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Abstract. We propose a robust and fully automatic matched filter-based
method for retinal vessel segmentation. Different from conventional filters
in 2D image domains, we construct a new matched filter based on second-
order Gaussian derivatives in so-called orientation scores, functions on the
coupled space of position and orientations R

2
� S1. We lift 2D images

to 3D orientation scores by means of a wavelet-type transform using an
anisotropic wavelet. In the domain R

2
� S1, we set up rotation and trans-

lation invariant second-order Gaussian derivatives. By locally matching
the multi-scale second order Gaussian derivative filters with data in ori-
entation scores, we are able to enhance vessel-like structures located in
different orientation planes accordingly. Both crossings and tiny vessels
are well-preserved due to the proposed multi-scale and multi-orientation
filtering method. The proposed method is validated on public databases
DRIVE and STARE, and we show that the method is both fast and reli-
able. With respectively a sensitivity and specificity of 0.7744 and 0.9708
on DRIVE, and 0.7940 and 0.9707 on STARE, our method gives improved
performance compared to state-of-the-art algorithms.

Keywords: Retinal vessel segmentation · Matched filter · Gaussian
derivatives ·Orientation scores ·Crossingpreservation ·Micro-vasculature

1 Introduction

The analysis of retinal images, especially retinal blood vessels, provide useful
information for the early diagnosis of systematic and eye-related diseases, such
as diabetes, hypertension, and arteriosclerosis [1]. The changing geometric prop-
erties of vessels need to be quantified as important biomarkers (as humans are
not good at this), and then analyzed to assist the ophthalmologists. To this end,
a vascular tree needs to be segmented from the retinal image to support clinical
diagnosis and treatment planning. In this work, we propose a robust, efficient
and unsupervised vessel segmentation approach. Our method provides a sound
basis for the quantitative analysis of large data sets, e.g. in a screening setting.
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In a general sense, conventional segmentation approaches can be divided into
three categories: classifier-based [2,3], tracking-based [4] and filter-based [5–7].
Classifier-based methods rely on a prior labor-intensive process to label training
samples, which are pixels with given feature vectors and known answers for
learning a model. E.g., Soares et al. [2] extract a feature vector for a supervised
classification from the pixel intensity and matched filter responses. Tracking
based methods iteratively expand connected vessel models starting from detected
seed points. These methods heavily rely on both the correct detection of seed
points, and robustness of the iterative tracking scheme [4,8].

Other algorithms [5–7,9–11], including ours, are based on maximizing the fil-
ter response of the gray-level profile of the vessel cross-section. These approaches
are generally faster and simpler than supervised methods. A Gaussian cross-
section model was firstly proposed by Chaudhuri et al. [12] to describe the
intensity variations of a vessel profile. Mendonca and Campilho [13] employed
differential filters to detect vessel centerlines followed by morphological oper-
ators for vessel segmentation. Krause et al. [9] proposed a fast and accurate
retinal vessel segmentation method in a higher dimension, in which vessels are
detected through convolution with the second-order differential operator of the
local Radon transform. In our work, we follow a similar approach of process-
ing image data in a higher dimensional domain, but instead of using the local
Radon transform, we rely on the formal group-theoretical frame-work of ori-
entation scores [4,14,15]. Additionally, we exploit a multi-scale approach using
rotation invariant Gaussian derivatives.

The theory of invertible orientation scores is inspired by the orientation-
selective property of cortical hypercolumns in the primary visual cortex [16].
Invertible orientation scores are constructed by lifting 2D images to 3D func-
tions on the roto-translation group SE(2), an extended Lie-group domain of
positions and orientations R

2
� S1. In the additional third orientation dimen-

sion, elongated structures of 2D images are disentangled into different orienta-
tion planes separately without tampering data-evidence, see Fig. 1. Here, we
will develop multi-scale matched filters that live in the domain of an orienta-
tion score. By locally matching the vessel profile to the second order Gaussian
differential operator perpendicular to the corresponding orientation, the vessel
intensity can be enhanced accordingly. In the validation phase, we show that the
proposed method not only gives improved performance on the major parts of
the retinal vasculature with a competitive speed, but also is capable of dealing
with difficult cases such as strong central arterial reflex, crossings, highly curved
vessel parts, closely parallel and tiny vessels.

