
Giuseppe Di Fatta · Giancarlo Fortino
Wenfeng Li · Mukaddim Pathan
Frederic Stahl · Antonio Guerrieri (Eds.)

 123

LN
CS

 9
25

8

8th International Conference, IDCS 2015
Windsor, UK, September 2–4, 2015
Proceedings

Internet and Distributed
Computing Systems

Lecture Notes in Computer Science 9258

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Giuseppe Di Fatta • Giancarlo Fortino
Wenfeng Li • Mukaddim Pathan
Frederic Stahl • Antonio Guerrieri (Eds.)

Internet and Distributed
Computing Systems
8th International Conference, IDCS 2015
Windsor, UK, September 2–4, 2015
Proceedings

123

Editors
Giuseppe Di Fatta
School of Systems Engineering
University of Reading
Reading, Berkshire
UK

Giancarlo Fortino
Dipartimento di Ingegneria Informatica,

Modellistica, Elettronica e Sistemistica
University of Calabria
Rende
Italy

Wenfeng Li
School of Logistics and Engineer
Wuhan University of Technology
Wuhan
China

Mukaddim Pathan
CSIRO ICT
Acton
Australia

Frederic Stahl
School of Systems Engineering
University of Reading, Whiteknights
Reading
UK

Antonio Guerrieri
Dipartimento di Ingegneria Informatica,

Modellistica, Elettronica e Sistemistica
University of Calabria
Rende
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-23236-2 ISBN 978-3-319-23237-9 (eBook)
DOI 10.1007/978-3-319-23237-9

Library of Congress Control Number: 2015946745

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

IDCS 2015 was 8th annual event of the conference series dedicated to the Internet and
distributed computing systems and was held in Windsor, Berkshire, UK. The previous
seven successful editions include IDCS 2008 in Khulna, Bangladesh, IDCS 2009 in
Jeju Island, Korea, IDCS 2010 and IDCS 2011 in Melbourne, Australia, IDCS 2012 in
Wu Yi Shan, China, IDCS 2013 in Hangzhou, China, and IDCS 2014 in Calabria,
Italy.

The Internet as ubiquitous infrastructure and the widespread use of mobile and
wireless devices have laid the foundation for the emergence of innovative network
applications. In addition, the advances of sensor technologies are facilitating
cyber-physical systems, i.e., the integration of the digital world with the physical
environment, and the advent of the Internet of Things. Large-scale networked systems,
real-time data streams from sensors and widespread use of mobile devices are con-
tributing to the big data phenomenon. Intelligent and efficient approaches are required
to turn the wealth of data available from the network into useful and actionable
knowledge.

IDCS 2015 received innovative papers on emerging models, paradigms, applica-
tions, and technologies related to Internet-based distributed systems, including Internet
of Things, cyber-physical systems, wireless sensor networks, next-generation collab-
orative systems, and extreme-scale networked systems. The audience included
researchers, PhD students, and practitioners who have a general interest in the different
aspects of the Internet and distributed computing systems with a more specific focus on
practical and theoretical aspects of the cyber-physical systems built with the integration
of computer networks, distributed systems, wireless sensor technology, and network
applications for complex real-life problems.

IDCS 2015 received a large number of submissions from 20 different countries: 19
regular papers and seven short student papers were accepted after a careful review and
selection process. The selected contributions covered cutting-edge aspects of cloud
computing and Internet of Things, sensor networks, parallel and distributed computing,
advanced networking, smart cities and smart buildings, big data, and social networks.

The conference also featured two keynote presentations: the first presentation on
“Coordination Mechanism in Multi-Layer Clouds: Architecture and Applications,” was
given by Prof. Omer F. Rana, School of Computer Science and Informatics, Cardiff
University, UK; the second presentation on “Cloud Computing in Healthcare and
Biomedicine” was given by Prof. Mario Cannataro, Bioinformatics Laboratory,
Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro,
Italy.

The conference was held at the Cumberland Lodge, which is a 17th century house
that combines charming English hospitality with 21st century facilities. The conference
venue is immersed in the Royal landscape of the Windsor Great Park, at walking
distance from Windsor Castle and within its parkland. The conference activities

included an excursion to Bletchley Park and the National Museum of Computing.
Bletchley Park is the historic site of secret British codebreaking activities during
WW II, workplace of Alan Turing, and birthplace of the modern computer. The
National Museum of Computing is dedicated to the history of computing and includes
Colossus, the world’s first programmable, electronic, digital computer.

IDCS 2015 included a workshop for PhD students to give them the opportunity to
present their project work: their contributions are included in the proceedings as short
student papers.

We would like to thank the University of Reading and, in particular, Prof. Ben Cosh,
Dean of the Faculty of Science, for providing four student grants to support the par-
ticipation of PhD students from overseas countries.

The successful organization of IDCS 2015 was possible thanks to the dedication and
hard work of a number of individuals. In particular, we would like to thank Antonio
Guerrieri (publications chair) for his commendable work for the conference publicity
and proceedings. We also express our gratitude to the PhD students of the University of
Reading, Alexander Luke Spedding, Mosab Ayiad, and Anas Al-Dabbagh, who offered
their voluntary support during the conference.

September 2015 Giuseppe Di Fatta
Giancarlo Fortino

Wenfeng Li
Mukaddim Pathan

Frederic Stahl
Antonio Guerrieri

VI Preface

Organization

General Chair

Giuseppe Di Fatta University of Reading, UK

Program Chairs

Wenfeng Li Wuhan University of Technology, China
Giancarlo Fortino University of Calabria, Italy
Mukaddim Pathan Telstra Corporation Limited, Australia

Local Program Chairs

Rachel McCrindle University of Reading, UK
Lily Sun University of Reading, UK

PhD Workshop Chair

Frederic Stahl University of Reading, UK

Publicity and Industry Chair

Dom Robinson Innovations, id3as-company, UK

Publications Chair

Antonio Guerrieri University of Calabria, Italy

Steering Committee - IDCS Series

Jemal Abawajy Deakin University, Australia
Rajkumar Buyya University of Melbourne, Australia
Giancarlo Fortino University of Calabria, Italy
Dimitrios Georgakopolous RMIT University, Australia
Mukaddim Pathan Telstra Corporation Limited, Australia
Yang Xiang Deakin University, Australia

Program Committee

Gianluca Aloi University of Calabria, Italy
Hani Alzaid King Abdulaziz City for Science and Technology,

Saudi Arabia
Doina Bein The Pennsylvania State University, USA
Alfredo Cuzzocrea ICAR-CNR, Italy
Claudio De Farias PPGI-IM/NCE-UFRJ, Brazil
Maria De Souza The University of Sheffield, UK
Declan Delaney University College Dublin, Ireland
Giuseppe Di Fatta University of Reading, UK
Marcos Dias De Assuncao Inria Avalon, LIP, ENS de Lyon, France
Abdelkarim Erradi Qatar University, Qatar
Zongming Fei University of Kentucky, USA
Giancarlo Fortino University of Calabria, Italy
Stefano Galzarano University of Calabria, Italy
Maria Ganzha University of Gdansk, Poland
Saurabh Kumar Garg University of Tasmania, Australia
Luca Geretti University of Udine - DIEGM, Italy
Hassan Ghasemzadeh Washington State University, USA
Mick Hobbs Deakin University, Australia
Soumya Ghosh Indian Institute of Technology, Kharagpur, India
Raffaele Gravina University of Calabria, Italy
Antonio Guerrieri University of Calabria, Italy
Ragib Hasan University of Alabama at Birmingham, USA
Mohammad Mehedi Hassan King Saud University, Saudi Arabia
Jaehoon Paul Jeong Sungkyunkwan University, The Republic of Korea
Dimitrios Katsaros University of Thessaly, Greece
Ram Krishnan University of Texas at San Antonio, USA
Hae Young Lee Seoul Women’s University,The Republic of Korea
Wenfeng Li Wuhan University of Technology, China
Antonio Liotta Eindhoven University of Technology, The Netherlands
Jaime Lloret Polytechnic University of Valencia, Spain
Valeria Loscri Inria Lille Nord-Europe, France
Carlo Mastroianni ICAR-CNR, Italy
Kashif Munir KFUPM, Saudi Arabia
Enrico Natalizio Universitè de Technologie de Compiègne, France
Marco Netto IBM Research, Brazil
Sergio Ochoa Universidad de Chile, Chile
Andrea Omicini Università di Bologna, Italy
Ekow Otoo University of the Witwatersrand, South Africa
Pasquale Pace University of Calabria, Italy
Carlos Palau UPV, Spain
George Pallis University of Cyprus, Cyprus
Marcin Paprzycki IBS PAN and WSM, Poland
Mukaddim Pathan Telstra Corporation Limited, Australia

VIII Organization

Domenico Rosaci University Mediterranea of Reggio Calabria, Italy
Wilma Russo University of Calabria, Italy
Corrado Santoro University of Catania, Italy
Claudio Savaglio University of Calabria, Italy
Riaz Ahmed Shaikh King Abdul Aziz University, Saudi Arabia
Weiming Shen National Research Council, Canada
Weisong Shi Wayne State University, USA
Ramesh Sitaraman University of Massachusetts, Amherst, USA
Giandomenico Spezzano CNR-ICAR, Italy
Jun Suzuki University of Massachusetts, Boston, USA
Kerry Taylor CSIRO&Australian National University, Australia
Giorgio Terracina Università della Calabria, Italy
Ruppa Thulasiram University of Manitoba, Canada
Parimala Thulasiram University of Manitoba, Canada
Paolo Trunfio University of Calabria, Italy
Rainer Unland University of Duisburg-Essen, ICB, Germany
Athanasios Vasilakos NTUA, Greece
Salvatore Venticinque Seconda Università di Napoli, Italy
Bin Xie InfoBeyond Technology, USA
Norihiko Yoshida Saitama University, Japan

Organization IX

Contents

Cloud Computing and Internet of Things

Cloud Shield: Effective Solution for DDoS in Cloud 3
Rajat Saxena and Somnath Dey

Towards Modelling-Based Self-adaptive Resource Allocation in Multi-tiers
Cloud Systems . 11

Mehdi Sliem, Nabila Salmi, and Malika Ioualalen

Web2Compile-CoT: A Web IDE for the Cloud of Things 19
Claudio M. de Farias, Paulo G.S.M. Júnior, Marina V. Pereira,
Italo C. Brito, Igor L. dos Santos, Luci Pirmez, Flávia C. Delicato,
and Luiz F.R.C. Carmo

Fuzzy Logic Based Energy Aware VM Consolidation 31
Mohammad Alaul Haque Monil and Rashedur M. Rahman

Autonomic and Cognitive Architectures for the Internet of Things. 39
Claudio Savaglio and Giancarlo Fortino

Sensor Networks

Sensor Web Enablement Applied to an Earthquake Early Warning System. . . 51
Ana María Zambrano, Israel Pérez, Carlos E. Palau, and Manuel Esteve

Towards Motion Characterization and Assessment Within a Wireless Body
Area Network . 63

Martin Seiffert, Norman Dziengel, Marco Ziegert, Robert Kerz,
and Jochen Schiller

Data Driven Transmission Power Control for Wireless Sensor Networks 75
Roshan Kotian, Georgios Exarchakos, and Antonio Liotta

Mining Regularities in Body Sensor Network Data 88
Syed Khairuzzaman Tanbeer, Mohammad Mehedi Hassan,
Majed Alrubaian, and Byeong-Soo Jeong

Smart Cities and Smart Buildings

Task Execution in Distributed Smart Systems . 103
Uwe Jänen, Carsten Grenz, Sarah Edenhofer, Anthony Stein,
Jürgen Brehm, and Jörg Hähner

http://dx.doi.org/10.1007/978-3-319-23237-9_1
http://dx.doi.org/10.1007/978-3-319-23237-9_2
http://dx.doi.org/10.1007/978-3-319-23237-9_2
http://dx.doi.org/10.1007/978-3-319-23237-9_3
http://dx.doi.org/10.1007/978-3-319-23237-9_4
http://dx.doi.org/10.1007/978-3-319-23237-9_5
http://dx.doi.org/10.1007/978-3-319-23237-9_6
http://dx.doi.org/10.1007/978-3-319-23237-9_7
http://dx.doi.org/10.1007/978-3-319-23237-9_7
http://dx.doi.org/10.1007/978-3-319-23237-9_8
http://dx.doi.org/10.1007/978-3-319-23237-9_9
http://dx.doi.org/10.1007/978-3-319-23237-9_10

Inferring Appliance Load Profiles from Measurements 118
Geir Horn, Salvatore Venticinque, and Alba Amato

Intra Smart Grid Management Frameworks for Control and Energy Saving
in Buildings . 131

Antonio Guerrieri, Jordi Serra, David Pubill, Christos Verikoukis,
and Giancarlo Fortino

Urban Crowd Steering: An Overview . 143
Claudio Borean, Roberta Giannantonio, Marco Mamei, Dario Mana,
Andrea Sassi, and Franco Zambonelli

Distributed Computing

Towards a Self-Adaptive Middleware for Building Reliable
Publish/Subscribe Systems . 157

Sisi Duan, Jingtao Sun, and Sean Peisert

Review of Replication Techniques for Distributed Systems. 169
Ahmad Shukri Mohd Noor, Nur Farhah Mat Zian,
and Mustafa Mat Deris

Connectivity Recovery in Epidemic Membership Protocols 177
Pasu Poonpakdee and Giuseppe Di Fatta

Parallel Computing

Optimisation Techniques for Parallel K-Means on MapReduce 193
Sami Al Ghamdi, Giuseppe Di Fatta, and Frederic Stahl

Epidemic Fault Tolerance for Extreme-Scale Parallel Computing. 201
Amogh Katti and Giuseppe Di Fatta

A GPU-Based Statistical Framework for Moving Object Segmentation:
Implementation, Analysis and Applications. 209

Alfredo Cuzzocrea, Enzo Mumolo, Alessandro Moro,
and Kazunori Umeda

Advanced Networking

Hardware-Assisted IEEE 802.15.4 Transmissions
and Why to Avoid Them . 223

Andreas Weigel and Volker Turau

Containment of Fast Scanning Computer Network Worms 235
Muhammad Aminu Ahmad and Steve Woodhead

XII Contents

http://dx.doi.org/10.1007/978-3-319-23237-9_11
http://dx.doi.org/10.1007/978-3-319-23237-9_12
http://dx.doi.org/10.1007/978-3-319-23237-9_12
http://dx.doi.org/10.1007/978-3-319-23237-9_13
http://dx.doi.org/10.1007/978-3-319-23237-9_14
http://dx.doi.org/10.1007/978-3-319-23237-9_14
http://dx.doi.org/10.1007/978-3-319-23237-9_15
http://dx.doi.org/10.1007/978-3-319-23237-9_16
http://dx.doi.org/10.1007/978-3-319-23237-9_17
http://dx.doi.org/10.1007/978-3-319-23237-9_18
http://dx.doi.org/10.1007/978-3-319-23237-9_19
http://dx.doi.org/10.1007/978-3-319-23237-9_19
http://dx.doi.org/10.1007/978-3-319-23237-9_20
http://dx.doi.org/10.1007/978-3-319-23237-9_20
http://dx.doi.org/10.1007/978-3-319-23237-9_21

Fragmented-Iterated Bloom Filters for Routing in Distributed Event-Based
Sensor Networks . 248

Cristina Muñoz and Pierre Leone

Big Data and Social Networks

Fast Adaptive Real-Time Classification for Data Streams with Concept
Drift . 265

Mark Tennant, Frederic Stahl, and João Bártolo Gomes

Omentum – A Peer-to-Peer Approach for Internet-Scale
Virtual Microscopy . 273

Andreas Barbian, Dennis Malenica, Timm J. Filler,
and Michael Schoettner

Using Social Networks Data for Behavior and Sentiment Analysis 285
Barbara Calabrese, Mario Cannataro, and Nicola Ielpo

Sentimental Preference Extraction from Online Reviews
for Recommendation . 294

Nieqing Cao, Jingjing Cao, Panpan Liu, and Wenfeng Li

Author Index . 305

Contents XIII

http://dx.doi.org/10.1007/978-3-319-23237-9_22
http://dx.doi.org/10.1007/978-3-319-23237-9_22
http://dx.doi.org/10.1007/978-3-319-23237-9_23
http://dx.doi.org/10.1007/978-3-319-23237-9_23
http://dx.doi.org/10.1007/978-3-319-23237-9_24
http://dx.doi.org/10.1007/978-3-319-23237-9_24
http://dx.doi.org/10.1007/978-3-319-23237-9_25
http://dx.doi.org/10.1007/978-3-319-23237-9_26
http://dx.doi.org/10.1007/978-3-319-23237-9_26

Cloud Computing and Internet
of Things

Cloud Shield: Effective Solution for DDoS
in Cloud

Rajat Saxena(B) and Somnath Dey

Cloud Computing Lab, Department of Computer Science and Engineering,
Indian Institute of Technology Indore, Indore, India

{rajat.saxena,somnathd}@iiti.ac.in

Abstract. Distributed Denial of Service (DDoS) attack is a complex
security challenge for growth of Cloud Computing. DDoS attack is very
easy to apply, difficult to prevent and hard to identify because attacker
can spoof the IP address of itself for hiding the identity of himself.

In this paper, we present a Third Party Auditor (TPA) based efficient
DDoS detection and prevention technique which has the strong identifi-
cation factor based on these weaknesses. It has less overhead at the user
end. Thus, we target various aspects of prevention of DDoS attack in the
Cloud environment.

Keywords: Cloud computing · DoS attack · DDoS attack · Third party
auditor (TPA) · Dempster shafer theory (DST)

1 Introduction

Cloud computing [1,2] is defined as services and applications that are enforced
on a distributed network using virtual resources and accessed by common net-
working standards and Internet protocols. It is distinguished from the traditional
system in the conditions that resources are virtual and limitless and implemen-
tation details of the physical systems, on which software runs, are abstracted
from the user.

However, Denial-of-service(DoS) and Distributed Denial of Service (DDoS)
attacks are two major security restrictions for functionality and availability of
Cloud services. In DoS attack, an intruder tries to prevent authorized users
from retrieving the information or services. DDoS is an advance version of DoS
attack. DDoS is a collaborative attack on functionality and availability of a
victim cloud through multiple corrupted systems. In DDoS attack, multiple cor-
rupted systems are utilized for targeting and corrupting a victim cloud to pro-
duce a DoS attack. The approach of attack is “distributed” because multiple
systems are used by the intruder to launch DoS attack. In the process of DDoS
attack, victims are all, victim cloud as well as multiple compromised systems.
The main objective of DDoS attack is debacle damage on a victim cloud. Com-
monly, the undisclosed intension behind this attack is to restrict the available
resources and dissolute the service which is highly demanded by the victim cloud.
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 3–10, 2015.
DOI: 10.1007/978-3-319-23237-9 1

4 R. Saxena and S. Dey

Thus, it commits harassment of the victim due to huge financial loss. The
attacker also malfunctions the confidentiality of the victim and uses their valu-
able data for own malicious purpose. Apart from all these, acquires the popu-
larity in the hacker‘s community is also an ambitious reason for these attacks.

In current situations, all the malicious attackers which are affected by the
intruders, are send a large number of malicious packets directly to the victim
cloud servers. As a result whole network is flooded with attack messages instead
of legitimate packets. Thus, availability of cloud storage servers for the legitimate
users would be null, because Cloud storage server have been crashed out from
attack packets. It is also possible that attackers can manipulate the content of
the legitimate packets. This would damage the services of victim Cloud server.

Some examples of DDoS attacks are following. A massive DDoS attack [3,4]
occurred on website of yahoo.com at February 7, 2000. In this attack, even
though yahoo.com have much extensive computing and bandwidth resources
than any of the attackers, yet yahoo.com server collapse for 1.5 h. In 2008 [5],
BBC, eBay and Amazon.com are suffered from DDoS attack. In 2010, trans-
actions through PayPal.com are suspended by WikiLeaks website. In 2012 [5],
Sony, US, Canadian and UK government websites knocked down by anonymous.
In 2013 [8], Czech financial sector, stock exchange and national bank websites
are destructed by enormous DDoS attack.

Recent analysis observes a giant amount of financial losses due to DDoS
attack every year. According to the Computer Crime and Security Survey [6],
the Computer Security Institute (CSI) and Federal Bureau of Investigation (FBI)
survey [7], annual loss of financial corporations are increases day by day. A sur-
vey by Arber network [8] exposed the fact that approximately 1,200 DDoS
attacks occurred per day. It is also disclose this interesting fact that the scale of
DDoS attacks have been growing drastically since 2001. In year 2013, the largest
recorded DDoS attack against a single target reached 150 gigabits per second,
as against 40 gigabits per second in the year 2008 and 24 gigabits per second in
year 2007.

Key elements that motivated us for providing a solution to DDoS attacks
are revenue loss, slow network performance, service unavailability and loss of
customer trust in service providers. Thus, we require a powerful and efficient
technique to detect and prevent DDoS attack in cloud environment. For this
purpose, we need to find out which type of tools are required to implement this
attack and what are the weakness of these tools.

2 Proposed Scheme

We propose an effective approach to detect and prevent the victim cloud servers
from any type of attack. First, we take a workstation as a TPA for observation
of the all packets reached to cloud servers. It is an independent and trustworthy
entity which logs all legitimate as well as malicious packets on the behalf of
all cloud servers. We called this entity as “Cloud Shield”. Figure 1 shows the
architecture of proposed Cloud Shield.

Cloud Shield: Effective Solution for DDoS in Cloud 5

Fig. 1. Our proposed scheme

Cloud Shield is able to traceback the origin of the attack based on Dempster
Shafer Theory (DST) to analyze all packets. This DST analysis is depended on
3-valued logic.

2.1 Dempster Shafer Theory (DST)

DST [9] is powerful method for mathematical diagnostics, statistical inference,
decision analysis and risk analysis. For DST, probabilities are assigned on mutu-
ally exclusive elements of the power sets of state space (Ω) (all possible states). The
assignment procedure of probabilities is called basic probability assignment (bpa).

According to DST method [10] for a given state space (Ω) the probability
(called mass) is allocated for t set of all 2Ω elements, which are all possible
subsets of (Ω). The DST operations with 3-valued logic provides Fault Tree
Analysis (FTA) [11]. For example, if a standard state space (Ω) is (True, False),
then 2Ω should have 4 elements: Φ, True, False, (True, False). The (True, False)
element describes the imprecision component, which is introduced by DST. This
elements refers the value either true or false, but not both.

We have the following relation for DST as the [sum of all probabilities] = 1
and P(Φ) = 0:

P (True) + P (False) + P (True, False) = 1 (1)

Thus, for analyzing each VM corresponding to the victim, we use FTA, which
is perceived by boolean OR gate.If we choose set A = {a1, a2, a3 } as an input
set and B = {b1, b2, b3 } as output set. Then Table 1 describes the Boolean truth
table for the OR gate. From Table 1 we get:

P (A) = (a1, a2, a3) = {P (True), P (False), P (True, False)} (2)

P (B) = (b1, b2, b3) = {P (True), P (False), P (True, False)} (3)

P (A ∨ B) = {a1b1 + a1b2 + a1b3 + a2b1 + a3b1; a2b2; a2b3 + a3b2 + a3b3} (4)

6 R. Saxena and S. Dey

Table 1. Boolean truth table for the OR gate

b1 b2 b3

∨ T F (T, F)

a1 T T T T

a2 F T F (T, F)

a3 (T, F) (T, F) T (T, F)

Putting the value from Eq. (1) into Eq. (4)

P (A ∨ B) = {a1 + a2b1 + a3b1; a2b2; a2b3 + a3b2 + a3b3} (5)

In last, our solution uses Dempsters combination rule, which fuse evidences
from multiple independent sources using a conjunctive operation (AND) between
two bpa’s P1 and P2, called the joint P12

P12(A) =
∑

B∩C=A P (B)P (C)
1 − K

(6)

The factor 1 − K is called normalization factor and it is constructive for
entirely avoiding the conflict evidence, When A �= Φ ; P12(Φ) = 0 and K =∑

B∩C=Φ P (B)P (C).
Thus, by Eq. (6) we can easily analyze the DDoS flood attack from any

topology or any type of resources the attacker have.

2.2 Our Implementation

Cloud Shield is a private cloud which is configured with front end server and
three nodes (or VMs). The first step in our implementation involves deployment
of a private cloud using Cloudera CDH 5.3.0-0 [12]. The other three nodes are
selected and managed in “networking mode” of Citrix Xen Server 6.2.0 [13],
because it provides the advanced features of virtualization. The depiction of
Cloud Shield is given in Fig. 2.

We divide whole working of Cloud shield in three parts.

1. Detection Phase: This phase is handled by three nodes in which we assume
that snort based on DST is installed and configured. It detects the packet
floods and stores in the MySQL database. It also stores the attack alerts
gathered from VM based IDS.

2. Conversion Phase: In this phase, front server convert alerts into basic prob-
abilities assignments (bpas) based on the attack alerts. In our work, we utilizes
3-valued logic {True, False, (True, False)} in DST operations for successful
detection of TCP-flood, UDP-flood and ICMP-flood attacks. Thus, we analy-
sis of TCP, UDP and ICMP packets. Algorithm 1 provides conversion of alerts
received from VM’s into bpas.

Cloud Shield: Effective Solution for DDoS in Cloud 7

Table 2. Boolean truth table for Dempster’s combination rule

PV1(T) PV1(F) PV1(T, F)

PV2(T) PV1(T) PV2(T) PV1(F) PV2(T) PV1(T, F) PV2(T)

PV2(F) PV1(T) PV2(F) PV1(F) PV2(F) PV1(T, F) PV2(F)

PV2(T, F) PV1(T) PV2(T, F) PV1(F) PV2(T, F) PV1(T, F) PV2(T, F)

3. Attack Assessment Phase: This Phase is conducted inside the front-end
server and it resides in the Cloud Fusion Unit (CFU). It fuses the converted
bpa’s and based on normalized factor it assess the attack. Thus, it uses Demp-
sters combination rule for obtaining combined results of VMs for observing
the impact of DDoS flood attack. This is used for maximizing the DDoS true
positive rates and minimizing the false positive alarm rate. PV1,V2 is calculated
from the Eq. (6) and Truth Table presented on Table 2.

2.3 Service Model of Cloud Shield

We have identified the basic symptoms of a DoS or DDoS attacks. These symp-
toms are system speed gets reduced and programs run very slowly, large number
of connection requests from a large number of users and less number of available
resources.

We have also resolved the IP spoofing issue. In case of IP spoofing, an attacker
tries to spoof the users that the packets are coming from reliable sources. Thus,
the attacker takes control over the client’s data or system showing himself as the
trusted party. Spoofing attacks can be checked by using encryption techniques and
performing user authentication based on key exchange technique. Technique like
IPSec helps in mitigating the risks of spoofing. We have analyzed this and imple-
mented multi factor authentication, which reduces the possibility of IP spoofing.

Fig. 2. Cloud shield

8 R. Saxena and S. Dey

Algorithm 1. Conversion of Alerts into BPA’s
Input: Alerts received from VM’s .
Output: Probabilities.
{PUDP (T), PUDP (F), PUDP (T, F)}.
{PTCP (T), PTCP (F), PTCP (T, F)}.
{PICMP (T), PICMP (F), PICMP (T, F)}.

1: for each VM node do
2: Capture {UDP; TCP; ICMP } packets.
3: for each packet X ∈ {UDP; TCP; ICMP } do
4: Query the alerts from the database when a X attack occurs for the specified

VM node.
5: Query the total number of possible X alerts for each VM node.
6: Query the alerts from the database when X attack is unknown.
7: Calculate the Probability (True) for X, by dividing the result obtained at step

1 with the result obtained at step 2.
8: Calculate the Probability (True, False) for X, by dividing the result obtained

at step 3 with the result obtained at step 2.
9: Calculates probability (False) for X: 1- {Probability (True) + Probabil-

ity(True, False)}
10: end for
11: Calculate the probabilities for each VM by the FTA given in Fig. 3. Figure 3 only

shows the calculation of the probabilities (i.e. PV1(T),PV1(F),PV1(T, F)) for the
first VM node.

12: With the help of FTA the values of belief (Bel) and plausibility (PL) for each
VM is calculated as follows :

13: Bel(V1) = PV1(T)
14: PL(V1) = PV1(T)+ PV1(T, F))
15: This Calculation is done also for VM node V2 and V3.
16: end for

Ev1 O
R

x1

x2

x3

E1 OR

Pv1(T), Pv1(F), Pv1(T,F)

PICMP(T), PICMP(F), PICMP(T,F)

PUDP(T), PUDP(F), PUDP(T,F)

PTCP(T), PTCP(F), PTCP(T,F)

Fig. 3. Fault tree analysis for one VM

Our service model provides secure connection and convenient exposed Open
APIs to the user for accessing to the cloud service. We have consider cloud orches-
tration environments and Single Sign-On Token to provide seamless experience
to user. Furthermore, we provide possible technologies for cloud collaboration.
The details of each component of service model are shown in Fig. 4.

1. Client: Client can retrieve the resources with the help of web browser
enabled devices like PDA, laptop or mobile phone which require multi factor

Cloud Shield: Effective Solution for DDoS in Cloud 9

Fig. 4. Service model of cloud shield

authentication. Multi-factors authentication is done based on the certificate
issued by Cloud Shield.

2. Users: In this component, client which enables the multi factor authentica-
tion, is able to get X-509 certificate for the user interaction.

3. End-User Service Portal: When clearance is granted, a Single Sign-on
Access Token (SSAT) could be issued using certification of Client. Then the
access control component shares the user information related with the security
policy and verification. User could use services without limitation of service
providers.
– Service Configuration: The service enabler makes provision for Cloud

Shield service using user’s profile. This user’s profile is provided to the ser-
vice management in cloud service provider for the integration and interop-
eration of service provisioning requests from user. The Service Provisioning
Markup Language (SPML) can be used to share user’s profile. The asset
manager requests user’s personalized resources withuser’s profile SPML to
cloud service provider and configure service via VPN connection.

– Service Gateway, Service Broker: A service gateway manages network
resources and Virtual Private Network (VPN)on the information life-cycle
of service broker.

– Security Control: The security control component provides significant
protection for access control, security policy and key management against
security threats.

– VPN Manager: An automated service monitoring systems guarantees
the high level of service performance and availability.

4. Cloud Service Providers (CSP): This component is used to provide any
type of resource as a service for an users.

5. 3rd Party Certificate Authority: This component enables trust between
user and CSP to authenticate with each other and exchanges of service with
each other.

10 R. Saxena and S. Dey

3 Conclusions and Future Work

In this paper, we have proposed a collaborative approach for DDoS detection
and prevention based on third party auditors. This approach uses DST for DDoS
detection and prevention. Three valued logic value of DST makes it ideally suited
for cloud storage. Easy DDoS prevention in cloud environment is possible by
Cloud shield. We have discussed security service model of our approach and
their prevention criteria in the cloud environment. This helps to provide security
with much extent. We also addressed the issue of IP spoofing. Our approach
shows tremendous improvement from state-of the art work in the area of DDoS
detection and prevention in cloud environment.

This technique supports to prevent the different DDoS attacks with less over-
head. In future, we will able to include performance and security comparison of
this technique with other techniques.

References

1. Saxena, R., Dey, S.: Collaborative approach for data integrity verification in cloud
computing. In: Mart́ınez Pérez, G., Thampi, S.M., Ko, R., Shu, L. (eds.) SNDS
2014. CCIS, vol. 420, pp. 1–15. Springer, Heidelberg (2014)

2. Ruj, S., Saxena, R.: Securing cloud data. In: Cloud Computing with e-Science
Applications, pp. 41–72. CRC Press (2015). ISBN:978-1-4665-9115-8

3. Garber, L.: Denial-of-service attacks rip the Internet. IEEE Comput. 33(4), 12–17
(2000)

4. Yahoo on trail of site hackers (2000). http://www.wired.com/techbiz/media/news/
2000/02/34221

5. Powerful attack cripples Internet (2002). http://www.greenspun.com/bboard/
q-and-a-fetch-msg.tclmsgid=00A7G7

6. Australian computer emergency response team, Australian Computer Crime and
Security Survey (2004)

7. Gordon, L.A., Loeb, M.P., Lucyshyn, W., Richardson, R.: CSI/FBI Computer
crime and security survey (2005)

8. Arbor networks, Worldwide Infrastructure Security Report, vol - IV, October 2008
9. Siaterlis, C., Maglaris, B., Roris, P.: A novel approach for a distributed denial of

service detection engine. National Technical University of Athens, Athens (2003)
10. Siaterlis, C., Maglaris, B.: One step ahead to multisensor data fusion for DDoS

detection. J. Comput. Secur. 13(5), 779–806 (2005)
11. Guth, M.A.S.: A probabilistic foundation for vagueness and imprecision in fault-

tree analysis. IEEE Trans. Reliab. 40(5), 563–569 (1991)
12. Cloudera (2014). http://www.cloudera.com/content/cloudera/en/downloads.html
13. XenServer (2014). http://xenserver.org/open-source-virtualization-download.html

http://www.wired.com/techbiz/media/news/2000/02/34221
http://www.wired.com/techbiz/media/news/2000/02/34221
http://www.greenspun.com/bboard/q-and-a-fetch-msg.tclmsgid=00A7G7
http://www.greenspun.com/bboard/q-and-a-fetch-msg.tclmsgid=00A7G7
http://www.cloudera.com/content/cloudera/en/downloads.html
http://xenserver.org/open-source-virtualization-download.html

Towards Modelling-Based Self-adaptive Resource
Allocation in Multi-tiers Cloud Systems

Mehdi Sliem1(B), Nabila Salmi1,2, and Malika Ioualalen1

1 MOVEP Laboratory, USTHB, Algiers, Algeria
{msliem,nsalmi,mioualalen}@usthb.dz

2 LISTIC, Université de Savoie, Annecy le Vieux, France

Abstract. Achieving efficient resource allocation is one of the most chal-
lenging problems faced by cloud providers. These providers usually main-
tain hosted web applications within multiple tiers over the cloud, leading
to an overall increased complexity. To answer user requests, meet their
Service Level Agreements (SLA) and reduce the energy cost of the data
center, cloud systems are being enforced with self-adaptive features such
as self-scaling, to efficiently automate the resource allocation process.
However, the main concern is how to choose the best resource configura-
tion to reach these objectives of Quality of Service (QoS) with a minimal
amount of resources consumption. In this context, we target to use per-
formance modelling and analysis, to forecast the system performances
and deduce the most appropriate resource configuration to be applied
by the autonomic manager. As a first work to define a modelling based
resource allocation autonomic manager, we present, in this paper, the
modelling and analysis process, allowing to predict the efficiency of the
self-adaptive systems relating resource allocation in the context of multi-
tiers cloud systems. We used Stochastic Petri Nets modelling, enforced
with a reduction method to avoid a scalability issue. A set of experi-
ments illustrates our approach starting from modelling to performance
evaluation of the studied system.

Keywords: Cloud computing · Autonomic computing · Performance
modelling · Resource allocation · Petri net

1 Introduction

Today’s data centers are subject to an increasing demand for computing
resources, as they host complex, large-scale and heterogeneous distributed sys-
tems. This is also true in Cloud systems. Particularly for multi-tiers applica-
tions, resource management is critical, as sometimes, performance bottlenecks
may appear when insufficient resources are not available in one tier, leading to
a decrease of the overall profit. This growing complexity stresses the challenging
issue of appropriate resource management, especially when a cloud provider has
to maintain Service Level Agreements (SLA) with its clients. The main con-
cern to achieve efficient resource allocation is then to find the minimal amount
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 11–18, 2015.
DOI: 10.1007/978-3-319-23237-9 2

12 M. Sliem et al.

of resources that an application needs to meet the desired Quality of Service
without degrading system performances.

To face this challenge, decisions made by a provider with regard to the
deployment of a tier application in the cloud and resource allocation, can
be strengthened with a scale-up/down operation. Scaling up/down consists of
adding/removing resources to individual virtual machines. However, when the
application is implemented following a multi-tier architecture, this will directly
impact both the application performances and the providers operation cost. To
overcome these issues, the concept of autonomic computing [1] has been pro-
posed to dynamically build the adequate configuration on the monitored system.
Autonomic computing commonly describes computing systems that are able to
manage themselves. In the context of resources allocation, self-management usu-
ally provides two main properties: self-configuration to reconfigure the system
according to high-level goals and self-optimization to dynamically optimizes the
resource use.

However, a beforehand study of the self-adaptive resource allocation is
required, to correctly adjust the scaling parameters of the autonomic manager.
This helps to implements the system with more optimized performances. For this
purpose, it is interesting if decisions of the autonomic manager are made on the
basis of an “a priori” knowledge about predictive behaviour and performances
of the chosen resource sharing configuration. IN this context, formal methods
are strong tools for system performance prediction based on modelling. Math-
ematical models, such as Petri nets, are well suitable for modelling distributed
complex systems.

We aim, in our work, to contribute in developing modelling and analysis
approaches and tools that allows strengthening autonomic systems [8]. To reach
our goal, we introduced in [8] a case study for modelling resources allocation in
self-adaptive systems. In this paper, we extend the approach for a more detailed
modelling of the workload behaviour and computer additional performances
indices. We then, extended and dedicated our approach to autonomic multi-
tiers cloud systems, addressing resource self-scaling. Our approach is based on
a Stochastic Petri Nets (SPN) modelling, with the use of the GreatSPN tool [3]
for performance analysis of obtained models. The scalability of our approach is,
then, considered using a proposed Petri net reduction method.

The paper is organized as follows: Sect. 2 discusses related work. Then, Sect. 3
presents our case study. Our reduction method id then explained in Sects. 4
and 5 discusses some experimental results. Finally, Sect. 6 concludes the paper
and gives some future work.

2 Related Work

Modelling autonomic systems has gained many attention during the last decade,
investigating mainly solutions for the distributed resource allocation problem,
to satisfy client Service Level Agreements (SLAs). Among these proposals, some
authors used mathematical and performance modelling/optimisation approaches

Towards Modelling-Based Self-adaptive Resource Allocation 13

in the general context of autonomic computing, and optimized resource alloca-
tion algorithms for the special case of cloud systems.

Litoiu [7] used queuing networks instead of a single queue model. He inves-
tigates performance analysis techniques to be used by the autonomic manager.
The workload complexity was studied, and algorithms were proposed for comput-
ing performance metric bounds for distributed transactional systems. Workloads
are characterized by their intensity representing the total number of users in the
system, and their mixes which depict the users number in each service class.

In the field of cloud computing, an SLA-based resource allocation for multi-
tier applications was considered in [5]. An upper bound on the total profit was
provided and an algorithm based on force-directed search was proposed to solve
the problem. Processing, memory requirements and communication resources
were considered as three dimensions in which optimization is performed.

In [4] identifies open issues in autonomic resource provisioning and presents
innovative management techniques for supporting Software as a Service (SaaS)
applications hosted in Clouds. The authors present a conceptual architecture
and early results highlighting the benefits of Clouds autonomic management.

Most of the cited proposals are based on the use of formal modelling for an
autonomic online optimization [2,6,9,10], basing generally on queuing models,
or of optimization algorithms. Few work, however focused on the efficiency of
autonomic components to achieve adequate resources management. In this direc-
tion, we use, for our modelling, SPN rather than queueing models, to be able
to express most properties of nowadays complex systems. In addition, we model
the complete autonomic system behaviour including the resource management
and the self-adaptive component. This will allow to analyze the efficiency of the
autonomic manager and identify the best configuration to apply.

3 A Self-Adaptive Resource Allocation Cloud Platform

To illustrate our modelling and analysis approach, we present, in this section,
a typical example of a resource allocation cloud system strengthened with a
self-scaling property.

This system consists of an autonomic cloud server receiving user requests
and distributing a set of resources to these requests through a resource alloca-
tion process. Requests in our example, are served following a FIFO policy, so
conflicting requests are served according to their arrival order. As a first work,
we consider here only one service class for user requests. Studying several service
classes requires more investigated models, namely high level models. However,
the same modelling methodology can be used to predict performances, consid-
ering, in addition, specific colour classes.

The main managed element in this cloud autonomic system is the resource.
A resource may be any element used or invoked during the processing of a user
request: it may be a server, a processor cycle, a memory space, a virtualized
memory, a used device, a network bandwidth, and so on.

The received requests are put by the system in a queue for their processing.
The requests processing is carried out by first taking a request from the requests

14 M. Sliem et al.

queue, and allocating it the required amount of resources from the resources pool.
Each user request consumes, hence, resources for its operation. If the needed
number of resources isn’t available, the current requests are kept pending in the
requests queue, waiting for the release of the required amount of resources.

Fig. 1. Final model

Once the processing finished, the resource is available again, to be allocated
for other purposes. When the workload is high, a saturation state may be reached
quickly, making the system unable to process new request arrivals. We assume,
then, that the system uses an autonomic scaling up/down strategy, to increase
the system scalability, implemented in an autonomic manager.

Meanwhile, the self-adaptive manager adjusts the amount of available
resources for the processing of the queued requests. For this, the main sys-
tem and its environment are continuously monitored to analyze the workload
variation and the number of pending requests. When the number of available
resources is inappropriate in relation to the current demand (too low/ too high),
the self-adaptive subsystem switches the current configuration to a more suit-
able one. This process is carried out by adding/removing resources from the
resources pool. In addition, we want to plug a modelling analysis module into

Towards Modelling-Based Self-adaptive Resource Allocation 15

this self-adaptive manager, to choose the best suitable resource configuration.
This will allow to obtain a more trusted and optimized system with regard to
performances and resources consumption cost.

We build a model for each component of the platform, using stochastic Petri
nets. The obtained sub-models are combined to build a global model of the whole
system behaviour. Finally, on this global model are directed a set of experiments
for predicting performances of the configuration under study.

4 Analysis of a Multi-tiers Autonomic System Model

When dealing with several tiers, the obtained model becomes rapidly important
which make it difficult and even impossible to analysis. To overcome this issue,
we propose an analysis process based on a Petri net reduction principle:

Let S be the autonomic system under analysis, being composed of n tiers
Ti, i = 1..N . To analyze this system, we propose to perform this task gradually
in several steps. Each step studies a tier model, connected to “abstract views”
of other models, rather than connecting the complete tiers models. Let us, first,
define what is an “abstract view” of a tier.

4.1 Abstract View of a Tier

The abstract view of a tier is a macro representation or macro-view that aggre-
gates its behavior to a minimal equivalent Petri net keeping interactions with
other tiers.

Definition 1 (Abstract view of a tier). Let Mi be the SPN model of a tier
Ti. The abstract view A(Mi) of the tier Ti is composed of a timed transition
TierProcessing, modelling the activities of the tier, this transition summarizes
all the Petri net connected between the place Queue and transition Processing
in Fig. 1. This technique has as benefit to significantly reduce the state space of
the SPN.

To the transition is associated a firing rate inversely proportional to the
response time of the n requests marking the input place, that means:

θ(t,M) = 1 ÷ ResponseT ime(M)

4.2 Analysis Process

The analysis process proceeds as follows:

– First, we build the model of each tier Ti. We denote the obtained model Mi.
– We isolate the model MN of the last tier. A complete analysis of this model is,

then, performed to compute the mean response time of the tier under different
initial markings and transitions rates.

– We move to the analysis of the model MN−1 of the tier TN−1. To do that:

16 M. Sliem et al.

• We isolate the model MN−1 of the tier N −1, beginning from the Requests
place of the tier, as if it is the 1st tier.

• The analyzed tier’s model MN is replaced by its abstract view A(MN).
• The abstract model A(MN) is connected to the model MN−1, according to

the system specification.
This step gives a new aggregated model, denoted AGGRN−1 representing
the two tiers TN and TN−1. The analysis of this aggregated model will
result in a reduced number of states.

• We analyze the obtained model AGGRN−1, and compute the mean
response time of the tier TN−1 under different initial markings.

– We move to the analysis of the model MN−2 of the tier TN−2. The reduction is
applied again on the model AGGRN−1, reducing the two last tiers with a new
abstract model A(MN−1). We repeat the construction step of the aggregated
model of the tier TN−2, then the analysis step.

– The previous steps are repeated until all tiers are considered. The recursive
reduction of each analyzed part of the system ensures to keep a reasonable
state space of the obtained Petri net, regardless of the total number of tiers in
the system. The final aggregated model analysis (of AGGR1) gives then per-
formance and reliability metrics of the whole system, avoiding a combinatorial
explosion of the state space number.

This analysis technique ensures the scalability of our methodology, and guar-
antees faithful results with regard to the unreduced model. In the next section,
we illustrate our methodology with a set of experiments applied to an illustration
example, the targeted.

5 Illustration

We directed a set of experiments on the constructed model for a 2-tiers system.
The analysis of the obtained model was done using the GreatSPN package [3],
on an Ubuntu linux 12.4 LTS workstation with 4 GO of RAM. Perl scripting
was used to automate the tests with GreatSPN under different configurations,
by varying the workload intensity, the available resources number, the threshold
of self-adaptation launching and the amount of resources scaled.

Figure 2 shows the mean response time of requests processed by the sys-
tem, under the variation of param 1 and param 2. The threshold of monitored
requests and the amount of scaled resources represent the two main parame-
ters influencing the autonomic manager efficiency. The figure shows an inversely
logarithmic evolution of the response time, as the number of scaled resources
increases, while the obtained results are slightly more important for a lower
reconfiguration threshold. A stagnation is then noticed at the final part of the
graph where the response time remains slightly the same for the different thresh-
old values. This metric helps in identifying the configuration points where no
impact is induced on the system performances.

For the same parameters, Fig. 3 gives the amount of resources used by each
system configuration. This metric is a main value that should be optimized in

Towards Modelling-Based Self-adaptive Resource Allocation 17

Fig. 2. Mean response time varying the autonomic manager parameters

a resource allocation system, as a high number of active resources increases
the energy consumption and the system operation cost. First, a higher scaling
implies obviously more resources use; Although, from a certain threshold of
scaling, the consumption decrease and stagnate at a same point, this is due
to the improvement of performances that leads to less reconfigurations, which
implies less resources consumption. In the other hand, the consumption decrease
linearly according to the reconfiguration threshold increasing.

Fig. 3. Resources consumption varying the autonomic manager parameters

These experiments show that the use of our modelling approach helps in
identifying such well suitable adjustments, according to particular workloads
intensities and parameters adjustments. The computed metrics can then be used
to efficiently configure the targeted system to ensure an appropriate solution
between costs and quality of service.

6 Conclusion

Quality of service and energy management is one of the main issue of today’s
cloud applications, especially web applications usually designed following a
multi-tier architecture. In this direction, we presented, in this paper, a modelling

18 M. Sliem et al.

and analysis approach to be used in an autonomic manager, to find the best bal-
ance between performance and resources consumption.

This contribution helps designers in forecasting the most appropriate config-
uration (and parametrization) to apply on a system before its deployment. For
this purpose, we used SPN modelling along with a reduction method in order
to model the main components of such systems and predict performances and
ensure the system scalability.

To show how to reach the performance prediction goal, the obtained models
were analyzed. Experimental results highlighted how to identify the most suitable
parameters for the self-scaling component depending on the workload evolution.

Finally, our modelling approach requires us to develop appropriate tools
implementing the proposed performance modelling and analysis, to be done auto-
matically. This will allow to exploit concretely our modelling to build trustworthy
and reliable systems.

References

1. Autonomic Computing: Principles, Design and Implementation. Springer Interna-
tional Publishing (2013)

2. Amorettia, M., Zanichellib, F., Conte, G.: Efficient autonomic cloud computing
using online discrete event simulation. J. Parallel Distrib. Comput. 73(1), 4–13
(2013)

3. Baarir, S., Beccuti, M., Cerotti, D., Pierro, M.D., Donatelli, S., Franceschinis, G.:
The greatspn tool: Recent enhancements (2009)

4. Buyya, R., N.Calheiros, R., Li, X.: Autonomic cloud computing: Open challenges
and architectural elements (2012)

5. Goudarzi, H., Pedram, M.: Multi-dimensional sla-based resource allocation for
multi-tier cloud computing systems. In: IEEE 4th International Conference on
Cloud Computing (2011)

6. Hu, Y., Wong, J., Iszlai, G., Litoiu, M.: Resource provisioning for cloud computing.
Future Gener. Comput. Sys. 25(6), 599–616 (2012)

7. Litoiu, M.: A performance analysis method for autonomic computing systems.
ACM Trans. Auton. Adapt. Sys. 2(1), 3 (2007)

8. Sliem, M., Salmi, N., Ioualalen, M.: An approach for performance modelling and
analysis of multi-tiers autonomic systems. In: The 28th IEEE International Con-
ference on Advanced Information Networking and Applications (2014)

9. Tchanaa, A., Tranb, G.S., Brotob, L., DePalmaa, N., Hagimont, D.: Two levels
autonomic resource management in virtualized iaas. Future Gener. Comput. Sys.
29(6), 1319–1332 (2013)

10. Yuan, H., Bi, J., Li, B.H., Chai, X.: An approach to optimized resource alloca-
tion for cloud simulation platform. In: 14th International Conference on Systems
Simulation (2014)

Web2Compile-CoT: A Web IDE
for the Cloud of Things

Claudio M. de Farias1(B), Paulo G.S.M. Júnior1, Marina V. Pereira1,
Italo C. Brito3, Igor L. dos Santos1, Luci Pirmez1, Flávia C. Delicato1,

and Luiz F.R.C. Carmo1,2

1 Programa de Pós-Graduação em Informática, Universidade Federal
do Rio de Janeiro, Rio de Janeiro, RJ 21941-901, Brazil

claudiofarias@nce.ufrj.br,

{pgeovanejr,igorlsantos,luci.pirmez,fdelicato}@gmail.com,
marinavianna@poli.ufrj.br, lfrust@inmetro.gov.br

http://www.labnet.nce.ufrj.br/
2 Instituto Nacional de Metrologia, Normalização e Qualidade Industrial,

Duque de Caxias, RJ, Brazil
3 Colégio Pedro II, Rio de Janeiro, RJ 20921-440, Brazil

italo2v@gmail.com

Abstract. This paper presents Web2Compile-CoT, a WebIDE for
developing Cloud of Things (CoT) applications. The Web2Compile-CoT
was built grounded on the paradigms of integrated development environ-
ments, based on web technology, and cloud computing. So it provides
to the scientific community (students and researchers) an ubiquitous
development environment that does not demand any configuration or
download of applications to work properly, but requiring only updated
Internet browsers. Web2compile-CoT works with Contiki and TinyOS
sensor operating systems, and it is able to interact with IoT-lab, a sen-
sor testbed for CoT applications. We evaluated Web2Compile-CoT in
terms of System efficiency and effectiveness. With Web2Compile-CoT we
can reduce the average time for development of an application in class-
rooms from four hours to 30 min. In addition, due to IoT-lab integration,
Web2Compile-CoT supports classrooms with more than 50 students exe-
cuting experiments simultaneously.

Keywords: WebIDE · Testbeds · Wireless sensor networks · Internet
of things · Cloud of things

1 Introduction

In the current scenario of Information and Communication Technologies (ICT),
a growing number of increasingly powerful intelligent devices (e.g. smartphones,
sensors and home appliances) is joining the Internet. This trend significantly
impacts the amount of generated traffic with respect to, for instance, data shar-
ing, voice and multimedia, and foreshadows a world of connected intelligent
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 19–30, 2015.
DOI: 10.1007/978-3-319-23237-9 3

20 C.M. de Farias et al.

devices, or “things” under the perspective of the Cloud of Things (CoT) [1].
Among such intelligent devices in CoT, the wireless sensors stand out. Wireless
sensors are small sized, and enable the monitoring of physical and environmental
variables, such as temperature, humidity, noise and movement, of objects with
high degree of accuracy [2]. Such wireless sensors can be grouped into a Wireless
Sensor Network (WSN).

The development of educational WSN applications for the CoT environment
is a promising field, however there are still challenges in it to be addressed. We
can highlight, mainly: (i) the current high financial cost of wireless sensor hard-
ware and (ii) the complexity of the installation and maintenance of development
environments. For instance, the MEMSIC MICAz sensor platform [3] requires a
sensor network operating system for being programmed, such as TinyOS [4] or
Contiki [5]. For installation and configuration of the development environment of
such operating systems in a local user machine, a complex procedure is required,
demanding knowledge and time from the user to be performed.

The objective of this study is to provide an extension of a Web IDE [6] for
WSN known as Web2Compile [7]. This extension enables the development of
CoT applications, and is called Web2Compile-CoT. The Web2Compile-CoT is a
solution that accelerates the learning of CoT application development, since the
students do not need to perform complex procedures, neither upgrading their
personal or laboratory computers, for installing the development environment
required for learning.

The main contribution of Web2Compile-CoT is to enable any user to develop
applications for the CoT with a simple web interface that requires only an
updated Internet browser for properly working. The Web2Compile-CoT is
intended for users in several situations, such as: (i) users who do not have
the time or expertise to perform the installation or configuration of the CoT
development environment (for instance, students in a laboratory during a CoT
application development class), (ii) users which face restrictions on download-
ing, installing or running the CoT development environment in its local machine
(such as insufficient machine RAM, storage, bandwidth and processing speci-
fications, or security configurations that forbid the user to install programs in
its local machine), (iii) users who do not possess physical sensor devices, such
as MICAz sensors. The Web2Compile-CoT also offers integration with testbeds,
such as the Iot-lab [13], allowing users to deploy (over the cloud) their developed
CoT applications on real sensor nodes.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 presents the proposed tool (Web2Compile-CoT) and its software
architecture. Section 4 presents experiments and their results. Section 5 concludes
our work and shows future directions.

2 Related Work

Recently, several applications are being developed following the web 2.0 para-
digm, as it is the case of Web IDEs. Most of Web IDEs have the sole purpose
of facilitating the developer tasks, and among their most interesting features

Web2Compile-CoT: A Web IDE for the Cloud of Things 21

there are: (i) provision of an IDE aimed at the specific aspects of a given pro-
gramming language syntax; (ii) provision of an internal compiler for running
the developed programs online; (iii) provision of server authentication services
for users to store their programs for later use. Among the existing Web IDEs
we can highlight Arvue [8], WWWorkspace [9], eLuaproject [10] and eXo Cloud
IDE [12].

Arvue [8] allows the easy development and publication of applications, as
well as their web hosting as a service. The application programming is per-
formed in the web browser using a project interface (interface designer) and an
integrated code editor. The developed programs are stored in a version control
system provided by the own Arvue, and can also be published in the cloud.
Arvue was developed using Vaadin, an open source Java framework for build-
ing web applications. According to [8], the goal of Arvue is to present a useful
editor for a single task: creating and publishing small Vaadin applications for
iPhone. Unlike Arvue, our work does not have its main focus on providing a well
stablished development/programming interface. Our work focuses on generating
compiled programs for deployment on sensor hardware. In addition, it is impor-
tant to mention that Arvue is not directed to the development of WSN/CoT
applications.

The WWWorkspace [9] is based on a Java integrated web development envi-
ronment built on top of Eclipse IDE. It allows its users to upload their work space
and code from any personal computer with an available web browser. However
it is worth mentioning that, unlike other tools, for using WWWorkspace, the
user must download a program from the developer’s site, which contains all the
files needed to run the application, including a Jetty server, Eclipse plug-ins and
DOJO JavaScript library. In contrast, our proposal has a server acting directly
as a compiler of the developed programs, exempting the user from the need to
download plug-ins from the internet. Our work also differs from WWWorkspace
because it is related strictly to the development of applications for WSN/CoT.

The eLua Project [10] aims to introduce the Lua programming language to
the world of embedded software development. Lua is the perfect example of a
minimalist, but fully functional programming language. Although usually adver-
tised as a “scripting language” and used in accordance, especially in the gaming
industry, it is also fully capable of running independent programs. The small
resource requirements of Lua make it suitable for a large number of families
of microcontrollers. Like other Web IDEs, the eLua Project’s goal is to have a
fully functional development environment in the microcontroller itself, without
the need to install a set of specific tools, or performing environment configu-
rations. In contrast, our work is not directed to support the development of
embedded applications, it is directed only for supporting WSN/CoT application
development.

The eXo Cloud IDE [12] is a web-based development environment that
enables collaborative development of applications that can be deployed directly
into an Heroku Platform as a Service (PaaS) [11] environment. Heroku is a
web-based platform for supporting the languages Ruby, JavaScript (including
Node.js), and, more recently, Java (support is included for web applications).

22 C.M. de Farias et al.

The deployment directly within a PaaS environment allows rapid migration from
development to deployment. The eXo Cloud IDE also contains a real-time col-
laborative editor for use with up to five developers. The eXo Cloud does not
have the objective of supporting WSN/CoT application development.

In the context of testbeds, IoT-lab [13] offers several tools to deploy, over the
internet, compiled WSN/CoT applications on a large-scale WSN infrastructure
mounted over several French universities. These applications can be installed on
different types of sensor hardware and can be developed for most common WSN
operating systems, including Contiki. Unlike Web2Compile-CoT, the IoT-lab
does not provide tools for editing, creating and compiling application code.

The predecessor of Web2Compile-CoT, Web2Compile [7] is a Web IDE for
developing WSN applications that allowed users to develop code online using
the TinyOS operating system [4]. Unlike Web2Compile-CoT, the Web2Compile
did not offer integration with any testbed and did not allow the development of
code using the Contiki WSN operating system.

Apart from all the presented works (except for Web2Compile),
Web2Compile-CoT is focused in the WSN development, presenting tools for
network development and simulation. A difference between Web2Compile and
Web@Compile-CoT is the use of testbeds. Integrating Web2Compile to testbeds
allowed the developers using Web2Compile-CoT to deploy code to real nodes
and test it instead of using only simulations.

3 Web2Compile-CoT

Web2Compile-CoT is a Web IDE focused on the development of applications
for WSN/CoT. Following a client-server and web-based architecture [14], the
architecture of Web2Compile-CoT consists of client computers and a web server.

In the web server an operating system for WSN is hosted, and the respec-
tive WSN development environment is configured and ready to run simulations
and compilations. The user will have the option of developing applications on
the client machine or through the system web page. When opting for the devel-
opment on the client machine, the user can choose to upload the application
development files, as needed.

3.1 Architecture

Regarding to the logical architecture, Web2Compile-CoT is composed of two
components (Execution Manager and Interface Manager), two subsystems
(Compile Manager and Testbed Manager) and two databases (Platform data-
base and Testbed database) as presented in Fig. 1.

The Execution Manager manages the operation of the other components and
subsystems and coordinates all the actions performed in the WebIDE. So, it is
responsible for performing several tasks. It receives the data sent by the Inter-
face Manager and sends these data to the Compile Manager or the Testbed
Manager, based on data received from the user. If the user desires to simulate or

Web2Compile-CoT: A Web IDE for the Cloud of Things 23

Fig. 1. Web2Compile-CoT Architecture

to generate a sensor image, the Execution Manager queries the Platform Data-
base, which contains all platform parameters, such as their identifiers, commands
to be performed and the output to be delivered. Then it delivers this data to
the Compile Manager subsystem. Otherwise, the Execution Manager queries
the Testbed database about the testbed details (such as device types, platforms
supported) to deploy the code in the testbed. The Execution Manager is also
responsible for collecting the output from the Compile Manager and The Testbed
Manager subsystems and send it to theInterface Manager.

The Interface Manager controls the main web page and receives all requests
made from this page. It receives the information regarding the type of action
to be performed by the platform (simulate, generate a sensor image or deploy-
ing to a testbed), the sensor code and the platform type. After gathering this
information, it sends them to the Execution Manager. This component is also
responsible for receiving data from the Execution Manager and present it to the
user. The Web2Compile interface is shown in Fig. 2.

The Compile Manager subsystem is responsible for the compiling process,
based on sensor platform. The Execution Manager forwards the code and com-
piling details (such as platform, simulator) to the Compile Manager that will
compile and generate the sensor images. Then there are two possible actions for
this subsystem: (i) deliver the generated sensor image or (ii) simulate based on
the code received.

The Testbed Manager subsystem manages the connection with external test-
beds such as IoT-Lab. This subsystem is responsible for deploying the code in
the testbeds and receiving the testbed outputs and send them to The Execution
Manager.

The Platform database stores the sensor platform details, such as commands
to compile the code, tools to be used to compile, such as NesC [15] used in
TinyOS, and WSAN simulators to be used, such as TOSSIM [15] and Cooja [5].

The Testbed database stores the information regarding the testbeds, such
as procedures for connecting and deploying the sensor images in the testbeds.
Logging procedures and passwords are also stored in this database.

24 C.M. de Farias et al.

Fig. 2. Web2Compile-CoT interface

All subsystems and components were designed with a modular architecture.
Such design approach allows changing, for instance, the Compile Manager by just
replacing its internal components and databases, provided that the predefined
communication APIs are respected. It also allows changing testbeds by just
replacing the Testbed Manager subsystem as well as the Testbed database.

3.2 Web2Compile-CoT Operation

The client devices have the main function of uploading the code to the dedicated
web server. In this first part of the process, as can be seen in Fig. 3, the client can
choose among three options after performing the compilation of his application:
(i) simulation only; (ii) deployment of the compiled code or (iii) load and run
the compiled application on the IoT-lab environment.

After all the files (required to compilation) are uploaded to the compiler
located on the web server, and after the required sensor images (compilations) are
generated, the application will be ready to be deployed on the sensor hardware,
and then it can run.

The operation sequence of Web2Compile-CoT is given as follows: from the
web page loaded in his browser, the user can perform the selection of the code
files according to the options provided by the Web2Compile-CoT.

When the user opts for simulation, the necessary files should be selected and
subsequently, they must be uploaded to the compiler hosted on the server. At
compile time, if all the selected files are correctly implemented (no compilation
errors detected), there will be success in the compilation. In addition, these files
should be available for download, later, by the web page itself, using a download
indicator button. On the other hand, if there is no success in the compilation,
the user is requested to review the implementation and correct the errors found
by the compiler. After this, the user performs again the selection and upload of
files to be compiled.

Web2Compile-CoT: A Web IDE for the Cloud of Things 25

Fig. 3. Web2Compile-CoT operation

When the user opts for the deployment, the files required for the compila-
tion and deployment should also be uploaded. In this case, the selected files
will undergo the same process in the case of simulation. However, in this case,
with the successful compilation, the image files will be generated (build). These
generated files may be downloaded for the client computer, as well as the simu-
lation. They may also be sent to the IoT-Lab for testing on real platforms. The
only difference in this case is that the image generated from the compilation
can be deployed on the sensor, given the correct hardware configuration on the
computer.

4 Experiments

We conducted an evaluation to determine if the proposed WebIDE meets our
stated objective presented in Sect. 1, and also to assess the benefits of using our
WebIDE when compared to traditional methods to build WSN/CoT applica-
tions. The first set of experiments was performed for assessing our tool regard-
ing its scalability. In other words, if the webIDE would still be usable if the
number of simultaneous applications increased. The second set of experiments
aimed at assessing if the tool is capable of helping students to perform devel-
opment tasks in classroom. The second set of experiments divided the students
of our university laboratory (Labnet [17]) into two groups: (i) a group using
the Web2Compile-CoT and (ii) a group using a native installed TinyOS devel-
opment environment. The students that participated in the experiments had
intermediate knowledge of nesC programming for TinyOS.

This section is organized as follows: Sect. 4.1 presents the metrics used
to evaluate the tool. Section 4.2 details the technologies used to implement
Web2Compile-CoT. Section 4.3 describes the scalability tests. Finally, Sect. 4.4
describes the effectiveness tests.

26 C.M. de Farias et al.

4.1 Metrics

The following metrics were used in our experiments: (i) Number of simultane-
ous connections, i.e. the number of hits received by the server simultaneously
to perform a process (simulation or compilation); (ii) Average time, i.e. the
average time it takes to perform the requests of a number “X” of simultaneous
connections; (iii) memory consumed, i.e. the amount of RAM allocated for the
execution of “X” simultaneous connections, (iv) processing rate, i.e. the percent-
age of processing time provided by the CPU to execute one or more concurrent
processes and (v) average development time, i.e. the time used by a student to
develop an application.

4.2 Implementation

For the development of Web2Compile-CoT system we opted for the Python
programming language and the web framework Bottle (bottlepy.org). The tests
were performed from a server with Intel i5-2500 k processor, quad-core 3.3 Ghz
and 8 GB of RAM.

In the currently developed prototype, the Web2Compile-CoT supports appli-
cations developed in nesC programming language [15] for the TinyOS operating
system [4] and Contiki [5] operating system. To edit code within the platform,
we used the ACE tool [16].

For performing the simulations of WSN/CoT applications, we used TOSSIM
[15] and Cooja [5] simulators, two discrete event simulation tools developed,
respectively, for the simulation of TinyOS and Contiki applications.

4.3 Scalability Experiments

The scalability experiments were performed in order to verify that the
Web2compile-CoT maintained its performance, given an increased amount of
simultaneous connections. We varied the number of simultaneous connections
on values 1, 3, 5, 7 and 10, and each computer is connected to the server via
a switch. For each variation, we performed the following experiments: (i) using
only simulation on the Web2Compile-CoT server and (ii) deploying the code on
the IoT-lab testbed. We have used the Blink Application, a simple application
that blinks a led on a sensor as our default application.

We can see in Fig. 4 the results of the experiments to measure average exe-
cution time of simultaneous applications. In Fig. 4, we can observe that when
the applications are being executed in the server, the average execution time
increases linearly. Overall, the running times with 3, 5, 7 and 10 simultaneous
connections had on average a rise of 0.5 s in relation to the first experiment. With
this, one can observe that even with a number of simultaneous connections rising,
the completion time of the simulation had no significant variation.

When the applications are being executed in the testbed (IoT-lab), the aver-
age execution time increases since the code must be uploaded to the server and
after that to IoT-lab. The server will then compile the code and generate the

Web2Compile-CoT: A Web IDE for the Cloud of Things 27

Fig. 4. Average execution time

sensor’s image. This image will be uploaded to the testbed. In the testbed, the
application will be executed and the result returned to Web2Compile-CoT. All
this process increases the execution delay.

Regarding the percentage of CPU utilization over the same number of simul-
taneous connections, it was observed that CPU usage has increased linearly, as
expected, according to the increase in simultaneous connections. It is notewor-
thy that all the threads were created on the same processor core, so the high
utilization rate of the processor would be reduced when refactoring the tool to
use parallel programming.

As a result, it was found that with only one connection, the processing rate
reached 40 % of the capacity of a core and due to the elevation of simultaneous
connections, up to 10 connections, the processing rate was 100 %, as can be seen
in Fig. 5.

When we use the testbed, the amount o CPU utilization is much lower since
all the processing goes into the testbed. We therefore conclude that using a test-
bed increases the possible number of simultaneous connections to be performed.
Combining the results of this experiment and the previous one, we can conclude
that for classrooms with more than 50 students it is better to use the testbed.
Although the average execution time increases using the testbed, more students
can execute experiments simultaneously.

Regarding memory consumption, it can be seen that with a single connection
only, the RAM consumption reached 10 Mb for running the simulation, both in
TOSSIM and Cooja. As the number of applications increases, the RAM con-
sumption increased almost linearly, as expected. The amount of RAM consumed
in 10 simultaneous executions reached 165 Mb. The same situation happened
both using the testbed and without using it.

28 C.M. de Farias et al.

Fig. 5. Processing rate

4.4 Effectiveness Tests

The average development time was assessed through a set of experiments using
as subjects 6 students from our laboratory (Labnet [17]). The subjects were
assigned the task of developing a set of WSN applications. The subjects were
divided into two teams: the first one used Web2Compile-CoT and the second a
traditional WSN programming approach. Both teams had the same experience
level in programming for TinyOS. The experiment started with the explana-
tion of the applications for both teams. Each team developed four applications:
the first four lessons of the official TinyOS tutorial [18]. All applications had
the same complexity level regarding the sensing task, but different complex-
ity regarding the specific processing algorithms. The experiment results (Fig. 6)
show that the first team successfully completed the development of all appli-
cations in much shorter time than the second team. Therefore, the experiment
demonstrates the significant reduction in the programming effort achieved with
our tool. When compared to manual programming of WSN application, our
approach offers advantages since it handles various specific features of WSNs,
unburdening the student of: (i) learning low-level details about sensor platforms,
(ii) avoiding the need to learn each one of the libraries available for the tar-
get platforms and (iii) debugging problems in the development environment
installation.

As we can observe, the average time for development of an application using
the traditional approach has four hours while the mean time using our approach
was two hours and 30 min, demonstrating a significant reduction in classroom
time using Web2Compile-CoT.

Web2Compile-CoT: A Web IDE for the Cloud of Things 29

Fig. 6. Effectiveness result

5 Conclusion

This paper presented a proposal for fostering the development of WSN/CoT
applications, aiming to encourage new developers and enthusiasts. In
Web2Compile-CoT, it is strictly unnecessary to download and install any soft-
ware regarding the development environment. Also, no complex environment
configurations of WSN operating systems are demanded. It is also worth men-
tioning that our proposal avoids the need for performing the compilation of the
code in local IDEs.

Regarding future work, we encourage the study of the following subjects: (i)
implement the Remote Flashing, allowing the images (compiled programs) to
be loaded on a sensor hardware connected to a USB port of a personal com-
puter through the browser; (ii) integrate other tools provided by IoT-lab in
Web2Compile-CoT, as well as other testbeds, and perform more scalability tests,
and (iii) create an app for using Web2Compile-CoT, and publish it in Google’s
web store.

References

1. Aazam, M., et al.: Cloud of things: integrating internet of things and computing
and the issues involved. In: International Bhurban Conference on Applied Sciences
and Technology (IBCAST), pp. 414–419. IEEE (2014)

2. Culler, D., et al.: Guest editors’ introduction: overview of sensor networks. IEEE
Comput. 37(8), 414–419 (2004)

3. Su, W., Alzaghal, M.: Channel propagation measurement and simulation of micaz
mote. W. Trans. Comp. 7(4), 259–264 (2008)

30 C.M. de Farias et al.

4. Hill, J., et al.: System architecture directions for networked sensors. ACM SIGOPS
Operating Syst. Rev. 34, 93–104 (2000)

5. The contiki operating system. http://www.contiki-os.org/. Accessed in 24 June
2015

6. Murugesan, S.: Understanding web 2.0. IT Prof. 9(4), 34–41 (2007)
7. Santos, A., et al.: Web2Compile: uma web IDE para Redes de sensores sem fio. In:

Simpósio Brasileiro de Redes de Computadores e Sistema Distribúıdos (SBRC),
pp. 1037–1044. SBC, Porto Alegre (2014)

8. Aho, T., et al.: Designing IDE as a service. Commun. Cloud Softw. 1, 1–10 (2011)
9. Ryan, W.: Web-based java integrated development environment. BEng thesis,

University of Edinburgh (2007)
10. eLua. http://www.eluaproject.net/. Accessed in 24 June 2015
11. Beimborn, D., et al.: Platform as a service (PaaS). Bus. Inf. Syst. Eng. 3(6), 381–

384 (2011)
12. Cloud IDE. http://cloud-ide.com/. Accessed in 24 June 2015
13. Papadopoulos, G., et al.: Adding value to WSN simulation using the IoT-LAB

experimental platform. In: 9th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), pp. 485–490. IEEE (2013)

14. Chen, P., Teng, W.: Collaborative client-server architectures in the web-based view-
ing scheme. In: 11th International World Wide Web Conference, p. 5 (2002)

15. David, G., et al.: Nesc 1.1 language reference manual. Technical report (2003).
http://nescc.sourceforge.net/papers/nesc-ref.pdf

16. Ace: The High Performance Code Editor for the Web. http://ace.c9.io/. Accessed
in 24 June 2015

17. Labnet. http://www.labnet.nce.ufrj.br/. Accessed in June 24 2015
18. TinyOS Tutorials. http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS

Tutorials/. Accessed in 24 June 2015

http://www.contiki-os.org/
http://www.eluaproject.net/
http://cloud-ide.com/
http://nescc.sourceforge.net/papers/nesc-ref.pdf
http://ace.c9.io/
http://www.labnet.nce.ufrj.br/
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Tutorials/
http://tinyos.stanford.edu/tinyos-wiki/index.php/TinyOS_Tutorials/

Fuzzy Logic Based Energy Aware VM
Consolidation

Mohammad Alaul Haque Monil(&) and Rashedur M. Rahman

Electrical and Computer Engineering Department, North South University,
Dhaka, Bangladesh

monil01@gmail.com, rashedur.rahman@northsouth.edu

Abstract. Global need of computing is growing day by day and as a result
cloud based services are getting more prominent for its pay-as-you-go modality.
However, cloud based datacenters consume considerable amount of energy
which draws negative attention. To sustain the growth of cloud computing,
energy consumption is now a major concern for cloud based datacenters. To
overcome this problem, cloud computing algorithm should be efficient enough to
keep energy consumption low and at the same time provide desired QoS. Virtual
machine consolidation is one such technique to ensure energy-QoS balance. In
this research, we explored Fuzzy logic and heuristic based virtual machine
consolidation approach to achieve energy-QoS balance. Fuzzy VM selection
method has been proposed to select VM from an overloaded host. Additionally,
we incorporated migration control in Fuzzy VM selection method. We have used
CloudSim toolkit to simulate our experiment and evaluate the performance of the
proposed algorithm on real-world work load traces of PlanetLab VMs. Simula-
tion results demonstrate that the proposed method provides best performance in
all performance metrics while consuming least energy.

1 Introduction

Cloud computing services are getting more popular for its scalability, reliability and
pay-as-you-go model. Techno-giants have already started providing cloud services and
IT companies are now moving from traditional CAPEX model (buy the dedicated
hardware and depreciate it over a period of time) to the OPEX model (use a shared
cloud infrastructure and pay as one uses it). To cope up with the ever increasing need of
computing, cloud service providing companies are now using warehouse sized data-
centers to meet user demand which incurs considerable amount of energy. At the
beginning of this cloud computing era, cloud service providers were focused mainly on
catering the computing demand that leads to expansion of cloud infrastructures; hence
energy consumption. For these reasons, energy consumption by data centers worldwide
has risen by 56 % from 2005 to 2010, and in 2010 is accounted to be between 1.1 %
and 1.5 % of the total electricity use. Moreover, carbon dioxide emissions of the ICT
industry are currently estimated to be 2 % of the global emissions which is equivalent
to the emissions of the aviation industry [4].

VM Consolidation is one of the techniques which draws researchers’ attention and
is an active field of research in recent time. VM consolidation method makes the

© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 31–38, 2015.
DOI: 10.1007/978-3-319-23237-9_4

underutilized servers shut-down by increasing the utilization of active datacenters. As
we know that inactive datacenter or datacenter in sleep mode causes minimal energy
and in this way energy consumption can be reduced considerably. However, to achieve
this outcome, we need to consolidate different VM in one server and migrate VMs from
datacenter to datacenter which may lead to SLA violation. So, algorithms must be
designed in such a way that not only reduces power consumption but also serves
desired QoS (such as SLA).

2 Related Works

VM consolidation algorithm needs to be designed in such a way that there will be
minimum energy consumption, minimum violation of SLA, efficient VM migration and
minimum number active hosts in a given time. Considerable number of researches has
been conducted for VM consolidation using various methods based on heuristics.

In [1, 2, 4], Beloglazov et al. proposed heuristic based approach to deduce
thresholds thorough different statistical measures. VM Consolidation problem is divi-
ded into sub-problems and algorithms for each sub-problem had been designed. The
sub-problems are: (i) Under load detection, (ii) Overload detection, (iii) VM selection
and, (iv) VM placement. Heuristic based algorithms are designed for each
sub-problems and designed in such a way that they can adapt and keep their threshold
changing based on different scenario in different time so that they can still provide the
functionality and consolidation decision in changed environment. This adaption pro-
cess allows the system to be dynamic. These algorithms were implemented in
CloudSim developed by Clouds lab in the University of Melbourne. References [5, 6]
describe CloudSim which provides various functionalities of a cloud environment and
facilitates cloud simulation. References [1, 2, 4] have also used CloudSim for simu-
lation. The main components of CloudSim are datacenter, Virtual Machine (VM) and
cloudlet. Cloudlet can be real data from real cloud. The simulator creates datacenter,
Virtual Machine and cloudlet on the run based on the defined parameters. When the
simulation starts, virtual machines are placed in the datacenter for processing. Sub
problems (i–iv) are already developed in CloudSim. To develop further, one needs to
create new class to develop new methods and test it. In [7, 8] we worked with basic
VM selection algorithm and introduced migration control in the built in CloudSim VM
selection methods. Farahnakian et al. [9] used the ant colony system to deduce a
near-optimal VM placement solution based on the specified objective function. In [3]
VM consolidation with migration control is introduced. Here VMs with steady usage
are not migrated and not steady VMs are migrated to ensure better performance, the
migrations are triggered and done by heuristic approaches. Main advantages of heu-
ristics are that a static and acceptable performance could be achieved with very less
amount of errors. Sheng et al. [11] designed a prediction method based on Bayes model
to predict the mean load over a long-term time interval and also the mean load in
consecutive future time intervals. Prevost et al. [10] introduced a framework combining
load demand prediction and stochastic state transition models. They used neural net-
work and autoregressive linear prediction algorithms to forecast loads in cloud data
center applications.

32 M.A.H. Monil and R.M. Rahman

3 Proposed Method

In this work we have designed Fuzzy VM Selection with migration control algorithm
and VM placement and underload detection are adjusted. However, before going in
detail, CloudSim overview of VM consolidation is introduced. The algorithm below
portrays the basic VM consolidation approach designed in CloudSim.

Algorithm 1 provides a basic flow of VM consolidation in CloudSim. At first the hosts
are created, then the real cloud data is taken as input. Based on the real data, VMs and
cloudlets are created. Then VMs are assigned to hosts and cloudlets are assigned to VMs.
Based on dynamic consolidation technique, status is checked for every scheduled interval.
For every scheduled interval, underload detection algorithm is executed and less utilized
hosts are put into sleeping mode by transferring all VM to other active VMs. Then
overload detection is executed, and overloaded hosts are identified. At later steps, VM is
selected from the overloaded hosts to migrate. Then those VMs are placed in available
hosts or if needed hosts are switched on from sleeping mode. After each iteration, a log is
kept to calculate energy consumption and QoS. At the end of the simulation energy
consumption and QoS is shown. In the next section our proposed methods are discussed.

3.1 Fuzzy VM Selection with Migration Control

Fuzzy technique is an attractive approach to handle uncertain, imprecise, or un-modeled
data in solving control and intelligent decision-making problems. Different VM selec-
tion methods offer different advantages. Therefore, if we want to generate a method
which will have the benefits of all selection methods, then we can combine them
together and based on the merit of the metric a fuzzy output value will be generated and
our objective will be fulfilled. A set of rules of inference can be devised to generate
result. So, fuzzy logic is an ideal tool for this work. It will consider all the options and
depending on those options a fuzzy value will be generated based on the predetermined
rules of inference. To develop the fuzzy VM selection method, we have selected three
distinguished methods as metric and each of them offers some advantages over others
and different researches have already proven them. The following subsections will be

Fuzzy Logic Based Energy Aware VM Consolidation 33

focusing on the metrics we will be using as inputs to our fuzzy systems, member ship
functions generated, inference rules and algorithms for computation.

(1) Minimum migration Time: Minimum Migration time policy selects the VM
which can be migrated within minimum time limit [2, 4]. The migration time is limited
by the memory the VM is using and the bandwidth and migration control is applied. At
any moment t, the MMT with Migration Control policy finds VM x that will be selected
for migration by the following formula:

x 2 Vhj8y 2 Vh;
RAM xð Þ
NETh

� RAM yð Þ
NETh

ð1Þ

This policy gives us the lowest SLA from all the VM selection models. So this will
be considered as one input of the fuzzy system.

(2) Correlation: This method works based on the idea that the higher the correlation
between the resource usage by applications running on an oversubscribed server, the
higher the probability of server being overloaded [4]. Basically this instructs that higher
correlation of CPU usage of one VM with other VM should be migrated. Migration
control is applied with maximum correlation method to identify the migratable VM.

Let there are n numbers of VMs and X1, X2…Xn is the CPU usage of n VMs which
are under consideration for migration. Let Y be the VM for which we want to determine
the maximum correlation with ith VM. The augmented matrix for the rest is denoted by
X and the (n-1)x1 vectored of Y is expressed by y.

X ¼
1 x1;1 x1;n�1

: : : : :
: : : : :
1 xn�1;1 xn�1;n�1

2
664

3
775 y ¼

y1
:
:
yn

2
64

3
75 ð2Þ

A vector of predicted value is denoted by ŷ.

by ¼ Xbb ¼ ðXTXÞ�1XTy ð3Þ

Having found the predicted value the correlation coefficient is:

R2
Y ;X1;...Xn�1

¼
Pn

i¼1 yi � my
� �2 byi � mby

� �2

Pn
i¼1 yi � my

� �2Pn
i¼1 byi � mby

� �2 ð4Þ

This is how correlation can be calculated.
(3) Migration control metric for steady resource consuming VM: It has been proven

that migration control provides better result in energy aware VM consolidation.
Besides, this approach saves the unwanted traffic load [3]. Migration control can be
done in various ways. We can stop migrating the high CPU using VMs or we can
restrict steady resource consuming VM from migration. In this work we will take
steady resource consumption as a non migration factor because when a VM consumes

34 M.A.H. Monil and R.M. Rahman

almost constant resource, it means it will be the least possible VM to make this host
overloaded. We have used standard deviation as a calculation of migration control.

