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Abstract. In the last decade facial age estimation has grown its impor-
tance in computer vision. In this paper we propose an efficient and effec-
tive age estimation system from face imagery. To assess the quality of
the proposed approach we compare the results obtained by our system
with those achieved by other recently published methods on a very large
dataset of more than 55K images of people with different gender and
ethnicity. These results show how a carefully engineered pipeline of effi-
cient image analysis and pattern recognition techniques leads to state-
of-the-art results at 20FPS using a single thread on a 1.6GHZ 15-2467M
processor.
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1 Introduction

In the last decade age estimation from facial imagery has grown its importance in
the computer vision field. The process of age determination has many potential
application areas, such as: age-based access control and verification, where a
person’s age is verified prior to physical access to a place or product being sold or
virtual access to a website is granted; age-adaptive human-computer interaction,
where as example, a digital sign can display advertisements based on the age of
the audience walking past; age-based indexing of face images, that is the use
of age as criterion for indexing into huge-scale biometric databases for faster
retrieval.

To guarantee the success of all the aforementioned applications it is required
to obtain fast (or real-time) estimation of the attribute of interest (the age).
This requirement is particularly severe when it exists a limited window of time
for a decision based on the outcome, such as when a person walks past a digital
sign. Nevertheless, even in the case of the usage of age as criterion for indexing
into huge-scale biometric databases, high speed of the age estimation algorithms
are required to make it operationally viable.

Age estimation is usually performed as a multi-class classification problem
or as a regression task. In the first case, given an image feature ¢(I) computed
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from a face image I, the task is to predict the class associated to the interval
(age group) containing the actual age. Precisely, the age labels are quantized in
a set of age groups, e.g. {[16,25],[26,35]...[56,65]}. This approach is intuitive
but has a few drawbacks. First of all, if the aim is a precise estimation the age
groups must be kept small, but this comes at the cost of reducing the amount
of positive samples per class and increasing the dataset imbalance. Second, if
the relationship among labels is discarded, a classical classification loss function
would equally penalize errors among close and distant age groups.

In the regression case the age is treated as a real number and a function
age (¢(I)) is estimated to minimize the age estimation error. This approach has
several advantages over the multi-class classification task. First, all data can be
used to fit a single model. This avoids the quantization problem and reduces
the amount of models needed to estimate the age leading to higher efficiency
at evaluation time. Second, the loss function can be formulated more naturally
penalizing models proportionally to the error they commit.

Many related works exploit shape features based on active appearance mod-
els [1] and Biological Inspired Features (BIF). BIF are firstly proposed for age
estimation by Guo et al. [2] combined with a linear SVM. In this work the
authors employ a pyramid of Gabor filters with small sizes and they suggest to
determine the number of orientations and bands with a problem-specific app-
roach, rather than using a predefined number. In [3] Guo et al. investigate the
variations of age estimation performance under variations across race and gen-
der. They observe that crossing race and gender can result in significant error
increases for age estimation. To leverage the aging pattern of different gender
and ethnicity they employ the feature presented in their previous work [2] and
they propose a 3-step method learning separate classifiers for different combi-
nations of age and genders and applying the age estimator only after predicting
the gender and ethnicity of the subject.

Guo et al. also propose to use the kernel partial least squares regression
(KPLS) for age estimation [4]. The strength of this approach is twofold. First,
the KPLS simultaneously performs the feature dimensionality reduction and
learns the aging function; furthermore, since KPLS can find a small number
of latent variables to reduce the dimensionality of the original space, this can
improve the efficiency of the proposed approach.

In [5] a hierarchical part based representation for face age estimation has
been proposed. This method identifies different facial components and extracts
BIF feature vectors describing these parts; subsequently, each facial component
is classified into one of four disjoint age groups using a binary decision tree based
on SVM; finally, a separate SVM age regressor is trained to predict the actual
age.
Chang et al. in [6] proposed an ordinal hyperplane ranker on Active Appear-
ance Models (AAM [1]) exploiting the distribution of training labels. The key
idea is try to obtain multiple decisions on who is the older of two people to finally
determine the person’s actual age. To perform this task the authors present an
approach that is able to efficiently compute the input face age as the result of
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a series of comparisons between the target face and the training ones, and then
to estimate the person’s age by integrating the result. Precisely, all the facial
images are separated by each ordinal hyperplane into two groups according to
the relative order, and a cost-sensitive property is exploited to find better hyper-
planes based on the classification costs. The actual age is inferred by aggregating
a set of preferences from the ordinal hyperplanes with their cost sensitivities.