The remainder of this article is organized as follows: In Section 2 we provide
the theory of invertible orientation scores on SE(2), the left-invariant Gaussian
derivatives and the constructed multi-scale matched filters. In Section 3 we vali-
date the performance of our method with special attention on handling difficult
structures. We conclude our paper in Section 4.
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Fig. 1. Exemplary image with circle and cross, and corresponding orientation score.

2 Theory

In this section, we will firstly give details of the domain where we exploit left-
invariant operators. Then we will explain why we need to keep left-invariance on
that domain, and how to build Gaussian derivatives with left-invariance property.

2.1 Invertible Orientation Scores on SE(2)

The Euclidean Motion Group SE(2). The domain R
2
�S1 of an orientation

score can be identified with the group SE(2), equipped with group product

gg′ = (x, θ)(x′, θ′) = (x + Rθ · x′, θ + θ′), for all g, g′ ∈ SE(2), (1)

with Rθ =
(

cos θ − sin θ
sin θ cos θ

)
a counter clockwise rotation over angle θ.

Invertible Orientation Scores. An orientation score Uf : SE(2) → C is
defined on the group SE(2). The transform from an image f to an orientation
score Uf := Wψf is achieved via an anisotropic convolution kernel ψ ∈ L2(R2):

Uf (x, θ) = (Wψ[f ])(x, θ) =
∫
R2

ψ(R−1
θ (y−x))f(y)dy, (2)

where Wψ denotes the transform between image f and orientation score Uf .
Here we choose cake wavelets1 [4] for ψ. Exact reconstruction is obtained by

f(x) = (W∗
ψ[Uf ])(x) =

(
F−1

R2

[
M−1

ψ FR2

[
1
2π

∫ 2π

0

(ψθ ∗ Uf (·, θ))dθ

]])
(x), (3)

for all x ∈ R
2, where FR2 is the unitary Fourier transform on R

2 and Mψ is
given by Mψ(ωωω) =

∫ 2π

0
|ψ̂(R−1

θ ωωω)|2dθ for all ωωω ∈ R
2, with ψ̂ := FR2ψ, ψθ(x) =

1 They are called ’cake’ kernels, as they are constructed by dividing the Fourier domain
in equal angular segments from the origin, like pieces of a cake.
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ψ(R−1
θ x). Well-posedness of the reconstruction is controlled by Mψ [4,15]. One

important advantage of cake wavelets is that they cover all frequencies in the
Fourier domain such that a stable inverse transform W∗

ψ is allowed to return to
the image f .

2.2 Left-Invariant Gaussian Derivatives on Orientation Scores

Left-Invariant Moving Frame of Reference. See Fig. 2, all operators Φ on
invertible orientation scores relate to the effective operator Υ := W∗

ψ ◦ Φ ◦ Wψ

on the image domain. Euclidean-invariance of Υ is ensured by left-invariance of
Φ. This is a desirable property since we can keep all operations invariant with
respect to translation and rotation. The left-invariance can be preserved if the
operator Φ on orientation scores satisfies Φ ◦Lg = Lg ◦Φ for all g ∈ SE(2), with
group representation g �→ Lg given by LgUf (g′) = Uf (R−1

θ (x′ −x), θ′ −θ), for all
g = (x, θ), g′ = (x′, θ′) ∈ SE(2). Therefore we should rely on the following frame
of left-invariant derivatives acting on the domain SE(2) of orientation scores:

{∂ξ, ∂η, ∂θ} = {cos θ∂x + sin θ∂y,− sin θ∂x + cos θ∂y, ∂θ}, (4)

where we use short hand notation ∂i = ∂
∂i

.

