
Information-Based Cost Function
for a Bayesian MRI Segmentation Framework

David Cárdenas-Peña1(B), Alvaro A. Orozco2,
and Germán Castellanos-Dominguez1

1 Universidad Nacional de Colombia, Manizales, Colombia
dcardenasp@unal.edu.co

2 Universidad Tecnológica de Pereira, Pereira, Colombia

Abstract. A new information-based cost function is introduced for
learning the conditional class probability model required in the proba-
bilistic atlas-based brain magnetic resonance image segmentation. Aim-
ing to improve the segmentation results, the α-order Renyi’s entropy is
considered as the function to be maximized since this kind of functions
has been proved to lead to more discriminative distributions. Addition-
ally, we developed the model parameter update for the considered func-
tion, leading to a set of weighted averages dependant on the α factor.
Our proposal is tested by segmenting the well-known BrainWeb synthetic
brain MRI database and compared against the log-likelihood function.
Achieved results show an improvement in the segmentation accuracy of
∼ 5% with respect to the baseline cost function.

Keywords: Magnetic resonance imaging · Atlas-based segmentation ·
Entropy-based optimization

1 Introduction

Techniques of Brain Magnetic Resonance (MR) imaging play a significant role in
many medical applications like: i) Identification of differences among functional
brain structures along the time or space, which may help to model evolution of
pathologies (as dementia, Alzheimer, and schizophrenia) [1], ii) Building realistic
conductivity head models enhancing activity reconstruction accuracy [2,3], iii)
Extraction of spatial characteristics (as size, shape, and place) allowing to build
representative anatomical models of populations [4]. Since most of the above
applications demand quantitative analysis and objective interpretation of the
properties of brain structures, a reliable and accurate segmentation of the brain
regions of interest has to be carried out from the MRIs.

However, region segmentation tasks are far from being an easy task due to
the presence of image artifacts and inherent magnetic properties of each struc-
ture [5]. In order to overcome these problems, the atlas-based segmentation is
usually employed. Here, an intensity template is registered to a target image, in
such a way that the resulting spatial transformation allows to propagate informa-
tion to the coordinates of the target image space [6]. Commonly, this information
c© Springer International Publishing Switzerland 2015
V. Murino and E. Puppo (Eds.): ICIAP 2015, Part I, LNCS 9279, pp. 548–556, 2015.
DOI: 10.1007/978-3-319-23231-7 49



Information-Based Cost Function for a Bayesian MRI Segmentation 549

is provided in the form of probabilistic atlases for structures like white matter,
gray matter, and cerebrospinal fluid. Subsequently, the Atlas information is com-
bined with tissue classification approaches, where voxels are assigned to a tissue
class according to their intensity. To this end, each tissue distribution has to be
accurately modeled, for instance by single or a mixture of Gaussians, but using
tissue probability maps to weigh the classification according to the Bayes rule.

In general, to map the atlas information and to find the tissue model parame-
ters, a maximum likelihood estimation is carried out by minimizing an introduced
cost function. The most common employed function is the negative log-likelihood
of the entire voxel set joint probability while expecting each tissue class model
to measure the density of voxels within an intensity range [7]. Then, class condi-
tional distribution can be used as a voxel-wise discriminant function so that the
classification is performed using the maximum likelihood principle. Nevertheless,
the above cost function relies upon the assumption that tissue properties do not
overlap significantly; this supposition is far from being realistic.

Bearing the above in mind, this work discusses the use of the Renyi’s α
entropies as a new cost function for learning each tissue parameters. This sort
of function has been proved to lead to more discriminative distributions while
maximizing the information entropy inside the provided target image [8]. Addi-
tionally, we develop the model update of the tissue parameter for the considered
function. Finally, our proposal is tested by segmenting the well-known BrainWeb
synthetic brain MRI database. For the purpose of comparison, we also use the
baseline log-likelihood function as a cost function. As a result, obtained results
of segmentation accuracy, measured in terms of the Dice index similarity, show
that our proposal outperforms the log-likelihood (∼ 5%).