Geng et al. propose two algorithms exploiting the label distributions [7] of
the face images. Instead of considering each face image as an instance with a
single label (the age), the author consider each face image as an instance associ-
ated with a label distribution. The label distribution covers a certain number of
class labels, representing the degree that each label describes the instance. This
approach guarantees that one face image can contribute also to the learning of
its adjacent ages. One of the main assumptions of the first proposed algorithm
is that the distribution of each face image can be derivated by the maximum
entropy model. Nevertheless, there is no particular evidence supporting it in the
problem of age estimation. To relax this assumption the authors propose to use
a three layer neural network to approximate the distributions. A comprehensive
list of recent age estimation approaches can be found in [5].

2000 4000 6000 8000 10000 12000 14000 16000

(a) Landmark estimation (b) Feature Sampling (c) Fisher Vector

Fig. 1. Our image representation pipeline. Face detection and landmark estimation
(a) followed by dense multi-scale SIFT extraction on the aligned face (b) and Fisher
Vector computation (c).

In this paper we describe our age estimation system (see Fig. 1) designed with
efficiency in mind. Differently from previous works we use a high-dimensional
modern feature [8] that proves to be accurate yet efficient. We use regularized
linear regression that is efficient to evaluate requiring a single dot product per
face and allows to directly minimize the error in years.

This paper is organized as follows: in Section 2 the employed face detection
approach and the alignment technique are described; in Section 3 our face rep-
resentation is summarized; in Section 4 the regression approach used for age
estimation is presented; in Section 5 the achieved results on a very large dataset
are shown; in Section 6 our conclusions are highlighted.
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2 Fast Face Detection and Alignment

The first block of our processing chain is an image pre-processing one followed
by face detection. Subsequently, face alignment is performed in order to obtain
a consistent geometric reference for image features. These steps will be exploited
in the face representation step as explained in Sect. 3.

2.1 Features and Image Pre-processing

To avoid missing faces, especially in highly saturated images, we apply an his-
togram equalization to the image. Several approaches have been developed to
normalize images in order to gain invariance to illumination. Usually these tech-
niques aim at normalizing a face crop in a way that recognition does not suffer
from illumination variations. In our case we are interested in reducing the effect
of sensor saturation in presence of strong lighting. Our concern is to detect as
many faces as possible and have a reliable landmark estimation without sacrific-
ing real-time performance. Among many available algorithms we evaluated rank
normalization and wavelet based normalization [9]. In our experiments we found
that, for detection and landmark estimation purposes, i.e. to keep discriminative
features from faces a basic histogram equalization is enough to guarantee high
recall. As can be seen in Fig. 2 attempting to estimate landmarks without nor-
malization may result in poor localization. Indeed, in Fig. 2a all nose landmarks
are wrongly localized in the image processed without equalization.

(a) Landmarks estimated (b) Landmarks estimated
without equalization. with equalization.

Fig. 2. Face landmark detection without (a) and with (b) equalization on a challenging
image. Nose landmarks, marked in yellow, are wrongly localized without equalization.
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(a) Rotation alignment. (b) Affine transform alignment.

Fig. 3. Alignment results with rotation compensation and with affine alignment. In the
face marked in red the mouth is missing in the rotated image whilst using the affine
compensation all important facial features are visible.

2.2 Face Detection

We use a very simple yet effective multi-pose linear classifier. The model is
trained with structural SVM on ~3000 faces with 5 poses: frontal, profile-left,
profile-right, frontal left-tilted and frontal right-tilted. We used the structural
SVM formulation of [10], this method allows very fast training and state-of-the
art results even with linear classifiers.

2.3 Face Alignment

Our face representation exploits the joint statistics of pixel intensities and loca-
tions. In order to make the representation invariant to face pose we have applied
a face alignment step. To do so we rescale and align the detected faces to a com-
mon reference square. The simplest face alignment approach consists to estimate
the angle of the line intersecting the eye centers and tilting the face image. As
can be seen in Fig. 3(a) for many faces the mouth is not always fully visible
thus discarding important features. We instead apply an affinity based align-
ment. The affinity, performing a non uniform scaling along the two dimensions,
allows to align the whole face in a common reference. We estimate the affine
transformation matrix, i.e. rotation scale and translation, mapping the trian-
gle defined by the eye and mouth centers and a canonical triangle defined as
(0.2-5,0.2-5),(0.8-5,0.2-5),(0.5-5,0.5-5) where S is the square size. As
highlighted by Fig. 3(b) all important facial features can be recovered.

To estimate the eye and mouth centers we firstly extract the 68 landmarks
provided by [11] which implements a face shape estimation using a cascade of
regression trees trained on pixel intensities. Robust estimates of eyes and mouth
centers are obtained using the median of the 6(eye) and 20(mouth) landmarks
describing these parts of the face. Finally, we remap detected faces in a square
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with 100 pixel side using the aforementioned affine transformation.Our method
efficiently deals with poses with little yaw (£15°) for higher pose variation a
full 3D approach should be used to improve results[12]. Our face detection and
alignment solution runs at 30 FPS on a i5-2467M 1.60GHz CPU using a single
thread.

