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Abstract. This paper considers the problem of designing computational
models of the primitives that are at the basis of the visual perception
of motion in humans. The main contribution of this work is to estab-
lish a connection between cognitive science observations and empirical
computational modeling. We take inspiration from the very first stage
of the human development, and address the problem of understanding
the presence of biological motion in the scene. To this end, we investi-
gate the use of coarse motion descriptors composed by low-level features
inspired by the Two-Thirds Power Law. In the experimental analysis,
we first discuss the validity of the Two-Thirds Power Law in the context
of video analysis, where, to the best of our knowledge, it has not found
application so far. Second, we show a preliminary investigation on the
use of a very simple motion model for characterizing biological motion
with respect to non-biological dynamic events.

1 Introduction

The interactions with other people or with the surrounding environment are easy
and natural tasks for human beings, triggered by an innate predisposition. Nev-
ertheless, it is well accepted in the cognitive science community that a mature
social awareness is subject to the acquisition of a sequence of temporally-ordered
perceptual and social skills, going from the detection of target of potential inter-
est [10], to the capability of inferring the intentions of other people and the goals
of their actions [§].

This work considers the development of visual perception capabilities in
humans, and tries to establish a connection between the observations coming
from the cognitive science world and the computational modeling side. The long-
term goal of our research is the design of computational vision models able to
replicate on an artificial system the developmental stages of motion perception
in humans. This is of particular interest, for instance, in the robotics field, where
the design of methods for a natural human-robot interaction is one of the great
challenges of the research nowadays.

In this paper we specifically refer to the earliest stages of human develop-
ment, and consider in particular the capability of understanding the presence
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of biological motion in the surrounding environment, a skill humans, and not
only, exhibit early after birth [20]. This ability triggers the development of social
interaction, since it allows the detection of potential interaction partners in the
scene.

We consider a binary classification setting in which characterizing biologi-
cal movements with respect to non-biological dynamic events. As for the first
class, we are particularly interested in sequences of human actions typical of
interactions, as repositioning objects or pointing towards a certain 3D location.

Given a video stream, we initially detect the regions where the motion is
occurring using the optical flow, then we extract a set of low-level features
inspired by the Two-Thirds Power Law, which has been experimentally proved
to be an invariant property of biological motion, and human movements in par-
ticular [18,23,24,26]. We adopt a coarse motion representation leveraging on the
fact that if humans show a predisposition for biological motion right after birth,
when the amount of visual information is still very limited, then it is likely that
it may depend on very simple motion information.

We consider two different levels of compression of such information over time
— computing a point-based and a region-based descriptor — and evaluate their use
with binary SVMs classifiers equipped with appropriate Multi-Cue kernels [21].

Related Works. Since we are primarily interested in capturing abilities typical
of the early months of human development, we do not address classical action
recognition tasks (very fertile disciplines in fields as video surveillance, video
retrieval and robotics [4,16,28]), abilities which are likely to be gained at later
stages of development, also thanks to the infants’ prior motor experience [3].
Within this contexts, an approach sharing similarities with our work is [19]
where the authors consider the problem of biological motion classification using
joints trajectories. However, they refer to the characterization of a single class
of human motion (walking) with respect to others (as boxing or jumping).

Instead, works on human perception of biological motion can be traditionally
found in the field of cognitive science, where particular interest has been posed
on the relative importance of visual features that are (presumably) at the basis of
this strong ability [1,7,22]. In most of such works point-light displays or motion
caption systems are adopted.

The Two-Thirds Power Law has been related to the motion perception of
humans [6,24,26], and it is considered a well-known invariant property of human
movements [12,18,25]. Its applicability has been empirically verified mostly for
upper-limb movements, but also for eye motion [27], locomotion [23], and to
the purpose of movement prediction [9]. The relation between motion and the
quantities involved in the law has been also deeply analysed [12,25]. In [13] the
authors show that white Gaussian noise also obeys this power-law.

To the best of our knowledge, this is the first attempt of applying the Two-
Thirds Power Law in the context of video analysis, on data measured from video
stream and thus, by construction, less controlled. Also, with respect to previous
works, we consider a broader range of possible human movements.
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The remainder of the paper is organized as follows. In Sec. 2 we briefly
review the theory of the Two-Thirds Power Law, which is used as an inspiration
to introduce the low-level features we consider, in Sec. 3. Sec. 4 describes the
motion representation we adopt and sets the scene for the learning problem. We
report the experimental analysis in Sec. 5 and we leave the final discussion to
Sec. 6.