Left-Invariant Gaussian Derivatives. Suitable combinations of derivatives
have been widely used to pick up geometric invariant structures/features like
edges, ridges, corners and so on. However, obtaining derivatives directly is an
ill-posed problem. Therefore, we regularize the orientation scores via convolu-
tions with Gaussian kernels Gσs,σo

(x, θ) = Gσs
(x)Gσo

(θ), with a d−dimensional

Gaussian given by Gσ(x) = (2πσ2)−d/2 e− ‖x‖2

2σ2 , and where σs and σo are used
to define the spatial scale 1

2σ2
s and orientation scale 1

2σ2
o of the Gaussian kernel.

Note that Gσs
: R

2 → R
+ the spatial Gaussian distribution must be isotropic

to preserve commutator relations of the SE(2) group for scales σs > 0, i.e., to
preserve left-invariance.

2.3 Scale-Invariant Matched Filters

It is well-known that the second-order Gaussian derivatives can be used to match
vessel profiles for enhancement [9,17]. Here, based on the local coordinates sys-
tem {ξ, η, θ} in the orientation score domain, we propose the second-order oper-
ator Φσs,σo

η (Uf ) := ∂2
η(Gσs,σo

∗Uf ) perpendicular to the orientation of elongated
structures for vessel detection. By applying isotropic Gaussian blurring spatially
in ξ and η directions, as well as a small Gaussian blurring angularly in θ direction,
we enforce structure smoothness on different orientation planes and information
propagation along the vessel directions. Moreover, the variation of retinal vessel
calibers requires a proper scale selection of second-order operators to match dif-
ferent vessel profiles. As studied by Lindeberg [18], the response of a derivative of
Gaussian filter decreases as σ increases. Therefore, a scale normalization factor
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Fig. 2. Image processing via invertible orientation scores. Operators Φ on the invert-
ible orientation score robustly relate to operators Υ on the image domain. Euclidean-
invariance of Υ is obtained by left-invariance of Φ. We show the relevance of left-
invariance of ∂η acting on an image of a circle (as in Fig. 1) compared to action of the
non-left-invariant derivative ∂y on the same image.

μ = σo/σs with physical unit 1/length is required to make the filter responses
dimensionless and truly scale invariant. The angular scale σo is a kept constant
over all spatial scales and therefore does not affect extrema response. Thus our
scale-normalized second-order matched filter can be written as:

Φσs,σo
η,norm(Uf ) := μ−2Φσs,σo

η (Uf ) = μ−2∂2
η(Gσs,σo

∗ Uf ). (5)

In the SE(2)-generalizations, the final image reconstruction from the multi-scale
filtered orientation scores is obtained via

Υ σs,σo
η (f))(x) := max

θi∈{1,2,...No}
{

∑
σs∈S

Φσs,σo
η,norm(Uf )(x, θi)}, (6)

where No and S represents the number of orientations and the set of spatial
scalings respectively, and the maximum filter response is calculated over all ori-
entations per position.

3 Validation and Experimental Results

3.1 Settings

Preprocessing. Retinal images very often suffer from non-uniform illumination
and varying contrast, which may affect the later detection process. Therefore we
use the luminosity and contrast normalization proposed by Foracchia et al. [19].
The normalization radius for creating a disk-shaped filter is set as rLC = lh

30 ,
where lh is the height of an image. Moreover, the strong brightness of the optic
disk and pathologies in RGB retinal images will cause erroneous detection of
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their boundary. So the morphological bottom-hat transform with respect to a
range-7 square is used to decrease false positives.

Threshold. In this work, we employ a relatively simple strategy to define a
global threshold value. Since our matched filters can obtain a high response
only in vessel-like structures, we basically select the threshold value of differ-
ent data sets according to their general percentage of vessel pixels. The first
human observers of the DRIVE [20] and STARE [5] data sets marked around
(12.7 ± 1.2)% and (10.4 ± 2.0)% pixels as vessels from 20 testing images respec-
tively. In our experiments, we obtain the best results by setting the threshold
value as 12.4% for the DRIVE database and 10.7% for the STARE database.

