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Abstract. In this paper we present a Hough Transform-based method
for the detection of the spinal district in X-ray Computed Tomography
(CT) images in order to build binary masks that can be applied to func-
tional images to infer information on the metabolic activity of the spinal
marrow. This kind of information may be of particular interest for the
study of the spinal marrow physiology in both health and disease.
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1 Introduction

Hough Transform (HT) [1] is a classical pattern recognition technique commonly
used to recognize profiles of interest in images. Its early formulation provided
a strategy to detect just straight lines but it has been first extended to ellipse
and circle recognition [2], and then generalized to arbitrary shape detection by
means of look-up tables [3]. Recently, an extension to special classes of algebraic
plane curves has been proposed in [4], and applications of this method to real
astronomical and medical data have been presented in [5]. Here we want to apply
this method to the case of the human spinal marrow and spinal canal segmen-
tation in X-ray Computed Tomography (CT) images, bearing in mind clinical
applications concerned with neurological diseases. In fact, it is very interesting
to study how such disorders affect the spinal marrow, i.e., the elongated central
nervous system tissue, which is contained in the spinal canal. The combination
of different medical imaging techniques like X-ray CT and Positron Emission
Tomography (PET) provides encouraging results for the study of neurological
diseases [6]. The anatomical information coming from high resolution CT images
are indeed very useful to exactly identify on the low resolution PET images the
regions from which to extract the metabolic information. Unlike the case of
Magnetic Resonance Imaging [7,8], in CT images the main problem which is
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encountered in discriminating the spinal marrow within the spinal canal is due
to the low contrast between the spinal marrow and the surrounding tissue. In
[9], exploiting high local contrast between bone and spinal canal, an automated
region growing algorithm is used for the spinal canal detection, while spinal cord
detection is performed on the basis of geometrical arguments as the maximal
inscribed circle in the polygon representing the spinal canal. In this paper we
use the classical HT for ellipse detection, and its extension to special classes of
algebraic plane curves, for an automated recognition of both the spinal marrow
and the spinal canal in CT images, in order to build digital masks that can be
applied to PET images.

The paper is organized as follows. In Section 2 we recall some basic concepts
concerning the HT for algebraic plane curves, we present the family of curves we
are interested in, and we study in detail the properties of the corresponding HT.
Then in Section 3 we show the application to real CT images in order to identify
both, the spinal marrow and the spinal canal, and we show the consequent
integration with PET functional information. Finally, we offer our conclusions
and comments in Section 4.

2 Background Material and Methods

We follow the notation introduced in [4,5]. Let us consider a family of irreducible
polynomials in the variables X, Y ,

F (X,Y ;λ) =
d∑

i,j=0

gij(λ)XiY j , 0 ≤ i + j ≤ d, (1)

where the coefficients gij(λ) are real polynomials in the independent parameters
λ = (λ1, . . . , λt) varying in an Euclidean open set U ⊆ IRt, and with the degree,
d, of F (X,Y ;λ) not depending on λ. Let F be the corresponding family of zero
loci Cλ of F (X,Y ;λ), and assume that each Cλ is a real curve in the affine plane
A

2
(X,Y )(IR). So we want a family F = {Cλ} of irreducible curves which share the

degree.
If P = (xP , yP ) is a point of A

2
(X,Y )(R), then the Hough Transform of P

(with respect to the family F) is the locus of the affine space A
t
(Λ1,...,Λt)

(R) of
equation ΓP (Λ) : F (xP , yP ;Λ) = 0, where

F (xP , yP ;Λ) =
d∑

i,j=0

gij(Λ)xi
P yj

P , 0 ≤ i + j ≤ d,

is a real polynomial in the indeterminates Λ = (Λ1, . . . , Λt). For a general point P,
ΓP (Λ) is a hypersurface. Thanks to [4, Lemma 2.3], we can say that the condition

Cλ = Cλ′ =⇒ λ = λ′ ∀ Cλ, Cλ′ ∈ F (2)

is equivalent to ⋂

P∈Cλ

ΓP (Λ) = {λ}. (3)
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Condition (3) is easy to be translated into a discrete framework for curve
recognition in images: provided that an edge detection process selects in the
image a set of points of interest potentially lying on the curve to be recognized,
the intersection of their HTs leads to the identification of the parameter set
characterizing the curve. Thus, we look for families of curves which satisfy the
above equivalent conditions. Such families are called Hough regular. Condition
(2) provides an effective way to check condition (3). In fact, the equality Cλ = Cλ′

is equivalent to F (X,Y ;λ) = kF (X,Y ;λ′) for some non-zero constant k. This
leads to solve a polynomial system, in the variables λ = (λ1, . . . , λt), λ′ =
(λ′

1, . . . , λ
′
t), made up of the equations gij(λ) = kgij(λ′) for each pair of indices

i, j. Therefore, saying that a family is Hough regular simply means that such a
polynomial system implies λ = λ′. The two families of curves we will use in the
sequel meet the above Hough regularity condition (see also [5, Section 3]).