2 The Two-Thirds Power Law

Each dynamic physical event can be easily described by its spatial trajectory —
which defines the shape of the motion — as well as many other quantities — as
the evolution of length, velocity or direction. All of them represent evidences of
the dynamics, and are in general interconnected with each other.

For the specific case of human motion, it is acknowledged the validity of an
exponential relation between functions measured from the motion [6,23,26]. The
relation can be formulated as

R(t) h
V(t) = K(t) (R(t)) (1)

where V (t) is the tangential velocity, R(t) is the radius of curvature, a(t) > 0
depends on the average motion velocity (and is null in absence of points of
inflection in the trajectory), K(t) > 0, depends on tempo and length of the
motion [25]. In case «(t) = 0 the law can be written in the alternative, yet
equivalent, form

A(t) = K(6)O(t)' 7 (2)
where A(t) = % and C(t) = %. In adults, the value of 3 (estimated most
often for drawing movements) is very close to %, and so the law in Eq. 2 is usually
referred to as Two-Thirds Power Law.

Although this relation has been deeply investigated in the fields of human
motion perception analysis and cognitive science, the application in the context
of artificial intelligence and computer vision is still unexplored. In the following,
thus, we consider the use of a motion descriptor guided by the law and discuss
its adoption in a video analysis setting.

3 From the Law to the Features

Inspired by the Two-Thirds Power Law, our idea is to describe an observed
motion with a vector of low-level spatio-temporal features, computational coun-
terparts of the variables involved in the mathematical formulation.

At each time instant t, we start by evaluating the optical flow with a dense
approach (as [5]) and detecting the regions of interest R(t) — i.e. the regions
where the motion is occurring — with a hysteresis thresholding on the magni-
tude. Notice that, in general, at each time instant we may detect more than one
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Fig. 1. Left: an example of the trajectory of a point describing the dynamic of a
sequence of lifting actions. Right: the temporal series of the low-level features we com-
puted on a sub-part of the sequence.

region. They can correspond to different portions of a single common event
(e.g. when gesticulating with both hands), or they may indicate the co-
occurrence of multiple events.

We then associate each point p;(¢) € R(t) with a feature vector

F(pi(t)) = [Vi(t), Ci(t), Ri(t), Ai(t)] 3)

where the features denote, respectively, tangential velocity, curvature, radius
of curvature and angular velocity estimated for the point as follows. Let
(ui(t),v:(t)) be the optical flow components. We define the spatio-temporal
velocity of the point as V(t) = (u(t),vi(t), A), where A, is the temporal
displacement between observations of two adjacent time instants. The velocity
magnitude is computed as V \/ w;(t)? +v;(t)?2 + A?. The spatio-temporal
acceleration can be derived as the derlvatlve of the velocity: A;(t) = (us(t) —
ui(t — 1),1)1@) - Ui(t - ].), 0)

The curvature, following [15,17], is computed as

I < A
Ci(t) = ——F———.
=R @

Vit
ﬁ(t) and A;(t) = ((t))
Fig. 1 shows an example of the computed quantities for repetitive lifting actions.
For the sake of clarity we focus on the trajectory of a single point (the centroid
of the region, see Fig. 1(a)). In Fig. 1(b) the trend of the tangential velocity
shows the presence of the well-known bell shape, typical of biological motion
[14]. Notice the uneven level of noise in the features estimation: the velocity
magnitude, directly measured from the optical flow, is the smoothest, while the
other quantities, derived with further approximations, show a lower regularity.

The remaining two quantities are derived as R;(t) =
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4 Representing Biological Motion

Now that we have defined the low-level features, we may set up a procedure
to describe and then classify the observed motion as instance of a biological or
non-biological event.

At each time instant, we consider a regular grid of points for each region
of interest segmented according to Sec. 3. With each of them we associate a
feature vector following Eq. 3, and then combine their contributions comparing
two different simple strategies, detailed in the following, reminiscent of possible
coarse approaches to average the visual motion information.