2 Materials and Methods

Let X={xr∈R:r∈Ω} be a scalar image, where the value r indexes the spatial
elements (spels). The probability of obtaining a spel with intensity xr, given
that it belongs to the class c∈C, can be written as P (xr|lr=c, θ)=frc(θ), where
lr∈[1, C] is the label associated to the r-th spel, frc is a predefined probability
model for the class c and evaluated at xr, s.t.

∫
frc(θ)dr=1;∀c∈[1, C], and θ is the

set of the model parameters. In practice, frc(θ) is assumed as either parametric
(Gaussian or Mixture of Gaussians) or non-parametric (Parzen-based) model.
Moreover, the prior probability of any spel belonging to the c-th class, regardless
of its intensity, can be provided by a spatial varying probability atlas as P (lr =
c)=brc∈[0, 1], s.t.

∑C
c=1 brc=1.

As a result, the probability of xr, given set of model parameters, can be
obtained by the Bayes theorem as follows:

P (xr) =
∑C

c=1
P (xr, lr = c) =

∑C

c=1
P (xr|lr = c, θ)P (lr = c)

=
∑C

c=1
frc(θ)brc (1)
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Consequently, evary image can be segmented into C classes using the maxi-
mum a posteriori (MAP) criterion, expressed as l∗r=arg max∀c P (lr = c|xr).

In the most common scheme, the set of model parameters θ is found by
maximizing the probability of the entire set of voxels under the assumption of
having just independent voxels, yielding:

P (X) =
∏

r∈Ω

∑C

c=1
frc(θ)brc (2)

The probability defined in Equation (2) is equivalent to minimize the cost
function, known as the negative log-likelihood of the entire voxel set joint prob-
ability, as follows:

L(X) = −
∑

r∈Ω

log
(∑C

c=1
frc(θ)brc

)

(3)

2.1 Information-Based Cost Function

Instead of using the common log-likelihood as the cost function, we introduce
the amount of information contained in the image X. To this end, we consider
maximizing the α-order Renyi’s entropy with respect to the set of parameters θ
as follows:

max
θ

Hα(X) ≡ min
θ

−1
1 − α

log
(∫

Ω

Pα(xr)
)

(4)

Since the aim of the current work is to evaluate the cost function for esti-
mating the model parameter, we will assume that each tissue class is described
by the normal distribution, N (, ), that is:

frc(θ) = γcN (xr|μc, σ
2
c ), (5)

where μc and σ2
c are the class mean and variance, respectively. γr∈[0, 1] is the

prior probability of any voxel, irrespective of its intensity, to belong to the c-
th tissue, and it is subject to

∑C
c=1 γc = 1. Consequently, the parameter set

becomes θ={γr, μr, σ
2
c}C

c=1.

2.2 Optimization Framework

For the optimization, we use the Expectation-Maximization (EM) algorithm that
attempts to minimize a given energy function E w.r.t. the parameters θ and a
newly introduced distribution Q = {qrc ∈ [0, 1];∀r∈Ω, c∈[1, C]}:

− Hα ≤ E = −Hα +
C∑

c=1

Dα (qrc||P (lr = c|xr)) (6)

This new energy function works as an upper bound on the proposed cost
function and it is composed of two terms. The first one consider only the α-order
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Renyi’s entropy, while the second term, Dα(‖), is the α-order Renyi’s divergence
between the posterior probability and the introduced distribution Q. Therefore,
the problem in Equation (6) can be rewritten as:

min
{θ,Q}

E =
−1

1 − α
log

(∫

Ω

pα(xr)
)

+
C∑

c=1

∫

Ω

1
α − 1

log
(

qα
rc

Pα−1(lr = c|xr)

)

(7)

For the M-step, the α-divergence is minimized w.r.t. Q as:

min
Q

E ≡ min
Q

C∑

c=1

∫

Ω

1
α − 1

log
(

qα
rc

Pα−1(lr = c|xr)

)

that yields to the solution:

qrc = P (α−1)/α(lr = c|xr), (8)

under the assumption that the following restriction holds:
∑C

c=1 q
α/(α−1)
rc =1.