Based upon the above theoretical result, then a recognition algorithm can be
implemented as described in [5, Section 4], to which we refer for more details.
Here, we confine ourselves to highlight the main steps of the process. First of all,
we apply to the image an edge detection technique to select P1, . . . , Pν points
of interest. Then, we discretize the parameter space by means of an appropriate
number of cells and for each point Pi, i = 1, . . . , ν, we compute the Hough
Transform ΓPi

(Λ) with respect to a fixed family of curves. Next, we apply an
accumulator function to count how many times each cell in the parameter space is
crossed (voted) by the computed HTs. Finally, we look for the cell corresponding
to the maximum of the accumulator function: the parameter set associated to
that cell provides the curve of the family which best approximates the profile of
interest in the image.

Remark 1. The application of an edge detection algorithm to select the points
that will be processed with the HT technique has two advantages. First, grey
levels of the image pixels can be forgotten; second, the number of points to
process is dramatically reduced.

Remark 2. The computation of the accumulator function and its maximization
is the most time-consuming step of the algorithm. Further, it strongly depends
on the number of parameters, since the dimension of the domain of this function
exactly corresponds to the number of parameters in the game. Even though the
theory, and the algorithmic aspects, presented in this section hold true in the
above general framework, in practice, the computational burden associated to
the accumulator function computation and optimization leads to the need of
restricting to families of curves depending on a small number of parameters.
Work to overcome such a restriction is in progress.

2.1 Curve with 3 Convexities

As highlighted by the results of [5] (see in particular subsection 5.1 and Figure
6) the family of curves with 3 convexities, expressed by the equation in form (5)
below, looks as a suitable family of curves to optimally detect the spinal canal
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profile. In addition, to recognize the spinal marrow profile, ellipses in the form
presented in Section 3 seem good candidate curves.

Generally speaking, we are well-aware of the fact that our approach strongly
depends on the choice of a suitable family F of curves to optimally recognize
a given profile. Work to perform an automated search of an appropriate family
F is strictly related to the question raised in Remark 2 above. Even though
in progress, it is not accomplished at the present state-of-the-art. On the other
hand, let us stress how a good choice of the family F makes the HT-based
procedure extremely robust even in presence of noise (see also [4, Section 6]).

The curve with m convexities is defined by the polar equation

Ca,b,m : ρ =
a

1 + b cos(mθ)
, (4)

where a, b are real positive numbers such that b < 1, and m ≥ 2 is an integer.
The curve with m convexities is bounded. In fact, computing the derivative

with respect to θ in equation (4) we find

ρ′ =
abm sin(mθ)

(1 + b cos(mθ))2
.

Therefore ρ′ = 0 if and only if θ = k
mπ for some integer k. For such values of θ,

equation (4) gives
ρmin :=

a

1 + b
, ρmax :=

a

1 − b

according to whether k is even or odd, respectively. Thus, the graph of the curve
is contained in the circular crown of radii a

1+b ,
a

1−b . The special case m = 3 looks
of interest for us. In this case, the curve has degree 6 and a direct computation
yields the cartesian equation

Ca,b : (X2 + Y 2)3 =
(
a(X2 + Y 2) − b(X3 − 3XY 2)

)2
. (5)

The shape of the curve with 3 convexities strongly depends on the values of the
parameters. In particular, a is a sort of scale factor, while, as much as the value
of b increases as much the convexities of the curve are sharpened. Figure 1 shows
the curve for three different values of b with a fixed to 1.

As far as the HT is concerned, fix a point P = (xP , yP ) in the image space
A

2
(X,Y )(IR). Then the HT of P with respect to the family F = {Ca,b} is a degen-

erate conic ΓP (A,B) : r− ∪ r+ in the parameter plane A
2
(A,B)(IR), i.e., the union

of the parallel lines

r∓ : A(x2
P + y2

P ) − B(x3
P − 3xP y2

P ) ∓
√

(x2
P + y2

P )3 = 0.