Let, there are two VMs x and y in host h and Vh be the set of VMs. CPUu(xt) is the
CPU utilization of time t, which is current time. CPUu(xt-1), CPUu(xt-2) ….. CPUu(xt-n)
are the CPU utilization of up to previous n number time frames when overload
detection algorithm was activated. So migration control parameter can be given by 5.
Here CPUaverage means average CPU utilization for last n cycles.

stdev ¼
ffi
1
n

Xn
1

CPUi � CPUaverage
� �2s

ð5Þ

(4) Fuzzy Membership function: A FIS (Fuzzy Inference System) is developed to
provide fuzzy VM selection decision using three metrics we discussed above as input.
Member ship function needs to be defined to develop the FIS. We are using total 4
linguistic variables including VM selection as output. We have used trapezoidal
membership function. Range of these membership functions is chosen from the sim-
ulation from Real cloud data of PlanetLab. In order to do so, we have run the simu-
lation and collected data of all these variables and proportioned to decide the range.
Membership functions of the linguistic variables are given below:

• RAM: T(RAM) = {Low, Medium, High}
• Correlation: T(Correlation) = {Low, Medium, High}
• Standard Deviation: T(Stdev) = {Low, Medium, High}
• VM selection: T(Vmselection) = {Low, Medium, High, Very High}

(5) Fuzzy Inference Rule: Fuzzy inference rules are generated from the given
linguistic variables. We have given equal weight on the variables to influence the VM
selection value. If RAM is low it gets high priority as it makes the migration faster. If
correlation is high then it gets high priority in migration as the higher the correlation is,
the higher the probability of host being overloaded. Finally, if standard deviation is
high then it will get priority in migration compared to its steady state counterparts.

(6) Fuzzy VM selection with migration control: Combination of Fuzzy VM selection
method and migration control is given in 6 & 7. These equations indicate that a VM will
be nominated for migration if it produces lower CPU usage value than the migration
control threshold and posses highest fuzzy value among the lower migration control value
group. If all VMs of an overloaded host produce more CPU usage value than the
migration control threshold, then the highest fuzzy output producing VM will be migrated.
Migration control is calculated by CPU usage of last n cycle. The equations are as follows:

x 2 Vhj8y 2 Vh; Fuzzy Output xð Þ�Fuzzy Output yð Þ

Only if;

CPUu xtð Þ þ CPUu xt�1ð Þ þ CPUu xt�2ð Þ þ . . .CPUu xt�nð Þ½ �
nþ 1ð Þ \CPUthresold ð6Þ

Fuzzy Logic Based Energy Aware VM Consolidation 35

If for every VM vm,

CPUu vmtð Þ þ CPUu vmxt�1ð Þ þ . . .þ CPUu vmt�nð Þ½ �
nþ 1ð Þ �CPUthresold

Then;

x 2 Vhj8y 2 Vh; Fuzzy Output xð Þ�Fuzzy Output yð Þ ð7Þ

4 Experimental Result

We have implemented our algorithms in CloudSim 3.0.3 to evaluate the performance
of our proposed method. We have considered 800 heterogeneous physical nodes, half
of which are HP ProLiant G4 and the rest are HP ProLiant G5 servers. Energy con-
sumption is calculated based on the HP ProLiant G4 and HP ProLiant G5. CPU usage
and power consumption are calculated based on the data provided in Table 1. These
servers are assigned with 1860 MIPS (Million Instructions Per Second) and 2660 MIPS
for each core of G4 and G5 servers. Network bandwidth is considered as 1 GB/s. The
VMs which were created were single core. VM were assigned 4 types. High-CPU
Medium Instance (2500 MIPS, 0.85 GB); Extra Large Instance (2000 MIPS, 3.75 GB);
Small Instance (1000 MIPS, 1.7 GB); and Micro Instance (500 MIPS, 613 MB) [4].
We have used real world work load data provided as part of CoMon project, a mon-
itoring infrastructure for PlanetLab. This data are collected from more than thousand
VMS of from server located more than 500 different locations. These real world traces
contain VM utilization files every 5 min. Data of 10 days of 2011 has been used in this
experiment. Based on two metrics the performance of the proposed method is
compared.

(1) Energy Consumption (kWh): Energy consumption is computed taking into
account all hosts throughout the simulation time and by mapping CPU and energy
consumption from the Table 1.

(2) SLAV: Service level agreement violation, SLAV, comes from the product of
overload time fraction (OTF) and performance degradation due to migration
(PDM), i.e. SLAV = OTF*PDM.

Table 1. Power Consumption for different level of utilization

Machine Type Power consumption based on CPU
utilization
0 % 20 % 40 % 60 % 80 % 100 %

HP G4 (Watt) 86 92.6 99 106 112 117
HP G5 (Watt) 93.7 101 110 121 129 135

36 M.A.H. Monil and R.M. Rahman

In CloudSim, there are five built in Overload detection algorithms (IQR, LR, LRR,
MAD and THR) and three built in VM selection (MC, MMT, RS) methods. So in
combination there are 15 methods (IQR_MC, IQR_MMT, IQR_RS, LR_MC,
LR_MMT, LR_RS, LRR_MC, LRR_MMT, LRR_RS, MAD_MC, MAD_MMT,
MAD_RS, THR_MC, THR_MMT, THR_RS) which will be compared to our proposed
MSMD_FS method based on aforementioned performance metrics. Based on the result
for 10 days Fig. 1 Box graphs have been prepared to compare the results. Metric wise
result is given below:

(1) Energy Consumption: Basic target of this research is to design a VM consol-
idation algorithm so that the energy consumption is reduced. By comparing the pro-
posed and existing methods in the first graph of Fig. 1, it is found that energy
consumption is significantly reduced in Proposed (MMSD_FS) method. Minimum
energy consumption by proposed method is 102 Kwh where the minimum of all other
methods is 112 Kwh, 8.5 % reduction. If we consider average value, MMSD_FS
consumed 136.5 Kwh and all other method consumed 169 Kwh on average resulting
19 % energy saving. So by this we can infer that the basic objective of this research is
achieved by saving energy consumption.

(2) SLA Violation (SLAV): SLA violation is one of the key indicators of QoS. SLA
violation is calculated by keeping two scenarios into consideration, (1) if any VM got
overloaded, and (2) the SLA violation incurred while migration. With a method having
low SLA violation indicates ensuring users the desired QoS. From Fig. 1, it is clearly
visible that SLA violation is considerably decreased. Minimum SLAV by proposed
method is 0.0004 % whereas the minimum of all other method is 0.00279 %, resulting
84 % reduction. If we consider average value, MMSD_FS incurred 0.0005 % SLAV
and all other methods incurred 0.00617 % on an average, resulting 91 % reduction in
SLA violation.

From the performance metrics it can be inferred that the proposed method out-
performs all other methods.

Fig. 1. Energy and SLAV is shown in these box graphs. MMSD_FS is the fuzzy VM selection
method, which is the first one in the both chart and rest are the built in algorithms of CloudSim.

Fuzzy Logic Based Energy Aware VM Consolidation 37

5 Conclusion

In this paper we have devised algorithm for fuzzy VM selection method and introduced
migration control in the selection method. Fuzzy VM selection methods take intelligent
decision to select a VM to be migrated from one host to other. After simulation and
making comparison against existing methods, it has been found that the proposed
method outperformed other previous methods in both perspectives, i.e., more energy
saving and less SLA violation. Therefore, it can be inferred that the objective,
energy-SLA trade off has been achieved in this work in an efficient manner. As a future
work we have plan to improve the default VM placement and underload detection
algorithm built in CloudSim to achieve more energy saving and less SLA violation.

References

1. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for
efficient management of data centers for Cloud computing. Future Gener. Comput. Syst.
(FGCS) 28(5), 755–768 (2011)

2. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics
for energy and performance efficient dynamic consolidation of virtual machines in Cloud
data centers. Concurrency Comput. Pract. Experience (CCPE) 24(13), 1397–1420 (2012)

3. Ferreto, T.C., Netto, M.A.S., Calheiros, R.N., De Rose, C.A.F.: Server consolidation with
migration control for virtualized data centers. Future Gener. Comput. Syst. 27(8), 1027–
1034 (2011)

4. Beloglazov, A.: PhD Thesis: Energy-Efficient Management of Virtual Machines in Data
Centers for Cloud Computing (2013). http://beloglazov.info/thesis.pdf

5. Calheiros, R.N., Ranjan, R., Beloglazov, A., Rose, C.A.F.D., Buyya, R.: CloudSim: a toolkit
for modeling and simulation of Cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

6. CloudSim link. http://code.google.com/p/CloudSim/
7. Monil, M.A.H., Qasim, R., Rahman, R.M.: Incorporating migration control in VM selection

strategies to enhance performance. IJWA 6, 135–151 (2014)
8. Monil, M.A.H., Qasim, R., Rahman, R.M.: Energy-aware VM consolidation approach using

combination of heuristics and migration control. In: ICDIM 2014, pp. 74–79 (2014)
9. Farahnakian, F., Ashraf, A., Liljeberg, P., Pahikkala, T., Plosila, J., Porres, I., Tenhunen, H.:

Energy-aware dynamic VM consolidation in cloud data centers using ant colony system. In:
2014 IEEE 7th International Conference on Cloud Computing (CLOUD), pp. 104–111
(2014)

10. Prevost, J., Nagothu, K., Kelley, B., Jamshidi, M.: Prediction of cloud data center networks
loads using stochastic and neural models. In: Proceedings of the IEEE System of Systems
Engineering (SoSE) Conference, pp. 276–281, 27-30 2011

11. Di, S., Kondo, D., Cirne, W.: Host load prediction in a Google compute cloud with a
Bayesian model. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), Salt Lake City, UT, 10–16 November
2012

38 M.A.H. Monil and R.M. Rahman

http://beloglazov.info/thesis.pdf
http://code.google.com/p/CloudSim/

Autonomic and Cognitive Architectures
for the Internet of Things

Claudio Savaglio(B) and Giancarlo Fortino

DIMES, Università della Calabria, Via P. Bucci, cubo 41C,
87036 Rende (CS), Italy

csavaglio@dimes.unical.it, g.fortino@unical.it

Abstract. Internet of Things promises to be an innovative scenario in
which the user experience will be enriched by new cyber-physical ser-
vices and content, shared by multiple actors (things, places, people)
with an higher frequency and quality of the current ones. The countless
challenges and opportunities that the development of such an ecosys-
tem entails require a marked intervention on the current Internet archi-
tectural frameworks and models, primarily as regards the management
function. Pointing in this direction, the most relevant autonomic and
cognitive architectures for the Internet of Things have been surveyed
and compared.

Keywords: Internet of things · Autonomic computing · Cognitive com-
puting · Management architectures

1 Introduction

The advent of Internet and subsequently of the Web represented the greatest
technological revolution of the last decades. The next disruptive technology is
expected to be provided by the full realization of a visionary scenario, defined in
1990 as the “Internet of Things” (IoT) [1]. In this vision men and machines will
achieve an unprecedented level of interaction and integration in cyber-physical
systems. Billions of networked devices, including conventional computers, smart
objects, wireless sensors, actuators and RFID-based devices, will be scattered in
the physical world and will be seamlessly cooperating in cyberspace. The transi-
tion from the current Internet toward a global cyber-physical network where the
machines will be orders of magnitude more numerous than individuals is already
in place. To cope with heterogeneous and complex cyber-physical systems, more
advanced network architectures need to be devised and developed, especially
in relation to the orchestration and the management functionalities, which are
deeply different from the traditional ones adopted in the Internet.

The purpose of this work is to review the current trends in IoT management
architectures, inspecting the underlying motivations and framing the current
state-of-the-art of the most relevant autonomic and cognitive architectures.

c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 39–47, 2015.
DOI: 10.1007/978-3-319-23237-9 5

40 C. Savaglio and G. Fortino

The rest of the paper is structured as follows. Section 2 provides an
overview of the main concepts of Autonomic Computing and Cognitive Net-
works. Section 3 presents a survey of the main IoT Architectures that implement
the autonomic/cognitive concepts, which are then compared in Sect. 4. Finally,
Sect. 5 provides some conclusions.

2 Current Trends

The growth of the Internet and successively of the Web has brought innovation
in almost any domain, ranging from economics to sociology and politics, from
education and entertainment to the labor market. The transition from an acad-
emic network toward a world-wide commercial platform imposed to strengthen
the original narrow waist model with several ad-hoc patches, seamlessly added,
for security, mobility, multimedia, determinism, timing abstraction, quality of
service, etc. These critical issues, so far individually addressed with tailor-made
solutions, recur together and are magnified within the IoT scenario. In fact, the
IoT is a loosely coupled, decentralized, dynamic system in which billions (even
trillions) of everyday objects are endowed with smartness, in order to increase
their own capacities, seamlessly communicate and cooperate despite their physi-
cal/functional heterogeneity. Such kind of entities, defined Smart Objects (SOs),
represent the IoT building blocks [2] and they play a crucial role, becoming active
participants in business, logistics, information and social processes. In order to
face such an increasing complexity, viable solutions have been identified in those
inspired by biological organisms, which represent the highest form of complex
systems. In particular, recent research trends have laid in the spotlights two
different but complementary paradigms, the autonomic computing and the cog-
nitive network.

2.1 Autonomic Computing

Natural self-governing systems are defined “autonomic”when the definition of
policies and rules are sufficient to guide the self-management process. For
example, the human autonomic nervous system is able to free our consciousness
from managing major and minor, inter-connected and complex, vital functions.
In computer science, the attribute autonomic refers to computing systems that
can manage themselves according to high-level objectives initially defined by the
administrator [3]. From an architectural point of view, instead, autonomic sys-
tems may be considered as interactive collections of autonomic elements, each of
which performs its objectives and interactions following their own policies and
the system ones. Since autonomic elements have complex life-cycles, it is required
that they expose autonomy, proactivity, and goal-directed interactivity with the
environment: these are precisely the agent-oriented [4] architectural concepts.
The depth analysis of history and of features of the Autonomic Computing falls
outside the scope of the article; anyway, the four main aspects that characterize
autonomic systems or elements are:

Autonomic and Cognitive Architectures for the Internet of Things 41

– self-configuration, which enables system and its components to automati-
cally and seamlessly configure themselves following high-level policies, despite
vendors’ specifics, technological heterogeneity and low-level details;

– self-optimization, which guides system to continually seek opportunities for
improving performance, without human intervention of tuning;

– self-protection, which automates system defense and prevents from system
failures due to malicious attacks;

– self-healing, which consists in the automatic detection, diagnosis and repairing
of system defections, both hardware and software.

The term “self-*” hence refers to a cognitive system or element which exposes
all such features. In a complex scenario such as IoT, the design of systems that
prescind from a constant human monitoring and the adoption of techniques
that automatize the management of the nodes is more than ever necessary. For
these reasons, the autonomic computing principles have inspired the design of
numerous architectures and frameworks, as discussed in Sect. 3.

2.2 Cognitive Networks

Cognitive Networks [5] have been originally considered a self-* kind of systems
since they autonomously make use of the information gained from the experience
of each node to improve the overall network and user performance. In details,
each node is involved in a loop, defined cognition loop, which oversees

– the perception of the current network conditions,
– the planning of actions according to both input and policies,
– the decision between the available solutions,
– the actuation of the plan and
– the learning from the consequence of the actions.

Context-awareness and self-awareness are essential requirements to realize
the cognition loop, since it is required that every node should have knowledge
about itself, its functionalities and its interfaces to the outside. Just like the auto-
nomic systems, cognitive networks have been conceived to cope with the increas-
ing network complexity but relying as little as possible on human intervention.
Hence, in analogy with the autonomic system’s architecture, cognitive networks
aggregate cognitive agents, which are entities with reasoning capabilities that
are able to cooperate, to act selfishly or to do both. Since the need of cognition
is spread among the system components and layers, and it is not only limited
to the management one, the cognitive networks have given rise to an indepen-
dent line of research, which often exploits the Multi-Agent Systems (MAS) [4]
as enabling paradigm. Examples of IoT cognitive frameworks are discussed in
Sect. 3.

3 Autonomic and Cognitive IoT Architectures

The growing complexity of the IoT scenario and of its composing devices empha-
sizes the need of autonomic and cognitive approaches for the system design,

42 C. Savaglio and G. Fortino

especially for the management aspects, as argued in the previous Section. This
perspective is often confirmed in the literature: agents are widely used as enabling
cognitive technology and paradigm, while the IBM autonomic model represents
the cornerstone for a significant research direction. However, at the best of our
knowledge, there are few fully-realized architectures in which such principles find
a concrete implementation. Among these, interesting contributions can be found
in Cascadas, Focale, Inox, and I-Core.

Cascadas [6] (Component-ware for Autonomic Situation-aware Communica-
tions, and Dynamically Adaptable Services) proposes a general purpose toolkit
in which the autonomic element (AE) model stands out: Cascadas AE is con-
ceived around the biological notion of organ. Its key principles refer to situation
awareness, semantic self organization, scalability and modularity, and are feder-
ated in a sound framework with the aim of providing adaptive, composite and
situated communication intensive services. Each Cascadas AE is mainly struc-
tured in 5 parts: (i) a specific part, which contains plans, desires, achievable goals
that are specific of each AE; (ii) a self-model, which represents the AE lifecycle
as an automa and semantically defines the possible states and their associated
transitions; every AE is aware of its own and of the other AEs’ self-models, so it
acts at the best of its possibilities and knowledge; (iii) a reasoning engine, which
elaborates the external stimulus, interacts with the self-model and organizes
appropriate reactions; (iv) a facilitator, which on the basis of the indications
coming from the reasoning engine notifies context changes to the self-model; (v)
a message handler, which exploits a shared communication interface and a con-
ventional passing messages mechanism in order to link the AE with the other
framework components. Accomplishing the aforementioned high-level reference
model allows the generation of a fully interoperable and reactive AE, which is
able to overcome data heterogeneity through a plugin-based formats conversion.

Focale [7] (Foundation, Observation, Comparison, Action, and Learning Envi-
ronment) is an autonomic network-oriented architecture which seamlessly man-
ages and integrates heterogeneous and distributed computing resources. One of
the features that immediately characterize Focale is the presence of three levels of
non-static control loops (namely, an inner loop, an adaptation loop and an outer
loop), which allows the cohabitation of multiple policy languages and data for-
mats, context awareness and uniform but dynamic orchestration functionalities.
Managed resources, ranging from simple network element to complex systems, are
represented as Autonomic Computing Elements (ACEs) and are connected by an
enterprise service bus (ESB) that supports simple as well as semantic queries and
communication interfaces. Within every ACEs, one could recognize the following
components: (i) an Observe component, which combine information/data mod-
els and ontologies to translate vendor-specific data in a neutral form, solving the
issue regarding the heterogeneity of programming models and data representa-
tion (ii) a Compare element, which determines the current state of the ACE and
proactively dispose appropriate actions within the adaptive control loops until
a desired state is reached (iii) a Context-aware/Policy Server component, which
controls that ACEs actions follow the business goals and the established objects
(iv) a Learning and Reasoning engine, exploiting ontologies, machine learning and

Autonomic and Cognitive Architectures for the Internet of Things 43

a dynamic knowledge base to analyze the input data and plan the future actions,
without the awareness of the other ACEs internal models.

Inox [8] is a strongly IoT-oriented platform, that poses in the spotlight the
combination of interconnected smart objects, sensor networks, services becom-
ing from networks of traditional computer unconventional devices. Concepts
as autonomic managements, entity virtualization and federation, extended con-
nectivity, scalability and adaptability are crucial, as results analyzing the Inox
multi-layered architectures, structured as follows: (i) the hardware layer, which
contains the physical entities like sensors, intelligent and dumb things, smart
objects and servers, together with the devices that provide network inter-
connectivity through IP-based protocols, enhanced M2M mechanisms, ZigBee,
6LoWPAN, CoAP, etc. (ii) the platform layer, which cope the communication
heterogeneity through common protocols and resource access API and cope the
technological heterogeneity exploiting objects, networking and computational
resources virtualization techniques; autonomic devices management and service
orchestration functionalities are embedded at this level, aiming at a better inter-
operability, scalability, monitoring and discovery (iii) the service layer, containing
the services themselves and the related API needed to access the other systems
elements. A such structured architecture allows Inox to evolve from a conven-
tional centralized and fixed computing/networking model towards a dynamic
architecture, more suitable for the highly complex IoT context.

I-Core [9] is a cognitive management framework for the IoT which addresses
the heterogeneity of objects and the need for resilience in very large scenarios.
Most of the I-Core concepts have been implemented following the indications
provided by the IoT-A (Internet of Thing- Architecture) [10], that is an organic
collection of architectures, reference models and guidelines which provides a
number of means (models, views, perspectives, best practices, etc.) that can be
used to derive a concrete IoT architecture. The I-Core building blocks refer to
four main concepts: virtualization, composition, cognition and proximity. Virtu-
alization is the process that links every real world object (RWO) with a digital
always-on alter ego, called virtual object (VO). VOs reflect RWOs status and
capabilities, and can be dynamically created, destroyed or changed. Moreover,
VOs can be aggregated in more sophisticated entities, called composite virtual
objects (CVOs), that are cognitive mashup of semantically interoperable VOs
(and their offered services) aiming at rendering services in accordance with both
the application and user requirements. VOs and CVOs represent the corner-
stone for the first two levels of the I-Core architecture, the VO Level and the
CVO Level. At the third and last level, the Service one, mechanisms related
to User Characterization, Situation Awareness (situation detection, recognition,
classification) and Intent Recognition support the Service Request Analysis, pro-
viding the input parameters for the composition processes of CVO Level. Cogni-
tion spreads in all the three aforementioned architectural levels, under different
forms (optimization techniques, learning mechanism, ontology, etc.). In detail,
at VO Level cognition needs for VOs self-management and self-configuration in
order to handle data flows, to optimize resources, to monitor relevant RWOs. At
CVO Level, cognition needs for meeting the application requirements and the

44 C. Savaglio and G. Fortino

VOs/CVOs capabilities, choosing between VOs/CVOs candidates, recognizing
already faced scenarios (pattern recognition and machine learning techniques)
and reuse or adapt already built solutions. Finally, at Service Level cognition
is used as semantic reasoning in order to capture the application requirements,
translate them into appropriate request service format and so guide the selection
process at the lower levels. The proximity concept instead expresses the level of
relatedness/usefulness between any IoT user/application and any object in order
to achieve more and more automation and scalability in the cognitive selection
of VOs/CVOs. Recently, I-Core has been integrated with another IoT platform,
BUTLER [11], with the objective of increasing the interconnectivity between
heterogeneous SOs and encouraging the creation of dynamic and on-demand
IoT applications.

Table 1. Comparison of architectures

MC Features Cascadas Focale Inox I-Core

MC1 Clean Slate or

Evolutionary

Approach

Clean Slate Evolutionary Evolutionary Evolutionary

General Purpose or

Network Oriented

General

Purpose

Network

Oriented

General

Purpose

General Purpose

Management of Future

Objects

yes yes yes yes

MC2 Data Abstraction

Techniques

plug-in model-based

translation

shared

interfaces

XML and RDF

Business/Policy

Management

yes yes yes yes

Entity Virtualization no no at Platform

layer

VOs and CVOs

MC3 Context Awareness yes yes yes yes

Dynamic KB yes yes no yes

Control Loops adaptative multi-adaptative adaptative adaptative

Ontology and Semantic yes yes no yes

State Machine Mode published unpublished no no

Self-X Properties* SO, SA, SP,

SH, SC

SA, SG SM, SH, SO,

SP, SA,

SC

SH, SP, SO, ST

Adaptability reactive proactive reactive reactive

MC4 System Programming

Model

Agent-based Component-

based

Component-

based

Agent-based

Communication

Paradigm

message

passing

ECB bus IP-based message passing,

publish-

subscribe

API Support no no yes yes

*SA=Self-Adaptation, SC=Self-Configuration, SG=Self-Governance, SH=Self-Healing,

SM=Self-Monitoring, SO= Self-Organization, SP=Self-Protection, ST=Self-Optimization

4 Comparison

In the previous Section four architectures have briefly been described, which
share common features and differ in others. In order to compare them, the

Autonomic and Cognitive Architectures for the Internet of Things 45

following set of macro criteria (MC) has been established, drawing inspiration
from comparisons criteria shown in other works [12–14].

– MC1-Architectural Approach: this criterion deals with the high level architec-
tural choices. In particular, each architecture may have a general purpose or
may be network oriented, on the basis of the goals (services lifetime or specific
tasks) and the composing elements (e.g. sensors, smart/dumb things, etc., or
traditional network devices) that are involved. The design may follow a clean
slate or an evolutionary approach: in the first case, conventional design choices
are strongly reviewed or totally dropped in place of new and innovative ideas;
in the latter, the current models and practices are maintained but updated
with new technological trends. Finally, frameworks may be naturally prone to
support element evolution, such as the rapid prototyping of SOs and services
make hard to foresee what to expect.

– MC2-Abstraction Level: abstraction expedients are required in order to embed
within the frameworks devices and services with heterogeneous hardware and
software features, such as model, data formalism, etc. Moreover, also real
world objects need to be integrated and cooperate in the context of the cyber-
physical services. In this direction, virtualization techniques become crucial to
provide technology independence and to support entities federation. At lower
level, instead, common formalisms and shared standards need to be defined
to abstract the heterogeneous data.

– MC3-Management Features: in order to achieve a fully realized IoT scenario,
the management function should be as much as possible distributed among the
single components as well as close to the autonomic and cognitive principles.
In order to reach these goals it is common to use ontologies, knowledge bases,
semantic matchers, static or adaptive control loops and other components.
These expedients, together with policies and context awareness techniques,
aim at minimizing the human operator interventions, making the system ele-
ments autonomic and proactive.

– MC4-Implementative Features: this criterion considers the paradigms and the
strategy adopted in order to make the frameworks work. In fact, the pro-
gramming model, the communication mechanisms, the presence of API sup-
port represent a non exhaustive but useful set of elements to compare the
aforementioned architectures.

On the basis of these four MCs, Cascadas, Focale, Inox, I-Core have been
compared as shown in Table 1. Two main considerations arise. First, I-Core can
be considered the most complete and ready-to-use framework and probably the
most suitable for a “cooperating smart-object based”IoT vision [15]. In fact,
the virtualization and composition processes allow the creation of an open plug-
and-play environment, while the cognitive management makes the framework
sound under user, business and technological perspectives. Moreover, the adop-
tion of well-known paradigms (software agents, message passing) and technolo-
gies (XML, RDF, conventional security mechanisms) should help and encourage
the developers. The second consideration that arises from the analysis of Table 1
is that also Cascadas provides a satisfying set of features but it is not clear how

46 C. Savaglio and G. Fortino

much its clean slate approach, whereas unique and very interesting, may slow
the development phase.

5 Conclusions

The dividing line between cyber and physical worlds is becoming more and
more blurred and in a few years the Internet may be deeply different from the
current one. Following the principles of autonomic computing and cognitive net-
works, some of the most interesting IoT architectures with a holistic approach to
the management function, have been surveyed and compared. These computing
paradigms can help to minimize the human intervention and to overcome tech-
nological and protocol heterogeneity. Moreover, they may enable an evolution
from the current status of isolated “Intranet of Things” toward a fully integrated
Internet of Things.

References

1. Mattern, F., Floerkemeier, C.: From the internet of computers to the internet of
things. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) Buchmann Festschrift. LNCS,
vol. 6462, pp. 242–259. Springer, Heidelberg (2010)

2. Kortuem, G., Kawsar, F., Fitton, D., Sundramoorthy, V.: Smart objects as building
blocks for the internet of things. IEEE Internet Comput. 14(1), 44–51 (2010)

3. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

4. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented
software engineering. Auton. Agent. Multi-Agent Syst. 9(3), 253–283 (2004)

5. Fortuna, C., Mohorcic, M.: Trends in the development of communication networks:
Cognitive networks. Comput. Netw. 53(9), 1354–1376 (2009)

6. Manzalini, A., Zambonelli, F.: Towards autonomic and situation-aware communi-
cation services: the cascadas vision. In: IEEE Workshop on Distributed Intelligent
Systems: Collective Intelligence and Its Applications, pp. 383–388. IEEE (2006)

7. Strassner, J., Agoulmine, N., Lehtihet, E.: Focale: A novel autonomic networking
architecture (2006)

8. Clayman, S., Galis, A.: Inox: A managed service platform for inter-connected smart
objects. In: Proceedings of the Workshop on IoT and Service Platforms, p. 2. ACM
(2011)

9. Vlacheas, P., Giaffreda, R., Stavroulaki, V., Kelaidonis, D., Foteinos, V., Poulios,
G., Demestichas, P., Somov, A., Biswas, A.R., Moessner, K.: Enabling smart cities
through a cognitive management framework for the internet of things. IEEE Com-
mun. Mag. 51(6), 102–111 (2013)

10. IoT-A (2014). http://www.iot-a.eu/public/public-documents
11. Butler: I-core integration demo (2014). http://www.iot-week.eu
12. Tsagkaris, K., Nguengang, G., Galani, A.:Grida Ben Yahia, I., Ghader, M., Kaloxy-

los, A., Gruber, M., Kousaridas, A., Bouet, M., Georgoulas, S., et al.: A survey
of autonomic networking architectures: towards a unified management framework.
Int. J. Netw. Manag. 23(6), 402–423 (2013)

http://www.iot-a.eu/public/public-documents
http://www.iot-week.eu

Autonomic and Cognitive Architectures for the Internet of Things 47

13. Strassner, J., Kim, S.-S., Hong, J.W.-K.: The design of an autonomic communica-
tion element to manage future internet services. In: Hong, C.S., Tonouchi, T., Ma,
Y., Chao, C.-S. (eds.) APNOMS 2009. LNCS, vol. 5787, pp. 122–132. Springer,
Heidelberg (2009)

14. Fortino, G., Guerrieri, A., Russo, W., Savaglio, C.: Middlewares for smart objects
and smart environments: Overview and comparison. In: Internet of Things Based
on Smart Objects, pp. 1–27. Springer International Publishing (2014)

15. Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented smart objects development.
In: IEEE 16th International Conference on Computer Supported Cooperative Work
in Design, CSCWD 2012, 23–25 May, 2012, Wuhan, China, pp. 907–912 (2012)

Sensor Networks

Sensor Web Enablement Applied
to an Earthquake Early Warning System

Ana María Zambrano(&), Israel Pérez, Carlos E. Palau,
and Manuel Esteve

Universitat Politècnica de València, Valencia, Spain
anzamvi@posgrado.upv.es, cpalau@dcom.upv.es

Abstract. Earthquake early warning systems are of high interest due to their
consequences and life losses they may cause. Sensor Web Enablement
(SWE) and their related standards allow interoperability of sensors from different
vendors and detect earthquakes in advance. For the proposed system we propose
the use of the Sensor Observation Service and smartphones as gateways to
transmit information from their embedded sensors like the accelerometer. The
paper includes an architecture to integrate and process this information, with the
possibility of incorporate other sensors out of the smartphones, like seismographs
and the generated date in the SOS harmonization platform. The system has been
tested in an emulated environment in order to train it and eliminate false posi-
tives, improving early warning existing systems of this nature.

Keywords: Sensor Web Enablement � Sensor Observation Service � Distrib-
uted system � Real time � Early warning system � Wireless sensor networks

1 Introduction

Wireless sensor networks, social networks and distributed systems are becoming the
most important ingredients for the new computing era, the Internet of Things (IoT). IoT
allows digital interconnection of everyday objects with the Internet, including those
electronic ones as home appliances or cars which may be controlled by developed
applications over a Smartphone (SP) or tablet, or any personal device, e.g. [1]. By
2017, there will be 8,6 billion handheld or personal mobile devices and there will be
nearly 1,4 mobile devices per capita, which means over 10 billion mobile-connected
devices including M2 M modules that will exceed the world’s population at that time
(7,6 billion) [2]. So, these multi-sensor and multi-network electronic devices have
become a fundamental part of the bridge to the knowledge of the physical world,
reaching any kind of (measurable) information, anytime, and anywhere.

While it is true that the quality of MEMS sensors, as well as of the ones embedded
into SPs, is lower than specific sensors in their respective areas of work: take an
accelerograph in seismology, or a magnetometer in navigation as an example, it is also
important to take two important considerations into account. First, SP manufacturers
are continuously expanding Hw and Sw features of SPs, making their measurements
more reliable and accurate and, second, through data collection from a large number of
SPs, known as mobile crowd-sensing (MCS), it is possible to obtain a huge low-cost,

© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 51–62, 2015.
DOI: 10.1007/978-3-319-23237-9_6

overlay networks that use individual sensing SPs capabilities where the average weight
of the community (given a sufficient number of individuals) can be computed with a
high degree of accuracy, e.g. [3]. Nowadays, community resources such as SPs are
taken as an advantage in opportunistic-sensing applications [4] attempting to resolve
global current problems in different areas like telecommunication, entertainment,
seismology and more. And it is in one of these fields, that our research focuses. This
research presents a real time and economic solution to a natural hazard: the earth-
quakes. The earth’s movements should be regularly monitored: by means of an online
service is possible to know all about a zone and their hazard just in seconds. And still
more, with affordable sensors it is absolutely possible to monitor a whole area, learn
their physical characteristics, and most importantly, detect seismic movements to raise
early warnings in order to provide extra time for making better decisions. This is one of
the key contributions of this work. However, the SP market is full of highly hetero-
geneous devices with different characteristics Hw and Sw. And if there were not a
process of unification, this would lead to restriction of sensors, decreasing the number
of devices on the network, and therefore creating less accuracy. The Open Geospatial
Consortium (OGC) [5] solves this problem by defining the Sensor Web Enablement
(SWE) framework [6] and specifically to its Sensor Observation Service (SOS) com-
ponent, which defines a unified communication standard for sensors and sensor ser-
vices achieving a higher level of compatibility. And it means lower costs and better
quality sensor communications because we are using an only protocol instead of
several proprietary ones, which involve serious problems in interoperability [7]. Much
of this project focuses on coupling the type of communication to the system require-
ments: Standardization sensor data, quick access to data, real time communication, and
immediate notifications. We use a paradigm of distributed systems SWE.

Seismic activity is increasing, and consequently the risk that these also attract; so
much so that in April 2014 there was a world record number of large earthquakes (greater
than 6,5) [8]. There are places more exposed to this type of natural disaster such as the
countries which make up the “Pacific Ring of Fire”, where at least 80 % of all earth-
quakes are produced [9]. Take the case of Ecuador, a country in which the validation of
this proposed architecture is based, where only in 2013 it registered 2.420 seismic events
(6 earthquakes per day) and around 10 % exceeded of them a magnitude of 4.

The rest of the paper is organized as follows: The previous and related works in the
area with their respective contribution can be found in Sect. 2. Section 3 contains the
proposed architecture structure and its justification. While in Sect. 4 the evaluation and
results are cited, in the Sect. 5, the conclusions of our research are presented. Future
work is also referred to in this section.

2 Motivation and Related Work

The use of SPs in the field of Earthquake Early Warning Systems (EEWS) is booming:
[10] is a project that detects seismic events using MEMS accelerometers where, if the
acceleration exceeds a threshold value, the information is transmitted to a server and
presumes the intensity and the hypocenter. References [11, 12] are projects that use
static devices composed of a fixed accelerometer and a personal computer providing

52 A.M. Zambrano et al.

good accuracy by means of P and S waves [13] as peak detection mechanism.
Reference [14] is a system that uses SPs to measure the acceleration and then deter-
mines the arrival of an earthquake. Furthermore, in contrast to our proposal, which uses
an accelerometer as the principal sensor, [14] includes a compass sensor for peaks
validation. Reference [15] uses MEMS accelerometers, a seismological processing unit
and 3 types of alarms. The effective warning time in average is 8,1 s to be detected and
12,4 s the time from the maximum vibrations. On the other hand, there are different
EEWS using other types of communications. Reference [16] was put into operation
from December 2000 to June 2001 in Taiwan. It proposed a Virtual Subnet Network
for EEWS achieving to detect an event in 30 s with an average of 22 s after the origin
time to cities at distance were greater than 145 km from the source. The proposed
architecture achieves detect the maximum acceleration peak in 12 s surpassing the
results of the projects mentioned above. (See Sect. 4). Reference [17] gathers data from
SPs and implements a distributed decision-making process using virtual servers pro-
vided by the Google App Engine architecture [18]. References [19, 20] detect waves of
a quake and report the event using Google Cloud to Device Messaging (C2DM).

All of them have been the motivation to achieve a different and innovative EEWS.
We proposed a future perspective to exploit community resources as SPs together with
a reliable and robust real time communication infrastructure, specially during the
natural disaster. Contrary to [10], our seismic detection uses dynamic thresholds for
distinguishing between a repetitive sudden movement by the user and an actual seismic
event. Our architecture involves additional challenges as incorporating heterogeneous
devices, thus gaining in scalability; new detection algorithms, mobility and suitability
to the application environment demands unlike [11, 12]. In contrast to our work, [12]
performs accurate validations without taking into account either the processing time or
the computational cost, something that is implicit in its working process, due to SP
usage. Furthermore [11, 12] are complemented by our work, widely covering the future
work proposed by both. Reference [14] still has great limitations of usage and
efficiency because an accurate orientation, due to issues with the compass, cannot
be obtained if the device is in constant motion, and consequently forces the system
to remain stationary. Should one day disaster happen and Google cease service,
[17, 19, 20] would cease to work too. To be more realistic, should the Google go down
for an hour, these projects would also be down for an hour without the least idea of
what happened. So these are completely at the mercy of Google.

A Service oriented approach for sensor access and usage is used by several groups:
[21, 22] use their proprietary standards and data repositories, each one with different
functions, access and use of sensors. SWE and its SOS component have been suc-
cessfully applied to indoor [23] and outdoor scenarios. References [24] presents an
Internet based urban environment observation system that is able to monitor several
environmental variables (temperature, humidity, seismic activity) in real time. In
conclusion the SWE’s approach offers a standard method for use sensor data to
facilitate a rapid response to a disaster scenario. And this work takes advantage of this.

Finally, citing the post-event management, a project that is worth emphasizing is
[25] which is a Europe-Union project with 1, 2 million euros. Reference [25] inves-
tigates current media as Facebook, Twitter or YouTube, and uses them in crisis
management to promote collaboration of first-responders and citizens. Limitations such

Sensor Web Enablement Applied to an Earthquake Early Warning System 53

as marginalization of people who do not use social media, or the reliability of infor-
mation like spreading of false information are its points to improve.

3 System Architecture

The accelerograph network developed in the paper us based on a three layer hierar-
chical architecture for EEWS as shown Fig. 1. On Layer-1, SPs are used as processing
units and send samples to the Intermediate Server (IS), corresponding to Layer-2 as
soon as SP detects a seismic-peak after overcoming a process which has been spe-
cifically designed. Each IS decide whether there was a seismic event or not, and
immediately notifies their own users and, at the same time, communicates the incident
to the Control Center (CC), the third layer. The data gathered from the sensors are
inserted in a SOS (SWE) into the IS. The CC aggregates different applications that
make decisions based on the information available in each SOS.

The three layers and the SOS will be integrated in a scalable manner (1 or more
SPs, 1 or more ISs) until to complete the system in order to verify how these interact
properly, cover the functionalities and conform to the requirements; and furthermore
contribute in non-functional requirements as: agile and easy portability, simple main-
tenance, ensure the integrity, confidentiality and availability of information (security) in
the architecture, reduce the cost in locating errors and indispensable, an economic huge
sensor network.

3.1 Layer 1: Client Application and Acceleration Processing

The SP application must be simple, non-interfering with the user’s daily activities and
non-battery consuming, as well as a great help during and after a seismic catastrophe in

Fig. 1. Hierarchical 3-layered architecture: Layer 1: Smartphone application and acceleration
processing; Layer 2: The intermediate server; Layer 3: The control center.

54 A.M. Zambrano et al.

order to assist crisis managers to make better decisions. Figure 1 shows the designed
and implemented algorithm to detect acceleration peaks representing the destructive
power of an earthquake.

An accelerogram is defined as the union of seismic signal and noise vs. time. The
Discrete Fourier Transform (DFT) [26] is used to change the time to frequency domain
to apply low-pass filters to remove high frequencies corresponding to the noise. Later
the Short Term Averaging/Long Term Averaging algorithm (STA/LTA) [27] is used
because of its wide capabilities in detecting events in seismology, the low amount of
computation, low energy consumption, contributing towards the overall success of the
system. We keep a dynamic threshold in order to distinguish between user’s periodical
movements (running, jogging, or walking) and a real seismic peak. Samples which
present a lower threshold than the calculated in each window are discarded and con-
tinue working. The application accesses the GPS sensor to get the user’s current
location, which is necessary for a validation on the IS and important to the SOS. In case
the application should not be able to manage this sensor, the sample will not be sent to
the IS. Then, in a hard real-time system it is necessary to maintain the same timeline
throughout the architecture, for which, the protocol NTP is implemented in order to
synchronize the whole network.

3.2 Layer 2: Intermediate Server

The whole process performed by the IS is required to ensure the global reliability of the
system, with the following assumptions: (1) The samples of the first layer are inde-
pendent of each other; (2) the higher number of samples analyzed more reliably; (3) the
mathematical and statistical process support the data fusion; (4) ability to receive
information from heterogeneous devices. Figure 2 presents an overview of the IS
process, and described continue in greater detail:

Spatial Analysis. Each IS works by physical areas and other projects are limited to
subdivide the samples in rectangular areas as [17] or another ones do not take it into
consideration. The attenuation equations show intensity ratio decreases like the dis-
tance increases; in a seismic event, “A” would measure a greater acceleration than the
SPs in a farther zone “B”. A balance is necessary between effectiveness and number of
samples. If the distance is too small, maybe the case that the IS leaves without test
samples, and if this is too long, the samples will lose correlation. So, in Ecuador’s
attenuation equations [28]: setting a magnitude of 5 as minimum intensity with the
corresponding acceleration for this intensity, the distance calculated was 35 km.
Samples whose latitude and longitude do not satisfy the Haversine function [29] with
the IS’s location are discarded and must be considered by other IS closer, as in Fig. 2.

Sampling Test. Minimum Sample test [30] is necessary to determine if the number of
SPs which have sent a seismic peak have been enough to deduce that an earthquake has
actually happened. It determines how many active SPs of all those registered in ISs are
enough to generalize the population with a percentage of reliability of 0,95 %, and a
margin of error of 0,05 %. Both SP and IS do validations to determine which SPs are
alive (active) and which are not. First, SPs send beacons and are constantly monitoring

Sensor Web Enablement Applied to an Earthquake Early Warning System 55

the network for reconnections, and second, the IS validates the last connection’s time
and, after a fixed time period (30 min) changes the SP’s state to inactive state.

Kruskal Wallis Test. Kruskal Wallis [31] is an analysis variance ANOVA test used to
compare samples or group of samples that better fits the nature of the seismic data.
A periodical sliding windows algorithm has been developed in order to couple the
Kruskal Wallis to seismic data vs. time. Figure 2, shows the configuration (A, B, C, D,
E), that will be tested to find the optimal one whose results demonstrate the best
correlation measured by the Kruskal Wallis Probability (KWP), and the most impor-
tant, the time in advance to an earthquake. The optimal configuration is (explained in
Sect. 4) (0.3, 1, 20, 5, 1): The algorithm is performed three times in each window of
size one second (B = 1), comparing whether the variability of the samples exceeds the
KWP of 0,5 or not (A = 0.3, E = 1). Next, trying to eliminate the risk of notifying very
close replicas to the user, it validates that the time between the last and the present
event is at least 20 s (C = 20). And the minimum intensity to alert is 5 (D = 5).

Message Queue Telemetry Transport (MQTT). When the IS detects a seismic
event, it sends an alarm to their users in coverage, and the CC at the same time using
MQTT [32] as messaging protocol for real time notifications. MQTT has been designed
for devices as SPs due to reduced available resources, low power usage and efficient
distribution of information to one or many receivers and, in addition, offers privacy and
security. MQTT is easy to implement because of it only requires to modify a

Fig. 2. Intermediate server: Sliding window configuration (A, B, C, D, E) (Kruskal Wallis) and
temporal and spatial analysis.

56 A.M. Zambrano et al.

configuration file where parameters such as security or QoS are modified depending
upon the requirements of each system.

Sensor Web Enablement – Sensor Observation Service. At the present time, it is of
utmost important to achieve extreme information decentralization, and the SWE
technology makes it possible to have easy and secure access to the information,
enabling a near real time communication that is a requirement in this research. SWE
describes sensor observations and (web) services to access those data structures spe-
cially using World Wide Web. The advantage of using this standard is that we are not
prescribing any implementation, so each project can build its own services architecture
in the preferred language. This research focuses on the SOS which supports a common
data registration model from any SP leaving as the only restriction in SOS’s capacity;
which in our design is distributed (a SOS for each IS) thus achieving gather data flows
generated by the sensors without scalability problems.

Data in the SOS. Data quality and QoS interoperability are important issues to address
in sensor web standards development activities. A key communication component at
application level is the interaction with the SOS. The main advantage is that the
interface is provided via web (HTTP) so that each SP, regardless of its characteristics
can easily communicate with the SOS (i.e. registering and inserting observations).
The SOS is a service that basically offers two levels of interfaces (Fig. 3):

• An interface for sensors: it consists in registering each sensor in the SOS and then
sending measurements. The first step is performed by means of a registerSensor
operation, which allows saving a new sensor. Once the sensor has been registered, it
can start sending measurements at certain intervals, which depends either on the
physical quantity being measured or the need of control required. The operation is
called insertObservation. The SOS supports both fixed and mobile sensors. In the
latter case, mobile sensors must send (besides measurements in the insertObser-
vation operation) their current location. The operation is called updateSensor.

• An interface for external processes, through which any application can access
historical data (even real-time data) regarding any registered sensor. Note that, as
the SOS service centralizes all sensors, it is possible to search and apply simple
spatio-temporal filters, e.g. “get all sensors that monitor temperature” or “get all
sensors located in an area”.

3.3 Layer 3: Control Center

The CC must behave as a good command and control post, delivering information about
global risks to the emergency management centers (firefighter, police, ambulance and
others), helping them to make proper decisions, as e.g. the Geographic Institute at the
National Polytechnic School (IGEPN) [33] in Ecuador. The CC allows a system’s
extension from a pre-event to a post-event management schema. At a first stage, each SP
helps the CC by sending multimedia information such as comments, pictures and videos
helping in the process of achieving a global view of what is going on in a disaster in real
time; and hence, in the second instance, CC helps the users make better post-event

Sensor Web Enablement Applied to an Earthquake Early Warning System 57

decisions by providing “tips” about closest aid-centers, safer and faster routes (the user
on their own knowledge is totally unaware of the real situation of the disaster).

4 Performance Evaluation

For a more accurate and real validation, the IGEPN provided seismic-data of recent
earthquakes into (or near) Ecuador: (1) 2013/02/09 - 09:14; Pasto-Colombia, 345 km
north of Quito; lasted 30 s; Richter-Magnitude 7,4. In Quito-Ecuador, it was felt in
around 5 provinces with an intensity of 4; (2) 2012/02/08 – 13:50; Esmeraldas-
Ecuador; 288 km north of Quito; lasted 6 s; In Quito was felt with an intensity of 5,2;
(3) 2011/10/29 – 10:54; Quito-Ecuador; Richter-Magnitude 4,3.

To determine the best configuration-parameters set (A, B, C, D, E) the validation
process for each earthquake is accomplished and then comparing them taking account
two considerations: First, the parameter C (Waiting Time), which corresponds to the
time between two detected seismic-peaks, is set to 1 (C = 1), in order to compare which
of them (configurations) detects a higher number of seismic peaks. Shown in Table 1. If
it is too large, a peak (aftershock) cannot be detected, even if it is higher than the last
one. Second, the parameter D (Minimum Intensity) is set to 2 (D = 2) to check that the
algorithm is able to sense an earthquake even of very low intensity. However, in the
optimal configuration, D is set to 5; according to Modified Mercalli Intensity Scale
(MMI) [34], it has a very light potential damage, and is perceived as moderate. So, the
analysis in each earthquake signal leads us to choose the best configuration, achieving a
balance (0.3, 1, 20, 5, 1):

• It reduces the number of false positives because of the KWP average in 0,362. It
also avoids that all data are recognized as a seismic peak, but nevertheless higher
than other configurations.

• The Table 1 highlight the good correlation existing between window-samples, and
there exists a good data correlation at the just at the instant when the maximum
seismic peak occurs.

Fig. 3. Basic sequence diagram for the SOS service.

58 A.M. Zambrano et al.

• This configuration allows arise an early warning 12 s ahead the maximum seismic
peak occurs, providing extra time, for even the epicenter zone, which is the best
achievement obtained.

• The optimal configuration detects the higher number of seismic peaks into each
signal. As e.g. in Pasto-Colombia earthquake reached 11 detected peaks.

• This configuration perceives a lower MMI, implying that would be possible to alert
earthquakes whose damage are less, and more, it could become an extra information
that IGEPN (or another CC) needs.

Table 1. Intermediate Server. Sliding window configuration (A, B, C, D, E) comparison.

PASTO – COLOMBIA 2013/02/09
Max. peak Intensity: 3,57 MMI Max. peak Time: 16:47

Set Conf.
(1,1,1,2,2)

Set Conf.
(0.5,1,1,2,1)

Set Conf.
(0.3,1,1,2,1)

Set Conf.
(0.5,0.5,1,2,1)

Detected
Peaks 8 10 11 10

MMI Min.
Detected 2,1802 2,1186 2,0697 2,1186

KWP
mean 0,18 0,21 0,37 0,20

Time Gained
(sec) 1 2 2 2

ESMERALDAS - ECUADOR 2012/02/08
Max. peak Intensity: 2,69 MMI Max. peak Time: 50:53

Set Conf.
(1,1,1,2,2)

Set Conf.
(0.5,1,1,2,1)

Set Conf.
(0.3,1,1,2,1)

Set Conf.
(0.5,0.5,1,2,1)

Detected
Peaks 3 5 6 6

MMI Min.
Detected 2,1803 2,1186 2,0496 2,0491

KWP
mean 0,08 0,25 0,31 0,29

Time Gained
(sec) 1 3 4 3

QUITO - ECUADOR 2011/10/29
Max. peak Intensity: 4.57 MMI Max. peak Time: 55:27

Set Conf.
(1,1,1,2,2)

Set Conf.
(0.5,1,1,2,1)

Set Conf.
(0.3,1,1,2,1)

Set Conf.
(0.5,0.5,1,2,1)

Detected
Peaks 3 5 6 6

MMI Min.
Detected 2,1803 2,1186 2,0496 2,0491

KWP
mean 0,16 0,32 0,54 0.28

Time Gained
(sec) 1 3 4 3

Sensor Web Enablement Applied to an Earthquake Early Warning System 59

5 Conclusions and Future Work

It is impossible to know where and when a seismic event can happen, thus it is known
that an earthquake is unpredictable at the epicenter. So, the best way to mitigate
damages in infrastructure, assets and even human lives, is the early detection, where a
real-time architecture and an efficient communication between actors becomes a
requirement. Now, in this case, big part of the success corresponds to heterogeneous
actors (smartphones), all of them forming the Layer-1 of our architecture. Therefore the
key point is standardization the sensor data, and it is achieved by SWE and his
component SOS which are used to gather sensor observations in a standard way, so
they allow an easily integration in any terminal improving the communication in the
whole design. A connection using World Wide Web allows a standardization of all this
community sensors could communicate with their SOS (i.e. registering and inserting
observations) in real time and secure way. Further, taking to account that the incor-
poration of a SOS, allows to have thousands of sensors each one with different
advantages and limitations resulting in other words in efficiency and accuracy.

This provides a modular and scalable architecture design. The Layer-2 is a server,
named Intermediate Server, with enough capacity to listen and process the SP’s
samples, detect a seismic event and, notify to all clients in the covered area through the
information collected in SOS. This server implements temporal and spatial analysis not
presented in another works promoting in the success of the proposal. The last layer, the
Control Center can manage in a proper way the actual information in order to help the
aids-centers to properly distribute their resources (human or monetary). And second, it
can help the users to make better post decisions, being that, they are totally unaware of
the real situation of the disaster.

The architecture was validated by means past actual data from Ecuador, which is a
country in constant seismic risk. Our solution anticipates the maximum seismic-peak in
12 s in the seismic focus, however this time could be greater in further areas from the
epicenter. As well the benefits provided could be greater depending on the earthquake’s
features (when, duration and location).

Given the limitations of validation, our first step would be improve the structure of
the testing process and find agreements with centers that have new testing devices, like
rooms with earthquake simulators to achieve better validation and improvement of the
overall system. As further work, it would be interesting to more disaster scenarios,
considering multiple sensors totally heterogeneous using the same design and coupling
the detection process, into the two first layers, to de type of the natural disaster, such as:
fires, volcanic eruptions, and many more.

References

1. Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., Jafari, R.: Enabling effective
programming and flexible management of efficient body sensor network applications. IEEE
Trans. Human-Mach. Syst. 43(1), 115–133 (2013)

60 A.M. Zambrano et al.

2. Cisco Systems, Inc, Cisco Visual Netorking index: Global Mobile Data Traffic Forecast
Update 2012-2017 (2013). http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/
ns537/ns705/ns827/white_paper_c11-520862.pdf. Accessed 14 March 2014

3. Fortino, G., Parisi, D., Pirrone, V., Di Fatta, G.: BodyCloud: a SaaS approach for
community body sensor networks. Future Gener. Comput. Syst. 35, 62–79 (2014)

4. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE
Commun. Mag. 49(11), 32–39 (2011)

5. Open Geospatial Consortium, OGC Making Location Count. http://www.opengeospatial.
org/ogc. Accessed 16 April 2015

6. Open Geospatial Consortium, Sensor Web Enablement (SWE). http://www.opengeospatial.
org/ogc/markets-technologies/swe. Accessed 16 April 2015

7. Funk, A., Busemann, C., Kuka, C., Boll, S., Nicklas, D.: Open sensor platforms: the sensor
web enablement framework and beyond. In: MMS, vol. 1, pp. 39-52, (2011)

8. Cadena SER, Ciencia y Tecnología. Record Mundial en Grandes Terremotos, April 2014.
http://cadenaser.com/ser/2014/05/07/ciencia/1399417567_850215.html. Accessed 17 April
2015

9. USGS, Earthquake Hazard Program U.S. Geological Survey (2013). http://earthquake.usgs.
gov/earthquakes/world/world_deaths.php. Accessed 14 January 2014

10. Uga, T., Nagaosa, T., Kawashima, D.: An emergency earthquake warning system using
mobile terminals with a built-in accelerometer, de ITS Telecommunications (ITST), Taipei
(2012)

11. Chandy, R., Rita, A., Skjellum, Ø., Chandy, K.M., Clayton, R.: QuakeCast: Distributed
Seismic Early Warning, California (2011)

12. Cochran, E., Lawrence, J., Christensen, C., Jakka, R.: The quake-catcher network: citizen
science expanding seismic horizons. Seismol. Res. Lett. 80(1), 26–30 (2009)

13. Bormann, P., Engdahl, B., Kind, R.: Seismic Wave Propagation and Earth models, de New
Manual of Seismological Observatory Practice 2 (NMSOP2), Postdam, Germany, Deutsches
GeoForschungsZentrum GFZ, pp. 1–105 (2012)

14. Dashti, S., Reilly, J., Bray, J., Bayen, A.M., Glaser, S.D., Mari, E.: iShake: Mobile phones
as seismic sensors-user study findings. In: Conference Mobile and Ubiquitous Multimedia,
vol. 28(10), pp. 43–52 (2011)

15. Peng, C., Zhu, X., Yang, J., Xue, B., Chen, Y.: Development of an integrated onsite
earthquake early warning system and test deployment in Zhaotong, China. Comput. Geosci.
56, 170–177 (2013)

16. Wu, Y.M., Teng, T.L.: A virtual subnetwork approach to earthquake early warning. Bull.
Seismol. Soc. Am. 92(5), 2008–2018 (2002)

17. Faulkner, M., Olson, M., Chandy, R., Krause, J., Chandy, K.M., Krause, A.: The next big
one: Detecting earthquakes and other rare events from community-based sensors.
Information Processing in Sensor Networks (IPSN), International Conference, vol. 10,
pp. 13–24 (2011)

18. Google, Google Cloud Plataform (Official Site) (2014). http://cloud.google.com/. Accessed
17 April 2015

19. Finazzi, F., Fassò, A.: Earthquake monitoring using volunteer smartphone-based sensor
networks, de METMA VII and GRASPA14, Torino (2014)

20. Soni, A., Sharma, A., Kumar, P., Verma, V., Sutar, S.: Early disaster warning & evacuation
system on mobile phones using google street map. Int. J. Eng. Tech. Res. (IJETR) 2(4), 9–11
(2014)

21. Nath, S.: Challenges in building a portal for sensors world-wide, pp. 3–4. ACM (2006)

Sensor Web Enablement Applied to an Earthquake Early Warning System 61

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.opengeospatial.org/ogc
http://www.opengeospatial.org/ogc
http://www.opengeospatial.org/ogc/markets-technologies/swe
http://www.opengeospatial.org/ogc/markets-technologies/swe
http://cadenaser.com/ser/2014/05/07/ciencia/1399417567_850215.html
http://earthquake.usgs.gov/earthquakes/world/world_deaths.php
http://earthquake.usgs.gov/earthquakes/world/world_deaths.php
http://cloud.google.com/

22. Gupta, V., Poursohi, A., Udupi, P.: Sensor Network: An open data exchange for the web of
things. In: Pervasive Computing and Communications Workshops PERCOM, Mannheim
(2010)

23. Giménez, P., Molina, B., Calvo-Gallego, J., Esteve, M., Palau, C.E.: I3WSN: industrial
intelligent wireless sensor networks for indoor environments. Comput. Ind. 65, 187–199
(2014)

24. Giménez, P., Molina, B., Palau, C.E., Esteve, M.: SWE simulation and testing for the IoT.
In: Proceedings of the 2013 IEEE International Conference on Systems, Man, and
Cybernetics, Manchester (2013)

25. COSMIC, Contribution of Social Media in Crisis Management. http://www.cosmic-project.
eu/. Accessed 16 June 2015

26. Sheng, X., Zhang, Y., Pham, D., Lambare, G.: Antileakage Fourier transform for seismic
data regulation. Geophysics 70(4), 87–95 (2005)

27. Sharma, B., Klumar, A., Murthy, V.M.: Evaluation of seismic events detection algorithms.
J. Geol. Soc. India 75(1), 533–538 (2010)

28. Beauval, C., Yepes, H., Bakun, W., Egred, J., Alvarado, A., Singaucho, J.C.: Historical
earthquakes in the sierra of ecuador (1587–1996). Geophys. J. Int. 181(3), 1613–1633
(2010)

29. Robusto, C.: The Cosine-Haversine formula. Am. Math. Monthly 60(1), 38–40 (1957)
30. Cochran, W.G.: The Sampling Techniques. Wiley, New York (1963)
31. Kruskal, W.H., Waliis, W.A.: Use of ranks in one-criterion variance analysis. J. Am. Stat.

Assoc. 47(260), 583–621 (1952)
32. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S – a publish/subscribe protocol for

wireless sensor networks. In: Communication Systems Software and Middleware and
Workshops COMSWARE, pp. 791–798 (2008)

33. Instituto Geofísico Escuela Politécnica Nacional, Informe Sísmico para el Ecuador 2013
(2014). http://www.igepn.edu.ec/index.php/informes-sismicos/anuales/231–50/file. Acces-
sed 3 December 2014

34. Wood, H.O., Neumann, F.: Modified mercalli intensity scale. Bull. Seismol. Soc. Am. 21(4),
277–283 (1931)

62 A.M. Zambrano et al.

http://www.cosmic-project.eu/
http://www.cosmic-project.eu/
http://www.igepn.edu.ec/index.php/informes-sismicos/anuales/231%e2%80%9350/file

Towards Motion Characterization
and Assessment Within a Wireless Body

Area Network

Martin Seiffert(B), Norman Dziengel, Marco Ziegert, Robert Kerz,
and Jochen Schiller

Department of Mathematics and Computer Science, Freie Universität Berlin,
Takustraße 9, 14195 Berlin, Germany

{seiffert,dziengel,ziegert,robsn,schiller}@inf.fu-berlin.de
http://www.inf.fu-berlin.de

Abstract. The combination of small wireless sensor nodes and iner-
tial sensors such as accelerometers and gyroscopes provides a cheap to
produce ubiquitous technology module for human motion analysis. We
introduce a system architecture for in-network motion characterization
and assessment with a wireless body area network based on motion frag-
ments. We present a segmentation algorithm based on biomechanics to
identify motion fragments with a strong relation to an intuitive descrip-
tion of a motion. The system architecture comprises a training phase to
provide reference data for segmentation, characterization and assessment
of a specific motion and a feedback phase wherein the system provides
the assessment related to the conduction of the motion. For fine-grained
applicability, the proposed system offers the possibility of providing a
motion assessment on three different evaluation layers during the motion
assessment process. We evaluate the system in a first practical approach
based on a dumbbell exercise.

Keywords: Motion assessment · Motion fragment · Wireless body area
network · Biomechanical segmentation · In-network processing

1 Introduction

How we move our body in daily activities has a significant influence on personal
health and could be crucial if we want to reach outstanding goals, e.g. in sports.
In order to improve our movements we need a personal expert who makes us
aware of wrong moves at the right moment. Though the constant presence of a
human expert does not seem feasible, such a function could be supported by a
wearable wireless sensor system. The combination of small wireless sensor nodes
and inertial sensors such as accelerometers and gyroscopes provides a cheap
to produce ubiquitous technology module for human motion analysis [2]. Such
sensor nodes can be built small enough so as not to interfere with daily life.
Multiple nodes equipped with appropriate communication devices could form a
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 63–74, 2015.
DOI: 10.1007/978-3-319-23237-9 7

64 M. Seiffert et al.

wireless body area network (WBAN), which is able to sense human motion in its
entirety. The development of systems which analyze the movement of the human
body can be divided into three categories, dependent on the processing of the
collected data: single sensor systems, centralized sensor networks and distributed
sensor networks.

Single sensor systems with close-fitting application are already available in
the form of the strong growing market of wearables. The functionality is usu-
ally limited to counting easily detected sizes (steps/heartbeat/pulse) or to the
classification of different activities (sleeping/walking/running/biking). The data
is analyzed either on the sensor node or on additional infrastructure such as a
mobile phone. Single sensor systems measure the motion of only one extremity
of the body and therefore lack a comprehensive body measurement. Centralized
WBANs that use inertial sensors are already used for the off-line analysis of a
human motion in the form of a classical motion tracking system. Several sensor
nodes collect data from inertial sensors and send them to a base station. At
the base station the data will be combined in a kinematic model and analyzed
in a post-processing step by considering the model data such as joint angles
[1]. In research more general concepts for developing centralized WBANs are
considered, which move necessary calculations more and more into the sensor
nodes [5]. Centralized systems achieve high accuracy but are tied to communi-
cate with the central base station. This results in a lack of mobility. Distributed
sensor networks are the most promising technology to support human motion
directly because they will be able to sense human motion in its entirety and
to compute all data within the network [12]. Thus they could provide direct
feedback to a specific motion, independent of any infrastructure and with high
accuracy, which enables the use in daily activities outside of a laboratory. Dis-
tributed WBANs are currently a subject of research. There are currently only a
few approaches in the field of WBANs which handle all data within the network
[11,12]. These approaches investigate e.g. classifying different activities within
the sensor network, but make no statement about the quality of individual body
movements or about improperly performed parts of the movement.

The characterization and assessment of how a movement is carried out within
a WBAN would permit the qualitative evaluation of the movement and there-
fore a movement related feedback to the user. Such feedback could be related to
incorrectly performed parts of the movement. In sports training, feedback regard-
ing wrong body movements is essential for learning and improvement of motor
skills and physical fitness. This also applies to the execution of physiotherapy
movements. A WBAN that monitors the execution of physiotherapy movements
and provides a motion related feedback will support patients in performing a
valuable training on their own, in addition to the regular supervised training.
Such technical support could contribute by optimizing the treatment in terms
of time and the success. Furthermore, motion related feedback could be impor-
tant for people typically working with heavy load (construction, transport or
elderly care). Both employer and employee benefit from motion related warning
systems. E.g. employers lower the risk of sick days because of work-related pain
while the employee’s health benefits directly from avoiding risky movements.

Towards Motion Characterization and Assessment 65

2 Requirements

As terms related to motion and movement are often used in a different manner,
we define the terms we use in this work in Fig. 1. We use motion to mean a change
in position of an object with respect to time [10]. Concerning the motion of the
human body, motion represents the position, velocity and acceleration of a body
part at a given time. If we reference motion in a time discrete frame we reference
the frame of motion as a motion segment. If the motion segment was defined by a
segmentation algorithm based on biomechanics we reference this motion segment
as a biomechanical motion segment (e.g. extension or flexion of a body part).
If a motion segment is identified as a part of a defined more complex motion
we reference the motion segment as a motion fragment of this more complex
motion (e.g. raise a dumbbell). Multiple sequential motion fragments together
form the overall more complex motion which we reference as a movement (e.g.
a dumbbell exercise).

(biomechanical)
motion segment motion fragment

movement

motion

Fig. 1. Terminology

A WBAN which satisfies the introduced expectations has to fulfill the
following requirements. In medicine and sports, biomechanical principles are
fundamental in analyzing and assessing the human locomotor system [6]. A first
step in the analysis of a complex movement is to establish motion fragments
into which the movement can be divided for analysis. The motion fragments
of the movement should be selected so that they have a biomechanically dis-
tinct role in the overall movement, which is different from that of preceding and
succeeding motion fragments [7]. As a consequence, we recommend the segmen-
tation of human movements based on biomechanics. The challenge is to identify
these motion fragments reliably and with a high temporal correlation to motion
parts of an intuitive partitioning of the movement. By reliability we mean that a
repeated conduction of the same movement should result in the same sequences
of motion fragments. By temporal correlation we mean that a motion fragment
starts and ends at the same time within the movement as the corresponding
motion part of the intuitive partitioning. Reliably identified motion fragments
with a biomechanical function and easily identified fragment boundaries build
the key feature for a comprehensible system. Only if the user can understand
and follow the segmentation computed by the wearable system can he interpret
a motion fragment related assessment.

Furthermore it should be possible to adapt the functionality of the WBAN
to a specific motion or to a specific user. Methods of machine learning could be
used to realize this individualization process. In order to characterize and assess

66 M. Seiffert et al.

human motions, a ground truth is needed to create a reference description of a
correct motion. A supervised training of the WBAN could provide a reference
model for the motion assessment. This will enable the WBAN to assess multiple
previously trained motions.

3 System Architecture

The proposed approach considers a training phase and a feedback phase. While
the training phase allows the customization of the system to a particular exercise
conducted by a determined person within the feedback phase the system provides
the assessment related to the conduction of the motion. During both phases the
WBAN is attached to the body of the user. Once a motion is carried out by
the user, sensor data are gathered and analyzed for a plurality of sensor nodes
of the WBAN. The analysis comprises for each sensor node four major steps:
biomechanical segmentation, segment characterization, fragment identification
and movement identification.

Within the biomechanical segmentation process, the gathered sensor motion
data is separated into motion segments on the basis of segmentation parame-
ters, wherein each segment is biomechanically distinct from the preceding and
succeeding motion segment. During segment characterization for each motion
segment, features are extracted from the sensor data which characterize the
motion segment. Fragment identification means the process of identifying a
motion segment as a dedicated motion fragment of the conducted movement
by consideration of the extracted features. In relation to the dedicated motion
fragment, a corresponding symbol is assigned to each identified motion fragment.
Out of the identified motion fragments, a symbol sequence is formed which iden-
tifies the complete movement conducted by the user at the sensor node.

3.1 Biomechanic Segmentation

As mentioned in Sect. 2, we propose a biomechanics based approach for motion
segmentation. Biomechanics is divided into statics and dynamics. Statics is the
study of objects at rest or in uniform motion. Dynamics is the study of objects
being accelerated by the actions of forces. Most importantly, dynamics is divided
into two branches: kinematics and kinetics. While kinetics is concerned with
determining the causes of motion, kinematics describes the motion itself. Kine-
matics is usually measured in linear or angular terms [6]. While this could be eas-
ily done with the acceleration sensor as well as the gyroscope, it makes kinematics
very interesting for describing motion within the WBAN. Most movements of the
human body are made possible by the joints, but are also limited by them. The
movements at the joints are mainly rotational [7,8]. Therefore, we propose to
analyze the gyroscope data with respect to the rotational motion of the joints to
retrieve a biomechanical segmentation of human motion. The rotational motion
of the joints is characterized by the angular velocity ω measured by the gyroscope
of a sensor mounted at the joint.

Towards Motion Characterization and Assessment 67

Concerning ω, three observations can be made. If ω equals zero while the prior
and subsequent velocity differs in sign, the rotation switches direction, which
intuitively implies a segment switch concerning a conducted angular motion. If
ω approaches zero, a previous angular motion is completed. If ω moves away
from zero, an angular motion is starting.

We use these observations to provide segmentation candidates for each of the
axes of the gyroscope. To detect segmentation candidates for the start and the
completion of angular motion, we monitor whether ω enters or leaves a defined
corridor around zero. The size of this corridor is determined for each axis of
the gyroscope as segmentation parameters during the training phase. To detect
rotation switches, we use a Zero-Velocity Crossing (ZVC) approach which is
already used in other work for motion segmentation but tends to over-segment
with noise or as the number of DoFs increases [9]. To determine the most rele-
vant axis concerning the conducted angular motion, the covered angles between
the last segmentation point and the segmentation candidates are calculated and
compared to each other. A segmentation candidate is refused if the covered angle
of the corresponding axis is below the covered angle of one of the other axes.
Furthermore, a segmentation candidate is refused if the covered angle of the
corresponding axis is below a dedicated intensity threshold, which is determined
as a segmentation parameter during the training phase. If a segmentation can-
didate is not refused, a segmentation point is detected. This indicates the end
of a current segment and the start of a new segment at the segmentation point.

3.2 Training Phase

WBAN

Raw
Data

Biomechanic
Segmentation

Feature
Extraction

Cluster Analysis
/ Symbolization

RSS Selection
Sequence
Evaluation

RSS

SP

RSSSP

WBANPC

Temporary RDS

Optimal RDS

RSD
RSD

RSDRSDRSD

Fig. 2. Training phase with highlighted key components (grey)

During the training phase, the conduction of a movement is supervised by
an expert to ensure correct execution. The data gathered by each sensor node
is used for a detailed reference analysis of the individual motion, which provides
reference data for segmentation, fragment identification, movement identifica-
tion, and detailed biomechanical assessment of the motion. This reference data
is provided separately for each sensor node of the WBAN and represents the
motion of the part of the body the sensor node is attached to. The analyzing
process during the training phase is depicted in Fig. 2.

During the training phase, a dedicated movement is carried out several times.
For each iteration, the raw data passes the biomechanical segmentation as well
as the feature extraction process. This results in a set of feature vectors, wherein

68 M. Seiffert et al.

each feature vector represents a biomechanical segment of the conducted move-
ments. Next, a cluster analysis is applied to the set of feature vectors to build
groups of motion segments which correspond to the same motion fragment. The
cluster analyzing process implements the motion fragment identification step
within the training phase. In this respect, the number of resulting partitions
is related to the number of motion fragments of the movement. Based on the
partition to which a feature vector is allocated, a symbol is assigned to the
corresponding segment. The prototype of a partition serves as a reference sym-
bol description (RSD). The RSDs are used later on for fragment identification
within the feedback phase. For each movement, a symbol sequence is formed out
of the identified motion fragments, which represents the particular movement
conducted by the user at the sensor node. During the RSS selection process, out
of the formed symbol sequences a symbol sequence is selected as reference sym-
bol sequence (RSS) by comparing the symbol sequences by means of similarity.
The symbol sequence with the highest similarity to all other symbol sequences
is selected. The degree of similarity between two symbol sequences can be deter-
mined, e.g., using the edit distance or other distance metrics [14]. The analyzing
process during the training phase is repeated several times. With each repetition
of the analyzing process, the segmentation of the raw data into biomechanical
segments is performed with different segmentation parameters (SP). Each repe-
tition results in a temporary reference data set (RDS) comprising SP, RSD and
RSS. During the sequence evaluation process, out of these RDSs the optimal
RDS is selected as input for the feedback phase. The optimal RDS is selected
in consideration of the similarity value of the particular RSS, calculated during
the RSS selection process. In this respect the RDS which contains the RSS with
the highest similarity value is selected.

3.3 Feedback Phase

Biomechanic
Segmentation

Feature
Extraction

Fragment
Classification

SP

Movement
Prediction

RSS Feedback
RSD

In-N
etw

ork
C

om
m

unication

Fragment
Evaluation

RSDRSD

Biomechanic
Segmentation

Feature
Extraction

Fragment
Classification

SP

Movement
Prediction

RSSRSD

Fragment
Evaluation

RSDRSD

Biomechanic
Segmentation

Feature
Extraction

Fragment
Classification

SP

Movement
Prediction

RSSRSD

Fragment
Evaluation

RSDRSD

Movement
Evaluation

Movement
Evaluation

Movement
Evaluation

Raw
Data

Raw
Data

Raw
Data

Feedback

Feedback

Feedback

Feedback

Feedback

Fig. 3. Feedback phase with highlighted key components (grey)

During the feedback phase, the given RDS is used by each sensor node to iden-
tify and assess the trained movement. The corresponding analyzing process is

Towards Motion Characterization and Assessment 69

presented in Fig. 3. At each sensor node, the raw data is segmented into separate
biomechanical motion segments on the basis of the SP provided by the train-
ing phase. As soon as a biomechanical motion segment is built up, features are
extracted from the raw data to identify the motion fragment within the follow-
ing fragment classification process. Based on the RSDs provided by the training
phase, the classification process assigns a symbol to the biomechanical motion
segment.

Within the movement prediction process, the trained movement is detected
from the resulting symbol sequence of consecutively identified motion fragments.
Therefore, the symbol sequence is compared to the RSS provided by the training
phase. This is done by calculating a similarity value, e.g. using the edit distance
again. It is determined whether the trained movement is carried out by the user
and which motion fragment is expected next. The movement is detected when
the similarity value is above a dedicated threshold. This threshold determines
how many motion fragments have to be identified in the correct order to detect
the conducted motion as the trained movement.

For fine-grained applicability, our proposed system provides motion assess-
ment on three different evaluation layers concerning the hierarchical structure of
the human body: fragment layer, body part layer and body layer. Within these
layers, an assessment is organized in two detail levels: symbol level, feature level.

At a first fragment layer an identified motion fragment is assessed by the
fragment evaluation process. A first assessment on the symbol level takes place
by comparing the symbol of the present motion fragment with that of the motion
fragment that was to be expected from the RSS. If the assigned symbol does not
match the expected symbol from the RSS, the movement was not carried out in
the correct manner. If the assigned symbol matches the expected symbol from
the RSS, a more detailed assessment of the conducted motion fragment on the
feature level is possible. This can be done by comparing the values of individual
features of a motion fragment to the values of these features in the RSD.

The additional assessment of a completed movement is done by the mentioned
body part and body layer. After a complete movement has been identified, the
movement of the respective body part is assessed locally by the respective sensor
nodes on the body part layer. By analogy with the fragment assessment, this
is done at two detail levels. A first assessment on the symbol level is done by
the number of correctly classified motion fragments regarding the total number
of motion fragments the body part movement is composed of. If all motion
fragments are identified correctly, a more detailed local movement assessment
on feature level could be aggregated. This could be done using the preceding
feature level assessments of the dedicated motion fragments.

On the body layer the body movement is assessed in its entirety. The first
assessment on the symbol level is done by the number of correctly classified
motion fragments of all respective body parts, regarding the total number of
motion fragments that all body part movements are composed of. If all motion
fragments are identified correctly, a more detailed body movement assessment
on feature level could be aggregated from the preceding feature level assessments
of the dedicated body part movements.

70 M. Seiffert et al.

The assessment of the body movement in its entirety becomes possible due
to the exchange of assessments within the network realized by the in-network
communication process. In relation to the application dependent resolution of
the body movement assessment, the current body part assessments are commu-
nicated into the WBAN after a certain number of motion fragments have been
evaluated.

The present approach thus allows to identify the trained movement out of a
fluid motion of the user, to assess this movement based on data collected in a
training phase, and thus to communicate a feedback to the user with respect to
the quality of the movement. The fragment assessment as well as the body part
assessment enables an instant feedback, locally by the processing sensor node,
while the movement is still being carried out, such as a tactile or acoustical
feedback. In addition, a feedback concerning the entire body motion can be
signalled by any sensor node of the WBAN, e.g. by an LED with different colors
depending on the results of the body movement assessment.

4 Practical Approach

For the evaluation of the basic functionality of the introduced system architecture
we make the following configuration. Concerning the cluster analysis within the
training phase we make use of k-means clustering [13]. We provide the number
of wanted partitions equal to the number of segments of the dumbbell exer-
cise as mentioned in Sect. 4.2. For fragment classification within the feedback
phase we use a prototype classifier [15] that already provided good classification
results in our previous work [12]. For fragment characterization within the fea-
ture extraction we provide three features, each representing the covered angle
within a motion segment of one of the axes of the gyroscope. The degree of simi-
larity between two symbol sequences is determined by applying the edit distance.
A movement is detected by a sensor node, if the symbol sequence resulting from
consecutively identified motion fragments matches at least 75 % of the RSS.

4.1 Sensor Platform

Driven by the needs of the application domain for distributed motion evaluation
in WBANs, we make use of our specialized sensor board F4VI2 [3], shown in
Fig. 4 (a), to evaluate human motion. The sensor board provides a very compact
form factor of 35.5mm∗24.3mm. According to the given application more avail-
able resources will allow us to cache longer chunks of data and process the data
within short time slots. We target this on the F4VI2 by utilizing the Cortex-M4
microcontroller STM32F415RGT running at a maximum of 168 MHz, providing
1 Mb of Flash, 192 Kb of SRAM while including DSP support and a FPU unit.
An optional SD-card is used to store network configurations, firmware images
and reference data assigned to distributed event detection and evaluation. For
wireless communication between sensor nodes we chose the 868 MHz transceiver
TI CC1101 whose output power level is configurable to fit short-range environ-
ments like WBANs with several sensor nodes on one extremity. To sense linear

Towards Motion Characterization and Assessment 71

b a
c

25
.3m

m

20
.5m

m

30 mm
40 mm d

Exploded View Cross Section View Prototype ViewBottom-Up View

Fig. 4. Sensor platform F4VI2

and angular motion we use the MPU9150 [4] integrated nine degrees of freedom
motion tracking device. We created a setup to integrate our board into a com-
pact 40mm ∗ 30mm ∗ 25.3mm housing (Fig. 4, Exploded View) which makes
use of a 400 mAh battery (b) to provide long-term applications and enhances the
visibility of the LED beam angle with an integrated diffusor (c). The housing can
be worn on the body by the use of an easy to attach Velcro R© tape that can be
edged through the housing as can be seen in (Prototype View). The user inter-
face of the F4VI2 consists of two buttons as input (d), one RGB SMD-LED on
the top and one Beeper for feedback. Furthermore an optional Bluetooth serial
bridge and two PWM outputs that are capable of driving two vibration motors
are available. The vibration motors enable the application to give feedback to
the user on demand and can be integrated e.g. into the wristband.

4.2 Motion Model

For evaluation, we choose a combination of dumbbell curl and arnold press to
strengthen the muscles of the forearm, the upper arm and the shoulder [16].
The motion sequence as illustrated in Fig. 5 comprises four segments. In the first
segment (a), the barbell is lifted to the biceps and turned about 90◦ in clockwise
direction. In the second segment b), the barbell is lifted above the head until the
arm is stretched. At the same time, the barbell is turned in counter-clockwise
direction about 180◦. The third segment (c) regards the reverse movement to
the movement in segment (b). The barbell is returned to the position in segment
(b), with the barbell moving downwards and turning 180◦ in clockwise direction.
The fourth segment (d) is the counterpart segment to segment (a). The barbell
is returned to a neutral position and, by doing so, turned by 90◦ in counter-
clockwise direction.

4.3 Experiments and Results

For characterization and assessment of the barbell exercise conducted by the
user, we add one sensor node to the back of the hand (HAR), one sensor node
to the forearm (UAR) and one sensor node to the upper arm (OAR) (see Fig. 5,
Motion Model). We fluidly conduct 28 correctly executed movements (TYPE C)
of the barbell exercise described in Sect. 4.2. We use 50 % of these movements to

72 M. Seiffert et al.

Fragment Error
0 9 64% 0 0% 0 0%
1 5 36% 5 36% 2 14%
2 0 0% 4 29% 7 50%
3 0 0% 2 14% 5 36%
Not Detected 0 0% 3 21% 0 0%

TYPE_C TYPE_F1 TYPE_F2

Node
HAR 56 100% 55 98%
UAR 56 100% 55 98%
OAR 56 100% 53 95%

Feedback Training

Fig. 5. Motion model (left), Movement assessment (right, top), Fragment reliability
(right, bottom)

train the system and 50 % for movement evaluation. Furthermore, we perform 28
movements representing faulty executions of the dumbbell exercise. While con-
ducting 14 executions, we skip turning the dumbbell in counter-clockwise direc-
tion as described for segment (b) of the dumbbell exercise (TYPE F1). While
conducting the other 14 executions, we skip turning the dumbbell as described
for segment (a) and for segment (b) of the dumbbell exercise (TYPE F2). All
executions are performed by one person. For the movements of TYPE C we pro-
vide a manual reference segmentation based on video data recorded while the
movement was carried out and the motion model described in Sect. 4.2.