3 Face Representation

Our face representation is inspired by recent image classification techniques
based on local features [13] and face verification [14]. After face alignment we
extract the face patch and we resize it to a fixed scale (as described in Sect. 2).We
sample dense SIFT [15] descriptors without orientation and scale estimation.
Even if faces are rescaled at a fixed size different features may appear at dif-
ferent patch scales, therefore we apply multi-scale sampling. Thanks to the face
alignment we are able to exploit feature location. We compute Fisher vectors over
SIFT descriptors augmented with their x,y coordinate rescaled in [—1, 1]. Before
computing Fisher vectors we learn 64 PCA components on a set of 200K ran-
domly sampled SIFT features. The final local feature is obtained concatenating
the PCA reduced SIFT descriptor and the rescaled x,y coordinates. Considering
the learned dictionary employing a Gaussian Mixture Model with parameters
Wy, On,wn and given soft-assignments 77(,? ) for each of the M augmented SIFT
feature x,, € X, the Fisher vector is computed concatenating the following
gradients:

G4(X) = = S (Z25t). )
1

m=1 n
M 2
(X)) = (n) (wm — :un) 1 9
N G , )
where
77(7?) _ wnpn(xm) (3)

D )
Ej:l w;p; (@)

and p, is the n'* Gaussian of the learned mixture and X is the feature set of
a face image. Considering a vocabulary of size D = 128, the final image feature
size is 66 X 128 x 2 = 16896.

4 Large Scale Learning with SGD

Most of the best performing methods for age estimation rely on regression, this
is indeed the natural approach to overcome quantization errors that occur for
classification based approaches. Our feature representation is extremely high
dimensional, therefore a linear regressor is likely to obtain good performance
with very low evaluation cost.
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Table 1. MORPH-II dataset gender and
ethnicity statistics.

Race |Female| Male|Female and Male
Black | 5,757|36,803 42,560
White | 2,601| 7,999 10,600
Hispanic 100| 1,651 1,751
Asia 13 146 159
India 14 43 57
Other 2 3 5
Total 8,487|46,645 55,132

Fig. 4. MORPH-II age distribution.

From an applicative point of view, using a single linear regressor has many
advantages. First, it reduces the memory footprint with respect to a multi-class
classification approaches; second, avoiding kernels has also a strong impact in
the evaluation time of the regressor allowing us to compare each detected face
with just one hyperplane instead of computing a kernel evaluation per support
vector.

Our aim is to estimate a weight vector w and a bias b given an image I and
a feature function ¢(-) to produce an age estimate:

age(o(I)) = (w, ¢(I)) +b (4)

To efficiently train our regressor we apply stochastic gradient descent (SGD)
to L2-regularized least square regression or ridge regression, optimizing the fol-
lowing equation:

1 N

1 2
§>\|\W\I2+52(<w,¢(1)>+b—yz—) ()
i=1
Considering a vast amount of training samples SGD is efficient and accurate as
also noticed in [16]. We set A = 1/(C - N)), where N are the training samples,
and tune the parameter C by five fold cross-validation of MAE on the training
set.

5 Experimental Results

We test our approach on the MORPH-II dataset that contains more than 55K
facial images with different gender and ethnicity. In Table 1 the detailed statis-
tics of gender and ethnicity are shown, whilst in Fig. 4 the age distribution is
summarized.

5.1 Timing

We run a set of benchmarks to evaluate the run time of our method. The system
speed is mostly affected by the density of feature sampling both in scale and size
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as can be seen in Figs. ba and 5c since the sampling step quadratically affects
the amount of features extracted.

Furthermore, the number of Gaussians affects the computation time in two
ways. First, with a large vocabulary single feature embeddings are slower to
compute, since they need to calculate more derivatives. Second, increasing the
final feature size the regression step is longer, even though the regression step
time is negligible with respect to the feature computation step cost.

In Table 2 we have reported the FPS of some commercial systems presented
in [17]. It is possible to notice that the best performing commercial frameworks
obtain comparable performance results with those achieved by our approach but
they are tested on a more powerful 6-cores Intel Xeon Processor X5690 CPU
with respect to our 1.6GHZ i5-2467M processor, moreover they are implemented
using multi threads. This results confirm that our method reaches state-of-the-
art performance.

Table 2. FPS of commercial systems reported in [17]. Notice that the best performing
commercial frameworks obtain comparable results with those achieved by our approach
but they are tested on a more powerful 6-cores Intel Xeon Processor X5690 CPU and
they are implemented using multi threads.