The fact that ΓP (A,B) is a degenerate conic could make the maximization of
the accumulator function particularly challenging. It is then worth noting that
the line

r+ : A(x2
P + y2

P ) − B(x3
P − 3xP y2

P ) +
√

(x2
P + y2

P )3 = 0
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Fig. 1. Three curves with 3 convexities with a = 1 and, from left to right, b = 0.1,
b = 0.3, and b = 0.5.

results in fact out of the game in our context. That is, in practice, the HT of P
can be assumed to be the single line of equation

r− : A(x2
P + y2

P ) − B(x3
P − 3xP y2

P ) −
√

(x2
P + y2

P )3 = 0.

First, note that the line r+ intersects the negative A-axis of the parameter

space A
2
(A,B)(IR) in the point

(
−

√
(x2

P +y2
P )3

x2
P +y2

P
, 0

)
. Let

b+ :=

√
(x2

P + y2
P )3

x3
P − 3xP y2

P

be the ordinate of the point where the line r+ intersects the B-axis. As the region
of interest, T , to be discretized is defined by the conditions a > 0, 1 > b > 0, it
is then enough to show the inequality

b+ ≥ 1, (6)

which implies that the line r+ doesn’t cross the region T . This follows as soon
as we show that

(X2 + Y 2)3 − (3XY 2 − X3)2 ≥ 0, (7)

or

Y 6 + 9X4Y 2 − 6X2Y 4 = Y 2(Y 4 + 9X4 − 6X2Y 2) = Y 2(Y 2 − 3X2)2 ≥ 0,

which is, in fact, the case. Let’s also point out that all the above agrees with the
fact the family F is Hough regular.

3 Applications

In order to study the metabolic activity of the spinal district in a human being,
we have considered a stack of CT images of a control subject corresponding to
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Fig. 2. Zoom of a CT image with focus on the spinal canal. It is possible to see the
structure of both the spinal canal and the spinal marrow, the highlighted circular region
inside the spinal canal.

a whole body acquisition. Note that the spinal marrow is situated in the upper
part of the vertebral column, between the occipital bone and the first and the
second lumbar vertebra. For this reason, we have limited our analysis just to
the cervical and thoracic segments, for a total of 90 axial slices. In Figure 2 we
show a detail of a CT image referring to a vertebra of this region, where it is
possible to see the structure of both the spinal canal and the spinal marrow, i.e.,
the circular region inside the spinal canal, highlighted by the arrow.

For each slice, we first apply an edge detection algorithm [10] to get a set of
points of interest (panel (a) in Figure 3). Then we compute the HTs of these
points with respect to the family F = {Ca,b} of curves with 3 convexities, and we
take the parameters corresponding to the maximum of the accumulator function
as those which identify the curve with 3 convexities best approximating the
spinal canal profile in the image. The graph of such a curve (panel (b) in Figure
3) is then used to identify the region of the spinal canal. This step allows us to
exclude the points outside of the canal. The points inside the graph of the curve
(panel (c) in Figure 3) are the candidate points of interest for the recognition of
the spinal marrow. We point out that, due to the very low local contrast between
the spinal marrow and the surrounding tissue, it is hard for any edge detection
algorithm to sample the whole profile of the spinal marrow. On the other hand,
the HT procedure is very robust and effective in recognizing an entire profile from
a few isolated pieces. Then, we compute the HTs of such points with respect to
the family F = {Ea,b,c,d} of ellipses, expressed in the cartesian form with four
parameters:

Ea,b,c,d : b2(X − c)2 + a2(Y − d)2 − a2b2 = 0,
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(a) (b)

(c) (d)

Fig. 3. First row: edge detection (a) and curve with 3 convexities (b) associated to the
parameters (a = 0.85, b = 0.15) obtained by using the HT-based procedure. Second
row: edge points (c) inside the region bounded by the curve with 3 convexities in (b) and
the ellipse (d) detected by applying the HT-based procedure to the points highlighted
in (c). The ellipse parameters are a = 0.6, b = 0.65, c = −0.125, d = −0.025.
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(a) (b)

Fig. 4. PET activity of the whole spinal canal (a) and PET activity of the spinal
marrow (b) for cervical and thoracic segments, superimposed to the original CT images
in coronal view (color figure online).