4.1 Centroid-Based Descriptor

We first consider a coarse description obtained collapsing the whole information
within a region R () in a single vector, i.e. the centroid, henceforth denoted (with
an abuse of notation with respect to the previous use) as F(R(t)) = F. Similarly
to the original feature vectors, the centroid is a vector of heterogeneous features,
that when compared should be appropriately handled. A way to deal with it is to
normalize the data to a common range. A better alternative is to adopt a convex
combination of kernel-based similarity functions, often referred to as Multi-Cue
Integration in the supervised learning literature [21], and successfully applied
to the problem of dynamic events modeling [16]. Let R and R’ be two regions
represented with their centroids 7 = (V,C, R, A) and 7' = (V',C’, R, A’). The
Multi-Cue kernel K¢ : R* x R* — R can be computed as the weighted sum of
kernel-based functions K : R x R — R on each feature:
Kyco(F, F') =w, KV, V') + w.K(C,C")+ (5)
w K (R, R) + w, K (A4, A)

where the w’s sum up to 1.

4.2 Histogram-Based Descriptor

We also consider a representation based on computing a histogram for each single
feature, collecting the contributions of all points from a region. To this purpose,
we first normalize each feature set so that all values are in the [0...1] range,
then populate the 4 histograms and finally concatenate them to collect the final
region descriptor. Henceforth, we will refer to the global region histogram as
H(R) = [HvHcHRrH 4l

Similarly to Sec. 4.1 we can treat each feature histogram independently,
fusing their similarities in a single value while associating with them different
weights. More formally, given two histograms H(R) = H and H(R') = H/, a
Multi-Cue kernel K¢ : RM x RM — R, with M the total number of bin of the
composed histogram, can be defined as

KXo (H,H) = w, K" (Hy, H, ) +we K (He, HY) (6)
w K" (Hpr, Hy) + wa KT (Ha, Hy)

M M . . .
where KM :R% x R% — R is an appropriate measure to compare histograms.
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5 Experimental Analysis

In this section we report the experimental analysis we conducted on a dataset
acquired in-house. We structured the experimental analysis in two parts. On
the first, we aim at validating the Two-Thirds Power Law in our setting, while
evaluating the relative importance of each low-level feature we consider. On the
second part, we focus instead on the biological motion classification problem,
comparing the performances of the two descriptors introduced in Sec. 4 in com-
bination with different kernels adopted in combination with SVM classifiers.

L

(a) Pointing

(c) Toy car (d) Bouncing ball

Fig. 2. Samples from the acquisitions of a subject from a single viewpoint (Fig. 2(a)
and 2(b)), and of non biological motion events (Fig. 2(c) and 2(d)).

5.1 Data Set

We acquired indoor videos of two subjects observed from two slightly different
viewpoints, performing repetitions of given actions from a repertoire of dynamic
movements typical of an interaction setting, the one we have in mind. More
in details, we consider Gesticulating while talking, Pointing a finger towards
a certain 3D location (see Fig. 2(a)); Waving the hand from left to right and
vice-versa; Lifting and object from the table to place it on a box (Fig. 2(b));
Throwing an object away; Transporting an object from and to different positions
on the table. The latter is instantiated in two versions, with left-right and random
object repositioning. Each video consists of 20 repetitions of the same atomic
action (e.g. move the object from left to right); for each subject we acquired two
videos in each view for each action, ending up with more than 20K frames.

As for the non-biological counterpart, we consider videos of a toy car (Fig.
2(c)), bouncing and rolling balls (Fig. 2(d)), a pendulum and a lever, for a total
of about 10K data.

We split the set of videos in training set — used for model estimation — and
test set — only adopted for performance evaluation. Model selection is based on
K-fold cross validation with a grid search over the ranges of the parameters.

5.2 Proof of Concepts

On the Validity of the Two-Thirds Power Law. To assess the validity of the
Two-Thirds Power Law for video analysis, we represent, for the sake of sim-
plicity, the motion as a trajectory {F;}_, of centroids described according to
Sec. 4.1. To correctly apply the law, we analyse the temporal sequences of their
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Fig. 3. Velocity versus curvature (log-log) measured on segments of trajectories describ-
ing sequences of lifting action performed by two different subjects.

velocity values, and then segment the trajectories in sub-parts considering por-
tions between a maximum and a minimum in the sequence (dynamic instants in
which the motion is subject to some variation, e.g. in acceleration or direction).