By using the movements of TYPE C, we evaluate the motion fragment iden-
tification process in terms of reliability and temporal correlation to motion parts
of an intuitive partitioning, as we claimed in Sect. 2.

Concerning the reliability of the identification process, we evaluate the
sequence of motion fragments resulting from the conduction of the barbell exer-
cise on any of the three sensor nodes assigned to the body (see Fig. 5, Fragment
Reliability). On every sensor node, the conduction of 14 repetitions of the barbell
exercise should result in a sequence of 56 correctly identified motion fragments.
Within the training phase on all sensor nodes, all motion fragments are identified
as expected. During the feedback phase on all sensor nodes, at least 95 % and in
average 97 % of the motion fragments are identified as expected. These results
confirm a high reliability of the motion identification process during the training
as well as during the feedback phase.

In Fig. 6 we evaluate the temporal correlation of the segment points which
separate sequential motion fragments to the segment points of the reference seg-
mentation. Within the training phase for all sensor nodes, all reference segmen-
tation points are identified by the biomechanical segmentation process. During
the feedback phase 98 % of the segmentation points are identified. 81 % of these
identified segmentation points are within a temporal distance of 0.3 s to the cor-
responding reference segmentation point. As each motion fragment of the barbell
exercise covers 1.5 s on average, it could be stated that within the feedback phase
the large majority of the identified motion fragments are deferred about max.
20 % of their length.

By use of the movements of TYPE C, TYPE F1 and TYPE F2, we evalu-
ate the proposed assessment process referring to the body layer. In this respect

Towards Motion Characterization and Assessment 73

52%

46%

35%

33%

5%

8%
2%

8%

8%
2%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Training

Feedback

t <= 0.2s 0.2s < t <= 0.3s 0.3s < t <= 0.4s 0.4s < t <= 0.5s 0.5s < t not found

Fig. 6. Temporal correlation of segmentation points to the reference segmentation

we evaluate the assessment on the symbol level. If the trained movement is
detected by a sensor node, the number of incorrectly conducted motion frag-
ments is communicated into the WBAN for body level evaluation. On the body
level, the total number of incorrectly conducted motion fragments is calculated
(see Fig. 5, Movement Assessment). As expected, all wrongly conducted move-
ments are assessed with one or more faulty motion fragments. While most of
the correctly conducted movements are assessed with no fragment errors, five
of the correctly conducted movements are represented with one fragment error.
On average, the detected movements of TYPE C, TYPE F1 and TYPE F2 are
represented with 0.36, 1.73 and 2.21 fragment errors respectively. As the amount
of the implemented error in TYPE F2 is higher than in TYPE F1 the assess-
ment of the faulty executions meets the expectations. For a definite differentia-
tion between the correct and the faulty movements, the evaluation of identified
motion fragments on the feature level is necessary.

5 Conclusion and Future Work

We introduced a trainable system architecture for online motion characterization
and assessment within a WBAN, based on motion fragments. We presented
a biomechanics inspired segmentation algorithm to identify motion fragments
as parts of an intuitive description of a movement. The system architecture
provides a motion assessment on three different evaluation layers and two detail
levels during the motion assessment process and thus a feedback to the user
with respect to the quality of the entire body movement. In a first practical
approach, we showed that we can identify motion fragments of a barbell exercise
with high reliability. Our results confirm the functionality of the proposed system
architecture and show that the system can assess movements in relation to the
correct conduction and the faulty conduction of the movement on the body layer.
In further experiments we will evaluate the system to additional motion models
and with respect to more mobile environments as well as with respect to the
other possible evaluation layer and detail levels.

The presented results motivate new applications of holistic and distributed
motion assessment in the domains of sports and health care. In the future and
with further improvements to our work we expect new applications giving real
time feedback during the motion for high performance sport assessments or reha-
bilitation surveillance and training systems especially in prosthetic and orthotic
application optimization.

74 M. Seiffert et al.

Acknowledgments. This work was funded in part by the German Federal Ministry
of Education and Research (BMBF, VIP-Project VIVE, Project-ID: 03V0139).

References

1. Felisberto, F., Costa, N., Fdez-Riverola, F., Pereira, A.: Unobstructive Body Area
Networks (BAN) for efficient movement monitoring. Sensors 12(9), 12473–12488
(2012)

2. Cuesta-Vargas, A.I., Galn-Mercant, A., Williams, J.M.: The use of inertial sensors
system for human motion analysis. Phys. Ther. Rev. 15(6), 462–473 (2010)

3. Ziegert, M., Dziengel, N., Seiffert, M., Pfeiffer, S.: A Developer and a reference
board for distributed motion evaluation in wireless sensor networks. In: IEEE Inter-
national Conference on Industrial Technology, pp. 2412–2419 (2015)

4. InvenSense Inc.: MPU-9150 Product Specification Revision 4.3 (2013)
5. Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., Jafari, R.: Enabling

effective programming and flexible management of efficient body sensor network
applications. IEEE Trans. Hum.-Mach. Syst. 43(1), 115–133 (2013)

6. Knudson, D.: Fundamentals of Biomechanics, 2nd edn. Springer, Heidelberg (2007)
7. Bartlett, R.: Introduction to Sports Biomechanics, 3rd edn. Taylor & Francis Ltd.,

London (2014)
8. Tözeren, A.: Human Body Dynamics. Springer, Heidelberg (2000)
9. Lin, F.-S., Kulic, D.: Segmenting human motion for automated rehabilitation exer-

cise analysis. In: Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pp. 2881–2884 (2012)

10. Goel, V.K.: Fundamentals of Physics Xi. Tata McGraw-Hill Education, New Delhi
(2007)

11. Ghasemzadeh, H., Ostadabbas, S., Guenterberg, E., Pantelopoulos, A.: Wireless
medical-embedded systems: a review of signal-processing techniques for classifica-
tion. IEEE Sens. J. 13(2), 423–437 (2013)

12. Dziengel, N., Ziegert, M., Seiffert, M., Schiller, J., Wittenburg, G.: Integration of
distributed event detection in wireless motion-based training devices. In: IEEE
International Conference on Consumer Electronics (ICCE-Berlin), pp. 259–263
(2011)

13. Webb, A.R., Copsey, K.D., Cawley, G.: Statistical Pattern Recognition. Wiley,
Malvern (2011)

14. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
(CSUR) 33(1), 31–88 (2001)

15. Kalton, A., Langley, P., Wagstaff, K., Yoo, J.: Generalized clustering, supervised
learning, and data assignment. In: Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 299–304
(2001)

16. Schwarzenegger, A., Dobbins, B.: The New Encyclopedia of Modern Bodybuilding.
Simon & Schuster, New York (2012)

Data Driven Transmission Power Control
for Wireless Sensor Networks

Roshan Kotian(B), Georgios Exarchakos, and Antonio Liotta

Technical University Eindhoven (TU/e), Department of Electrical Engineering,
5600 MB, Building 19 Flux, PO Box 513, Eindhoven, The Netherlands

{r.kotian,gexarchakos,A.Liotta}@tue.nl

Abstract. Transmission Power Control (TPC) is employed in the sen-
sor nodes with the main objective of minimizing transmission power
consumption. However, major drawbacks with well-known TPC are
time consuming and energy inefficient initialization phase. Moreover,
they employ Received Signal Strength Indicator (RSSI), Link Quality
Indicator (LQI) metrics for initialization phase that are sensitive to envi-
ronmental conditions and hence are not appropriate parameters to adjust
the power. To overcome these shortcomings of existing TPC, we propose
a novel TPC algorithm dubbed as Data-Driven Transmission Power Con-
trol (DA-TPC) that has shorter initialization phase and uses priority of
data as the only metric to adjust the power level. The two main aims
of this paper are to minimize power consumption during initialization
phase and to show how by utilizing priority of data as a sole metric for
power adaptation improves reliability and decreases not only latency but
also overall energy consumption while transmitting data packets.

Keywords: WSN · Transmission power · Routing · Reliability ·
Latency

1 Introduction

Wireless Sensor Networks (WSN) with their distributed sensing, communication,
and computing capabilities offer effective solution to monitor events of interest
occurring in a remote area [4]. However, limited power supply and uncertainty
in the propagation medium play a disruptive role in the normal operation of
the sensor network [2]. Compared to all other components of a sensor node,
transciever consumes maximum power. Therefore, TPC is used to prolong the
battery life. Many TPC algorithms have been discussed in the past [8,10,14,16].
These algorithms rely on the variation of link quality metric such as Received
Signal Strength Indicator (RSSI), Link Quality Indicator (LQI) to adapt the
transmission power. Link quality variation depends on a location. If TPC relies
on link variation alone, then it is tightly coupled to specific conditions pre-
vailing at that location. As a result, TPC must undergo many trial and error
phases before it is tweaked to provide accurate power change recommendations.

c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 75–87, 2015.
DOI: 10.1007/978-3-319-23237-9 8

76 R. Kotian et al.

This process is often too energy demanding and counters the very need of the
TPC protocol. TPC such as MODTPC [14] recommends the power level that
is just enough to maintain a communication link between pair of nodes. Due
to the uncertainty in the propagation medium, this type of link often has the
tendency to break. This results in triggering the TPC more often than required
causing unstable network. In addition, the routing table created by the respec-
tive routing protocols at the lower layer has to be modified by sending control
messages to maintain a desired network topology. This process consumes addi-
tional energy. In addition, existing TPC’s have time-consuming initialization
phase that increases the latency of the network.

To overcome these disadvantages we propose DA-TPC. Our algorithm estab-
lishes a strong link between a pair of nodes making it more robust to changing
environmental conditions. DA-TPC introduces multiple routing layers working
in parallel and on different transmission power ranges. Instead of using variation
in link quality as a trigger to adjust the power level, priority of the data is used
as the only metric to make a decision to boost the transmitting power.

As shown in Fig. 1 the application layer tags the data that it receives from
the sensors with specific priority. Based on the tagged information appropriate
power level and routing protocol is activated at the lower layers. For instance,
the temperature of the room is classified as high priority data once it reaches an
unusual level. If the temperature of the room is within an expected pre-defined
level it is classified as a low priority data. In case of high priority data, DA-TPC
boosts the transmission power to make sure that the critical (high priority) data
reaches the destination with higher guarantee. DA-TPC targets the reliability
of high priority data by boosting the transmission power to the maximum level
available by the transciever. This also reduces path length and latency. In case
of low priority data, reliability is improved by employing transmission power
slightly better than the Critical Transmission Range (CTR). Achieving more
stable links saves energy as there is no extra overhead in transmitting control
messages by the routing protocol in case the link breaks due to CTR. Further-
more, by executing the initialization phase in all the nodes simultaneously the
network becomes operational instantaneously.

The main objective of the paper is to provide a proof of concept of our
idea and to evaluate its performance in terms of reliability, latency, and energy

Fig. 1. Overview of DA-TPC

Data Driven Transmission Power Control for Wireless Sensor Networks 77

consumption of not only the initialization phase but also the power consumed
transmitting data in the networks of various sizes.

The rest of the paper is organized as follows. In Sect. 2, we provide the related
work. Section 3 provides the information about the design of DA-TPC. Section 4
talks about the experimental setup. Section 5 provides the information about
performance metrics used to evaluate our algorithm. Section 6 gives the detailed
analysis of the results obtained. In Sect. 7, we summarize and conclude the paper.

2 Related Work

The general working of the TPC algorithm discussed in the literature is elabo-
rated in Fig. 2.

Fig. 2. Link quality model based TPC architecture

In Fig. 2 all of N; where N=n1,n2,...,n5 nodes in the network performs ini-
tialization phase. In the subset of the network consisting a pair of nodes (n1, n2);
n1 broadcasts certain amount of beacon messages to the receiver node n2 using
different power levels supported by specific radio transceiver of the sensor node.
Node n2 then builds a model that reflects the correlation of the transmission
power and the link quality. Based on the knowledge inferred from the model,
node n2 recommends specific power level to node n1 (ACK phase) to use in case
there is a variation in the link quality in course of time. This generic TPC design
has the following drawbacks

1. Building a model on the receiver node that accurately correlates the transmis-
sion power with link quality consumes high power. This is because a significant
amount of probe packets has to be sent from the sender node. Furthermore,
initialization performed by all the nodes at different time slots delays the
uptime of the network.

2. If the link quality falls below a certain predefined threshold specified in the
TPC algorithm, the receiver node sends ACK packet to the sender node
suggesting a change in the power level. Calibrating the link quality threshold
level may differ from one location to another due to uniqueness of the location.
Therefore, due to uncertainty in the propagation medium, the ACK phase
might be executed more often and thereby consumes more energy. Hence,
fine-tuning the threshold level is error prone, time consuming and energy
inefficient.

78 R. Kotian et al.

3. Though RSSI can be used to assess the link quality proactively during actual
data transfer between the nodes in a multihop fashion [9], adopting it as a
network metric for the initialization phase is more error prone. This is espe-
cially the case when all the nodes simultaneously perform the initialization
phase to reduce latency. This is because RSSI is the summation of the signal
strength and the noise floor. The noise floor is the transmission signal from
other adjacent pair of nodes that are not directly in communication. There-
fore, utilization of the RSSI as a metric by the receiver nodes to calculate the
power level to be adopted by the sender nodes is not appropriate.

4. As a part of an effort to maintain certain network topology, prominent rout-
ing protocols such as RPL, AODV and CTP transmits control messages quite
often. These control messages along with frequent piggybacking of the mes-
sages from the TPC algorithm can drain the battery of the nodes sooner.

5. Frequent adjustment of the power level can destabilize the network [19]. If
transmission power changes frequently, there is a potential risk of breaking
previously well-connected network. As a result, routing protocols may take
extra time and energy to readjust and find a new best route.

Our proposed DA-TPC algorithm eliminates the above-mentioned drawbacks
of the generic TPC and provides higher reliability and lower latency in the
networks of various sizes with 35 % to 96 % lower power consumption compared
to other prominent TPC algorithms in discussion.

3 Design of DA-TPC

DA-TPC is implemented in the TelosB motes equipped with a CC2420 trans-
ceiver running Contiki OS. First, we provide the general architecture of our
algorithm. Next, we describe the three phases and overall working of DA-TPC.

3.1 Overview of DA-TPC Modules

The uniqueness of DA-TPC lies in adapting the power level based on the prior-
ity of the data rather than changing it based on the variation of RSSI or LQI.
DA-TPC has three main components as shown in Fig. 3. The purpose of the ini-
tialization phase is to discover the neighboring nodes and determine the optimal
power level (refer Sect. 3.2) to use while relaying low priority data. The anom-
aly detection component at the application layer is responsible for checking the
priority of the data, setting the appropriate power level, and calling the appro-
priate routing protocol. The purpose of the routing component is to multihop
the data from the source to destination. DA-TPC has two routing tables - one
for relaying low priority data and the other for relaying high priority data.

3.2 Initialization Phase

The main purpose of the initialization phase is to determine a power level to
be used by the routing protocol to relay low priority data. The chosen power

Data Driven Transmission Power Control for Wireless Sensor Networks 79

Fig. 3. General Architecture of TPC

is adequate enough to transmit data without corruption while maintaining the
links and the energy as stable and energy efficient as possible. All the nodes in the
network performs initialization phase, where each node advertises a probe packet.
These packets contain the subset of power levels that was used to transmit it.
The neighboring nodes that are within the range of above mentioned power levels
receives a unique probe packets from a specific node and stores the corresponding
power levels and their node id. Receiving nodes then use this power level to relay
sensor data. A detailed list of the power levels used by the CC2420 transceiver
is provided in the Table 1 [6].

Table 1. Power consumption and their communication range for CC2420 obtained
from COOJA Simulator

Power Levels 3 7 11 15 19 23 27 31

Distance(m) 3 10 16 22 29 34 40 48

Output Power(mA) 8.5 9.9 11.2 12.5 13.9 15.2 16.5 17.4

One of the simplest methods to save energy of the nodes is to use only a subset
of the power levels. A WSN deployment technician would know the minimum
distance the nodes are placed from one another. Designing the algorithm based
on this fact and knowing the communication range offered by each power level of
respective transceiver, one can avoid broadcasting probe packets at every power
level as it is done in ATPC [10]. For example, as a proof of concept, we used
only 3 power levels (11, 15, and 19) out of 8 available levels provided by the
CC2420 transceiver [6] to transmit low priority data. In addition, configuring
the algorithm to use a subset of power levels based on the network topology is
much easier than tweaking the RSSI threshold model that are widely used in
existing TPC to adapt transmission power. The reason for this is that RSSI can
change abruptly because of change in environmental conditions [3]. Moreover,
the orientation of the node also has significant impact on RSSI [22]. As a result,
configuring the link quality threshold model based TPC algorithms must undergo
time-consuming trial and error phase before the network becomes operational.

Next, we provide a scenario and explain the working of initialization phase.
During boot up, all nodes perform the initialization phase by broadcasting three
probe packets every three seconds at power levels 11, 15, 19 respectively. In Fig. 4,
Node D receives only one unique packet from all the nodes. Let us assume that
the packet sent at power level 11 by the node A is received by node D and
corresponding packets sent at level 15 and 19 are dropped by the node D. Since
initialization phase is performed simultaneously by all the nodes, due to collision,

80 R. Kotian et al.

Fig. 4. Working of Initialization Phase of DA-TPC

the probe packet sent by node B at first two power levels might not be received
by node D. However, the packet sent at level 19 is received by the node D which
stores the information in memory. Similarly due to collision, node C s packet sent
at level 15 alone is received by the node D. Finally, node D sets the maximum
power level (19) from the list. The mesh routing algorithm in node A then uses
this power level to relay a low priority data with any of the nodes based on the
shortest path to the sink.

DA-TPC employs an initialization phase that does not maintain a compre-
hensive list of information from all the nodes and hence is more memory efficient.
In Fig. 4, imagine node A is 15 m apart from the source node D and has a low
priority data to send. The mesh routing algorithm of DA-TPC running in node
D chooses node A has the first hop to its destination. As per working of the
algorithm discussed above, Node D to communicate with node A uses power
level 19 that has a communication range of 29 m (refer to Table 1). Not utilizing
a minimum power (11) which is just enough to establish a link between pair of
nodes D and A as done by various other TPC algorithms such as MODTPC,
AODPTC [13] seems counter intuitive. However, by establishing a weak link
with minimum power, we run into the risk of breaking the communication path.
Therefore, maximum power level from the subset is chosen to keep the network
stable as long as possible. After the sink completes its initialization phase, it
uses the maximum power level (31) of CC2420 to advertise its presence as a sink
at fixed interval rate shorter than the initialization phase using Collect routing
protocol available in Contiki OS.

3.3 Anomaly Detection Phase

Anomaly detection component has two main tasks. First, it checks if the priority
of the data is low or high. Second, it is a mapper function as shown in (1) that
maps the priority of the data to specific power level and routing protocol to be
used by the node to relay the low or high priority sensor data.

(Ptx, R) = f(Pr) (1)

Pr ε
{
Pl, Ph

}
is the set of priorities that a sensor data is tagged with. Here, Pl and

Ph represents a low and high priority. The set Ptxε
{
Maxinitpow,Maxtranspow

}

represent the specific power levels selected. Maxinitpow and Maxtranspow are
the subset of power levels determined at initialization phase and the maximum
power level available in CC2420 transceiver respectively. The setR ε

{
Rm, Rc

}

contains routing protocols such as mesh (Rm) and Collect (Rc).

Data Driven Transmission Power Control for Wireless Sensor Networks 81

3.4 Routing Phase

Nodes use two standard routing protocols such as Mesh and Collect of Contiki
OS to multihop data to the sink. The path from source to the destination node
is dynamically selected by all the nodes for relaying low and high priority data.
A multihop path to relay a low priority data is created by mesh the routing
protocol and is initiated by the node that has a data to relay. A path to relay
critical a data must be created beforehand to ensure high reliability. Therefore,
the sink node initiates the creation of the high priority data path by advertising
its presence every two seconds to all the nodes within its maximum power level
(31) range. Having more than one routing protocol is a purposeful design choice.
When a particular node has a high priority data, it must relay this with low
delay. This would require a source node to reach the intermediate node much
farther in the network so as to reduce the path length. This implies that the
source node must choose a node other than the one that is has selected for
relaying low priority data.

Adapting the topology on the fly to multihop a low or high priority data
means clearing the previously constructed routing table frequently. Modifying a
routing table causes delay in relaying sensor data. Above all, it incurs additional
energy spending.

By having two different routing tables constructed by the two different rout-
ing protocols we have separate dedicated links readily available. This contributes
to increase in a overall network reliability.

Fig. 5. Flow Chart of DA-TPC

82 R. Kotian et al.

3.5 DA-TPC Workflow

Figure 5 illustrates the entire workflow of DA-TPC. Once the initialization phase
running in the nodes determines the power level to be utilized to relay low
priority data, the anomaly detection component in the node checks the data
priority (low or high) and maps it to a specific power level and a routing protocol
(Mesh or Collect).

4 Experimental and Simulation Set Up

Our algorithm is evaluated for two networks comprising a set of 10 and 20
nodes as shown in Fig. 6. These networks are deployed and executed in the
Cooja Simulator [17]. The nodes are randomly deployed. The minimum distance
between a two adjacent nodes that can be connected directly is 10 m in both the
networks. The low and high priority data are represented by a dashed and a solid
lines respectively. The low priority data is sent every 6 and 12 s in two different
networks for 30 min each. Similarly, a high priority data is sent randomly every
2 to 4 s in two different networks for 30 min as well. The following settings were
kept constant for the entire experiments:

1. Both networks consists of only one source node represented as n1 and one
sink node represented as n10 and n20 respectively.

2. Both networks use the Unit Disk Graph Model (UDGM) to emulate a link
failure [1].

3. The node start-up delay was set to a default simulator value of 1000 ms.
4. CSMA is used as the Medium Access Control (MAC) protocol and CXMAC,

a version of X-MAC [5] is used as the Radio Duty Cycle (RDC)model with
channel check rate set to 2 Hz.

5. We assume the wireless link to be a symmetrical.

5 Performance Evaluation Metrics

The performance of our algorithm is evaluated in terms of Packet Delivery Ratio
(PDR), average end-to-end latency, per packet energy consumption while trans-
mitting low and high priority data along a specific path in both the networks

Fig. 6. Networks with 10 (Fig. 6a) and 20 (Fig. 6b) nodes showing multihop path taken
by a data from the source to a sink

Data Driven Transmission Power Control for Wireless Sensor Networks 83

shown in Fig. 6. In addition, energy consumption of the initialization phase of
DA-TPC is also compared with other prominent TPC algorithms.

PDR is defined as the successful transmission of data packets from the source
node to a sink node [21]. It is calculated as shown in (2)

PDR =
TotalPacketsReceived

TotalPacketsSent
(2)

Latency is defined as the time taken for the packets to reach the sink node
from the source node [1]. It is calculated as shown in (3) and (4)

TotalLatency =
p∑

k=1

Receivedtime(k) − Senttime(k) (3)

AverageLatency =
TotalLatency

TotalPacketsReceived
(4)

Here, p is the total number of packets received successfully.
The total transmission energy spent by the nodes in communication on a

specific path for both the networks is calculated as shown in (5) [21]

N∑

i=1

Ei

N
(5)

Here Ei, is the energy spent during transmission of packets by node i. N is the
total number of nodes in the mutlithop paths.

6 Results and Discussion

Network Reliability is measured in terms of PDR. From Fig. 7a we can see that
by using DA-TPC, PDR above 98 % is achieved while transmitting low priority
packets and 100 % PDR is achieved while transmitting high priority packets in

Fig. 7. Reliability and Latency of the networks. Fig. 7(a) and Fig. 7(b) presents PDR
and Latency of 10 and 20 nodes network relaying packets at different time intervals

84 R. Kotian et al.

both the networks. The reason for this 2 % packet loss while sending low priority
packet in both the networks is because, the relay nodes take some time to find
the best path to destination and, as a result, some of the sensor data are lost due
to packet timeouts. However, since the sink advertises itself more frequently and
faster than the initialization phase, the path from the source to a sink through
the relay node is built quicker.

Figure 7b provides the latency results under various scenarios. The average
latency of a 10 nodes network while transmitting higher priority data is 40 % and
38 % lower compared to transmitting low priority data at 12 and 6 s intervals.

Similarly, the average latency of 20 nodes network while transmitting high
priority data is 44 % and 28 % lower compared to its counterpart sent at the
same intervals. In spite of doubling the size of the network from 10 to 20 nodes,
the latency while transmitting higher priority data in the dense network is not
increased significantly. As the density of the network increases, reducing the
latency of the network while transmitting a crucial data is important. From
Fig. 7b, it is evident that DA-TPC is capable of reducing latency, which is a
desirable property for WSNs.

Apart from high reliability and reduced latency, saving the power of the nodes
is also important. Figure 8a provides the information about the energy consumed
to send one packet on a specific path in the two networks under scrutiny. The path
chosen to route a packet from the source to a sink in 10 and 20 nodes networks is
shown in the Sect. 4. The energy consumed to relay high priority packet in the
10-node network is 25 % lower compared to relaying a low priority data in the
same network. The energy consumed transmitting a high priority data in 20 nodes
network stands at 30 %. The reason for this is that packets take a fewer hops before
they reach their destination. This shows that even by doubling the network size,
the energy necessary to transmit high priority data remains low. This also confirms
that multihop does not necessarily save energy [15].

Finally, we compare the energy drawn during the initialization phase between
a pair of nodes having CC2420 transceivers in the best-case scenario using the
equation as shown in (6)

Fig. 8. Fig. 8(a) presents per path energy consumption consumed to send low and high
priority data in 10 and 20 nodes network. Figure 8(b) presents energy consumption of
initialization phase of various TPC’s

Data Driven Transmission Power Control for Wireless Sensor Networks 85

P∑

i=1

TPsn + TPrn (6)

Here TPsn, TPrn are the energy spent during transmission of probe packets by
the source and the receiver nodes respectively.p is the total number of probe
packets sent. Figure 8b provides the energy consumption details of DA-TPC and
other popular TPC protocols. It is evident from Fig. 8b that DA-TPC consumes
35 % and 96 % less power than TPC-BS and ATPC respectively. The reason for
higher power utilization in ATPC and TPC-BS is because they have a longer
initialization phase and the receiving nodes acknowledge every probe packets
sent by the source node. On the other hand, DA-TPC has a short initialization
phase with receiving nodes not acknowledging the probe packets.

7 Conclusion and Future Work

In this paper, we introduced a new TPC algorithm, dubbed DA-TPC, that
employs priority of the data as a metric to adapt the transmission power instead
of relying on network metric such as LQI, RSSI. Uncertainty in the environ-
ment causes the variations in the link quality and thereby triggering TPC to
change the power level frequently. Switching the power level often can destabi-
lize the network. Furthermore, nodes using just enough power to communicate
with one another can also increase the probability of breaking the network caus-
ing the underlying routing algorithm to send control messages. All these issues
cause the delay and increases the energy consumption. By introducing data as
a metric and changing the power only when the data is of high priority, we keep
the network stable for a longer duration. Running DA-TPC in a sensor network
of various sizes in COOJA simulator we find that reliability above 98 % can
be achieved while transmitting both low and high priority data. The latency is
reduced by 40 % and 38 % while transmitting high priority data at various time
intervals in a 10-node network. Similarly, the latency in 20 nodes network while
transmitting high priority data is 44 % and 28 % less compared to its counterpart
sent at different time intervals. Energy consumption transmitting a high priority
data is 25 % and 30 % less compared to relaying a low priority data in 10 and 20
nodes network. In addition, the energy consumption of the initialization phase
in DA-TPC is 35 % and 96 % less compared other popular TPC’s.

In the future, we would like to test the performance of our algorithm in
larger network deployments with multiple source nodes and various other routing
protocols [7,18]. In addition, having decentralized algorithm without the static
sink makes it more scalable [12]. Predicting the sensor data quality and network
condition before choosing appropriate routing path is necessary. This feature
will enable DA-TPC to make a highly dynamic topology in a scalable manner
[20].Therefore, our goal in the future work will be to design DA-TPC to be more
cogntive in nature [11].

86 R. Kotian et al.

Acknowledgment. This work has been partially supported by ARTEMIS project
DEMANES (Design, Monitoring and Operation of Adaptive Networked Embedded
Systems, contract 295372). I also take this opportunity to thank my colleague Chetan
Belagal for providing his valuable insights.

References

1. Ali, H.: A Performance Evaluation of RPL in Contiki. Ph.D. thesis, Blekinge Insti-
tute of Technology, Sweden (2012)

2. Baccour, N., Koubâa, A., Mottola, L., Zúñiga, M.A., Youssef, H., Boano, C.A.,
Alves, M.: Radio link quality estimation in wireless sensor networks. ACM Trans.
Sens. Netw. 8(4), 1–33 (2012)

3. Bannister, K., Giorgetti, G., Gupta, S.K.: Wireless sensor networking for hot appli-
cations: effects of temperature on signal strength, data collection and localization.
In: Proceedings of the 5th Work. Embed. Networked Sensors (HotEmNets 2008)
(2008)

4. Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M.: Wireless sensor networks
for environmental monitoring: the sensorscope experience. In: 2008 IEEE Interna-
tional Zurich Semin. Commun., pp. 98–101. IEEE, March 2008

5. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC
protocol for duty-cycled wireless sensor networks. In: Procedings of the 4th Inter-
national Conference on Embed. Networked Sens. Syst. - SenSys 2006, pp. 307–320.
ACM Press, New York, October 2006

6. Chipcon: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver. Technical report
(2004). http://www.alldatasheet.com/datasheet-pdf/pdf/125399/ETC1/CC2420.
html

7. Geelen, D., Van Kempen, G., Van Hoogstraten, F., Liotta, A.: A wireless mesh
communication protocol for smart-metering. In: 2012 International Conference on
Computing, Networking and Communications (ICNC), pp. 343–349. IEEE (2012)

8. Kim, J., Chang, S., Kwon, Y.: ODTPC: on-demand transmission power control for
wireless sensor networks. In: 2008 International Conference on Inf. Netw. - ICOIN
2008, pp. 1–5. IEEE, Busan, January 2008

9. Kotian, R., Liotta, A.: Assessment of proactive transmission power control for
wireless sensor networks. In: 9th International Conference on Body Area Networks,
pp. 253–259 (2014)

10. Lin, S., Zhang, J., Zhou, G., Gu, L., Stankovic, J.A., He, T.: ATPC: adaptive
transmission power control for wireless sensor networks. In: Proceedings of the
4th International Conference on Embed. networked Sens. Syst. - SenSys 2006, pp.
223–236. ACM Press, New York, October 2006

11. Liotta, A.: The cognitive net is coming. IEEE Spectrum 50(8), 26–31 (2013)
12. Liotta, A., Knight, G., Pavlou, G.: On the performance and scalability of decen-

tralised monitoring using mobile agents. In: Stadler, R., Stiller, B. (eds.) DSOM
1999. LNCS, vol. 1700, pp. 3–18. Springer, Heidelberg (1999)

13. Masood, M.M.Y., Ahmed, G., Khan, N.M.: A Kalman filter based adaptive on
demand transmission power control (AODTPC) algorithm for wireless sensor net-
works. In: 2012 International Conference on Emerg. Technol, pp. 1–6, October
2012

14. Masood, M.M.Y., Ahmed, G., Khan, N.M.: Modified on demand transmission
power control for wireless sensor networks. In: 2011 International Conference on
Inf. Commun. Technol., pp. 1–6. IEEE, July 2011

http://www.alldatasheet.com/datasheet-pdf/pdf/125399/ETC1/CC2420.html
http://www.alldatasheet.com/datasheet-pdf/pdf/125399/ETC1/CC2420.html

Data Driven Transmission Power Control for Wireless Sensor Networks 87

15. Min, R., Chandrakasan, A.: Top five myths about the energy consumption of wire-
less communication. In: ACM SIGMOBILE Mob. Comput. Commun. Rev., vol. 7,
p. 65. ACM, January 2002

16. Oh, S.H.: TPC-BS: Transmission power control based on binary search in the
wireless sensor networks. In: 2012 IEEE Sensors Appl. Symposium Proceedings,
pp. 1–6 (2012)

17. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level sensor net-
work simulation with COOJA. In: Proceedings of the 2006 31st IEEE Conference
on Local Comput. Networks, pp. 641–648. IEEE, November 2006

18. Qadri, N.N., Liotta, A.: Analysis of pervasive mobile ad hoc routing protocols. In:
Pervasive Computing, pp. 433–453. Springer, London (2010)

19. Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM Comput.
Surv. 37(2), 164–194 (2005)

20. Sivavakeesar, S., Pavlou, G., Bohoris, C., Liotta, A.: Effective management through
prediction-based clustering approach in the next-generation ad hoc networks. In:
2004 IEEE International Conference on Communications, vol. 7, pp. 4326–4330.
IEEE (2004)

21. Teo, K.H., Abdullah, A., Subramaniam, S.K., Sinniah, G.R.: New reassembly buffer
management system in 6LoWPAN. In: Proceedings of the Asia-Pacific Adv. Netw.,
vol. 36, pp. 57–64 (2013)

22. Wadhwa, M., Rali, V., Shetty, S.: The impact of antenna orientation on wireless
sensor network performance. In: 2009 2nd IEEE International Conference on Com-
put. Sci. Inf. Technol., pp. 143–147. IEEE (2009)

Mining Regularities in Body Sensor
Network Data

Syed Khairuzzaman Tanbeer1, Mohammad Mehedi Hassan2(&),
Majed Alrubaian2, and Byeong-Soo Jeong1

1 Department of Computer Engineering, Kyung Hee University,
Seoul, South Korea

{tanbeer,jeong}@khu.ac.kr
2 College of Computer and Information Sciences, King Saud University,

Riyadh, Saudi Arabia
{mmhassan,malrubaian.c}@ksu.edu.sa

Abstract. The recent emergence of body sensor networks (BSNs) has made it
easy to continuously collect and process various health-oriented data related to
temporal, spatial and vital sign monitoring of patient. As such, discovering or
mining interesting knowledge from the BSN data stream is becoming an
important issue to promote and assist important decision making in healthcare.
In this paper, we focus on mining the inherent regularity of different parameter
readings obtained from different body sensors related to vital sign data of a
patent for the purpose of following up health condition to prevent some kinds of
chronic diseases. Specifically we design and develop an efficient and scalable
regular pattern mining technique that can mine the complete set of
periodically/regularly occurring patterns in BSN data stream based on a
user-specified periodicity/regularity threshold for the data and the subject.
Various experiments were carried on both real and synthetic data to validate the
efficiency of the proposed regular pattern mining technique as compared to
state-of-the-art approaches.

Keywords: Body sensor network � Regular pattern mining � Healthcare �
Decision support

1 Introduction

Recent advances in the intelligent sensors, microelectronics, and wireless communi-
cation have enabled the development of body sensor networks (BSN) that is used to
collect and process biological information of a patient, which can be used to extract
knowledge about the health condition of patients [1]. Therefore, in recent years, activity
recognition [2–4] has been one of the most focused research areas with the data
generated by body sensor network. The main goal of activity recognition is to monitor
the activities of daily living for providing better healthcare, social care and/or proactive
assistance to users (e.g., elderly, cognitively impaired people, and/or patients). How-
ever, in some scenarios it might be helpful to provide better assistance, if we have
knowledge about the behavior profiles of the parameters sensed by the body sensors.
For example, identifying the periodical changes in blood pressure of a patient can be

© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 88–99, 2015.
DOI: 10.1007/978-3-319-23237-9_9

useful information for doctors to provide proper treatment to a particular patient.
Additionally, prediction on the change of blood pressure of the patient can be helpful in
pro-active healthcare. Thus, discovering patterns having temporal relationship among
the readings obtained from the BSN can make a great difference in handling/providing
care to the user. In other words, discovering shape of occurrence–i.e., whether the
pattern occurs periodically, irregularly, or mostly in a specific time interval can be
important criteria for analyzing BSN data.

Nevertheless, finding such interesting knowledge from BSN data by using pattern
matching [5, 6] or activity recognition [7, 8, 20, 21] algorithms may not be suitable,
mainly because of the involvement of large volume and variety of BSN data streams
which include text as well as media data such as image, video having high data rate.
Recently, data mining techniques are being utilized in discovering interesting knowl-
edge from the BSN data [5, 6, 9, 11–14]. Ali et al. [9] has developed a software
architecture to find routine behavior based on patient’s activity pattern. It uses a fre-
quent pattern mining [10] technique to obtain frequent activity patterns which enables
the observation of the inherent structure present in a patient’s daily activity. Gu et al.
[5] exploited the notion of emerging patterns to identify the significant changes
between the classes of data for a smooth and efficient recognition of daily living
activity. A close look at all of these pattern mining approaches may reveal that their
ultimate goal is still to identify or classify subject’s activity.

In this paper, our approach is different in the sense that, we focus on identifying or
mining the inherent regularity of different parameter readings obtained from different
body sensors for the purpose of following up patient’s health condition to prevent some
kinds of chronic diseases. The pattern appearance behavior in transactional databases
has been extensively studied by Tanbeer et al. in [15–17]. In [15] they introduced
regular patterns, a new type of pattern that follows temporal occurrence regularity in a
transactional database. This approach uses a regularity measure determined by the
maximum occurrence interval of a pattern in a database and a regularity threshold to
identify such patterns. This work also proposed a tree-based data structure, called
RP-tree, to capture database information with two database scans. In case of BSN data
stream scenario, however, the database is updated with a new block of data at regular
time intervals (incremental). Thus, the two database-based RP-tree approach is not
suitable in finding regularity in incremental sensor data. The IncRT in [17] also fails to
address the above problem, as it fails to update the tree on transaction deletions.

Hence, to find regularity in BSN data, we propose a novel approach, called the
SDR-tree (Sensor Data Regularity-tree), to capture the updated sensor data information
in a compact manner. Once the SDR-tree is constructed, we use an efficient pattern
growth-based mining technique [10] to mine the inherent regularities in patient read-
ings. Study on both real and synthetic datasets shows that finding inherent regularities
in continuously updated BSN data with SDR-tree is more efficient than that with the
RP-tree.

The remaining part of the paper is presented as follows. We introduce the problem
of finding pattern regularity on updated BSN in Sect. 2. Section 3 presents the structure
and mining technique of our proposed SDR-tree. Section 4 reports the experimental
results and finally, Sect. 5 concludes the paper.

Mining Regularities in Body Sensor Network Data 89

2 Problem Definition

Similar to the problem definition in [17], we present the basic notations and definitions
of the regular pattern mining in body sensor database.

Let L = {s1, s2, …, sn} be a set of body sensors in a particular body sensor network.
A set X = {sj, …, sk} � L, where j ≤ k and j; k 2 ½1; n�, is called a pattern of sensors.
A body sensor database, SD, over L, is defined to be a set of epochs T = {t1, …, tm},
where each epoch t = (tid, Y) is a tuple where tid represents the timeslot-id of sensor
event occurrence (we assume that the time space is divided into equal sized slots) and
Y is a pattern of event-detecting sensors that report events within the same time slot. If
X � Y, it is said that t contains X or X occurs in t and such timeslot-id is denoted as
tXj ,j 2 ½1; m�. Therefore, TX = ftXj ; . . .; tXk g, j; k 2 ½1; m� and j ≤ k is the set of all
timeslot-ids where X occurs in SD.

Definition 1 (a period of X). Let tXjþ1 and tXj j 2 ½1; ðm� 1Þ�, be two consecutive

timeslot-ids in TX. The number of timeslots (or the time difference) between tXjþ1 and tXj
is defined as a period of X, say pX (i.e., pX = tXjþ1 � tXj ,j 2 ½1; ðm� 1Þ�). For the sim-
plicity of period computation, a ‘null’ epoch with no sensor sensor is considered at the
beginning of SD, i.e., tf = null, where tf represents the first epoch to be considered.
Similarly, tl, the last epoch to be considered, is the m-th epoch in SD, i.e., tl = tm. For
instance, in the body sensor database in Table 1 the set of epochs where pattern “S2,S6”
appears is TS2,S6 = {3, 5}. Therefore, the periods for “S2,S6” are 3 (= 3 - tf), 2 (= 5 - 3),
and 4 (= tl - 5), where tf = 0 and tl = 9.

The above occurrence periods present relevant information about the appearance
behavior of a pattern. As discussed in [17], a pattern will not be regular if, at any stage
in database, it appears after sufficiently large period. The largest occurrence period of a
pattern, therefore, can provide the upper limit of its periodic occurrence characteristic.
Hence, the measure of the characteristic of a pattern of being regular in a SD (i.e., the
regularity of that pattern) can be defined as follows.

Definition 2 (regularity of pattern X). Let for a TX, PX be the set of all periods of
X i.e., PX = fpX1 ; . . .; pXr g, where r is the total number of periods of X in SD. Then, the
regularity of X can be denoted as reg(X) = MaxðpX1 ; . . .; pXr Þ. For example, in the
database of Table 1, reg(S2,S6) = 4 i.e., Max(3, 2, 4).

Therefore, a pattern is called a regular pattern if its regularity is no more than a
user-given maximum regularity threshold called max_reg λ, with 1 ≤ λ ≤ |SD|. The
regularity threshold can be set as the percentage of database size e.g., max_reg = 10 % of
|SD| may indicate λ = 0.1 × |SD|. Regular pattern mining problem, given a λ and a SD, is

Table 1. A sensor dataset (SD)

Id Epoch Id Epoch Id Epoch

1 S4, S1, 4 S1, S2,S5, S3 7 S5,S3, S4
2 S3, S2, S1, S5 5 S1, S5,S2, S6 8 S4, S5, S6
3 S6, S1, S5, S2 6 S4, S2, S3 9 S2, S3, S4

90 S.K. Tanbeer et al.

to discover the complete set of regular patterns having regularity no more than λ in the
SD. RPSD refers to the complete set of all regular patterns in a SD for a given max_reg.

Let SD+ and SD− respectively denote the set of added and deleted transactions to and
from SD. The updated database denoted as USD, is obtained from SD[dbþ, or SD[db�,
or SD[dbþ[db�. Given SD, SDi

+/− (i be the number of updates on SD) and a λ,
incremental regular pattern mining, is to discover the RPUSD, regular pattern mining,
is to find the RPSD or RPUSD with the change of λ but keeping the database fixed.

3 SDR-Tree: Design, Construction and Mining

The proposed Sensor Data Regularity-Tree (SDR-tree), is designed to capture complete
(updated) BSN data with a single scan of sensor network readings. It captures all
information of each sensor epoch in a compact structure, that allows us avoid repeated
scanning of the sensor database.

3.1 SDR-Tree Structure

Similar to a RP-tree, the SDR-tree has a root node and a set of sub-trees (children of the
root). It also maintains a header table called sensor data table (SD-table) to capture
information for each distinct sensor with relative regularity. A separate pointer from
each sensor in the SD-table points to the first node in the SDR-tree that carries the
sensor. Similar to an RP-tree, there are two types of nodes in an SDR-tree: the ordinary
node and the tail-node. While both nodes maintain parent, children, and node traversal
pointers, the tail-nodes additionally keep track of all epochs (in a tid-list) where it is the
last node. Thus, N[t1, t2, …, tn], represents a tail-node, where N is the name of sensor
node and ti, is the timeslot-id of an epoch where N is the last sensor sensor (n be the total
number of epochs from the root down to the node). It is important to note that, neither an
ordinary node nor a tail-node in an SDR-tree does maintain support count value in it.

Unlike the R-table in an RP-tree, the SD-table in an SRD-tree consists of five fields
in sequence (i, r, tl, m, p): (i) sensor name (i), (ii) the regularity of i (r), (iii) the most
recent tid where i occurred, (iv) a one-bit flag (m) to indicate any changes for i and (v) a
pointer to the SDR-tree for i (p). The structure and the construction processes of the
SD-table in an SDR-tree significantly differ from those of the R-table in an RP-tree.
Each entry in the SD-table The regularity (r) and tl for each sensor is calculated after
constructing the SDR-tree and traversing it once - as explained in the next subsection.
The m field is set only if the sensor data sensor is modified (i.e., appeared or deleted) in
any epoch in the current database (e.g., either original SD or SD+). The pointer
p facilitates a fast traversal to the tree for sensor i.

3.2 SDR-Tree Construction

The construction of an SDR-tree is similar to that of the FP-tree [10] and RP-tree [12].
However, unlike the FP-tree and RP-tree, it uses (i) single database scan and

Mining Regularities in Body Sensor Network Data 91

(ii) captures the complete database information in a compact fashion. Moreover, an
SDR-tree can be constructed without prior knowledge of the regularity threshold. The
single pass construction also allows the SDR-tree to arrange sensors according to any
canonical order, determined by the user prior to the tree construction-such as lexico-
graphic or alphabetical order, or according to some specific order on sensor properties
(e.g., weights, values, or some constraints). Once the sensor order is determined (say,
for SD), all sensors will follow this order in our SDR-tree for subsequent updated
databases (e.g.,SD[dbþ1 ,SD[dbþ1 [dbþ2 ,…). With this setting (i.e., the canonical order),
an SDR-tree holds the following property:

Property 1. Sensors in an SDR-tree are arranged in a fixed global (canonical) order.
Let us visit the following SDR-tree construction example for the SD in Table 1 in

lexicographic order (in Fig. 1).The construction of SDR-tree starts with an empty root
node. The first inserted epoch is. As shown in Fig. 1(a), the first epoch {S4, S1} (i.e.,
tid = 1) is inserted in lexicographic order, and the tid information of the epoch is
recorded in the tail node “S4:1”. This figure also shows the status of the SD-table which
sets the m-field for both sensors (i.e., ‘S1’ and ‘S4’) indicating that these two sensors
appeared in the current SD. To simplify the figures, we the node traversal pointers are
not shown. After inserting all the epochs in a similar fashion, the final SDR-tree is
given in Fig. 1(b).

As mentioned before, once the SDR-tree is constructed, we use the sensor pointers
from the SD-table to traverse the tree and calculate the regularity (r) of each sensor in
the SD-table. We call this process of updating the SD-table entries as refreshing
the SD-table. To assist this process, we assign a temporary array for each sensor in the
SD-table and accumulate the tid(s) in its tail-node(s) in the array by traversing the
whole tree once. This process of accumulating tid(s) starts from the bottom-most sensor
of the SD-table and ends with the top-most sensor.

Continuing with our running example, after visiting all the tail-nodes of the last
sensor ‘S6’ in the SD-table, the contents of the temporary arrays for sensors ‘S1’, ‘S2’,
‘S4’, ‘S5’, and ‘S6’ (i.e., sensors from tail-nodes up to the root) are S1:{3, 5}, S2:{3, 5},
S4:{3, 5, 8}, S5:{3, 5, 8}, and S6:{3, 5, 8}. We repeat the whole process for each sensor
in the SD-table. Thus, the temporary array of every sensor will contain the complete list
of its tids, very when we finish the tree traversal for the top-most sensor in the
SD-table.. For example, the set of epochs for sensor ‘S1’ we get, T

S1 = {1, 2, 3, 4, 5}.
Then, it is trivial calculation to find the PS1 from TS1, which gives reg(S1) = 4 and tl

(a) SDR-tree after inserting tid = 1

{ }

s1

s4:1

(b) SDR-tree after inserting tid = 9 (c) SDR-tree after refreshing the SD-table

s1

i r p

s2

s3

s4

s5

s6

SD-table
r p

SD-table

4
r

3
2
5
2
3

SD-table
m
×

×

m
×

×

×
×

×
×

pm
×

×

×
×

×
×

tl

5
tl

9
9
9
8
8

tl
s1

i

s2

s3

s4

s5

s6

s1

i

s2

s3

s4

s5

s6

{ }

s1

s2

s3 s5

s4:1

s6:3,5s5:2,4

s2

s3

s4:6,9

s3

s4

s5:7

s4

s5

s6:8

{ }

s1

s2

s3 s5

s4:1

s6:3,5s5:2,4

s2

s3

s4:6,9

s3

s4

s5:7

s4

s5

s6:8

Fig. 1. Construction of an SDR-tree for the SD of Table 1

92 S.K. Tanbeer et al.

value of ‘S1’ = 5. Similarly, for ‘S3’, since T
S3 = {2, 4, 6, 7, 9}, reg(S3) = 2, and tl = 9.

Finally, Fig. 2(c) shows the final status of the SDR-tree and the SD-table with the
regularity and the last tid of each sensor.

The SDR-tree update mechanism discussed above is also effective on updating the
tree on deletion of epoch(s). To keep the tree updated and ready-to-mine condition after
each epoch (say t) deletion, we follow the following steps: First, we visit each tail
nodes, remove the tid of t from its tid-list (if it contains that tid), and decrement tids in
the list by one for the tids greater than tid of t. Second, if the tid-list contains only 0
(zero) or no tid, remove the path from the tail-node up to the root. Third, we refresh the
SD-table to reflect the updated information. Since only tail-nodes in an SDR-tree keeps
epoch information, adjusting only the tid values in tid-lists of tail-nodes guarantees
complete update of the SDR-tree for epoch deletions from the database. It is tempting
to assume that the SDR-tree may be memory inefficient, as it explicitly maintains tids in
it. But, with a further observation we can argue that the memory efficiency is achieved
by an SDR-tree through (i) keeping tid-information only at the tail-nodes and
(ii) avoiding the support count field at each node. Moreover, various efficient frequent
pattern mining tree structures in literature were designed maintaining the tid infor-
mation in it [18].

The SD-table refreshing process terminates the SDR-tree construction, and makes
the tree readily available for mining and/or for further updates. To reflect the next
update for each sensor, all m-fields in the SD-table are reset before the update of the
SDR-tree, or as the mining operation completes.

3.3 The SDR-Tree in Incremental Database

Let the DB in Table 1 is updated by two blocks of epochs (dbþ1 and dbþ2), each block
may consist of one or more epochs, as shown in Fig. 2(a). This figure demonstrates the
status of our SDR-tree after inserting the epoch in dbþ1 . Since the SDR-tree always
maintains a fixed global order, new epochs in dbþ1 (i.e., tids 10 and 11) can be inserted
in the same order following its construction process discussed in the previous sub-
section. It is important to note that, m-field values for ‘S1’, ‘S2’, ‘S4’, ‘S5’, and ‘S6’ in
the SD-table are again set in Fig. 2(b), which specify the appearance of only these
sensors in dbþ1 . Later in this section, we explain how such information (i.e., status in m-
field) in SD-table significantly reduces the mining cost during incremental mining. To

(a) Increment of SD (c) SDR-tree after refreshing the SD-table

SD-table

(d) SDR-tree after db+
2

DB

db1
+

db2
+

SD-table
pm

×

×
×

×

pm

×

×
×

×

5
r

3
2
5
2
3

10
tl

11
9

11
10
8

5
r

3
2
5
2
3

10
tl

11
13
12
12
13

(b) SDR-tree after inserting db+
1

SD-table
pm

×

×
×

×
4
r

3
2
5
2
3

10
tl

11
9

11
10
8

S4, S1,

S3, S2, S1, S5

S6, S1, S5, S2

S1, S2, S5, S3

S1, S5, S2, S6

S4, S2, S3

S5, S3, S4

S4, S5, S6

S2, S3, S4

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

S1, S5, S4

S1, S2

S3, S5, S4

S4, S6

s1

i

s2

s3

s4

s5

s6

s1

i

s2

s3

s4

s5

s6

f:13

{ }

s1

s2

s3 s5

s4:1

s6:3,5s5:2,4

s2

s3

s4:6,9

s3

s4

s5:7, 12

s4

s5

s5:10

s4:11 s6:13

s6:8

{ }

s6:8

s1

s2

s3 s5

s4:1

s6:3,5s5:2,4

s2

s3

s4:6,9

s3

s4

s5:7

s4

s5

s5:10

s4:11

{ }

s6:8

s1

s2

s3 s5

s4:1

s6:3,5s5:2,4

s2

s3

s4:6,9

s3

s4

s5:7

s4

s5

s5:10

s4:11
s1

i

s2

s3

s4

s5

s6

Fig. 2. The SDR-tree on increment of SD

Mining Regularities in Body Sensor Network Data 93

obtain the updated regularity of each sensor, we need to refresh the SD-table once
again. We save substantial amount effort in this process by refreshing the tree only for
the sensors that got set value in the m-field (i.e., for sensors ‘S1’, ‘S2’, ‘S4’, ‘S5’, and
‘S6’). With the help of the contents in the temporary array, and the previous values in
r and tl fields, it is rather trivial to obtain the updated regularity of each of such sensor.
For other sensors in the SD-table (e.g., ‘S3’, and ‘S6’), we consider only the tl value of
each sensor by the tid of tcur (i.e., tcur = 11), and at the same time the updated regularity
of the sensor is calculated using its previous r and tl values. After refreshing the
SD-table, the updated SDR-tree and corresponding SD-table for dbþ1 are presented in
Fig. 2(c). Similar to Fig. 2(c), Fig. 2(d) illustrates the status of the SDR-tree and
corresponding SD-table after the update for dbþ2 .

The SDR-tree update mechanism discussed above is also effective on updating the
tree on deletion of epoch(s). To keep the tree updated and ready-to-mine condition after
each epoch (say t) deletion, we follow the following steps: First, we visit each tail
nodes, remove the tid of t from its tid-list (if it contains that tid), and decrement tids in
the list by one for the tids greater than tid of t. Second, if the tid-list contains only 0
(zero) or no tid, remove the path from the tail-node up to the root. Third, we refresh the
SD-table to reflect the updated information. Since only tail-nodes in an SDR-tree keeps
epoch information, adjusting only the tid values in tid-lists of tail-nodes guarantees
complete update of the SDR-tree for epoch deletions from the database.

It may be considered that SD-table refreshing mechanism of SDR-tree may need
more computation cost compared to scanning the database twice as in RP-tree.
However, we believe that the cost of refreshing the SD-table by traversing the SDR-tree
once is much less than that by scanning the database a second time, since reading epoch
information from the memory-resident tree is much faster than scanning it from the
database.

3.4 Mining an SDR-Tree

As mentioned before, once the SDR-tree is constructed, we can mine regular patterns
from it in a pattern growth-based approach. We proceed to construct the conditional
pattern-base PBi for sensor i, starting from the bottom-most sensor in the SD-table, by
projecting only the prefix sub-paths of nodes labeled i in the SDR-tree. During this
projection, we only include regular sensors. Determination of whether an sensor is
regular can be easily done by a simple look-up (an O(1) operation) at the SD-table.
There is no worry about possible omission or doubly counting of sensors. Since i is the
last sensor in SD-table, each node labeled i in the SDR-tree must be a tail-node.
Therefore, the tid-lists of all such tail-nodes are pushed-up to respective parent nodes in
the SDR-tree and in PBi. Thus, the parent node is converted to a tail-node, if it was an
ordinary node; otherwise (i.e., if the parent is not a tail-node), the tid-list is merged
with its previous tid-list. All nodes labeled i in the SDR-tree and the entry for i in
SD-table are, thereafter, deleted. Similar to the SD-table refreshing technique, to
compute the regularity and the last occurring epoch of each sensor j in the SD-tablei
(i.e., the SD-table for PBi) we refresh the SD-tablei during constructing the PBi.
Therefore, computing reg(ij) from Tij by generating Pij is rather trivial calculation.

94 S.K. Tanbeer et al.

Figure 3(a) represents the status of the SDR-tree of Fig. 1(c) after creating the
conditional pattern-base of ‘S6’ (i.e., the bottom-most sensor in the SD-table) PBS6 for
λ = 3. The entry of ‘S6’ in the SD-table, and all nodes representing sensor ‘S6’ (i.e.,
nodes “S6:3,5” and “S6:8” in Fig. 1(c)) in the SDR-tree are deleted. The tid-list of each
of such node is pushed-up to respective parent node of ‘S5’ in the example. The PBS6 is
constructed by projecting prefix sub-paths of nodes “S6:3,5” and “S6:8”. Figure 3(b)
shows the structure of PBS6 after the projections of the prefix sub-paths. Note that,
nodes of only the regular sensors in each sub-path are accumulated in the PBS6. For
example, nodes of sensors ‘S5’ and ‘S2’ for the node “S6:3,5”, and that of sensor ‘S5’
for “S6:8” together constructs the PBS6. Figure 3(b) also shows the status of the
SD-TableS6 which we obtain by executing the refresh SD-table operation for the PBS6.

The conditional tree for i CTi is, then, constructed from PBi by removing the
irregular sensor nodes respectively from SD-tablei and PBi. The tid-list of the deleted
node is pushed-up to its parent node, as done before. The conditional tree for ‘S6’ CTS6
can be created by removing sensor ‘S2’ from the SD-TablesS6 and node “S2” from the
PBS6, since the regularity of ‘S’ in SD-TablesS6 is greater than 3, the regularity
threshold. The CTS6 is shown in Fig. 3(c). From the CTi we create and store the set of
regular patterns prefixing the sensor i. At the same time, we also store the last tid
related to each pattern. From the CTS6 we generate pattern “S5,S6” with reg(S5,S6) = 3,
and explicitly store the value of tl of ‘S5’ (i.e., 8). The whole process of conditional
pattern-base and conditional tree constructions is repeated until the SD-table becomes
empty. Before the update of the database, the m-field for each sensor in the SD-table is
reset. Therefore, while mining after the next database increment (say, after inserting
dbþ1) we mine only for the sensors m-fields of which in SD-table are found set. Since
we store all regular patterns generated in previous mining operation with respective
last tid, it is easy to update the regularity of other sensors in the SD-table considering
tcur = the last tid in dbþ1 .Therefore, through the above mining process the complete set
of regular patterns for a given max_reg can be generated from an SDR-tree constructed
on a database. The technique is complete due to taking only regular sensor into
consideration and performing the mining operation from bottom to top. Moreover, the
SDR-tree, with its important feature of using previous mining information, offers an
efficient technique in incremental regular pattern mining. The next section reports our
experimental results.

(a) SDR-tree after forming PBS6

{ }

4
r

3
2
5
2

SD-table
pm

×

×
×

×
×

5
tl

9
9
9
8

(b) PBS6 for = 3

{ }

s2

S5:3,5

s5:8

i r
s2 4
s5 3

p

{ }

s5:3,5,8

SD-tableS6

(c) CTS6 for = 3

tl
5
8

i r
s5 3

ptl
8

SD-tableS6s1

s2

s3

s4:1

s5:3,5

s5:2,4

s2

s3

s4:6,9

s3

s4

s5:7

s4

s5:8s1

i

s2

s3

s4

s5

Fig. 3. Conditional pattern-base and conditional tree construction with the SDR-tree of Fig. 1(c)
for λ = 3

Mining Regularities in Body Sensor Network Data 95

4 Experimental Results

We compare the performance of our SDR-tree with that of the RP-tree over several real
(e.g., chess, kosarak) and synthetic (e.g., T10I4D100 K) datasets. There are primarily
two reasons for choosing these commonly used datasets in frequent pattern mining
experiments: the RP-tree is designed for transactional datasets, and they maintain
similar characteristics to sensor epochs. These datasets are obtained from and UCI
Machine Learning Repository (University of California – Irvine, CA). The character-
istics of the datasets are shown in Table 2. For space constraint, we report the results on
only a subset of the datasets. All programs were written in Microsoft Visual C ++ 6.0
and run with Windows XP on a 2.66 GHz machine with 1 GB of main memory.

4.1 Compactness of the SDR-Tree

In the first experiment, we report the results of compactness test for our SDR-tree on
chess, T10I4D100 K and kosarak datasets in Fig. 4. For each of the datasets, we
constructed the SDR-tree and measured the amount of memory it requires in each case
to store the whole database content. T10I4D100 K and kosarak are reasonably large
datasets with large number of transactions, and chess, on the other hand, is a small
dataset with long transactions. The results depicts that even though the SDR-tree
captures the full database information, its size can easily be handled with the currently
available memory.

Table 2. Dataset characteristics

Dataset Size (MB) #Trans #Items Max TL

T10I4D100K 3.93 100000 870 29
chess 0.34 3196 75 37
kosarak 30.50 990002 41270 2498

M
em

or
y

(K
B

)

 Chess)
 T1014D100K
 Kosarak

1

10

100

1000

10000

100000

Dataset

Fig. 4. Compactness of the SDR-tree Fig. 5. Incremental mining on kosarak

96 S.K. Tanbeer et al.

4.2 Experiments on Incremental Mining

We show the results on the effectiveness of SDR-tree in incremental regular pattern
mining on chess (with 3,196 transactions) and kosarak (with around 1 M transactions)
datasets. To obtain an incremental setup for the datasets, we first divided kosarak into 5
consecutive slots of 200 K transactions in each, and chess into 3 consecutive slots of
around 1 K transactions in each. Then we varied the number of incremental updates
and tested the effect on runtime for both RP-tree and SDR-tree. We also varied the
max_reg values at each update. The results are shown in Figs. 5 and 6 over kosarak and
chess datasets, respectively.

For the RP-tree, at each update of database the whole process is executed from the
scratch. However, in the case of our SDR-tree we just perform the SDR-tree update
operation and corresponding mining at each update of database. Note that, Fig. 5 are
opposite to those of Fig. 6. It reflects that, the overall runtime depends on the size of
RPDB as shown in Table 3 for two max_reg values for chess, and kosarak. This table
also shows that for a fixed database, the number of regular pattern increases with the
increase of max_reg in both datasets.

As shown in the graphs, for lower max_reg values and smaller database sizes both
RP-tree and SDR-tree show similar performance. Our SDR-tree, in contrast, uses only a
single scan to insert only the incremented portion of database in the already constructed

321

35

30

20

25

15

Ti
m

e
(s

ec
)

No. of database update (×1K)

 RP-tree (= 0.3%)
SDR-tree (= 0.3%)
 RP-tree (= 0.5%)
SDR-tree (= 0.5%)

10

λ
λ

λ
λ

Fig. 6. Incremental mining on chess

Table 3. No. of regular patterns

Chess Kosarak

λ1 = 0.2 %, λ2 = 0.5 % λ1 = 0.1 %, λ2 = 0.2 %

|UDB| |UDB|
1 K 2 K 3 K 100 K 500 K 1 M

λ1 767 15 39 11 104 342
λ2 3071 1023 559 38 472 1597

Mining Regularities in Body Sensor Network Data 97

SDR-tree and then performs the mining operation. Therefore, the above experiments
demonstrate that our SDR-tree significantly outperforms RP-tree in incremental regular
pattern mining.

5 Conclusions

In this paper, we have introduced the concept of incremental regular pattern mining, a
new interesting pattern mining problem, for body sensor data, and proposed a novel
tree structure, called SDR-tee to efficiently capture the database content to facilitate a
pattern growth-based mining technique. The experimental results demonstrate that the
easy-maintenance feature of our SDR-tree provides the time and space efficiency in
regular pattern mining upon update of database.

Acknowledgement. This project was funded by the National Plan for Science, Technology and
Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi
Arabia, Award Number (12-INF2885-02).

References

1. Barroso, A., Benson, J., et al.: The DSYS25 sensor platform. In: Proceedings of the ACM
Sensys 2004, Baltimore (2004)

2. Gaber, M.M., Gama, J., Krishnaswamy, S., Gomes, J.B., Stahl, F.: Data stream mining in
ubiquitous environments: state-of-the-art and current directions. Wiley Interdisc. Rev. Data
Min. Knowl. Discovery 4(2), 116–138 (2014)

3. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using
body-worn inertial sensors. ACM Comput. Surv. (CSUR) 46(3), 33 (2014)

4. Minnen, D., Starner, T., Essa, I., Isbell, C.: Discovering characteristic actions from on-body
sensor data. In: Proceendings 10th IEEE International Symposium on Wearable Computers,
pp. 11–18 (2006)

5. Gu, T., Wang, L., Wu, Z., Tao, X., Lu, J.: A pattern mining approach to sensor-based human
activity recognition. IEEE Trans. Knowl. Data Eng. 23(9), 1359–1372 (2011)

6. Hemalatha, C.S., Vaidehi, V.: Frequent bit pattern mining over tri-axial accelerometer data
streams for recognizing human activities and detecting fall. Procedia Comput. Sci. 19, 56–63
(2013)

7. Rashidi, P., Cook, D.J.: Mining sensor streams for discovering human activity patterns over
time. In: Proceedings 2010 IEEE International Conference on Data Mining, pp. 431–440 (2010)

8. Lombriser, C., Bharatula, N.B., Roggen, D., Troster, G.: On-body activity recognition in a
dynamic sensor network. In: Proceedings International Conference on Body Area Networks
(BodyNets) (2007)

9. Ali, R., ElHelw, M., Atallah, L., Lo, B., Yang, G-Z.: pattern mining for routine behaviour
discovery in pervasive healthcare environments. In: Proceedings of the 5th International
Conference on Information Technology and Application in Biomedicine, China,
pp. 241–244, 30-31 May 2008

10. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In:
Proceedings ACM SIGMOD International Conference on Management of Data, pp. 1–12
(2000)

98 S.K. Tanbeer et al.

11. Suman, M.C., Prathyusha, K.: A body sensor network data repository with a different mining
technique. Int. J. Eng. Sci. Adv. Technol. 2(1), 105–109 (2012)

12. Mooney, C.H., Roddick, J.F.: Sequential pattern mining–approaches and algorithms. ACM
Comput. Surv. (CSUR) 45(2), 19 (2013)

13. Maqbool, F., Bashir, S., Baig, A.R.: E-MAP: efficiently mining asynchronous periodic
patterns. Int. J. Comput. Sci. Netw. Secur. 6(8A), 174–179 (2006)

14. Amphawan, K., Lenca, P., Surarerks, A.: Mining top-k regular-frequent itemsets using
database partitioning and support estimation. Expert Syst. Appl. 39(2), 1924–1936 (2012)

15. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: CP-tree: a tree structure for
single-pass frequent pattern mining. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A.
(eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 1022–1027. Springer, Heidelberg (2008)

16. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: Mining Regular Patterns in
Transactional Databases. IEICE Trans. Inf. Syst. E91-D(11), 2568–2577 (2008)

17. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S.: Mining regular patterns in incremental
transactional databases. In: Proceedings 12th International Asia-Pacific Web Conference,
pp. 375–377 (2010)

18. Chi, Y., Wang, H., Yu, P.S., Muntz, R.R.: Catch the moment: maintaining closed frequent
itemsets over a data stream sliding window. Knowl. Inf. Syst. l0(3), 265–294 (2006)

19. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S.: Mining Regular Patterns in Data Streams. In:
Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981,
pp. 399–413. Springer, Heidelberg (2010)

20. Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., Jafari, R.: Enabling effective
programming and flexible management of efficient body sensor network applications.
IEEE T. Hum.-Mach. Syst. 43(1), 115–133 (2013)

21. Raveendranathan, N., Galzarano, S., Loseu, V., Gravina, R., Giannantonio, R., Sgroi, M.,
Jafari, R., Fortino, G.: From modeling to implementation of virtual sensors in body sensor
networks. IEEE Sens. J. 12(3), 583–593 (2012)

Mining Regularities in Body Sensor Network Data 99

Smart Cities and Smart Buildings

Task Execution in Distributed Smart Systems

Uwe Jänen1(B), Carsten Grenz1, Sarah Edenhofer1, Anthony Stein1,
Jürgen Brehm2, and Jörg Hähner1

1 Lehrstuhl für Organic Computing, Institut für Informatik,
Universität Augsburg, 86135 Augsburg, Germany

uwe.jaenen@informatik.uni-augsburg.de
2 Leibniz Universität Hannover, Institut für Systems Engineering,

Fachgebiet System- und Rechnerarchitektur, 30167 Hannover, Germany

Abstract. This paper presents a holistic approach to execute tasks in
distributed smart systems. This is shown by the example of monitoring
tasks in smart camera networks. The proposed approach is general and
thus not limited to a specific scenario. A job-resource model is intro-
duced to describe the smart system and the tasks, with as much order
as necessary and as few rules as possible. Based on that model, a local
algorithm is presented, which is developed to achieve optimization trans-
parency. This means that the optimization on system-wide criteria will
not be visible to the participants. To a task, the system-wide optimiza-
tion is a virtual local single-step optimization. The algorithm is based on
proactive quotation broadcasting to the local neighborhood. Addition-
ally, it allows the parallel execution of tasks on resources and includes
the optimization of multiple-task-to-resource assignments.

Keywords: Job-resource-model · Optimization transparency · Virtual
local single-step optimization · Proactive quotation-based optimization ·
Multiple-task-to-resource assignment

1 Introduction

The scientific achievements of the past years enforced a rapid augmentation
of computerized systems, so called smart systems. From the perspective of the
authors, this smart trend is driven by standardization and modularization of sys-
tem components, the increase of computing power and capabilities of individual
system components and their interconnection. This trend makes new applica-
tions possible. The configuration space of individual systems and their possibil-
ities for collaboration have increased significantly. Former passive systems now
can actively service novel application scenarios. Example scenarios are smart
home, smart desktop-grids and distributed smart camera networks. In a smart
home a possible application may be to illuminate the kitchen by a defined lumi-
nous flux. Therefore, a smart electric stove with a lamp, a smart table lamp
or a smart ceiling lamp can be used to fulfill this task. Another example is a
smart desktop-grid with the task of executing a simulation. Therefore, different
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 103–117, 2015.
DOI: 10.1007/978-3-319-23237-9 10

104 U. Jänen et al.

desktop configurations are available, like multi-core CPU and GPU. Within this
work we focus on networks with pan-tilt-zoom capable smart cameras, because
it is one of the most challenging scenarios. In a smart camera network, as
illustrated in Fig. 1(a), the task could be to observe an event with different
cameras. Figure 1(b) shows the system architecture of a smart camera. The new
possibilities to fulfill a task, increase the configuration space rapidly. So, one
question comes up: Which task has to be fulfilled by which smart system com-
ponent? The first research subject is to create a model to handle this new possi-
bility to fulfill tasks by different smart system components. The second research
subject is the optimization of task-to-smart-system-component assignment in
naturally distributed systems with only local algorithms. Both are explained in
the following Sects. 1.1 and 1.2. In the remainder of this paper, we will present
an approach to handle the first and second research subject. Therefore, a job-
resource model will be introduced in Sect. 2. Based on this model, a heuristic
approach for virtual local single-step optimization is presented in Sect. 3. This
approach is capable for parallel execution of tasks on a smart component within
a distributed system. The algorithm will be evaluated on optimization speed and
the capability to solve generalized assignment problem benchmarks in Sect. 6.

(a) Observation in a smart camera network. (b) Smart Camera

Fig. 1. Distributed smart system exemplified as distributed smart camera network.

1.1 First Research Subject: Model Creation

In smart systems, different tools are available to satisfy different tasks. The model
must be independent from the task, the optimization criterion and the smart
system component. Generally, we have to decide whether we prefer centralized,
local or hybrid algorithms in a natural distributed system. On one hand, this
model must support user-objectives such as turn on the light in the kitchen or
rather the observation of an event in a smart camera network. On the other hand,
the system has to support system-wide objectives as well as the optimization to
the resulting global criterion.

1.2 Second Research Subject: Optimization Transparency

In a distributed system using only local knowledge and local algorithms, it is
hard to optimize on global criterion. This is illustrated in Fig. 2. Here, the sce-
nario consists of three smart cameras (SC) and four events to observe. Initially

Task Execution in Distributed Smart Systems 105

in Fig. 2(a), only event 3 and event 4 are observed. The system objective is to
observe as many events as possible. In Fig. 2(b) the obviously best alignment of
the cameras field of view (FoV) is shown. The challenge is to optimize the con-
figuration with local knowledge and local algorithms from the situation depicted
in Fig. 2(a) as close as possible to the optimal state in Fig. 2(b). The system-
wide optimization shall be transparent to the system. This means it will not be
visible to the participants. In particular, we enforce a virtual, local single-step
optimization (VLSO).

(a) Initial situation with three smart
cameras and four observable events.

(b) Obviously best smart camera align-
ment to cover all events.

Fig. 2. Example for an initial situation within a distributed smart camera network.
The network consists of three smart cameras and four events to observe.

2 Job-Ressource-Model to Handle the First Research
Subject

To achieve universality and independence of explicit application scenarios, the
model should contain as much order as necessary and as few rules as possible.
A smart system consists of smart components. Based on the smart camera defi-
nition in [1], a smart component consists of a computing- and a communication-
unit. In addition, it can be optionally extended e.g. by sensors, actuators etc.
(Fig. 1(b)). A smart component can also consist of multiple other smart compo-
nents. Each smart component has a neighborhood RN which is connected ad-hoc
(e.g. wlan). Smart components have a neighborhood relation if they can com-
municate directly with each other. Two smart cameras are in a neighborhood
if they are in the same broadcast domain (layer-2 broadcast in the OSI-model).
Messages will not be forwarded beyond this neighborhood (routing). A smart sys-
tem is used to fulfill different objectives, so called micro- and macro-objectives.
How are they related to the smart components? Micro-objectives are individ-
ual objectives which result in a software instance i.e. a program in the main
storage of a smart component, which can be executed, and the associated data.
Macro-Objectives are superior system-objectives. As an example, we consider a
smart camera network in which two glass break sensors detect events (A and B).
This will automatically create two observation tasks. These micro-objectives are

106 U. Jänen et al.

given to the smart camera network and are represented by software instances.
Both instances compete for the smart cameras. Which instance aquires which
camera has to be determined by the interaction of the software instances. This
interaction is defined by the macro-objective of the system. The macro-objective
could be the maximization of a system-wide observation success for example. We
developed a job-resource-model based on this objective-model. A smart system
component i will further be interpreted as a resource ri from a set of resources
R. A software instance, which pursues a micro-objective n and is bounded by
the interaction rules of macro-objectives, is further called job an, an element of
the set of all jobs A.

2.1 Resources

A resource ri is the reduced representation of a smart component, which can be
allocated by a job an to fulfill its micro-objective. A resource is defined by its
ID i and the estimated success it will provide to a job’s micro-objective running
on it. The success of job an on resource ri is denoted by Pn

i . If a resource i
knows about a micro-objective, it broadcasts information about it proactively
to its neighborhood RN i. This proactive information broadcast is also called
the resource-to-resource-interaction (R2R-interaction). A non-existing resource
(neutral element) will be denoted by r∅.

2.2 Jobs

A job an is a representation of an individual objective, respectively a software
instance. This software instance consists of a management part and an execu-
tion part. The management part is responsible for a self-organized allocation
of a resource. The execution part is e.g. a thread for person detection in single
images. A job is on a resource, if a software-instance is located on the corre-
sponding smart component. A job allocates a resource, if the execution part of
the software instance is running on the smart component. A job, which is on a
resource, has full access to the data on that resource. Jobs can interact by sending
messages and allocating a resource by displacing an other job. This job-to-job-
interaction (J2J-interaction) is defined by the rules of the macro-objectives. The
non-existing job, respectively the idle job on a resource, is denoted by a∅. The
idle job is the only job which can allocate an idle resource and will do this auto-
matically. The job-to-resource-interaction (or J2R-interaction) then is defined as
follows: a job can allocate a resource and exchanges information, if the job is on
the resource. After defining the job-resource-model we can focus on the macro-
objectives which are congruent to the second research subject in the following
section.

3 Proactive Quotation-Based Scheduling to Handle
the Second Research Subject

In the previous section, we introduced an objective-model and derived a job-
resource-model from it. The objective-model distinguishes between micro- and

Task Execution in Distributed Smart Systems 107

macro-objectives. The micro-objectives are individual objectives and macro-
objectives are objectives regarding the whole system. The only admitted way
to enforce macro-objectives in the presented job-resource-model, is to affect the
J2J-interaction. That means the information which has to be exchanged between
jobs and the rules, when a job is allowed to displace another job. So, we need a
local algorithm which is capable to optimize system wide. Such an algorithm shall
avoid long negotiation chains within the whole system. To enlight the challenge,
we present a scene with three smart cameras in Fig. 3. SC1 and SC2 are observ-
ing the events 1 and 2. SC3 is idle. At time stamp T ′ a glass break sensor detects
an additional event 3. The micro-objective to observe this event by a smart cam-
era is represented by a job. On the right of Fig. 3, the related gantt charts to
each resource and each job are depicted. Each bar represents the duration for
how long the event can be observed. The predicted success Pn

i for executing job
an on resource ri is denoted at the end of each bar. The macro-objective is to
increase the system wide observation success:

Psys =
∑

an

Pn
i · [an allocates ri] (1)

with Iverson brackets as [statement] = 1 if statement == true and
[statement] = 0 if statement == false. It is obviously the best solution that
SC1 adjusts its FoV to observe event 3 at time stamp T ′. Then, SC2 switches
its FoV on event 1 and, additionally, SC3 turns on event 2. The challenge is to
avoid long negotiation chains such as job 3 asks job 1 to handover the resource
SC1. Then, job 1 has to ask its neighborhood to change on another smart cam-
era and so on. In general, this simple approach will result in a tree search. As
already said, we try to achieve a transparent optimization with local algorithms
in distributed smart systems. In particular, we want to achieve a virtual, local
single-step optimization (VLSO): From a job’s point of view, it shall seem to
be a local optimization, which only needs one step to complete. Such an algo-
rithm can be found in [3] and it is called Proactive Quotation-Based Scheduling
(PQB). This algorithm will be shortly introduced in the following subsection.
Afterwards, we will extend the PQB algorithm to handle a parallel execution of
several micro-objectives on single resources.

Fig. 3. Network with three smart cameras and two events. At time stamp T ′ an addi-
tional event occurs.

108 U. Jänen et al.

3.1 Single Micro-Objective to Single Resource Association

The main idea is: Each job an allocating a resource ri locally broadcasts a
quotation Qn

i , which has to be fulfilled by another job to displace the offering
job. This is illustrated in Fig. 4, following the example in Fig. 3. The resources
proactively share the possible success of each job they know about with the
neighborhood (Fig. 4(a)). One has to consider that this information will not be
forwarded. Additionally, each job allocating a resource will send its quotation
(Fig. 4(b)). At time stamp T ′ job a3 is created. The resources again proactively
broadcast the possible success (Fig. 4(c)). Job a3 knows about the conditions
to displace job a1 because of the former quotation exchange (Fig. 4(b)). Then,
job a1 will displace job a2. In the last step job a2 will displace the idle job on
resource r3 (Fig. 4(d)). This illustration leads to the question: What was that
quotation which causes job a3 to displace job a1 and temporarily decrease the
local and system-wide observation success? The PQB-Scheduling algorithm is
based on a local mapping of possible system-wide success improvement on a
virtual local improvement of each job. In the following, a quotation Qn

i is called
sales quotation, because a virtual price has to be paid by a job ax to receive
the resource ri from job an. In this context, success is equivalent to virtual
money. A sales quotation solely implies that, if job an releases its resource ri,
the beneficiary job ax has to compensate the loss:

Qn
i = Pn

i (2)

If job an can migrate to an alternative resource ri′ , the quotation has to be
reduced by the predicted success on that resource. To create a low priced quota-
tion for the resource, the job avoids to the resource with the maximum success:

Qn
i = Pn

i − max
i′

{Pn
i′ } (3)

If job an has to ransom the alternative resource ri′ from an offering job an′ , the
possible success on resource ri′ has to be reduced by these costs. The quotation
to be broadcasted by job an on resource ri are given by:

Qn
i = Pn

i − max
i′

{Pn
i′ − Qn′

i′ } (4)

A job an that receives the quotation, has to decide if its current success is greater
than the possible success on resource ri′ . The possible success is given by the
success Pn

i′ subtracted by the costs Qn′
i′ .

Pn
i′,red = Pn

i′ − Qn′
i′ (5)

This approach by itself is not capable to achieve the solution we aimed for (see
Fig. 2(b)), because grouping multiple micro-objectives on one resource is not
supported. In the following, we extend the PQB-Scheduling algorithm to cope
with this challenge.

Task Execution in Distributed Smart Systems 109

(a) Exchange of the possible job
successes within the resource neigh-
borhoods RN i by proactively R2R-
Interaction.

(b) Exchange of quotations within the
resource neighborhoods RN i by J2J-
interaction.

(c) At time stamp T job a3 occurs. Job
a3 knows about the conditions to dis-
place job a1 because of the former quo-
tation exchange.

(d) Job a3 displaces a1. Afterward job
a1 displaces a2 and subsequently job a2

displaces the idle job a on r3.

Fig. 4. Message exchange within the proactive quotation-based scheduling.

3.2 Multiple Micro-Objective to Single Resource Assignment

The calculation of a system-wide optimal grouping of micro-objectives is a hard
problem. There are two general challenges and two problems to adapt the PQB-
Scheduling algorithm to this scenario.

General Problem 1: The success of multiple micro-objectives executed on a
single resource is the sum of the single micro-objective success within that group.
The first problem is the dependency of a single micro-objective success on the
group composition. Simply explained: If job a1 and job a2 share a resource r1,
usually P

a1⊆{a1,a2}
1 �= P a1

1 . This is caused by the sharing of resources. In example
Fig. 2(b), smart camera 2 is for instance not capable to adjust the focus on event
2 and 3 in the same quality as observing only event 2 or event 3.