where (c, d) is the center of the ellipse and the positive real numbers a, b play
the role of semi-axes. The recognized curves (Figure 3: curve with 3 convexities
in panel (b), and ellipse in panel (d)) are then used to create binary masks that
can be applied to 180 PET images of the same subject, properly coregistered,
each CT image corresponding to two PET images. Once the spinal canal and the
spinal marrow are recognized and the corresponding binary masks are applied
to the PET images, it is possible to quantitatively study the metabolic activity
of the spinal district. In Figure 4 we show the activity of the whole spinal canal
(panel (a)) together with the activity given just by the spinal marrow (panel (b)).
Starting from the first PET image in the cervical segment and moving down to
the last one in the thoracic segment, for each image we can compute the sum of
the pixel values (i.e., the Standardized Uptake Value, SUV) in the spinal canal
and in the spinal marrow. For the two Regions Of Interest (ROI) separately, we
can compute the cumulative activity and the normalized cumulative activity

SUVc(i) =
i∑

j=1

SUV(j), i = 1, . . . , 180, (8)
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and the normalized cumulative activity

SUVnc(i) =
1
i

i∑

j=1

SUV(j), i = 1, . . . , 180, (9)

where SUV(j) is the metabolic activity of the ROI in the j-th slice, and, of
course, SUVc(180) (SUVnc(180)) is the total activity (normalized total activ-
ity) along the vertebral column. Referring to the computation of (8) and (9), in
Figure 5 we compare results obtained by using the HT-based procedure with the
ones obtained by using the OsiriX software [11], whereby the ROIs are drown
manually by an expert user, slice by slice, and are used as ground truth. The over-
all behavior of the cumulative functions obtained via HT replicates the ground
truth, with a good agreement in the case of the spinal canal activity evaluation.
On the other hand, we can notice a slight underestimation of the spinal marrow
activity. Finally, we point out that a comprehensive comparative analysis among
the HT-based technique, when applied to the bone profile detection problem, and
standard recognition/fitting techniques, such as the active contour model [12],
the OsiriX package [11] and smoothing spline toolbox [13], is provided in [5,
Section 5].

Remark 3. The use of two different recognition steps, the spinal canal first and
then the spinal marrow, allows us to exclude the tissues out of the spinal district
and to effectively analyze the activity within the canal. In particular, we are
able to distinguish between the activity of the spinal marrow and the activity
given by other tissues belonging to the spinal canal and surrounding the spinal
marrow.

Remark 4. The benefit of using the curve with 3 convexities for recognizing
the spinal canal is twofold. First, in [5, Section 5] it has been proved that curves
from this family are able to adapt themselves to best approximate three different
profiles of the spinal canal at different levels of the same vertebral column. This
peculiar behavior makes the curve with 3 convexities a good candidate for the
recognition of the spinal canal profiles across a whole stack of CT images. Second,
the use of the curve with 3 convexities to limit the region where to search for the
spinal marrow, gives us for free an upper bound for the semi-axes of the ellipse
we use for the spinal marrow recognition. Accordingly, this allows us to optimize
the parameter space discretization.

Remark 5. In medical imaging applications, the use of the HT-based technique
leads to associate an equation to a specific bone or human tissue profile. However,
the families of curves used in this paper display symmetries that are not perfectly
preserved in humans. As a consequence, a more precise identification of tissue
profiles would require a method to assign an appropriate piece of curve to a
specific portion of the human district under investigation. To address this issue,
a piecewise formulation of the HT technique is in progress (see [14]).
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(a) (b)

Fig. 5. The cumulative values of the SUV activity (a) and normalized SUV activity
(b) across the PET slices for the spinal canal computed via HT (solid line) and via
OsiriX (dash-dot line). The same quantities (again in panel (a) and (b), respectively)
for the spinal marrow computed via HT (dashed line) and via OsiriX (dotted line).

4 Conclusions

In this paper we have presented a HT-based method for the segmentation of
the spinal canal and spinal marrow in X-ray CT images. We have used differ-
ent families of curves for the recognition of both the spinal canal and of the
spinal marrow profiles, in order to separate the marrow from the surrounding
tissue. Information inferred from the anatomical images has been integrated with
functional information from PET images in order to quantitatively evaluate the
metabolic activity of the spinal marrow with respect to the one of the whole
canal. We have tested our method on a control subject, who does not present
any neurological disease, before utilizing it in those cases where the knowledge
of the activity of the spinal marrow is essential. In fact, its application to large
datasets of neurological patients and control subjects could assess the presence
of different levels of metabolic activity in the spinal canal and/or marrow and,
thus, information on the nature of this kind of disease can be derived.
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