Following the seminal works [11,26], we analyse average velocity and curva-
ture in each segments and show the obtained point in a log-log reference system.
Fig. 3 reports two plots in which we collect observations from lifting actions per-
formed by the two subjects in our dataset. They show a high correlation with
the reference slope (i.e. ) in green.

We then fit each segment with an exponential function and estimate the
exponents for both the biological and non-biological events. More in details,
the average exponent for the biological population on the first view amounts
to 0.65, and becomes 0.63 on the second view. A two-sample t-test confirms
the high separation between average exponents for biological and non biological
distributions (P-value < 0.0001).

On the Importance of the Features. In this section we investigate the relative
importance of our motion features to characterize biological motion, despite their
redundancy. To this purpose we consider a simple K-NN binary classifier and
evaluate its accuracy for different feature vectors configurations — corresponding
to using one or more features — and as the value of K increases. Since here
we focus on the importance of each single feature of the vector, we adopt the
centroid-based descriptor. To nullify the contribution of a feature we simply set to
zero its weight in Eq. 5. From the results in Fig. 4(a) it is apparent the tangential
velocity is the most relevant feature. The performances further increase when it
is used in combination with other measures (see e.g. Fig. 4(b) and 4(c)).

A pros of the Multi-Cue Kernel is the fact that prior knowledge on the fea-
ture importance can be easily included in the model by appropriately tuning the
weights. However, not always such information is available. An alternative is to
learn the most appropriate weights from the data. We reported in Fig. 4(d) the
weights selected as the best performing for increasing K values. There is a first
range of Ks (from 1 to around 40) in which all the features are assigned an aver-
age importance, while for higher numbers of neighbors the curvature seems to be
more relevant, but always if used in combination with some other information.
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Fig. 4. An analysis of the relative importance of each feature.

To summarize, there is an empirical evidence of the relevance of all such
features to the purpose of biological motion characterization. Since their relative
importance may change depending on the specific category of human actions
under analysis, the best option is to design an appropriate description by learning
their importance (i.e. their weights) from the data. Nevertheless, the observation
that all of them concur to best characterize our problem may be interpreted as a
further evidence of the validity of the Two-Thirds Power Law: although relevant
per-se, it is not the single feature that makes the difference, but its co-presence
with the other measures, which are related to it by the law.

5.3 Experiments on Classification

We now focus more specifically on the problem of binary classification between
biological and non-biological observations. To this end, we analyse the use of the
two descriptors of Sec. 4 in combination with SVM classifiers.

Centroid-Based SVMs. We compare in the table of Fig. 5(a) the use of our
instantaneous centroid-based description with different kernel functions, consid-
ering the mean accuracy computed on 5 different sampling of the input data set.
As for the Multi-Cue similarities, we compare the case in which all the features
are equally weighted with the values selected as best performing for some value
of K using a K-NN on the training set (see previous section). The best per-
formance is achieved with a Multi-Cue similarity function. We further test the
ability of such kernel functions in classifying test data observed from the second
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Kernel function Acc.
Linear 56.66
Poly, d =2 57.26
Poly, d =3 56.90
Poly, d =4 57.11
Radial basis, v = 0.1 57.48
Sigmoid, v = 0.1 55.01

(*) Multi-cue gaussian  65.42
w = [0.25 0.25 0.25 0.25]

(**) Multi-cue gaussian 66.17
w = [0.5 0.2 0.2 0.1]

(***) Multi-cue gaussian 64.41

Kernel function Acc.
Linear 75.41
Histogram Inters. 75.69
Multi-Cue + Linear 76.37

w =[0.50.20.20.1]
Multi-Cue + Hist. Inters. 73.84
w=[0.50.20.20.1]

Multi-Cue + Gauss. 76.15
w =[0.10.70.1 0.1]
(b)

w = [0.1 0.7 0.1 0.1]
(a)

Fig. 5. Classification accuracy obtained with SVMs combined with different kernel
methods. Left: using the centroid-based description. Right: using the histogram-based
description.

viewpoint, obtaining 64.55 + 1.54 for (*), 63.49 £ 2.46 for (**) and 64.3 = 1.25
for case (***). Interestingly, the model is tolerant to viewpoint variation.