General Problem 2: The next challenge is to create the groups using only local
knowledge and local algorithms. Two oppositional approaches are conceivable.
In the first approach, the jobs form groups by themselves. The second approach
is to build all possible combinations and only the micro-objective within a group
with the highest success will be actively executed. At first sight, the dynamic
grouping is preferable, because the amount of software-instance increases linearly
with the number of micro-objectives. The amount of all possible combinations
increases exponentially. Unfortunately, the dynamic grouping is hard with the
local knowledge and local algorithms restrictions we choose. An example to show
this issue is depicted in Fig. 5. In Fig. 5(a), the system view of SC1 is depicted.
SC1 is not informed about SC3 and event 5 as shown in Fig. 5(c). So, with this
different knowledge, the optimal camera alignment differs. With the knowledge

110 U. Jänen et al.

(a) System knowledge from the
point of view of SC1.

(b) Best camera alignment from the
point of view of SC1.

(c) System knowledge from the
point of view of SC2.

(d) Best camera alignment from the
point of view of SC2.

Fig. 5. Dynamic grouping on runtime with local knowledge and local algorithms is not
possible.

of SC1, the events 1 and 2 should be grouped. With the knowledge of SC2, event
2 and 3 as well as event 4 and 5 should be grouped.

PQB-Scheduling Problem 1: When calculating a quotation in the PQB-
Scheduling approach, the splitting of a group has to be considered. In Fig. 6(a)
an example is depicted. SC3 is observing event 1 and 2. SC1 and SC2 are not
capable to observe both. The best solution will be that event 1 is observed by
SC1, event 2 by SC2 and event 3 by SC3. So, the calculated quotation must
consider the separation of event 1 and 2. Otherwise, the job that is responsible
for observing event 3 is not able to buy SC3. This will increase the search space
exponentially.

PQB-Scheduling Problem 2: When calculating a quotation in the PQB-
Scheduling approach, the part of a group that remains on the resource has to be
taken into account. Figure 6(b) shows an example. The SC2 is observing event 1
and 2. The best solution will be that event 1 is observed by SC1 and event 2 and
3 by SC2. So, the calculated quotation must consider the separation of event 1
and 2 and, additionally, that job a1 observing event 2 stays on SC2. Otherwise,
the job responsible for observing event 3 is not able to buy SC2. The received
quotation has to be adopted by the receiving group. Unfortunately, this term
cannot be calculated. The quotation is calculated under the constraint that no
parts of the group remain on the resource. Theoretically an alternative more
suitable quotation can exist.

Task Execution in Distributed Smart Systems 111

(a) PQB-Scheduling Problem 1 (b) PQB-Scheduling Problem 2

Fig. 6. Example scenarios for PQB-Scheduling Problem 1 and 2

Formal Description of General Problem 1 and 2 And PQB-Scheduling
Problem 1 and 2: Assuming a group g is allocating resource i. If group g leaves
the resource ri, the displacing job has to compensate the loss of group g. That
equals to Eq. 2.

Qg
i = P g

i (6)

If sub-groups gsub of g are able to split up on several other resources ri′ , this
success on the alternative resources P gsub

i′ has to be subtracted from Qg
i .

Qg
i = P g

i − max
i′,gsub

{
∑

i′
(P gsub

i′)} (7)

Here, the groups offering the alternative resources i′ are donated with g′. It must
be remarked that some parts g′

sub of the displaced groups g′ can be integrated
into the sub-groups gsub.

Qg
i = P g

i − max
i′,gsub,g′

sub

{
∑

i′
(P gsub⊆{gsub∪g′

sub}
i′)} (8)

The price Qg′
i′ has to be paid to displace a group g′ on resource i′. Again, the

following has to be noted: if a sub-group of g′ can be integrated, the price has
also to be adopted to Q

g′\g′
sub, g′

sub∪gsub

i′ .

Qg
i = P g

i − max
i′,gsub,g′

sub

{
∑

i′
(P gsub⊆{gsub∪g′

sub}
i′ − Q

g′\g′
sub, g′

sub∪gsub

i′)} (9)

Equation 9 states a hard combinatorial problem. Additionally, as mentioned in
PQB-Scheduling Problem 2, the term Q

g′\g′
sub, g′

sub∪gsub

i′ can not be calculated
exactly on the base of Qg′

i′ , but it can be estimated. On first sight, the problems
seem to be solved with these equations. But they only represent the problems in
a formal way. The term maxi′,gsub,g′

sub
represents the computationally intensive

part. For calculating a quotation, this part represents how to spread the micro-
objectives on neighboring resources {i′, ..., I ′}.

All these equations contain groups g. But so far it is not clear where these
groups came from.

112 U. Jänen et al.

4 Heuristic Approach for Parallel Execution of Multiple
Micro-Objectives on Resources

We have developed a heuristic solution that solves all these problems in one
stroke. The algorithm is based on a hybrid version of ‘dynamic grouping of
micro-objectives’ and the ‘parallel consideration of all combinations’. For clarity,
throughout the explanations of the following heuristic approach, we will refer
to the example depicted in Fig. 7. It shows a smart camera network initially
consisting of three smart cameras (SC1 - SC3). As depicted, only SC1 is able to
observe event 1-4 simultaneously. SC2 can only observe event 3 and 4, as well as
SC3 can only observe event 1 and 2. Initially, job a1,2,3,4 is executed on resource
r1. Resources r2 and r3 are idle. At time stamp T ′, event 5 occurs which can
only be observed by SC1.

Fig. 7. Initial situation. Reference example for the heuristic approach.

First Step: On each resource, one job is created representing all micro-
objectives which are executable on that resource: aall. In the illustrated example,
these will be a1,2,3,4 for r1, a3,4 for r2 and a1,2 for r3.

Second Step: Each job an,...,N searches for an alternative resource (initially
only aall) and creates an optimization matrix. In the left table of Table 1, the
optimization matrix of job a1,2, which is on resource r2, is depicted. The micro-
objectives m, ...,M are the ones currently allocating the resources in the neigh-
borhood ri, ..., rI . This is denoted by an ‘X’ within the table. The row ‘displaced’
will be needed later.

Third Step: The micro-objectives n, ..., N will be randomly assigned to the
resources ri, ..., rI . The micro-objectives m, ...,M can only remain on the
resource or change to r∅. This assignment is also random. Unallowed assignments
are marked with a ‘-’ in the optimization matrix. If one of the micro-objectives
n, ..., N is already executed on a resource, the corresponding ‘X’ has to be deleted
and it has to be marked in the line ‘displaced’. Every row in the matrix with
a micro-objective of n, ..., N represents a possible group of micro-objectives on
that resource. Only these rows will be considered for the calculation of the matrix

Task Execution in Distributed Smart Systems 113

success. In the right table of Table 1, this is shown for job a1,2 on resource r2.
This local solution will be rated. The success of that group and the costs to buy
the resource has to be calculated: P gsub⊆{gsub∪g′

sub}
i′ − Q

g′\g′
sub, g′

sub∪gsub

i′ . In the
example, this will be P 1,2

3 − Q
a∅

3 . For any displaced job, an extra charge of
the success of that objective within the group on that resource has to be paid,
P an⊆g
i . In the example, this will be P

1⊆{1,2,3,4}
1 and P

2⊆{1,2,3,4}
1 . The third step

is repeated multiple times to find the matrix with the highest success. This
exploration needs a heuristic. We used stochastic tunneling (ST) [10]. In the ST
heuristic a change in the optimization-matrix will occur with a certain proba-
bility which depends on the current success compared to the former success of
that matrix.

Fourth Step: This step starts, when the former step has terminated. If the
success of the matrix calculated in the former step is greater than 0, the following
will happen: Each row represents an assignment of micro-objectives to a resource.
If the micro-objectives n, ..., N are assigned to a single resource ri′ , (not including
any element of {m, ...,M} which is not also included in {n, ..., N}) this job will
displace the offering job on that resource ri′ . If the micro-objectives n, ..., N are
associated to different resources, corresponding to each of these associations,
a time-limited job is created, which starts in the second step of this algorithm.
Time-limited means that the job will remove itself from the system when a timer
expires. The time-limit will be reset after allocating a resource and will not be
decreased until it is displaced. In the example, this means, job a1,2 may displace
a∅ on resource r3, if the success of that matrix is greater than 0. Keep in mind,
the extra charge (see displace row) may be higher than the success, so job a1,2
will not displace a∅ on resource r3.

An additional advantage of this heuristic is, it also can be used to calculate
a quotation. Only the listed resources do not include the resource allocated by
the job itself. Below on the left of Table 2, the optimal optimization-matrix for
calculating the quotation by job a1,2,3,4 allocating resource r1 is depicted.

Now assuming the time stamp T ′ and event 5 occurs. On the right of Table 2,
the optimization matrix of job a5 is depicted. Someone might mention that the
micro-objectives 1 to 4 on the right of Table 2 are assigned to the idle resource

Table 1. Left: Optimization matrix in the second step. Right: Optimization matrix in
the third step.

114 U. Jänen et al.

Table 2. Left: Optimization matrix to calculate the quotation by job a1,2,3,4 on
resource r1. Right: Optimization matrix to illustrate how job a5 takes over r1.

r∅. It has to be considered that a5 is not responsible for job a1,2,3,4. To job a5 it
seems to be a virtual single-step optimization. a1,2,3,4 takes care of the fallback
resources by itself by calculating the quotation.

5 Related Work

In this section, the related work is discussed. First, the job-resource model is
considered. The name of the model is influenced by scheduling theories [2]. The
scheduling theory focuses on the amount of tasks and machines, their type and
their arrival rate to classify the scheduling problem. The presented job-resource
model is more general and focused on distributed smart systems. A job can
be considered as a software agent, respectively intelligent agent, in multi-agent
systems as described in [11]. The approach of using software agents in the execu-
tion of tasks is well established. In Monari et al. [5], an agent-based multi-sensor
process for each object to be tracked in a smart camera network is created. An
agent is focused on the execution of computer vision like data association and
fusion. They used a well defined system architecture called NEST, which is still
a research field [6]. Ukita et al. [9] also used agents. In their approach, the smart
system components are the agents (so called active vision agents). Our focus is
on the definition of a model that is as accurate as necessary and as less restric-
tive as possible. It is more general and defines interaction possibilities to achieve
micro- and macro-objectives.

The second research objective of an optimization transparency and a system-
wide optimization have not been considered in that way before. Most approaches
used in the field of distributed smart camera networks make use of auction based
algorithms like [7], which can be understood as a distributed greedy search. Also,
some algorithms using negotiation chains were developed, for instance in [8]. The
handling of these chains needs more maintaining than the proactive quotation-
based approach we used. The heuristic expanding of this approach [3] enabled
the parallel execution of tasks on smart components, which is a necessity to be
able to track multiple persons by the same smart camera.

Task Execution in Distributed Smart Systems 115

6 Evaluation

We presented an algorithm, which is capable to optimize the execution of multi-
ple micro-objectives on resources. The optimization is transparent to a job and
is especially a local single-step optimization from its point of view. Caused by
the proactive quotation broadcasting, the optimization is done directly and it
is avoiding negotiation chains. To show this, we evaluated the algorithm using
the MASON1 simulation toolbox. We set up a resource network as depicted in
Fig. 8(a). Each resource is only capable to communicate with its direct neighbor
resource. A message needs 3 simulation steps to be transferred from resource to
resource. The graph in Fig. 8 shows the average system success at each simula-
tion step, measured during the evaluation of 10 repeats. During the initialization
phase step 10 to step ∼20, the optimization converges up to a success of 7000.
At simulation step 50, the events 8 and 9 occur. The system needs only 10 steps
to reach the maximum success and to reconfigure the whole network. Keeping
in mind that the message exchange takes 3 steps.

(a) Evaluation setup (b) System success at each simulation step.

Fig. 8. Simulation setup with resulting graph.

In the following, we want to demonstrate the capability to solve a complex
problem, like the generalized assignment problem (GAP) [4] using only local algo-
rithms. Therefore, we used a benchmark set2. The term maxi′,gsub,g′

sub
in Eq. 9

represents the computationally intensive part. This is handled by using stochastic
tunneling (ST) in the third step of the heuristic PQB approach. We compare the
results of stochastic tunneling implemented as central approach to the introduced
local PQB heuristic. A single run of the central ST contains 500 explorations to
find the best assignment. These runs were repeated 200 times within a single sim-
ulation. Each simulation (central ST and local PQB) was repeated 10 times. The
results of the 200th step are depicted in Table 3. It is obvious that the ST heuristic
is not the best approach to solve GAP. The evaluation also showed that the local
1 http://cs.gmu.edu/∼eclab/projects/mason/.
2 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/gapinfo.html.

http://cs.gmu.edu/~eclab/projects/mason/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gapinfo.html

116 U. Jänen et al.

PQB approach is able to reach similarly good results as a centralized approach
with a percentual deviation of 5.37 % and 8.31 %.

Table 3. Comparison of central ST vs. local PQB

Benchmark set Optimal solution Ø central ST Ø local PQB Deviation

c515-1 336 285.0 (stdev:5.88) 269.7 (stdev:11.55) 5.37 %

c515-2 327 283.9 (stdev:5.37) 260.3 (stdev:17.69) 8.31 %

7 Conclusion and Future Work

In this paper, we described a holistic approach for task execution in distributed
systems. Therefore, a job-resource model was introduced. This model pursues
individual objectives (micro-objectives), which might be created by a user, as
well as system-wide objectives (macro-objectives) considering e.g. load-balancing
issues. The optimization of macro-objectives is transparent to a job. More pre-
cisely, to a job it appears as a so-called virtual local single-step optimization
(VLSO). This is achieved by means of the presented technique called proactive
quotation broadcasting (PQB). In the presented algorithm, micro-objectives are
able to share resources. The challenge of grouping objectives on resources, and
an approach to overcome it, was explained. Experimental results revealed the
capabilities of the PQB algorithm, i.e. its fast reaction to disturbances and its
ability for an optimal objective-to-resource assignment.

Future research activities will focus on using alternative heuristics for the
third step of the algorithm, e.g. evolutionary strategies, instead of stochastic
tunneling.

References

1. Bramberger, M., Doblander, A., Maier, A., Rinner, B., Schwabach, H.: Distributed
embedded smart cameras for surveillance applications. Computer 39(2), 68–75
(2006)

2. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of scheduling (1967)
3. Jaenen, U., Spiegelberg, H., Sommer, L., von Mammen, S., Brehm, J., Haehner,

J.: Object tracking as job-scheduling problem. In: 2013 Seventh International Con-
ference on Distributed Smart Cameras (ICDSC), pp. 1–7, October 2013

4. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, New York (1990)

5. Monari, E., Maerker, J., Kroschel, K.: A robust and efficient approach for human
tracking in multi-camera systems. In: Sixth IEEE International Conference on
Advanced Video and Signal Based Surveillance, pp. 134–139, September 2009

6. Mossgraber, J., Reinert, F., Vagts, H.: An architecture for a task-oriented surveil-
lance system: A service- and event-based approach. In: 2010 Fifth International
Conference on Systems (ICONS), pp. 146–151, April 2010

Task Execution in Distributed Smart Systems 117

7. Rinner, B., Dieber, B., Esterle, L., Lewis, P., Yao, X.: Resource-aware configuration
in smart camera networks. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops, pp. 58–65, June 2012

8. Starzyk, W., Qureshi, F.Z.: A negotiation protocol with conditional offers for cam-
era handoffs. In: Proceedings of the International Conference on Distributed Smart
Cameras, ICDSC 2014, pp. 17:1–17:7. ACM, New York (2014)

9. Ukita, N.: Real-time cooperative multi-target tracking by dense communication
among active vision agents. In: IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, pp. 664–671, September 2005

10. Wenzel, W., Hamacher, K.: A stochastic tunneling approach for global minimiza-
tion. Phys. Rev. Lett. 82(15), 3003–3007 (1999)

11. Wooldridge, M.: An Introduction to Multiagent Systems, 2nd edn. Wiley,
Chichester (2009)

Inferring Appliance Load Profiles
from Measurements

Geir Horn1(B), Salvatore Venticinque2, and Alba Amato2

1 University of Oslo, Oslo, Norway
geir.horn@mn.uio.no

2 Second University of Naples, Caserta, Italy
{salvatore.venticinque,alba.amato}@unina2.it

Abstract. Good demand side management in smart grids does not only
depend on the amount of energy consumed by various appliances, but
also on the temporal characteristics of the consumption, i.e. the load
profile of the appliances. Representative load profiles can be used for
predicting future energy consumption. However, a load profile is hard
to characterise as it often depends on the operational conditions of the
appliance when the measurements were taken. For instance the load pro-
file of a washing machine will depend on the amount of cloths and the
inlet water temperature. This paper presents a methodology for empiri-
cally obtaining the load profile from an ensemble of event driven traces
of a stochastically varying mode of an appliance.

Keywords: Smart grid · Demand side management · Appliance load
profiles

1 Introduction

Load forecasting has always been important for planning and operational deci-
sion conducted by utility companies [7]. It is relevant and at the same time
difficult to predict the evolution of the load demand because it depends on
human activity and it changes over time with cycles that are daily, weekly, sea-
sonal. However, load forecasting is essential for effective planning and power
plant management at the energy supplier’s side, and similarly for customers to
avoid running devices when energy prices are higher [13]. With the introduction
of renewable energy sources, demand side management [10] becomes essential as
optimal utilisation of green energy is affected by the lack of alignment between
production and consumption over the day [1].

A micro-grid is commonly confined to a smart home or an office building,
and embeds local generation and storage of renewable energy, and a number
of power consuming devices. There are now several initiatives aiming to foster

The research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007-2013) under grant number 608806
CoSSMic.

c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 118–130, 2015.
DOI: 10.1007/978-3-319-23237-9 11

Inferring Appliance Load Profiles from Measurements 119

a higher rate of self-consumption from decentralised renewable energy produc-
tion by extending the micro-grid to neighbourhoods involving multiple renewable
energy production sites, e.g. photo-voltaic (PV) panels, as well as a range of con-
suming devices. Maximising the use of renewable energy requires shifting loads
to find a good match between consumption and production in the neighborhood
during the day.

This is a complex task, and there is consequently a need for innovative auto-
nomic systems for the management and control of power micro-grids on users’
behalf. This will allow households to optimise consumption and power sales to
the network by a collaborative strategy within a neighborhood. Short-term load
forecasting is essential to help estimating demand and to make decisions about
task scheduling.

This paper discusses how energy profiles corresponding to different working
modes of a device can be measured, learned, and modeled. Sampling is discussed
in Sect. 4, and mode identification in Sect. 5. Section 6 presents a novel technique
for representing program profiles of a consuming appliance, and improving the
profile by statistical learning from continuous device measurements.

2 Related Work

Modern home automation systems offer to customers continuous information and
power measurements of individual devices [16] in terms of households aggregated
consumption or a continuous measurement series for each appliance. However,
unknown factors, such as the randomness of the human consumer behaviour,
make it difficult to develop a theoretical device model. Instead, it is necessary to
monitor and measure real load profiles belonging to single appliances in order to
learn and model the appliance load. An important issue is to find a methodology
for detecting the various modes in a continuous measurement series, recognising
loads in real-time. The main challenges in recognising appliance activity are
mainly due to the following [15]:

– Appliances with similar current draw: The system should be able to discrim-
inate between two appliances with similar or same energy consumption;

– Appliances with multiple settings (modes): Some appliances can be either
tuned according to user needs or have different phases with different associated
consumption, e.g. standby mode or washing cycles. The system should either
understand the various appliance settings or recognise appliances based on
additional data independent from the chosen setting;

– Long appliance cycles: The system should be able to cope with appliances
with long working cycle, which may result in long profiling periods.

The principal benefits for a human consumer are the possibility to monitor power
consumption for informal feedback purposes, coordinating and controlling of
appliances, or for load learning and forecasting. All of these factors are essential
for demand side management of energy consumption [10]. Here we focus on
the sampling of measurement series for each appliance, and the application of

120 G. Horn et al.

modelling techniques and a statistical inference to learn and represent the load
profile. Several studies have proposed methodologies for modelling the loads and
detecting the various modes in continuous measurement series. A large variety
of statistical and artificial intelligence techniques have been developed for short-
term load forecasting. As stated in [7], some typical approaches are:

The Similar-load approach is based on searching historical data about loads
to identify similar characteristics to predict the next load. The forecast can
be a linear combination or regression procedure that can include several
similar loads. Barker et al. presented a methodology for modelling common
electrical loads [4]. The authors derived their methodology empirically by
collecting data from a large variety of loads and showing the significant
commonalities between them.

Regression is the one of most widely used statistical techniques. For electric
load forecasting regression methods are usually used to model the relation-
ship of load consumption and other factors such as weather, day type, and
customer class. Rothe et al. proposed a multi-parameter regression method
for forecasting [14].

Time series methods are based on the premises that the data have an internal
structure, such as autocorrelation, trend, or seasonal variation. These meth-
ods identify a pattern in the historical data and use that pattern to extrapolate
future values. Past results can, in fact, be very reliable predictor for a short
period into the future. Time series forecasting methods detect and explore
such a structure. Classical time series methods like Auto Regressive Moving
Average (ARMA), Auto Regressive Integrated Moving Average (ARIMA),
Auto Regressive Moving Average with eXogenous variables (ARMAX), and
Auto Regressive Integrated Moving Average with eXogenous variables (ARI-
MAX) are the most used appproaches [11].

Artificial Intelligence Techniques that have been used for load forecasting
include expert systems, fuzzy, genetic algorithms, artificial neural network
(ANN), etc. [3] presents an overview of papers on load forecasting based on
AI techniques.

There are already many studies on load inference and forecasting. However,
we are forced to focus on methodologies that are easy to implement using an
Arduino microcontroller. Hence it is necessary to consider both physical limi-
tations in terms of memory and the limited processing capacity of the micro-
controller. For this reason we have excluded Artificial Intelligence techniques
and and Similar-load approaches that are based on a need to train the sys-
tem on historical data to identify similar characteristics to predict the next
load. Nevertheless, Artificial Neural Network (ANN) based solutions have gained
great popularity because of their simplicity and robustness. However, using
ANN methodology alone is insufficient. Numerous articles have concluded that
a hybrid method, which is a combination of different approaches, might be nec-
essary to obtain an optimal prediction, and many different hybrid methods were
explored in [2]. As future work, we propose to compare our method against a
hybrid method based on a combination of ANN and statistical based solutions.

Inferring Appliance Load Profiles from Measurements 121

3 The CoSSMic Multi-Agent System

CoSSMic is an on-going European project that aims at fostering an effective
utilisation of green energy produced by photo-voltaic (PV) panels distributed in
a neighborhood. The CoSSMic approach exploits a multi-agent system (MAS)
to optimise the schedule of consuming tasks to maximise the neighborhood’s
self-consumption of the PV energy.

Each household is a micro-grid composed of consuming appliances, PV pan-
els, and possibly energy storages. Devices are handled by software agents, which
takes care of negotiating energy to be consumed according to the preferences and
constraints of the consumers. In particular, consumer agents know the planned
usage profile of their care-of devices, and these agents learn the energy consump-
tion profile using monitoring information from the device. These energy profiles
are then attached to the bids in the negotiation for produced PV energy in the
neighborhood. Producer agents use a prediction model to estimate the energy
availability by their managed PV panels or energy storage. These agents receive
bids from consumer agents and try to schedule the incoming requests to optimise
the allocation of the production to the energy requests. Such a decentralised pro-
tocol does not exploit the full knowledge about the global energy availability and
hence the produced schedule may not be optimal, however it addresses the com-
plexity of distributed computation of the global schedule at the neighborhood
level.

In fact, more micro-grids of the same neighborhood can connect to the
P2P overlay, extending the energy market to entire districts. This provides a
greater number of consuming tasks and decentralised green energy sources, which
increases the flexibility for improving the overall self-consumption.

XMPP is used as transport protocol for exchanging messages within a single
micro-grid using a local server. The same protocol is used to enable the commu-
nication between agents of different neighborhoods by server-to-server channels,
which allow for extending the local energy market to all the agents belonging to
the connected micro-grids of the same district.

4 Sampling Methodology

A profile describes the predicted evolution of a given parameter over a given
time period. Efficient task scheduling can only be based on the load profiles,
i.e., the temporal power consumption of the devices. Profiles are represented as
time series, i.e. series of time and energy value pairs, and are used for various
purposes. Each device has one or more profiles describing its energy consumption,
production, or charging characteristics, depending on the kind of device. As an
example dishwashers and washing machines typically have different operation
modes, and in that case there is one device profile for each mode. Fundamentally
there are two ways to sample the values of a time series:

Time regular sampling is when the samples are taken at regular intervals.
The samples are equidistant in time, i.e. tk − tk−1 = tk+1 − tk = Δt, where
Δt is the sampling rate identical for all k sample intervals.

122 G. Horn et al.

Event driven sampling is when samples are obtained at irregular intervals
based on the occurrence of some event. In this case the time distance between
two samples is varying.

Time regular sampling is the normal way of converting a continuous signal
to discrete values, as Shannon’s sampling theorem [6] guarantees that the con-
tinuous signal can be reconstructed from its sampled signal if the sampling rate
is twice the highest frequency present in the continuous signal. Thus, one should
first determine the highest frequency of the continuous load, and then fix Δt
accordingly.

There are, in many cases, stochastic variation in an appliance’s energy con-
sumption profile between repeated runs of the same mode. An obvious example is
a particular programme of a washing machine whose energy consumption profile
will depend on the inlet water temperature during the run, and on the amount
of cloths in the machine. Under regular sampling, one can therefore expect a dis-
tribution L (tk) of values in the sample value set L (tk) obtained for time tk. The
average load profile can be represented as the time series (tk, E {L (tk)}). Confi-
dence intervals for this load profile can be given as sample Chebyshev bounds [8],
and tighter confidence intervals can be obtained if there are reasonable reasons
to assume that the empirical sample distribution L (tk) is a representative of
a known probability density function. One would typically base demand side
management [10] in smart energy systems on the upper limit of the confidence
interval for the load profile in order quantify the probability that the variation
in the energy consumption exceeds the load profile of the appliance mode.

Most electricity meters will, however, integrate the energy consumption and
record a sample whenever the sampled appliance has consumed a certain amount
of energy, say, one kWh. This is event driven sampling, and the stochastic varia-
tion expected between runs of a particular mode of an appliance will be reflected
in the recorded time stamps of the sampled series. In an ensemble of runs, one
could consequently expect that each sample has a unique time stamp if the time
resolution is high enough. In practice, the discrete time scale will have a maximal
resolution given by the time resolution of the electricity meters used, and some
samples could end up with the same time stamp.

The above method of deriving statistically the average load profile and its
confidence bounds does consequently not apply for event driven sampling, and
our alternative proposal will be presented in Sect. 6.

5 Detecting Modes of Appliances

Dynamic profiling is needed to predict the energy consumption because it may
change run by run and according to the current working mode. In the initial-
isation phase a default profile could be provided, but a learning approach is
necessary to improve dynamically the characterisation of each working mode.
Initial device profiles can be provided, e.g., by measuring beforehand their con-
sumption. During the trial, the device profile can be measured using smart plug
with metering capability for each run during the different settings.

Inferring Appliance Load Profiles from Measurements 123

Fig. 1. The cumulative energy consumption of an appliance as provided by the energy
meter with the identification of the start and stop periods of the working modes.

In Fig. 1 an excerpt of a time series of energy samples is shown. It has been
extracted from monitoring information about a trial of the CoSSMic project.
For the proposed example the cumulative consumed energy time-series has been
collected using a PG&E Landys+Gyr smart meter.

It is straightforward to observe that the detection of the different runs and the
identification of different working modes from this time-series of energy samples
is itself a challenging task, at least if we aim at using an automatic and unsu-
pervised approach. However in the CoSSMic project such task is leveraged by
the user, who plans the utilisation of smart appliances by a friendly graphical
interface defining the working mode. Moreover the system will be aware about
the starting time because it is switching on the device at the best scheduled start
time that satisfies the user’s constraints.

The time series of in Fig. 1 includes different runs of a washing machine,
but we have no information about the working programs and their start time.
The first issue we addressed is the identification of the different runs. Another
problem is that the consumed energy is sampled with a dynamic rate, that
depends on the amount of energy consumed.

For breaking long measurements into individual runs we used a supervised
technique. In particular a silence threshold for the specific appliance has been
tuned empirically in order to identify the end of each run. The detection of a
start event is triggered by a minimal energy increment between two samples.
Also in this case the energy threshold has been estimated manually. It depends
on the noise measured by the meter and on the specific device. Each interval of
the time series between the start and stop events shown in Fig. 1, by the on and
off arrows, has been normalised by computing the delay of each sample after the
first sample and computing the energy increment from the identified start time.

124 G. Horn et al.

Fig. 2. The various working modes identified from the continuous consumption mea-
surement. Two runs are obviously from the same mode and these will be used to build
the profile for that mode.

In Fig. 2 some identified runs are shown. In a first phase they are clustered
according to their duration. In a second step all the traces of the same cluster
are grouped according the total consumed energy.

6 Representing Statistically the Load Profile

6.1 Minimum Variance Regression

Event driven sampling, as introduced in Sect. 4, of a mode of an appliance basi-
cally produces a set of points where the ordinate values represents cumulative
energy consumption, and the abscissa values are the times these values were
observed.

Every new run of particular mode of a device adds new samples to the obser-
vation set of the ensemble of runs. The load profile for a given mode of an
appliance should represent the mean value of the cumulative energy consump-
tion at a given time based the scattered observation set. It is therefore natural to
think of the load profile as a regression function, i.e. the conditional expectation
of the energy consumption given the time samples. In general, a regression func-
tion is a model of the relation between the independent time variable and the
dependent energy consumption, L(t|θ), where θ is a vector of model parameters.

It is normally not possible to know a good model for the regression function
a priori. One model free solution would be to use smoothing splines that are

Inferring Appliance Load Profiles from Measurements 125

polynomials of degree d between any pair of samples 〈tk, tk+1〉 and the resulting
regression function is continuous in the first (d+1)/2 derivatives. The main issue
with this approach is that the resulting function has as many “pieces” as there
are intervals between samples. The available measurements from various devices
seem to indicate that a device will typically have periods of little consumption,
or “off” periods intermixed with periods of continuous consumption or “on”
periods. This indicates that it should be possible to make the interpolating curves
span larger sections of the sample interval.

Our suggestion is to use basis splines (B-splines) for the regression [9]. Like
smoothing splines the B-spline will consist of a set of continuous polynomials that
are joined to a continuous regression function at a set of knots whose cardinality
may be much less than, and independent of, the cardinality of the observation
set. Furthermore, the geometric properties of the function is determined by a
set of control points. B-splines are generalisations of Bézier curves as the latter
is a B-spline with no internal knots. The design parameters to be chosen are the
number of control points, C, and the degree of the partial spline polynomials, d.

The parameter vector θ will consist of the knot positions and the control
points of the B-spline. The number of parameters will in general be less than the
number of observation points, and the parameter vector will be found by solving
the non-linear programming problem for n equal to the number of observations

min
θ

1
n − 1

n∑

k=1

[L (tk) − L (tk|θ)]2 (1)

As L(t|θ) is the conditional expectation, the objective function in (1) is easily
recognised as the unbiased sample variance of the observations. The resulting
load profile will consequently be a minimum variance regression to the available
observations.

6.2 Making the Observations Bijective

The sampling is a surjective map from the set of sample times {t1, . . . , tk, . . . tn}
to the set of observed cumulative energy consumptions; i.e. for each energy
sample recorded there is a corresponding time. The issue is that this mapping
is not necessarily injective, meaning that there could be many different energy
samples corresponding to the same time tk. The reason for this is the finite time
resolution of the meter making it not too unlikely that two different runs of
the same appliance mode will reach a consumption event at exactly the same
measured time, but with a different cumulative energy consumption recorded.

The mapping function is made bijective by randomly perturbing the sample
time of observations with equal measured time. If the least time interval between
two samples supported by the meter is δT , e.g. one second, one millisecond, one
nanosecond; then a random quantity from the open interval 〈−δT/2,+δT/2〉 will
be added to the original sample time. Because the interval is open, the problem
coinciding times will not be recreated by perturbing two samples to the half same
interval. However, it is necessary to ensure that the random quantities added to

126 G. Horn et al.

all samples at a given time tk are different. This results in Algorithm 1, which is
linear in the number of observations as a result of the scan necessary to do the
partitioning of the observation set in Line 1.

Algorithm 1. Making observations bijective
input : A set of surjective observations O = {(tk, Ek)}
output: A set of bijective observations Ob where no time stamps equal

1 Partition O into subsets Oi such that all time stamps in each subset are equal
2 Ob ← ∅
3 foreach Oi do
4 if |Oi| > 1 then
5 d ← {random (−δT/2,+δT/2)}
6 while |d| �= |Oi| do
7 d ← d

⋃ {random (−δT/2,+δT/2)}
8 foreach (tk, Ek) ∈ Oi and δ ∈ d do
9 Ob ← Ob

⋃ {(tk + δ, Ek)}
10 else
11 Ob ← Ob

⋃
Oi

6.3 A Heuristic for the Knots

The knots are represented by the vector of time points, k, where the different
parts of the spline curve join. In order to satisfy the boundary conditions a
non-periodic B-spline of degree d will have the first d knots at the least time
coordinate in the observation set, and then again d knots at the maximum time
coordinate. The number of internal knots is taken as C−d where C is the number
of control points. A spline is uniform if all the internal knots are equally spaced,
however variable knots will in general give a better regression. The goodness of
the fit of the least-squares regression depends on the knots, and as commented by
de Boor [5, p.239]: “(...) finding a (locally) best approximation (...) is expensive.
(...) an approximation with two or three times as many well chosen knots is
much cheaper to obtain and, usually, just as effective.” We therefore propose
the heuristic of Algorithm 2 to place the knots where there is high variability of
the sample data.

6.4 Finding the Control Points

Given control points C = [c1, . . . , cC] the regression curve is the B-spline given as

� (t|d,k,C) =
C∑

i=1

ciBi,d (t|k) (2)

where the spline basis polynomials are given recursively as

Inferring Appliance Load Profiles from Measurements 127

Algorithm 2. Variable knot heuristic
input : A set of bijective observations O = {(tk, Ek)}

Interpolation polynomial degree d
Number of control points C

output: A vector of knot times k

1 t = [t1, . . . , t|O|]
T // Sorted time samples in O

2 k1 = k2 = · · · = kd = t1 // Set boundary knots

3 i = d + 1 // Next knot index

4 m =

⌈ |O|
C − d

⌉

// Number of samples per knot

5 s = 1 // Start of an observation sequence

6 repeat
7 if mod (m, 2) �= 0 then // Odd number of samples in sequence

8 ki = ts+(m−1)/2 // Median sample time of sequence

9 else // Even number of samples in sequence

10 ki =
(
ts+m/2−1 + ts+m/2

)
/2

11 i = i + 1
12 s = s + m

13 until s > |O| − m
14 if mod (|O| − s + 1, 2) �= 0 then // Odd number of samples remaining

15 ki = t(s+|O|+1)/2 // Median sample time

16 else // Even number of samples remaining

17 ki =
(
t(s+|O|+1)/2−1 + t(s+|O|+1)/2

)
/2

18 for j = 1 to d do // Set boundary knots

19 ki+j = t|O|

Bi,0 (t|k) =

{
1 if ki ≤ t < ki+1

0 otherwise
(3)

Bi,j (t|k) =
t − ki

ki+j − ki
Bi,j−1 (t|k) +

ki+j+1 − t

ki+j+1 − ki+1
Bi+1,j−1 (t|k) (4)

It should be noted that the control points ci are points (ti, Ei) and � is conse-
quently a vector valued function. The load profile function is therefore the second
value in this vector, L(t|θ) = � (t|d,k,C)2.

Since (2) is linear in the control points, the control points can be located by
solving a linear least squares regression problem in both the time and the energy
dimension. Let ct = CT

1 be the first row of the control points, i.e. the vector
of the abscissa or time values, and cE = CT

2 be the vector of the ordinate or
energy values. Let t be the vector of sorted time samples, as in Algorithm 2, and
e the vector of the corresponding energy samples. Define the matrix of spline
basis polynomial values evaluated at the observed event times as

128 G. Horn et al.

B (t|k) =

⎡

⎢
⎣

B1,d (t1|k) . . . BC,d (t1|k)
...

. . .
...

B1,d (tn|k) . . . BC,d (tn|k)

⎤

⎥
⎦ (5)

Evaluated at the time stamps of the observations t, (2) can now be written in
matrix form as � (t|d,k,C) = B (t|k) CT . Given that the number of observations
n, in general, is much larger than the number of control points, (1) corresponds
to finding the cE that minimises ‖e−B (t|k) cE‖2. Similarly, to find the abscissa
of the control points one needs to find the ct that minimises ‖t−B (t|k) ct‖2. It
is beyond scope of this paper to discuss numerical methods to solve stably and
efficiently these two standard least squares problems. The interested reader may
consult [12] for a comprehensive treatment.

It should be noted that the regression function obtained by first finding
the knots by the heuristic of Algorithm 2 followed by solving the least square
problems of this section still yields a minimal variance regression function. The
knot placement only gives a partial specialisation of the parameter vector θ of
(1), and so the resulting load profile is conditioned on the knots k. Without
this specialisation the regression problem becomes less tractable for practical
applications.

6.5 Confidence Interval for the Load

The vector of regression errors follows directly from the minimisation prob-
lem as e − B (t|k) cE . Its sample average is [e − B (t|k) cE]T 1/n where 1 is
a vector with all elements equal to unity. Its unbiased variance estimate is
‖e − B (t|k) cE‖2/(n − 1). Both quantities are readily available after solving
the minimisation problems, and one can then use sample Chebyshev bounds [8]
to establish a confidence interval around the load profile.

This process is illustrated in Fig. 3, which shows the 62 observations of the
same mode indicated as run9 and run13 in Fig. 2. The 95 % Chebychev confi-
dence interval using sample mean and variance is about ±0.092 kWh for these
time series. It evident that scheduling the load based on the upper bound seems
a safe choice.

6.6 New Measurements

Once the appliance has executed a run of a particular mode, one can add the new
set of observations to the past observation for this mode, and gradually build
more confidence in the regression function. Once the new set of observations
has been amalgamated the past observations, one must run Algorithm 1 and
Algorithm 2 again, and expand the matrix (5) with one row before solving the
two minimisation problems again to find the coordinates of the control points.
By perturbing new observations as they are emplaced in the observation set,
Algorithm 1 can be made linear only to the number of new measurements to
insert.

Inferring Appliance Load Profiles from Measurements 129

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Cumulative
Energy (kWh)

Time (s)

Fig. 3. The two runs 9 and 13 of the same mode with the conditional mean load as a
B-spline curve of degree d = 3 with 15 control points and its 95% Chebychev bound
based on the sample mean and variance.

7 Conclusion

Load profiles are used for prediction based demand side management in smart
grids and the scheduling of tasks in micro-grids where a set of appliances from a
neighbourhood of users will be scheduled according to the periods of the day with
the largest production of renewable energy and thereby reducing the need for
energy storage. Energy consumption is stochastic by nature, and it is important
that the load profiles are able to learn statistically as measurements from new
runs of an appliance mode become available.

This paper has highlighted the issues of event driven sampling of the energy
consumption, and proposed a minimum variance B-spline regression function as
a representation of the mean load profile and provided the necessary algorithms
to compute this load profile from the available measurements.

References

1. Amato, A., Di Martino, B., Scialdone, M., Venticinque, S., Hallsteinsen, S., Jiang,
S.: A distributed system for smart energy negotiation. In: Fortino, G., Di Fatta,
G., Li, W., Ochoa, S., Cuzzocrea, A., Pathan, M. (eds.) IDCS 2014. LNCS, vol.
8729, pp. 422–434. Springer, Heidelberg (2014)

2. Asar, A., Hassnain, S., Khattack, A.: A multi-agent approach to short term load
forecasting problem. Int. J. Intell. Control Syst. 10(1), 52–59 (2005)

130 G. Horn et al.

3. Bansal, R.C., Pandey, J.C.: Load forecasting using artificial intelligence techniques:
a literature survey. Int. J. Comput. Appl. Technol. 22(2/3), 109–119 (2005)

4. Barker, S.K., Kalra, S., Irwin, D.E., Shenoy, P.J.: Empirical characterization and
modeling of electrical loads in smart homes. In: International Green Computing
Conference, IGCC 2013, Arlington, VA, USA, 27–29 June 2013, Proceedings. pp.
1–10 (2013)

5. de Boor, C.: A Practical Guide to Splines, Applied Mathematical Sciences, vol. 27.
Springer, New York (1978)

6. Claude, E., Shannon, C.E.: Communication in the presence of noise. Proc. Inst.
Radio Eng. 37(1), 10–21 (1949)

7. Feinberg, E., Genethliou, D.: Load forecasting. In: Chow, J., Wu, F., Momoh,
J. (eds.) Applied Mathematics for Restructured Electric Power Systems. Power
Electronics and Power Systems, pp. 269–285. Springer, US (2012)

8. Saw, J.G., Yang, M.C.K., Mo, T.C.: Chebyshev inequality with estimated mean
and variance. Am. Stat. 38(2), 130 (1984)

9. Höllig, K., Hörner, J.: Approximation and Modeling with B-Splines. Society for
Industrial and Applied Mathematics, Philadelphia (2014)

10. Gelazanskas, L., Gamage, K.A.A.: Demand side management in smart grid: a
review and proposals for future direction. Sustain. Cities Soc. 11, 22–30 (2014)

11. Mahmoud, A., Ortmeyer, T., Reardon, R.E.: Load forecasting bibliography phase
ii. Power Apparatus Syst. IEEE Trans. PAS 100(7), 3217–3220 (1981)

12. Björck, Å.: Numerical Methods for Least Squares Problems. Other Titles in
Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM)
(1996)

13. Rathmair, M., Haase, J.: Simulator for smart load management in home appliances.
In: SIMUL 2012 : The Fourth International Conference on Advances in System
Simulation, pp. 1–6 (2012)

14. Rothe, M., Wadhwani, D.A., Wadhwani, D.: Short term load forecasting using
multi parameter regression. Int. J. Comput. Sci. Inf. Secur. 6(2), 303–306 (2009).
arxiv.org/abs/0912.1015

15. Ruzzelli, A., Nicolas, C., Schoofs, A., O’Hare, G.: Real-time recognition and pro-
filing of appliances through a single electricity sensor. In: Proceedings of the 7th
Annual IEEE Communications Society Conference on Sensor Mesh and Ad Hoc
Communications and Networks (SECON), pp. 1–9, June 2010

16. Wood, G., Newborough, M.: Energy-use information transfer for intelligent homes:
Enabling energy conservation with central and local displays. Energy Build. 39(4),
495–503 (2007)

http://arxiv.org/abs/0912.1015

Intra Smart Grid Management Frameworks
for Control and Energy Saving in Buildings

Antonio Guerrieri1(B), Jordi Serra2, David Pubill2, Christos Verikoukis2,
and Giancarlo Fortino1

1 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica,
Università della Calabria, 87036 Cosenza, Rende, Italy
aguerrieri@deis.unical.it, g.fortino@unical.it

2 Centre Tecnològic de Telecomunicacions de Catalunya (CTTC),
Castelldefels, 08860 Barcelona, Spain
{jserra,dpubill,cveri}@cttc.es

Abstract. In the context of Smart Grids and Internet of Things (IoT)
Systems, distributed monitoring and actuation through Wireless Sensor
and Actuator Networks (WSANs) is fundamental to control the energy
usage in buildings. Moreover, the realization of algorithms for the opti-
mization of the energy consumption is of paramount importance. This
paper presents a loosely coupled integration between a flexible manage-
ment framework for WSANs, namely the IGMF (Intra-Grid Management
Framework), and a Dynamic Energy Scheduler with local control on
sensors and actuators, namely the ITESS (IoTLAB Energy Scheduling
System). The integrated system allows the users to manage whole build-
ings applying Dynamic Energy Schedulers for different environments.

Keywords: Smart grid · Internet of things · Wireless sensor and actu-
ator networks · Building management · Energy scheduler

1 Introduction

New technologies are creating novel opportunities in the monitoring and in the
maintenance of buildings [1,2]. In this context, the continuous monitoring of
buildings can lead to the realization of important services (e.g. energy utilization
optimization) that can be merged with the so called “intra-grid” network [3] that
controls and regulates the energy consumption in the part of the Smart Grid [4]
that is located within the buildings. One of the best methods to monitor and
control buildings is through the utilization of Wireless Sensor and Actuator
Networks (WSANs) [5] that allow any arrangement of sensors/actuators inside
a building. WSANs offer a more flexible solution to audit buildings and con-
trol equipment with respect to traditional systems, which require retrofitting
the whole building and therefore are difficult to implement in existing struc-
tures. Solutions based on WSANs for the building monitoring and control can
be installed in existing structures with minimal efforts. This enables an effective

c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 131–142, 2015.
DOI: 10.1007/978-3-319-23237-9 12

132 A. Guerrieri et al.

distributed monitoring of building structure condition, and building space and
energy (electricity, gas, water) usage while facilitating the design of techniques
for intelligent actuation of devices in buildings. In order to transparently and
easily use WSANs, several frameworks have to date been implemented [6]. One
of these is the IGMF (Intra-Grid Management Framework) [6] that is a domain-
specific framework designed for the flexible and efficient management of WSANs
deployed in buildings. The IGMF allows an effective management of (large) sets
of cooperating networked WSAN nodes, a flexible node group organization to
capture the floor plan of the buildings, tecniques for intelligent and distributed
sensing and actuation, heterogeneous WSANs integration, system programming
at low- and high-levels, quick deployment and update of applications to the
WSAN through message exchange.

Through the use of WSANs in buildings, important considerations about the
energy spent can be done. The optimization of the energy consumption in build-
ings is of paramount importance in the future smart grid. The rationale behind
this optimization is twofold. On the one hand, the energy demand is growing at a
faster pace than the grid capacity which has provoked blackouts as well as envi-
ronmental concerns [7]. This leads the utilities to incentivize a more rational and
efficient energy consumption. To do so, they implemented smart pricing tariffs
which are based on a variable energy price [8]. On the other hand, from the user
side, the optimization of the energy consumption in buildings leads to impor-
tant savings, especially under the smart pricing tariff paradigm. Several works
in literature have to date tackled the problem of energy profiling/energy opti-
mization in buildings [9]. Within the context of smart pricing, energy scheduling
is the state-of-the-art methodology to address this problem from an analytical
point of view [8]. Regarding the power-shiftable loads, heating, ventilation and
air conditioning (HVAC) modules are considered as the most energy demanding
appliances in home buildings [10,11]. According to studies, they represent the
43 % of residential energy consumption in the U.S. and the 61 % in U.K. and
Canada. The significant energy consumption of the HVAC systems, along with
their direct influence on the user’s well-being, highlight the necessity for effec-
tive HVAC management algorithms that reduce the power consumption in the
buildings, taking into account the end-user’s comfort. In [12] IoTLAB Energy
Scheduling System (ITESS) has been presented. Such system comprehends two
HVAC energy scheduling methods in an IoT framework, where the users are
able to interact remotely with the HVAC control system. In particular, the users
may retrieve information about the temperature and the energy consumption at
various spots of the building under control, while they are also able to remotely
configure the desired temperature of comfort in given places.

This paper proposes the integration of the IGMF with the ITESS. Such inte-
gration leads to a whole system that allows the users to manage buildings applying
Dynamic Energy Schedulers for different rooms. Thereby, IGMF permits a more
flexible and scalable deployment of the HVAC energy scheduling approach.

The rest of the paper is organized as follows: Sect. 2 introduces some related
work about the integrations of systems; Sect. 3 presents the IGMF, the ITESS,
and the characteristics that their integration can have; Sect. 4 shows an example

Intra Smart Grid Management Frameworks for Control and Energy Saving 133

of loosly coupled integration applied to the systems introduced in the previous
Section. Finally, in Sect. 5 some conclusions are drawn.

2 Related Work

The integration of heterogeneous systems is a notable issue, widely addressed
both in academia and industry. Different integration solutions have been devel-
oped leading to different levels of coupling, that is the degree of direct knowl-
edge that one element (or even, one system) has of another one. On the basis
of the direct knowledge degree, in literature the integrated systems are usually
divided into:

– Loosely Coupled Systems, in which multiple components can cooperate
and interoperate regardless of hardware, software, incompatible technologies
and other functional features. Moreover, to work properly they do not need
to be dependent on each other.

– Tightly Coupled Systems, in which hardware and software are not only
linked together, but are also inter-dependent, so that the slightest variation
from the original status of one of the composing elements implies adverse
effects;

These approaches may be applied at different levels [13]:

– at physical level, a tightly coupling implies a direct link between the compo-
nents while a loosely coupling usually relies on physical intermediary devices;

– at communication level, tightly coupled systems usually exploits a synchro-
nous communication style while loosely coupled systems an asynchronous one;

– at management level, the tightly coupling approach usually exploits a central-
ized control of process logic. On the contrary, the loosely coupling exploits a
distributed control;

– at service level, services are discovered and bound statically in tightly coupled
systems, while in loosely coupled systems it is done dynamically.

It is worth noting that both the approaches are not good or bad per-se,
because everything depends on the benefits to be obtained after the integration
process.

Such paper will mainly focus on loosely coupled architectures. Loose cou-
pling occurs when the interconnected systems elements are highly inter-operable
but at the same time minimally inter-dependent. In this case, the integrated
system testing, maintenance and recovery costs are reduced, while system flex-
ibility, modularity, robustness and agility increase. To realize a loose coupling,
virtualization-based and gateway-based solutions are commonly exploited at dif-
ferent levels of the system architecture. Virtualization allows the creation of a
digital artefact of a single device or of a whole system, with the aim of hiding
the underlying complexity and reducing at same time the overall interdepen-
dency. Gateway-based solutions, instead, aim at increasing the interoperability,

134 A. Guerrieri et al.

establishing shared standards and protocols to facilitate the integration of het-
erogeneous components/systems. Both these approaches realize loose coupling
mainly by exploiting the Software Agent and the Web Service paradigms. In
literature have been proposed several examples of loosely coupled integration.
iCore [14] is a cognitive management framework for the IoT, in which every real
world object (RWO) is virtualized into a digital always-on alter ego, called virtual
object (VO), reflecting RWOs status and capabilities. The interactions between
RWOs and related VOs happen through gateways, using the REST interface over
various wireless or wired access technologies. The ITEA3 project [15] provides
a network and services infrastructure for autonomic cooperating smart objects,
with the goal of simplifying the development and the deployment of the distrib-
uted applications. Similarly to iCore, in ITEA3 heterogeneous components are
concretely connected through gateways which exploit a REST interface. Vital
framework [16] aims at federating heterogeneous IoT architectures and platforms
in the context of the Smart Cities, loosely coupling them by means of different
PPIs (Platform Provider Interfaces), which are specified and implemented as
a set of RESTful web services and represent a uniform way for accessing the
services and data sources regardless of the underlying platforms or providers.
Butler [17] and Santander [18] frameworks present a unified, open and hori-
zontal platform to provide services in the context of the Smart Cities. They
both exploit a gateway, (defined SmartObject Gateway for Butler, SmartSan-
tanderGateway for Santander) which relies on the REST paradigm and allows
the interconnection of different networks to achieve access and communication
among embedded devices, servers and mobile terminals.

3 The IGMF / IoTLAB Energy Scheduling System
Integration

This section introduces the IGMF, the ITESS, and their system integration.

3.1 The IGMF

The IGMF (Intra-Grid Management Framework) [6] is a domain-specific frame-
work based on WSANs that allows both a proactive monitoring of spaces and
a flexible control of devices. The IGMF has the aim to overcome the limits
of the frameworks already presented in literature by providing: (i) an effective
management of (large) sets of cooperating networked WSAN nodes; (ii) flexible
node group organization to capture the floor plan of the buildings; (iii) tec-
niques for intelligent and distributed sensing and actuation; (iv) heterogeneous
WSANs integration; (v) system programming at low- and high-levels; (vi) quick
deployment and update of applications to the WSAN through message exchange.
Figure 1 shows a component layered based representation of the IGMF. It is
worth to be noted that the layers are divided in BS-Side (basestation-side) and
Node-Side depending on the place where they are deployed. BS-Side and Node-
Side communicate through the IGMF Communication Protocol. The Node-Side
components are:

Intra Smart Grid Management Frameworks for Control and Energy Saving 135

– the Hardware Sensor Platform which allows the interaction with platform
specific sensors/actuators and radios;

– the WSAN Management which allows the communication according to the
IGMF Communication Protocol;

– the Sensing and Actuation Management which provides a platform-
independent access to all the sensors/actuators in the node;

– the Node Management which coordinates all the components for the task
execution;

– the Local Group Management which enables the nodes to manage their groups.
A node can be configured according to its group membership;

– the In-node Signal Processing which allows the nodes to calculate synthetic
data on the samples collected from sensors;

– the Multi Request Scheduling which manages periodic requests for sens-
ing/actuation.

The BS-Side layers are:

– the Heterogeneous Platform Support which allows the upper layers of the BS-
side part to communicate with different platforms;

– the WSAN Management which allows the communication with the BS and
the other nodes according to the IGMF Communication Protocol;

– the Group Management which manages the organizations of the nodes in
the WSAN in groups. Groups are designed to represent physical or logical
characteristics of the nodes;

– the Request Scheduling which allows high-level applications to use the WSAN.

On top of the Request Scheduling Layer an IGMF Manager & GUI, an IGMF
manager providing a graphical interface that permits the local control of the
IGMF WSAN, has been implemented. It allows to manage nodes and groups, to
schedule requests for sensing/actuation, to visualize the nodes on the floor plan
of a building, and to print charts of data from sensors.

3.2 The ITESS

In this section a description of the IoTLAB Energy Scheduling System (ITESS)
is provided. Figure 2 presents a block diagram of the overall architecture. It
consists of the following elements:

(i) A set of HVAC modules.
(ii) A set of actuators that control the HVAC modules.
(iii) A WSN, which sends measurements of temperature and energy consumption

to a gateway.
(iv) A gateway (GW) that incorporates the proposed energy scheduling methods

and connects the local network to the Internet. That is, it contains a web
server and a database to store data received at the GW from the WSN or
the internet.

136 A. Guerrieri et al.

Fig. 1. The IGMF architecture.

(v) An embedded IP device (e.g., tablet or smartphone) with an interface to
interact with the HVAC energy scheduler. It also displays both the temper-
ature and the energy consumption in the building measured by the WSN.

The functionality and flow of information of the proposed architecture is
explained as follows. The temperature is measured at several locations by means
of the WSN. Then, the measurements are periodically sent to the gateway, where
the energy scheduling algorithm is implemented. This algorithm selects the com-
bination of the active HVAC modules that minimize the energy cost for given
comfort constraints and energy price during a particular time period. These
decisions are sent, through shell commands, to programmable surge protectors
(actuators), which actuate on the HVAC modules. The HVAC modules modify
the room temperature according to the decisions taken by the energy scheduler.
In [12], two energy schedulers are proposed: the Dynamic Energy Scheduler
with Comfort Constraints (DES-CC) and the Dynamic Energy Scheduler with
Comfort Constraints Relaxation (DES-CCR), see [12] for further details.

Moreover, the gateway hosts a database to store the measurements of temper-
ature and energy consumption. These measurements can be accessed by a remote
Internet user. More specifically, they are displayed at the user’s IP device, as the
gateway implements a web server which manages the communication between the
remote user and the local database. This is illustrated in more detail in Fig. 2,
where the connections between the most relevant blocks are shown. Furthermore,
users are allowed to interact with the energy scheduler through their IP devices,
by setting the upper and lower bounds of the temperature of comfort.

To get more insights, let us shed light on the temporal behavior of the energy
schedulers and the role of the temperature constraints on it. Note that the energy
scheduler works in a time interval basis. At the end of each time interval (“current
time” in Fig. 3), the energy scheduler must make a new decision. That is, it must
decide which HVAC modules will be active during the next time interval. In order
to make this decision, the energy scheduler should predict which would be the
temperature provoked by each configuration of HVACs. As there are K HVAC
modules and we assume that they are either turned on or off, this corresponds
to predict 2K curves of temperature, as it is illustrated in Fig. 3. These predicted
temperatures are denoted by Tpji (n), where 1 � i � M denotes the i-th node and
1 � j � 2K is the j-th combination of HVACs turned on or off. Finally, on one

Intra Smart Grid Management Frameworks for Control and Energy Saving 137

Fig. 2. Block diagram of the energy scheduler with comfort constraints system.

Fig. 3. Prediction of temperature, a fundamental step of the energy scheduler to assess
comfort in the future time interval.

hand, the DES-CC selects the configuration of HVACs that minimizes the energy
consumption cost within the bounds of comfort, i.e., Tmin

i � Tpji (n) � Tmax
i ,

while the DES-CCR selects the HVAC configuration that optimizes the tradeoff
between being closer to the comfort temperatures Tu,i and saving energy. This
selection is executed by the actuators that control the HVAC modules. It is
worth to remark that the higher the number of sensors, the more accurate is the
temperature measurement and thus the comfort assessment, though the overall
computational cost increases. Also, the temperature dynamics do not change
very fast, thereby the sampling rate can be rather slow, in practice it has been
observed that 30 seconds is enough for a proper behavior of the system. Last
but not least, the higher the time window for taking decision the least accurate
the predictions. The interested reader is referred to [12] for further details.

3.3 IGMF / ITESS

The IGMF and the ITESS are two complementary systems that can present
several advantages when used together. In particular, they both use WSANs to

138 A. Guerrieri et al.

sample the real world but, while ITESS is configured to use only wireless nodes
that sample temperature, the IGMF provides (and can complete the ITESS with)
a flexible framework that can be used both to collect data from heterogeneous
sensor nodes and to wirelessly control actuators. On the other side, the ITESS
can complete the IGMF with mechanisms to control ethernet actuators. More-
over, the ITESS provides a remote interface to control its system that can be
used to control the integrated IGMF/ITESS. Finally, the IGMF can have access
to the energy schedulers from the ITESS so applying its own energy schedulers.

In particular, the integrated system main features will comprehend:

– the management of a range of cooperating networked wireless nodes in the
different parts of the structure;

– the capture of the morphology of any building so to correlate sensed data to
a specific portion of the building;

– the adaptive management of sensing and actuation techniques;
– the management of network communication to allow different duty cycles for

different wireless nodes;
– the low and high level programmability of the network;
– the fast deployment of concurrent applications at runtime;
– the energy consumption optimization of HVAC systems taking into account

the user’s comfort constraints and smart pricing tariffs in smart grids;
– the integration with Internet of Things (IoT). Remote users can oversee the

energy consumption and the temperature of the building under control;
– remote users can interact with the HVAC control system by setting the desired

temperature of comfort.

4 A Loosely Coupled Integration Between the IGMF
and the ITESS

A loosely coupled integration between the IGMF and the ITESS and based on
Web Services has been designed. In particular, Fig. 4 shows a high level view of
the IGMF and the ITESS where:

– the IGMF Wireless Sensor and Actuator Network layer represents all the
WSAN nodes on which the IGMF is deployed;

– the IGMF layer represents the framework presented in Sect. 3.1;
– the IGMF Manager & GUI layer represents the access point to use the IGMF

compliant WSAN;
– the ITESS Gateway is the one described in Sect. 3.2, i.e. it contains the energy

scheduler, the server and the database that permit the interaction with exter-
nal systems;

– ITESS WSAN is the WSAN taking temperature measurements;
– ITESS Ethernet Actuators are a set of actuators that control the HVAC

modules.

Both the IGMF Manager & GUI and the ITESS Gateway expose a REST
interface and stream sensor data. The following subsections will show the main
designed high level functions that both the IGMF and the ITESS expose.

Intra Smart Grid Management Frameworks for Control and Energy Saving 139

Fig. 4. Loosely Coupled Integration design between IGMF and ITESS.

4.1 IGMF Exposed Functions

The main designed high level functions that have been exposed by the IGMF
to be integrated with the ITESS are shown in this section (see Fig. 5). In par-
ticular, this functions have been partially introduced in [3]. In the functions
the concept of group has been highlighted. Every node belongs to one or more
groups. A group is a set of nodes sharing logical (e.g. a sensor on its board)
or physical (e.g. the place where a node is placed) characteristics. Using group
composition/intersection flexible set of nodes can be addressed all at once. This
possibility is important in a complex environment such as the building one.

It is worth to be noted that most of the functions (except 4, 5, 9) return an
acknowledgment if the message has been successfully sent to the WSAN. The
functions are explained in the following:

1. Creates a new group starting from a list of groups and a set theory operator
to combine them;

2. Modifies a group according to a ModifyMethod (add/remove/update) and
to a list of groups and a set theory operator to combine them;

3. Removes the group received;
4. Returns all the groups already created by the IGMF;
5. Returns all the nodes in a specific group;
6. Schedules a specific sensing task, configured according to the passed Sensor-

Params, on a group;
7. Schedules a specific actuation task, configured according to the passed Actu-

atorParams, on a group;
8. Unschedule the received request;
9. Returns all the requests already running in the IGMF;

10. Resets the nodes belonging to the passed group;
11. Provides a login operation for the loosely coupled system.

It must be noted that the commands 1–10 can only be invoked by the coupled
system (that owns specific rights).

4.2 ITESS Exposed Functions

In this section a list of high level functions, provided by ITESS, are presented.
They allow the interaction of IGMF with ITESS. In Fig. 6 the complete list of

140 A. Guerrieri et al.

1) GroupAck addGroup(GroupList, Operator)
2) GroupAck modGroup(Group, ModifyMethod, GroupList, Operator)
3) GroupAck delGroup(Group)
4) GroupList getGroups()
5) NodeList getNodes(Group)
6) RequestAck scheduleSensorRequest(Group, SensorParams)
7) RequestAck scheduleActuatorRequest(Group, ActuatorParams)
8) RequestAck unscheduleRequest(Request)
9) RequestList getRequests()
10) ResetAck resetNode(Group)
11) LoginAck login(User)

Fig. 5. The IGMF exposed functions.

1) [EnergySchedulerAck,EnergySchedulerID]=setEnergyScheduler(GroupList, EnergySchedulerParams)
2) EnergySchedulerList getEnergyScheduler()
3) EnergySchedulerAck modEnergyScheduler(EnergySchedulerID, EnergySchedulerParams)
4) EnergySchedulerAck delEnergyScheduler(EnergySchedulerID)
5) IoTPlotID=newIoTPlot(data,FigParams)
6) IoTPlotAck=delIoTPlot(IoTPlotID)
7) LoginAck=login(User)

Fig. 6. The ITESS exposed functions.

the functions that permit the interaction is shown. In the following, the functions
are explained in more detail.

1. Permits to define a new energy scheduler with comfort constraints for the set
of nodes defined by “GroupList”. The variable, “EnergySchedulerParams”
contains the parameters that characterize the energy scheduler, such as the
temperature of comfort bounds, the energy cost definition or the energy
scheduling interval.

2. Obtains a list of the energy schedulers that are currently active.
3. Modifies the parameters of the energy scheduler (specified by the “Ener-

gySchedulerID” identifier).
4. Deletes, i.e. it stops, the activity of the energy scheduler (specified by the

“EnergySchedulerID” identifier).
5. Creates a new IoT plot service. This will permit to plot the data measured by

a group of WSAN nodes (managed within IGMF) into the device of a remote
user (connected through ITESS).

6. Removes the plot associated to IoTPlotID.
7. Permits to login in a user. This allows him or her to use the previous described

functions.

5 Conclusion

This paper has introduced a loosely coupled integration of the IGMF and the
ITESS. The loosely coupled integration allows the systems to cooperate and
interoperate without hardware or software dependencies. In particular, the sys-
tems have been integrated through sets of functions that have been exposed
through REST interfaces.

Intra Smart Grid Management Frameworks for Control and Energy Saving 141

Future work will be devoted to the real implementation of the presented
loosely coupled integration and on the definition of a tightly coupled integration
between the IGMF and the ITESS.

Acknowledgments. This work has been partially supported by E2SG project, funded
by ENIAC Joint Undertaking under grant agreement n. 296131 and from the national
program/funding authority of Italy.

This work was partially supported by the Catalan Government under grant 2014-
SGR-1551.

References

1. Snoonian, D.: Control systems: smart buildings. IEEE Spectr. 40(8), 18–23 (2003)
2. Ceriotti, M., Mottola, L., Picco, G., Murphy, A., Guna, S., Corra, M., Pozzi, M.,

Zonta, D., Zanon, P.: Monitoring heritage buildings with wireless sensor networks:
the Torre Aquila deployment. In: International Conference on Information Process-
ing in Sensor Networks, IPSN 2009, pp. 277–288, April 2009

3. Guerrieri, A., Geretti, L., Fortino, G., Abramo, A.: A service-oriented gateway
for remote monitoring of building sensor networks. In: Proceedings of the 2013
IEEE 18th International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), pp. 139–143, September 2013

4. Liotta, A., Geelen, D., van Kempen, G., van Hoogstraten, F.: A survey on networks
for smart-metering systems. Int. J. Pervasive Comput. Commun. 8(1), 23–52 (2012)

5. Stankovic, J.: When sensor and actuator cover the world. ETRI J. 30(5), 627–633
(2008)

6. Fortino, G., Guerrieri, A., O’Hare, G., Ruzzelli, A.: A flexible building management
framework based on wireless sensor and actuator networks. J. Netw. Comput. Appl.
35, 1934–1952 (2012)

7. Lu, G., De, D., Song, W.: Smartgridlab: a laboratory-based smart grid testbed.
In: IEEE International Conference on Smart Grid Communications, pp. 143–148
(2010)

8. Mohsenian-Rad, A.H., Wong, V., Jatskevich, J., Schober, R., Leon-Garcia, A.:
Autonomous demand-side management based on game-theoretic energy consump-
tion scheduling for the future smart grid. IEEE Trans. Smart Grid 1(3), 320–331
(2010)

9. Diakaki, C., Grigoroudis, E., Kolokotsa, D.: Towards a multi-objective optimization
approach for improving energy efficiency in buildings. Energy Build. 40(9), 1747–
1754 (2008)

10. Wood, G., Newborough, M.: Dynamic energy-consumption indicators for domes-
tic appliances: environment, behaviour and design. Energy Build. 35(8), 821–841
(2003)

11. Avci, M., Erkoc, M., Asfour, S.: Residential HVAC load control strategy in real-
time electricity pricing environment. In: 2012 IEEE Energytech, pp. 1–6, May 2012

12. Serra, J., Pubill, D., Antonopoulos, A., Verikoukis, C.: Smart HVAC Control in
IoT: energy consumption minimization with user comfort constraints. Sci. World
J. 2014, 1–11 (2014)

13. Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: service-oriented architecture
best practices. Prentice Hall Professional, Upper Saddle River (2005)

142 A. Guerrieri et al.

14. Vlacheas, P., Giaffreda, R., Stavroulaki, V., Kelaidonis, D., Foteinos, V., Poulios,
G., Demestichas, P., Somov, A., Biswas, A.R., Moessner, K.: Enabling smart cities
through a cognitive management framework for the internet of things. IEEE Com-
mun. Mag. 51(6), 102–111 (2013)

15. An, S., Park, S., Oh, H., Yang, J., Park, H., Choi, J.: Lightweight web-based
communication interface design for web of objects. In: 2013 15th International
Conference on Advanced Communication Technology (ICACT), pp. 535–539. IEEE
(2013)

16. Petrolo, R., Loscr̀ı, V., Mitton, N.: Towards a smart city based on cloud of
things. In: Proceedings of the 2014 ACM International Workshop on Wireless and
MobileTechnologies for Smart Cities, pp. 61–66. ACM (2014)

17. Butler (2011). http://www.iot-butler.eu/download/publications
18. Sanchez, L., Muñoz, L., Galache, J.A., Sotres, P., Santana, J.R., Gutierrez, V.,

Ramdhany, R., Gluhak, A., Krco, S., Theodoridis, E., et al.: Smartsantander: Iot
experimentation over a smart city testbed. Comput. Netw. 61, 217–238 (2014)

http://www.iot-butler.eu/download/publications

Urban Crowd Steering: An Overview

Claudio Borean1, Roberta Giannantonio1, Marco Mamei2, Dario Mana1,
Andrea Sassi2, and Franco Zambonelli2(B)

1 Telecom Italia Lab, Turin, Italy
{Claudio.Borean,Roberta.Giannantonio,Dario.Mana}@telecomitala.it

2 DISMI, University of Modena and Reggio Emilia, Modena, Italy
{Marco.Mamei,Andrea.Sassi,Franco.Zambonelli}@unimore.it

Abstract. Smart phones and environmental sensors make it possible to
dynamically monitor the positions and patterns of movements of people
in urban areas and public spaces, identify or predict possible dangerous
situations (e.g., overcrowded areas) or simply recognize the profitability
of a different patterns of distribution and collective movements. In this
overview paper, we focus on the problem of using such technologies also
to steer the movement of people. In particular, this paper has the goal of
motivating the general problem of crowd steering, identifying the tech-
nologies that can be put to play to enforce crowd steering strategies, and
presenting the possible strategies that can be adopted to steer people
movements, other than the key research challenges.

1 Introduction

The diffusion of smart phones, environmental sensors, and various classes of
cameras, make it possible to monitor at very fine-grained levels of details a variety
of social and urban phenomena. These technologies are being already widely used
to understand the dynamics of cities [6], there included the understanding of the
pedestrian mobility patterns [12,19,24]. Also, they have been used for urban
planning, e.g., to design walkaways and the structure of museums etc., other
than to simulate pedestrian and crowd movements with high levels of details
based on real data.

However, smart phones also introduce the possibility of feed backing users
with information about the current crowd conditions in a town, and possibly to
suggest them directions in order to better move in the city, i.e., to avoid crowd or
simply to get alerted about specific conditions. Closing the feedback loop make
a big shift from simply “sensing crowd” to “actuating crowd”, i.e., steering the
behavior of people so as to serve both their individual needs and the global needs
of the city [13,30].

The technologies that can be put at work to enforce steering goes beyond the
simple app on smart phones, but can include advanced wearable systems and
interfaces (such as vibration and sound) [26], and also technologies to collectively
suggest all people in a specific location (e.g., in a room) how to move, such
as public sound announcements or public displays [9,22]. In addition, societal
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 143–154, 2015.
DOI: 10.1007/978-3-319-23237-9 13

144 C. Borean et al.

or economic incentives can be put at work to encourage people to follow the
suggestions [16,17].

Clearly, given the availability of crowd steering technologies, there must be
some strategy to identify which suggestions to give. The main problem here is
to have strategies to serve individual needs co-exists with possibly conflicting
strategies to serve the global needs of the environment in which users situates.

This paper has the goal of overviewing some of the many issues related to
crowd steering in urban spaces. In particular, the article:

– Motivates the need for crowd steering in urban spaces, to serve both individual
and global needs (Sect. 2);

– Introduces the key technologies that can be put already at work to support
crowd steering, and those that promise to be available soon (Sect. 3);

– Classifies and presents some of the more promising strategies that can be
devised to support crowd steering at both individual and global level (Sect. 4);

– Surveys some of the key related works in the area (Sect. 5);

Section 6 concludes and outlines some open challenges in crowd steering.

2 Crowd Steering: Motivations

The problem of steering the movements of people can arise as a mean to help
individuals or groups in achieving their own mobility objectives at the best, or
as a mean for the institution that manage an environment to achieve some sort
of overall distribution property within it (e.g., at urban scale or at the level of
exhibition or museum), or both.

2.1 Steering to Support Individual Needs

We have all experienced the situation of moving in crowdy and unfamiliar places.
In several cases, this can have become an uncomfortable experience, and we have
desired some solutions to orient ourselves in a more informed way, and move by
avoiding the crowd while reaching in any case the places we wanted to reach.

Most navigation systems in vehicles (e.g., Waze and Google Transit) already
include solutions to suggest routes based on the detected traffic conditions, so as
to avoid queues and minimize travel time. However, when it comes to pedestrians,
none of the existing pedestrian navigation system consider the actual density
of people in streets and walkways, and none of them exploit knowledge about
current crowd conditions to suggest directions.

There are several reasons why individual people moving in an environment
may wish to be altered on where to move, and such motivation slightly differs
from those typically motivating vehicles. In particular:

– When moving in environments such as museum or big exhibitions or city fairs,
pedestrians (unlike car drivers) are not simply willing to reach a specific point.
They rather wish to visit a number of different places (e.g., museum rooms),
but may have no clue on what could be the best order in which to visit them.

Urban Crowd Steering: An Overview 145

– As it happens to drivers, it may also happens that pedestrians can be slowed
down in their speed by extreme crowd conditions, for which it is good to receive
advice on how to avoid crowd. However, for pedestrians, avoiding crowd may
be useful also for simply better enjoying a place (as it happens in museum).

– In some cases, pedestrians may wish to receive suggestions on how to move
within an environment so as to avoid peculiar situations, such as moving across
unsafe neighborhoods or extremely polluted streets.

All the above considerations are particularly critical for groups of people
sharing similar interests or goals, and willing to share a mobility path across
an environment. Examples of such groups may include groups of tourists, and
groups of teachers herding young children around.

As a final consideration, the need of dynamically forming groups in which
individuals can join and leave while the group walks across a path (as in walking
school buses [29]), necessarily requires some form of steering to facilitate the
dynamic shaping of the group.

2.2 Steering to Support Institutional Goals

Shifting the attention from the level of individual needs to a more global – insti-
tutional – level, steering the movements of people can be used by the administra-
tor of some public spaces likely to host crowdy events (e.g., a large museum, an
exhibition, a fair, a stadium, a large park) to promote a better or safer exploita-
tion of the space. More specifically, the goals of an institutional crowd steering
strategy may include:

– Load balancing, to ensure a fair exploitation of the available space and dis-
tribute people evenly. For instance, load balancing may aim at avoiding that
people during an exhibition concentrate in specific areas with no apparent
reasons (or simply because that area is easier to be reached), an approach
we have experienced at the Vienna City Marathon [22]. In addition, load bal-
ancing may be aimed at ensuring that all areas of an exhibition receive a
similar amount of visitors (e.g., consider the case in which exhibitors pay to
be present and would not tolerate being penalized for being at an unfortunate
location).

– Planning for evacuation, to ensure that the distribution of people facilitates
a quick evacuation from the area. Such an issue may be particularly safety-
critical for dangerous situations but – independently of safety issues – it may
also be important to ensure no one is penalized with this regard. For instance,
at some airport (such as Heathrow) the waiting time at different security gates
is advertised via public displays, implicitly enforcing a local balancing crowd
distribution strategy, in that displays implicitly invite people to move towards
the less crowded gates.

– Enforcing other specific strategies, such as favoring the movements of specific
classes of persons, or wishing to attract people towards specific location at a
specific time. For instance, crowd-sensing campaigns (e.g., exploiting people as

146 C. Borean et al.

sensors by having them report about or photograph some events in some spe-
cific locations [15,23]) may require dynamically mobilizing people according
to some specific sensing goal.

Of course, whatever the goals to be achieved, any institutional strategy for
crowd steering has to account for the fact that a percentage of people can decide
to ignore the suggestions, and follow their own mobility paths in autonomy.
Clearly, depending on the adopted strategies and technologies, this will somehow
affect the effectiveness of the crowd steering strategy.

3 Crowd Steering Technologies

Crowd steering is enabled by a number of recently emerged ICT technologies
and – most importantly – by their low cost and massive spread.

3.1 Detecting People Location and Density

The first, necessary, ingredient of any crowd steering approach in an area is the
capability of detecting the location and density of people in portions of that area.
With this regard, the number of technologies available is increasing in terms of
number and accuracy.

For outdoor scenarios, smart phones currently have a high degree of pene-
tration and high accuracy in localization (thanks to the concurrent exploitation
of GPS, cellular telephony signal, and WiFi triangulation).

For indoor scenarios, the dense deployment of WiFi access point makes it pos-
sible to achieve high-levels of accuracy via WiFi triangulation even indoor [18].
In addition, novel low-cost technologies based on beacons [31] (small bluetooth-
enable boxes to be detected by a smart phone, and that enable the smart phone
to effectively estimate its distance from it) can very effective to achieve accurate
indoor localization. It is also worth mentioning that cameras and artificial visions
can be used as well to analyze the presence of people in a room or corridor and
their density.

3.2 Smart Phones and Mobile Apps

Smart phones, other than a very important tool to localize people (as discussed
in the previous subsection), are a very important mean via which to enforce
crowd steering strategies. In fact, the primary mean by which we can expect
a crowd steering strategy to inform individuals about a suggested route, is via
some mobile app on a smart phone.

We do not exclude that in the near future different personal appliances will
emerge as the primary mean via which to receive crowd steering suggestions.
Given that the big hype for smart glasses is over, smart watches – if at all
successful – will be definitely a suitable tool to adopt. It is also worth outlining
that smart watches, other than being suitable for suggesting directions with
traditional GUI (e.g., showing a map and, using the compass, a direction on it),
will enable exploring alternate means for suggestion (e.g., vibrations or sounds).

Urban Crowd Steering: An Overview 147

3.3 Digital Signages and Public Displays

Public digital signals are already widely adopted in vehicular traffic to dynami-
cally provide (near) real-time traffic information, and increasingly often to sug-
gest routes to vehicles. However, we are assisting also to the application of digital
signals and public displays to suggest directions to people, and to enforce specific
crowd steering policies [10] (as it in the already mentioned examples of displays
signaling the length of queues at Heathrow airport).

In the future, with the increasingly dense deployment of interactive wall-
mounted displays, it will be possible to exploit such displays to provide real-time
information on the density of crowd at different location. Also, it will be possible
to use displays to suggest passing-by people where to go, typically with the goal
of enforcing some kind of global-goal strategy. Clearly, exploiting public displays
to enforce private-goals strategies would raise notably privacy concerns, in that
it would disclose possibly sensible information about individuals’ intentions and
goals [11].

3.4 Morphable Architectures

A last technology, possibly a bit more futuristic, by which it will be possible in
the future to steer the movement of people according to some strategy include
morphable architectures: places in which it is possible to dynamically change
the topology of space (i.e., making walls and door appear and reappear, as it
happens during the nights in the scenario of “The Maze Runner” [8]) so as to
force specific patterns of movements in the crowd.

To some extent, dynamic signage can already obtain similar effects (e.g., by
making a one-way sign appears at the beginning of a street). However, recent
conceptual experiments (e.g., the Slothbot moving wall, http://arch-os.com/
projects/slothbot/) shows that the concept could be applied for crowd steering
as well.

4 Strategies

In the previous section, we have presented the enabling technologies for crowd
steering, i.e., to collect information about the distribution of people in an envi-
ronment (and possibly about their own mobility intentions) and to actuate steer-
ing actions. In this section, we discuss possible “crowd steering strategies” to
analyze location and mobility data and decide which steering actions to actuate.

To create an effective taxonomy of possible strategies, we identify three
(nearly) orthogonal axis along which strategies might vary: (i) strategies with
aims to achieve a local goal vs. strategies that aims for some global goals, (ii)
strategies using local information vs. strategies that exploit some global infor-
mation, and (iii) strategies giving personalized recommendations to individual
users vs. strategies that multicasting recommendations to groups of users.

As it often happens with taxonomies, there are not crisp boundaries among
the categories and the taxonomy space is a continuum of possibilities.

http://arch-os.com/projects/slothbot/
http://arch-os.com/projects/slothbot/

148 C. Borean et al.

Local VS. Global Goal. The goal of steering strategies is to “arrange” people in
the environment in order satisfy specific criteria. A local goal is simply about
sidestepping a local condition (e.g., an overcrowded room). A global goal is about
achieving a global distribution of people in the environment. More specifically:

– Local goal strategies aim at recommending users about the next step to take.
For example, a local goal could be “avoid neighbor crowded rooms”. The sys-
tem would recommend the user not to visit a neighbor crowded room. This
kind of strategies can be useful to better navigate across an environment side-
stepping blocked or crowded areas.

– Global goal strategies aim at giving recommendations to influence the long term
behavior of users. These strategies can be formulated with a user-centered per-
spective (e.g., “minimize the time to visit the environment”), or an environment-
centered perspective (e.g., “balance the crowd in the environment”).

Local VS. Global Information. The information available to the steering compo-
nent might be local (i.e., the component provides recommendation on the basis
of nearby crowd conditions), or global (i.e., the steering component oversee the
whole environment).

– Local information strategies give recommendations by taking into account the
user local neighborhood only. For example, a local information strategy can
recommend user to visit the least crowded neighbor room.

– Global information strategies give recommendations on the basis of the knowl-
edge of the whole people distribution across the environment.

Personalized Unicast VS. Multicast. The steering component might provide per-
sonalized recommendations to individual users (e.g., via their smartphone), or
general recommendations to a whole group of people (e.g., via public displays).

– Strategies adopting a personalized unicast approach can give recommenda-
tions via the users’ smartphones. Using data from the smartphone (e.g., user
location and planned itinerary) such strategies are able to highly personalize
the steering recommendation.

– Strategies adopting a multicast approach can typically give recommendation
via displays deployed in the environment. Recommendation can take into
account approximate users location (as represented by the display own loca-
tion) and other information, but it cannot be specifically tailored to individual
users, as all users would see the same steering advice.

Figure 1 illustrates the taxonomy. Specifically, we describe exemplary systems
that would fit in each area of the taxonomy space:

– Recommend Detours and Greedy Steering. In these strategies the system rec-
ommends a next step (detour) on the basis of the crowd conditions in the
user local neighborhood. In Recommend detours, the system can interact with
users individually proposing detours compatible with the user planned trip.