For the E-step, the energy function E is minimized w.r.t. the parameters θ.
Given the result of the M-step, the second term in the cost function is at mini-
mum zero whenever relation in Equation (8) holds. Additionally, given the fol-
lowing expression:

P (xr) =
P (xr, lr = c)
P (lr = c|xr)

=
C∑

c=1

qα/(α−1)
rc

P (xr, lr = c)
P (lr = c|xr)

,

then, the optimization for the E-step is rewritten as:

min
θ

−1
1 − α

log

(
C∑

c=1

∑

r∈Ω

Pα(xr|lr = c)
qα
rc

)

yielding,

min
θ

−1
1 − α

log

(
C∑

c=1

∑

r∈Ω

fα
rcb

α
rc

qα
rc

)

(9)

Taking into account that α∈[0, 1], the minimization of the function in Equa-
tion (9) is equivalent to maximize the argument of the log function as follows:

V (θ) =
C∑

c=1

∑

r∈Ω

(
frc(θ)brc

qrc

)α

(10)

Finally, the M-step assigns new parameter values θ, in such a way that the
derivatives of V with respect to parameters are zero:

dV (X)
dθ

= α
∑

r∈Ω

(
brc

qrc

)α

f (α−1)
rc

dfrc

dθ
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By differentiating Equation (10) with respect to the means μc, we obtain the
following expression:

dV (X)
dμc

= α
∑

r∈Ω

(
brcfrc

qrc

)α (xr − μc)
σc

, (11)

that is solved for dV/dμc=0, resulting in the next updating rule:

μ(n+1)
c =

∑

r∈Ω

(
brcfrc

qrc

)α

xr

∑

r∈Ω

(
brcfrc

qrc

)α (12)

Likewise, the derivative of V with respect to the variance parameters obtained
is follows:

dV (X)
dσ2

c

=
α

2

∑

r∈Ω

(
brcfrc

qrc

)α (
(xr − μc)2

σ2
c

− 1
)

. (13)

Hence, the variance is updated in accordance to the following rule:

(σ2
c )(n+1) =

∑

r∈Ω

(
brcfrc

qrc

)α (
xr − μ

(n+1)
c

)2

∑

r∈Ω

(
brcfrc

qrc

)α (14)

Following the above derivative scheme, the attained updating function for
the prior parameter γc is given by:

γ(n+1)
c =

∑

r∈Ω

(
brcfrc

qrc

)α

N (xr|μc, σ
2
c )

∑

r∈Ω

(
brcfrc

qrc

)α (15)

3 Experimental Setup

3.1 Image Database Description

A simulated MRI set was used as test data that had been generated with the
Internet connected MRI Simulator at the McConnell Brain Imaging Centre in
Montreal publicly available at 1. The pre-computed simulated MRI volumes for
normal brain database was employed with the following parameters: T1 image
modality, 1mm×1mm×1mm voxel size, {0, 1, 3, 5, 7, 9}% noise (relative to the
brightest tissue in the images), and intensity non-uniformity (INU) values of
40%. The T1 image was simulated as a spoiled FLASH Figure 1.

1 http://brainweb.bic.mni.mcgill.ca/brainweb/ [9].

http://brainweb.bic.mni.mcgill.ca/brainweb/
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Fig. 1. Simulated MRI sample for the different noise intensities (left: 1%, center: 5%,
right: 9%) for two different coronal slices

3.2 Evaluation of Performed Segmentation

Our proposed information-based cost function is employed for segmenting the
images of the dataset into five regions. Namely, white matter (WM), gray mat-
ter (GM), cerebrospinal fluid (CSF), skull (SK), and scalp (SC). To this end,
we make use of the prior probability atlas provided by the SPM software [7].
Since the scope of the work is to evaluate only the cost function for improving
MRI partitioning, we will consider only a fixed affine atlas mapping to the target
images. Though it is important noting that there are iterative deformable map-
ping schemes for enhancing the image segmentation. The resulting segmentation
is attained using the MAP criterion at each voxel. The accuracy is measured
in terms of the average dice index similarity index (κ∈[0, 100]%), expressed as
follows:

κ =
1
C

C∑

c=1

2 × TPc

2 × TPc + FPc + FNc
, (16)

being TPc the number of true positives, FPc false positives, and FNc false
negatives, for the c-th tissue.

Firstly, we analyze the influence of the α factor in the optimization process.
In Figure 2, the introduced information-based cost function versus the number
of iterations is depicted for several α values. As expected, the relation between
the entropy order is Hα(X) < Hβ(X);∀0 < β < α < 1. This inequation means
that the larger the entropy order, the smaller the entropy value. Moreover, we
get that the EM algorithm converges faster for the case of smaller orders.