Furthermore, we may take into explicit account the temporal component
by considering as input data series of temporally adjacent centroids. This
requires and adaptation of the Multi-Cue function. Let 7 = [F...Fr] and
T' = [F|...F%] be two sequences of centroids, then their Multi-Cue similarity
is defined as

T
Kyes(T,T') = ZKMCU:-&]?{) (7)
t=1
We consider as weights the best performing combination from the analysis of the
single centroid (the one marked with (**)). We achieved the highest performace
for T' = 20, with accuracy 71.72+1.45 on test data from view 1, and 65.49+1.03
on test data from view 2 (training data are in both cases from view 1).

Histogram-Based SVMs. We conducted a similar analysis on the histogram-based
descriptor, obtaining the performances reported on the table of Fig. 5(b). A first
observation refers to the fact that the classification of instantaneous histograms
outperforms the classification of centroids, even when they are supported by the
temporal analysis. Also, the use of Multi-Cue kernel functions has a lower impact
here, where the linear kernel is confirmed to be an appropriate choice, similarly
to what happens in other classification problems built on top of histograms-like
representations (see e.g. [2]). Even from a computational standpoint, the use of a
linear kernel guarantees a high efficiency. The capability of handling a variation of
the viewpoint is confirmed here, since the accuracy of classifying samples from view
2 using models trained on view 1 remains rather stable (76.02).

Extending the analysis to include temporal sequences of histograms (thus
adapting the kernel, similarly to what done in Eq. 7) we obtain an accuracy of
89.03, which remains almost the same for view 2.
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6 Final Discussion

In this paper we investigated the design of computational models of the prim-
itives that are at the basis of the visual perception of motion in humans. Our
inspiration roots on the very first stage of the human development, where the
limited amount of visual information suggests that human beings have the capa-
bility of accomplishing certain perceptual tasks on the basis of rather coarse
motion models. We took inspiration from the Two-Thirds Power Law, validating
its applicability to video analysis problems. Moreover, we showed that a simple
vector of low-level motion features, appropriately organized and handled in a
learning framework, allows us to characterize biological motion against dynamic
events due to non biological phenomena.

Our current investigations are devoted to the design of a hierarchical frame-
work to replicate the developmental stages of human motion perception. On this
respect, the capability of recognizing biological motion can be interpreted as the
very first stage of such a system, to the purpose of localizing the possible target
of interest before being able to interact with it.

A second stage in the refinement of human perception is the capability of
understanding classes of actions, to focus on the important properties depend-
ing on the action. So, for manipulation actions, the relevant information may
reside on the object. Alternatively, one may be interested on the environment,
in presence of actions producing some kind of alteration on it. A preliminary
investigation in this direction may be found in [15]. The aforementioned tasks
set the scene for a more complete social awareness, that allows a subject to
decode an action with respect to the final goal and the user intentions. For
this task, more refined perception skills — and thus computational models — are
required.

Acknowledgments. This research has been conducted in the framework of the Euro-
pean Project CODEFROR (FP7-PIRSES-2013-612555).

References

1. Casile, A., Giese, M.: Critical features for the recognition of biological motion.
Jour. of Vision 5, 348-360 (2005)

2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection.
In: CVPR, vol. 2, pp. 886-893 (2005)

3. Falck-Ytter, T., Gredeback, G., von Hofsten, C.: Infants predict other people’s
action goals. Nature Neuroscience 9(7), 878-879 (2006)

4. Fanello, S.R., Gori, 1., Metta, G., Odone, F.: Keep it simple and sparse: Real-time
action recognition. JMLR 14(1), 26172640 (2013)

5. Farneback, G.: Two-frame motion estimation based on polynomial expansion.
In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363-370.
Springer, Heidelberg (2003)

6. Flach, R., Knoblich, G., Prinz, W.: The two-thirds power law in motion perception.
Visual Cognition 11(4), 461-481 (2004)