Urban Crowd Steering: An Overview 149

In Greedy steering, the system cannot give personalized advices so it tends to
greedily steer users where most convenient at the moment. In our simulation
set up we tested a strategy of this latter kind termed Hot Potato (HP). It
is finally worth noting that the repeated execution of local goal strategies,
often induce global “emergent” behaviors. On the one hand, these emergent
behaviors can represent a global version of the local strategy. On the other
hand, such behaviors are often hard to predict and control [14].

– Gray Areas. These strategies are very uncommon. In fact, once global infor-
mation is available, it is rather natural to pursue global goals rather than local
ones. Global information is often an overkill for local goals.

– Emergent Planning and Swarm Intelligent Mechanisms. These strategies try to
exploit some kind of collective (i.e., swarm intelligence) mechanism to achieve
a global goal on the basis of local information only. In emergent planning
personalized recommendations can be given to individual users, accordingly
the problem is to coordinate individual movements toward the achievement
of the global goal. In swarm intelligent Mechanisms control over individuals
is much more coarse and self-organizing algorithms could be used [14,22].

– Navigator and Traffic Control. These strategies exploit global information
to achieve a global steering goal. Navigator strategies guide individual users
across the environment on the basis of all the information available. In our
simulation set up we tested a strategy of this king termed Best Path (BP).
Traffic control strategies try to achieve a similar goal but without addressing
individual users. These are like of coordinating traffic lights in a city to steer
the traffic.

Fig. 1. Taxonomy of steering strategies

An example of a local info - global goal strategy, suitable both for personal and
unicast and multicast recommendation, is what can be called the Hot Potato one.
Simply, the hot potato strategy recommends the agent to visit the less crowded
stand among its adjacent ones that belong to the agent’s planned itinerary.

150 C. Borean et al.

As an example of a global info - global goal strategy, suitable for unicast
recommendations, is what can be called the Shortest Path one. This shortest
path strategy takes into account the distance between a user and all the stands in
its itinerary, and the crowding level at the stand and on the path to reach it. The
two measures are linearly combined together by using two weighting parameters
that complement to 1. They balance the influence of each component according
to their respective standard deviations to the means computed with all the stands
to visit. The ratio between the standard deviation of the mean distance and the
mean crowding from the user’s location to all the stands determines the value
of the weighting parameter for the distance component. Its complement to 1
determines the weight for the crowding component in the linear combination.

5 Related Work

The study of mechanisms and strategies for crowd steering is quite a recent
research area.

In the past decade, most of the studies on crowd steering have focussed on
analyzing and simulating mobility patterns and behaviours in an environment,
and at shaping the environment (e.g., changing size of corridors and moving
doors so as to affect paths [1,14]) so as to enforce specific behaviours. In most
of the cases, the key goals was to avoid overcrowded situations, prevent the
formation of waves of people moving in opposite directions, and more in general
ensure safety of public environments and roads.

It is worth emphasizing that this kinds of studies involve an accurate mod-
eling and simulation of pedestrians ‘behaviors’, and indeed a large amount of
recent work deals with the issue of defining realistic models for such simulations
[20,21,27]. Such simulation approaches, though, have rather different goals than
our. In fact, they are mostly aimed at identifying how the behaviour of individ-
uals in an environment (either modeled via mobility rules or by replicating the
mobility schemes of real mobility data) can possibly lead to the emergence of
peculiar (or dangerous) crowd phenomena. Being our studies simply focussed at
identifying strategies to avoid overcrowding, we are more focussed on modeling
at a coarse-grained level the movement of people across zones of an environment,
and thus with no need for realizing realistic fine-grained model at the levels of
individual mobility.

In the area of collective robotics [4], a large amount of work has been devoted
to the problem of engineering (i.e., defining strategies and algorithms) to orches-
trate the movements of (typically) a large number of robots. The kinds of col-
lective movements that such approaches aims at orchestrating depends on the
specific missions the robot swarms is deployed for. However, many classes of
exploratory tasks (e.g., mapping an environment or monitoring it) involves a fair
distribution of the swarm over the environment as its composing robots move.
Accordingly, some of the strategies that can be devised to this purpose resembles
the strategies we have identified for crowd steering [3,5,25]. Yet, robots misses
an individual goal, and move only with a global cooperative goal in mind.

Urban Crowd Steering: An Overview 151

Fig. 2. The “heat map” of a simulated environment, showing the density of simulated
users in an environment.

The problem of dynamic load balancing [2] – extensively studied over the past
20 years in the area of parallel and distributed high-performance computing –
somehow relates to the study of crowd steering. Dynamic load balancing concerns
re-allocating at run-time the processes composing the parallel computation so
as to fairly balance the computational load on the processors, and eventually
speed up the overall computation. In load balancing, some of the strategies upon
which to base the decisions on which processes to move on which processors can
somehow resemble the strategies we have discussed for crowd steering [7,28], and
so can be the goal of balancing the overall distribution of processes. However,
the approach are fundamentally different: in load balancing, movements of the
processes is a mean and can be strictly enforced on processes; in crowd steering,
movement are also the goals of the individuals and, in most of the cases, the
strategies cannot be strictly enforced on all individuals.

6 Conclusions and Future Work

Smart phones, pervasive sensing, and interactive displays can be effectively put
at work in public spaces to suggest pedestrians how to move based on current
crowd conditions, on their specific mobility needs, or on other contingencies. The
paper has shown that, beside technologies, there exists a number of reasons to

152 C. Borean et al.

enforce crowd steering, and that a number of possible strategies can be devised
to follow in steering.

However, before the adoption of crowd steering can be widespread and effec-
tive at large scale, a number of open research challenges still needs to be face:

– There is need to extensively experiment with different crowd steering strate-
gies, to understand how global goals can co-exists with individual ones, and
to understand the impact of different amount of information (from local to
global) on the effectiveness of crowd steering strategies;

– Concerning technologies, there is need to understand the actual impact of the
different technologies, in terms of efficacy and acceptance by users, which can
be done only on real deployment;

By our side, we are currently performing experiments in a simulated envi-
ronment (see Fig. 2) to assess the trade-off between global vs. local information
in load balancing strategies. Also, we intend to deploy a crowd steering system
based on interactive displays in a controlled (indoor) environment.

Acknowledgements. Work supported by the Telecom Itala, Swarm Joint Open Lab.

References

1. Abdelghany, A., Abdelghany, K., Mahmassani, H., Alhalabi, W.: Modeling frame-
work for optimal evacuation of large-scale crowded pedestrian facilities. Eur. J.
Oper. Res. 237(3), 1105–1118 (2014)

2. Alakeel, A.M.: A guide to dynamic load balancing in distributed computer systems.
Int. J. Comput. Sci. Inf. Secur. 10(6), 153–160 (2010)

3. Beal, J.: Superdiffusive dispersion and mixing of swarms with reactive levy walks.
In: 7th IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems, SASO 2013, pp. 141–148. Philadelphia, PA, USA, 9–13 September 2013

4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

5. Capodieci, N., Hart, E., Cabri, G.: Artificial immune system driven evolution in
swarm chemistry. In: Proceedings of the 2014 IEEE Eighth International Confer-
ence on Self-Adaptive and Self-Organizing Systems, pp. 40–49. IEEE, Piscataway,
NJ, December 2014

6. Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J.R., Mellouli, S., Nahon, K., Pardo,
T., Scholl, H.J.: Understanding smart cities: An integrative framework. In: IEEE
Hawaii International Conference on System Sciences, Maui (HI), USA (2012)

7. Corradi, A., Leonardi, L., Zambonelli, F.: Diffusive load-balancing policies for
dynamic applications. IEEE Concurrency 7(1), 22–31 (1999)

8. Dasher, J.: The Maze Runners. Delacorte Press, New York (2009)
9. Davies, N., Langheinrich, M., José, R., Schmidt, A.: Open display networks: a

communications medium for the 21st century. IEEE Comput. 45(5), 58–64 (2012)
10. Davies, N., Clinch, S., Alt, F.: Pervasive Displays: Understanding the

Future of Digital Signage. Synthesis Lectures on Mobile and Perva-
sive Computing. Morgan & Claypool Publishers, New York (2014).
http://dx.doi.org/10.2200/S00558ED1V01Y201312MPC011

http://dx.doi.org/10.2200/S00558ED1V01Y201312MPC011

Urban Crowd Steering: An Overview 153

11. Davies, N., Langheinrich, M., Clinch, S., Elhart, I., Friday, A., Kubitza, T., Sura-
jbali, B.: Personalisation and privacy in future pervasive display networks. In: CHI
Conference on Human Factors in Computing Systems, CHI 2014, pp. 2357–2366.
Toronto, ON, Canada, 26 April– 01 May 2014

12. Ferrari, L., Mamei, M.: Classification of whereabouts patterns from large-scale
mobility data. In: WOA (2010)

13. Helbing, D., Brockmann, D., Chadefaux, T., Donnay, K., Blanke, U.,
Woolley-Meza, O., Moussaid, M., Johansson, A., Krause, J., Schutte, S., Perc, M.:
How to save human lives with complexity science. CoRR abs/1402.7011 (2014).
http://arxiv.org/abs/1402.7011

14. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd
dynamics: experiments, simulations, and design solutions. Transp. Sci. 39(1), 1–24
(2005)

15. Kanhere, S.: Participatory sensing: crowdsourcing data from mobile smartphones
in urban spaces. In: IEEE International Conference on Mobile Data Management.
Bengaluru, India (2012)

16. Koutsopoulos, I.: Optimal incentive-driven design of participatory sensing systems.
In: 2013 Proceedings of IEEE INFOCOM, pp. 1402–1410. IEEE (2013)

17. Lee, J.S., Hoh, B.: Dynamic pricing incentive for participatory sensing. Pervasive
Mob. Comput. 6(6), 693–708 (2010)

18. Liu, H., Yang, J., Sidhom, S., Wang, Y., Chen, Y., Ye, F.: Accurate wifi based
localization for smartphones using peer assistance. IEEE Trans. Mob. Comput.
13(10), 2199–2214 (2014)

19. Liu, L., Biderman, A., Ratti, C.: Urban mobility landscape: Real time monitoring
of urban mobility patterns. In: Proceedings of the 11th International Conference
on Computers in Urban Planning and Urban Management, pp. 1–16 (2009)

20. Moussad, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian
behavior and crowd disasters. In: Proceedings of the National Academy of Sciences,
108(17), 6884–6888 (2011)

21. Moussad, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking
behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS
ONE 5, e10047, April 2010

22. Pianini, D., Viroli, M., Zambonelli, F., Ferscha, A.: HPC from a self-organisation
perspective: the case of crowd steering at the urban scale. In: International Con-
ference on High Performance Computing & Simulation, HPCS 2014, pp. 460–467.
Bologna, Italy, 21–25 July 2014

23. Rana, R., C., Chou, Kanhere, S., Bulusu, N., Hu, W.: Ear-phone: an end-to-end
participatory urban noise mapping system. In: International Conference on Infor-
mation Processing in Sensor Network, Stockholm, Sweden (2010)

24. Roggen, D., Wirz, M., Tröster, G., Helbing, D.: Recognition of crowd behavior
from mobile sensors with pattern analysis and graph clustering methods. Netw.
Heterogen. Media 6(3), 521–544 (2011)

25. Shen, W., Salemi, B., Will, P.: Hormone-inspired adaptive communication and
distributed control for conro self-reconfigurable robots. IEEE Trans. Rob. Autom.
18(5), 1–12 (2002)

26. Spagnolli, A., Chittaro, L., Gamberini, L. (eds.): PERSUASIVE 2014. Informa-
tion Systems and Applications, incl. Internet/Web, and HCI, vol. 8462. Springer,
Switzerland (2014)

27. Wijermans, N., Jorna, R., Jager, W., van Vliet, T., Adang, O.: Cross: modelling
crowd behaviour with social-cognitive agents. J. Artif. Soc. Soc. Simul. 4, 1 (2013)

http://arxiv.org/abs/1402.7011

154 C. Borean et al.

28. Willebeek-LeMair, M.H., Reeves, A.P.: Strategies for dynamic load balancing on
highly parallel computers. IEEE Trans. Parallel Distrib. Syst. 4(9), 979–993 (1993)

29. Winstanley, C., Davies, N., Harding, M., Norgate, S.: Supporting walking school
buses. In: Proceedings of the 2014 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing: Adjunct Publication. pp. 291–294. UbiComp
2014 Adjunct, ACM, New York, NY, USA (2014). http://doi.acm.org/10.1145/
2638728.2638791

30. Zambonelli, F.: Toward sociotechnical urban superorganisms. IEEE Comput.
45(8), 76–78 (2012)

31. Zhu, J., Zeng, K., Kim, K.H., Mohapatra, P.: Improving crowd-sourced wi-fi local-
ization systems using bluetooth beacons. In: 2012 9th Annual IEEE Communi-
cations Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON), pp. 290–298, June 2012

http://doi.acm.org/10.1145/2638728.2638791
http://doi.acm.org/10.1145/2638728.2638791

Distributed Computing

Towards a Self-Adaptive Middleware
for Building Reliable Publish/Subscribe Systems

Sisi Duan1(B), Jingtao Sun2, and Sean Peisert1

1 University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA
{sduan,speisert}@ucdavis.edu

2 National Institute of Informatics, The Graduate University for Advanced Studies,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

sun@nii.ac.jp

Abstract. Traditional publish/subscribe (pub/sub) systems may fail or
cause longer message latency and higher computing resource usage in
the presence of changes in the execution environment. We present the
design and implementation of Mimosa Pudica, an adaptive and reliable
middleware for adapting various changes in pub/sub systems. At the
heart of Mimosa Pudica are two design ideas. First, the brokers can elect
leaders to manage the network topology in a distributed manner. Second,
software components can be relocated among brokers according to the
user’s pre-defined rules. Through these two mechanisms, brokers can be
connected in a self-adaptive manner to cope with failures and guarantee
delivery of messages. In addition, brokers can effectively utilize their
computing resources. Our experimental results of a large-scale pub/sub
system show that in the presence of environmental changes, each self-
adaptive process generates as few as 30 ms extra latency.

1 Introduction

Today’s large-scale publish/subscribe (pub/sub) systems require dynamically
applicability to be adaptive to various changes in systems and applications. For
instance, in the presence of environmental changes, message loss and broker/link
failures are desired to be handled. In addition, for many applications, the soft-
ware components of an application may need to be migrated from one node to
another, so as to be adaptive to limited computing resources and high loading
at a node. However, most existing approaches propose solutions in the software
layer while the pub/sub system structure itself is not able to be adaptive to fre-
quent changes. We propose Mimosa Pudica, a middleware that is dynamically
adaptive to various changes from both pub/sub systems and applications on top.
Base on the middleware, we build a reliable pub/sub system and also improve
the overall efficiency in system resource usage.

An amount of past research efforts have been devoted to developing reliable
pub/sub systems. Most of them guarantee that messages will eventually be deliv-
ered. In order to guarantee message order in the presence of failures, previous
efforts have relied heavily on the topology, either through redundant nodes or
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 157–168, 2015.
DOI: 10.1007/978-3-319-23237-9 14

158 S. Duan et al.

links. However, redundant nodes have a high cost in replication, and redundant
links usually require brokers to store large amount of redundant information,
which limits the scalability of a system and may even render brokers unusable.

In this paper, we propose a design of a self-adaptive and reliable pub/sub
system that scales more efficiently by not requiring redundant nodes or storage.
At the core of our system is Mimosa Pudica, a middleware that is adaptive to
various changes. We employ two novel design ideas. First, brokers of pub/sub
systems can elect leaders through our leader election algorithm to manage the
rest of brokers in a distributed manner. Second, the leader can automatically
relocate the software components between brokers to achieve dynamic adapta-
tion of the pub/sub system, according to the user’s pre-defined rules. Based
on such a design, brokers can be dynamically added or deleted to handle fail-
ures. Furthermore, software components can be distributed to effectively utilize
computing resources and to prevent from node failures.

We use distributed destination databases that can be accessed by the bro-
kers to store routing information of brokers and all the pre-defined adaptation
rules. In the presence of environmental changes, the brokers access the desti-
nation database to obtain a broker group information. After a leader election
among the group, the leader compiles the adaptation rules and notify brokers
the results. Different groups of brokers run independently in a distributed man-
ner to adaptively manage topology and migrate software components. Through
such a mechanism, the system can cope with failures and better utilize broker
resources. In addition, due to the flexibility of our design, the software compo-
nents of an application can be reused and the rules can be free assembled and
reused for regular and repeated changes.

Our paper makes the following key contributions:

– We designed and implemented a middleware Mimosa Pudica. In the presence
of environmental changes, the system self-adaptively manages the topology
and relocates software components between brokers in a distributed manner.

– We implemented a reliable, crash-tolerant pub/sub system based on Mimosa
Pudica. Our solution can be built on top of any existing topology. In addition,
no redundancy of messages, brokers, or storage, is required.

– Our evaluation results show that each adaptation process only imposes a tem-
porary of 30 ms to 50 ms extra latency to the event delivery, which proves the
efficiency of our approach.

2 Related Work

Building reliable pub/sub systems have been widely studied [2,3,6–9,18].
Periodic subscription [6], where subscribers actively re-issue their events [2],
works well in preventing message loss. The use of redundant paths [2,3,7,9] or
redundant links [8] handles broker/link failures. As long as all the brokers in at
least one path are correct, messages can be reliably delivered. However, it may
consume high bandwidth and storage at brokers and become very inefficient in
the absence of failures. P2S [3] on the other hand, demonstrates a framework

Towards a Self-Adaptive Middleware for Building Reliable Publish 159

of using existing fault-tolerant libraries in pub/sub systems. It directly adapts
Paxos [11], a classic crash-tolerant replicated state machine approach. However,
the current framework employs a centralized set of replicated brokers and must
be carefully designed in scalable systems.

There are four types of self-adaptation mechanisms. The first type [13,14] is
policy-based. Most of them focus on how to define the context. The second type
dynamically changes coordination between programs run on different comput-
ers [17]. It enables client-side objects to automatically select and invoke server-
side objects according to the requirements and system architectures. However,
this type only modifies the relationships between distributed programs instead
of the computers executing them. The third type is genetic programming [10].
Most approaches focused only on target applications or systems such that they
have no space to execute and evaluate large number of generated programs. The
forth type is aspect-oriented programming (AOP) [15]. Unlike our work, exist-
ing adaptations do not support the migration of programs because reflective and
AOP approaches are primitive to modify programs running on a single computer.

3 Approach

In this section we present background for our pub/sub system. We begin by
introducing the preliminaries and then describe the design of destination data-
base, the key component for data storage. Last, we show leader election, which
is used to select a leader such that adaptation can be managed by brokers.

3.1 Preliminaries

We assume asynchronous model, where messages can be delayed, duplicated,
dropped, or delivered out of order and brokers may crash and subsequently
recover. For any n brokers between any pair of publisher and subscriber, up to
�n−1

2 � crash failures are tolerated. In other words, in order to handle f broker
failures, there are at least 2f + 1 brokers on the path.

We aim to achieve the in-order delivery, where all the messages from a pub-
lisher to a set of corresponding subscribers are delivered in the same sequential
order. Liveness guarantees that if a message is delivered to a subscriber, all
the subscribers to the same topic eventually receive the same message. Live-
ness is ensured under partial synchorny [5]. That is, synchrony holds only after
some unknown global stabilization time, but the bounds on communication and
processing delays may be unknown.

3.2 Destination Database

We use a destination database that can be accessed by all the brokers. The des-
tination database maintains all the routing information of the brokers and a set
of pre-defined rules for adaptation purposes. When a broker communicates with
the destination database and requests for group communication, the destination

160 S. Duan et al.

database replies with the identities of a group of brokers on the path based on
the broker identity, the message information, and the corresponding publisher
and subscriber information. It serves a simple purpose of storage, i.e., it does not
manage the configurations of brokers or make any adaptation decisions. Instead,
and all the adaptation decisions are made in a distributed manner by brokers.

In order to avoid single point of failure, we propose a two layer structure
of distributing destination databases. The first layer contains replicated servers
that stores metadata and the second layer contains several databases, each of
which stores information of a set of brokers and a whole set of rules. The broker
information can be replicated at different databases to prevent loss of data when
certain database fails. When a broker requests for group information, it simply
accesses the closest second layer database. The database replies directly if it has
the information of all brokers on the path. Otherwise, it sends a request to the
first layer database, obtains metadata, accesses the corresponding database(s)
to get the information of the brokers, and sends a reply to the broker.

3.3 Leader Election

Leader election selects a leader among a set of brokers. A leader collects the infor-
mation of environmental changes, makes decisions according to the adaptation
rules as described in Sect. 4, and notifies all the brokers the adaptation decisions.
We now describe the leader election process and illustrate it in Algorithm1.

Algorithm 1. Leader Election Algorithm

1: Initialization:
2: Bi, Bj · · · {Brokers}
3: DD {Destination Database}
4: Δ {Timer}
5: v ← 0 {View Number}
6: Leader() {Elect Leader}
7: timeout() {Timeout}
8: starttimer() {Start Timer}
9: canceltimer() {Cancel Timer}

10: F () {Adaptation Results}
11: Broker Bi:
12: on event adaptation
13: send [LE, o, Bi, Bj , nd] to DD
14: on event timeout(Δ)
15: v ← v + 1 {Re-Elect Leader}
16: ElectLeader(v, group)
17: on event [GI, Bk · · · Bp]

18: group ← Bk · · · Bp {Group Info}
19: ElectLeader(v, group)
20: on event ElectLeader(v, group)
21: Bq ← Leader(group)
22: send [Leader, Bq, v] to group
23: starttimer(Δ) {Monitor}
24: on event [Leader, Bq, v]
25: count ← count + 1
26: if count ← f and i ← q
27: action ← F(rules) {Actions}
28: send [NL, Bq, v, action] to group
29: on event [NL, Bq, v, action]
30: canceltimer(Δ)
31: Destination Database:
32: on event [LE, o, Bi, Bj , nd]
33: group ← Bk · · · Bp {Group}
34: send [GI, Bk · · · Bp] to group

When a broker Bi (or publisher/subscriber in corner cases) requests for leader
election, Bi sends a message [LE, o, Bi, Bj , nd] to the destination database, where
o represents the type of adaptation request, Bj is the broker to be added/deleted,
and nd contains the corresponding information. For instance, if Bi detects Bj to

Towards a Self-Adaptive Middleware for Building Reliable Publish 161

be faulty, the message is [LE, 1, Bi, Bj ,M(src, dst)], where 1 represents broker
deletion, M(src, dst) is the message Bi is currently forwarding from src to dst.
The destination database then sends a message [GI, Bk · · ·Bp] to the brokers Bk

to Bp between src and dst. After receiving the group information, the brokers
start leader election. The leader election proceeds with views. All the brokers
follow the same criteria when electing a new leader, as shown below. When the
new leader receives at least f + 1 matching [LEADER] messages (including its
own message), it sends a message to all the brokers to confirm its leadership and
notifies brokers the adaptation results.

(1) Broker Bq is elected such that a) Bq is on the path; b) Bq is not suspected
to be faulty; c) Bq has not been elected in previous views; and d) Bq is the
closest to the publisher on the path.

(2) When a broker votes for a new leader, it starts a timer. If it has not received
the [NL] message before its timer expires, it suspects the current leader to
be faulty, increases v by 1 and votes for another new leader.

4 Design

This section describes the design of our Mimosa Pudica middleware system. We
first present our system requirements and then describe the system architecture
in details. We also show four adaptation rules and examples of applying the them
to build our reliable pub/sub system.

4.1 Requirements

Existing middleware systems typically assume that formal descriptions focus on
actions [16] and it is essential to identify which actions are controlled by the
environment, which actions are controlled by the machine, and which actions of
the environment are shared with the machine. Our Mimosa Pudica middleware
focuses on where the software components should be migrated to and achieve the
entire system’s adaptability by relocating software components. Mimosa Pudica
meets the following requirements.

Fault Tolerance. Our middleware is designed to tolerate fail-stop broker/link
failures (i.e., crashes) in a timely manner such that faulty brokers are removed
and can be later recovered.

Self-Adaptation. Distributed pub/sub systems essentially lack a global view due
to the decoupling of publishers and subscribers. Our system coordinate software
components between brokers in order to support their applications in a self-
adaptive manner for higher efficiency in resource usage.

Separation of Concerns. All the software components of an application should
be defined independently with our adaptation mechanism. This is because the
applications where adaptive rules are defined inside software components can

162 S. Duan et al.

not be reused. Both the software components and adaptive rules are desired to
be reused for better resource usage.

Service Availability. Our system guarantees that service should always be avail-
able with limited resources, whereas most existing approaches explicitly or
implicitly assume that their targets of the systems have enriched resources.

General-Purpose. Our adaptation mechanism is designed to be a practical mid-
dleware that also supports general-purpose applications in the system.

4.2 System Architecture

Our proposed approach dynamically adds/deletes brokers and deploys software
components of an application from one broker to one or multiple brokers, accord-
ing to the predefined rules. As a result, our distributed pub/sub system is self-
adaptive to various changes.

At the core of our system is a middleware system between OS and applica-
tions, as shown in Fig. 1. This architecture consists of two important parts: an
adaptation manager and a runtime system. The adaptation manager manages
the runtime system. It controls the behavior of components, selects rules from
destination database, and determines where and when to migrate the software
components. The runtime system is responsible for managing, executing, and
migrating software components, as well as enabling them to invoke methods at
other software components. In order to use these methods during migration, the
software components are first serialized and then migrate themselves from one
server to another. When the software components arrive at their destinations,
servers can communicate with each other for naming inspection.
Adaptation Manager. In order to be self-adaptive to the changes of
environmental properties, the deployment of components is managed by

Fig. 1. Mimosa Pudica middleware system
architecture.

the adaptation manager. They are
fully distributed and no centralized
management server is required. In
the presence of environmental changes,
brokers follow several steps to be self-
adaptive, as shown below.

Step 1: When a broker detects the
environmental changes, it first send
messages to the destination database
to obtain the group information. The
brokers select a leader according to
leader election algorithm as shown in
Algorithm 1.

Step 2: The leader invokes the adap-
tation rules, compiles them, and noti-
fies brokers the adaptation results,

Towards a Self-Adaptive Middleware for Building Reliable Publish 163

e.g., which broker should be added/deleted, or which one or part of the soft-
ware components should be migrated to other brokers.

Step 3: Depending on the adaptation rules and results, as described in Sect. 4.3,
brokers activate different software components. When a broker is deleted, neigh-
bors of the broker are connected or new broker is added. The monitors of the
brokers that are connected notify their software components. The brokers can
then build the connection. On the other hand, when the software components
are migrated to the destination broker, the monitor of destination broker notifies
its software components. The methods of the migrated software component are
then invoked by destination software components through reflection mechanism.

The adaptation manager contains three sub-modules: event checker, rule
interpreter, and system and network monitor. The event checker identifies the
type of event messages received by components runtime system and passes the
event number to rule interpreter. The rule interpreter then searches rule from
the destination database and executes it. Lastly, the system and network mon-
itor dynamically monitors the state of brokers, e.g., threads count, CPU usage,
used heap memory and the loaded class count, etc. Meanwhile, it also regularly
monitors the changes of the component runtime system.
Component Runtime System. The component runtime system has three
modules: message receiver, component migration manager, and mobility-
transparent method invocation. The message receiver, which has at most one
message receiver thread, is responsible for receiving messages. The component
migration manager receives command from adaptation manager. Each compo-
nent has a particular life-cycle state. e.g., create, terminate, migrate, and dupli-
cate. When the component state is changed, adaptation manager notifies the
component migration manager the adaptation decision. The decision contains
the components that should be moved, the components that should be cloned
and moved, and the destination of migration. With this module, runtime sys-
tems at different servers can exchange messages through TCP channels by using
Object Input/Output Stream. When a component is transferred over the net-
work, both the code and the state of the component are transmitted into a
bit stream and then transferred to the destination. At the destination side, the
mobility-transparent method invocation module dynamically invokes the com-
ponents through the class name and method name. The incomplete tasks will
be run after migration.

4.3 Adaptation Rules

When external environment changes, software components can be managed
according to the predefined rules. To facilitate the definition of rules we use
the Ponder language developed by the Imperial College [4]. Specifically, we use
a subset of the Ponder language, i.e. the Ponder obligation rules. We list four
rules using Ponder for topology management and software components mobility.
We also include a few use cases of applying the rules in our pub/sub system.
For simplicity, we illustrate the cases using a simple topology as shown in Fig. 2,

164 S. Duan et al.

Fig. 2. Examples of applying rules.

where messages are sent and forwarded from publisher P to subscriber S through
5 brokers. In addition to the four rules, system developers can add new rules to
destination database to meet different system requirements.

Rule 1 (Delete Brokers). Dynamically delete a number of brokers. By using
this rule, system can reduce the number of the brokers and handle failures.

type oblig deleteBrokerRules(target database, Broker<T> broker){
subject AdaptationManager;

on deleteBrokerRequest();

do database.deleteBroker(broker);}

In the Presence of Failures. As illustrated in Fig. 2(a), broker B2 crashes and its
previous broker B1 detects it. The leader B0 compiles Rule 1 and deletes B2. It
notifies both B1 and B3. Broker B1 and B3 simply make a connection.

Rule 2 (Add Brokers). Dynamically add a number of brokers. The new broker
only manages the routing information of its neighbors and is not required to know
the state of other brokers. By using this rule, pub/sub system can better handle
failures and improve system load balancing.

type oblig addBrokerRules(target database, Broker<T> broker){
subject AdaptationManager;

on addBrokerRequest();

do database.addBroker(broker);}

Too Few Brokers on a Path. In the above example in Fig. 2(a), the leader B0 can
add a new broker B5 to replace B2. In this case, B5 simply makes a connection
with both B1 and B3 without knowing the identities of other brokers. Broker
B1, B3, and B5 then update their routing tables.

Rule 3 (Failure Judgment). Before the presence of broker failures, software
components can be migrated to correct brokers to continue running. This rule
works in systems where brokers are equipped with failure detectors or monitors.
In this way, our system does not have to terminate the system operations.

type oblig failureJudgmentRules(target database, Broker<T> broker){
subject AdaptationManager;

on migrateBrokerRequest(Monitor, max input rate,; min output rate);

do database.goBroker(broker);

when max input rate <= min output rate;}

Towards a Self-Adaptive Middleware for Building Reliable Publish 165

Before the Presence of Failures. When B2 predicts its failure, it starts adaptation
and sends message to the destination database. Leader B0 compiles Rule 3 and
migrates all the software components from B2 to B1, B3, or both. In this specific
case, broker B1 and B3 should also be connected for message delivery. After
software migration, the leader also complies Rule 1 and connect B1 and B3.

Rule 4 (Task Transfer). Publishers may send different requests to brokers.
However, some of the brokers may fail to communicate with subscribers. This
rule can compress the parts of software component of brokers and transfer to
one or several brokers. By using this rule, our system can effectively reduce the
number of network transmission.

type oblig taskTransferRules(target database, Broker<List<T>>brokers){
subject AdaptationManager;

on transferBrokerRequest(Compression brokers, local ip info, remote ip info);

do database.goBroker(brokers);

when brokers.getBrokersID() <= User Defined;}

Broadcast to Several Brokers. As shown in Fig. 2(b), if B0 receives an update
command and is required to update two of the applications A0 and A1, B0 will
compress the two update commands and migrate to all the brokers that run at
least one application, e.g., B2 runs A0 and B4 runs A1, B0 migrates the update
components to both B2 and B4. After receiving the update command, broker B2

and B4 retrieve the corresponding command and update A0 and A1 respectively.

Conflict Resolution. Adaptations may have conflicts with each other, even
when each of them is appropriately composed. In our current implementation, all
the rules are executed by the leader. Therefore, when there are conflicts between
groups of brokers (e.g. overlapping brokers), the leaders of different groups first
analyze whether there are conflicts between the rules of their visiting compo-
nents. Once conflicts are found, the executing sequences are decided according
to their arrival sequences. In other words, an adaptation request will be executed
until all the conflicting requests that arrive earlier are executed. In the future,
we will further develop the system such that each broker can simultaneously
execute their rules by adding priorities or privileges to rule format [12].

5 Evaluation

In this section we evaluate the performance by assessing the adaptation latency
in the presence of broker failures and software components migration. First, our
approach handles broker failures by connecting neighboring brokers and intro-
ducing new brokers while no known previous work use similar approach. Second,
the migration of software components prevents from failures and is shown to
be very efficient. We carry out experiments on Deterlab [1], utilizing up to 30
machines. Each machine is equipped with a 3 GHz Xeon processor and 2 GB of
RAM. They run Linux 2.6.12 and are connected through a 100 Mbps switched
LAN. We use up to 24 publishers and subscribers. Publishers run concurrently
with an average workload of 1, 250 events per second.

166 S. Duan et al.

Implementation. Each component is implemented as a general-purpose and
programmable entity. Defined as a collection of Java objects and packaged in the
standard JAR file format, components can be migrated and duplicated between
servers. Our middleware is built on the Java Virtual Machine (JVM) and can
be abstracted away between different operating systems. The current implemen-
tation uses the Java object serialization package to marshal and duplicate com-
ponents. The package dose not support the capture of stack frames of threads.
Instead, when a component is duplicated, the runtime system issues events to
invoke the specified methods. The methods are executed before the component
is duplicated or migrated and active threads are suspended.
Adaptation Latency. We assess the adaptation delay of (1) adding/deleting
brokers, as shown in Rule 1 and 2 in Sect. 4.3, and (2) migrating software compo-
nents, as shown in Rule 3 and 4. We mainly evaluate two settings in the presence
of broker failures: simple topology and bottleneck server crashes. Different sizes
of random non-cyclic broker topologies are generated for each experiment. Sim-
ple topology simply evaluates failures in a single path where there is no side effect
in the presence of broker failures. In comparison, the goal of the case where bot-
tleneck broker crashes is to assess the latency when multiple paths request for
adaptation in the presence of failures.

0 50 100 150
0

20

40

60

80

Publications

L
at

en
cy

(m
s)

Fig. 3. End-to-end latency in the pres-
ence of broker failures.

Add/Delete Brokers. We periodically
inject random broker failures every 50
publications and assess end-to-end laten-
cies. It can be observed in Fig. 3 that the
average latency is 8 ms to 12 ms. When
there are failures, subscribers experience
a temporary 65 ms to 85 ms peak latency.
The long latency resumes to normal after
a few publications.

We break down the peak latency into
four phases: (1) timeout, where brokers
use timers to detect the failures of their
subsequent brokers; (2) vote for leader
election, where brokers to obtain group information from destination database;
(3) leader election, where brokers elect a new leader; and (4) adaptation, where
the leader makes adaptation. We use instant acknowledgment (ack) messages
for brokers to detect the failures, where if a broker has not received ack message
before its timer expires after forwarding a message, it suspects its subsequent
broker to be faulty.

As observed in Fig. 4, the value of the timer is set to 30 ms, which is also
the bottleneck of the overall delay. Indeed, if a smaller timer is used, the overall
latency can be greatly reduced but it also increases the false negatives since
slow brokers are detected to be faulty. The second phase generates 8 ms average
latency for simple topology and 15 ms latency for complicated topology. This is
due to the fact that paths with overlapping broker(s) are given access sequentially
by destination database to avoid conflicts. In this particular experiment, the

Towards a Self-Adaptive Middleware for Building Reliable Publish 167

0 20 40 60 80

Timeout Vote Leader election Reconnection

Fig. 4. Adaptation delay in details.

bottleneck server is the only overlapping server that crashes. Therefore, they run
leader election concurrently, which generates 15 ms latency for simple topology
and 22 ms in complicated topology. The adaptation phase causes 18 − 20 ms
latency for both settings since leaders compile the rules independently.

Migrate Software Components. We assess the delay of software components migra-
tion. We run four applications, each of which corresponds to one pre-defined rule,
to evaluate the performance. Each software component has a life-cycle, as shown in
Table 1. When the requirements change, its life-cycle will be changed to another
state. Our experiment results show that the four applications generate 161 ms,
201 ms, 189 ms, and 184 ms latencies respectively. The temporary delays of the
four cases are small because we only migrate the source code and the state of
the components. Among all the applications, “app.RemoteSearch” generates the
longest delay. This is because all the corresponding threads and processes need to
be deleted when executing the delete rule.

Table 1. Migration of software components.

Runtime ID Rule Component ID Component NameLife cycleComponent TimeDelay(ms)

13618708105680001501261633499959 /Rules/AddRule dc36fae696d04cd18ff1eab7429606f1 app.Chat creation 5:32 PM 161

13618708105680001501261633499959 /Rules/DeleteRule b89ebe96181540259ce8e09a4e858485app.RemoteSearch creation 5:35 PM 201

13618708105680001501261633499959/Rules/FaiJudgmentRule 2ea7663f79fa479a8a974222caf353dc app.FileTransfer creation 5:37 PM 189

13618708105680001501261633499959 /Rules/UpdateRule 5c55518e36404973b6a62dc665b32c6c app.Update creation 5:40 PM 184

· ·

To summarize, the adaptation of adding/deleting brokers cause around
65 − 70 ms delay for simple topology and 80 − 85 ms delay for complicated
topology. The adaptation for migrating software components generate 160−200
ms delay. A smaller value of the timers can reduce the overall latency but can
also increase the false negatives. Also, when more than one overlapping brokers
of multiple paths fail, the overall adaptation delay can also be increased.

6 Conclusion and Future Work

We present a self-adaptive middleware for building reliable pub/sub systems.
Our approach does not require redundant brokers, network links, or storage at
brokers in order to tolerate crash faulty brokers. It fits naturally in any existing
topology. In addition, our approach self-adaptively manages the topology and
software components among brokers and can be easily managed to serve different
purposes. We have shown how our Mimosa Pudica middleware manages the
adaptive rules in the presence of environmental changes. Our evaluation results

168 S. Duan et al.

show that our adaptation approach imposes a temporal period of slightly longer
latency in the presence of environmental changes. In the future, we will further
develop the system to address Byzantine failures and to add privileges for the
adaptation rules and resolve the possible conflicts and divergences.

References

1. Benzel, T.: The science of cyber security experimentation: the DETER project. In:
ACSAC (2011)

2. Chand, R., Felber, P.: Xnet: a reliable content-based publish/subscribe system. In:
SRDS pp. 264–273 (2004)

3. Chang, T., Duan, S., Meling, H., Peisert, S., Zhang, H.: P2S: a fault-tolerant pub-
lish/subscribe infrastructure. In: DEBS, pp. 189–197 (2014)

4. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The ponder policy specification
language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol.
1995, pp. 18–38. Springer, Heidelberg (2001)

5. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. JACM 35(2), 288–323 (1988)

6. Jerzak, Z., Fetzer, C.: State in publish/subscribe. In: DEBS, pp. 1–12 (2009)
7. Kazemzadeh, R.S., Jacobsen, H.-A.: Reliable and highly available distributed pub-

lish/subscribe service. In: SRDS, pp. 41–50 (2009)
8. Kazemzadeh, R.S., Jacobsen, H.-A.: Partition-tolerant distributed pub-

lish/subscribe systems. In: SRDS, pp. 101–110 (2011)
9. Sherafat Kazemzadeh, R., Jacobsen, H.-A.: Opportunistic multipath forwarding

in content-based publish/subscribe overlays. In: Narasimhan, P., Triantafillou, P.
(eds.) Middleware 2012. LNCS, vol. 7662, pp. 249–270. Springer, Heidelberg (2012)

10. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

11. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

12. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management.
IEEE Trans. Softw. Eng. 25(6), 852–869 (1999)

13. Sun, J., Satoh, I.: Dynamic deployment of software components for self-adaptive
distributed systems. In: Fortino, G., Di Fatta, G., Li, W., Ochoa, S., Cuzzocrea, A.,
Pathan, M. (eds.) IDCS 2014. LNCS, vol. 8729, pp. 194–203. Springer, Heidelberg
(2014)

14. Hiroki, T., et al.: A rule-based framework for managing context-aware services
based on heterogeneous and distributed web services. In: SNPD, pp. 1–6 (2014)

15. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., et al.: Cheng: composing adaptive
software. IEEE Comput. 37(7), 56–64 (2004)

16. Zave, P., Jackson, M.: Four dark corners of requirements engineering. In: TOSEM,
pp. 1–30 (1997)

17. Zhang, J., Cheng, B.H.: Model-based development of dynamically adaptive soft-
ware. In: ICSE, pp. 371–380 (2006)

18. Zhang, K., Muthusamy, V., Jacobsen, H.: Total order in content-based pub-
lish/subscribe systems. In: ICDCS (2012)

Review of Replication Techniques
for Distributed Systems

Ahmad Shukri Mohd Noor1(B), Nur Farhah Mat Zian1, Mustafa Mat Deris2,
and Tutut Herawan3

1 School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu,
Kuala Terengganu, Terengganu, Malaysia

ashukri@umt.edu.my, farhah.matzian@outlook.com
2 Faculty of Information and Technology Multimedia,

University Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia
mmustafa@uthm.edu.my

3 Department of Information System, University of Malaya,
Pantai Valley, 50603 Kuala Lumpur, Malaysia

tutut@um.edu.my

Abstract. Distributed systems primarily provide the access to data
intensive computation through a wide range of interfaces. Due to the
advances of the systems, the scales and complexity of the system have
increased, causing faults are likely bound to happen leading into diverse
faults and failure conditions. Therefore, fault tolerance has become a
crucial property for distributed system in order to preserve its function
correctly and available in the presence of faults. Replication techniques
particularly concentrates on two fault tolerance manners; masking the
failures on the fly as well as reconfiguring the systems in response. This
paper presents a brief reviews on different replication techniques, such as
Grid Configuration (GC), Box-Shaped Grid (BSG) and Neighbor Repli-
cation on Grid (NRG) by comparing and formalizing its communication
costs and availabilities analysis based on k-out-of-n model. Each of these
techniques presents their own merits and demerits which form the sub-
ject matter of this review.

Keywords: Distributed systems · Fault tolerance · High availability ·
Replication techniques · Communication cost · Availability analysis

1 Introduction

Distributed systems consist of a determinate set of sites that are connected
to each other via communication links on various hardware hosts at different
physical locations where remotely located users sharing the data to produce
some invaluable results. The increase in complexity of distributed systems causes
most application unable to survive infrastructure outages in the event of failure.
A fault, a defect that come about the lowest level of abstraction may cause

c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 169–176, 2015.
DOI: 10.1007/978-3-319-23237-9 15

170 A.S.M. Noor et al.

an internal data state, error which may later lead to failure, the external visi-
ble deviation from the system correctness behavior [1]. However, fault does not
inevitably result in an error as well as an error in failure. Fault tolerance is an
added property to ensure the availability and reliability of a distributed systems.
There are two ways to implements fault tolerance in distributed systems. The
first one is reconfiguring the service to utilize the components that replaced the
failed one and the second one is by using the masking approach that is plac-
ing redundant components that able to operate under partial failures providing
enough functionality to the users.

1.1 Replication Definition

Replication is a process of maintaining different copies of replicated data or
objects as well as the synchronization of updating the data in its replica. The data
is not automatically overwritten whenever any changes occurred in the original
data that resulted in immediate lost at any historical state. Replication is divided
to two types of solution that is synchronous or asynchronous solutions. The
asynchronous solution manages the data by immediately capture any changes on
the primary replica and will be timely propagated to its replica. This solution
presents a low cost as well as flexible solution nevertheless have to deal with
network bandwidth and data lost. Synchronous solution on the other hand based
on quorum in updating its replicas at the same time and will roll back if one fails.
It breaks into several schemes that are full replication (all-data-to-all-sites) and
partial replication (all-data-to-some-sites). This solution offers high availability
of data, auto fail-over and minimal data loss. However, the drawbacks of this
solution are one has to deal with network efficiency, less flexible, scalability issues
and cost.

Replication has been successfully implemented for distributed systems by
allowing data to remain distribute and systems able to operate in the presence
of fault. Considering a large number of different replication techniques available,
choosing the best approach under different levels of faulty systems with different
systems performance requirements is not an easy task. In this paper, we will
present a brief review some of the replication techniques that has been imple-
mented by addressing its own merits and demerits. The performance of each
technique is analyze based on the communication costs and availability using
k-out-of-n model. This comparison is focusing only on existing synchronous repli-
cation. The remainder of this paper is organized as follows. Section 2 will discuss
briefly on the k-out-of-n model and Sect. 3 will review each of the replication
techniques by presenting its communication costs and availability analysis. The
conclusion of our work will be presented in Sect. 4.

2 System Availability Evaluation Using K-out-of-n Model

In this study, the k-out-of-n model is used to estimate the operation availability.
This model refers to the independent nodes that have some identical data or

Review of Replication Techniques for Distributed Systems 171

services [12]. In other words, this configuration will not affect the remaining
nodes and all nodes have the same failure distribution. The assumption of k-out-
of-n model could be evaluated using the binomial distribution or as below:

1. The data item and its copies are in one of the two states: accessible or inac-
cessible.

2. The states of the copies are changed independently.
3. If at least k of its n copies is accessible, then the data item is available for an

operation.

Thus, the k-out-of-n model can be formulated as:

Σn
i=k(n

i)pi(1 − p)n−1, k ≥ 1 (1)

where the notation is given as:

– n: the total number of components in the systems
– k: the minimum number of components required for the system to success
– p: the availability of each data item.

3 Replication Techniques

3.1 Grid Configuration (GC) Protocol

This protocol is introduced by Maekawa [5] where all quorums are of equals size
in order to obtain a distributed mutual exclusion algorithm which later extended
by Cheung et al. [6] for replicated data objects. This protocol introduced n copies
of data objects are logically organized in the form of a

√
n × √

n as depicted
in Fig. 1. Read quorum consists of a copy from each column in the grid will be
acquire in order to perform read on the data items. While to perform the write
operation, write quorum consists of all copies in one column and a copy from
each of the remaining columns will be needed. This protocol introduced the read
and write operation in the size of O (

√
n).

Fig. 1. Grid Configuration with 25 copies of data object

The communication cost for read operation of GC protocol, CGC ,R can be
formalized as:

CGC ,R =
√

n (2)

172 A.S.M. Noor et al.

Meanwhile, the communication cost for write operation of GC protocol,
CGC ,W can be formalized as:

CGC ,W = 2
√

n − 1 (3)

In the case of quorum techniques, read quorums can be constructed as long
as a copy from each column is available. Under this technique, as given in [3],
read availability of GC protocol, AGC ,R is:

AGC ,R = [1 − (1 − p)
√

n]
√

n (4)

On the other hand, write availability of GC technique AGC ,W can be write as:

AGC ,W = [1 − (1 − p)
√

n]
√

n − [1 − (1 − p)
√

n − p
√

n]
√

n (5)

The drawbacks of this technique is this structure degrades the communication
cost and the availability of data as the number of copies for both read and write
quorum is big as well as prone to failure of the entire row and column in the grid.

3.2 Box-Shaped Grid (BSG) Protocol

Box-Shaped Grid (BSG) was introduced by Deris, M.M et al. [7]. In this tech-
nique, all copies are logically organized in a box-shape structure with four planes.
The box-shaped structure is classified as a perfect square if the number of copies
in each plane is equal. From Fig. 2, BSG model consists of four planes (1, 2, 3, 4)
and small circles symbolizing a copy of data object with location denoted in
A, B, C, D, ... , and X. By assuming that each plane has a length (column),
l and width (row) w, then l = w. Therefore, the number of copies in the struc-
ture can be calculated as l= [1+

√
(l+n)]
2 .

Read transactions on a data object are executed by obtaining a read quo-
rum that comprises of any hypotenuse copies, the pair of copies that located at
hypotenuse edge. From the Fig. 2, hypotenuse copies are {X, A}, {V, C}, {G, R}
or {I, P}. While for write transactions, a write quorum is formed from any planes
that contain hypotenuse copies and all copies which are vertices where one of
which is a hypotenuse copy. For an instance, if the hypotenuse copies, {I, P}
are required to perform a read transaction, then the possible copies for write
quorum are {I, P, V, R, X} that adequate enough to perform write operations.
The size of a read quorum in BSG is hypotenuse copies, i.e., 2. Thus, the cost
of a read operation, CBSG,R = 2, and the cost of write operation CBSG, w can
be represented as CBSG,W = hypotenuse copies + (all copies of vertices in a
plane - hypotenuse copy in the same plane) = 2 + (4 - 1) = 5.

If the copy that initiate the write transaction is not a vertex-replica, then
communication cost becomes 6. For BSG protocol, a read quorum can be con-
structed from any hypotenuse copies in the system. Thus, the read availability
ABSG,R for a perfect square box where it has 4 hypotenuse copies is:

ABSG,R = 1 − (1 − p2)4 (6)

Review of Replication Techniques for Distributed Systems 173

Fig. 2. A BSG organization with 24 copies of a data items

On the other hand, a write quorum can be constructed as: Let α1, α2, α3, α4

be a set of planes in the BSG protocol. Each of which consists of l × l copies. Let
{V,C} be the hypotenuse copies, then write availability that consists of {V,C},
WV , C , can be represented as:
Probability { V is available } * [φ available] + Probability { C is available } *
[ϕ available] − Probability { C and V are available } * [(φ and ϕ) are available]
where,

φ = Ω(α1) + Ω (α2) - Ω (α1 ∩ α2)
ϕ= Ω (α3) + Ω (α4) - Ω (α3 ∩ α4),
and Ω (α1) = probability of plane α1 available.

Without loss of generality, we assume that copy B ∈α1 is a primary replica.
The probability of α1 is available, Ω (α1), can be presented as:
Probability { all copies of vertices from α1 and primary copy are available } +
Probability { (all copies of vertices and primary copy + 1 copy) from α1 are
available } + ... + Probability { all copies from α1 are available }

and by calculating Ω (α1 ∩ α2) using Venn Diagram and substituting into
previous probability, then

ϕ = p4(1 + p − p2) (7)

φ = p4(2 − p2) (8)

Since the probability {V is available} = probability {C is available} = p,
then, by substituting Eqs. (7) and (8) into first probability, Wi is:

pϕ + pφ − p2(φ ∗ ϕ) (9)

By the same token, for the write availability that consist of other hypotenuse
copies, Wi = Wj = Wk = Wl, where i ∈ R.To compute the write availabil-
ity, ABSG,W , it is analogous to the read availability. Let Wi = β, i ∈R, then
ABSG,W is:

ABSG,W = 1 − (1 − β)4 (10)

For this technique, the hypotenuse of the copies will not be accessible if one
of the copies of each pair is not available, therefore, resulted in failure at the

174 A.S.M. Noor et al.

Table 1. Comparison of the read and write communication costs for the three protocols

Number of copies in the system

Protocol(X) 13 25 64

GC (R) 7 9 15

GC (W) 5 5 5

BSG (R) 2 2 2

BSG (W) 5 5 5

NRG (R) 3 3 3

NRG (W) 3 3 3

write quorum for executing write transaction. It also required both read and
write quorum to intersect in order to access the read quorum hypotenuse. This
resulted in the inability to update write quorum to the latest data object which
affected the consistency of the data (Table 1).

3.3 Neighbor Replication on Grid (NRG)

Neighbor Replication of Grid has been introduced by N. Ahmad [3] by applying
neighboring techniques in a two-dimensional grid structure. All the sites in this
mechanism are logically organized in the form of n × n structure, by having a
master data item stored in each site. The number of data replication from each
site, d ≤ 5, that is the number of the sites neighbor sums up with a data from
the site itself as in Fig. 3.

For simplicity, the read quorum equals to the write quorum is chosen in this
analysis. Thus, the communication cost for read and write operations equals to
total number of votes, υ over 2, that is:
CN RG,R= CN RG,W = [υx /2]

As an instance, let say the primary site has four neighbors and assuming that
each site has voted once. Thus, CN RG,R = CN RG,W = [52] = 3.

Let pi denotes the availability of a data item at site i. For any assignment B
and quorum q for the data x, define φ (Bx, q) to be the probability that at least
q sites in S(Bx) are available. Then

Fig. 3. Data Replication of 25 nodes in NRG

Review of Replication Techniques for Distributed Systems 175

φ (Bx,q) = Pr{ at least q sites in S(Bx) are available}
∑

G ∈ Q(Bx,q(
pj∏

j∈G

∏
j ∈ S(Bx) − G(1 − pj)) (11)

Thus, the availability of read, AN RG, R and write operations AN RG, W for
the data item x for NRG, are φ(Bx,r) and φ(Bx,w) respectively.

The complexity of maintaining copies at different sites gave a challenged for
NRG to handle its locking information especially in the current structure of
distributed computing (Table 2).

Table 2. The read and write availabilities of each protocol when n = 13 and 0.1 ≤ p
≤ 0.9

Read (R) and Write (W) availability (AXR)

Protocol (X) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

GC (R) 0.014 0.124 0.333 0.57 0.773 0.902 0.968 0.994 0.999

GC (W) 2E-6 1E-4 0.14 0.65 0.186 0.392 0.646 0.873 0.986

BSG (R) 0.039 0.151 0.314 0.502 0.684 0.832 0.932 0.983 0.999

BSG (W) 1E-4 0.004 0.030 0.112 0.319 0.614 0.875 0.986 1.00

NRG (R) 0.009 0.058 0.163 0.317 0.500 0.683 0.837 0.942 0.991

NRG (W) 0.009 0.058 0.163 0.317 0.500 0.683 0.837 0.942 0.991

4 Conclusion

This paper briefly discussed existing replication techniques in distributed com-
puting by addressing its communication cost and availabilities analysis based on
k-out-of-n model and the importance of replication in the distributed computing.
Each technique have been appropriately analyzed and presented under different
headings by reviewing its concepts, communication costs, and availability analy-
sis as well as providing illustration for each model.

References

1. Helal, A.A., Heddaya, A.A., Bhargava, B.B.: Replication Techniques in Distributed
Systems. Kluwer Academic Publishers, United States of America (1996)

2. Kuo, W., Zuo, M.J.: Optimal Reliability Modelling: Principles and Applications.
John Wiley and Sons Inc, United States of America (2003)

3. Noraziah, A.: Managing Replication and Transactions using Neighbor Replication
on data grid Database design. Ph.D. Thesis. Universiti Malaysia Terengganu (2007)

4. Deris, M.M., Mamat, A., Seng, P.C., Saman, M.Y.: Three dimensional grid struc-
ture of efficient access of replicated data. Intll J. Interconnection Netw. World Sci.
2(3), 317–329 (2001)

176 A.S.M. Noor et al.

5. Maekawa, M.: A vn algorithm for mutual exclusion in decentralized systems. ACM
Trans. Comput. Sys. 3(2), 145–159 (1992)

6. Cheung, S.Y., Ammar, M.H., Ahmad, M.: The grid protocol: a high performance
schema for maintaining replicated data. IEEE Trans. Knowl. Data Eng. 4(6), 582–
592 (1992)

7. Deris, M.M., Abawajy, J.H., Mamat, A.: An efficient replicated data access app-
roach for large-scale distributed systems. Future Gener. Comput. Sys. 24, 1–9
(2008)

8. Noraziah, A., Mat, D.M., Saman, M.Y.M., Norhayati, R., Rabiei, M., Shuhadah,
W.N.W.: Managing transactions on grid-neighbour replication in distributed sys-
tems. Int. J. Comput. Math. 86(9), 1624–1633 (2009)

9. Bansal, S., Sharma, S., Trivedi, I.: A detailed review of fault tolerance techniques
in distributed system. Int. J. Internet Distrib. Comput. Sys. 1(1), 33 (2012)

10. Shen, H.H., Chen, S.M., Shen, M.M. and Zheng, W.M.: Research on data replica
distribution technique for server cluster. In: IEEE Proceedings of the 4th Interna-
tional Conference on Peformance Computing, pp. 966–968, Beijing (2000)

11. Natanzon, A., Bachmat, E.: Dynamic synchronous asynchronous replication. ACM
Trans. Storage 9(3), 1–19 (2013). Article 8

12. Noor, A.S.M.: Neighbour replica affirmative adaptive failure detection and
autonomous recovery. Ph.D. Thesis. Universiti Tun Hussein Onn Malaysia (2012)

13. Noor, A.S.M., Zian, N.F.M., Saman, M.Y.: Survey on replication techniques for
distributed system. Sci. Int. Lahore 26(4), 1523–1526 (2014)

14. Renesse, R.V., Guerraoui, R.: Replication Techniques for Availability. Theory and
Practice. LNCS, pp. 19–40. Springer, Heidelberg (2010)

15. Deris, M.M., Evans, D.J., Saman, M.Y., Noraziah, A.: Binary vote assignment on a
grid for efficient access of replicated data. Int. J. Comput. Math. 80(12), 1489–1498
(2003)

Connectivity Recovery in Epidemic Membership
Protocols

Pasu Poonpakdee(B) and Giuseppe Di Fatta

School of Systems Engineering, University of Reading, Whiteknights,
Reading, Berkshire RG6 6AY, UK

{p.poonpakdee,g.difatta}@reading.ac.uk

Abstract. Epidemic protocols are a bio-inspired communication and
computation paradigm for extreme-scale network system based on ran-
domized communication. The protocols rely on a membership service
to build decentralized and random overlay topologies. In a weakly con-
nected overlay topology, a naive mechanism of membership protocols
can break the connectivity, thus impairing the accuracy of the applica-
tion. This work investigates the factors in membership protocols that
cause the loss of global connectivity and introduces the first topology
connectivity recovery mechanism. The mechanism is integrated into the
Expander Membership Protocol, which is then evaluated against other
membership protocols. The analysis shows that the proposed connectiv-
ity recovery mechanism is effective in preserving topology connectivity
and also helps to improve the application performance in terms of con-
vergence speed.

Keywords: Topology connectivity · Expander graphs · Epidemic pro-
tocols · Extreme-scale computing · Decentralized algorithms

1 Introduction

In extreme-scale networked systems, the decentralized computation of aggrega-
tion functions is an interesting and challenging task. Due to problems such as
communication bottlenecks and fault intolerance, centralized paradigms are not
desirable solutions. Epidemic, or Gossip-based, protocols are fully decentralized
and fault tolerant, which are particularly suitable for information dissemination
and global aggregation tasks.

Applications based on epidemic protocols for large and extreme-scale net-
worked systems are emerging in many fields, including Peer-to-Peer (P2P) over-
lay networks [1], distributed computing [2], mobile ad hoc networks (MANET)
[3], wireless sensor networks (WSN) [4] and exascale high performance comput-
ing [5,6].

Epidemic protocols use a randomised communication paradigm, which is the
foundation for their robustness and scalability. In order to perform randomised
communication, a peer sampling service is required, which is considered a funda-
mental network service. Obviously, maintaining global knowledge, i.e. a complete
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 177–189, 2015.
DOI: 10.1007/978-3-319-23237-9 16

178 P. Poonpakdee and G.D. Fatta

list of nodes, is not a feasible approach in very large and extreme-scale distributed
systems. A Membership Protocol is typically employed to provide this service.

Scalable and fault tolerant membership protocols can be implemented with
an epidemic approach. The aim of membership protocols is to provide a node
selection service that returns a random node with uniform probability, similar to
a random selection from the global view of the system [7]. Instead of maintaining
a complete list of nodes at each node, a membership protocol builds a local
partial view (cache) of the system. The local view is continuously and randomly
changed: the local partial membership information at each nodes is disseminated
and mixed by exchanging messages with random peers.

Several membership protocols ([8–11]) have been proposed, which have been
designed for generating random overlay topologies.

In particular, the Expander Membership Protocol (EMP) [11] is inspired by
the expansion property of a graph, which is a fundamental mathematical concept
[12]. EMP is based on a push-pull scheme that introduces a bias in the random
node selection in order to maximise the expansion property of the overlay topol-
ogy. To this aim EMP employs a push-forwarding procedure (a random walk)
to search and select an ideal communication peer (quasi-random gossiping) for
the exchange of information.

Topology connectivity is a fundamental property of the overlay graphs that is
required to guarantee the accuracy of epidemic protocols and their applications.
To the best of our knowledge, many approaches have focused on mechanisms
aimed at preserving the topology connectivity in strongly connected graphs,
while none has been dedicated at recovering the connectivity when lost. In fact,
this is an important problem for applications deployed in real-world distributed
systems, where overlay graphs may be weakly connected and the global connec-
tivity be lost in spite of the best effort in trying to preserve it.

In this work, the first mechanism that addresses the connectivity problem in
weakly connected graphs is introduced. The novel mechanism, the Interleaving
Management Procedure (IMP), is integrated into EMP in order to recover from
the degradation of the overlay topology from a single connected component to
multiple connected components. The enhanced version of EMP will be referred
to as EMP+.

The rest of the paper is organized as follows. In Sect. 2, details of the connec-
tivity problem in epidemic membership protocols are given. Section 3 presents a
brief description of EMP and the message interleaving event. Section 4 introduces
a novel procedure that addresses the message interleaving problem to avoid and
to recover from the loss of topology connectivity. Section 5 presents the inte-
gration of this procedure into EMP. Simulations and experimental results are
presented in Sect. 6. Finally, Sect. 7 draws some conclusions and provides the
direction of future work.

2 Connectivity Problems

Graph connectivity is a fundamental concept of graph theory which is also applied
to overlay topology in Epidemic Protocols. For example, epidemic aggregation

Connectivity Recovery in Epidemic Membership Protocols 179

protocols are employed to compute local estimations of a global aggregation
function: such estimations can converge to the true target value if and only if
the global topology connectivity is preserved.

There are several reasons that may cause the degradation of overlay topolo-
gies, e.g. external causes may be node churn and node failures [11]. Surprisingly,
in a weakly connected overlay topology, the internal mechanisms of a member-
ship protocol can also turn the overlay topology from a single connected com-
ponent into multiple connected components. This section briefly reviews some
membership protocols and identifies their components that may introduce such
connectivity problems.

The Node Cache Protocol [8] is a simple membership protocol that adopts
a symmetric push-pull mechanism to exchange and shuffle local membership
information (node cache). At each node, the protocol contains a local cache Q of
node identifiers, where |Q| = qmax is the maximum local cache size of each node
(this parameter is applied to all membership protocols used in this work). At each
cycle, the local cache is sent with a push message to a node randomly selected
from the local cache. When a push message is received, the local cache is sent
in a reply (pull message) to the remote node originating the push message. The
local cache is merged with the remote cache and the remote node ID (refreshing
mechanism). The local cache is finally trimmed to qmax entries by randomly
eliminating the number of entries exceeding qmax. In the Node Cache Protocol,
the trimming operation is the component that may cause connectivity problems,
because the removed entries could be the single link between two connected
components in an overlay topology with weak connectivity.

Cyclon [9] is a membership protocol that is an enhanced version of a basic
node cache shuffling. The mechanism of Cyclon is similar to the Node Cache
Protocol, which also adopts a push-pull mechanism. In Cyclon, cache entries
are assigned an attribute age to track their lifetime. At each cycle, a number
of entries randomly selected from the local cache are sent (push message) to
the node corresponding to the oldest entry in the local cache. When the push
message is received, the node replies with a pull message containing entries a
number of randomly selected entries from its local cache. The received entries
are used to replace the donated entries at both ends. Connectivity problems in
Cyclon may arise when there is message interleaving between independent pairs
of push-pull exchanges involving the same node. Message interleaving has been
identified as a potential threat to the accuracy of those epidemic aggregation
protocols [8] that would require atomic push-pull operations. Similarly, in Cyclon
message interleaving introduces the risk of removing critical cache entries, as the
atomicity of the push-pull operation for cache exchange is not guaranteed.

Eddy [10] is arguably the most complex membership protocol. In order to
provide a better random distribution of node samples in the system, Eddy tries
to minimize temporal and spatial dependencies between local caches. The mech-
anism in Eddy can be separated into two independent processes: gossiping and
refreshing. Gossiping is based on a symmetric push-pull operation: when the
entries in the local cache are chosen for an exchange, they are also removed
from the local cache. Refreshing adopts entry lifetime and push-forwarding

180 P. Poonpakdee and G.D. Fatta

mechanism. A limited lifetime is assigned to each entry which is removed when
expires. Expired entries are replaced with fresh entries by forwarding the entry
to a random node within two hops. The refreshing process of Eddy is effec-
tive, however it introduces a significant communication overhead and an entry
removal mechanism that can cause connectivity problems.

3 The Expander Membership Protocol

The Expander Membership Protocol (EMP) ([11]) directly employs the concept
of expansion in graphs. Expander graphs are sparse graphs with strong connec-
tivity properties. In general, a graph is an expander if any vertex subset (not
too large) has a relatively large set of one-hop distant neighbours.

The typical cache shuffling mechanism in membership protocols is used to
generate a continuous series of random overlay topologies that are sparse and
have a strong connectivity. This task is particularly easy when the initial graph is
already an expander, e.g. a random regular graph. The speed of transformation
from an initial topology to an expander can be used as an indicator to evaluate
the performance of membership protocols, which also affects the convergence
speed of the application. EMP is inspired by these considerations and built on
the concept of vertex expansion. The protocol adopts a symmetric push-pull
mechanism and a push-forwarding mechanism. EMP adopts a random walk in
order to search for a better communication partner (quasi-random gossiping).

4 Message Interleaving

Applications in real-world distributed systems have to cope with asynchronous
communication and network latency. As a result of that, in epidemic protocols
there is a possibility that some node is receiving a pull message while it is
waiting for a pull message. In weakly connected overlay topologies, this message
interleaving can harm the global connectivity of the system.

To describe the effect of message interleaving, it is useful to compare two
scenarios with and without message interleaving. The first scenario (Fig. 1(a))
considers three nodes (i, j and k), which are exchanging their membership infor-
mation without interleaving. First node i sends a push message to node j; then
node i receives a pull message from node j. Eventually node k sends a push mes-
sage to node i and, finally, node i sends a pull message to node k. In this scenario,
the two independent push-pull operations happen in the expected sequence with-
out message interleaving. Let Qi be the local cache at node i, the sequence of
events at node i are as follows:

1. Node i sends a push message (Qi) to node j.
2. Node i receives a pull message (Q′

i and Q′
j) from node j.

3. Node i updates the local cache Qi ← Q′
i.

4. Node i receives a push message (Qk) from node k.
5. Node i merges Q′

i and Qk and generates two partitions Q′′
i and Q′

k.

Connectivity Recovery in Epidemic Membership Protocols 181

(a) without message interleaving

(b) with message interleaving

Fig. 1. The scenarios of message transmission with and without message interleaving

6. Node i updates the local cache Q′
i ← Q′′

i .
7. Node i sends a pull message (Q′

k and Q′′
i) to node k.

The second scenario (Fig. 1(b)) is similar to the first scenario, except that
this time the two push-pull operations are overlapped and message interleaving
happens. Node i sends a push message to node j. Before node i receives a pull
message from node j, it receives a push message from node k. The sequence of
events at node i are as follows:

1. Node i sends a push message (Qi) to node j.
2. Node i receives a push message (Qk) from node k.
3. Node i merges Qi and Qk and generates two partitions Q′

i and Q′
k.

4. Node i updates the local cache Qi ← Q′
i.

5. Node i sends a pull message (Q′
i and Q′

k) to node k.
6. Node i receives a pull message (Q′′

i and Q′
j) from node j.

7. (a) Node i updates the local cache Qi ← Q′′
i .

(b) OR Node i detects message interleaving and performs IMP.

182 P. Poonpakdee and G.D. Fatta

Fig. 2. The snapshot of cache configuration when node i detects a message interleaving
event

After step 6, as a result of message interleaving, the three local caches have
been updated (Q′

i, Q
′
k, Q

′
j) and an additional buffer (Q′′

i) has been received at
node i. In step 7, if node i would perform the simple update operation of 7(a),
as in the case without message interleaving, there would be a risk of removing
critical links, thus exposing the system to potential connectivity problems. Alter-
natively, node i can actually detect the message interleaving event and a more
complex operation, the Interleaving Management Procedure (IMP) of 7(b), has
to be performed to process the incoming pull message.

Figure 2 is a snapshot of the cache configuration after step 6, when node i
detects the message interleaving event. The problem in this configuration is that
some duplicated cache entries have been generated by the two merging opera-
tions. The total number of cache entries in the system is bounded by N ∗ qmax,
where N is the number of nodes. When a cache entry duplicate is generated,
another cache entry needs to be discarded in order to accommodate the dupli-
cate, introducing the risk that a critical link is removed from the system. Dupli-
cated entries also negatively affect the node outdegree distribution in the system.
Duplicated entries must be detected and eliminated when possible.

The next section describes the procedure used to detect and discard dupli-
cated cache entries.

4.1 Detection of Cache Entry Duplicates

The aim of this procedure is to identify and eliminate the duplicated entries
generated by the message interleaving event. Let us assume that the initial local
caches (Qi, Qj and Qk) of the three nodes in the last scenario do not share any
entry, i.e. Qi ∩ Qj = ∅, Qi ∩ Qk = ∅ and Qj ∩ Qk = ∅.

The duplicates have been generated because the push-pull operation between
i and j has not been performed atomically: the merge and partition operation on
Qi and Qj has generated Q′

j and Q′′
i , while node i has changed its local cache.

Connectivity Recovery in Epidemic Membership Protocols 183

Figure 2 shows the duplicated portions of the four cache buffers in the scenario
when node i detects the interleaving event (after step 6).

In order to identify and remove duplicated entries, node i requires the infor-
mation of the four partitions generated by the two merging operations: Q′

i, Q
′
k,

Q′′
i and Q′

j . While the first three are locally available to node i, the buffer Q′
j

needs to be included in the pull message from node j.
The duplicated entries can be detected by comparing these four buffers, for

a total of
(
4
2

)
= 6 possible combinations. Two combinations cannot generate

duplicates, as Q′
i ∩ Q′

k = ∅, Q′
j ∩ Q′′

i = ∅. Four groups of potential duplicates
can be identified and are shown in Fig. 2: (1) Q′′

i ∩Q′
k, (2) Q′

i ∩Q′′
i , (3) Q′

i ∩Q′
j ,

(4) Q′
k ∩ Q′

j .
In the figure some buffer subsets have been indicated as ‘drop’ and others as

‘keep’: node i can identify and drop the duplicates of three cases. However, in
case 4 node i cannot take any action to identify and remove the duplicates, nor
can node j and node k.

This analysis has inspired a mechanism to detect message interleaving and
perform a procedure to remove most, but not all, duplicates. This procedure will
reduce the likelihood of connectivity problems, but will not eliminate the risk
completely (case 4). For this reason a mechanism for connectivity recovery is
still required.

The procedure to remove duplicated cache entries, the one for connectivity
recovery and their integration in EMP are described in the next section.

5 The Enhanced Expander Membership Protocol

In the previous section it was shown how the number of potential duplicated
cache entries can be reduced, thus minimising the negative effect in the degree
distribution of the overlay topology and, more importantly reducing the risk
of connectivity problems. However, the latter issue cannot be eliminated com-
pletely. This problem may not be likely in graphs with strong connectivity. How-
ever, in weakly connected overlay topologies, such as ring of communities [11],
discarding even a few critical cache entries may result in the loss of global con-
nectivity.

For this reason, an enhancement of EMP, EMP+, is introduced in this
section, which is the integration of IMP into EMP. The goal of EMP+ is main-
taining a global connectivity, while still supporting a good convergence speed of
the applications.

The proposed method for solving the connectivity problem adopts a reserve
cache, which is used to store the entries that are removed during the merging
operation. To avoid that the size of the reserve cache may grow indefinitely, a
maximum reserve cache size (rmax) is enforced. When the size of the reserve
cache has reached the maximum, some entries must be discarded.

It is also necessary to store the entries donated with a pull message and a
history cache is introduced for this purpose (line 16). In this cache, entries are
associated with a maximum lifetime and when it expires the entry is removed
to avoid that the cache may grow indefinitely.

184 P. Poonpakdee and G.D. Fatta

Table 1. Notation adopted in the EMP+ pseudocode

i a node in the network, i ∈ V , where V is the set of nodes

Qi main cache at node i, |Qi| ≤ qmax

Ri reserve cache at node i

Hi history cache at node i

hmax maximum number of hops in the random walk

rmax maximum reserve cache size

m→ push message with payload:

- s, node originating the push

- Qs, main cache at s

- d, current best destination node

- vd , current minimum overlap

- h, hop count

m← pull message with payload:

- d, node originating the pull

- Q, set of donated cache entries

- Qd, main cache at node d

The notation adopted in the following pseudocode is summarised in Table 1.
Algorithm 1 shows the pseudocode of EMP+, which is based on the

pseudocode of EMP [11]. Here, the novel components of the protocol EMP+
are highlighted and discussed.

The main difference between EMP and EMP+ is the utilization of the reserve
and history caches. Lines 10 and 11 describe how entries from the reserve cache
are used during the merge operation to generate the two disjoint partitions
Q1 and Q2. Lines from 28 to 34 describe the procedure to process incoming
pull messages with and without message interleaving. If there is no message
interleaving, the local cache can be immediately updated with the content of the
message. When message interleaving occurs, the procedure IMP is performed.

Algorithm 2 shows the pseudocode of the Interleaving Management Proce-
dure, which performs the removal of the duplicated entries. Lines from 2 to 7
show how the duplicates from the cases 1, 2 and 3 are detected and discarded.
IMP is the only procedure in EMP+ that inserts entries into the reserve cache
as shows in line 10. The reserve cache must contain unique entries for the same
node ID at any time.

6 Experimental Analysis

The goal of this experimental analysis is to evaluate the proposed protocol
EMP+ and to compare it against other membership protocols. The analysis
is based on simulations, which are used to verify the global connectivity of the
overlay topology and to measure the performance of an application when differ-
ent membership protocols are used.

Connectivity Recovery in Epidemic Membership Protocols 185

Algorithm 1. EMP+
1: procedure SendPushMessage
2: remove expired entries from Hi

3: j ← get the oldest node from Qi

4: send a push message to j :m→(s = i,Qs = Qi , d = null, vd = ∞, h = 0)

5:

6: procedure ReceivePushMessage(message m→)
7: compute total cache size v = |Qi ∪ m→.Qs ∪ Ri |
8: if (v + 1 ≥ 2 ∗ qmax) or (m→.h > hmax) then
9: Qm ← Qi ∪ m→.Qs

10: while (|Qm| + 1 < 2 ∗ qmax) and (|Ri| > 0) do
11: insert entry from Ri into Qm

12: while (|Qm| + 1 < 2 ∗ qmax) do
13: insert random entry into Qm

14: randomly partition Qm into Q1 and Q2(|Q1 ∪ {m→.s}| = |Q2| = qmax)
15: update local main cache: Qi ← Q1 ∪ {m→.s}
16: add the donated cache entries to the history cache: Hi ← Hi ∪ Q2
17: send a pull message to m→.s :m←(d = i,Q = Q2 ,Qd = Qi)
18: else if (m→.h < hmax) then
19: if v < m→.vd then
20: set m→.d = i and m→.vd = v

21: select random node j from Qi

22: m→.h + +
23: send m→ to j
24: else if (m→.h == hmax) then
25: m→.h + +
26: send m→ to m→.d

27:

28: procedure ReceivePullMessage(message m←)
29: if message interleaving == false then
30: update local main cache: Qi ← m←.Q
31: else
32: perform IMP(m←)

33: while |Ri| > rmax do
34: remove the oldest entry in Ri

When membership protocols are executed over a random overlay topology,
all of them seem to provide an optimal peer sampling service with respect to the
convergence speed of a global aggregation. However, when the overlay topology
is not random, membership protocols may induce different results on the appli-
cation performance. This may happen, for example, when the overlay topology
is initialised or when high node churn is present. Rather than studying optimal
initialization procedure for the overlay topology, in this work we evaluate the
performance of different membership protocols when the overlay topology has
weak connectivity.

In past related work, the initial overlay topology is often chosen as a ran-
dom regular graph. This is an arbitrary and unrealistic choice, which makes the
overlay topology very robust to the loss of connectivity. On the contrary, the
simulations carried out for this work, have used initial overlay topologies with
weak connectivity in order to show the effect of membership protocols in the
degradation of the topology. A ring of communities [11] is an artificial topology
with poor expansion property and a good load balance: it has been used as initial
overlay topology in the simulations.

The experimental tests have been carried out in PeerSim [13], a Java-based
network simulation based on discrete events. The simulations have adopted an

186 P. Poonpakdee and G.D. Fatta

Algorithm 2. IMP
1: procedure IMP(message m←)
2: D1 ← m←.Q ∩ Hi, detect and remove the duplication from case 1
3: m←.Q ← m←.Q \ D1
4: D2 ← m←.Q ∩ Qi, detect and remove the duplication from case 2
5: m←.Q ← m←.Q \ D2
6: D3 ← Qi ∩ m←.Qd, detect and remove the duplication from case 3
7: Qi ← Qi \ D3
8: T ← Qi ∪ m←.Q, create a temporary cache
9: while |T | > qmax do

10: remove the oldest entry in T and add it to Ri

11: while |T | < qmax and |Ri| > 0 do
12: remove the oldest entry in Ri and add it to T

13: while |T | < qmax do
14: select a random entry from the duplications and add it to T

15: update local main cache: Qi ← T

asynchronous network model with a uniform distribution of network latency.
The simulations have been run with the following membership protocols, where
their settings have been chosen for best performance according to the literature
and to a preliminary analysis.

– The Node Cache Protocol [8] (qmax = 30).
– Cyclon [9] (qmax = 30 and shuffle length = 15).
– Eddy [10] (shuffle length = 15 and refresh rate = 10 cycles).
– EMP [11] (qmax = 30 and hmax = 5).
– EMP+ (qmax = 30, hmax = 5, rmax = 100 and history lifetime = 2 cycles).

The initial local cache in all membership protocols was populated with 30
entries according to the same initial overlay topology. The initial ring of com-
munities topology is generated with 10 random connected communities of 1000
nodes: there are only two links between each pair of communities which make
them to have weak inter-community connectivity.

6.1 Global Connectivity

In the first set of simulations, each protocols was run for 100 cycles starting
from the initial ring of communities topology. The aim of the simulations is to
collect information about the number of connected components in the topology
to detect any loss of global connectivity. Each simulation was repeated 20 times
with a different seed of the random number generator.

Figure 3 shows the maximum number of connected components over the 20
trials. It shows that all the membership protocols have lost global connectivity
in at least one trial and at some point in time. For all protocols but EMP+
a connectivity problem is irreversible. The Node Cache Protocol produced the
highest number of connected components. Between cycle 5 and cycle 10, the
number of connected components for EMP is unstable because of the effect of
message interleaving. Like EMP, EMP+ also has a loss of connectivity, though
only temporarily. EMP+ is the only membership protocol that adopts IMP to
be able to recover the global connectivity when lost.

Connectivity Recovery in Epidemic Membership Protocols 187

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

co
nn

ec
te

d
co

m
po

ne
nt

s

cycle

Node Cache Prot.
Cyclon

Eddy
EMP

EMP+

Fig. 3. The number of connected components in the overlay topology: maximum over
20 trials. (network size: 10000 nodes)

The results of our analysis have shown that IMP is often effective in recover-
ing the global connectivity of the overlay topology. However, it does not provide
guarantees because of the practical limitations imposed to the size of the history
and reserve caches.

6.2 Application Accuracy

The second set of simulations is related to the accuracy of an application that
makes use of the service provided by the membership protocol. The specific appli-
cation used is an epidemic aggregation protocol, which computes the estimate of
the global average of a set of distributed values. The epidemic aggregation pro-
tocol SPSP [8] was adopted to perform the global aggregation. All other settings
are the same as in the previous set of simulations.

The local values of the aggregation protocol are initialized with a peak distri-
bution: all nodes have initial value of 0, but one node that has a peak value equal
to network size. After some cycles, the local estimates are expected to converge
to the target value of the global average of 1.

The application performance is measured by the symmetrical mean absolute
percentage error (sMAPE) [14], which is a statistical measure of accuracy based
on the percentage errors. The performance index sMAPE is defined as:

sMAPE =
200
n

×
n∑

t=1

|Ft − X|
Ft + X

,

where X is the target value, Ft is the forecast value (estimate) at each node
and n is number of nodes. The index sMAPE is limited between 200 % and
-200 %. Values closer to zero indicate better accuracy. This index is useful to
avoid the problem of large errors when the real values are close to zero and there
is a large different between the real value and the forecast.

188 P. Poonpakdee and G.D. Fatta

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70 80 90 100

sM
A

P
E

 (
%

)

cycle

Node Cache Prot.
Cyclon

Eddy
EMP

EMP+

Fig. 4. The sMAPE in the overlay topology: average over 20 trials (network size: 10000
nodes)

Figure 4 shows the application performance when different membership pro-
tocols are used. At the beginning every protocol has an index of 200 %, which
means that none of the nodes has reached the target values of the aggrega-
tion. A loss of connectivity hinders the application to reach a sufficient accuracy
and to converge to the target value. The results show that EMP+ is the only
membership protocol that helps the application to achieve the ideal target value
(sMAPE=0 %) after about 50 cycles. EMP+ can maintain the global connectiv-
ity of the overlay topology and can also provide a good speed of convergence.

7 Conclusions

This work has investigated the effect of message interleaving on the global con-
nectivity of the overlay topology generated by epidemic membership protocols.
The internal mechanisms in membership protocols continuously transform the
overlay topology by randomly rewiring the edges. This transformation is quite
robust when applied to a random graph with good expansion properties. How-
ever, if the transformation is applied to an overlay topology with a weak connec-
tivity, some edge rewiring can cause an irreversible loss of global connectivity.

