architecture called NEST, which is still
a research field [6]. Ukita et al. [9] also used agents. In their approach, the smart
system components are the agents (so called active vision agents). Our focus is
on the definition of a model that is as accurate as necessary and as less restric-
tive as possible. It is more general and defines interaction possibilities to achieve
micro- and macro-objectives.

The second research objective of an optimization transparency and a system-
wide optimization have not been considered in that way before. Most approaches
used in the field of distributed smart camera networks make use of auction based
algorithms like [7], which can be understood as a distributed greedy search. Also,
some algorithms using negotiation chains were developed, for instance in [8]. The
handling of these chains needs more maintaining than the proactive quotation-
based approach we used. The heuristic expanding of this approach [3] enabled
the parallel execution of tasks on smart components, which is a necessity to be
able to track multiple persons by the same smart camera.
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6 Evaluation

We presented an algorithm, which is capable to optimize the execution of multi-
ple micro-objectives on resources. The optimization is transparent to a job and
is especially a local single-step optimization from its point of view. Caused by
the proactive quotation broadcasting, the optimization is done directly and it
is avoiding negotiation chains. To show this, we evaluated the algorithm using
the MASON1 simulation toolbox. We set up a resource network as depicted in
Fig. 8(a). Each resource is only capable to communicate with its direct neighbor
resource. A message needs 3 simulation steps to be transferred from resource to
resource. The graph in Fig. 8 shows the average system success at each simula-
tion step, measured during the evaluation of 10 repeats. During the initialization
phase step 10 to step ∼20, the optimization converges up to a success of 7000.
At simulation step 50, the events 8 and 9 occur. The system needs only 10 steps
to reach the maximum success and to reconfigure the whole network. Keeping
in mind that the message exchange takes 3 steps.

(a) Evaluation setup (b) System success at each simulation step.

Fig. 8. Simulation setup with resulting graph.

In the following, we want to demonstrate the capability to solve a complex
problem, like the generalized assignment problem (GAP) [4] using only local algo-
rithms. Therefore, we used a benchmark set2. The term maxi′,gsub,g′

sub
in Eq. 9

represents the computationally intensive part. This is handled by using stochastic
tunneling (ST) in the third step of the heuristic PQB approach. We compare the
results of stochastic tunneling implemented as central approach to the introduced
local PQB heuristic. A single run of the central ST contains 500 explorations to
find the best assignment. These runs were repeated 200 times within a single sim-
ulation. Each simulation (central ST and local PQB) was repeated 10 times. The
results of the 200th step are depicted in Table 3. It is obvious that the ST heuristic
is not the best approach to solve GAP. The evaluation also showed that the local
1 http://cs.gmu.edu/∼eclab/projects/mason/.
2 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/gapinfo.html.

http://cs.gmu.edu/~eclab/projects/mason/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gapinfo.html
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PQB approach is able to reach similarly good results as a centralized approach
with a percentual deviation of 5.37 % and 8.31 %.

Table 3. Comparison of central ST vs. local PQB

Benchmark set Optimal solution Ø central ST Ø local PQB Deviation

c515-1 336 285.0 (stdev:5.88) 269.7 (stdev:11.55) 5.37 %

c515-2 327 283.9 (stdev:5.37) 260.3 (stdev:17.69) 8.31 %

7 Conclusion and Future Work

In this paper, we described a holistic approach for task execution in distributed
systems. Therefore, a job-resource model was introduced. This model pursues
individual objectives (micro-objectives), which might be created by a user, as
well as system-wide objectives (macro-objectives) considering e.g. load-balancing
issues. The optimization of macro-objectives is transparent to a job. More pre-
cisely, to a job it appears as a so-called virtual local single-step optimization
(VLSO). This is achieved by means of the presented technique called proactive
quotation broadcasting (PQB). In the presented algorithm, micro-objectives are
able to share resources. The challenge of grouping objectives on resources, and
an approach to overcome it, was explained. Experimental results revealed the
capabilities of the PQB algorithm, i.e. its fast reaction to disturbances and its
ability for an optimal objective-to-resource assignment.

Future research activities will focus on using alternative heuristics for the
third step of the algorithm, e.g. evolutionary strategies, instead of stochastic
tunneling.
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