The evaluation of the influence of the entropy on the segmentation accuracy
is given in the Figure 3 showing the curves of DI versus α for the considered
noise intensities. As seen, the α factor leads the segmentation results so that
for very small or very large values the amount of misclassifications is greater
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Fig. 2. α-order Renyi’s entropy versus the number of iteration for the optimization
procedure, for several α values and a given image in the dataset

than for values of the mid range. Moreover, the highest segmentation accuracy
is achieved at α=0.5. It is also important noting that the algorithm performance
decreases as the noise level increases. This result may be explained mainly due
to variations in the tissue distribution because of the high noise intensity.
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Fig. 3. Average Dice similarity index versus the entropy order for available image noise
intensities.

Finally, we compare attained results against the well-known log-likelihood
cost function in Equation (3). The achieved segmentation accuracy is computed
for optimal α=0.5 for each considered structure. As shown in Table 1, the pro-
posed Renyi’s entropy outperforms the other compared cost function – the base-
line log-likelihood.
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Table 1. Dice index for each structure at optimal α = 0.5

Proposed Entropy Baseline Log-likelihood

Noise 1% 3% 5% 7% 9% 1% 3% 5% 7% 9%

Average 85.38 85.22 84.66 84.69 82.78 81.08 80.25 79.94 79.73 77.88
SC 88.61 89.28 86.86 86.92 88.11 84.43 84.97 82.17 82.87 83.15
SK 67.73 67.90 68.40 68.46 68.46 63.16 63.28 64.17 64.26 63.65
CSF 73.03 73.15 71.66 71.57 68.59 68.52 68.60 67.30 67.28 64.35
GM 89.60 88.50 89.73 89.72 84.15 84.88 84.18 85.39 84.89 79.27
WM 90.22 89.12 90.51 90.53 85.77 85.72 85.08 85.85 86.11 80.99

4 Concluding Remarks

In the current paper, we have discussed the use of information-based measures
into the parameter optimization scheme for MRI segmentation. In particular,
we introduce the α-order Renyi’s entropy as a new cost function for finding
the tissue distribution parameters under the assumption of normally distributed
classes. Additionally, we have developed the model of updating equations for an
EM-based optimization using the considered function. As a result, parameters
are updated from weighted averages (see Equations (12), (14) and (15) ), where
the influence of the r-th voxel for each parameter is (brcfrc/qrc)

α
.

As seen in Figure 2, we have proved the relationship between two differ-
ent entropy orders. We show that in the range [0, 1], the larger the order, the
smaller the information measure. In fact, the maximum possible value for the
Renyi’s entropy is achieved when α = 0, corresponding to H0 = − log

(
1

|Ω|
)

.

Additionally, we found a proportional relationship between the order and the
algorithm convergence iterations. The above is due to the influence of α in the
probability values. As α tends to zero, the entropy tends to weight all the events
more evenly, regardless their probability, i.e., (brcfrc/qrc)

α → 1;∀r∈Ω, c∈[1, C].
On the other hand, for large α values, the entropy is determined by events with
higher probabilities.

Regarding the segmentation accuracy, from Figure 3, we found the optimal
order at α = 0.5. Additionally, we show that the larger the noise intensity,
the larger the number of misclassifications. Here, it has to be highlighted that
Parzen-based estimation of the class conditional probability distribution may
overcome this issue. Nevertheless, such a test is out of the scope of the current
paper. Then, we compared our proposal against the log-likelihood as the base-
line approach. Achieved results for the optimal entropy order, in Table 1, show
that our scheme outperforms the baseline, since the obtained parameters for the
entropy function are more discriminative than those for the log-likelihood.

Finally, as future work two main research lines are proposed. As there are
iterative schemes integrating the mapping parameters of the prior image distri-
bution atlases into the optimization process, we plan to extend the entropy cost
function for finding a proper model update for such mapping parameters. Next,
we have performed all of the experiments under the assumption of normally
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distributed classes. Therefore, we will test our approach for the class conditional
models as mixture of Gaussians or Parzen.
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