System FPS
Our Approach 20
Junyu Tech. 15
Zhuhau-Yisheng 10
MITRE 27
Tsinghua University| 11
NEC 19
Cognitech 5

Fig. 5. Frame rate of the proposed processing pipeline for different dictionary size,
sampling in space and scale. We set scales=4,8 in (a) step=4 (b) and Gaussians=128
(c). Face detection and alignment is included.
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5.2 Accuracy

We have assessed the quality of our method using the Mean Absolute Error or
MAE = & Y.L, [age(é(I) — il

In order to compare our results with those achieved by recently published
methods we have ran a set of experiments with different experimental setups.
Results are summarized in Table 4. To compare our results with [6,18] we have
used the same photos used by the authors: a set of 5,492 images taken from
people of Caucasian descent. We have reported the average of MAE over 30
trials.

To compare our results with those proposed in [2-4] we have followed the
procedure specified in [3]. Given the whole dataset W we have defined a set
S C W of ~ 21000 images of black and white individuals keeping all the women
and an amount of men to keep the proportion between males and females 1:3.
We have further split this set in S; and Sy such that S = S;US, and S;NS, = 0.
Moreover, we have generated S1 and Ss so that identities of people in S; are not
allowed in S; and vice versa. We have trained the regressor on S; and we have
reported the average of MAE obtained on W\ S; for i = 1, 2.

Finally since with our approach we can leverage a huge amount of data we
have split the dataset using 80% of the identities for the training and 20% for
testing and we have ran a 10-fold cross-validation. We have not stratified the
sampling on gender and ethnicity but an empirical check has shown that ran-
domly sampling identities keep the subsampled sets distribution of age, ethnicity
and gender similar to the distribution on the whole set. This setup is the same
proposed in [7].

In Table 3 we have shown how MAE varies depending on the feature extrac-
tion step using the setup of [7]. It is possible to notice that the only parameters
affecting the MAE are the sampling step and the amount of Gaussians. A suffi-
ciently tight sampling step is critical to ensure a wide coverage of all the facial
features. At the same time a dictionary with too few Gaussians is unable to
capture the SIFT descriptor statistics for faces. Instead, the amount of scales
is not affecting the accuracy, this is mostly due to the fact that faces are all
aligned and scaled at the same size so there is no need to match image patches
representing the same structure at different scales.

In Table 4 we have compared our results with those achieved by some
approaches tested on MORPH Album2 dataset. The first setup [2-4] is the
easiest since it employes a single ethnicity. The second and third setups deal
with multiple ethnicities and gender, with the second [6,18] using only black
and white people and the third using the whole dataset [7].

These results show that our method is not limited to be trained on a single
ethnicity or gender, nor require any strategy to deal with cross-racial or cross-
gender influence in age estimation.
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Table 3. Mean absolute error varying sampling step, scales and Gaussians. We used
128 Gaussians in (a) and step=4 and scales=4,8 in (b). The algorithm is mostly affected
by the sampling step.

(a) (b)
Scales [Sampling| MAE Gaussians| MAE
468,10 2 3.7 16 1.2
48 2 3.7 64 3.8
4,8 4 3.7 128 3.7
4,8 8 4.0 256 3.6

Table 4. Mean Absolute Error (MAE) in years compared with recently published
methods. Our method obtains state-of-the-art results with a very low-weight processing
pipeline.

Approach Features Classifier MAE [6,18]|MAE[2-4] [ MAE(7]
Our approach |SIFT+FV L2L2 Regression 3.8 4.0 3.7
Genget al. [7] AAM,BIF CPDNN - - 4.9
Geng et al. [7] AAM,BIF IIS-LLD - - 5.7
Guo et al. [4 Holistic BIF Kernel PLS - 4.2 -
Guo et al. [3 Holistic BIF 3-Step - 4.5 -
Guo et al. [2 Holistic BIF Linear SVM - 5.1 -
Chang et al. [6] AAM Ordinal Hyperplane Ranker 6.1 -

Chang et al. [18] AAM Ranking SVM 6.5 - -

6 Conclusions

In this paper we have proposed a real-time age estimation system from face
imagery. We have shown how a carefully engineered pipeline of efficient image
analysis and pattern recognition techniques leads to state-of-the-art results. Our
single threaded approach runs at 20 FPS on a 1.6GHZ i5-2467M processor,
thus leaving room for further improvement. Furthermore, we have found that
employing very densely sampled SIFT features and a large dictionary decreases
the mean absolute age estimation error; nevertheless, this configuration conflicts
with our real-time aim. With this in mind, we have identified another setting
that obtains a low drop in performance (.1 years of MAE, for details see Sect. 5)
but guaranteeing a real-time system.

To assess the quality of our framework we have tested our approach on a
very large dataset of more than 55K images of people with different gender
and ethnicity. We tested our method on different settings comprising the whole
dataset or reducing it to a smaller single ethnicity version. Our method results
compared with those achieved by other recently published approaches confirm
the efficiency and the effectiveness of the proposed framework.
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