686

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

N. Noceti et al.

Hogan, N., Sternad, D.: On rhythmic and discrete movements: reflections, defini-
tions and implications for motor control. Exp. Brain Res. 181(1), 13-30 (2007)
Kanakogi, Y., Itakura, S.: Developmental correspondence between action predic-
tion and motor ability in early infancy. Nat. Commun. 2, 341 (2011)

Kandel, S., Orliaguet, J.P., Viviani, P.: Perceptual anticipation in handwriting:
The role of implicit motor competence. Perc. and Psych. 62(4), 706-716 (2000)
Kaplan, F., Hafner, V.: The challenges of joint attention. In: Int. Work. on Epige-
netic Robotics (2006)

Lacquaniti, F., Terzuolo, C.: The law relating the kinematic and figural aspects of
drawing movements. Acta Psychologica 54, 115-130 (1983)

Lacquaniti, F., Terzuolo, C., Viviani, P.: The law relating the kinematic and figural
aspects of drawing movements. Acta Psychologica 54(13), 115-130 (1983)

Maoz, U., Portugaly, E., Flash, T., Weiss, Y.: Noise and the two-thirds power law.
In: NIPS (2005)

Morasso, P.: Spatial control of arm movements. Experimental Brain Research
42(2), 223-227 (1981)

Noceti, N., Sciutti, A., Rea, F., Odone, F., Sandini, G.: Estimating human actions
affinities across views. In: VISAPP (2015)

Noceti, N., Odone, F.: Learning common behaviors from large sets of unlabeled
temporal series. Image Vision Comput. 30(11), 875-895 (2012)

Rao, C., Yilmaz, A., Shah, M.: View-invariant representation and recognition of
actions. IJCV 50(2), 203-226 (2002)

Richardson, M., Flash, T.: Comparing smooth arm movements with the two-thirds
power law and the related segmented-control hypothesis. Jour. of Neuroscience
22(18), 8201-8211 (2002)

Sigala, R., Serre, T., Poggio, T.A., Giese, M.A.: Learning features of intermediate
complexity for the recognition of biological motion. In: Duch, W., Kacprzyk, J.,
Oja, E., Zadrozny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 241-246. Springer,
Heidelberg (2005)

Simion, F., Regolin, L., Bulf, H.: A predisposition for biological motion in the
newborn baby. Proc. of the National Academy of Sciences 105(2), 809-813 (2008)
Tommasi, T., Orabona, F., Caputo, B.: Discriminative cue integration for medical
image annotation. PR Letters 29(15) (2008)

Troje, N.F., Westhoff, C.: The inversion effect in biological motion perception:
Evidence for a life detector? Current Biology 16(8), 821-824 (2006)

Vieilledent, S., Kerlirzin, Y., Dalbera, S., Berthoz, A.: Relationship between veloc-
ity and curvature of a human locomotor trajectory. Neuroscience Letters 305(1),
65-69 (2001)

Viviani, P., Baud-Bovy, G., Redolfi, M.: Perceiving and tracking kinesthetic stimuli:
further evidence of motor-perceptual interactions. J. Exp. Psychol. Hum. Percept.
Perform. 23(4), 1232-1252 (1997)

Viviani, P.;, McCollum, G.: The relation between linear extent and velocity in
drawing movements. Neuroscience 10(1), 211-218 (1983)

Viviani, P., Stucchi, N.: Biological movements look uniform: evidence of motor-
perceptual interactions. J. Exp. Psych. Hum. Perc. Perf. 18(3), 603-623 (1992)
Viviani, P.: The relationship between curvature and velocity in two-dimensional
smooth pursuit eye movements. Jour. of Neuroscience, 3932-3945 (1997)

Wang, X., Ma, X., Grimson, W.: Unsupervised activity perception in crowded
and complicated scenes using hierarchical bayesian models. PAMI 31(3), 539-555
(2009)



	Cognition Helps Vision: Recognizing Biological Motion Using Invariant Dynamic Cues
	1 Introduction
	2 The Two-Thirds Power Law
	3 From the Law to the Features
	4 Representing Biological Motion
	4.1 Centroid-Based Descriptor
	4.2 Histogram-Based Descriptor

	5 Experimental Analysis
	5.1 Data Set
	5.2 Proof of Concepts
	5.3 Experiments on Classification

	6 Final Discussion
	References