The main contribution of this work is to introduce the first connectivity recov-
ery mechanism. This mechanism has been embedded in EMP+, an enhanced
version of Expander Membership Protocol (EMP). The key to achieve this goal
is the Interleaving Management Procedure (IMP). The experimental analysis
based on simulations has shown that EMP+ is effective in preserving and recov-
ering the global connectivity of the overlay topology and can also provide a good
speed of convergence at the application layer.

Future work will focus on the effect of node churn to the performance of
epidemic membership protocols in very large and dynamic networks.

Connectivity Recovery in Epidemic Membership Protocols 189

References

1. Bansod, N., Malgi, A., Choi, B.K., Mayo, J.: Muon: epidemic based mutual
anonymity in unstructured p2p networks. Comput. Netw. 52(5), 915–934 (2008)

2. Sheng, Di., Wang, C-L., Hu, D.H.: Gossip-based dynamic load balancing in an
autonomous desktop grid. In Proceedings of the 10th International Conference on
High-Performance Computing in Asia-Pacific Region, pp. 85–92 (2009)

3. Ma, Y., Jamalipour, A.: An epidemic P2P content search mechanism for intermit-
tently connected mobile ad hoc networks. In: IEEE GLOBECOM, pp. 1–6 (2009)

4. Galzarano, S., Savaglio, C., Liotta, A., Fortino, G.: Gossiping-based aodv for wire-
less sensor networks. In: IEEE International Conference on in Systems, Man and
Cybernetics (SMC 2013), pp. 26–31, October 2013

5. Strakov, H., Niederbrucker, G., Gansterer, W.N.: Fault tolerance properties of
gossip-based distributed orthogonal iteration methods. Proc. Int. Conf. Comput.
Sci. 18, 189–198 (2013)

6. Soltero, P., Bridges, P., Arnold, D., Lang, M.: A gossip-based approach to exascale
system services. In: Proceedings of the 3rd International Workshop on Runtime
and Operating Systems for Supercomputers, Services (ROSS 2013), ACM (2013)

7. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-
based peer sampling. ACM Trans. Comput. Syst. 25(3), 8 (2007)

8. Blasa, F., Cafiero, S., Fortino, G., Di Fatta, G.: Symmetric push-sum protocol
for decentralised aggregation. In: Proceeidngs of the International Conference on
Advances in P2P Systems, pp. 27–32 (2011)

9. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: inexpensive membership man-
agement for unstructured p2p overlays. J. Netw. Syst. Manage. 13(2), 197–217
(2005)

10. Ogston, E., Jarvis, S.A.: Peer-to-peer aggregation techniques dissected. Int. J. Par-
allel Emerg. Distrib. Syst. 25(1), 51–71 (2010)

11. Poonpakdee, P., Di Fatta, G.: Expander graph quality optimisation in randomised
communication. In: IEEE International Conference on Data Mining Workshop
(ICDMW 2014), pp. 597–604, December 2014

12. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Am. Math. Soc. 43(4), 439–561 (2006)

13. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: Proceedings
of the 9th International Conference on Peer-to-Peer (P2P 2009), pp. 99–100, Sep-
tember 2009

14. Makridakis, S., Hibon, M.: The M3-competition: results, conclusions and implica-
tions. Int. J. Forecast. 16, 451–476 (2000)

Parallel Computing

Optimisation Techniques for Parallel K-Means
on MapReduce

Sami Al Ghamdi(&), Giuseppe Di Fatta, and Frederic Stahl

School of Systems Engineering, University of Reading,
Whiteknights, RG6 6AY, Reading, UK

s.a.m.alghamdi@pgr.reading.ac.uk,

{g.difatta,f.t.stahl}@reading.ac.uk

Abstract. The K-Means algorithm is one the most efficient and widely used
algorithms for clustering data. However, K-Means performance tends to get
slower as data grows larger in size. Moreover, the rapid increase in the size of
data has motivated the scientific and industrial communities to develop novel
technologies that meet the needs of storing, managing, and analysing large-scale
datasets known as Big Data. This paper describes the implementation of parallel
K-Means on the MapReduce framework, which is a distributed framework best
known for its reliability in processing large-scale datasets. Moreover, a detailed
analysis of the effect of distance computations on the performance of K-Means
on MapReduce is introduced. Finally, two optimisation techniques are suggested
to accelerate K-Means on MapReduce by reducing distance computations per
iteration to achieve the same deterministic results.

Keywords: K-Means � Parallel K-Means � Clustering � Mapreduce

1 Introduction

Clustering is the process of partitioning data points in a given dataset into groups
(clusters), where data points in one group are more similar than data points in other
groups. cluster analysis plays an important role in the Big Data problem. For example,
it has been used to analyse gene expression data, and in image segmentation to locate
objects’ borders in an image.

K-Means [1] is one of the most popular and widely used clustering algorithms.
K-means has been extensively studied and improved to cope with the rapid and
exponential increase in the size of datasets. One obvious solution is to parallelise
K-Means. K-Means have been parallelised based on different environments such as
Message Passing Interface (MPI) [2] and MapReduce [3].

For a given number of iterations, the computational complexity of K-Means is
dominated by the distance computations required to determine the nearest centre for
each data point. These operations consume most of the algorithm’s run-time because, in
each iteration, the distance from each data point to each centre has to be calculated.
Various optimisation approaches have been introduced to tackle this issue. Elkan [4]
applied the triangle inequality property to eliminate unnecessary distance computations
on high dimensional datasets. An optimisation technique based on multidimensional

© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 193–200, 2015.
DOI: 10.1007/978-3-319-23237-9_17

trees (KD-Trees) [5] was proposed by Pelleg and Moore [6] to accelerate K-Means.
Judd et al. [7] presented a parallel K-Means formulation for MPI and used two
approaches to prune unnecessary distance calculations. Pettinger and Di Fatta [8, 9]
proposed a parallel KD-Tree K-Means algorithm for MPI, which overcomes the load
imbalance problem generated by KD-Trees in distributed computing systems. Different
approaches have been proposed to improve K-Means efficiency on MapReduce by
reducing the number of iterations. However, we intend to accelerate K-Means on
MapReduce by reducing distance computations per iteration.

This paper describes the implementation of K-Means on MapReduce with a
mapper-combiner-reducer approach and how the iterative procedure is accomplished
on MapReduce. In Addition, it presents some preliminary results relative to the effect
of distance calculations on the performance of K-Means on MapReduce. Finally, two
approaches are suggested to improve the efficiency of K-Means on MapReduce.

The rest of the paper is organised as follows: Sect. 2 briefly introduces K-Means
and MapReduce, and presents a detailed description of Parallel K-Means on MapRe-
duce. Section 3 reports the experimental results. Section 4 presents the work in pro-
gress. Finally, Sect. 5 concludes the paper.

2 Parallel K-Means on MapReduce

2.1 K-Means

Given a set X of n data points in a d-dimensional space R
d , and an integer k that

represents the number of clusters, K-Means partitions X into k clusters by assigning
each xi 2 X to its nearest cluster centre, or centroid, cj 2 C, where C is the set of k
centroids. Given a set of initial centroids, data points are assigned to clusters and cluster
centroids are recalculated: this process is repeated until the algorithm converges or
meets an early termination criterion. The goal of K-Means is to minimise the objective

function known as the Sum of Squared Error ðSSEÞ ¼ Pk

j¼1

Pnj

i¼1
jjxi � cjjj2, where x is the

ith data point in the jth cluster and nj is the number of data points in the jth cluster. The
time complexity for K-Means is OðnkdÞ per iteration.

2.2 MapReduce

MapReduce [3] is a programming paradigm that is designed to, efficiently and reliably,
store and process large-scale datasets on large clusters of commodity machines.

In this paradigm, the input data is partitioned and stored as blocks (or input-splits)
on a distributed file system such as Google File System (GFS) [10], or Hadoop Dis-
tributed File System (HDFS) [11]. The main phases in the MapRede are Map, Shuffle,
and Reduce. In addition, there is an optional optimisation phase called Combine. The
MapReduce phases are explained as follows:

In the Map phase, the user implements a map function that takes as an input the
records inside each input-split in the form of key1-value1 pairs. Each map function

194 S.A. Ghamdi et al.

processes one pair at a time. Once processed, a new set of intermediate key2-value2 pairs
is outputted by the mapper. Next, the output is spilled to the disk of the local file system
of the computing machine. In the Shuffle phase the mappers’ output is sorted, grouped by
key (key2) and shuffled to reducers. Once the mappers’ outputs are transferred across the
network, the Reduce phase proceeds where reducers receive the input as key2-list(value2)
pairs. Each reducer processes the list of values associated to each unique key2. Then,
each reducer produces results as key3-value3 pairs, which are written to the distributed
file system. The Combine phase is an optional optimisation on MapReduce. Combiners
minimise the amount of intermediate data transferred from mappers to reducers across the
network by performing a local aggregation over the intermediate data.

2.3 Parallel K-Means on MapReduce Implementation

Parallel K-Means on MapReduce (PKMMR) has been discussed in several papers (e.g.,
[12, 13]). However, in this paper we explain, in details, how counters are used to
control the iterative procedure. Moreover, we show the percentage of the average time
consumed by distance computations. PKMMR with a combiner consists of: Mapper,
Combiner, Reducer user program called Driver that controls the iterative process. In
the following sections, a data point is denoted as dp, a cluster identifier as c id, the
combiner’s partial sum and partial count as p sum and p count.

Driver Algorithm. The Driver is a process that controls the execution of each
K-Means iterations in MapReduce and determines its convergence or other early ter-
mination criteria. The pseudocode is described in Algorithm-1. The Driver controls the
iterative process through a user defined counter called global counter (line 2). The
global_counter is used as a termination condition in the while loop. The counter is
incremented in the Reducer if the algorithm does not converge or an early termination
condition is not met, otherwise, the counter is set to zero and the while loop terminates.
Besides configuring, setting, and submitting the MapReduce job, the Driver also
merges multiple reducers’ outputs into one file that contains all updated centroids.

Algorithm-1: Driver
1: Select k initial cluster centroids randomly;
2: global_counter := 1 //initialised and modified in Reducer (Algorithm-4)
3: while global_counter > 0 or a termination condition is not met do
4: Configure and setup a MapReduce job;
5: Send initial set of centroids to computing nodes,
6: Run the MapReduce job;
7: if number of reducers > 1 then
8: Merge reducers output into one file
9: end if
10: global_counter := Counter(global_counter).getValue();
11: end while

Optimisation Techniques for Parallel K-Means on MapReduce 195

Mapper Algorithm. Each Mapper processes an individual input-split received from
HDFS. Each Mapper contains three methods, setup, map and cleanup. While the map
method is invoked for each key-value pair in the input-split, setup and cleanup methods
are executed only once in each run of the Mapper. As shown in Algorithm-2, setup
loads the centroids to c_list. The map method takes as input the offset of the dp and the
dp as key-value pairs, respectively. In lines 4−10, where the most expensive operation
in the algorithm occurs, the loop iterates over the c_list and assigns the dp to its closest
centroid. Finally, the mapper outputs the c_id and an object consists of the dp and
integer 1. Because it is not guaranteed that Hadoop is going to run the Combiner,
Mapper and Reducer must be implemented such that they produce the same results
with and without a Combiner. For this reason, an integer 1 is sent with the dp (line 11)
to represent p_count in case the combiner is not executed.

Algorithm-2: Mapper
Method setup ()
1: Load centroids to c_list;

Method map (key, value)
1: Extract dp vector from value;
2: c_id := -1;
3: min_distance := ;
4: for i := 0 to c_list.size -1 do
5: distance := EuclideanDistance(c_list[i], dp)
6: if distance < min_distance then
7: min_distance := distance;
8: c_id := i;
9: end if
10: end for
11: output (c_id, (dp, 1));

Algorithm-3: Combiner
Method setup ()
1: Load centroids to c_list;

Method reduce(c_id, list<values>)
1: p_count := 0, p_sum := 0;
2: for value in values do
3: Extract dp vector from value;
4: p_sum := p_sum + the vector sum of dps in d-dimensions;
5: p_count := p_count + 1;
6: end for
7: output(c_id, (p_sum, p_count))

196 S.A. Ghamdi et al.

Combiner Algorithm. As shown in Algorithm-3, the Combiner receives from the
Mapper (key, list(values)) pairs, where key is the c_id, and list(values) is the list of dps
assigned to this c_id along with the integer 1. In lines 2−6, the Combiner performs
local aggregation where it calculates the p_sum, and p_count of dps in the list(values)
for each c_id. Next, in line 7, it outputs key-value pairs where key is the c_id, and value
is an object composed of the p_sum and p_count.

Reducer Algorithm. After the execution of the Combiner, the Reducer receives (key,
list(values)) pairs, where key is the c_id and each value is composed of p_sum and
p_count. In lines 2−6 of Algorithm-4, instead of iterating over all the dps that belong to
a certain c_id, p_sum and p_count are accumulated and stored in total_sum and
total_count, respectively. Next, the new centroid is calculated and added to new_c_list.
In lines 9−11, a convergence criterion is tested. If the test holds, then the glo-
bal_counter is incremented by one, otherwise, the global_counter’s value does not
change (stays zero) and the algorithm is terminated by the Driver.

Algorithm-4: Reducer
Method setup ()
1: Load centroids to c_list; //holds current centroids
2: global_counter = 0;
3: Initialise new_c_list; //holds updated centroids

Method reduce(c_id, list<values>)
1: total_sum, total_count, new_centroid, old_centroid = 0;
2: for value in values do
3: Extract dp vector from value;
4: total_sum := total_sum + value.get_p_sum();
5: total_count := total_count + value.get_p_count();
6: end for
7: new_centroid := total_sum / total_count;
8: add new_centroid to new_c_list
9: if new_centroid has changed or a threshold is not reached then
10: Increment global_counter by 1
11: end if
12: output(c_id, dp)

Method cleanup()
1: Write new centroids in new_c_list to HDFS;

3 Experimental Results

To evaluate PKMMR, we run the algorithm on a Hadoop [14] 2.2.0 cluster of 1 master
node and 16 worker nodes. The master node has 2 AMD CPUs running at 3.1 GHz
with 8 cores each, and 8 × 8 GB DDR3 RAM, and 6 × 3 TB Near Line SAS disks

Optimisation Techniques for Parallel K-Means on MapReduce 197

running at 7200 rpm. Each worker node has 1 Intel CPU running at 3.1 GHz with 4
cores, and 4 × 4 GB DDR3 RAM, and a 1 × 1 TB SATA disk running at 7200 rpm.

The datasets used in the experiments are artificially generated where data points are
randomly distributed. Additionally, initial cluster centroids are randomly picked from
the dataset [1]. The number of iterations is fixed in all experiments at 10.

To show the effect of distance calculations on the performance of PKMMR, we run
the algorithm with different number of data points n, dimensions d and clusters k. The
percentage of the average time consumed by distance calculations in each iteration is
represented by the grey area in each bar in the Figs. 1-(a), (b), and (c). The white dotted
area represents the percentage of the average time consumed by other MapReduce
operations per iteration including job configuration and distribution, map tasks
(excluding distance calculations) and reduce tasks.

In each run, we compute the average run-time for one iteration by dividing the total
run-time over the number of iterations. Then, the average run-time consumed by dis-
tance calculations per iteration is computed.

(a) Avg. time consumption with variable
number of d. n=1000000, k=128.

(b) Avg. time consumption with variable
number of k. n=1000000, d=128.

(c) Avg. time consumption with variable
number of n. d=128, k=128.

Fig. 1. Percentage of the average consumed time by distance calculations per iteration with
variable number of d, k and n.

198 S.A. Ghamdi et al.

We run PKMMR with a varied number of d, while n is fixed at 1,000,000, and k is
fixed at 128. Figure 1-(a) shows that 39 % (d = 4) to 63 % (d = 128) of the average
iteration time is consumed by distance calculations.

PKMMR is also run with a variable number of k, while n is set to 1,000,000 and
d is set to 128. In Fig. 1-(b), it can be clearly seen the tremendous increase in the
percentage of consumed time by distance calculations per iteration from 11 % (k = 8) to
79 % (k = 512). In this experiment, distance calculations become a performance bot-
tleneck as the number of clusters increases, which is more likely to occur while pro-
cessing large-scale datasets.

Figure 1-(c) illustrates the percentage of the average time of distance calculations
when running PKMMR with variable number of n, while d = 128 and k = 128. As it
can be observed, distance calculations consume most of the iteration time. About 65 %
of the iteration time is spent on distance calculations when n = 1,250,000. Therefore,
reducing the number of required distance calculations will most likely accelerates the
iteration run-time and, consequently, improves the overall run-time of PKMMR.

4 Work in Progress

We intend to accelerate the performance of K-Means on MapReduce by applying two
methods to reduce the distance computations in each iteration. Firstly, triangle
inequality optimisation techniques are going to be implemented and tested with high
dimensional datasets. However, such techniques usually require extra information to be
stored and transferred from one iteration to the next. As a consequence, large I/O and
communication overheads may hinder the effectiveness of this approach if not taken
into careful consideration. Secondly, efficient data structures, such as KD-trees or other
space-partitioning data structures [15], will be adapted to MapReduce and used with
K-Means. Two issues will be investigated in this approach. First, inefficient perfor-
mance with high dimensional datasets that has been reported in [6]. Second, load
imbalance that was addressed in [8, 9].

5 Conclusions

In this paper we have described the implementation of parallel K-Means on the Ma-
pReduce framework. Additionally, a detailed explanation of the steps to control the
iterative procedure in MapReduce has been presented. Moreover, a detailed analysis of
the average time consumed by distance calculations per iteration has been discussed.
From the preliminary results, it can be clearly seen that most of the iteration time is
consumed by distance calculations. Hence, reducing this time might contribute in
accelerating K-Means on the MapReduce framework. Two approaches are under
investigations, which are, respectively, based on the triangle inequality property and
space-partitioning data structures.

Optimisation Techniques for Parallel K-Means on MapReduce 199

References

1. Lloyd, S.: Least Squares Quantization in PCM. IEEE Trans. Inf. Theor. 28(2), 129–137
(1982)

2. Dhillon, I.S., Modha, D.S.: A data-clustering algorithm on distributed memory
multiprocessors. In: Zaki, M.J., Ho, C.-T. (eds.) KDD 1999. LNCS (LNAI), vol. 1759,
pp. 245–260. Springer, Heidelberg (2000)

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In:
Proceedings of the 6th Conference on Symposium on Operating Systems Design &
Implementation, 6, p. 10. Berkeley, CA, USA (2004)

4. Elkan, C.: Using the triangle inequality to accelerate k-means. In: presented at the
International Conference on Machine Learning - ICML, pp. 147–153 (2003)

5. Bentley, J.: Multidimensional binary search trees used for associative searching. Commun.
ACM 18(9), 509–517 (1975)

6. Pelleg, D., Moore, A.: Accelerating exact K-means algorithms with geometric reasoning. In:
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 277−281, New York, NY, USA (1999)

7. Judd, D., Mckinley, P.K., Jain, A.K.: Large-scale parallel data clustering. IEEE Trans.
Pattern Anal. Mach. Intell. 20, 871–876 (1998)

8. Pettinger, D., Di Fatta, G.: Scalability of efficient parallel K-means. In: 2009 5th IEEE
International Conference on E-Science Workshops, pp. 96–101 (2009)

9. Di Fatta, G., Pettinger, D.: Dynamic load balancing in parallel KD-tree K-means. In: IEEE
International Conference on Scalable Computing and Communications, pp. 2478–2485
(2010)

10. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. In: Proceedings of the 19th
ACM Symposium on Operating Systems Principles, pp. 29–43. New York, NY, USA
(2003)

11. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In:
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. Washington, DC, USA (2010)

12. Zhao, W., Ma, H., He, Q.: Parallel K-means clustering based on mapreduce. In: Jaatun, M.
G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS, vol. 5931, pp. 674–679. Springer,
Heidelberg (2009)

13. White, B., Yeh, T., Lin, J., Davis, L.: Web-scale computer vision using mapreduce for
multimedia data mining. In: Proceedings of the Tenth International Workshop on
Multimedia Data Mining, pp. 9:1–9:10. New York, NY, USA (2010)

14. Apache Hadoop. http://hadoop.apache.org/. Accessed on 03 January 2015
15. Pettinger, D., Di Fatta, G.: Space partitioning for scalable K-means. In: IEEE The Ninth

International Conference on Machine Learning and Applications (ICMLA 2010),
pp. 319-324. Washington DC, USA, 12–14 December 2010

200 S.A. Ghamdi et al.

http://hadoop.apache.org/

Epidemic Fault Tolerance
for Extreme-Scale Parallel Computing

Amogh Katti(&) and Giuseppe Di Fatta

School of Systems Engineering, University of Reading,
Whiteknights, Reading, Berkshire RG6 6AY, UK
{a.p.katti,g.difatta}@reading.ac.uk

Abstract. Process failure rate in the next generation of high performance
computing systems is expected to be very high. MPI Forum is working on
providing semantics and support for fault tolerance. Run-Through Stabilization,
User-Level Failure Mitigation and Process Recovery proposals are the resulting
endeavors. Run-Through Stabilization/User Level Failure Mitigation proposals
require a fault tolerant failure detection and consensus algorithm to inform the
application of failures so that it can employ Algorithm Based Fault Tolerance for
quicker recovery and continued execution. This paper discusses the proposals in
short, the failure detectors available in the literature and their unsuitability for
realizing fault tolerance in MPI. It then outlines an inherently fault-tolerant and
scalable Epidemic (or Gossip-based) approach for failure detection and con-
sensus. Some simulations and an initial experimental analysis are presented,
which indicate that this is a promising research direction.

Keywords: Fault tolerance � Message Passing Interface (MPI) � Failure
detection � Epidemic protocols � Gossip-based protocols

1 Introduction

Future High Performance Computing (HPC) systems will be prone to frequent failures.
The System Mean Time Between Failures (SMTBF) for these systems is estimated to
be approximately equal to an hour or even less [19] in contrast to the SMTBF of five to
six hours observed for current HPC systems [21].

Checkpoint/Restart is a generic fault tolerance technique, wherein the application
state is restored from the last saved checkpoint during recovery, that can be used with
all kinds of High End Computing (HEC) applications and hence it is the prominent
fault tolerance technique in use; it is the only technique available in most of the
commercial HEC deployments. However, the technique is deemed to be ineffective for
extreme-scale systems due to the high recovery time associated with it [6, 17].

Application specific techniques like Algorithm Based Fault Tolerance (ABFT) [11]
are recommended for extreme-scale systems [7] for their efficiency in terms of resource
and energy utilization and high performance. ABFT is a technique wherein the fault
tolerance logic is embedded in the algorithm by the application developer to deal with
the loss of application state at failure. This reduces recovery time thereby increasing

© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 201–208, 2015.
DOI: 10.1007/978-3-319-23237-9_18

efficiency. Applications typically use data encoding, algorithm redesign, diskless
checkpointing, etc. ABFT techniques for recovery when failures occur.

Failure detection and notification support from the underlying programming library
is required for applications to employ ABFT. Therefore the Message Passing Inter-
face’s (MPI) [13], the dominant parallel programming interface, Fault Tolerance
Working Group (FTWG) is working on providing failure detection and notification and
recovery services to applications to enable ABFT. Run-Through Stabilization (RTS) /
User-Level Failure Mitigation (ULFM) proposal in combination with Process Recovery
proposal provide the fault tolerance semantics and interfaces to serve these purposes.

In this paper a promising research direction for this problem is presented. The
proposed approach is based on Epidemic (or Gossip-based) protocols to implement a
failure detector for extreme-scale parallel computing.

Uniform Gossip is an inherently fault tolerant and highly scalable communication
scheme. It is aptly suitable for information dissemination and data aggregation in large
scale, distributed and fault prone networked systems [3, 8]. Recently, they have also
been adopted in high performance computing tasks [18, 20].

The paper is organized as follows. FTWG’s endeavors to make MPI fault tolerant
are discussed in Sect. 2. Failure detectors available in the HPC literature are discussed
in Sect. 3. Section 4 proposes a completely distributed Gossip-based and hence
inherently fault tolerant failure detection and consensus approach. Simulations and an
initial analysis are presented in Sect. 5. The paper concludes in Sect. 6 with a dis-
cussion of the future work to comprehensively realize scalable fault tolerance in
extreme-scale parallel computing.

2 Fault Tolerance in MPI

MPI’s FTWG proposed RTS proposal to define semantics and interfaces to allow an
application execute uninterrupted despite the occurrence of faults. ULFM proposal
replaces the RTS proposal. Process Recovery proposal allows failed processes to
re-join. Only fail-stop (crash) process failures are considered by these proposals. When
a process crashes it stops communicating with rest of the processes. The three pro-
posals are briefly discussed in this section.

According to the RTS proposal [9], an implementation is expected to inform an
application of all process failures and let it run using the fault-free processes. RTS
expects an eventually perfect failure detector [5] that is both strongly accurate and
strongly complete. Strong accuracy means that a process must not be reported failed
before it actually fails and strong completeness means that every failed process must be
known to every fault-free process. The proposal weakens the completeness requirement
to allow the processes to return different failed processes by the end of failure detection.

The RTS proposal has been suspended because of the implementation complexity
of the failure detection and notification mechanisms involved [2]. User-Level Failure
Mitigation (ULFM) proposal [1] supersedes the RTS proposal. Under the ULFM
proposal, no operation hangs in the presence of failures but completes by returning an
error. Asynchronous failure notification is not necessary. The proposal demands a

202 A. Katti and G. Di Fatta

weakly complete failure detector to achieve global consistency on the set of failed
processes whenever necessary.

Process Recovery proposal [15] complements the RTS/ULFM proposal. It provides
semantics and interfaces to facilitate recovery of a process that failed previously. Draft
specification for the proposal is under development.

3 Failure Detectors

MPI requires failure detection and notification services to enable ABFT. Both cen-
tralized and completely distributed failure detectors are available in the HPC literature.
Coordinator based and completely distributed Gossip-based failure detectors for
fail-stop failures are discussed in this section.

3.1 Coordinator Based Failure Detectors

A two-phase fault-aware consensus algorithm over a static tree communication
topology to construct a weekly complete failure detector was provided in [12]. A fault
tolerant algorithm, in [4], provided an improvement to support strict completeness
using an iterative formulation of the three-phase commit over a dynamic tree com-
munication topology. Both the approaches are discussed in this section.

Over a Static Tree Topology. This approach assumes that processes locally know
failed processes and participate in the consensus algorithm to consistently construct the
global list of failed processes. A two-phase algorithm over a fault-aware tree topology
constructs the global list of failed processes using reliable gather at the coordinator
during the first phase and reliable broadcast to the participant processes during the
broadcast phase. Participant failures are handles by routing around the failed processes
to find the nearest parent and child process during the gather and broadcast operations
respectively. Termination detection algorithm is used when the coordinator fails during
the broadcast phase. Processes query the immediate children of the coordinator to get
the global list of failed processes. If the coordinator fails during the gather phase or just
before the broadcast phase, the algorithm aborts without constructing the global list of
failed processes. Processes that fail during the algorithm will be detected during the
next invocation of the algorithm.

Over a Dynamic Tree Topology. This approach also assumes that processes locally
know failed processes and then participate in the consensus algorithm. A three-phase
algorithm over a fault-tolerant dynamic tree topology constructs the global list of failed
processes making sure that every process returns the same list of failed processes and thus
implements a strongly complete failure detector. First phase constructs the list of failed
processes and sends it to every participant and makes sure that every process has the
same list of failed processes by the end of the phase, second phase informs to the
participants that all the processes have the same failed process list by now and third phase
commands the participants to terminate the algorithm. Every phase starts with a message
from the coordinator and finishes when the coordinator receives acknowledgement from

Epidemic Fault Tolerance for Extreme-Scale Parallel Computing 203

all the participants for the current phase. If any participant fails during a phase, a new
instance of the broadcast starts by reconstructing the tree with the current alive processes.
Coordinator failure is handled by electing a new coordinator.

3.2 Completely Distributed Failure Detectors

Coordinator based failure detection and consensus algorithms do not scale to large
number of processes. Completely distributed failure detection can be accomplished as a
side effect of Gossiping. Gossip-based failure detectors in the distributed computing
systems literature considered for HPC are discussed in this section.

Gossip-based failure detectors can be either passive “heartbeat” failure detector or
active “ping” failure detector. A process in “heartbeat” failure detection passively waits
for Gossip messages whereas in “ping” failure detection a process actively pings other
processes.

“Heartbeat” Failure Detector. In [16] a Gossip-based failure detection algorithm
using liveness analysis is given. A process in the system periodically announces that it
is alive by sending a Gossip message to another random process in the system. This
liveness information disseminates throughout the network and ultimately every process
will have information about every other process in the system. A process is suspected
to have failed if its liveness information is old. When a majority of processes suspect a
process it is detected to have failed. When all fault free processes have detected a faulty
process consensus on its failure is reached.

“Ping” Failure Detector. A failure detection algorithm using distributed diagnosis
considering network partitioning is given in [10]. A process randomly selects another
process and pings it to find its status. If it does not receive a response from the process,
it asks a random sample of the processes in the system to ping the process as well. The
process is detected to have failed if none of the selected processes receives a response.

4 Failure Detector Maintaining Global Knowledge

Completely distributed Gossip-based heartbeat failure detection and consensus algo-
rithms are based on passive and slow liveness analysis and consume very high memory
and network bandwidth. There is need for fault tolerant yet scalable communication
schemes. In this section a novel scalable Gossip-based and inherently fault tolerant
ping type failure detector for fail-stop failures using a matrix to store global view of all
the processes in the system is proposed.

The algorithm detects fail-stop failures and the failures are assumed to be perma-
nent. A synchronous model of the system is assumed with bounded message delay.
Failures during the algorithm are assumed to stop at some point to allow the algorithm
to complete with successful consensus detection. Figure 1 shows pseudocode for the
algorithm.

204 A. Katti and G. Di Fatta

A process p maintains a fault matrix Fp to store the system view of all the processes
in the system. Fp[r, c] is the view at process p of the status of process c as detected by
process r. A value of 1 indicates failure and a 0 indicates alive.

Every process in the system is assumed to be alive by every process at the
beginning and hence the fault matrix is initialized with all 0’s (lines 1-5).

During a cycle of Gossip, of length Tgossip time units, process p pings a random
process to check its status. It also handles reception of Gossip message and ping
timeout events. A random process q is selected and a ping message is sent to it with the
local fault matrix Fp (lines 6-7). When a ping message is received, an asynchronous
reply is sent with the local fault matrix (lines 19-21). When the ping message times out
without receiving a reply message from q, it is detected to have failed and 1 is stored at
Fp[p, q] (line 28). On receiving a Gossip message from j, the local and the remote fault
matrices, Fp and Fj, are merged. Thus process p performs indirect failure detection
through j and propagates the failures known to j (lines 22-27).

Fig. 1. Pseudocode of the Gossip-based failure detection and consensus

Epidemic Fault Tolerance for Extreme-Scale Parallel Computing 205

Consensus on the failure of each process is checked during every Gossip cycle.
Consensus is reached when all the fault-free processes have recognized the failed
process (lines 8-18).

5 Simulations and Results

The algorithm was implemented in Java and the simulations were carried out on
PeerSim [14], a scalable network simulator based on discrete events. The latency and
bandwidth were set to nominal values as only the number of Gossip cycles required to
reach consensus were measured. Failures were simulated by restraining a process from
participating in communications.

The algorithm’s scalability and fault tolerance properties were tested. Failures were
injected into randomly chosen processes. In the first experiment a single failure was
injected at the beginning of the simulation. In the second experiment failures were
injected during the simulation to test the fault tolerance property of the algorithm.
Because processes reach consensus on the injected failure(s) at different cycles, the
cycle number of the last process reaching consensus is considered and recorded.

Figure 2 shows the relationship between the number of Gossip cycles (average over
multiple simulations) and system size to reach consensus when a single failure is
injected at the beginning of the simulation. Consensus is reached in logarithmic number
of Gossip cycles.

Figure 3 shows the transition towards consensus in terms of the relative number of
processes which have detected the failure at each cycle. A typical epidemic information
spreading can be observed.

The consensus algorithm is completely fault tolerant and it can also detect failures
that happen during its execution. Figure 4 shows the results of simulations where
failures were injected in randomly chosen processes and at random time within the first
10 cycles. The number of Gossip cycles needed to achieve consensus is still logarithm
in terms of the system size from the Gossip cycle at which the last failure was injected.

Fig. 2. Number of cycles to achieve consen-
sus with a single failure

Fig. 3. Transition towards consensus with a
single failure

206 A. Katti and G. Di Fatta

6 Conclusion and Future Work

MPI’s Fault Tolerance Working Group is working on including fault tolerance support
into the standard to enable high performance computing systems to continue execution
despite faults. Algorithm Based Fault Tolerance is the fault tolerance technique sought
of and it requires failure detection and notification services.

Failure detection and consensus methods that use a coordinator do not scale to large
number of processes. To overcome these limitations, this work has introduced a
Gossip-based approach to provide scalable and fault tolerant failure detection and
consensus. Each process builds and propagates a global view of the system. Failures
are locally detected with direct timeout events based on Gossip messages and with
indirect propagation of failures known to other processes. The experimental analysis
based on simulations have shown that consensus on failures is reached in a logarithmic
number of Gossip cycles w.r.t. the system size.

However, the proposed approach does not scale well in terms of memory
requirements because each process has to maintain not only its own view of the system
but also the views of all other processes. It also consumes a lot of network bandwidth
due to transfer of this global view with each Gossip message.

Future work includes the design of memory and network bandwidth efficient
methods for fault tolerant failure detection and consensus. In particular, fully decen-
tralised algorithms for consensus detection and synchronization are being investigated.
Supporting process re-spawning in the algorithm thereby bridging failure detection and
process recovery is also an interesting future research direction.

References

1. Bland, W., Bosilca, G., Bouteiller, A., Herault, T., Dongarra, J.: A proposal for User-Level
Failure Mitigation in the MPI-3 standard. University of Tennessee, Department of Electrical
Engineering and Computer Science (2012)

2. Bland,W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.J.: Post-failure recovery ofMPI
communication capability: Design and rationale. Int. J. High Perform. Comput. Appl. (2013)

Fig. 4. Number of cycles to consensus with 4 failures injected during the simulations

Epidemic Fault Tolerance for Extreme-Scale Parallel Computing 207

3. Blasa, F., Cafiero, S., Fortino, G., Di Fatta, G.: Symmetric push-sum protocol for
decentralised aggregation (2011)

4. Buntinas, D.: Scalable distributed consensus to support MPI fault tolerance. In: 26th IEEE
International Conference on Parallel & Distributed Processing Symposium (IPDPS), May
2012, pp. 1240–1249 (2012)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
J. ACM (JACM) 43(2), 225–267 (1996)

6. Daly, J.T., Lead, R.: Application resilience for truculent systems. In: Workshop on Fault
Tolerance for Extreme-Scale Computing, Albuquerque, NM – 19–20 March 2009,
ANL/MCS-TM-312 (2009)

7. Daly, J., Harrod, B., Hoang, T., Nowell, L., Adolf, B., Borkar, S., Wu, J.: Inter-Agency
Workshop on HPC resilience at extreme scale. In: National Security Agency Advanced
Computing Systems, February 2012 (2012)

8. Di Fatta, G., Blasa, F., Cafiero, S., Fortino, G.: Fault tolerant decentralised K-Means
clustering for asynchronous large-scale networks. J. Parallel Distrib. Comput. 73(3), 317–
329 (2013)

9. Fault Tolerance Working Group. Run-though stabilization interfaces and semantics. In: svn.
mpi-forum. org/trac/mpi-forum-web/wiki/ft/run through stabilization (2012)

10. Gupta, I., Chandra, T.D., Goldszmidt, G.S.: On scalable and efficient distributed failure
detectors. In: Proceedings of the Twentieth Annual ACM Symposium on Principles of
Distributed Computing, August 2001, pp. 170–179. ACM (2001)

11. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix operations. IEEE
Trans. Comput. 100(6), 518–528 (1984)

12. Hursey, J., Naughton, T., Vallee, G., Graham, R.L.: A log-scaling fault tolerant agreement
algorithm for a fault tolerant MPI. In: Cotronis, Y., Danalis, A., Nikolopoulos, D.S., Dongarra,
J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp. 255–263. Springer, Heidelberg (2011)

13. Message Passing Interface Forum: MPI: A Message Passing Interface. In: Proceedings of
Supercomputing 1993, pp. 878–883. IEEE Computer Society Press (1993)

14. Montresor, A., Jelasity, M.: PeerSim: A scalable P2P simulator. In: IEEE Ninth International
Conference on Peer-to-Peer Computing, P2P 2009, pp. 99–100. IEEE (2009)

15. Process Recovery Proposal. https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/ft/process_
recovery_2. Accessed: 14 May 2015

16. Ranganathan, S., George, A.D., Todd, R.W., Chidester, M.C.: Gossip-style failure detection
and distributed consensus for scalable heterogeneous clusters. Cluster Comput. 4(3),
197–209 (2001)

17. Schroeder, B., Gibson, G.A.: Understanding failures in petascale computers. In: Journal of
Physics: Conference Series, vol. 78(1), p. 012022. IOP Publishing, July 2007

18. Soltero, P., Bridges, P., Arnold, D., Lang, M.: A Gossip-based approach to exascale system
services. In: Proceedings of the 3rd International Workshop on Runtime and Operating
Systems for Supercomputers, p. 3. ACM, June 2013

19. Song, H., Leangsuksun, C., Nassar, R., Gottumukkala, N.R., Scott, S.: Availability
modeling and analysis on high performance cluster computing systems. In: The First
International Conference on Availability, Reliability and Security, ARES 2006, April 2006,
p.8. IEEE (2006)

20. Straková, H., Niederbrucker, G., Gansterer, W.N.: Fault tolerance properties of gossip-based
distributed orthogonal iteration methods. Procedia Comput. Sci. 18, 189–198 (2013)

21. Taerat, N., Nakisinehaboon, N., Chandler, C., Elliot, J., Leangsuksun, C., Ostrouchov, G.,
Scott, S.L.: Using log information to perform statistical analysis on failures encountered by
large-scale HPC deployments. In: Proceedings of the 2008 High Availability and
Performance Computing Workshop, vol. 4, pp. 29–43 (2008)

208 A. Katti and G. Di Fatta

https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/ft/process_recovery_2
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/ft/process_recovery_2

A GPU-Based Statistical Framework
for Moving Object Segmentation:

Implementation, Analysis and Applications

Alfredo Cuzzocrea1,2(B), Enzo Mumolo1, Alessandro Moro3,
and Kazunori Umeda3

1 DIA Department, University of Trieste, Trieste, Italy
alfredo.cuzzocrea@dia.units.it

2 ICAR-CNR, Rende, Italy
3 Chuo University, Tokyo, Japan

Abstract. This paper describes a real-time implementation of a recently
proposed background maintenance algorithm and reports the relative
performances. Experimental results on dynamic scenes taken from a fixed
camera show that the proposed parallel algorithm produces background
images with an improved quality with respect to classical pixel-wise algo-
rithms, obtaining a speedup of more than 35 times compared to CPU
implementation. It is worth noting that we used both the GeForce 9 series
(actually a 9800 GPU) available from the year 2008 and the GeForce 200
series (actually a 295 GPU) available from the year 2009. Finally, we show
that this parallel implementation allows us to use it in real-time moving
object detection application.

1 Introduction

In computer vision systems, a background model is a representation of the back-
ground image and it is based on its associated statistics. Background models
are widely used for foreground objects segmentation, which is a fundamen-
tal task in many computer vision problems including moving object detection,
shadow detection and removal, and image classification problems. As the visual
scene changes with time, these models are continuously updated to include the
required background modifications; the development of model updating algo-
rithms is called Background Maintenance Problem.

As described in [3,18], there are many problems that the background maine-
nance algorithms should solve, mainly related to the reaction of the background
to both sudden or gradual changes in the visual scene, such as the sudden or
gradual environmental light changes. Moreover, the moving object detection
process can generate ghost images if the background image reconstruction is not
fast enough. Other problems may be caused by shadows, because foreground
objects often generate cast shadows which appear different from the modeled
background.

Hence high quality background management algorithms are generally quite
compex. In fact, there is a trade-off between the accuracy of the background
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 209–220, 2015.
DOI: 10.1007/978-3-319-23237-9 19

210 A. Cuzzocrea et al.

image and the computing time the algorithms require. Of course the complexity
of the computation of these methods is the big obstacle for real-time applications.

For this reason, many authors implemented background management
algorithms on a Graphic Processing Unit (GPU). GPU’s have a high number
of parallel processors and implement the stream processor paradigm, a form of
Single Instruction, Multiple Data (SIMD) parallel processing. Under this para-
digm, the same series of operations (kernel function) are independently applied
onto each element in a set of data (stream) in an unspecified order and in batches
of an (a priori) undetermined number of elements. This type of processing is par-
ticularly suited when each input pixel is independently processed.

In this paper we describe the GPU implementation of the background main-
tenance algorithm described in [4]. The algorithm is indeed pixel-wise, as almost
all the processing are performed independently on each pixel and, as such, it is
well suited to GPU implementation and high speed-ups can be expected. It is
worth remarking that an important characteristic of real time computation of
background maintenance algorithms is important at least for detecting moving
objects from high definition images. It is worth recalling that the trend of digital
cameras concerns increasing image resolution and increasing frame rate. In fact,
with high resolution images it is possible to perform zoom of a particular region
of the image, such as a door or an entrance (as shown in Fig. 1, right panel).
Moreover, high frame rate allows to capture elements moving at high speed,
such as fast running persons or high speed cars. Both these features are very
important in video surveillance. Another application of the proposed algorithm
is when the scene is crowded: the background is quite completely hidden for
a long period of time and need to be reconstructed in real-time. In Fig. 1 we
report two examples of typical images used in the experimental measurements
described in Sect. 6.

This paper is organized as follows. Section 2 deals with some previously
published work on GPU implementation of other Computer Vison algorithms.
The related speed-up figures are reported. In Sect. 3 a review of the previously

Fig. 1. Example of complex scenes that requires highly accurate background mainte-
nance.

A GPU-Based Statistical Framework for Moving Object Segmentation 211

published ([4]) the pixel-wise algorithms for background maintenance is reported,
and in Sect. 4 the parallelization of the previously proposed algorithm is pre-
sented. In Sect. 6 its performances in term of computational efficiency, speedup
and quality are outlined and discussed. Finally in Sect. 7 some final remarks are
proposed.

2 Related Work

Graphic Processing Units or GPUs are highly parallel processors, initially
thought for graphic processing and rapidly evolved to general purpose process-
ing, or GPGPU. Image processing and Computer graphic remain however the
fields where the GPU can give the greatest benefits, as long as the algorithms
are mostly pixel-wise. Clearly using the GPU for algorithmic processing, frees
the CPU for other tasks.

Many GPU implementations of background methods have been published in
the previous years. The work of [11] presents a foreground-background segmenta-
tion based on a color similarity test in a small pixel neighborhood, integrated into
a Bayesian estimation framework, where iterative MRF-based model is applied.
Using images of size 640x480 pixels on an NVIDIA GeForce 6800GT graph-
ics card with AGP 8x, the following run-times are reported, depending on the
number of MRF-iterations. The time needed for uploading the input images to
the GPU and downloading the final segmentation is not included. The run-time
varies from 2.51 ms to 4.84 ms for 0 and 10 iterations, correspondingly. In [15], a
background model with low latency is constructed to detect moving objects in
video sequences. Subsequent frames are stacked on top of each other using asso-
ciated registration information that must be obtained in a preprocessing step.
Their GPU implementation is running on a test system equipped with Nvidia
GeForce 8800 GTX model, featuring 768 MB of video ram. The time required
to construct the mean and median approximation backgrounds of length 48 on
a combined GPU and CPU implementation is 16 and 151 ms, respectively. The
authors in [20] describe a GPU-based implementation of motion detection from
a moving platform. A step compensating for camera motion is required prior
to estimating of the background model. Due to inevitable registration errors,
the background model is estimated according to a sliding window of frames. The
background model is based on an RGB texture histogram and a search for the
bin with the largest number of samples. The resulting GPU-based implementa-
tion can build the background model and detect motion regions at around 18 fps
on 320videos. Finally, the work of [13] proposes an approach that incorporates
a pixel-based online learning method to adapt to temporal background changes,
together with a graph cuts method to propagate per-pixel evaluation results over
nearby pixels. The speed of their method is measured on a Lenovo T60 laptop
with Intel Centrino T2500 CPU and ATI Mobility Radeon X1400 GPU. For
image sequences with 320x240 resolutions, they achieve 16 fps.

In [16] Pham et al. describe a GPU implementation of an improved version
of the Extended Gaussian mixture background model. Pham et al. show in this
paper that their GPU implementation gained a speed-up of at least 10 with

212 A. Cuzzocrea et al.

respect to a CPU implementation. Pham et al. used Core 2 2.6 GHz CPU and a
GeForse 9600GT GPU.

In [14], the authors implemented a background maintenance algorithm based
on an adaptive mixture of Gaussians (AGMM). Using an NVIDIA GPU with
the CUDA [1] they achieved 18 acceleration compared with an implementation
on an Intel multicore CPU using multithreading. In the same paper, an imple-
mentation on IBMs Cell Broadband Engine Architecture (CBEA) achieved 3 the
acceleration compared with the same Intel multicore CPU benchmark.

3 The Baseline Method in a Nutshell

The block diagram of the resulting algorithm is shown in Fig. 2.

Fig. 2. Block diagram of the proposed algorithm.

The difference between background and foreground is computed to establish
which pixels of the image would be updated. The difference vector Δ is calculated
as follows:

Δ =
[∣
∣IR

x,y − BR
x,y

∣
∣ ,

∣
∣IG

x,y − BG
x,y

∣
∣ ,

∣
∣IB

x,y − BB
x,y

∣
∣
]T

where (x, y) is the pixel position, Ic the intensity of the current image for the
channel c, c = (Red,Green,Blue), Bc the intensity of the background image
and τ = [τR, τG, τB]T is a vector of thresholds used to detect changes in each
channel.

For each image Ic, at each frame t, the color distribution for each pixel (x, y)
is calculated using histogram analysis:

H (t + 1, Ic) =
{

H (t, Ic) + 2 · δ [p (x, y) − Ic] if Δ ≥ τ
H (t, Ic) + δ [p (x, y) − Ic] otherwise (1)

At each frame t, the numbers of Found Changes (FC) and Not Found
Changes (NFC) are updated as shown in (2) and (3), where U is a parameter
that have to be assigned in order to control the update rate of the background
model. A typical value of U is equal to 100 frames.

FCx,y(t + 1) =
{

FCx,y(t) + 1 if Δ ≥ τ
0 if Δ � τ ∧ NFCx,y(t) = U

(2)

A GPU-Based Statistical Framework for Moving Object Segmentation 213

NFCx,y(t + 1) =
{

NFCx,y(t) + 1 if Δ � τ
0 otherwise

(3)

FC and NFC are used to trigger the background updating phase, which is
performed if the number of Changes Found for the pixel (x, y) is greater than
a given threshold. In the EHB algorithm, this threshold is constant for all the
image, while in the proposed algorithm is computed for each pixel, as follows.

Introducing a weight αx,y on the variability of the intensity of the pixel (x, y):

αx,y =
1

max (1, σ (x, y))
·
(

1 − 1
γ

∑T
i=1 Mx,y(i)

T
)

)

, (4)

where the fraction 1
γ is typically around 1

3 , and a weight βx,y on the number of
changed pixels:

βx,y =
1
γ

·
(∑

x,y Mx,y

number of pixels in the image
+ 1

)

, (5)

we compute the threshold φx,y as

φx,y = (αx,y − βx,y) · U (6)

Equations (4) and (5) use the instantaneous change of pixel (x, y), represented
by the binary matrix Mx,y(t) computed as follows:

Mx,y(t) =
{

1 if Δ ≥ τat time t
0 otherwise

(7)

Thus, if FCx,y > φx,y the pixel in the background is considered to be changed
and hence its histogram model should to be updated. Moreover, if the model is
changed, the background image should be reconstructed from the histogram
model.

The matrix NFC is also used for another background maintenance problem.
Over long acquisition time, if a pixel has small variations under the threshold
φ, it can have changed its value. So, if NFC is greater than 100 times U , the
background image is computed from the histograms model even for unchanged
pixels.

This algorithm offers some improved features with respect to EHB. First of
all, the algorithm is capable to adapt the background to the gradual changes of
lights that happens at different hours and weather conditions during the day, as
the histograms are continuously updated, and is capable to adapt single parts of
the background image taking into account the different dynamics of the changes
in different regions of the grabbed image. The proposed algorithm is also well
suited to face the problem of sudden light changes, as when a light is turned
on or when sun appears among the numbs, choosing accordingly the parameter
U . Moreover, one can expect a reduced number of I/O operations due to the
reduced updates of the background image. Some other features are in common
to EHB, such as the absence of a training phase and the fact that it can work
properly when the start grabbed image has foreground elements already present.

214 A. Cuzzocrea et al.

4 GPU-Based Implementation

GPU computing turns the massive floating-point computational power of a mod-
ern graphics accelerator’s shader pipeline into general-purpose computing power.
When utilizing a GPU there are several things that must be considered, as the
internal structure of the GPU is completely different from the internal structure
of CPUs (Fig. 3).

Fig. 3. Quick comparison between CPU and GPU.

First of all, the execution model of GPUs is really different from CPUs.
GPUs employ massive parallelism and wide vector instructions, executing the
same instruction for more elements at a time. Without designing algorithms
that take this into consideration, the performance will be only a small fraction
of what the hardware is capable of. Fig. 4 shows how a multithreaded program
can easily adapt to different GPU structures.

Another thing to consider is that the GPU is on a separate circuit board,
the graphic card, that is connected to the rest of the computer through a PCI
express slot (as shown in Fig. 5), which implies that all data transfer between
the CPU and the GPU is relatively slow. On the basis of this considerations, it is
only through an accurate understanding of the architecture that we can develop
and implement efficient algorithms.

5 Parallelization of the Proposed Histogram-Based
Algorithm for Moving Object Segmentation

The proposed approach has been implemented on GPU: each acquired image is
divided into 8x8 pixel blocks and for each block a thread pool of independent
threads is instantiated.

A big amount of memory is required because, inside the GPU, for each con-
current thread several data structure have to be stored for each pixel, namely
the three histograms Hc, M , FC and NFC. A schema of the data structure is
represented in Fig. 6.

Each thread updates the model of a single pixel of the background. As the
pixels are update by independent threads, this approach does not require inter-
thread communication to synchronize the thread operations. A schematic repre-
sentation of the overall parallelized algorithm is reported in Fig. 7.

6 Experimental Assessment and Analysis

The results described in this section have been computed on one core of an Intel
Core 2 Quad Q9550 CPU running at 2.83 GHz and will be used to evaluate the

A GPU-Based Statistical Framework for Moving Object Segmentation 215

Fig. 4. Execution of parallel threads on different GPU architectures.

Fig. 5. Architecture of the system GPU and CPU.

Fig. 6. Data structure used in the parallelized algorithm.

GPU speedup. We implemented on GPUs the proposed algorithm and the EHB
algorithm. In the following, the performance in terms of computational time are
presented. In Table 1 the time required for the computation on two different
GPU architectures is reported: a single GPU board (NVIDIA GeForce 9800 GT
with 512 MB) and a dual GPU board (GTX 295 with 1024 MB).

A typical measure used to evaluate the scalability of parallel algorithms is
the speedup, defined as the ratio of the CPU time over the GPU time. In Fig. 8
the speed-up of the proposed algorithm is reported for different dimensions of

216 A. Cuzzocrea et al.

Fig. 7. Data management in the parallelized algorithm.

the image: the nominal resolution of the images on the camera used is 320x240
pixels, corresponding to 76800 pixels on the abscissa of Fig. 8. The GPU time is
computed on an NVIDIA 9800 GTX.

Table 1. Computational time [ms] on different GPUs

Algorithm GTX 9800 time [ms] GTX 295 (single GPU) GTX 295 (dual)

time [ms] time [ms]

EHB 17 13.25 6.72

Proposed 13.6 9.65 4.90

In Fig. 9 we report the similarity of the proposed algorithm vs. the control
parameter U (described in Sect. 3). As the frame rate increases, the image pre-
cision can reach a higher value, and more computational effort is required. This
improvement is due to the fact that the background is updated more frequently
and it can allow to observe fast event as quickly moving objects, fast changes
and light variations. If the update frequency is too low, when an event occurs
among two update time instants, it will not be recorded.

Fig. 8. Speed-up evaluated on a Nvidia 9800 GTX.

A GPU-Based Statistical Framework for Moving Object Segmentation 217

Fig. 9. Similarity Index over the control parameter U.

Fig. 10. Results using a simple average algorithm implemented on CPU.

Fig. 11. Results using the proposed algorithm implemented on GPU.

218 A. Cuzzocrea et al.

Fig. 12. Ratio of the GPU computing time between EHB and the proposed algorithm.

Finally, we evaluated the quality of the background model computed by GPU.
This is in general difficult to perform as it would require ground truth back-
ground models. Hence, we compare the background model generated by GPU
with the one generated by the CPU version, computing the average difference
AD described in Eq. (8) as proposed in [22]:

AD = 2 · abs

(
IGPU − ICPU

IGPU + ICPU

)

(8)

The average difference AD, evaluated on the same 13000 frames on GPU and
CPU, is 0.5 % and the variance is 0.5 %. Thus, we can conclude that GPU and
CPU versions are providing the same results.

7 Concluding Remarks and Future Work

It is worth noting that the background can be estimated, as in Yu-Medioni [22],
with a simple average of previous frames. This average approach is faster. How-
ever, its performance are very poor, as shown in Fig. 10.

Figure 10 shows, from the top, the same complex scenes reported in Fig. 1.
From the top, we see the grabbed image, the reconstructed background in the
middle, and, at the bottom, the difference image D obtained with the average
approach used in Yu-Medioni [22]. It is clear that in the difference image D there
are many ghosts which make impossible to determine the moving objects.

On the other hand, in Fig. 11 the same scenes are processed with the pro-
posed algorithm implemented on the GPU. It is evident from Fig. 11 that the
algorithm implemented on GPU gives the same results of the algorithm imple-
mented on CPU, as reported in [4]. Moreover the algorithm leads to a much
better results than the average approach used by Yu-Medioni because the recon-
structed backgrounds are cleaner (middle panel) and the difference images (on
the bottom) allow a much more precise determination of moving objects.

Finally, it is important to note that the proposed algorithm is well tai-
lored to parallel implementation. In fact, Fig. 12 shows that on GPU the
improved background quality of the proposed algorithm is obtained with low

A GPU-Based Statistical Framework for Moving Object Segmentation 219

computational time. In Fig. 12 we report the ratio of the computation time
between EHB and the proposed algorithm versus different image resolutions.
For the considered image dimensions, the proposed algorithm scales very well as
the number of pixels increases.

As the evolution of video camera technology provides more powerful devices,
the resolution of the acquired image becomes higher and higher to provide bet-
ter definition of details. In the video surveillance field, higher resolutions allow
to zoom a region of an image without sacrifice spatial resolution. It is worth
noting that the proposed algorithm is well suited for high resolution images,
as it presents a linear speedup as the number of pixel increases. Moreover, the
proposed algorithm can manage high frame rate in real-time, and it is suited for
video tracking of rapidly moving objects.

At current state of the art, full HD videos can be managed in real-time using
the current generation of GPU. The proposed parallel algorithm slightly depends
on the particular GPU architecture adopted, so it might operate properly on
future generation GPUs. Other interesting extensions of the overall framework
concern with: (i) studying how fragmentation techniques (e.g., [2,7]) can be
integrated as to improve the efficiency of our framework; (ii) moving towards
the Big-Data’s philosophy (e.g., [5,6,21]), as moving objects naturally generate
big data sets; (iii) exploring privacy-preservation issues (e.g., [8–10]), which
are now becoming more and more critical for image processing research (e.g.,
[12,17,19]).

References

1. •, Cuda c programming guide. http://developer.nvidia.com/cuda/nvidia-gpu-
computing-documentation

2. Bonifati, A., Cuzzocrea, A.: Efficient fragmentation of large XML documents. In:
Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 539–
550. Springer, Heidelberg (2007)

3. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts,
and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 25(10),
1337–1342 (2003)

4. Cuzzocrea, A., Mumolo, E., Moro, A., Umeda, K.: Effective and efficient mov-
ing object segmentation via an innovative statistical approach. In: Proceedings of
International Conference on Complex, Intelligent, and Software Intensive Systems
(2015)

5. Cuzzocrea, A.: Analytics over big data: exploring the convergence of dataware-
housing, OLAP and data-intensive cloud infrastructures. In: 37th Annual IEEE
Computer Software and Applications Conference, COMPSAC 2013, Kyoto, Japan,
July 22–26, 2013, pp. 481–483 (2013)

6. Cuzzocrea, A., Bellatreche, L., Song, I.-Y.: Data warehousing and OLAP over
big data: current challenges and future research directions. In: Proceedings of the
Sixteenth International Workshop on Data Warehousing and OLAP, DOLAP 2013,
San Francisco, CA, USA, October 28, 2013, pp. 67–70 (2013)

7. Cuzzocrea, A., Darmont, J., Mahboubi, H.: Fragmenting very large XML data
warehouses via k-means clustering algorithm. IJBIDM 4(3/4), 301–328 (2009)

http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation
http://developer.nvidia.com/cuda/nvidia-gpu-computing-documentation

220 A. Cuzzocrea et al.

8. Cuzzocrea, A., Russo, V.: Privacy preserving OLAP and OLAP security. In: Ency-
clopedia of Data Warehousing and Mining, 2nd edn., vol. 4, pp. 1575–1581 (2009)

9. Cuzzocrea, A., Russo, V., Saccà, D.: A robust sampling-based framework for pri-
vacy preserving OLAP. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008.
LNCS, vol. 5182, pp. 97–114. Springer, Heidelberg (2008)

10. Cuzzocrea, A., Saccà, D.: Balancing accuracy and privacy of OLAP aggregations on
data cubes. Proceedings of the DOLAP 2010, ACM 13th International Workshop
on Data Warehousing and OLAP, Toronto, Ontario, Canada, October 30, 2010,
pp. 93–98 (2010)

11. Griesser, A., De Roeck, S., Neubeck, A., Van Gool, L.: Gpu-based foreground
background segmentation using an extended colinearity criterion. In: Proceedings
of Vision, Modeling and Visualization

12. Donghui, H., Bin, S., Zheng, S., Zhao, Z.-Q., Xintao, W., Xindong, W.: Security
and privacy protocols for perceptual image hashing. IJSNet 17(3), 146–162 (2015)

13. Cheng, L., Gong, M.: Real-time foreground segmentation on gpus using local online
learning and global graph cut optimization. In: ICPR

14. Wolf, M., Poremba, M., Xie, Y.: Accelerating adaptive background subtraction
with gpu and cbea architecture. In: Proceedings of the IEEE Workshop Signal
Processing Systems

15. Ohmer, J.F., Perry, P.G., Redding, N.J.: Gpu-accelerated background generation
algorithm with low latency. In: Proceedings of the Conference of the Aus-
tralian Pattern Recognition Society on Digital Image Compression Techniques and
Applications

16. Pham, V., Phong, V.D., Hung, V.T., Bac, L.H.: Gpu implementation of extended
gaussian mixture model for background subtraction. In: Proceedings of the
IEEE International Conference on Computing and Communication Technologies,
Research, Innovation, and Vision for the Future

17. Squicciarini, A.C., Lin, D., Sundareswaran, S., Wede, J.: Privacy policy inference
of user-uploaded images on content sharing sites. IEEE Trans. Knowl. Data Eng.
27(1), 193–206 (2015)

18. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and prac-
tice of background maintenance. In: The Proceedings of the Seventh IEEE Inter-
national Conference on Computer Visio

19. Wang, C., Zhang, B., Ren, K., Roveda, J.: Privacy-assured outsourcing of image
reconstruction service in cloud. IEEE Trans. Emerging Topics Comput. 1(1), 166–
177 (2013)

20. Medioni G., Qian, Y.: A gpu implementation of motion detection from a moving
platform. In: CVPR

21. Yu, B., Cuzzocrea, A., Jeong, D.H., Maydebura, S.: On managing very large sensor-
network data using bigtable. In: 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid 2012, Ottawa, Canada, May 13–16,
2012, pp. 918–922 (2012)

22. Qian, Yu., Medioni, G.: A gpu-based implementation of motion detection from a
moving platform. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, CVPRW 2008, pp. 1–6 (2008)

Advanced Networking

Hardware-Assisted IEEE 802.15.4 Transmissions
and Why to Avoid Them

Andreas Weigel(B) and Volker Turau

Institute of Telematics, Hamburg University of Technology, Hamburg, Germany
{andreas.weigel,turau}@tuhh.de

Abstract. 6LoWPAN’s fragmentation mechanism enables transport of
IPv6 datagrams with the required minimum MTU of 1280 bytes over
IEEE 802.15.4-based networks. Testbed experiments showed disastrously
bad datagram success rates for a collection traffic scenario with large,
6LoWPAN-fragmented datagrams, which significantly differed from the
simulation results for a comparable scenario. In this paper we present
an experimental setup that enables capturing the MAC and transceiver
states of participating nodes in realtime. The results of our experiments
show, that for the given fragmentation/collection scenario, the usage of
the extended operating mode of the transceiver hardware, which provides
CSMA/CA, ACKs and retransmissions in hardware, is responsible for
nearly all datagram losses. Therefore, we strongly advise against using
such hardware-assisted modes of operation in similar traffic scenarios.

Keywords: 6LoWPAN · 802.15.4 · Forwarding · Fragmentation ·
TX ARET · Extended operating mode · Internet of things

1 Introduction

With the proposal of 6LoWPAN, RPL and CoAP [7,8,12], several efforts towards
an IP-based standard protocol stack for low-power, lossy and wireless networks
have been carried out in the recent years, creating a major building block for
the vision of the Internet of Things. The physical and data link layers of these
networks are usually realized according to the IEEE 802.15.4 standard [2]. Con-
sidering the small payload size of 127 bytes for 802.15.4 data frames, 6LoW-
PAN provides header compression and datagram fragmentation mechanisms to
mitigate the otherwise large overheads caused by IP headers and to fulfill the
minimum MTU demands of 1280 bytes of IPv6, respectively.

Many envisioned traffic scenarios for applications based on a 6LoWPAN
stack mainly consider only small payloads which fit into single 802.15.4 data
frames. Smart metering, on the other hand, is an example for applications which
can necessitate much larger datagrams, e.g., to communicate detailed load pro-
files up to several kilobytes [10]. Another such example is structural health
monitoring for buildings [3]. Therefore, we argue, that the transport of large
6LoWPAN-fragmented datagrams is relevant enough to justify an investigation
of its performance.
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 223–234, 2015.
DOI: 10.1007/978-3-319-23237-9 20

224 A. Weigel and V. Turau

Fig. 1. Sequence chart of messages sent in direct and assembly modes; lk denotes the
l-th link, mi the i-th fragment

With 6LoWPAN, there are two possible approaches to the forwarding of
fragments of a datagram:

– Reassembling the whole datagram at each hop (Assembly mode)
– Getting the next hop from the IP layer in a cross-layer fashion and directly

forwarding each fragment without reassembling the datagram at intermediate
hops (Direct mode)

The Direct mode can reduce the buffer space needed for datagrams in transit and
potentially decreases the end-to-end delay on longer paths (see Fig. 1). Sticking
to a completely standardized approach, we consider only these two route-over
approaches in this paper and do not evaluate any mesh-under schemes.

The different forwarding techniques were evaluated by Ludovici et al. [4]
and Weigel et al. [11] in simulations and testbeds for data collection scenarios
in nonbeacon-enabled IEEE 802.15.4/6LoWPAN network. Both found that the
average datagram success rate for the Assembly mode was higher than that of
the Direct mode. The testbed used by Weigel et al. had up to six hops and con-
sisted of 13 ATmega256RFR2 nodes. One striking observation was, that using
the Direct mode, the average datagram success rate was extremely low, espe-
cially for nodes farther away from the data sink (approaching 0 %). The authors
especially could not satisfyingly explain the significant differences of the success
rates between testbed and simulation.

There are several reasons why a fragment transmission can fail even in the
presence of retransmissions. Hidden nodes can cause collisions which cannot
be completely prevented by the CSMA/CA mechanism of 802.15.4. Especially
in the Direct mode, the transfer of multiple fragments directly one after the
other creates potential for a large number of such collisions as illustrated in
Fig. 1a. Those collisions, though, are also reflected in the presented simulation
model. Effects that are not modeled in simulation, are interference by other

Hardware-Assisted IEEE 802.15.4 Transmissions and Why to Avoid Them 225

networks in the 2.4 GHz band, i.e., 802.11 wireless LAN and changes in the
physical environment (people moving, doors opening and closing) of the testbed,
which may change the link quality over time and lead to frame losses. However,
these effects would also have a strong influence on the results of the experiments
with the Assembly forwarding mode, for which the results between testbed and
simulation did not differ significantly.

Another, less obvious, significant difference between the simulation model and
testbed was the use of the transceiver’s extended operating mode in the testbed.
This extended operating mode offers the two additional states RX AACK and
TX ARET [1]. The former handles automatic frame filtering and transmission of
acknowledgements while the latter executes the complete CSMA/CA mechanism
plus necessary retransmissions in hardware. Apart from making the overall (soft-
ware) implementation of the data link layer less complex, this feature potentially
reduces the needed program and data memory1, the use of peripherals (timer)
and the load of the CPU. Additionally, the hardware processing is faster and
thereby can slightly speed up the overall transmission process of a frame, e.g., by
sending ACKs faster. Similar hardware support is offered by other transceivers
as well, e.g., Microchip’s MRF24XA [6]. Such hardware-supported operating
modes, however, currently work by putting the radio hardware into a state, in
which the transceiver is unable to receive any messages once the automatized
transmission process (TX ARET) has started.

We suspected this property of the extended operating mode to be mainly
responsible for the observed differences in performance. In this paper, we present
an experimental setup to observe the states of each wireless node during the
transmission of a large fragmented datagram. We found that in IEEE 802.15.4
nonbeacon-enabled networks the hardware-supported operating mode strongly
degraded the performance of data collection of large 6LoWPAN-fragmented
datagrams over multiple hops. Section 2 introduces two different data link imple-
mentations and their corresponding state machines. Section 3 describes our
testbed, and the results of the experiments are evaluated in Sect. 4. Section 5
concludes the paper.

2 Capturing Node State in Realtime

Three approaches can be applied to evaluate the extended operating modes’
impact on the overall performance:

– An analytical approach, based on a model similar to the one proposed by
Ludovici et al. [5], but extended to a multi-hop scenario.

– A simulative approach, using a model which captures the behavior of such an
extended operating mode.

– An approach comparing two implementations in a testbed, with the possibility
to capture the sequence of states of each node’s MAC layer.

1 Of the implementations described in Sect. 2, the AACK MAC is smaller than the
Software MAC by 5280 bytes ROM and 578 bytes RAM.

226 A. Weigel and V. Turau

We decided to adopt the third approach to be able to eliminate any inaccura-
cies and limitations of the other models. As representative for the extended oper-
ating mode, we use the MAC layer implementation for the ATmega256RFR2 that
is included in CometOS2 [9], a lightweight runtime environment for developing
communication protocols for different hardware platforms and the OMNeT++
simulator3. We call this implementation “AACK MAC” in the remainder of
the paper. As a reference, we ported the radio stack for the ATmega128RFA1
(which is nearly identical to the ATmega256RFR2) of TinyOS4 to CometOS. We
used the TinyOS radio stack because it is widely used and modularized. This
layer implements the control of the transmission process comprising acknowl-
edgements, retransmissions, backoffs and clear-channel assessment in software.
We also created an alternative backoff layer, which implements the unslotted
CSMA/CA of 802.15.4 and replaces the default TinyOS backoff mechanism.
This implementation is referred to as Software MAC throughout the paper.

Keeping track of the accurate sequence of states of each node’s MAC layer
poses two major difficulties. First, the memory needed to store a large number
of state changes is not available on the resource-constrained nodes which already
contain a complete IPv6/6LoWPAN stack plus a parallel stack to control the exe-
cution of experiments. Secondly, time synchronization with the accuracy of some
µs between nodes is necessary to accurately interpret state sequences locally. To
achieve such a synchronization, additional frames on the wireless channel are
necessary, interfering with the data frames of the experiment. For those reasons,
we pursued a different approach and instrumented both MAC layer implemen-
tations to encode all relevant events as a 4 bit value and signal them to another
microcontroller using plain GPIO ports.

We decided to directly output the present event instead of keeping track of
the complete state machine within a node throughout the different layers of the
radio stack. This was done in order to make the instrumentation of code as non-
intrusive as possible. In consequence, only four CPU cycles (250 ns) are needed
to update the value of the GPIO port to signal a new event.

We took two steps to arrive at a simplified state machine that contains all the
relevant information about the MAC layer’s state of each node. First, we identi-
fied the events and states necessary to unambiguously reconstruct the sequence
of states from a sequence of events and created a detailed state machine for
each of the two implementations (Figs. 2 and 3). Secondly, several states of the
detailed versions were subsumed under a smaller subset of states relevant to the
evaluation. Our goal is to especially recognize the occurrences and results of sit-
uations, in which a sender transmits, while the destination node is in a backoff
phase.

For the Software MAC we therefore distinguish between “normal” RX states
and those RX states, during which the transceiver is processing a transmis-
sion request as well (marked by a TX PD suffix in Fig. 2) and subsumed the
latter under an RX TX PENDING state. Additional subsumed states for both
2 http://www.ti5.tu-harburg.de/research/projects/cometos/.
3 http://omnetpp.org.
4 http://www.tinyos.net/.

http://www.ti5.tu-harburg.de/research/projects/cometos/
http://omnetpp.org
http://www.tinyos.net/

Hardware-Assisted IEEE 802.15.4 Transmissions and Why to Avoid Them 227

Fig. 2. State machine for software MAC

Fig. 3. State machine for AACK MAC and legend for aggregated states

implementations are IDLE, TX BO (CSMA backoff), RX (receiving) and TX RF
(sending). Those are represented by different shades/patterns in Fig. 2. Note that
for the AACK MAC there is no straightforward way to determine if a started
reception has been successfully finished. This also includes the reception of frames
not destined for this node – in both cases, there is only the absence of an interrupt.
Therefore, nodes are often recorded to remain in an “RX” state after an unsuc-
cessful or discarded (filtered) reception, instead of going back to IDLE.

228 A. Weigel and V. Turau

3 Experimental Setup

The actual testbed consisted of four ATmega256RFR2 nodes (labelled 105, 10E,
10D and 10 F in Fig. 4) in a single large room, spaced about two to three meters
from each other. Customized Cat5 patch cables were used to connect the trans-
ceiver’s GPIO ports to 16 pins of PORT C of an ARM Cortex-M4 on Freescale’s
FRDM-K64F evalution board, as shown in Fig. 4. The Cortex-M4 executed a
simple application with two chained timers, configured to yield a combined timer
precision of 2662

3 ns. This application sampled the state of the 16 input pins in
a busy loop and stored every stable (constant for one tick of the timer) change
of their value with the corresponding timestamp. The CPU ran at 120 MHz,
which was fast enough to sample the input port several times per timer tick.
The chosen timer precision, in turn, ensured that no event was missed5. Upon
another GPIO signal, results were sent via UART to a PC and the memory was
reset. This signal was generated by the actual base station controlling the traffic
generator for the experiment and forwarded via TCP to a Raspberry Pi, which
drove the pin.

Fig. 4. Schematic diagram of experimental setup

The nodes used a static routing table to forward the IP datagrams. Only node
105 sent 20 datagrams of 1200 bytes payload to the PC base station. Thereby,
additional cross-interference between fragments of datagrams originating at dif-
ferent nodes was eliminated from the experiment. The sending interval was fixed
to 4 s, which is more than twice the maximal observed end-to-end delay for a
datagram to arrive (or fail). The transmission power of the transceivers was set
to the minimal value of −16.5dBm to realize multiple radio hops between the
nodes. Other 802.15.4 MAC parameters were kept constant at values of the for-
mer experiments by Weigel et al. (Table 1). Nodes were configured to use the
unslotted CSMA-CA mechanism.

Apart from the Direct mode, the former experiments also evaluated a so-
called Direct-ARR mode, which dramatically improved the reliability for large
5 The minimum duration between two events was observed to be larger than 4 µs.

Hardware-Assisted IEEE 802.15.4 Transmissions and Why to Avoid Them 229

Table 1. 802.15.4 MAC parameters for all configurations

minBe maxBe csmaBackoffs maxFrameRetries CCA mode CCA threshold

5 8 5 7 0 -90 dBm

datagrams. It works by adding an adaptive delay after the transmission of each
fragment at the 6LoWPAN layer. The delay is set to an average of three times
the average transmission time to prevent self-induced collisions with formerly
forwarded fragments. To gain insight into the influence of rate-restriction at the
6LoWPAN layer, for each MAC layer implementation we carried out experiments
using the normal Direct forwarding mode and the Direct-ARR forwarding mode,
resulting in four different configurations. All experiments were repeated 50 times.

4 Evaluation

4.1 Direct Mode

The overall success rate for datagrams sent with the Software MAC is dramat-
ically better than that of the AACK MAC (Table 2). In comparison to a 97 %
success rate with the Software MAC, on average, only 21.6 % of the datagrams
reached their destination with the AACK MAC.

Table 2. Average success rate of datagrams

Mode Software MAC AACK MAC

Direct 97 % 21.6 %

Direct-ARR 99.6 % 79.5 %

The main reason for the observed performance is illustrated in Fig. 5. It shows
the (aggregated) sequence of states all nodes pass through during a complete
transmission of a datagram. As expected, during the transmission of the 18
fragments, a situation occurs in which the next receiver on the path (node 0x10E)
enters the TX ARET state for long enough, that the sending node unsuccessfully
tries to send a frame to it – recall that during TX ARET, the transceiver is not
able to receive any frame. This pattern can be observed in slight variations for
most of the datagrams in all runs for the AACK MAC in Direct mode.

The Software MAC’s superior performance can be mainly attributed to the
different behavior concerning the reception of frames while being in some TX
state (Fig. 6). The occasions in which a node received frames while being in a
back-off state for it’s own transmission are marked as RX TX PENDING in the
plot. It can be seen that allowing these receptions of frames does not lead to
any losses of frames pending for transmission, but on the contrary significantly
reduces the number of necessary retransmissions for the sending node.

Departing from individual datagrams to a more general view, the number of
fragments in certain combinations of events at the sending node and state at

230 A. Weigel and V. Turau

Fig. 5. Sequence of states; AACK MAC, direct mode, run 0, datagram 1

Fig. 6. Sequence of states; Software MAC, direct mode, run 0, datagram 0

the receiving node were extracted from the experiment data. Table 3 shows the
summed up and averaged results for the first two nodes of the path (105, 10E).

Comparing these data, it can be observed that the number of total fragments
sent (fragRequests) reaches only 57.7 % of the number of fragments needed for
a complete transmission (fragRequests (max)) of the datagram, because often
senders had to give up the transmission due to a completely failed transmission
of a fragment. Furthermore, there is a difference in the relative and absolute
number of retries and transmission failures caused by frames which were trans-
mitted to a sender which was in some TX state (TX BO or TX RF), denoted
as fragFailDstTx. For the AACK MAC, nearly all (99 %) failed frame transmis-
sions are caused by such frames, compared to 77.8 % for the Software MAC.
Also, for the Software MAC, the ratio of failed transmissions with receiver-TX
and receiver-non-TX states (fragFailDstNonTx) against their respective totals
(fragDstTxTotal, fragDstNonTxTotal) are not far apart from each other: 13.6 %
vs. 10.6 %. This suggests that the probability of a successful transmission is only

Hardware-Assisted IEEE 802.15.4 Transmissions and Why to Avoid Them 231

Table 3. Average fragment counts of Software MAC and AACK MAC over 50 runs;
direct forwarding mode

Software MAC AACK MAC

(0) fragRequests (theo. max) 720.00 720.00

(1) fragRequests 717.10 99.6 % of (0) 415.30 57.7 % of (0)

(2) fragSuccessDstTx 518.48 0

(3) fragSuccessDstNonTx 198.38 398.76

(4) fragFailDstTx 81.96 13.6 % of (7) 423.08 100.0 % of (7)

(5) fragFailDstNonTx 23.44 10.6 % of (8) 4.44 1.1 % of (8)

(6) fragFailTotal 105.40 14.7 % of (1) 427.52 102.9 % of (1)

(7) fragDstTxTotal 600.44 423.08

(8) fragDstNonTxTotal 221.82 403.20

slightly higher if the receiving node is in an idle state for the Software MAC.
Possible explanations for this small difference are:

– A Transmission started during a CCA by the receiver are lost with the used
implementation (during CCA, SHR detection is disabled).

– Sender and receiver perform their CCA at nearly the same time and both
start sending.

Much more pronounced is the overall number of failures, which is only 14.7 %
of the total number of transmission requests for the Software MAC, but 102.9 %
for the AACK MAC. This means that, using the AACK MAC, on average there
is about one retransmission for every initial transmission request.

A higher percentage of fragFailDstNonTx for the Software MAC over the
AACK MAC (10.6 % vs 1.1 % of all fragments with the receiver in a non-TX
state) is observable. A possible explanation can be found in the fact that, with
the Software MAC, on average more fragments reach the nodes farther down
the path and thereby increase the number of collisions due the hidden terminal
problem, which is not captured by selected metrics.

4.2 Direct-ARR

Using adaptive rate restriction increases the average datagram success rate of
the Software MAC slightly, that of the AACK MAC greatly (Table 2).

Figures 7 and 8 show the sequences of states with AACK MAC and Direct-
ARR mode for a successful and an unsuccessful datagram transmission, respec-
tively. Figure 7 illustrates how the additional delay of the Direct-ARR mode
mitigates the risk of deaf receivers. However, due to the inherent random nature
of the length of backoffs in 802.15.4 and random failures on the wireless chan-
nel, the delay mechanism does not completely prevent situations, in which again
the sender tries to get its fragment to a receiver in TX ARET state, as shown
in Fig. 8.

232 A. Weigel and V. Turau

Fig. 7. Sequence of states; AACK MAC, Direct-ARR mode, run 0, datagram 5

Fig. 8. Sequence of states; AACK MAC, Direct-ARR mode, run 0, datagram 2

Observing the results of 50 runs, we find that the by far dominating cause
for losses and retransmissions for the AACK MAC are again those fragments,
which where lost due to the sender being in TX ARET state (Table 4). As for
the Direct mode, the number of transmission failures caused by a receiver-TX
state is two orders of magnitude larger than that of transmission failures with a
receiver-non-TX state.

However, the relative (in comparison to the number of fragments transmis-
sions requested in total) and absolute number of transmission failures is greatly
reduced by the Direct-ARR mode, from 427.52 (102.9 %) to 116.5 (17.6 %). Con-
sidering the simple traffic scenario with a single sender and only four hops, the
performance of the AACK MAC can still be regarded as disastrous, especially
compared with the 99.9 % achieved by the Software MAC.

Most clearly, the effect of the rate restriction is shown by rows (7) and (8)
of Table 4. Apart from preventing hidden-terminal collisions, it also reduces the
number of occasions during which senders transmit toward a receiver in TX state.

Hardware-Assisted IEEE 802.15.4 Transmissions and Why to Avoid Them 233

Table 4. Average fragment counts of Software MAC and AACK MAC over 50 runs;
Direct-ARR forwarding mode

Software MAC AACK MAC

(0) fragRequests (theo. max) 720.00 720.00

(1) fragRequests 719.92 99.99 % of (0) 661.62 91.90 % of (0)

(2) fragSuccessDstTx 87.80 12.20 % of (1) 0.00

(3) fragSuccessDstNonTx 632.10 87.80 % of (1) 657.28

(4) fragFailDstTx 16.72 16.00 % of (7) 114.80 100.00 % of (7)

(5) fragFailDstNonTx 42.44 6.30 % of (8) 1.70 0.26 % of (8)

(6) fragFailTotal 59.16 8.20 % of (1) 116.50 17.60 % of (1)

(7) fragDstTxTotal 104.52 114.80

(8) fragDstNonTxTotal 674.54 658.98

Thereby, the overall ratio of fragments sent during receiver-TX and fragments
sent during receiver-non-TX is more than inverted for the Software MAC and
significantly changed for the AACK MAC. Interestingly, the absolute number of
fragments is nearly the same for both MAC implementations (rows (7) and (8)).

5 Conclusion

We presented an experimental setup to analyze the sequence of events and states
of the MAC layer within a 6LoWPAN network, focusing on the transmission
of fragmented large datagrams with a cross-layered direct route-over routing
approach, i.e., without reassembling datagrams on each intermediate hop. The
results of the experiments in a testbed of four nodes forming a simple line topol-
ogy have shown, that the extended operating mode of the hardware transceiver
is responsible for the bad performance and the observed difference to the results
from simulation. Additional mechanisms like rate restriction can significantly
improve the performance by preventing situations in which packet losses typi-
cally occur, but an implementation using the extended operating mode is still
not competitive.

Although only a small testbed was evaluated, it is obvious that the degrada-
tion of performance can not be less severe in larger networks and/or networks
with a larger diameter. Application scenarios that involve consecutive transmis-
sions of multiple frames along the same route employing an unslotted CSMA/CA
mechanism therefore should avoid using hardware-assisted transmissions in their
current state.

References

1. Atmel Corporation: 8-bit AVR Microcontroller with Low Power 2.4GHz Trans-
ceiver for ZigBee and IEEE 802.15.4: ATmega256RFR2, September 2014, rev. C

234 A. Weigel and V. Turau

2. Institute of Electrical and Electronics Engineering: IEEE 802.15.4-2011 - IEEE
Standard for Local and Metropolitan Area Networks– Part 15.4: Low-Rate Wireless
Personal Area Networks (2011)

3. Kim, S., Fonseca, R., Dutta, P., Tavakoli, A., Culler, D., Levis, P., Shenker, S., Sto-
ica, I.: Flush: a reliable bulk transport protocol for multihop wireless networks. In:
Proceedings of the 5th International Conference on Embedded Networked Sensor
Systems, pp. 351–365, SenSys2007 (2007)

4. Ludovici, A., Calveras, A., Casademont, J.: Forwarding techniques for IP frag-
mented packets in a real 6LoWPAN network. Sensors 11(1), 992–1008 (2011)

5. Ludovici, A., Marco, P.D., Calveras, A., Johansson, K.H.: Analytical model of large
data transactions in coap networks. Sensors 14(8), 15610–15638 (2014)

6. Microchip Technology Inc.: Low-Power, 2.4 GHz ISM-Band IEEE 802.15.4 RF
Transceiver with Extended Proprietary Features: MRF24XA, April 2015, rev. C

7. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of IPv6 Packets
over IEEE 802.15.4 Networks. RFC 4944, September 2007. http://www.rfc-editor.
org/rfc/pdfrfc/rfc4944.txt.pdf

8. Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol
(CoAP). RFC 7252, June 2014. http://www.ietf.org/rfc/rfc7252.txt

9. Unterschütz, S., Weigel, A., Turau, V.: Cross-platform protocol development based
on OMNeT++. In: Proceedings of the 5th International ICST Conference on Sim-
ulation Tools and Techniques, SIMUTOOLS 2012, pp. 278–282, March 2012

10. Weigel, A., Renner, C., Turau, V., Ernst, H.: Wireless sensor networks for smart
metering. In: 2014 IEEE International Energy Conference and Exhibition (ENER-
GYCON), May 2014

11. Weigel, A., Ringwelski, M., Turau, V., Timm-Giel, A.: Route-over forwarding tech-
niques in a 6lowpan. EAI Endorsed Trans. Mob. Commun. Appl. 14(5) (2014)

12. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik,
R., Vasseur, J.P., Alexander, R.: RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks. RFC 6550, March 2012. http://www.ietf.org/rfc/rfc6550.txt

http://www.rfc-editor.org/rfc/pdfrfc/rfc4944.txt.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc4944.txt.pdf
http://www.ietf.org/rfc/rfc7252.txt
http://www.ietf.org/rfc/rfc6550.txt

Containment of Fast Scanning Computer
Network Worms

Muhammad Aminu Ahmad(B) and Steve Woodhead

Faculty of Engineering and Science, University of Greenwich, Greenwich, UK
{m.ahmad,s.r.woodhead}@gre.ac.uk

Abstract. This paper presents a mechanism for detecting and contain-
ing fast scanning computer network worms. The countermeasure mech-
anism, termed NEDAC, uses a behavioural detection technique that
observes the absence of DNS resolution in newly initiated outgoing con-
nections. Upon detection of abnormal behaviour by a host, based on the
absence of DNS resolution, the detection system then invokes a data link
containment system to block traffic from the host. The concept has been
demonstrated using a developed prototype and tested in a virtualised
network environment. An empirical analysis of network worm propaga-
tion has been conducted based on the characteristics of reported con-
temporary vulnerabilities to test the capabilities of the countermeasure
mechanism. The results show that the developed mechanism is sensitive
in detecting and blocking fast scanning worm infection at an early stage.

Keywords: Worm detection · Malware · Cyber defence · Network secu-
rity

1 Introduction

Malicious software (malware) [1] is a generic term for any software that enters
a computer system without the authorisation of the user to perform unwanted
actions. Such software is a significant risk to the security of computer systems,
with those connected to the Internet being at particular risk. Self-propagating
malware (termed a worm) is a particular class of software which is rare, but
particularly dangerous, because of its highly virulent nature. Fast scanning com-
puter network worms are a particularly dangerous sub-class of such software.

The Internet has experienced a number of notable worm outbreaks (e.g.
Slammer, Code Red and Witty [2]) that caused disruption of services and sig-
nificant financial losses to government, transportation and other institutions [3].
However, the number of computer network worm outbreaks reduced significantly
until the return of similar characteristics in the Stuxnet [4] outbreak that tar-
geted industrial control systems in order to cause damage [5], which led to the
release of other variants such as Duqu , Flame and Gauss for cyber espionage
[4]. Vulnerabilities that can be exploited by a worm continue to be published by
system vendors including the Microsoft RDP vulnerability (CVE-2012-0002) of
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 235–247, 2015.
DOI: 10.1007/978-3-319-23237-9 21

236 M.A. Ahmad and S. Woodhead

2012, and the ShellShock (CVE-2014-6271) and Drupal (CVE-2014-3704) vul-
nerabilities of 2014. The present threat of such an event therefore remains clear.

Previously reported research work used behavioural detection and suppression
techniques at the host [6], local network and network perimeter [7] levels to counter
the propagation of fast scanning computer network worms. However, there are lim-
itations and shortcomings in the reported techniques. These limitations and short-
comings involve ineffectiveness in detecting worms, resource consumption, delay
in deployment and detection, management overhead and computational complex-
ity, and in most cases the techniques only slow, rather than stop worm infections
[2,8]. The previously reported research work can be categorized into signature-
based and anomaly-based detection systems. The signature-based detection sys-
tem maintains a database of signatures for previously known attacks and raises an
alarm if a datagram in the network matches a signature in the database. Anomaly-
based detection systems examine network traffic in order to build a profile of the
normal behaviour and then raise an alarm for events that deviate from the normal
profile. In contrast to signature-based systems, anomaly-based systems can detect
new attacks. Anomaly-based detection systems look for deviations from the nor-
mal profile, based on the datagram-header information, payload information or
both [9]. Datagram-header based anomaly detection systems use datagram header
information to detect worm propagation. The focus of this paper is to develop an
anomaly-based detection scheme using datagram-header information.

This paper presents a mechanism that uses two approaches for detecting and
containing fast scanning computer network worms (abbreviated as fast scanning
worms hereafter), which we have termed NEDAC (NEtwork and DAta link layer
Countermeasure). NEDAC uses detection and containment techniques to defend
against fast scanning worm attacks, which operate at the network level and data
link level respectively. The detection part of the mechanism observes DNS activ-
ities to detect absence of DNS lookup in newly initiated outgoing connections.
The containment part of the mechanism blocks outgoing traffic from a host that
has been identified as infected, using data link access control.

The remainder of the paper is presented as follows. Section 2 presents related
work on worm detection and containment systems. Section 3 presents an overview
of wormable vulnerabilities. Section 4 presents the description of the developed
countermeasure mechanism. Section 5 presents the experimental evaluation of
the reported mechanism using a developed prototype. Section 6 concludes the
paper and discusses possible future work.

2 Related Work

Significant research efforts have been devoted to the development of anomaly-
based network intrusion detection systems, which have led to the existence of
numerous approaches [8]. A number of these approaches [9] use datagram header
information to identify the presence of computer network worms. Among these
approaches are those that monitor source and destination IP addresses of data-
grams, such as the work reported by Williamson [6]. Williamson [6] proposed
a detection and suppression technique that uses the source and destination IP

Containment of Fast Scanning Computer Network Worms 237

addresses of the host making a request to detect an attack. Whenever a request
is made, the approach checks the newness of the host making the request by
comparing the destination of the request to a short list of recently made con-
nections. If the host is new it is then delayed, otherwise it will be processed
as normal. However, many fast scanning worms (TCP-based) initiate connec-
tion requests to randomly-generated IP addresses, which results in a number of
failed connections [2]. As a result, in addition to monitoring source and desti-
nation IP addresses, some approaches use the status of connection requests to
detect worm behaviour such as the work of Jung et al. [10], Weaver et al. [11]
and Rasheed et. al [12]. This technique uses the count of successful and failed
connection attempts to determine the presence of worm scanning.

Furthermore, some detection approaches such as those reported by Gu et. al
[13] and Mahoney and Chan [14] monitor source and destination ports and the
Ethernet header fields. The work of Gu et al. [13] uses source and destination IP
addresses and source and destination ports to detect fast scanning worms. This
algorithm termed Destination Source Correlation (DSC), correlates incoming
and outgoing traffic and keeps track of SYN datagrams and UDP traffic of the
source and destination. Thus, if a host received a datagram on port i, and then
starts sending datagrams destined for port i, it becomes a suspect. Then if the
immediate outgoing scan rate for the suspect host deviates from a normal profile,
the host is considered to be infected. Mahoney and Chan [14] developed the
Packet Header Anomaly Detection (PHAD) technique, which learns the normal
ranges of values for each datagram header field at the data link (Ethernet),
network (IP), and transport/control layers (TCP, UDP, ICMP). PHAD uses the
probability of rate anomalies in detection mode, based on the rate of anomalies
observed during the training phase; the rarer the detected anomalies, the more
likely they are to be hostile.

Another detection approach is to use DNS activities of hosts to detect worm
propagation. Whyte et al. [7] and Shahzad and Woodhead [15] used DNS-based
rate limiting to suppress fast scanning worms in an enterprise network. The obser-
vation was scanning worms often use numeric IP addresses instead of the qualified
domain name of a system, which eliminates the need for a DNS query. In contrast,
the vast majority of legitimate publicly available services are accessed through the
use of DNS protocol; the network service that maps numeric IP addresses to cor-
responding alphanumeric names. Therefore the main idea behind this technique
is that the absence of DNS resolution before a new connection is considered anom-
alous. This notion was first proposed by Ganger et al. [16], and if is implemented
properly, it will impose severe limitations on worm traffic. This forces scanning
worms to either probe DNS namespace or issue a DNS query for each IP address,
which significantly reduces the speed of worm propagation [17]. The mechanism
presented in this paper builds on the DNS-based detection scheme.

3 Wormable Vulnerability

According to Tidy et. al [5], a vulnerability is said to be wormable if it is network
reachable, provides remote code execution, provides network access, and does not
require human interaction once exploited.

238 M.A. Ahmad and S. Woodhead

Individual vulnerabilities can be researched through a number of online
sources that provide details of identified vulnerabilities such as the Common
Vulnerabilities and Exposures (CVE) system [18]. The CVE system focuses on
providing details for a range of vulnerabilities and keeps notes of whether a
vulnerability is network reachable or requires human interaction if exploited.
Additionally, Symantec Connect [19] provides working exploits for some vulnera-
bilities. These details provide the necessary information for assessing the worma-
bility of many vulnerabilities. Some of the reported contemporary wormable
vulnerabilities include Microsoft RDP (CVE-2012-0002) of 2012 and ShellShock
(CVE-2014-6271) of 2014 [18].

4 Worm Countermeasure System

The proposed detection and containment mechanism uses DNS-based anomalies
to detect the propagation of fast scanning worms in enterprise networks. Many
fast scanning worms generate pseudo-random IPv4 addresses directly, without
undertaking a DNS query. This behaviour obviates the need for DNS lookup,
which is abnormal for the vast majority of legitimate publicly available services
and is therefore a tell tale sign of scanning worm propagation [16]. Using a
classification developed by Whyte et al. [7], the main focus of this paper is to
detect worm propagation where the infection source is from local to remote
and local to local using a detection system working at the network layer and a
containment system working at the data link layer.

The NEDAC mechanism consists of two main sub-systems that work together
to provide a countermeasure solution. The first system is the network layer detec-
tion system and the second system is the data link layer containment system,
with a connection maintained between the two components to enable continuous
data transmission. The detection system keeps track of all outgoing new TCP
SYN and UDP datagrams by correlating them with a DNS resolution cache to
determine the absence of DNS lookup. When a datagram is transmitted to a des-
tination address without prior DNS lookup, the source IP address is maintained
in a cache and its corresponding counter is incremented. The counter is incre-
mented subsequently for every distinct datagram sent by a host without a prior
DNS lookup. A threshold value, v, is set in order to assign a maximum num-
ber of distinct IP addresses a host can attempt to contact without a prior DNS
lookup per time duration, t. Upon reaching the value, v, the detection system
will mark the behaviour as worm propagation and therefore invokes the coun-
termeasure by sending the MAC address of the source host to the containment
system. The data link containment system listens on a TCP port for incoming
connection from the detection system in order to block outgoing traffic from
an infected host. Upon the receipt of a host MAC address from the detection
system, the containment system will generate an access control update to block
all datagrams originating from the specified host.

The design of the NEDAC mechanism is presented in Fig. 1. Figure 1a shows
the flow diagram of the network layer detection system and Fig. 1b shows the
flow diagram of the containment system.

Containment of Fast Scanning Computer Network Worms 239

Fig. 1. Flow diagram of the NEDAC mechanism

The detection system initialises a timer and then monitors TCP SYN and
UDP datagrams. The detection system uses two caches, namely the resolution
table and no-resolution table. Upon encountering a DNS response datagram,
the algorithm records the host that made the DNS resolution and the resolved
address in the resolution table. For outbound datagrams, the algorithm deter-
mines whether the source host is white-listed by checking the exempt table. The
exempt table elements are a combination of IP addresses and port numbers that
are exempt from the detection algorithm for known systems that legitimately
communicate using IP addresses directly. If there is a miss, the algorithm deter-
mines whether there is a recent DNS query prior to sending the datagram by
checking the resolution table. If there is a miss, the algorithm then increments
the host’s counter in the no-resolution table and determines whether the entry
exceeds a threshold. Upon exceeding a threshold, the system invokes the coun-
termeasure solution by sending the source host MAC address to the containment
system. After the expiration of the predefined timer, the system clears the entries
in the no-resolution table, and then checks the resolution table in order to remove
entries with expired TTL values.

The containment system receives MAC address of an infected host from the
detection system and then blocks all traffic originating from the host. Finally,
the system logs the host details and timestamp.

240 M.A. Ahmad and S. Woodhead

The NEDAC mechanism has been implemented as a software prototype using
the C programming language. The C language provides low level programming
support for network traffic using open source libraries such as libpcap [20] and
pjproject [21], which facilitate traffic analysis.

5 Evaluation

This section presents an evaluation of the NEDAC mechanism. Firstly, analyt-
ical results of the number of susceptible hosts for the candidate contemporary
vulnerabilities were presented. Then a description of the methodology used to
evaluate NEDAC using developed worm outbreak scenarios was also presented.
Finally, the section details the parameters used for the worm outbreak scenarios
and the experimental results obtained.

The experiments reported in this paper use the Microsoft RDP (CVE-2012-
0002) and ShellShock (CVE-2014-6271) contemporary vulnerabilities to develop
potential worm outbreak scenarios for the evaluation of the NEDAC prototype.
An initial challenge for the work was determining the values of the susceptible
populations for these vulnerabilities. As a result, the CAIDA Internet Topology
Data Kit (ITDK) [22] was used as a sample to determine the susceptible popula-
tion values. The CAIDA ITDK includes passive traffic trace files for two Equinix
backbones based in Chicago and San Jose in an anonymised format. Two trace
files were collected from each centre. The four trace files, dated 20/03/2014, com-
prised approximately 47.85 million datagrams across a one minute period. The
trace files were analysed and divided into two separate files containing datagrams
originating from Windows hosts and from Linux hosts based on the reported IP
header TTL of the datagram using Wireshark and Tshark [23]. The filters used
to determine whether a datagram originated from a Windows or Linux host are
“ip.ttl>64 && ip.ttl<129” and “ip.ttl<65” respectively.

Microsoft RDP protocol and mod cgi are the main infection vectors for
the Microsoft RDP and ShellShock vulnerabilities respectively. The mod cgi is
required by the popular host management tools Parallel Plesk and cPanel for
certain modules, and so if it is possible to estimate the total number of hosts
with these tools installed, this could act as a lower bound value for the number
of Linux hosts with the module that could be susceptible to ShellShock. Such an
estimate was developed by filtering datagrams with a destination TCP port equal
to the management interface ports of the Plesk (8834) and cPanel (2083, 2082),
compared to overall Linux hosts. However, RDP datagrams were filtered using
TCP/UDP port 3389, compared to overall Windows hosts. The filtration of the
datagrams was achieved using “tshark -r <.pcap> -T fields -e ip.dst | sort

| uniq | wc -l”, where the “sort”, “uniq” and “wc -l”commands provide a
count of the unique IP addresses that offer a particular service. The analysis
further extrapolated the figures to determine a representative value of the entire
IPv4 address space using Sp = r ∗ m ∗ uip, where Sp is the susceptible popu-
lation, r is the ratio determined for each vulnerability from the dataset, m is
the market share [24] of the target operating system, and uip is the routable IP

Containment of Fast Scanning Computer Network Worms 241

address space; 3, 673, 309, 759 [25]. The market shares of Windows-based hosts
and Linux-based hosts are 75% and 5.4% respectively of connected hosts on the
Internet [24], therefore the average susceptible population values of RDP and
Plesk/cPanel were estimated as 16.48 million and 42, 533 respectively.

To estimate the worm datagram sizes for experimentation, proof of con-
cept exploits were collected from Symantec vulnerability database [19] for the
Microsoft RDP and ShellShock vulnerabilities. The result of this estimation
process was datagram sizes of 3.8 kb and 2 kb for RDP and ShellShock vulnera-
bilities respectively. These were used to configure the reported worm propagation
experiments.

5.1 Experimental Methodology

The NEDAC prototype was deployed and tested in a virtualised network envi-
ronment. The virtualised network environment comprises two personal comput-
ers with Intel Core i7 (12 virtual cores at 3.20 GHz) processor, 64 GB of RAM
and 2 TB of hard disk storage capacity. The computers use VMware ESXi 5.5
[26] server to provide virtualization services, which enable the development of
virtual networks on each computer in order to form a virtualised enterprise net-
work. VMware ESXi has been chosen due to its strong performance in terms
of the utilization of CPU, memory, disk I/O and network I/O [27]. The devel-
oped virtualised enterprise network of each computer comprises LANs with a
DHCP server for IP address management, a DNS server for name resolution,
an NTP server to provide a time synchronization service for the virtual hosts,
a logging server to keep a record of worm infection activities and routers for
internal routing services. Both internal and external routers have been imple-
mented using the Quagga routing suite [28]. The detection system was installed
on the gateway of each virtualised LAN and the containment system on the vir-
tual switches of the virtual enterprise networks. Figure 2 depicts the logical and
physical architecture of the virtualised environment.

Worm propagation behaviour was experimented using a worm daemon [29]
that has been developed with the capabilities of facilitating a worm attack event
using chosen worm characteristics. The worm daemon system consists of both
client and server modules capable of sending and receiving UDP datagrams. The
client module is used to initiate a worm attack against the desired targets. Vir-
tual hosts are made susceptible by running the server module, which listens on
a specific UDP port and then, after receiving an “infection”datagram, continu-
ously transmits “infectious” UDP datagrams. Upon infection, a susceptible host
will send its time stamp and IP address information to the logging server for record
management. The logging server has been configured with a logging daemon that
keeps the details of infected host addresses and infection time. This process will
continue until full infection is achieved based on the details recorded on the log-
ging server. Finally, the experiment used Damn Small Linux (DSL) [30] as the
operating system for the virtual machines. Furthermore, initiating a worm out-
break experiment involves creating the required number of virtual machines by
cloning a base virtual machine that has been configured with the correct worm

242 M.A. Ahmad and S. Woodhead

Fig. 2. Virtual environment for countermeasure testing

daemon. The virtual machines will then be powered to automatically synchronize
their time with the NTP server, and then wait for inbound datagrams. The worm
infection event is then initiated by sending a UDP datagram to one of the sus-
ceptible virtual machines in one of the virtualised LANs. A UDP-based worm has
been chosen due to its higher rate of propagation compared to a TCP-based coun-
terpart. UDP-based worms require no acknowledgement and cannot be detected
by mechanisms that rely on number or state of failed connection attempts.

5.2 Experimental Parameters

The average susceptible population of hosts for each of the two candidate contem-
porary vulnerabilities and the size of routable IPv4 address space (3, 673, 309, 759
[25]) were used to determine the number of susceptible hosts per million Internet
hosts for each vulnerability using Pm =

[(
Sp

Rip

)
∗ 1, 000, 000

]
, where, Pm denotes

the value of susceptible hosts per million Internet hosts, Sp denotes the absolute
number of hosts susceptible to the vulnerability and Rip denotes the number
of routable IPv4 addresses. The results were 4454 and 12 susceptible hosts per
million for the RDP and ShellShock vulnerabilities respectively.

Another input value required by the worm daemon is the scan rate of the
worm. The scan rate for each of the contemporary worm candidates has been
determined using β = Uip

Sp
, where β denotes the scan rate. The resulting scan

rates were 223 and 86364 “infectious” datagrams per second for RDP-based and
ShellShock-based worms respectively.

5.3 RDP-Based Worm Behaviour

The RDP-based worm experiment was conducted using 4454 susceptible
hosts per million in a single class B size network, and therefore contained

Containment of Fast Scanning Computer Network Worms 243

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300

Time (second)

N
u
m

b
e
r

o
f

in
fe

c
te

d
 h

o
s
ts

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

Time (second)

N
u
m

b
e
r

o
f

in
fe

c
te

d
 h

o
s
ts

Worm infection without countermeasure

Worm infection with NEDAC

Fig. 3. RDP-based worm propagation behaviour

[
216 ∗ (

4454
1000000

)]
= 292 susceptible hosts. The daemon was configured to lis-

ten on UDP port 3389 and then transmits UDP datagrams to port 3389 at a
scan rate of 80 “infectious” datagrams per second, once “infected” using random
seed. The scan rate was scaled down to 35% of the calculated value in order to
avoid overloading server resources.

Five RDP-based worm experiments were conducted using one initially
infected host without any countermeasure in place. Figure 3a shows the aver-
age result of the five experiments. The RDP-based experiment was repeated
with NEDAC mechanism in place using a range of threshold values of 10, 20, 50,
100, 200, 400, 500 and 800 distinct IP addresses contacted without prior DNS
lookup. NEDAC was configured to invoke the containment system if a threshold
is exceeded within time duration of 10 s. The worm infection was detected and
contained by the NEDAC mechanism with no further infection across the entire
range of NEDAC experiments conducted.

The RDP-based worm experiment was also conducted with a hit-list [31] of
10 and 20 hosts in order to further evaluate the capability of the NEDAC mech-
anism. The hit-list behaviour was tested using threshold value of 800 and a time
duration of 10 s. The worm propagation was also detected and contained with
zero and nine further infections for the hit-list of 10 and 20 hosts respectively.
Figure 3b shows the results of worm propagation using a hit-list of 20 hosts with
and without the NEDAC mechanism.

5.4 ShellShock-Based Worm Behaviour

The ShellShock-based worm experiment was conducted using 12 susceptible
hosts per million in a single class A size network, and therefore contained[
224 ∗ (

12
1000000

)]
= 203 susceptible hosts. The daemon was configured to lis-

ten on UDP port 8080 and then transmits UDP datagrams to port 8080 at a
scan rate of 86 “infectious” datagrams per second, once “infected” using random
seed. The scan rate was scaled down by a factor of 1000

(
86,364
1,000

)
= 86 in order

to avoid overloading server resources.

244 M.A. Ahmad and S. Woodhead

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

140

160

180

200

Time (second)

N
u
m

b
e
r

o
f

in
fe

c
te

d
 h

o
s
ts

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

100

120

140

160

180

200

Time (second)

N
u
m

b
e
r

o
f

in
fe

c
te

d
 h

o
s
ts

Worm infection without countermeasure

Worm infection with NEDAC

Fig. 4. ShellShock-based worm propagation behaviour

As with the RDP experiments, five ShellShock-based worm experiments were
conducted using one initially infected host without any countermeasure in place.
Figure 4a shows the average result of the five experiments. The ShellShock-based
experiment was repeated with NEDAC mechanism in place using a range of
threshold values of 10,20, 50, 100, 200, 400, 500, 800 and 860 distinct IP addresses
contacted without prior DNS lookup. The worm infection was detected and
contained by the NEDAC mechanism with no further infection across the entire
range of NEDAC experiments conducted.

The ShellShock-based worm infection experiment was repeated with a hit-list
[31] of 10 and 20 hosts in order to further evaluate the capability of the NEDAC
mechanism. The hit-list behaviour was tested using a threshold value of 860 and
a time duration of 10 s. The worm propagation was detected and contained with
zero and three further infections for the hit-list of 10 and 20 hosts respectively.
Figure 4b shows the results of worm propagation using a hit-list of 20 hosts with
and without the NEDAC mechanism.

6 Conclusion and Future Work

This paper has presented a mechanism, which comprises a DNS-based anomaly
detection system and a data link layer containment system to counter the propa-
gation of worms. The empirical results of the experiments conducted showed that
the mechanism can detect and completely contain fast scanning worm including
hit-list worm propagation scenario. This is due to the containment techniques
employed in the data link layer that isolates a given infected host from the
network and therefore ends the worm propagation.

The experimental results for the RDP-based worm experiment without a
countermeasure show attainment of 99% infection in 2 min. Thus using 224 scans
per second for the RDP-based worm, the susceptible population of 294 hosts in
a class B network could be infected in

[
160 sec ∗ (

35
100

)]
= 56 s. However, despite

the low population of susceptible hosts for the ShellShock-based worm compared
to the RDP-based worm, the experimental results for ShellShock-based worm

Containment of Fast Scanning Computer Network Worms 245

attained 99% infection in 200 min. The duration between detection and contain-
ment of an infected host was observed to be 1 s. Additionally, a hit-list was used
to further evaluate the mechanism where 20 hosts were configured to transmit
“infectious” datagrams at the same time. Nine further infections were observed
after four seconds for RDP-based hit-list scanning and three further infections
were observed after six seconds for ShellShock-based hit-list worm scanning. For
RDP-based worm, the higher number of further infections can be explained due
to large number of susceptible hosts compared to ShellShock-based worm. In
both scenarios, further infections were observed due to the increased number of
contacts made per second, i.e., 20 ∗ 80 = 1600 and 20 ∗ 86 = 1720 “infectious”
datagrams for RDP-based worm and ShellShock-based worms respectively. In
general, NEDAC has demonstrated effectiveness in detecting and containing fast
scanning worms at early stage.

Furthermore, the speed of Internet connection available for an infected host
and the worm datagram size determine how fast a worm can send datagrams.
The Internet connection speed was estimated to be within the range10 Mbps
to 1000 Mbps [32]. Using the Internet connection speed and a worm datagram
size, the time T , required for a single worm instance, with size M (in bytes),
to send datagram to a single IP address over a C megabits Internet connection
can be determined using T = M

C ∗ 8. Using 10Mbps Internet connection speed
as a lower bound, the times required to transmit single datagram by RDP-
based and ShelShock-based worms are 3 and 2 ms respectively. Using 1000Mbps
as an upper bound, the times required are 0.03 and 0.02 ms for RDP-based
and ShellSock-based worms respectively. Therefore the RDP-based worm can
transmit 333 datagrams and 33, 333 datagrams using 10 Mbps and 1000 Mbps
connections speeds per second respectively. Similarly, the ShellShock-based worm
can transmit 500 datagrams and 50, 000 datagrams using 10 Mbps and 1000 Mbps
connections speeds per second respectively. Thus, with these scan rates, NEDAC
can detect and contain these contemporary worms in one second depending on
the threshold value used, because a reasonable threshold value should not exceed
300 scans per second.

As future work, we plan to optimise the mechanism, particularly the detection
scheme. It is believed that proper implementation of the DNS-based detection
scheme will impose severe restriction on scanning worms. The mechanism will
further be evaluated using a range of diverse worm scanning techniques such
as stealthy scanning, local-preference scanning, topological scanning and evasive
scanning. The effect of background traffic will also be tested to further evaluate
the effectiveness of the mechanism and determine false alarms. The complexity
of the detection system will be evaluated and then a comparative evaluation of
the overall mechanism will be conducted.

References

1. Niemelä, J., Palomäki, P.: Malware detection and application monitoring, Novem-
ber 2013

246 M.A. Ahmad and S. Woodhead

2. Li, P., Salour, M., Su, X.: A survey of internet worm detection and containment.
IEEE Commun. Surv. Tutorials 10(1), 20–35 (2008)

3. Fosnock, C.: Computer worms: past, present, and future, August 2005
4. Bencsáth, B., Pék, G., Buttyán, L., Félegyházi, M.: The cousins of stuxnet: Duqu,

flame, and gauss. Fut. Int. 4(4), 971–1003 (2012)
5. Tidy, L.J., Shahzad, K., Muhammad, A., Woodhead, S.: An assessment of the

contemporary threat posed by network worm malware. In: The Ninth Internation
Conference on Systems and Networks Communications (ICSNC 2014), October
2014

6. Williamson, M.M.: Throttling viruses: restricting propagation to defeat malicious
mobile code. In: Proceedings of the 8th Annual IEEE Computer Security Applica-
tions Conference, pp. 61–68 (2002)

7. Whyte, D., Kranakis, E., Van Oorschot, P.C.: Dns-based detection of scanning
worms in an enterprise network. In: NDSS, February 2005

8. Jyothsna, V., Prasad, V.R., Prasad, K.M.: A review of anomaly based intrusion
detection systems. Int. J. Comput. Appl. (0975–8887), 28(7), 26–35 (2011)

9. Cheema, F.M., Akram, A., Iqbal, Z.: Comparative evaluation of header vs. pay-
load based network anomaly detectors. In: Proceedings of the World Congress on
Engineering, vol. 1, pp. 1–5, July 2009

10. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection
using sequential hypothesis testing. In: Proceedings of the 2004 IEEE Symposium
on Security and Privacy, pp. 211–225. IEEE (2004)

11. Weaver, N., Staniford, S., Paxson, V.: Very fast containment of scanning worms.
In: Proceedings of the 13th USENIX Security Symposium (2004)

12. Rasheed, M.M., Norwawi, N.M., Ghazali, O., Kadhum, M.M.: Intelligent failure
connection algorithm for detecting internet worms. Int. J. Comput. Sci. Netw.
Secur. (IJCSNS) 9(5), 280 (2009)

13. Gu, G., Sharif, M., Qin, X., Dagon, D., Lee, W., Riley, G.: Worm detection, early
warning and response based on local victim information. In: 20th Annual IEEE
Computer Security Applications Conference, pp. 136–145 (2004)

14. Mahoney, M., Chan, P.K.: Phad: Packet header anomaly detection for identifying
hostile network traffic. Technical report, Florida Institute of Technology technical
report CS200104 (2001)

15. Shahzad, K., Woodhead, S.: Towards automated distributed containment of zero-
day network worms. In: 2014 International Conference on Computing, Communi-
cation and Networking Technologies (ICCCNT), pp. 1–7. IEEE (2014)

16. Ganger, G.R., Economou, G., Bielski, S.M.: Self securing network interfaces: What,
why and how? Technical report, Carnegie Mellon Univ Pittsburgh Pa School of
Computer Science (2002)

17. Wong, C., Bielski, S., Studer, A., Wang, C.-X.: Empirical analysis of rate limiting
mechanisms. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp.
22–42. Springer, Heidelberg (2006)

18. CVE. Common Vulnerabilities and Exposures (2014). https://cve.mitre.org/.
Accessed on 19 October 2014

19. S. Connect. Vulnerabilities. http://www.securityfocus.com/. Accessed on 12
November 2014

20. Garcia, L.M.: Programming with libpcap sniffing the network from our own appli-
cation. In: Hakin9-Computer Security Magazine, pp. 2–2008 (2008)

21. PJPROJECT LIBRARY. http://www.pjsip.org/
22. CAIDA, The Internet Topology Data Kit. http://www.caida.org/data/passive.

Accessed on 11 November 2014

https://cve.mitre.org/
http://www.securityfocus.com/
http://www.pjsip.org/
http://www.caida.org/data/passive

Containment of Fast Scanning Computer Network Worms 247

23. Combs, G.: Tshark-the wireshark network analyser. http://www.wireshark.org
24. W3schools os statistics. http://www.w3schools.com. Accessed on 12 November

2014
25. Cotton, M., Vegoda, L.: Special use ipv4 addresses. Technical report, BCP 153,

RFC 5735, January 2010
26. Lowe, S.: Mastering VMware vSphere 5. Wiley (2011)
27. Hwang, J., Zeng, S., Wood, T.: A component based performance comparison of four

hypervisors. In: 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), pp. 269–276, May 2013

28. Ishiguro, K., Takada, T., Ohara, Y., Zinin, A.D., Natapov, G., Mizutani, A.:
Quagga routing suite (2007)

29. Shahzad, K., Woodhead, S.: A pseudo-worm daemon (pwd) for empirical analysis
of zero-day network worms and countermeasure testing. In: 2014 International Con-
ference on Computing, Communication and Networking Technologies (ICCCNT),
pp. 1–6. IEEE (2014)

30. Damn Small Linux. http://www.damnsmalllinux.org/. Accessed 19 October 2014
31. Staniford, S., Vern, P., Nicholas, W.: How to own the internet in your spare time.

In: USENIX Security Symposium, pp. 149–167, August 2002
32. Net Index. http://www.netindex.com/. Accessed 16 November 2014

http://www.wireshark.org
http://www.w3schools.com
http://www.damnsmalllinux.org/
http://www.netindex.com/

Fragmented-Iterated Bloom Filters for Routing
in Distributed Event-Based Sensor Networks

Cristina Muñoz(B) and Pierre Leone(B)

Computer Science Department, University of Geneva, Carouge, Switzerland
{Cristina.Munoz,Pierre.Leone}@unige.ch

Abstract. In this research, we propose the construction of a new archi-
tecture of Fragmented–Iterated Bloom Filters (FIBFs) to redirect com-
plex events in a distributed event-based sensor network. We introduce
two novel structures of Bloom Filters (BFs): Fragmented BFs (FBFs)
and Iterated BFs (IBFs). The aim of IBFs is to discard single events
that do not match any subscription. Then, FBFs deal with conjunctive
and disjunctive set of events. Whether a match is found at the FBFs
the publication is forwarded. Our strategy is theoretically and practi-
cally compared to the use of Standard BFs. The results show that FBFs
lead to save memory and computational resources at the membership
test. Moreover, we show that there is no memory cost for dividing a BF
in smaller BFs using the same: (1) number of elements to insert and
(2) probability of false positives. Then, we prove that FBFs may use fast
hash functions that present a complexity of O (log2 (x)) while Standard
BFs use hashes with a complexity of O

(
(log2 (y))

2). The hash output is
represented by x, y ∈ N so that x < y. Additionally, it is shown that the
use of the double hashing technique does not improve the computational
complexity. Finally, we show that the construction of a structure of IBFs
using an Iterated Hash Function (IHF) reduce the complexity because
smaller filters and less hash functions are required.

Keywords: Distributed event-based system · Bloom filter · Sensor net-
work · Iterated hash function

1 Introduction

The dissemination of sensing data requires the use of different sources and des-
tinations. Typically, in an ubiquitous sensing scenario some nodes provide data
and other nodes use these data as actuators. Then, a distributed event-based
system may be used to exchange information. In such a system, publishers and
subscribers do not have any information about each other. They depend on the
event notification service to match publications with subscriptions. In distributed
networks, this service is implemented using a network of brokers nodes. A broker
node is any node in the network that has information about any single or set
of subscriptions. Publishers must contact a broker node to route events. Sim-
ilarly, subscribers rely on broker nodes to save subscriptions. The selection of
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 248–261, 2015.
DOI: 10.1007/978-3-319-23237-9 22

FIBFs for Routing in Distributed Event-Based Sensor Networks 249

broker nodes requires the use of an overlay layer on the top of the network layer.
Distributed Hash Tables (DHT) [3] construct the overlay layer mapping a key
to a particular node with storage location properties. Other techniques select
broker nodes that isolate a part of the network as cluster heads [2]. Further-
more, brokers can be selected on a tree or a set of independent trees [11]. All
these techniques need a network protocol to provide point-to-point communi-
cation on the network layer. Recently, it has been proposed [9] to merge the
network and the overlay layers of distributed event-based systems so that no
other network protocol is needed. The advantage of this strategy is that it is
no necessary to maintain the network topology. The main consequence is that
nodes, which do not actively participate in the system, do not keep any infor-
mation about topology. This leads to save energy and computing resources in
those devices. Paths between publishers, subscribers and brokers are well-defined
using an efficient variation of random walks.

In this paper, we propose to implement a new architecture of Bloom Filters
(BFs) at broker nodes of [9]. Each broker node implements Fragmented–Iterated
Bloom Filters (FIBFs) at each interface of communication. FIBFs save effectively
a set of subscriptions that use conjunctive and disjunctive operations. When a
publication arrives to a certain interface, the corresponding FIBFs are checked to
decide if it has to be forwarded or not. A publication will be forwarded if there
are any subscribers behind that interface, which are waiting for that specific
type of events. It is out of the scope of this paper to specify the distance–vector
routing protocol for updating brokers.

The dispatching algorithm proposed at individual brokers works in two steps:
first, a Validation Table (VT) is used to discard individual events that do not
match any subscription. Second, a Routing Table (RT) for each outgoing inter-
face is used to match event conjunctions against subscriptions. The VT reduces
the number of combinations to produce conjunctions.

Our system is focused on the use of constrained devices as sensor motes.
Nevertheless, the system could be used on other type of networks that require
limited devices or to optimize the use of available resources. Our approach is com-
pared theoretically and practically, using three different wireless sensor motes,
with the use of Standard BFs. The results show that complexity and memory
are reduced.

The rest of this paper is organized as follows: Sect. 2 details the research
problem. Section 3 points out related work. Section 4 describes the design of
FIBFs. Section 5 analyzes theoretically and practically the performance of our
design. Finally, Sect. 6 summarizes our proposal.

2 Problem Statement

We present a system based on [9], which uses a distributed notification service
composed of several broker nodes. With the aim to fragment the load and exploit
locality in the event delivery process, broker nodes are located at intersections
of Directional Random Walks forming local networks. Their main objective is to

250 C. Muñoz and P. Leone

efficiently save sets of subscriptions corresponding to the subscribers that can
be reached through them. Each interface of a broker implements an indepen-
dent structure of FIBFs. This implies that at each interface a different set of
subscriptions is saved using and efficacious data structure.

An example of a possible scenario is shown at Fig. 1. Six local networks are
connected using broker nodes. We observe, that there exist as many interfaces at
a broker as networks directly connected to it. Broker 1 (B1), is the only broker
which connects three different networks. It must be remarked that there exists
no possible link between networks already connected to the system. So that it
is not possible to have a fifth broker (B5) in our system to connect networks 1
(N1) and 5 (N5). Figure 1 shows the set of subscriptions that should be saved
at each interface. We observe that a broker should be able to reach all networks
using all its interfaces.

Fig. 1. Example of a possible scenario.

The complexity of the research problem is increased when defining subscrip-
tions. In our system we accept a set of conjunctions and disjunctions as predicates
of subscriptions. In this paper each predicate is identified as an object of a JSON
file (see Sect. 4.1). A possible subscription may be defined as follows:

(object1) ∨ (object2 ∧ object3) ∨ (object4)

In our design every single object corresponding to a subscription is saved in the
VT. Then, conjunctions of objects are saved separately at the RT.

A publication is composed of different objects. When receiving a certain
publication through an interface a broker node checks the publication at the
rest of interfaces using the appropriate structure of FIBFs. At an interface each
object of the publication is checked at the VT. If an object is not located inside
the VT it is discarded. Objects which pass the VT test are combined between
them to form conjunctions. If any conjunction is found at the RT the publication
is forwarded through that interface.

3 Related Work

Bloom filters [12] have been widely studied, mainly because they effectively group
information. A few event-based systems use BFs. In Lipsin [7] events use BFs

FIBFs for Routing in Distributed Event-Based Sensor Networks 251

to save link identifiers instead of saving subscriptions. The weakest point of this
solution is that the topology of the network must be previously discovered in
order to build a tree matching publications with subscriptions. In [6] BFs are
used to discover the identification of specific subscribers. The main drawback of
this approach is that combinations of predicates need to be saved separately and
using a certain branch of the tree. Furthermore, we do not route publications
but we finally get the ID of subscribers, so that we need other protocol in order
to route the publication. The use of attenuated BFs has been proposed [13] in
order to attract events in a network. Nevertheless, the model works with a certain
probability, so that it is not guaranteed that a publisher matches all subscribers.
Content-based information can also use Hierarchical BFs [14] to self-organize
information. Hierarchies are established using geographic data and BFs save
information of each partition at a cluster head device. This strategy is mostly
focused on the network model and the discussion about the implementation of
BFs is limited. Finally, it is remarkable to mention that efficient Counting BFs
[5] may be used to delete elements.

4 System Design

4.1 Description of Events

Filters of our distributed event-based system can distinguish between two
different JSON files associated to publications or subscriptions (see Fig. 2). A
publication or a subscription is defined by a set of different objects or arrays of
objects. An object, which represents a certain membership or event, can be con-
sidered as a tree of different pairs of name/value called strings. In our examples
we can distinguish objects because they begin and end with braces: {...}. Arrays
of objects begin and end with brackets: [...].

Moreover, there are two different cases to take into account for subscriptions:
we consider ANDs (conjunctions) of objects and ORs (disjunctions). Figure 2b,
shows an example in which conjunctions and disjunctions are used.

First of all, two different sub–subscriptions are taken into account:
(1) Sub–Subscription 1 considers the conjunction of certain values for sensor
and location, (2) Sub–Subscription 2 considers only a certain value for sensor,
composed of two strings. The final subscriber expects to receive events from:
(1) sensors at windows measuring light located at lab1 in the hall of building
A in the university campus OR (2) events from sensors detecting presence at
doors.

4.2 Overview of the Dispatching Algorithm

Firstly, we design a Validation Table (VT) using the properties of Iterated
Hash Functions (IHFs) [1]. The VT is used to discard single objects (events)
in a publication that do not match with any subscription saved. Afterwards,
the Routing Table (RT), which is efficiently constructed using Fragmented
BFs (FBFs), is used to check the appropriate conjunctions associated to a
publication.

252 C. Muñoz and P. Leone

a) Publication b) Subscription

Fig. 2. JSON files.

4.3 Validation Table: Iterated BFs (IBFs)

All objects related to subscriptions are saved in the VT separately and iteratively.
In Sect. 4.1 we pointed out that each object is composed of different strings. We
consider that the final hash of an object is the output of the Iterated Hash
Function (IHF) of all strings. Besides this, the VT is used to check for single
objects corresponding to a publication. This step is used to discard objects that
must not be checked on the RT.

Design of the Validation Table. Let s be a string member of the set S of
strings that are part of an object. |S| denotes the total number of strings for a
certain object. Each s ∈ S is iteratively hashed until arriving to the last string
of the object. The VT is composed of a set of Standard BFs classified by levels.
In the first level the hash of the first string of the object is saved. In the second
level, the iterative hash of the second string with the previous one is saved and
so on. If kopt ≥ 3, where kopt denotes the optimum number of hash functions,
then two different IHFs will be used for the first two hashes. Afterwards, the
double hashing technique [8] may be used to speed up the process.

We can save computational resources as shown in Sect. 5.1. The methodology
consists on fragmenting each filter assigned to a level in several filters that group
objects of the same nature.

Example of a Subscription. Figure 3 shows the construction of the VT for
the subscription described at Fig. 2b. The different strings of each object are

FIBFs for Routing in Distributed Event-Based Sensor Networks 253

iteratively hashed and saved at the corresponding position of the Iterated BFs
(IBFs). For example, the object of type sensor formed by three strings: win-
dow/light/0 is hashed string by string. The other two objects corresponding to
the subscription are also iteratively hashed and saved. The VT can be simple
or fragmented. A Simple VT is composed by one filter per level (see Fig. 3a).
As previously mentioned, we improve the efficiency of our system by using frag-
mented VTs (see Fig. 3b). In this case, we implement one filter per type of object
at each level (sensor, location).

Example of a Publication. When a publication is received all objects are
checked on the VT. In our example at Fig. 2a we have a total of five objects to
check. The objects of type sensor : window/light/0 and door/presence/35 and the
object of type location: university/A/hall/lab1 pass the test. For simplification,
we have excluded the management of values. In these cases, a pointer from the
last iterative hash to a memory position will be used to save the range of values
accepted by subscribers.

Fig. 3. Validation table for the subscription of Fig. 2.

4.4 Routing Table: Fragmented BFs (FBFs)

The purpose of the RT is to efficiently save conjunctions associated to the objects
of subscriptions. Besides this, publications check the RT to find a match with
subscribers and forward the object or event.

Design of the Routing Table. The RT is divided in levels. Each level is
related to the way in which subscriptions are saved. Level 1 groups together
filters which save objects of a certain type in a single way. This means that
subscriptions are grouped using disjunctions. The following levels are related to
the way that conjunctions of different type of objects are grouped. e.g. Level
2 groups different combinations of the conjunction of two objects of different
types, etc. In Sect. 5.1 we study different ways to fragment filters at each level.
The exact FBFs to check are known because they are identified depending on
the type of objects they save (i.e. sensor, location, ...).

254 C. Muñoz and P. Leone

a) Valid RT b) Invalid RT

Fig. 4. Routing table for the subscription of Fig. 2.

Example of a Subscription. Following our example of Fig. 2b, the three
objects of the subscription must be saved in the RT. The subscription is divided
in two sub-subscriptions: in the first one an object of type sensor must be com-
bined, using a conjunction, with an object of type location. This means that both
events must be assured to redirect the publication. For this reason, we do not
save individually the final output of the hash of both objects but the conjunction
of them at a level 2 BF. The second sub-subscription contains only one object
or event to be assured so that the final hash of the object is saved individually
at a filter of level 1. Figure 4a shows the resulting RT. We also illustrate that a
RT that contains all individual hashes, as shown in Fig. 4b, is not valid for this
example.

Example of a Publication. The matching operation that takes place when
a publication is received only considers the three objects that already passed
the validation test. Afterwards, the available filters that compose the RT are
checked. In our example there is no filter to check for type of objects location
(no filter at position 2 of level 1), so that the individual hash of this type of
objects that passed the validation test are also discarded for the membership test.
Finally, we check for the matching of: h(door/presence) and h(h(window/light
/0) || h(university/A/hall/lab1)). The membership test starts at level 1 and if
no matching is found the subsequent levels are checked. In this example, a match
is found at level 1 for the value of h(door/presence) so that the membership test
results positive without further checking and the publication is forwarded.

5 Evaluation

5.1 Theoretical Evaluation of Fragmented BFs

In order to discuss the performance of FBFs we consider different distributions
of the overall memory. This implies that we use a different number of BFs of
different sizes depending on the distribution used. Moreover, it must be taken
into account that we also divide the FBFs in groups depending on the level.
Each set of objects of the same type is represented using a letter (A, B or C).

FIBFs for Routing in Distributed Event-Based Sensor Networks 255

Figure 5 details the number of BFs used at each level and the different sizes
for combinations of objects of three different types (i.e. A-sensor, B-location,
C-actuator). From level 2, combinations without repetition are used.

a) Case I b) Case II c) Case III

Fig. 5. Routing table for 3 type of objects.

Three different distributions are proposed:

– Case I: The overall memory is uniformly fragmented at each level. Figure 5a
shows how sizes and combinations of type of objects are distributed.

– Case II: Filters referred by this distribution fragment uniformly the overall
memory at the first level, taking into account sets of objects of the same type.
In the following levels the size of BFs changes depending on the number of
combinations of different type of objects contained. In the example shown
at Fig. 5b, the biggest filter of level 2 contains all possible combinations of
objects of type A with objects of type B and C. The rest of BFs of this level
discard all possible combinations with A. In this case, as we only have three
different type of objects, the second BF of level 2 contains the combination of
B and C. If we had more type of objects we would discard A and also B, for
the combinations of the following BFs.

– Case III: It corresponds to the use of Standard BFs (see Fig. 5c). Memory is
divided depending on combinations and there is one filter per level.

The number of filters used increases exponentially for case I. The number of
filters for cases II and III increases constantly. Case III uses less filters but their
size is the biggest. Case I uses more filters per level of a smaller size.

Evaluation of the Publication Membership Test. We intend to show that
by fragmenting BFs, memory and resources used for checking elements inside
the RT can be saved. For this purpose, we are going to use an example in which
a group of events are classified in six different types: G = {A,B,C,D,E, F}.

Subscriptions received are related to types of object A and the combina-
tion of objects of type {A,D}, {B,E}, {B,C,D}, {B,E, F}, {B,C,E, F} and
{A,B,C,D,E, F}. This implies that not all possible BFs per level are used.
Figure 6 compares full RTs with the resultant RT of our example. For case I 7
BFs and a total of 1.012.210 memory positions are used. Case II and case III
use 6 and 5 BFs but the overall memory positions used are larger, 1.046.910 and

256 C. Muñoz and P. Leone

a) Case I b) Case II c) Case III

d) Case I e) Case II f) Case III

Fig. 6. Routing table for 6 type of objects: (a, b, c) Full (d, e, f) Not full.

1.171.560 respectively. In case that the combination {A,B,C,D,E, F} would
be outside the set of subscriptions, the difference would be higher. Moreover,
as mentioned at Sect. 4.4, before checking a certain level of the RT we discard
making combinations with validated objects when there is no BF in the appro-
priate position saving computational resources.

Memory Cost for Fragmenting a BF. We intend to show that memory
requirements do not change when using different distribution of BFs, which
occupy the same positions in memory. So then, for saving the same number of
elements the same number of memory positions are needed in Case I, II and III.

Theorem 1. Given a kopt, optimum number of hash functions, we state that to
insert n elements we select to our convenience the total number of BFs to use by
distributing the n elements, maintaining the same probability of false positives f
and the same overall m bit memory positions in use.

Proof. It is well-known [12] that given a kopt, optimum number of hash functions,
we can fix the number m of memory positions for a given n number of elements
and a certain f probability of false positives: m = − n ln f

(ln 2)2 . Then m ∝ n, so that
we can state that for inserting n elements we can use a big filter of m positions
for a certain f ; or we can use different filters of different m′ positions for the
same f , where each m′ < m, by appropriately distributing between the smaller
filters the total n elements to insert.

e.g. For inserting 400 elements with f = 0.0073 using a kopt = 7 we could use:
one filter of 4096 bits or sixteen filters of 256 bits and a capacity for 25 elements.

Improvement on Computational Complexity. In this research, we have
studied the performance of our system using two different hash functions:

FIBFs for Routing in Distributed Event-Based Sensor Networks 257

Fowler–Noll–Vo hash functions (FNV) [4] and Pearson hash functions [10]. More-
over, we demonstrate that complexity is reduced when using smaller bit length
outputs. This means that filters of Case I are the best in terms of computational
complexity and filters of Case III are the worst.

Lemma 1. A filter which uses FNV hash functions presents a complexity of
O

(
(log2 (y))2

)
. Where y represents the hash output in N and log2(y) is the bit

length of the hash code that may correspond to 32, 64, 128, 256, 512 or 1024.

Proof. A multiplication of order log2(y) is done at the beginning of the FNV
hash function. By applying the rule of product to the multiplication we get
that the computational complexity for this operation is O

(
(log2 (y))2

)
. After

this, the result is XORed with an octet. The computational complexity for this
operation is O

(
max

(
log2 (y) , (log2 (y))2

))
= O

(
(log2 (y))2

)
. The iterative

process results in k iterations which yields a final algorithm complexity of
O

(
(log2 (y))2

)
.

Lemma 2. A filter which uses Pearson hash functions presents a complexity
of O (log2 (x)). Where x represents the hash output in N and log2(x) is the bit
length of the hash code that corresponds to 8.

Proof. An XOR is computed at the beginning of the Pearson hash function. The
computational complexity for this operation is O (log2 (x)) . After this, the result
is rotated with the use of a pre-established table. The computational complexity
for this operation is O (max(log2(x), 1) = O (log2(x)) . The iterative process
results in k iterations which yields a final algorithm complexity of O (log2 (x)).

Theorem 2. The computational complexity needed for inserting elements in a
BF of p1 positions is smaller than for a BF of p2 positions if p1 < p2.

Proof. Using Lemma 1 we can state that the smaller the hash output the smaller
complexity presents a FNV hash function. Moreover, when comparing FNV hash
functions with a simpler hash function as the Pearson, we can state using Lem-
mas 1 and 2 that simpler hash functions reduce the complexity because they use
smaller bit lengths and because more complex operations are avoided.

Lemma 3. The double hashing technique presents a complexity of
O

(
(log2 (n))2

)
. Where n represents the hash output in N of h1 and h2 and

log2(n) is the bit length of the hash code.

Proof. The double hashing technique [8] uses three operations. First of all, the
multiplication of i and h2 is done. Afterwards, the result is added to h1. Finally, a
modular operation of order n is implemented. Clearly, this last operation limits
the upper bound of the double hashing technique. Then, the computational
complexity is O

(
(log2 (n))2

)
.

258 C. Muñoz and P. Leone

Theorem 3. The upper bound of a FNV hash function and the double hashing
technique coincide when using the same bit length for the hash code.

Proof. Lemmas 1 and 3 show that the upper bounds of a FNV hash function
and the double hashing technique coincide.

5.2 Practical Evaluation of Fragmented BFs

For measuring the performance of our solution we have selected three different
type of motes that use the low power consumption IEEE802.15.4 standard at 2.4
GHz: Advancticsys XM1000, Zolertia Z1 and Crossbow TelosB. The microproces-
sors of XM1000 and Z1 offer similar performance whereas the microprocessor of
TelosB shows more limitations in terms of frequency and flash storage. All motes
have been programmed in C using the Contiki version 2.6 OS.

Table 1. Execution time for inserting one subscription on a standard BF and a FBF.

Pearson hash FNV 32 hash FNV 64 hash

16 FBFs 1 Standard BF 1 Standard BF

Configuration

Array per bits (m/n) 256/25 256/25 4096/400 4096/400 4096/400 4096/400

Overall n◦ of subscriptions 400 400 400 400 400 400

Probability of false positives (f) 0.0073 0.0073 0.0073 0.0073 0.0073 0.0073

N◦ of hash functions (kopt) 7 7 7 7 7 7

Double Hashing (DH) No Yes No Yes No Yes

N◦ of hashes implemented 7 2+5DH 7 2+5DH 4 1+6DH

Execution time (µs)

Advancticsys XM1000 0 0 7812 7812 31250 31250

Zolertia Z1 0 0 15625 15625 31250 31250

Crossbow TelosB 0 0 23437 23437 78120 78120

The execution time shown at Table 1 is provided in µs. We observe that in
all cases TelosB motes are slower. This is due to the fact that they are equipped
with more limited microprocessors. Besides this, XM1000 and Z1 motes provide
similar execution times taking into account that the first one is slightly quicker.
Moreover, as expected by Theorem 3 the use of the double hashing technique
when working with fast hash functions does not reduce the execution time in
any case. Finally, we observe as shown at Theorem 2 that hashes that output
less bits reduce the execution time. In our experiments, Pearson hash functions
take even less than one clock tick. Furthermore, as shown at Lemma 1 FNV
hash functions that produce a smaller number of bits at the output improve the
computational complexity. In this case the execution time is smaller for FNV of
32 bits than for FNV of 64 bits even if FNV of 64 bits implement less hashes.

FIBFs for Routing in Distributed Event-Based Sensor Networks 259

5.3 Theoretical Evaluation of Iterated BFs

Improvement on the Number of Hash Functions Using IBFs. We intend
to show that by using IBFs the optimum number of hash functions is decreased.

Theorem 4. Given n elements to insert (1) in a Standard BF using m bit
positions or (2) in a set d of individual BFs that use m′ bit positions, where
m′ = m/d; then the kopt, optimum number of hash functions, is smaller when
using d individual BFs.

Proof. It is known [12] that kopt = m
n ln2. Then, for inserting n elements in

a filter of m bit positions we use kopt = m
n ln2. While for inserting the same

number of elements in a smaller filter of m′ bit positions, where m′ = m/d, we
use k′

opt = m/d
n ln2. Then, we can state that k′

opt < kopt.

Improvement on Computational Complexity Using IBFs. We intend to
show that by using IBFs we are able to reduce the computational complexity
achieving the same performance than with a single Standard BF in terms of:
(1) number of elements to insert to the filter, (2) overall size and (3) overall
probability of false positives.

Theorem 5. We define a single Standard BF with a probability of false positives
f that contains n elements using m positions and kopt hash functions. Then, we
define a set d of individual BFs with an independent probability of false positives
f

′
, where each filter uses m

′
memory positions and k′

opt hash functions. A num-
ber n of elements are inserted at each filter. We can state that the structure of
individual BFs improves the computational complexity needed by: (1) reducing
the size of individual filters and (2) benefiting from the properties of IHFs.

Proof. The overall probability of IBFs is f due to f =
∏d

i=1 f
′
i . Then, we can

state that to occupy the same overall number of bit positions m individual BFs
use m′ bit positions, where m′ = m/d. Therefore, by using more filters with
higher individual f

′
we save computational complexity due to the fact that

m′ < m (see Theorem 2) and k′
opt < kopt (see Theorem 4). Moreover, it must be

remarked that IHFs reuse the previous hashes in order to get a new hash. This
implies that the overall number of iterations is the same for the computation of
(1) the hash for a single Standard BF and (2) all hashes needed for IBFs.

5.4 Practical Evaluation of Iterated BFs

We have assessed the motes used at Sect. 5.2 to measure the execution time
obtained by IBFs. We have conducted experiments for accepting up to 100, 200
and 400 subscriptions using the same number of bit positions in all cases. This
means, that the probability of false positives and the number of hashes to insert
per subscription are different in each case. As shown in Table 2 using the same
array per bits (m/n) the probability of false positives increases as the number
of accepted subscriptions grows. On the contrary, the number of hash functions
used decrease as the number of subscriptions accepted grows.

260 C. Muñoz and P. Leone

Table 2. Execution time for inserting one subscription on a standard BF and IBFs.

Subscriptions 400 subscriptions 200 subscriptions 100 subscriptions

Hash Function Pearson FNV 32 Pearson FNV 32 Pearson FNV 32

Type of BF Iterated Standard Iterated Standard Iterated Standard

N◦ of BFs (d) 16 1 16 1 16 1

Configuration

m/n 256/400 4096/400 256/200 4096/200 256/100 4096/100

Individual f 0.7353 0.0073 0.5407 5.3294·10−5 0.2923 2.8403·10−8

False positives (f) 0.0073 0.0073 5.3294·10−5 5.3294·10−5 2.8403·10−8 2.8403·10−8

N◦ hashes (kopt) 1 7 1 14 2 28

DH No Yes No Yes No Yes No Yes No Yes No Yes

Hashes tested 1 1 7 2+5DH 1 1 14 2+12DH 2 2 28 2+26DH

Execution (µs)

XM1000 0 0 7812 7812 0 0 7812 7812 0 0 7812 7812

Z1 0 0 15625 15625 0 0 15625 15625 0 0 15625 15625

TelosB 0 0 23437 23437 0 0 23437 23437 0 0 23437 23437

The results shown at Table 2 for execution times measured in µs are similar
than in Sect. 5.2. TelosB motes provide again the worst results due to their
limited microprocessor. In this case the difference between the processors of
XM1000 and Z1 motes is perceived in all cases. In addition, we observe again
as shown in Theorem 3 that the double hashing technique does not improve the
execution time. Finally, the experiments conducted using IBFs take less than
one clock tick while experiments using Standard BFs take more time. This is
due to the fact that IBFs require less hashes and a simpler function that reduces
the computational complexity.

6 Conclusion

In this paper, we propose a new architecture of FIBFs to be implemented at
broker nodes of a distributed event-based system. The main purpose is to effec-
tively route events in a sensing network that uses constrained devices. Events
are classified using conjunctions and disjunctions, which leads to a combinato-
rial problem. Our protocol uses a Validation Table that uses Iterated BFs to
discard events that do not match any subscription. Then, validated events are
combined to search for a matching in the Routing Table composed of FBFs. If
a matching is found the publication is forwarded. Our strategy is theoretically
and practically compared to the use of Standard BFs.

First of all, we justify the benefits obtained by using FBFs. The use of FBFs
leads to save memory and computational resources at the membership test.
Furthermore, it is proved that there is no memory cost for fragmenting a filter
in smaller filters for the same number of elements and a given probability of
false positives. Then, we prove that smaller filters reduce the computational
complexity because of the use of simpler hash functions. Besides, we prove that
the double hashing technique does not improve the complexity.

Moreover, we justify the improvements obtained using IBFs. The use of IBFs
leads to use less hashes and smaller filters so complexity is reduced.

FIBFs for Routing in Distributed Event-Based Sensor Networks 261

Finally, the evaluation of these strategies using wireless sensor devices shows
that the execution time is reduced when using FBFs and IBFs.

Acknowledgments. We thank the comments of Dr. Eduardo Solana, especially those
concerning the use of hash functions. This work has been developed as part of the
POPWiN project that is financially supported by the Hasler Foundation.

References

1. Backes, M., Barthe, G., Berg, M., Gregoire, B., Kunz, C., Skoruppa, M., Beguelin,
S.: Verified security of merkle-damg̊ard. In: IEEE Computer Security Foundations
Symposium, pp. 354–368 (2012)

2. Fang, Q., Gao, J., Guibas, L.J.: Landmark-based information storage and retrieval
in sensor networks. In: In The 25th Conference of the IEEE Communication Society
(INFOCOM06), pp. 1–12 (2006)

3. Fersi, G., Louati, W., Jemaa, M.B.: Distributed hash table-based routing and data
management in wireless sensor networks: a survey. Wirel. Netw. 19(2), 219–236
(2013)

4. Fowler, G., Noll, L.C., Vo, K.-P., Eastlake, D.: The FNV Non-Cryptographic Hash
Algorithm. Internet Draft (2015)

5. Huang, K., Zhang, J., Zhang, D., Xie, G., Salamatian, K., Liu, A., Li, W.: A
multi-partitioning approach to building fast and accurate counting bloom filters.
In: IEEE 27th International Symposium on Parallel Distributed Processing, pp.
1159–1170 (2013)

6. Jerzak, Z., Fetzer, C.: Bloom filter based routing for content-based pub-
lish/subscribe. In: Proceedings of the Second International Conference on Dis-
tributed Event-based Systems, pp. 71–81 (2008)

7. Jokela, P., Zahemszky, A., Rothenberg, C.E., Arianfar, S., Nikander, P.: Lipsin: line
speed publish/subscribe inter-networking. In: Proceedings of the ACM SIGCOMM
2009 Conference on Data Communication, SIGCOMM 2009, pp. 195–206 (2009)

8. Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: building a better
bloom filter. In: Azar, Y., Erlebach, T. (eds.) Algorithms-ESA 2006, pp. 456–467.
Springer, Heidelberg (2006)

9. Muñoz, C., Leone, P.: Design of a novel network architecture for distributed event-
based systems using directional random walks in an ubiquitous sensing scenario.
Intl. J. Adv. Netw. Serv. 7(34), 252–264 (2014)

10. Pearson, P.K.: Fast hashing of variable-length text strings. Commun. ACM 33(6),
677–680 (1990)

11. Shi, K., Deng, Z., Qin, X.: Tinymq: a content-based publish/subscribe middleware
for wireless sensor networks. In: The Fifth International Conference on Sensor
Technologies and Applications, pp. 12–17 (2011)

12. Tarkoma, S., Rothenberg, C., Lagerspetz, E.: Theory and practice of bloom filters
for distributed systems. IEEE Commun. Surv. Tutorials 14(1), 131–155 (2012)

13. Wong, B., Guha, S.: Quasar: a probabilistic publish-subscribe system for social net-
works. In: Proceedings of the 7th international conference on Peer-to-peer systems,
pp. 2–2 (2008)

14. Yu, Y.T., Li, X., Gerla, M., Sanadidi, M.: Scalable vanet content routing using
hierarchical bloom filters. In: 2013 9th International Wireless Communications
and Mobile Computing Conference (IWCMC), pp. 1629–1634, July 2013

Big Data and Social Networks

Fast Adaptive Real-Time Classification for Data
Streams with Concept Drift

Mark Tennant1(B), Frederic Stahl1, and João Bártolo Gomes2

1 University of Reading, PO Box 225, Whiteknights, Reading RG6 6AY, UK
m.tennant@pgr.reading.ac.uk, F.T.Stahl@reading.ac.uk

2 Institute for Infocomm Research (I2R), A*STAR,
1 Fusionopolis Way Connexis, Singapore City 138632, Singapore

bartologjp@i2r.a-star.edu.sg

Abstract. An important application of Big Data Analytics is the real-
time analysis of streaming data. Streaming data imposes unique chal-
lenges to data mining algorithms, such as concept drifts, the need to
analyse the data on the fly due to unbounded data streams and scalable
algorithms due to potentially high throughput of data. Real-time clas-
sification algorithms that are adaptive to concept drifts and fast exist,
however, most approaches are not naturally parallel and are thus lim-
ited in their scalability. This paper presents work on the Micro-Cluster
Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive
statistical data summary based on Micro-Clusters. MC-NN is very fast
and adaptive to concept drift whilst maintaining the parallel properties
of the base KNN classifier. Also MC-NN is competitive compared with
existing data stream classifiers in terms of accuracy and speed.

Keywords: Data stream classification · Adaptation to concept drift ·
High velocity data streams

1 Introduction

The work presented in this paper focuses on some of the challenges associated
with the velocity aspect of Big Data [4]. Velocity in Big Data Analytics refers
to data instances that arrive at a very high speed and thus challenge our com-
putational capabilities in processing data [6]. Data stream classification trains a
classifier in real-time on incoming data instances with a known classification, in
order to enable the classification of previously unseen data instances. It is impor-
tant that the classifier adapts to changes in the pattern encoded in the stream in
order to keep the model accurate over time. Such changes in the pattern are also
called concept drifts [5]. Some applications of data stream classification include
sensor networks; Internet traffic management and web log analysis [8]; intrusion
detection [9]. It is not feasible to capture, store and process data streams; as data
streams are potentially infinite. Hence, algorithms are needed that can analyse
data on the fly as it is being generated. Systems that make use of such algo-
rithms are of great importance to applications such as the ones described above.
c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 265–272, 2015.
DOI: 10.1007/978-3-319-23237-9 23

266 M. Tennant et al.

In the past two decades various data stream classifiers have been published, such
as Hoeffding Trees [3], G-eRules [10], Very Fast Decision Rules (VFDR) [7] etc.
These algorithms induce a classifier and adapt to concept drifts with only one
pass through the data, making them relatively fast. This research paper pro-
poses a new adaptive computationally efficient data stream classifier. The new
classifier proposes a Micro-Cluster based data structure with Variance based
splitting. This Micro-Cluster structure is coupled with a K Nearest Neighbour
(KNN) classifier approach termed MC-NN. Variance based Micro-Clusters con-
tinuously adapt to concept drifts through updating statistical summaries of data
instances from the data stream and are robust to noise. KNN has been used as
a base classification approach, as KNN is naturally parallel and thus allows for
future works to be applied in a parallel framework.

This paper is organised as follows: Sect. 2 describes the MC-NN algorithm
whereas Sect. 3 provides an empirical evaluation of MC-NN and a comparison
against existing data stream classifiers. Conclusions are discussed in Sect. 4.

2 Adaptive Micro-cluster Nearest Neighbour Data
Stream Classification

2.1 Micro-cluster Based Nearest Neighbour

In the authors’ previous feasibility study [12], a parallel real-time classifier was
implemented based upon KNN. In KNN a data instance is assigned the class
that is most common amongst its K nearest neighbours. The basic approach of
the real-time KNN is to keep a sliding fixed size time window of the most recent
data instances and execute KNN from the sliding window set. Real-time KNN
retrains on recent instances whilst older instances are deleted. However, real-
time KNN is computationally slow with faster data streams [12]. To overcome
the computational bottleneck of real-time KNN and the problems associated
with the sliding window, the here presented classifier adapts Micro-Clusters.
Micro-Clusters, originally developed for data stream clustering [1] in order to
provide a summary of the locality of the data are of the form:

< CF2x, CF1x, CF2t, CF1t, n > .

The sum of the squares of the attributes are maintained the vector CF2x,
the sum of the values in vector CF1x; the sum of time stamps in vector CF1t;
and the number of data instances is stored in scalar n. CF2x and CF1x can
be used to calculate the locality and boundary of the Micro-Clusters whereas
CF2t and CF1t can be used to determine the recency of the data summarised
in the cluster. MC-NN adapts Micro-Clusters to compute nearest neighbours for
classification. The Micro-Cluster structure has been extended by terms CL for
the cluster’s class label, ε as error count, Θ as error threshold for splitting, α as
initial time stamp and Ω as a threshold for the Micro-Cluster’s performance:

< CF2x, CF1x, CF1t, n, CL, ε,Θ, α,Ω >

Real-Time Adaptive MC-NN 267

The centroid of the Micro-Cluster can be calculated by CF1x

n . In order to
classify a new data instance from the stream the MC-NN classifier calculates the
Euclidean distances between the data instance and each Micro-Cluster centroid
and the class label of the nearest Micro-Cluster is assigned to the data instance. ε
of a Micro-Cluster is initially 0 and incremented by 1 if the Micro-Cluster is used
for classification and missclassifies the data instance. Likewise ε is decremented
by 1 if the Micro-Cluster is involved in a correct classification. Θ is a user defined
upper limit of acceptable ε. It is expected that a low Θ will cause the algorithm
to adapt to changes faster, but will be more susceptible to noise. A larger Θ
value will be more tolerant to noise but may not ‘learn’ as fast. As more labelled

Algorithm 1. Training the MC-NN classifier
Data: Train Instance
Result: Re-Positioned Localised sub-set of Micro-Clusters
Remove Micro-Clusters with poor performance (under Ω value)
foreach Micro-Cluster in LocalSet do

Evaluate Micro-Cluster against NewInstance;
end
Sort EvaluationsByDistance();
if Nearest Micro-Cluster is of the Training Items Class Label then

CorrectClassification Event
NewInstance is Incremented into Nearest Micro-Cluster Nearset Micro-Cluster Error
count (ε) reduced.

else
MisClassification Event
2 Micro-Clusters Identified:
1) Micro-Cluster that should have been identified as the Nearest to the New Instance of
the same Classification Label.
2) Micro-Cluster that incorrectly was Nearest the New Instance.
Training Item incrementally added to Micro-Cluster of Correct Classification Label.
Both Micro-Clusters have internal Error count (ε) Incremented
foreach Micro-Cluster Identified do

if Micro-Cluster Error count (ε) exceeds Error Threshold (θ) then
Sub-Divide Micro-Cluster upon attribute of largest Variance

end

end

end

instances are received for learning they will change the distribution of the Micro-
Clusters. According to Algorithm 1 two scenarios are possible after the nearest
Micro-Cluster has been identified when a new training instance is presented to
the classifier:

Scenario 1 : If the nearest Micro-Cluster is of the same label as the training
instance, then the instance is incrementally added to the Micro-Cluster and ε is
decremented by 1.

Scenario 2 : If the nearest Micro-Cluster is of a different class label, then the train-
ing instance is incrementally added to the nearest Micro-Cluster that matches the
training instance’s class label. However, the error count ε of both involved Micro-
Clusters is incremented.

If over time a Micro-Cluster’s error count ε reaches the error threshold Θ,
then the Micro-Cluster is split. This is done by evaluating the Micro-Cluster’s

268 M. Tennant et al.

dimensions for the size of its variance, which can be calculated using Eq. (1),
where x denotes a particular attribute. The splitting of a Micro-Cluster generates
two new Micro-Clusters, centred about the point of the parent Micro-Cluster’s
attribute of greatest variance; while the parent Micro-Cluster is removed. The
assumption behind this way of splitting attributes is that a larger variance value
of one attribute over another indicates that a greater range of values have
been seen for this attribute. Therefore the attribute may contribute towards
miss-classifications. This splitting of a Micro-Cluster causes the two new Micro-
Clusters to separate and better fit the underlying concept encoded in the stream.
Once the attribute of largest variance has been identified, the two new Micro-
Clusters are initially populated with the parent’s internal mean / centre data
(CF1x). The split attribute (with the largest variance), is altered by the variance
value identified in the positive direction in one of the new Micro-Clusters and
negatively in the other. This ensures that future training will further re-position
the two new Micro-Clusters better than the parent could alone.

V ariance[x] =

√(
CF2x

n

)

−
(

CF1x

n

)2

(1)

When a Micro-Cluster has a new instance added to it, it’s internal instance count
n is incremented by 1 and the sum of time stamps(CF1t) is incremented by the
new time stamp value(T). The Triangle Number Δ(T) = ((T 2 + T)/2) of this
time stamp will give an upper bound to the maximum possible value of CF1t.
Therefore, if all instances were entered into this Micro-Cluster CF1t would be
equal to the triangular number of T. The lower the value of CF1t is from the
Triangular Number the poorer the Micro-Cluster has been participating in the
stream classification. The use of Triangular Numbers give more importance to
recent instances over earlier ones added to the Micro-Cluster, as the time stamp
value (T) is always increasing and MC-NN uses the sum of these incremental
values. Triangular numbers assume that all Micro-Clusters were created at time
stamp 1. To counter this each Micro-Cluster keeps track of the time stamp
when it was initialised (α). The Micro-Cluster’s real Δ(T) can be calculated by
Δ(T) − Δ(α). Any Micro-Clusters that fall under a pre-set threshold value of
(Ω) are deleted as they are considered old. For the rest of this paper a value of
50 % was given to all Micro-Cluster Ω values as it seemed to work best for most
classification problems.

3 Evaluation

This Section evaluates MC-NN in terms of accuracy, adaptivity to concept drifts
and computational efficiency on a quad core ‘Intel core’ I5 processor with 8 Gb
RAM. All classifiers and data stream generators are implemented in the Mas-
sive Online Analysis (MOA) framework. Three data streams have been utilised:
The SEA data stream [11] contains three continuous attributes and two class
labels. A class label of True is given only if the Threshold level of a preset value is

Real-Time Adaptive MC-NN 269

surpassed by summing two of the attributes, otherwise class label False is given.
Arbitrarily function 1 (value 8) was chosen for the initial concept and function
3 (value 7) for the concept change. The Random Tree Generator [2] cre-
ates a random tree with each leaf node randomly assigned a class label. In our
experiments the random tree(s) comprise ten continuous attributes and three
class labels. A drift is achieved by simply generating a different random tree.
Both, the Random Tree and the SEA datastreams generated 35,000 instances.
The concept drift begins at instance 10,000 with a gradual change over 1,000
instances to the second stream. The Hyperplane generator creates a linearly
separable model. A Hyperplane in ‘D’ dimensions slowly rotates continuously
changing the linear decision boundary of the stream. The experiments using
the Hyperplane generator created 10 million data instances, with five numerical
attributes and two classes. In order to add an additional challenge 10 % noise was
generated as well with probability P(0.75) chance of reversing the direction of
the rotation causing an ‘Oscillation’ effect. A version of the stream with proba-
bility P(0) chance of reversing the direction of the concept drift was also created.
MC-NN was compared against Hoeffding Trees [3], incremental Näıve Bayes and
real-time KNN classifier [12]. Each instance was tested upon the classifier to log
the classifier’s performance before being used for training: this is also know as
prequential testing.

Adaptation to New Concepts: Two MC-NN classifiers were created, one
with Θ = 2 (error threshold) and the other with Θ = 10. Table 1 compares MC-
NN against other stream classification algorithms on the SEA and Random Tree
data streams. Please note that for real-time KNN several experiments have been
carried out and only the experiments with the best setting for K are included in
the table. The results show that real-time KNN’s results are competitive to the
Hoeffding Tree and Näıve Bayes classifiers. MC-NN achieves accuracies close to
all competitors, while clearly outperforming real-time KNN in terms of runtime.
Regarding accuracy MC-NN is similar to Hoeffding Trees and Näıve Bayes. It
is also noticeable that a larger Θ results in a shorter runtime of MC-NN. This
can be explained by the fact that when Θ is larger it will take more time for a
Micro-Cluster to reach Θ and thus it will perform splits less frequently.

Table 1. Accuracies and runtime of MC-NN compared with other data stream classi-
fiers. Accuracies are listed in percent and runtime is listed in seconds. Θ denotes the
error threshold used in MC-NN

Algorithm SEA accuracy(runtime) Random Tree accuracy(runtime)

Näıve Bayes 94.40(0.11) 64.17(0.10)

Hoeffding Tree 95.96(0.19) 69.88(0.28)

real-time KNN 97.17(24.73) K=5000 71.34(9.04) K=2000

MC(Θ = 2) 94.03(0.28) 70.30(2.02)

MC(Θ = 10) 92.99(0.03) 60.99(1.49)

270 M. Tennant et al.

(a) Hoeffding Tree (b) Näıve Bayes (c) KNN (2000)

(d) KNN (5000) (e) Micro-Cluster(2) (f) Micro-Cluster(10)

Fig. 1. Concept drift adaptation on the SEA data stream. Accuracy is plotted along
the vertical axis, instance stream is plotted along the horizontal axis.

Figures 1 and 2 illustrate the same experiments as listed in Table 1, the accu-
racy is displayed over time. For SEA it can be seen that all classifiers achieve
a relatively high accuracy at any time and only show a slight deterioration in
accuracy during the concept drift (instances 10,000 - 11,000). For the Random
Tree it can be seen that Hoeffding Tree and Näıve Bayes classifiers are clearly
challenged with adapting to the concept drift as they need a long time to fully
regain their previous classification accuracy level. The real-time KNN classifer
also have a noticeable deterioration of their classification accuracy during the
concept drift but recover much faster compared with Hoeffding Tree and Näıve
Bayes. However, they do not reach the same level of classification accuracy as
Hoeffding trees and Näıve Bayes. The results of MC-NN clearly show the low-
est classification accuracy deterioration and almost recover instantly. MC-NN is
able to reach the same classification accuracy levels as Hoeffding tree and Näıve
Bayes, whereas real-time KNN performs poorly.

The Results in Figs. 3 and 4 show the total accuracy of the different classi-
fiers evaluated on the Hyperplane data streams with their runtime in brackets.
In terms of classification accuracy it can be seen that MC-NN(10) achieves sec-
ond highest accuracy, but only 0.04 % behind Näıve Bayes on the stream with
no oscillation. On the stream with oscillation effect MC-NN(10) clearly outper-
forms all its competitors. Please note that the Figures display only the runtime
for the best configurations with real-time KNN. In terms of runtime, MC-NN
is faster than Hoeffding Trees and achieves a similar speed to that of Näıve
Bayes. However, MC-NN is approximately 30 times faster than real-time KNN.
Please note that for the larger Θ MC-NN performs slightly faster, which can
be explained by MC-NN being less likely to perform Micro-Cluster splits which
consume some of the runtime. Figure 3 shows the experiments for the Rotating
Hyperplane data stream over time for all 10 million data instances. All classi-
fiers need some initialisation phase before producing a stable classification accu-
racy. Overall MC-NN(10) achieves a similar performance to Näıve Bayes and

Real-Time Adaptive MC-NN 271

(a) Hoeffding Tree (b) Näıve Bayes (c) KNN (2000)

(d) KNN (5000) (e) Micro-Cluster(2) (f) Micro-Cluster(10)

Fig. 2. Concept drift adaptation on the Random Tree data stream. Accuracy is plotted
along the vertical axis, instance stream is plotted along the horizontal axis.

Fig. 3. Concept Drift adaptation on the
Hyperplane with Rotating Boundary.

Fig. 4. Concept drift adaptation on the
hyperplane with oscillating boundary.

outperforms is predecessor real-time KNN clearly. Figure 4 shows the experi-
ments for the Oscillating Hyperplane data stream over time for all 10 million data
instances. MC-NN(10) remains stable and clearly outperforms all its competi-
tors. Both Näıve Bayes and the Hoffeding Tree classifiers suffer at the beginning
of the data stream with a negative accuracy trend. This is due to the overlapping
data values that are contradicting each other due to oscillation. Overall MC-NN
achieves a similar performance compared with well established data stream clas-
sifiers in terms of accuracy and runtime and clearly outperforms its predecessor.
MC-NN is more robust in terms of adaptation to concept drifts, especially com-
plex continuous concept drifts. Moreover MC-NN is naturally parallel and thus
has the advantage to be scaled up to high speed data streams.

4 Conclusions

This paper presents the development of the novel MC-NN data stream classi-
fier that is competitive with popular existing data stream classifiers in terms of

272 M. Tennant et al.

accuracy and adaptability to concept drifts, but is also computationally efficient
and potentially scalable to parallel computer architectures. The developed clas-
sifier is based on a nearest neighbour approach for classification and on a novel
kind of Micro-Cluster for classification purposes to maintain a recent summary
of the data observed and its performance. MC-NN has been compared empir-
ically with Hoeffding tree, Näıve Bayes for streaming data and its predecessor
real-time KNN. Empirical results show that MC-NN achieves similar or better
accuracy, adaptability to concept drifts and shorter runtime compared with its
competitors. Notably MC-NN is very robust when confronted with continuously
changing concepts and noise. The paper also points out that MC-NN is naturally
parallel as Micro-Clusters can be distributed over multiple computational nodes
in a computer cluster. Therefore ongoing work comprises the implementation
and empirical evaluation of a new parallel MC-NN classifier.

References

1. Aggarwal, C., Han, J., Wang, J., Yu, P.: A framework for clustering evolving data
streams. In: Proceedings of the 29th VLDB Conference, Berlin, Germany (2003)

2. Domingos, P., Hulten, G.: Mining high-speed data streams. In: KDD, pp. 71–80
(2000)

3. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the
Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2000, pp. 71–80. ACM, New York, NY, USA (2000)

4. Ebbers, M., Abdel-Gayed, A., Budhi, V., Dolot, F.: Addressing Data Volume,
Velocity, and Variety with IBM InfoSphere Streams V3.0. (2013)

5. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: A survey of classification methods
in data streams. In: Aggarwal, C.C. (ed.) Data Streams. Advances in Database
Systems, vol. 31, pp. 39–59. Springer, New York (2007)

6. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review.
ACM SIGMOD Rec. 34, 18–26 (2005)

7. Gama, J., Kosina, P.: Learning decision rules from data streams. In: Proceedings
of the Twenty-Second International Joint Conference on Artificial Intelligence -
Volume Two, IJCAI 2011, pp. 1255–1260. AAAI Press (2011)

8. Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall / CRC,
London (2010)

9. Jadhav, A., Jadhav, A., Jadhav, P., Kulkarni, P.: A novel approach for the design
of network intrusion detection system (NIDS). In: 2013 International Conference
on Sensor Network Security Technology and Privacy Communication System (SNS
PCS), pp. 22–27 (2013)

10. Le, T., Stahl, F., Gomes, J.B., Gaber, M.M., Di Fatta, G.: Computationally
efficient rule-based classification for continuous streaming data. In: Bramer, M.,
Petridis, M. (eds.) Research and Development in Intelligent Systems XXXI, pp.
21–34. Springer International Publishing, Switzerland (2014)

11. Street, W.N., Kim, Y.S.: A streaming ensemble algorithm (SEA) for large-scale
classification. In: Proceedings of the Seventh ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 377–382 (2001)

12. Tennant, M., Stahl, F., Di Fatta, G., Gomes, J.: Towards a parallel computation-
ally efficient approach to scaling up data stream classification. In: Bramer, M.,
Petridis, M. (eds.) Research and Development in Intelligent Systems XXXI, pp.
51–65. Springer International Publishing, Switzerland (2014)

Omentum – A Peer-to-Peer Approach
for Internet-Scale Virtual Microscopy

Andreas Barbian1,2(B), Dennis Malenica2, Timm J. Filler1,
and Michael Schoettner2

1 Department of Anatomy, University of Duesseldorf, Duesseldorf, Germany
andreas.barbian@hhu.de

2 Department of Computer Science, University of Duesseldorf,
Duesseldorf, Germany

Abstract. Virtual microscopy is increasingly used for e-learning and
medical online exams at universities. Traditional client-server systems
support up to a few hundred of users accessing more than 10.000 large
microscopic images (each several Gigabyte) and each being able to make
interactive annotations. We have developed the first peer-to-peer based
solution bringing virtual microscopy to an Internet-scale community.
We address data distribution and replication by a novel overlay called
Omentum, which is based on a random-graph architecture. Omentum
uses a lightweight messaging service for peer communication and sup-
ports traffic-free routing-path calculation. Based on the directed random
graph the system achieves path compression by walking along inbound
links during the actual routing phase. The evaluation shows the efficiency
and scalability of the Omentum overlay network, its replication strategy
and an administrative communication overhead for creating new replicas
around 0.06 %.

1 Introduction

A virtual microscope is in general referred to as an application for exploring dig-
italized, high-resolution microscopic images. These whole slide images (WSI) are
commonly several Gigabytes in size and contained in proprietary image contain-
ers [8]. In the past decade several supplements were contributed to enhance the
capabilities of many virtual microscopes as compared to standard light micro-
scopes, such as textual or drawn annotations.

For the presented application “Omentum”, the proprietary image containers
have been converted into JPEG images and have been reorganized to a pyramid-
like structure. Each image has a fixed size and represents a distinct part, a tile,
of the original slide. As different magnification levels are available in most WSI,
each layer in the JPEG pyramid contains the same tiles with a lower resolution
compared to the layer below [7].

The WSI conversion allows reproducible partitioning for easier distribution.
As an additional benefit, Omentum does not depend on any proprietary format

c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 273–284, 2015.
DOI: 10.1007/978-3-319-23237-9 24

274 A. Barbian et al.

Fig. 1. Simplified node distribution in the Omentum overlay.

and can be easily extended to a diversity of data types, e.g. different scanner
manufacturers or DICOM1 datasets to include further areas of medical images.

Omentum exists as an implementation in Java and is used for medical educa-
tion. Although, it is not designed as a licenced medical application to constitute
professional consultation on medical images of individual users. It is a distrib-
uted approach to browsing and annotating a high quantity of high-resolution
WSI with an Internet-scale community. Therefore, we restricted the storing of
new images in the network to only specific peers at numerous medical faculties.
Nevertheless, publishing user-generated content, e.g. links and annotations, is
not limited in any way.

We conclude that the number of available slides does not change as frequently
as new annotations are created due to the relatively small number of peers
allowed to contribute new images. An essential cornerstone of our overlay is thus
the prompt communication of any updates to the list of slides to any connected
node. Apart from that, updates to annotations are forwarded to responsible
replica holders only, and queried via searches.

The overlay network presented in the next section uses two pseudo random
number generators for construction and is mainly inspired by PathFinder [4]. It
features a novel replication model using automatic load balancing based on peer
performance monitoring. An additional challenge is the distributed storage and
replication of interactively generated annotations.

2 Omentum: Overlay Architecture

Omentum’s overlay connects different data partitions, which represent virtual
nodes hosted by one or more peers (see Fig. 1).

1 Digital Imaging and Communications In Medicine.

Omentum – A Peer-to-Peer Approach for Internet-Scale Virtual Microscopy 275

Therefore, two pseudo random number generators (PRNG) are used to create
its random-graph-based overlay. The first PRNG generates a Poisson-distributed
number of neighbors that a new node receives. The second PRNG, seeded with
the node’s ID, generates the IDs of its neighbors.

The number of neighbors and their ID depend on the total number of virtual
nodes present in the system. Referring back to the low-latency communication
mentioned before, each peer knows about the latest metadata (update) of each
available slide. Hence, as virtual nodes represent partitions of the pre-computed
slides, the maximum number of available virtual nodes can be computed locally
by each peer.

Choosing a proper expectancy value for the size of the neighborhood is as
important as limiting the degree of each node. Both values have a strong influ-
ence on the number of edges in the random graph but do not increase routing
performance after a certain point (ref. Sect. 4).

Partitioning the WSI increases the number of objects that have to be stored
and replicated in the system. Moreover, it should decrease the overall load on
each peer serving a particular partition, as the amount of data is significantly
lower compared to a whole slide.

Any client needs to be able to calculate the number of partitions each slide
has. This is addressed by determining T0 as the number of tiles in the most
magnified layer from the slides’ width w and height h, as well as the known
dimension of each tile.

T0 =
⌈

w

tx

⌉

·
⌈

h

ty

⌉

(1)

The maximum number of partitions Π can be calculated as the quotient of T0

and n0, the maximum number of tiles in the deepest layer each partition is
responsible for. To simplify computation, n0 should be a power of 2.

Π =
T0

n0
(2)

The number of tiles a partition has in the most magnified layer is given by
Eq. (3).

T0(P) = w0 · h0, w0 =
⌈

w

tx
√

n0

⌉

∧ h0 =
⌈

h

ty
√

n0

⌉

(3)

The total number of tiles in any partition can be aggregated by Eq. (4) as the
number of virtual zoom levels z is known from the WSI generation process.

T (P) =
z∑

i=0

(
1
2i

· |P0|
)

(4)

From this, the starting tile TS in any partition Pk with k ε Π can be calculated
by Eq. (5).

TS(Pk) = ((k · √
n0) ÷ w0) · h0 + ((k · √

n0) mod w0) (5)

276 A. Barbian et al.

(a) Path calculation (b) Routing phase using compression

Fig. 2. Visualization of routing calculation between virtual nodes 1 and 5.

After enabling each peer to obtain the number of partitions in any slide and
its starting tile, slides can be split to be distributed on a fine grained level.

Additionally, with the rounding in Eq. (3), the upper most layers are most
frequently distributed. In particular, this process is beneficial for effective pre-
view caching, as the images of the pyramid’s upper layers are requested most
commonly. We were able to validate this type of behavior based on recorded
data of a sample of more than 400 real users in classroom. Almost every partici-
pant used a low magnification of the WSI to gain an overview of a slide prior to
view the slide at maximum magnification for a detailed impression of potentially
interesting parts.

With the approach presented before, nodes are able to calculate the ID of
a specific partition Pk containing a requested tile. This is done by summing up
the number of partitions for all slides with a lower ID than the requested one.
Afterwards, the partition of the tile within the requested slide is calculated and
added to the previously calculated sum. This leads to the ID of the virtual node
responsible for the requested tile.

Virtual nodes maintain a list of their neighbors, including inbound and out-
bound links. This is necessary to implement path compression during the routing
phase (ref. Sect. 2.1).

Importantly, all servers (for instance from different universities) are continu-
ously connected to the network and are responsible for creating the initial overlay
whilst no other peers are connected. The servers are connected to each other in a
separate neighborhood. This allows fast propagation of new slide insertions and
a consistent level of information for the overlay creation phase.

2.1 Routing

The virtual node responsible for the requested data has to be determined. All
routing information can be computed without any network traffic. Therefore, a
PRNG is seeded with the ID of this target node to calculate its neighbors. The
same is done with a second PRNG seeded with the ID of the starting node. The
calculation of the routing path is done by increasing the search distance for each
virtual node and calculating their neighbors respectively (see Algorithm 1).

Omentum – A Peer-to-Peer Approach for Internet-Scale Virtual Microscopy 277

Algorithm 1. Route calculation algorithm
s : starting vNodeID
d : destination vNodeID
way ← {}
searchDirection ← right
procedure CalculatePath(s, d, way, searchDirection)

if searchDirection = right then
searchDirection ← left
way.add(s)
if Neighbors(s) ∩ (Neighbors(d) ∪ {d}) = ∅ then

for all n ∈ Neighbors(s) :� ∃n ∈ way do
return CalculatePath(n, d, way, searchDirection)

end for
else

return way
end if

else
process the other direction accordingly

end if
end procedure

Figure 2a shows an example for routing from node v1 to node v5 using the
previously given node distribution.

As the random graph is directed, only outbound edges can be calculated by
the algorithm. After the second routing step in the given example, node v3 is
found as the connecting node between v1 and v5.

After the calculation, the actual routing phase starts. In this phase v1 takes
the routing list containing the nodes v2, v3, v4 and v5 and checks his inbound
links for possible path compressions starting at the end of the list. As v3 has
an inbound edge on v1, the beginning of the list is truncated and given to v3,
containing v4 and v5 only. Node v3 executes the same algorithm now and routes
to v5 directly, due to an existing outbound link. Instead of using the calculated
path with length 4 via v2, v3 and v4 to v5, the routing is done directly via v3 to
v5 with a length of 2 (see Fig. 2b).

The ability to compress a path during the actual routing phase reduces the
average path length between nodes. Its efficiency mainly depends on the degree
of the virtual nodes. An additional aspect is, that each peer may be responsible
for more than one virtual node. In this case, the routing calculation is executed
using multiple starting points.

As each peer keeps track of the routing information to nodes he contacted at
least once, the speed of consecutive calculations can be increased significantly.

Retrieving tiles from computable partitions is executed like a data lookup in
a DHT with a hash function referencing the connection between slide, partitions
and tiles. As user-generated content always is associated to a slide, the retrieval
of annotations can be achieved relying on the same routing information.

The annotations are connected to a separate partition associated to each
slide. This limits the number of hosts to query for user generated content, thus
enabling fast exhaustive searches.

278 A. Barbian et al.

3 Replication

The overlay has to handle different types of data, which can be divided into two
categories. The first category contains static objects, representing all tiles, parti-
tions and slides. The second category contains dynamic objects, that are subject
to frequent changes and represents any kind of user-generated annotations. Both
categories need their own algorithms.

In general, static objects do not change but can be removed from the system.
Their replicas need to be handled accordingly. This class of objects represents
the images and constitute the largest amount of traffic in the network.

Dynamic objects have to be considered separately regarding replication. They
are divided into four distinct classes: instant, temporary, managed and persistent.

Objects classified as instant have a very short lifetime and are neither repli-
cated nor updated. Typical examples of this class include queries and heartbeats.

Members in the class of temporary objects may have a longer but still finite
lifetime and may be replicated, but the replicas will not be maintained and
therefore fade over time. Examples include requests for assistance triggered by
poor node performance and context updates of other users observing the same
area.

Managed objects are strongly connected to the creating node. They are not
replicated and have to disappear in case the connected node leaves the network.
The list of connected nodes or neighbors are typical examples for this class.

Objects are classified as persistent if they need to be available even after the
creating host leaves the network. To ensure this, a distinct number of replicas
has to be maintained for each object. Any published annotation generated by
users belongs to this group.

As annotations are stored in a separate partition for each slide, the replication
is similar to static objects. Nevertheless, their updates are still more expensive
regarding traffic, as the updated information has to be distributed among the
responsible replicas. This does not constitute much traffic compared to the static
image objects, as annotation are internally represented as compressed Strings
and not graphical objects.

3.1 Replicas as Virtual Neighborhoods

A virtual node represents a single data partition. It is a physically not existing
construct of a group of replicas hosted on multiple peers. All replicas for a
virtual node are connected to each other in a separate virtual neighborhood. In
this neighborhood information about the individual performance of each peer
is shared. Performance parameters of each peer are aggregated by fuzzy logic
to create an indicator, which reflects usage of hardware resources as well as the
available bandwidth. This value is appended as a single byte to most messages
transmitted between communicating replicas.

The neighborhood is organized as a list that each peer maintains. The list
is sorted by intent, as the oldest replica is the first entry. The administrative
overhead to manage these list on involved peers includes inserts and removals

Omentum – A Peer-to-Peer Approach for Internet-Scale Virtual Microscopy 279

of replicas. As these peers communicate on a regular basis, node failures can be
discovered and handled quickly by adapting the neighborhood list.

Any new replica is added to the end of the list. This enables each peer to
compute the number of active replicas simply by querying the size of this list.

Only the last replica in this list may ask for leaving the virtual neighborhood.
This decreases the administrative overhead for avoiding multiple simultaneous
leaves triggered by high performance of the virtual node (ref. Sect. 3.3).

During a recovery from node churn, re-joining nodes are explicitly allowed to
resume their position in the network. Therefore, they try to connect to previously
known virtual nodes and re-join their virtual neighborhood. If the appropriate
replicas are unavailable, normal joining occurs. After this, the new peers, respon-
sible for the previously shared virtual node, are informed, that a replica can be
resumed.

3.2 Creating Replicas

New replicas are created dynamically according to the rules described below.
The most obvious reason is undercutting the minimal quantity of copies for a
virtual node. In this case, the last node in the replica neighborhood starts the
creation process for a new replica.

Additionally, the performance of a virtual node can be considered as a reason
to create new replicas despite the number of already existing copies. Therefore,
a virtual neighborhood of replica holders can decide to ask for another host
replicating their data. As each peer hosting a virtual node keeps track of the
replicas, the performance indicators of all replicas are known. The performance
indicator enables any peer in his virtual neighborhood to delegate requests to
more performant peers. In case that any replica is already at or above its defined
load threshold, the last peer in the neighborhood can start the creation process
for a new replica.

Delegating this task to only a single peer removes the overhead in timely
coordination of replica creation requests. In case the last node can no longer
accomplish this task, e.g. due to heavy load or even failure, this task is assigned
to the next peer in the list.

The peer than informs the neighborhood about starting its search for a new
peer.

Omentum allows several implementations of node selection strategies. For
example preferring performant nodes. Therefore, peers can create a temporary
request, which lives for a designated number of hops. Any receiving peer may
answer to this request and the most performant one is chosen by the initiat-
ing peer.

Other strategies are possible as well. For stronger randomness, nodes can be
selected by random walks in the overlay graph. As the random walk leads only
to another virtual host, its replicas have to be queried to take over the additional
data.

280 A. Barbian et al.

Additionally, Geo-location algorithms can be used to decrease the overall number
of hops.

After a responsible peer has found a potential new replica location, the joining
data is transferred. This data consists of the replica list and a list of files forming
the virtual node. With this list, the joining peer contacts any existing replica in
the neighborhood and requests the node’s content from multiple sources.

Replicas can be resumed, e.g. after node churns or intentional leaves. Solely
data for different or missing checksums are transmitted.

3.3 Removing Replicas

To dissolve a replica, two criteria have to be matched. At first, the performance
of a virtual node, meaning the average performance of its replica holders, has to
be high enough. Additionally, the minimum quantity of available replicas has to
be exceeded. Therefore, the last replica in the neighborhood periodically checks
its performance values and the list of active replicas. To prevent unintended
removals due to temporary performance peaks, a dissolving peers has to wait
for an adjustable period time before leaving the neighborhood. The shorter this
period is, the faster the system reorganizes itself and the more affectable it is to
avoidable copy operations.

Prior to leaving, the replica has to inform his neighborhood about the
removal. Each replica than removes the dissolved peer from the list of replicas
and recalculates the virtual node’s performance index.

In case a peer simply leaves the network and the performance of the neigh-
borhood undercuts a given performance or quantity threshold, a new replica has
to be created.

4 Evaluation

The simulation compares Omentum’s overlay for different network sizes, ranging
from 10K to 10 million nodes. The simulations were performed on a Intel R© Quad-
Core i7 with 16 GB RAM. Due to seeded PRNGs any result is reproducible and
does not depend on hardware specifications.

The number of edges in the random graph has a strong influence on the
resilience in case of node churn, but increases the administration complexity for
each node. At some point the beneficial aspects (connectivity and path com-
pression) no longer exceeds the administration Overhead (see Fig. 3). Therefore,
we limited the maximal expectancy value for a node’s degree to 20. This pro-
vides sufficient flexibility for node connection in different overlays sizes and limits
administration overhead in very large overlays.

The distribution of edges in the overlay after limiting the expectancy value
for any nodes interconnection is shown in Fig. 4.

Reducing the actual routing path during the routing phase is a two-step
process and provides a significant optimization on the number of hops needed
for a specific path. At first, the inbound links are considered as shortcuts to

Omentum – A Peer-to-Peer Approach for Internet-Scale Virtual Microscopy 281

Table 1. Omentum’s administrative overhead for a network with 10 million virtual
nodes, 2 million peers and an average partition size of 307.2 MiB.

Message Traffic (MiB) Payload (%) Overhead (%)

VNodeJoinRequest 460 0.243 %

VNodeJoinAccept 460 0.243 %

PeerJoinRequest 76 0.040 %

PeerJoinAccept 100 0.053 %

PeerDataRequest 86,016 45.388 %

PeerDataTransmit 307,200,000 100.000 % 54.033 %

Summary 307,389,512 99.938 % 0.062 %

later notes in the routing list. The compression achieved depends on the size of
the overlay (see Fig. 5). As only five percent of randomly chosen node pairs are
examined, effective path compression drops with increasing the number of nodes
in the overlay.

Secondly, any routing information gained during consecutive routing opera-
tions is cached for a configurable number of nodes (currently 5.000) to increase
shorten paths in future calculations.

Regarding the administrative overhead, Omentum’s overlay proves to be very
effective. Table 1 shows an in-depth analysis of the traffic distribution for creating
an equally distributed and equally filled overlay with 10 million virtual nodes
and 2 million participating peers. The average partition size is around 300 MiB.

5 Related Work

There are numerous solutions for virtual microscopy [5,6,10,12], but only a few
of them allow the simultaneous examination of multiple slides [11]. Although
most solutions features an implementation relying on web deployment, we stick
to a platform independent application as this allows the usage of peer-to-peer
technology.

The variety of existing structured and unstructured overlays for peer-to-
peer systems is overwhelming [1–3,9,13,16], but none has been used for vir-
tual microscopy. The difficulty for Omentum was that DHT-like functionality
was needed to easily retrieve requested image parts while providing exhaustive
searches for user generated annotations that may contain free text. The develop-
ment of Omentum has been mainly inspired by PathFinder [4] and BubbleStorm
[15] as they use a random-graph based overlay allowing traffic-less calculation
of routing paths. In contrast to PathFinder, that replicates random objects on
newly joining nodes or replicates new objects to random nodes, we developed a
novel, application-suitable replication strategy that allows load balancing based
on individual peer performance. This performance respects computation power
as well as the available bandwidth, whilst achieving an adjustable number of

282 A. Barbian et al.

(a) Path length (b) Outbound links

Fig. 3. Dependency of edge distribution on the expectancy value for the node degree.

(a) Edge Development (b) Edge Distribution

Fig. 4. Development and distribution of edges in networks of various sizes.

(a) Compression Range (b) Compression Distribution

Fig. 5. Impact of path compression on various network sizes.

Omentum – A Peer-to-Peer Approach for Internet-Scale Virtual Microscopy 283

replicas. The optimized exhaustive search in Omentum’s overlay reduces the
number of nodes to query and therefore completely avoids the BubbleCast-
Algorithm [14] used in PathFinder.

6 Conclusion

We presented the peer-to-peer application Omentum, which uses a random-
graph-based overlay to implement a distributed virtual microscope (VM) acces-
sible by an Internet-scale community. The overlays architecture was preferred
over a DHT implementation because of the traffic-less routing path calculation
and the very efficient exhaustive search. An interactive VM used to access tens
of thousands of high-resolution microscopic images and their numerous annota-
tions generates a significant amount of traffic on a university’s infrastructure.
The growing user base with a strong need for off-campus teaching initiated the
development of a distributed approach.

The main contribution of this paper is the novel replication strategy. It fea-
tures load balancing as well as replication based on adjustable node performance
and data quantity thresholds. Both parameters are crucial for the demonstrated
application case and made it mandatory to implement a new replication strat-
egy. The administrative overhead for maintaining the random graph as well as
the replicas is very low, compared to the transmitted data. Furthermore, Omen-
tum avails traffic-less routing calculation, which can be computed using parallel
algorithms. This is especially useful for data retrieval from multiple sources.

Future work includes optimizing strategies for the routing phase to decrease
the average path length. Additionally, we plan to study advanced peer selec-
tion strategies during the creation of new replicas. This includes the reduction
of physical hops between peers and a probably increased bandwidth between
connected replicas.

References

1. Aspnes, J., Shah, G.: Skip graphs. In: SODA, pp. 384–393 (2003)
2. Beaumont, O., Kermarrec, A-M., Marchal, L., Voronet, É.R.: A scalable object net-

work based on voronoi tessellations. In: Proceedings of the 21st International Par-
allel and Distributed Processing Symposium (IPDPS 2007), Society Press (2007)

3. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-
attribute range queries. In: SIGCOMM 2004, pp. 353–366 (2004)

4. Bradler, D., Krumov, L., Mühlhäuser, M., Kangasharju, J.: Pathfinder: efficient
lookups and efficient search in peer-to-peer networks. In: Aguilera, M.K., Yu, H.,
Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol.
6522, pp. 77–82. Springer, Heidelberg (2011)

5. Ferreira, R, Moon, B., Humphries, J., Sussman, A., Saltz, J., Miller, R., Demarzo,
A.: The virtual microscope. In: AMIA Annu Fall Symposium pp. 449–453 (1997)

6. Glatz-Krieger, K., Glatz, D., Mihatsch, M.J.: Virtual microscopy: first applications.
Pathologe 27(6), 469–476 (2006)

284 A. Barbian et al.

7. Jaegermann, A., Filler, T.J., Schoettner, M.: Distributed architecture for a peer-
to-peer-based virtual microscope. In: Dowling, J., Täıani, F. (eds.) DAIS 2013.
LNCS, vol. 7891, pp. 199–204. Springer, Heidelberg (2013)

8. Rojo, M.G., Garćıa, G.B., Mateos, C.P., Garćıa, J.G., Vincente, M.C.: Critical
comparison of 31 commercially available digital slide systems in pathology. Int. J.
Surg. Pathol. 14(4), 285–305 (2006)

9. Rowstron, A., Druschel, P.: Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

10. Saeger, K., Schmidt, D.: Digital slide training portal. training slides available on
the internet from the german division of the iap. Pathologe 27(6), 477–480 (2006)

11. Sander, B., Golas, M.M.: An interactive e-learning platform facilitating group and
peer group learning. Anat. Sci. Educ. 6(3), 182–190 (2013)

12. Schmidt, C., Reinehr, M., Leucht, O., Behrendt, N., Geiler, S., Britsch, S.:
Mymicroscope-intelligent virtual microscopy in a blended learning model at ulm
university. Ann. Anat. 193(5), 395–402 (2011)

13. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM 2001,
pp. 149–160 (2001)

14. Terpstra, W.W., Kangasharju, J., Leng, C., Buchmann, A.P.: Bubblestorm:
resilient, probabilistic, and exhaustive peer-to-peer search. In: SIGCOMM 2007,
Kyoto, August 2007

15. Terpstra, W.W., Leng, C., Buchmann, A.P.: Bubblestorm: analysis of probabilistic
exhaustive search in a heterogeneous peer-to-peer system. Technical report TUD-
CS-2007-2, Technische Universität Darmstadt (2007)

16. Zhao, B.Y., Kubiatowicz, J., Joseph, A.D.: Tapestry: an infrastructure for fault-
tolerant wide-area location and routing. Technical report UCB/CSD-01-1141,
Computer Science Division, University of California, April 2001

Using Social Networks Data for Behavior
and Sentiment Analysis

Barbara Calabrese, Mario Cannataro(B), and Nicola Ielpo

Department of Medical and Surgical Sciences, Magna Græcia
University Viale Europa, 88100 Catanzaro, Italy

cannataro@unicz.it

Abstract. With the advent of social networks, a huge amount of infor-
mation is generated and stored every day. The social networks there-
fore represent a potentially infinite source of user data, usable both for
scientific and commercial applications. Specifically, they store a lot of
data regarding the single individual and behavior, as well as informa-
tion related to individuals and their relationship with other individuals,
i.e. a sort of collective behavior. The combination of behavior and sen-
timent analysis tools with methodologies of affective computing could
allow the extraction of useful data that convey information for different
applications, such as detection of depression state in psychology, polit-
ical events, stock marketing fluctuations. The paper surveys some data
extraction tools for social networks and emerging computing trends such
as behavior analysis, sentiment analysis and affective computing. Then
the paper proposes a first architecture for behavior analysis integrating
those tools.

Keywords: Social network · Behavior analysis · Sentiment analysis ·
Affective computing

1 Introduction

In recent years, social networks have seen an exponential increase and now they
store a lot of data regarding individuals and their relationship with other indi-
viduals as well as data regarding groups or communities of users. Thus, analyzing
social network data may be helpful to detect behaviour and emotions of individ-
uals as well of communities.

Social networks provide some interfaces that allow to access to the data of its
members in respect of their privacy. However, since they base their own business
model on this data, consequently the (legal) access modes to the data and the
amount of data extracted from the social network are very low. Alternatively,
there are other methods for extracting data from social network associated with
the Web Scraping [1–3].

The aim of the paper is to provide an overview of the methods for data
extraction from social networks and to discuss issues related to the integration of

c© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 285–293, 2015.
DOI: 10.1007/978-3-319-23237-9 25

286 B. Calabrese et al.

social networks, behavior analysis, sentiment analysis and afffective computing.
Specifically, the paper contains an initial proposal relating to a possible system
that integrates the described methodologies.

The paper is organized as follows: Sect. 2 describes the main features and
the APIs (Application Programming Interfaces) for data extraction from Face-
book and Twitter; Sect. 3 presents the main issues and some examples of sys-
tems in the fields of behavior and sentiment analysis, and affective computing;
Sect. 4 proposes an integration scheme of the previously described methodologies
with social networks and, finally, Sect. 5 concludes the paper, highlighting future
works.

2 Social Networks: A Main Data Source for Detecting
Behaviors and Emotions

Social networks are the most representative models of Graph Databases. In social
networks [4], the nodes are people and groups, while the links show relationships
or flows between the nodes. Some examples are the friendships, business relation-
ships, research networks (collaboration, co-authorship), recordings of communi-
cations (mail, phone calls, etc. . . .), computer networks, national security. There
is an increasing activity in the field of social networks analysis, visualization and
data processing in such networks.

To analyze social networks data the following main tasks need to be per-
formed: social network data extraction (e.g. through the APIs provided by major
social networks providers); data storage (e.g. through the emerging NoSQL data-
bases well suited to store graph-based data); data analytics (to discover behav-
iors and emotions), eventually coupled with complementary approaches such as
affective computing, eye movement and facial movement detection.

In the following, the main features of the two most popular social network,
Facebook and Twitter, are described.

2.1 Facebook API

Facebook is a social network that allows registered users to create their own
profile to upload photos, videos and send messages, in order to keep in touch
with friends, family and colleagues. It also has the following features: groups,
events, pages, chat, marketplace and privacy manager. In order to try to extract
information from a user, you must be registered to the social network. If the
user belongs to my friends network then I can have access to all the information
that he/she has made available on his/her user profile. Instead in the case in
which he/she is not my friend, the data that I might be able to collect depend
entirely on how he/she has set the privacy for his/her profile. So with regard to
Facebook, finding information about a user that is not in our friends network
turns out to be a very complicated operation and appears to be influenced by
the level of privacy that this user has set for himself/herself. Generally, most
of the registered users on Facebook do not change these settings and leave the

Using Social Networks Data for Behavior and Sentiment Analysis 287

default ones that allow the tracing of the person on the search engines and leave
public the basic information of the profile.

Facebook is characterized by the social graph, the graph in which nodes rep-
resent entities (such as people, pages or applications) and arcs represent entities
connections. Therefore each entity or object is a node in the social graph and
every action of an entity is an arc. It is possible to interact with the social graph
in a unique way, i.e. through HTTP calls to the Facebook API [5]. The inter-
action involves two main components: the Graph API for reading and writing
of the social graph and the OGP (Open Graph Protocol), which is the protocol
that allows you to insert any object in the social graph by simply entering within
it the meta-data RDFa (Resource Description Framework in Attributes).

The Graph API allows to have a uniform view of the Facebook social graph
through simple HTTP calls; it provides, therefore, a subset of the nodes and con-
nections of the graph. Each entity of the social graph has a unique identifier; then
the properties of the object can be tracked at https : //graph.facebook.com/ <
id >. Alternatively, all entities with a username field (such as user profiles and
pages) are accessible using this field instead of the id. HTTP calls return a
response message with a well-defined structure (XML or JSON); the latter is
the most widely used format for response messages of Web Services because
it is lighter than XML. It is possible to examine the connections between
the various objects of the social graph using the following URL structure:
https : //graph.facebook.com/ < id > /connection type.

The Graph API therefore allows to easily access all public information of an
object; in case you wish to obtain additional information, you need permission
of the entity that owns them.

Facebook and Twitter (described in the next paragraph) provide APIs with
the OAuth authentication mechanism. The purpose of this protocol is to provide
a framework for the verification of the identity of the entities involved in secure
transactions. Currently, there are two versions of this protocol: OAuth 1.0 [6]
and OAuth 2.0 [7]. Both versions support two-legged authentication, in which
a server is guaranteed about the user identity and three-legged authentication,
in which a server is guaranteed by an application about the user identity. This
type of authentication requires the use of the access token and it is currently
implemented by the Social Network.

The Facebook authentication mechanism is based on OAuth 2.0 protocol,
which provides for the acquisition of an access token. There are different ways of
acquiring the access token; the easiest one is to go into the Graph API Explorer
and press the “Get Access Token”. Then you will need to select the permissions
you are interested in, by selecting the appropriate boxes. Of course this can also
be done via HTTP, just hanging to the query string of the API HTTP address the
access token parameter (https : //graph.facebook.com/me?access token = ...).

The Graph API provides three types of permits: base permits (it does not
require any access token); user data and friends data permits (they are designed
to restrict access to personal data of users); extended permits (required for pub-
lication and access to sensitive data). So, the access token is a mechanism whose
aim is to provide a temporary and limited access to the Facebook API. Graph

288 B. Calabrese et al.

API calls return most of the properties of the object of the social graph related
to the query sent; to select the parameters that you want returned, you must
enter the fields parameter in the search string of the API call.

2.2 Twitter API

Twitter is a service of micro-blogging with two main characteristics: its users
send messages (tweets) of 140 characters usually compounds by keywords (in
the form of hashtags), natural language and common abbreviations; moreover,
each user can follow other users so that his/her timeline is populated by their
tweets. It is much easier to obtain user data because the profiles are public and
can be viewed by anyone. As for Facebook, there is the ability to change the
settings relating to privacy so that a user can see the profile of other users, only
after they have accepted his/her request. Even in this case, however, users who
choose this route about privacy are few; moreover also any person not registered
in Twitter can access to user profiles.

Compared to Facebook, Twitter connections are bidirectional: there is an
asymmetric network consisting of friends, that is the accounts that a user follow.
and followers, that is the accounts that follow the user. The timeline of a user
that you can trace in the home consists of a real-time stream containing all the
tweets of his/her friends.

As Facebook provides the Graph API Explorer useful to explore the API,
Twitter provides the Twitter Console; generally Twitter offers an extensive col-
lection of APIs, all based on HTTP [8]. Twitter supports two authentication
methods based on the OAuth protocol: the first one based on OAuth 1.0a related
to the user and the second one based on OAuth 2.0 related to an application.

The first mode, defined application-user authentication, includes an HTTP
authorization request that communicates what application is making the request,
on behalf of which user the application is making the request, if the user has
authorized or not the application and if during transit the request has been
tampered by third parties.

In the second mode, defined application-only authentication, the application
encodes its consumer key and its secret key in a set of encoded credentials and
then performs an HTTP POST request to endpoint 0Auth2/token to exchange
these credentials with a bearer token. The bearer token obtained is used to
authenticate the application that it represents in the REST API. The latter
approach is much simpler because it is not required that the call is signed.

The typology of the Twitter API end-point is the following:

https : //api.twitter.com/1.1/ < resource > / < action >.

The Twitter API include 16 resources: timeline, tweet, search, streaming,
direct messages, friends and followers, users, user suggested, favorites, lists, saved
search, places, trends, spam reporting, OAuth, help. The Twitter Search API
allows the execution of real-time queries on recent tweet. In particular, the query
must be simple, limited to a maximum of 1000 characters, including operators
and it is always required some form of authentication. In this case the only
available resource is the tweet. The Twitter Streaming API allows a real-time

Using Social Networks Data for Behavior and Sentiment Analysis 289

update of information relating to specific resource, thereby eliminating the need
to repeatedly call at regular intervals (polling) its REST end-point.

2.3 NoSQL Databases

The increase of the volume of data to be stored and the need to process large
amounts of unstructured data in a short time, is a continuous trend; therefore
we are observing the emerging of a new model of data management that moves
away from the relational model: the NoSQL model. It provides four main fami-
lies of database: Key-Values stores; Column-oriented databases; Document data-
bases and Graph databases [9]. Graph databases have become a topic of interest
in the last years, mainly due to the large amount of data modeled as a graph intro-
duced by web. A graph, the key element of the Graph database, is defined as a sim-
ple mathematical structure that consists of nodes and arcs connecting the nodes.
More formally, a graph is an ordered pair of sets G = (V, E), with V a set of nodes
and E a set of arcs, such that the elements of E are elements of V pairs [10].

3 Emerging Computing Trends

3.1 Behaviour Analysis

With the rise of social media, users are given opportunities to exhibit different
behaviors such as sharing, posting, liking, commenting, and befriending conve-
niently. By analyzing behaviors observed on social media, it is possible to classify
these behaviors into individual and collective behavior. Individual behavior is
exhibited by a single user, whereas collective behavior is observed when a group
of users behave together [11].

In [12], the authors investigated whether posts on FB would also be applicable
for the prediction of users’ psychological traits such as self-monitoring (SM)
skill that is supposed to be linked with users’ expression behavior in the online
environment. They present a model to evaluate the relationship between the
posts and SM skills. First, they evaluate the quality of responses to the Snyder’s
Self-Monitoring Questionnaire collected via the Internet; and secondly, explore
the textual features of the posts in different SM-level groups. The prediction of
posts resulted in an approximate 60 % accuracy compared with the classification
made by Snyder’s SM scale. They concluded that the textual posts on the FB
Wall could partially predict the users’ SM skills.

Zhang et al. propose a socioscope model for social-network and human-
behavior analysis based on mobile-phone call-detail records [13]. They use
multiple probability and statistical methods for quantifying social groups,
relationships, and communication patterns and for detecting human-behavior
changes. They propose a new index to measure the level of reciprocity between
users and their communication partners. For the validation of their results, they
used real-life call logs of 81 users which contain approximately 500, 000 hours
of data on users’ location, communication, and device-usage behavior collected
over eight months at the Massachusetts Institute of Technology (MIT) by the
Reality Mining Project group.

290 B. Calabrese et al.

3.2 Sentiment Analysis

Sentiment analysis aims to analyze people’s sentiment, opinions, attitudes, emo-
tions. Different techniques and software tools have been developed to carry out
Sentiment Analysis. Most of works in this research area focus on classifying texts
according to their sentiment polarity, which can be positive, negative or neutral.
Therefore, it can be considered a text classification problem, since its goal con-
sists of categorizing texts within classes by means of algorithmic methods.

The paper [14] offers a comprehensive review about this topic and compares
some free access web services, analyzing their capabilities to classify and score
different pieces of text with respect to the sentiments contained therein.

In the last years, thanks to the increasing amount of information delivered
through social networks, many researches have been focused on applying sen-
timent analysis to these data [15,16]. Sentiment analysis aims at mining users
opinion and sentiment polarity from the posted text on the social network.

In [17], the authors apply data mining techniques to psychology, specifically
to the field of depression, to detect depressed users in social network services.
They create an accurate model based on sentiment analysis. In fact, the main
symptom of the depression is severe negative emotions and lack of positive emo-
tions.

In [18], a new method for sentiment analysis in Facebook has been presented
aiming: (i) to extract information about the users’ sentiment polarity (positive,
neutral or negative), as transmitted in the messages they write; and (ii) to model
the users’ usual sentiment polarity and to detect significant emotional changes.
The authors have implemented this method in SentBuk, a Facebook applica-
tion [19]. SentBuk retrieves messages written by users in Facebook and classifies
them according to their polarity, showing the results to the users through an
interactive interface. It also supports emotional change detection, friend’s emo-
tion finding, user classification according to their messages, and statistics, among
others. The classification method implemented in SentBuk follows a hybrid app-
roach: it combines lexical-based and machine-learning techniques. The results
obtained through this approach show that it is feasible to perform sentiment
analysis in Facebook with high accuracy (83.27 %).

3.3 Affective Computing

Affective Computing is computing that relates to, arises from, or deliberately
influences emotion or other affective phenomena [20]. Existing emotion recogni-
tion technologies include physiological signals recording, facial expression and/or
voice analysis [21,22]. Physiological emotion recognition is based on obtrusive
technologies that require special equipment or devices, e.g. skin conductance
sensors, blood pressure monitors, ECG and/or EEG recording devices. Facial
expressions and voice systems for emotion recognition, instead, use devices that
should be positioned in front of the face of the user or should always listen to
the voice of user [23]. In the following, some examples of emotion recognition
systems are reported and discussed.

Using Social Networks Data for Behavior and Sentiment Analysis 291

C. Peter et al. proposed wearable system architecture for collecting emotion-
related physiological signals such as heart rate, skin conductivity, and a skin tem-
perature of users [24]. They developed a prototype system, consisting of a glove
with a sensor unit, and a base unit for receiving the data transmitted from the
sensor unit. S. V. Ioannou et al. realize an emotion recognition system based on
the evaluation of facial expressions [25]. They implemented a neuro-fuzzy network
based on rules which have been defined via analysis of facial animation parame-
ters (FAPs) variations of users. With experimental real data, they also showed
acceptable recognition accuracy of higher than 70 %. A. Batliner et al. presented
an overview of the state of the art in automatic recognition of emotional states
using acoustic and linguistic parameters [26]. They summarized core technologies
such as corpus engineering, feature extraction, and classification have been used
for building emotion recognition systems via the speech analysis.

In [23], the authors present a machine learning approach to recognize emo-
tional states through the acquisition of some features related to user behavioral
patterns (e.g. typing speed) and the user context (e.g. location) in the social net-
work services. They developed an Android application that acquires and analyzes
these features whenever the user sends a text message to Twitter. They built a
Bayesian classifier that recognizes seven classes: one neutral and six relative to
basic emotions with an accuracy of 67,52 %.

The paper [27] describes an intelligent and affective tutoring system designed
and implemented within a social network. The tutoring system evaluates cog-
nitive and affective aspects and applies fuzzy logic to calculate the exercises
that are presented to the student. The authors use Kohonen neural networks to
recognize emotions through faces and voices and multi-attribute utility theory
to encourage positive affective states.

4 Towards an Integration of Existing Approaches

Social networks user often expresses her/his feeling or emotional states with writ-
ten text or by using emoticon. However, some users have difficulties to express
their feelings or can simulate. These limits could be exceeded by adopting emo-
tion recognition technologies related to affective computing and combining them
with typical text-mining methodologies of behavior and sentiment analysis.

Specifically, the affective computing research has focused on the detection of
facial expressions since the signal is very easy to be captured by camera. More-
over, microphones are commonly equipped for computers, smartphones, etc. to
record speech and vocal expressions. Pressure sensors on pad, keyboard, mouse,
collect posture and gesture patterns. According to specific recorded signals, dif-
ferent methods and tools could be combined with text-mining methodologies to
detect affect, sentiments and behaviors.

The Fig. 1 represents a scheme of a system for the integration of data
extracted from social networks and other data coming from external sensors
devices (e.g. eye detectors, facial movements detectors, etc.). The collected data
need to be stored in appropriate databases (e.g. SQL and/or NoSQL) for further
analysis and investigations.

292 B. Calabrese et al.

Fig. 1. Block diagram of an integrated system for sentiment and behavior analysis
from social networks and sensors devices.

5 Conclusions and Future Works

Today, new computing technologies permit the detection and analysis of behav-
ior, sentiment and affects. Specifically, the application of behavior and sentiment
analysis on data social networks and the integration with affective computing
methodologies offers the possibility to increase information and realize novel
applications in different fields. The paper surveys some data extraction methods
for social networks (Facebook and Twitter) and emerging computing trends such
as behavior analysis, sentiment analysis and affective computing. The paper pro-
poses a first architecture for behavior analysis integrating those tools. A detailed
implementation of the different modules (data extraction, storage and analysis)
will be presented as future work.

References

1. Catanese, S.A., De Meo P., Ferrara, E.: Crawling facebook for social network analy-
sis purposes. In: Proceedings of the International Conference on Web Intelligence,
Mining and Semantics (2011)

2. Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Comparing community struc-
ture to characteristics in online collegiate social networks. SIAM Rev. 53(3), 17
(2008)

3. Traud, A.L., Mucha P.J., Porter, M.A.: Social Structure of Facebook Networks.
CoRR: 82 (2011)

4. Hanneman, R.A.: Introduction to Social Network Methods. Technical report,
Department of Sociology, University of California, Riverside (2001)

5. Facebook. Graph API - Facebook Developers, March 2012. https://developers.
facebook.com/docs/reference/api/

6. Hammer-Lahav, E.: The OAuth 1.0 Protocol. RFC 5849, April 2010
7. Hardt, D.: The OAuth 2.0 Authorization Framework. RFC 6749, October 2012

https://developers.facebook.com/docs/reference/api/
https://developers.facebook.com/docs/reference/api/

Using Social Networks Data for Behavior and Sentiment Analysis 293

8. Twitter API. https://dev.twitter.com/overview/documentation
9. Eifrem, E.: A nosql overview and the benefits of graph databases. Nosql East (2009)

10. Trudeau, R.J.: Introduction to Graph Theory. Dover Publications, New York
(1994)

11. Zafarani, R., Liu, H.: Behavior Analysis in Social Media. IEEE Intell. Sys. 29(4),
9–11 (2014)

12. He, Q., Glas, C.A.W., Kosinski, M., Stillwell, D.J., Veldkamp, B.P.: Predicting
self-monitoring skills using textual posts on Facebook. Comput. Hum. Behav. 33,
69–78 (2014)

13. Zhang, H., Dantu, R., Cangussu, J.W.: Socioscope: human relationship and behav-
ior analysis in social networks. IEEE Trans. Sys. Man Cybernetics Part A Sys.
Hum. 41(6), 1122–1143 (2011)

14. Serrano-Guerrero, J., Olivas, J.A., Romero, F.P., Herrera-Viedma, E.: Sentiment
analysis: a review and comparative analysis of web services. Inf. Sci. 311, 18–38
(2015)

15. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant
supervision. Technical report. Stanford University, Stanford Digital Library Tech-
nologies Project (2009)

16. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion-
mining. In: Proceedings of the Seventh Conference on International Language
Resourcesand Evaluation, pp. 1320-1326 (2010)

17. Wang, X., Zhang, C., Ji, Y., Sun, L., Wu, L., Bao, Z.: A depression detection model
based on sentiment analysis in micro-blog social network. In: Li, J., Cao, L., Wang,
C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013 Workshops. LNCS,
vol. 7867, pp. 201–213. Springer, Heidelberg (2013)

18. Ortigosa, A., Martin, J.M., Carro, R.M.: Sentiment analysis in Facebook and itsap-
plication to e-learning. Comput. Hum. Behav. 31, 527–541 (2014)

19. Martin, J.M., Ortigosa, A., Carro, R. M.: SentBuk: sentiment analysis for
e-learning environments. In: International Symposium on Computers in Educa-
tion (SIIE 2012), pp. 1–6. IEEE (2012)

20. Picard, R.: Affect. Comput. Cambridge MIT Press, Cambridge (2000)
21. Armony, J.L.: Affective Computing. Trends Cognitive Sci. 2(7), 270 (1998)
22. Calvo, R.A., D’Mello, S.: Affect Detection: an interdisciplinary review of models,

methods, and their applications. IEEE Trans. Affect. Comput. 1(1), 18–37 (2010)
23. Lee, H., Choi, Y.S., Lee, S., Park, I.P.: Towards unobtrusive emotion recognition for

affective social communication. In: 9th Annual IEEE Consumer Communications
and Networking Conference, pp. 260–264. IEEE (2012)

24. Peter, C., Ebert, E., Beikirch, H.: A wearable multi-sensor system for mobile acqui-
sition of emotion-related physiological data. In: Tao, J., Tan, T., Picard, R.W.
(eds.) ACII 2005. LNCS, vol. 3784, pp. 691–698. Springer, Heidelberg (2005)

25. Ioannou, S.V., Raouzaiou, A.T., Tzouvaras, V.A., Mailis, T.P., Karpouzis, K.C.,
Kollias, S.D.: Emotion recognition through facial expression analysis based ona
neurofuzzy network. Neural Netw. 18(4), 423–435 (2005)

26. Batliner, A., Schuller, B., Seppi, D., Steidl, S., Devillers, L., Vidrascu, L., Vogt, T.,
Aharonson, V., Amir, N.: The automatic recognition of emotions in speech. Emot.
Oriented Sys. 2, 71–99 (2011)

27. Barrón-Estrada, M.L., Zatarain-Cabada, R., Beltrán V., J.A., Cibrian R., F.L.,
Pérez, Y.H.: An Intelligent and affective tutoring system within a social network
for learning mathematics. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández,
R. (eds.) IBERAMIA 2012. LNCS, vol. 7637, pp. 651–661. Springer, Heidelberg
(2012)

https://dev.twitter.com/overview/documentation

Sentimental Preference Extraction from Online
Reviews for Recommendation

Nieqing Cao, Jingjing Cao(&), Panpan Liu, and Wenfeng Li(&)

School of Logistics and Engineer, Wuhan University of Technology,
Wuhan 430077, China

NieqingCao@126.com,

{bettycao,liupanpan,liwf}@whut.edu.cn

Abstract. With booming electronic commerce, online reviews are often created
by users like who buys a product or goes to a restaurant. However, littery and
unordered free-text reviews make it difficult for new users to acquire and ana-
lyze useful information. Thus, recommendation system plays an increasingly
important role in online surfing. Nowadays, it has been proved that recom-
mendation system based on topics is an available method in the theory and
practice. However, there is little study to extract preferences from the per-
spective of sentiment. The method we proposed is to combine the topics and
sentiments for generating a user’s preference from the user’s previous reviews.
According to the degree of similarity with public’s preference, recommendation
system we proposed would judge whether it should recommend the new
products to this user. The empirical results show that the recommendation
system we proposed can make accurately and effectively recommend.

Keywords: Topic extraction � Sentiment analysis � Recommendation system �
User preference

1 Introduction

The recent development of Web 4.0 has enlarged people’s ability of expressing their
thought and preference for the product/service they bought in the market. Followed by
this, a huge amount of data has been coming which makes a lot of burden for people to
quickly get the effective information. In this area, recommendation systems (RS) are
widely popular. They are aiming at recommending items to users according their
preferences. On the whole, recommendation systems mainly consist of content-based
and collaborative filtering(CF) based approaches. Content-based RSs make use of the
items’ similarity to give some advice to a user. Collaborative filtering based RSs
depend on users’ similarity to find out the user models who have the same preference
for product and then recommends another user’s interested items to the target user.
However, the users’ preferences not only performed in the rating of products they
purchased, but also existed in the attitude tendency (sentiment) for those products.

Recently, a hot direction is to define the sentiment polarity as positive or negative
of a given review. Usually, the subjective views are utilized for sentiment classification.
Users’ behaviors and public opinions are more likely to be found and organized by

© Springer International Publishing Switzerland 2015
G. Di Fatta et al. (Eds.): IDCS 2015, LNCS 9258, pp. 294–303, 2015.
DOI: 10.1007/978-3-319-23237-9_26

sentiment classification. To classify sentiments of reviews not only can help enterprises
to understand users’ opinions but also can give a great influence on user’s purchase
intentions.

For exacting preferences of customers, the method we proposed is to combine the
topics which the customers pay close attention to with the customers’ emotional ten-
dency to these topics. When we recommend a new product to a user, we would first
check the user’s reviews for other products and then we would identify the topics he or
she concentrates on and the sentiment analysis for these topics. In this paper, we
manage to utilize the recommendation system based on topics and sentiments to rec-
ommend customized new products to users. Two main contributions have been made
and described as follows: the first contribution is that our work combines the topics and
sentiments in the reviews to make analysis and recommendations. The other contri-
bution is that we get the user’s preferences from his or her previous reviews which are
compared with public preferences to determine whether the system should recommend
the new products to the users.

This paper is structured as follows. We report on related work in the Sect. 2. In
Sect. 3, we will give a detailed description of our algorithm to solve the user cold start
problem and our experiments on the real data set will be given in Sect. 4. In Sect. 5, we
will make some conclusion about this study.

2 Related Work

Recommendation system is a useful tool to ease customers’ burden to get the available
information in the vast amounts of data and message. Lee et al. [1] proposed a novel
recommender system which only uses positively rating items in users’ profiles to make
an effective recommendation based on graph. Yung-Ming Li et al. [2] integrate pref-
erence similarity, recommendation trust and social relations to make a social recom-
mender system that can generate personalized product recommendations. Dooms et al.
[3] partition the complete calculation process into any number of jobs by implementing
an in-memory, content-based recommendation algorithm.

There is a great amount of literature for Recommender System concentrated on
different topics, such as e-commerce [4, 5], e-learning [6], music [7, 8], books [9],
television [10] and web search [11], among others.For example, Konstantinos Chris-
tidis and Gregoris Mentzas [12] proposed an innovative recommender system to exploit
the hidden topics found in auction marketplaces across the web in order to support
these functions.

Apart from topics, sentiment analysis [13] is a good way to extract users’ opinions.
We can get positive or negative attitudes, emotions and views from sentiment analysis.
P. Venkata Krishna et al. [14] illustrated an approach for a recommendation system
using Learning automata (LA) and sentiment analysis. Their experiments show that
their approach based on sentiment analysis improves the efficiency of the recommender
system.Michael K.S. Park and Namme Moon [15] aim to improve the effectiveness of
the music recommender systems and one of their methods is to analyze the personal
sentiments and contexts.Recently, Tian Pingfang et al. [16] proposed a method based
on the sentiment analysis for semantic recommendation mechanism which are more

Sentimental Preference Extraction from Online Reviews for Recommendation 295

accurate than other compared methods. In their study, they expanded the expression
sentiment base and collected all kinds of hot words. And there are many studies
confirmed that Integrating some methods and sentiment analysis is a good way to
enhance the effectiveness of experiments. For example, Leung, C. W. et al. [17]
Integrated collaborative filtering and sentiment analysis for their approach and pre-
liminary results validated the effectiveness of various tasks in the proposed framework.

In our study, our proposed algorithm makes the topics and sentiment in a review
together to seek out a user’s preference and make a recommendation for him/her.

3 Algorithm

The recommendation system we proposed consists of two phases: combining topics
and sentiments, and extracting users’ preferences and the degree of similarity with
popular preferences. The process is expressed in Fig. 1.

3.1 The Topics and Sentiments Phase

The first phase is composed of three parts, which are selecting topics, dividing senti-
ments and combining topics with sentiments. During the first part we need to select
several topics. In this paper, we choose six typical topics from our restaurant data set.
These topics are food, service, price, ambience, anecdotes and miscellaneous. Then,
during the second part, we should divide the sentiment analysis into four polarities,

Fig. 1. The algorithm process

296 N. Cao et al.

that, positive sentiment, negative sentiment, neutral sentiment and conflict sentiment.
This four polarities can effectively express one’s attitude to the corresponding item.
During the third part, we would combine the six topics with the four sentiments.
Adding the six topics and the four sentiments itself, there are thirty-four (4*6 + 4+6)
features all. For example, food positive can express positive attitude for one restaurant’
food. All features would be listed in Table 1.

3.2 The Preference Phrase

3.2.1 Selecting Appropriate Data
There are various amount of reviews in the entire restaurant data set. We would choose
a part of appropriate data to obtain experiments for training data set and testing data set.
In this paper, we would find the data in which the user has commented x restaurants,
where xϵ[m, n] and find the relationship between the effectiveness of the recommen-
dation system and the range of x. We would divide the dataset into two parts, one for
training and the other for testing. Among these data, the number of restaurants which
has been reviewed by one user for training is calculated as follows:

trainNum ¼ ceilðx=2Þ
x 2 range m; n½ � and x 2 Nþ ð1Þ

This means that, for one user, the number of restaurants for training is the ceil number
of one half of all restaurants reviewed by the user. And the rest restaurants would be
used for testing. For example, suppose that m = 2 and n = 4, we would choose those
data in which the users has reviewed 2 to 4 restaurants. In these selected data, if one
user has reviewed 3 restaurants, that, x = 3, the restaurants for training would be two
and the rest restaurant would be used for testing.

3.2.2 Transforming Information
In order to process files with textual data, one should transform the texts into numerical
data which can be recognized by computer. In this study, we define score to describe
the importance of sentences proportion labeled features in a review. This method can
effectively decrease misjudgements thanks to a user’s tirade for one aspect. The score
can be calculated as follows:

Table 1. Topics and sentiments

Food Service Price Ambience Anecdotes Miscellaneous

Positive Food
positive

Service
positive

Price
positive

Ambience
positive

Anecdotes
positive

Miscellaneous
positive

Negative Food
negative

Service
negative

Price
negative

Ambience
negative

Anecdotes
negative

Miscellaneous
negative

Neutral Food
neural

Service
neutral

Price
neutral

Ambience
neutral

Anecdotes
neutral

Miscellaneous
neutral

Conflict Food
conflict

Service
conflict

Price
conflict

Ambience
conflict

Anecdotes
conflict

Miscellaneous
conflict

Sentimental Preference Extraction from Online Reviews for Recommendation 297

score ¼ the number of sentences with feature
the number of sentences in a review

ð2Þ

It should be noted that some sentences are annotated with multiple sentiments or
topics. In this case, one should redistribute the weight of the sentences. For example, a
sentence is annotated as positive, neutral and food, and there are four sentences in the
review. The score of feature food positive would be calculated as (1/4)/2 = 0.125, equal
to the feature neutral food.

3.2.3 Training
Notational conventions. U, R and F denote the training data set used to create the
model. The labels in this set are known. There are n users in training data set and they
are denoted Ui, i = 1,2,…,l,…,n. A restaurant is denoted as Rj and j = 1,2,…,m. There
are k features in the study. Fjk indicates the user’s score for the j restaurant and the
k feature.

The whole process is carried out iteratively for each user. In the interest of clarity,
the process described below is only for one userl in the training dataset even though the
process is also repeated for the other users. The process for one user is as follows:

Firstly, get the preferences (Pjk) for each restaurant of this userl.

Pjk ¼ Fl
jk �

1
n� 1

Xn
i¼1

Fi
jk � Fl

jk

 !

k ¼ 1; . . .; Kð Þ
ð3Þ

And then, get the features that the userl concentrates on. We should set a threshold
h1 as a critical value. The value of h1 can be defined by ourselves in experiments. For
those preferences for the restaurant we calculated before, we select those preferences
which are greater than h1 as 1. And we select those preferences which are less than or
equal to h1 as 0. In order to clearly denote the process, we would install a variable Ljk

for userl. Ljk can make it clearer that which preferences the users concentrates on. This
procedure can be described as follows:

Ljk ¼ 1 pjk � h1
0 pjk\h1

�
and L ¼ Ljk

� � ð4Þ

After that, we need to calculate the total value for every feature. If

Xm
j¼1

Ljk [
m
2

ð5Þ

Then the Feature k would be selected into a set (S) as one concerned feature.
Otherwise, Feature k is discarded. And

298 N. Cao et al.

S ¼ k
0 Xm

j¼1

Ljk0 [
m
2

�����
()

ð6Þ

We denote it as Sk’ .
Userl’s final preferences(Q) to the concerning features are shown as follows:

Qk0 ¼
1
Sj j
Xm
j¼1

Pjk0 ð7Þ

For those features which are not defined as a concerning features, their final
preferences would be labeled as 0. The details are listed in the Table 2.

3.2.4 Testing
In the extracted data before, one part for training, remaining part for testing. This means
that we would use the remainder restaurants of the user reviewed to test the user and
determine whether we should recommend or not. According to the well-known results,
we can get accuracies of recommendation. The testWeight is denoted as a degree of
similarity for a user and public.

testWeight ¼ FeatureB A\Bð Þ
FeatureBB

A ¼ x 2 Sk0
� �

and B ¼ x 2 FB; x[0f g ð8Þ

The higher the value of testWeight, may indicates two aspects:One possible reason
is that there are many high concerning features that the user and the public common
concerned. Another reason is that although their common concerns may be not greatly
repeated, the features that the user and the public common concerned are very live.

We would decide whether recommend the restaurant to the user by the value of
testWeight. And we would set an another threshold h2 to compare with the value of
testWeight. if the value of testWeight is greater than h2, it means the user’s preferences
is similar to the popular preferences. According to the good or bad public reviews, we
would recommend or not recommend the restaurant to the user. If the value of test-
Weight is less than h2, it means the user’s preferences is different from the public
preferences. And the recommending condition would be an inverse relationship to
previous point.

Table 2. Finding features the user concentrate on

Table Head Food positive Food negative … Miscellaneous conflict

Restaurant1 1 0 0
Restaurant2 0 1 0
…

Total value

Sentimental Preference Extraction from Online Reviews for Recommendation 299

4 Experimental Design and Results

In the following section, we conduct some empirical experiments based on our pro-
posed algorithm.

4.1 Data Set and Experimental Setting

We conduct our experiments with a restaurant review data set that is RED1 data set
[18]. It contains reviews from users on items, trust values between users, items cate-
gory, categories hierarchy and users expertise on categories. For our experiments, we
mainly extract the corpus of over 50000 restaurant reviews from Citysearch New York
in the data set. The corpus contains 5531 restaurants, with associated structured
information (location, cuisine type) and a set of reviews. There are 52264 reviews, of
which 1359 are editorial reviews and the rest are user reviews. The average user review
has 5.28 sentences. The reviews are written by 32284 distinct users, for whom we only
have unique username information. For each review, there are six categories (Food,
Service, Price, Ambience, Anecdotes, and Miscellaneous) identified in the data set. In
addition to sentence categories, sentences have an associated sentiment: Positive,
Negative, Neutral, or Conflict [19].

The experimental settings are divided into three sections. During the first section,
we need to determine the range of the selected data. In our study, we choose m = 2 and
n = 4. We select the data in which the user has reviewed two or three or four restaurants
from the whole data set. During second section, we need to determine the two value of
thresholds, h1 and h2. We let h1 = 0, this means that if a feature’s personal preference is
greater than 0, the feature would be a common concern. And we would set h2 in
different values to observe the influences brought by the variation of h2. During third
section, we would determine the way of performance evaluation. Final, we would
calculate the accuracy of our recommendation system by using testing data set.

4.2 Experimental Results and Analysis

Tables 3 and 4 summarize the average accuracies based on different value of h2. From
these Tables, we can easily see that the accuracies of h2 = 1/(10*n) is equal to the
accuracies of h2 = 1/(2*n) when n = 2. This phenomenon indicates that their test-
Weights are all greater than h2 = 1/(2*2). And we can also find that h2 = 1/(10*n)
always performs better than h2 = 1/(2*n) in the case of n = 3 and n = 4. This result
shows that we can conjecture that higher accuracies can be obtained under h2 = 1/
(10*n) with the growth of n rather than h2 = 1/(2*n).

Beyond that, we can clearly find the differences between different ranges of data
extraction from Fig. 2. The horizontal axis denotes the values of h2, and the vertical
axis denotes the accuracies of recommendation system. The blue color bar represents
the accuracies of the case 1: the number of the reviews is selected in [3, 4]; whereas the

1 http://liris.cnrs.fr/red/.

300 N. Cao et al.

http://liris.cnrs.fr/red/

red color bar means the case 2: the number of the reviews is selected in [3, 10]. The
figure shows that the performance of case 1 is better than the performance of case 2
because in case 2, it contains more training samples. However, the summation exe-
cution time of all h2 in case 1 is much faster than case 2, which are 5.4262 s and
16.2167 s respectively.

5 Conclusions and Directions

With the rapid development of website, the more user-generated contents, the more
important for effective recommendation system. How to effectively and accurately
recommend products to a new user has been a hot topic in recent years. Under the
typical restaurant review data set, we combined topics with sentiments. Based on
experiments, we recommend products to new users according to their previous reviews
for other restaurants. The final results indicate that the recommendation system we
proposed can effectively and accurately achieve recommended functionality. This
means that the system we proposed can be an available method for recommending.

Table 3. The average accuracies of θ2 = 1/(10*n)

Θ2 = 1/(10*n) m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 m = 11

n = 2 0.7863 0.7987 0.8066 0.8099 0.8155 0.8154 0.8169
n = 3 0.8066 0.8049 0.8029 0.8040 0.8041 0.8076 0.8114
n = 4 0.8085 0.8082 0.8090 0.8084 0.8093 0.8112 0.8160

Table 4. The average accuracies of θ2 = 1/(2*n)

Θ2 = 1/(2*n) m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 m = 11

n = 2 0.7863 0.7987 0.8066 0.8099 0.8155 0.8154 0.8169
n = 3 0.7788 0.7496 0.7206 0.7040 0.6928 0.6923 0.6910
n = 4 0.7118 0.7249 0.7304 0.7352 0.7396 0.7435 0.7482

Fig. 2. Accuracies of recommendation for different cases

Sentimental Preference Extraction from Online Reviews for Recommendation 301

In future, there are several directions for us to study. Firstly, we can use other
typical review data sets. Our restaurant review data set cannot represent the whole
aspect. Secondly, we can continue studying the option of threshold and the extraction
of data set.

Acknowledgements. This work was supported by the Fundamental Research Funds for the
Central Universities (WUT:2014-IV-054).

References

1. Lee, K., Lee, K.: Escaping your comfort zone: A graph-based recommender system for
finding novel recommendations among relevant items. Expert Syst. Appl. 42(10), 4851–
4858 (2015)

2. Li, Y.-M., Chun-Te, W., Lai, C.-Y.: A social recommender mechanism for e-commerce:
Combining similarity, trust, and relationship. Decisi. Support Syst. 55(3), 740–752 (2013)

3. Dooms, S., Audenaert, P., Fostier, J., De Pessemier, T., Martens, L.: In-memory, distributed
content-based recommender system. J. Intel. Inform. Syst. 42(3), 645–669 (2014)

4. Huang, Z., Zeng, D., Chen, H.: A comparison of collaborative filtering recommendation
algorithms for e-commerce. IEEE Intel. Syst. 22(5), 68–78 (2007)

5. Castro-Sanchez, J.J., Miguel, R., Vallejo, D., López-López, L.M.: A highly adaptive
recommender system based on fuzzy logic for B2C e-commerce portals. Expert Syst. Appl.
38(3), 2441–2454 (2011)

6. Bobadilla, J., Serradilla, F., Hernando, A.: Collaborative filtering adapted to recommender
systems of e-learning. Knowl. Based Syst. 22, 261–265 (2009)

7. Lee, S.K., Cho, Y.H., Kim, S.H.: Collaborative filtering with ordinal scale-based implicit
ratings for mobile music recommendations. Inform. Sci. 180(11), 2142–2155 (2010)

8. Tan, S., Bu, J., Chen, C.H., He, X.: Using rich social media information for music
recommendation via hypergraph model. ACM Trans. Multimedia Comput., Commun. Appl.
7(1), Article 7 (2011)

9. Núñez-Valdéz, E.R., Cueva-Lovelle, J.M., Sanjuán-Martínez, O., García-Díaz, V., Ordoñez,
P., Montenegro-Marín, C.E.: Implicit feedback techniques on recommender systems applied
to electronic books. Comput. Hum. Behav. 28(4), 1186–1193 (2012)

10. Barragáns-Martínez, A.B., Costa-Montenegro, E., Burguillo, J.C., Rey-López, M.,
Mikic-Fonte, F.A., Peleteiro, A.: A hybrid content-based and item-based collaborative
filtering approach to recommend TV programs enhanced with singular value decomposition.
Inform. Sci. 180(22), 4290–4311 (2010)

11. Mcnally, K., O’mahony, M.P., Coyle, M., Briggs, P., Smyth, B.: A case study of
collaboration and reputation in social web search, ACM Trans. Intel. Syst. Technol. 3(1),
Article 4 (2011)

12. Christidis, K., Mentzas, G.: A topic-based recommender system for electronic marketplace
platforms. Expert Syst. Appl. 40, 4370–4379 (2013)

13. Li, X., Murata, T.: Customizing knowledge-based recommender system by tracking analysis
of user behavior. In: Proceedings of the IEEE 17th International Conference Industrial
Engineering and Engineering Management (IE&EM), pp. 65–69 (2010)

14. Krishna, P.V., Misra, S., Joshi, D., Obaidat, M.S.: Learning automata based sentiment
analysis for recommender system on cloud. In: 2013 International Conference on Computer,
Information and Telecommunication Systems (CITS), pp. 1–5. IEEE, May 2013

302 N. Cao et al.

15. Park, M.K., Moon, N.: The Effects of personal sentiments and contexts on the acceptance of
music recommender systems. In: 2011 5th FTRA International Conference on Multimedia
and Ubiquitous Engineering (MUE), pp. 289–292. IEEE, June 2011

16. Tian, P., Zhu, Z., Xiong, L., Xu, F.: A recommendation mechanism for web publishing
based on sentiment analysis of microblog, wuhan university. J. Nat. Sci. 22(2), 146–152
(2015)

17. Leung, C.W., Chan, S.C., Chung, F.L.:. Integrating collaborative filtering and sentiment
analysis: A rating inference approach. In: Proceedings of the ECAI 2006 Workshop on
Recommender Systems, pp. 62–66, August 2006

18. Meyffret, S., Guillot, E., Medini, L., Laforest, F.: RED: A Rich Epinions Dataset for
Recommender Systems. Université de Lyon (2012)

19. Ganu, G., Elhadad, N., Marian, A.: Beyond the stars: Improving rating predictions using
review text content. In: Proceedings of the 12th International Workshop on the Web and
Databases (2009)

Sentimental Preference Extraction from Online Reviews for Recommendation 303

Author Index

Ahmad, Muhammad Aminu 235
Al Ghamdi, Sami 193
Alrubaian, Majed 88
Amato, Alba 118

Barbian, Andreas 273
Borean, Claudio 143
Brehm, Jürgen 103
Brito, Italo C. 19

Calabrese, Barbara 285
Cannataro, Mario 285
Cao, Jingjing 294
Cao, Nieqing 294
Carmo, Luiz F.R.C. 19
Cuzzocrea, Alfredo 209

de Farias, Claudio M. 19
Delicato, Flávia C. 19
Deris, Mustafa Mat 169
Dey, Somnath 3
Di Fatta, Giuseppe 177, 193

201
dos Santos, Igor L. 19
Duan, Sisi 157
Dziengel, Norman 63

Edenhofer, Sarah 103
Esteve, Manuel 51
Exarchakos, Georgios 75

Filler, Timm J. 273
Fortino, Giancarlo 39, 131

Giannantonio, Roberta 143
Gomes, João Bártolo 265
Grenz, Carsten 103
Guerrieri, Antonio 131

Hähner, Jörg 103
Hassan, Mohammad Mehedi 88
Herawan, Tutut 169
Horn, Geir 118

Ielpo, Nicola 285
Ioualalen, Malika 11

Jänen, Uwe 103
Jeong, Byeong-Soo 88
Júnior, Paulo G.S.M. 19

Katti, Amogh 201
Kerz, Robert 63
Kotian, Roshan 75

Leone, Pierre 248
Li, Wenfeng 294
Liotta, Antonio 75
Liu, Panpan 294

Malenica, Dennis 273
Mamei, Marco 143
Mana, Dario 143
Monil, Mohammad Alaul Haque 31
Moro, Alessandro 209
Mumolo, Enzo 209
Muñoz, Cristina 248

Noor, Ahmad Shukri Mohd 169

Palau, Carlos E. 51
Peisert, Sean 157
Pereira, Marina V. 19
Pérez, Israel 51
Pirmez, Luci 19
Poonpakdee, Pasu 177
Pubill, David 131

Rahman, Rashedur M. 31

Salmi, Nabila 11
Sassi, Andrea 143
Savaglio, Claudio 39
Saxena, Rajat 3
Schiller, Jochen 63
Schoettner, Michael 273
Seiffert, Martin 63
Serra, Jordi 131
Sliem, Mehdi 11
Stahl, Frederic 193, 265
Stein, Anthony 103
Sun, Jingtao 157

Tanbeer, Syed Khairuzzaman 88
Tennant, Mark 265
Turau, Volker 223

Umeda, Kazunori 209

Venticinque, Salvatore 118
Verikoukis, Christos 131

Weigel, Andreas 223
Woodhead, Steve 235

Zambonelli, Franco 143
Zambrano, Ana María 51
Zian, Nur Farhah Mat 169
Ziegert, Marco 63

306 Author Index

	Preface
	Organization
	Contents
	Cloud Computing and Internet of Things
	Cloud Shield: Effective Solution for DDoS in Cloud
	1 Introduction
	2 Proposed Scheme
	2.1 Dempster Shafer Theory (DST)
	2.2 Our Implementation
	2.3 Service Model of Cloud Shield

	3 Conclusions and Future Work
	References

	Towards Modelling-Based Self-adaptive Resource Allocation in Multi-tiers Cloud Systems
	1 Introduction
	2 Related Work
	3 A Self-Adaptive Resource Allocation Cloud Platform
	4 Analysis of a Multi-tiers Autonomic System Model
	4.1 Abstract View of a Tier
	4.2 Analysis Process

	5 Illustration
	6 Conclusion
	References

	Web2Compile-CoT: A Web IDE for the Cloud of Things
	1 Introduction
	2 Related Work
	3 Web2Compile-CoT
	3.1 Architecture
	3.2 Web2Compile-CoT Operation

	4 Experiments
	4.1 Metrics
	4.2 Implementation
	4.3 Scalability Experiments
	4.4 Effectiveness Tests

	5 Conclusion
	References

	Fuzzy Logic Based Energy Aware VM Consolidation
	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Method
	3.1 Fuzzy VM Selection with Migration Control

	4 Experimental Result
	5 Conclusion
	References

	Autonomic and Cognitive Architectures for the Internet of Things
	1 Introduction
	2 Current Trends
	2.1 Autonomic Computing
	2.2 Cognitive Networks

	3 Autonomic and Cognitive IoT Architectures
	4 Comparison
	5 Conclusions
	References

	Sensor Networks
	Sensor Web Enablement Applied to an Earthquake Early Warning System
	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 System Architecture
	3.1 Layer 1: Client Application and Acceleration Processing
	3.2 Layer 2: Intermediate Server
	3.3 Layer 3: Control Center

	4 Performance Evaluation
	5 Conclusions and Future Work
	References

	Towards Motion Characterization and Assessment Within a Wireless Body Area Network
	1 Introduction
	2 Requirements
	3 System Architecture
	3.1 Biomechanic Segmentation
	3.2 Training Phase
	3.3 Feedback Phase

	4 Practical Approach
	4.1 Sensor Platform
	4.2 Motion Model
	4.3 Experiments and Results

	5 Conclusion and Future Work
	References

	Data Driven Transmission Power Control for Wireless Sensor Networks
	1 Introduction
	2 Related Work
	3 Design of DA-TPC
	3.1 Overview of DA-TPC Modules
	3.2 Initialization Phase
	3.3 Anomaly Detection Phase
	3.4 Routing Phase
	3.5 DA-TPC Workflow

	4 Experimental and Simulation Set Up
	5 Performance Evaluation Metrics
	6 Results and Discussion
	7 Conclusion and Future Work
	References

	Mining Regularities in Body Sensor Network Data
	Abstract
	1 Introduction
	2 Problem Definition
	3 SDR-Tree: Design, Construction and Mining
	3.1 SDR-Tree Structure
	3.2 SDR-Tree Construction
	3.3 The SDR-Tree in Incremental Database
	3.4 Mining an SDR-Tree

	4 Experimental Results
	4.1 Compactness of the SDR-Tree
	4.2 Experiments on Incremental Mining

	5 Conclusions
	Acknowledgement
	References

	Smart Cities and Smart Buildings
	Task Execution in Distributed Smart Systems
	1 Introduction
	1.1 First Research Subject: Model Creation
	1.2 Second Research Subject: Optimization Transparency

	2 Job-Ressource-Model to Handle the First Research Subject
	2.1 Resources
	2.2 Jobs

	3 Proactive Quotation-Based Scheduling to Handle the Second Research Subject
	3.1 Single Micro-Objective to Single Resource Association
	3.2 Multiple Micro-Objective to Single Resource Assignment

	4 Heuristic Approach for Parallel Execution of Multiple Micro-Objectives on Resources
	5 Related Work
	6 Evaluation
	7 Conclusion and Future Work
	References

	Inferring Appliance Load Profiles from Measurements
	1 Introduction
	2 Related Work
	3 The CoSSMic Multi-Agent System
	4 Sampling Methodology
	5 Detecting Modes of Appliances
	6 Representing Statistically the Load Profile
	6.1 Minimum Variance Regression
	6.2 Making the Observations Bijective
	6.3 A Heuristic for the Knots
	6.4 Finding the Control Points
	6.5 Confidence Interval for the Load
	6.6 New Measurements

	7 Conclusion
	References

	Intra Smart Grid Management Frameworks for Control and Energy Saving in Buildings
	1 Introduction
	2 Related Work
	3 The IGMF / IoTLAB Energy Scheduling System Integration
	3.1 The IGMF
	3.2 The ITESS
	3.3 IGMF / ITESS

	4 A Loosely Coupled Integration Between the IGMF and the ITESS
	4.1 IGMF Exposed Functions
	4.2 ITESS Exposed Functions

	5 Conclusion
	References

	Urban Crowd Steering: An Overview
	1 Introduction
	2 Crowd Steering: Motivations
	2.1 Steering to Support Individual Needs
	2.2 Steering to Support Institutional Goals

	3 Crowd Steering Technologies
	3.1 Detecting People Location and Density
	3.2 Smart Phones and Mobile Apps
	3.3 Digital Signages and Public Displays
	3.4 Morphable Architectures

	4 Strategies
	5 Related Work
	6 Conclusions and Future Work
	References

	Distributed Computing
	Towards a Self-Adaptive Middleware for Building Reliable Publish/Subscribe Systems
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Preliminaries
	3.2 Destination Database
	3.3 Leader Election

	4 Design
	4.1 Requirements
	4.2 System Architecture
	4.3 Adaptation Rules

	5 Evaluation
	6 Conclusion and Future Work
	References

	Review of Replication Techniques for Distributed Systems
	1 Introduction
	1.1 Replication Definition

	2 System Availability Evaluation Using K-out-of-n Model
	3 Replication Techniques
	3.1 Grid Configuration (GC) Protocol
	3.2 Box-Shaped Grid (BSG) Protocol
	3.3 Neighbor Replication on Grid (NRG)

	4 Conclusion
	References

	Connectivity Recovery in Epidemic Membership Protocols
	1 Introduction
	2 Connectivity Problems
	3 The Expander Membership Protocol
	4 Message Interleaving
	4.1 Detection of Cache Entry Duplicates

	5 The Enhanced Expander Membership Protocol
	6 Experimental Analysis
	6.1 Global Connectivity
	6.2 Application Accuracy

	7 Conclusions
	References

	Parallel Computing
	Optimisation Techniques for Parallel K-Means on MapReduce
	Abstract
	1 Introduction
	2 Parallel K-Means on MapReduce
	2.1 K-Means
	2.2 MapReduce
	2.3 Parallel K-Means on MapReduce Implementation

	3 Experimental Results
	4 Work in Progress
	5 Conclusions
	References

	Epidemic Fault Tolerance for Extreme-Scale Parallel Computing
	Abstract
	1 Introduction
	2 Fault Tolerance in MPI
	3 Failure Detectors
	3.1 Coordinator Based Failure Detectors
	3.2 Completely Distributed Failure Detectors

	4 Failure Detector Maintaining Global Knowledge
	5 Simulations and Results
	6 Conclusion and Future Work
	References

	A GPU-Based Statistical Framework for Moving Object Segmentation: Implementation, Analysis and Applications
	1 Introduction
	2 Related Work
	3 The Baseline Method in a Nutshell
	4 GPU-Based Implementation
	5 Parallelization of the Proposed Histogram-Based Algorithm for Moving Object Segmentation
	6 Experimental Assessment and Analysis
	7 Concluding Remarks and Future Work
	References

	Advanced Networking
	Hardware-Assisted IEEE 802.15.4 Transmissions and Why to Avoid Them
	1 Introduction
	2 Capturing Node State in Realtime
	3 Experimental Setup
	4 Evaluation
	4.1 Direct Mode
	4.2 Direct-ARR

	5 Conclusion
	References

	Containment of Fast Scanning Computer Network Worms
	1 Introduction
	2 Related Work
	3 Wormable Vulnerability
	4 Worm Countermeasure System
	5 Evaluation
	5.1 Experimental Methodology
	5.2 Experimental Parameters
	5.3 RDP-Based Worm Behaviour
	5.4 ShellShock-Based Worm Behaviour

	6 Conclusion and Future Work
	References

	Fragmented-Iterated Bloom Filters for Routing in Distributed Event-Based Sensor Networks
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 System Design
	4.1 Description of Events
	4.2 Overview of the Dispatching Algorithm
	4.3 Validation Table: Iterated BFs (IBFs)
	4.4 Routing Table: Fragmented BFs (FBFs)

	5 Evaluation
	5.1 Theoretical Evaluation of Fragmented BFs
	5.2 Practical Evaluation of Fragmented BFs
	5.3 Theoretical Evaluation of Iterated BFs
	5.4 Practical Evaluation of Iterated BFs

	6 Conclusion
	References

	Big Data and Social Networks
	Fast Adaptive Real-Time Classification for Data Streams with Concept Drift
	1 Introduction
	2 Adaptive Micro-cluster Nearest Neighbour Data Stream Classification
	2.1 Micro-cluster Based Nearest Neighbour

	3 Evaluation
	4 Conclusions
	References

	Omentum -- A Peer-to-Peer Approach for Internet-Scale Virtual Microscopy
	1 Introduction
	2 Omentum: Overlay Architecture
	2.1 Routing

	3 Replication
	3.1 Replicas as Virtual Neighborhoods
	3.2 Creating Replicas
	3.3 Removing Replicas

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Using Social Networks Data for Behavior and Sentiment Analysis
	1 Introduction
	2 Social Networks: A Main Data Source for Detecting Behaviors and Emotions
	2.1 Facebook API
	2.2 Twitter API
	2.3 NoSQL Databases

	3 Emerging Computing Trends
	3.1 Behaviour Analysis
	3.2 Sentiment Analysis
	3.3 Affective Computing

	4 Towards an Integration of Existing Approaches
	5 Conclusions and Future Works
	References

	Sentimental Preference Extraction from Online Reviews for Recommendation
	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 The Topics and Sentiments Phase
	3.2 The Preference Phrase
	3.2.1 Selecting Appropriate Data
	3.2.2 Transforming Information
	3.2.3 Training
	3.2.4 Testing

	4 Experimental Design and Results
	4.1 Data Set and Experimental Setting
	4.2 Experimental Results and Analysis

	5 Conclusions and Directions
	Acknowledgements
	References

	Author Index