Scales. Generally, the maximum response of the second-order derivative occurs
at σ = r/

√
2, where r represents the radius of the vessel caliber [18]. The vessel

calibers of the DRIVE and STARE data sets roughly range from 2 to 14 pix-
els. In our experiments, we sample the spatial scales σs for both data sets as
S = {0.7, 1.0, 1.5, 2.0, 2.5, 3.5, 4.5} with a small angular blurring σo = π/5. For
the orientation score transformation we use No = 36 orientations sampled from
0 to π. In Fig. 3, we give segmentation examples on the DRIVE and STARE
data sets based on our proposed method.

(a) Green channel (b) Filtered image (c) Segmented image (d) Ground truth

(e) Green channel (f) Filtered image (g) Segmented image (h) Ground truth

Fig. 3. Examples of automatic vessel segmentation on two images by the proposed
approach. (a)-(d): An image from the DRIVE data set (Sen = 0.8308, Spc = 0.9824 and
Acc = 0.9635). (e)-(h): An image from the STARE data set (Sen = 0.8587, Spc = 0.9806
and Acc = 0.9676).



Robust and Fast Vessel Segmentation via Gaussian Derivatives 543

3.2 Difficult Structures Preservation

Retinal vessel segmentation often suffers from difficult cases such as strong cen-
tral reflex, crossings/bifurcations, highly curved vessel parts, closely parallel and
tiny vessels. In order to investigate the influence of our proposed vessel enhance-
ment in SE(2), we compare this to multi-scale Frangi vesselness filtering in R

2

[17], a frequently used method in vessel segmentation tasks. For the sake of equal
comparison we substitute the filter Υ σs,σo

η in our implementation with the Frangi
vesselness filter, with the same preprocessing steps and scale settings as our app-
roach. The best performance of the Frangi vesselness filter is obtained based on
the F1 − score measure, which is the mean of precision and recall. As shown in
Fig. 4 (a)-(c), the Frangi vesselness filter performs well on picking up parallel
vessel structures, however, it has limitations to connect the low intensity vessel
profiles of crossings and highly curved vessel parts. Missing of the central vessel
parts due to the central reflex and partially merging segmentation of two closely
parallel vessels can be seen in the results of the supervised segmentation method
by Soares et al. [2], as shown in Fig. 4 (e) and (f). From Fig. 4 (g) and (h) we
can see that the recently proposed B-COSFIRE filter [11] also suffers from dif-
ficult crossing cases. The proposed orientation score based multi-scale matched
filters show much better structure preservation ability on these special cases, as
illustrated in Fig. 4 (j)-(l). Quantitative results are tabulated in Table 1, and
further discussed in Section 3.4.

Fig. 4. Vessel segmentation results of our method in comparison with state-of-the-art
methods on an image of the DRIVE database. (a)-(c), (d)-(f) and (g)-(i) respectively
show the vessel segmentation results by the methods of Frangi et al. [17], Soares et al.
[2] and B-COSFIRE filter [11] on 3 difficult cases: (a) high curvature change on low
intensity vessel part and tiny crossing, (b) artery and vein crossing with central reflex
and (c) closely parallel vessels; (j)-(l) show the results of our method, and (m)-(o) give
the corresponding ground truth annotations by the human observer [20].

3.3 Validation of Vessel Calibers

To show the performance of our vessel detection approach on vessels of different
calibers, particularly on small vessel width with 2-3 pixels, we validate the vessel
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width distribution on the detected true positive pixels. The basic procedure is
as follows: we assign to each ground truth pixel a vessel caliber value based on
the vessel caliber of the closest centerline point. Caliber of centerline pixels are
found via thinning and a distance transform on the ground truth segmentation.

In Fig. 5, we show the comparisons of true positive ratio (TPR) with respect
to different vessel calibers on the STARE database. In order to make an equal
comparison, we move along the ROC curves of the proposed matched filter app-
roach such that we can compare the sensitivity at the same specificity level where
other methods [2,11,17] achieve their best performance. In general, we can see
that our method can not only outperform the others on large vessel calibers, but
also can detect more tiny vessels with caliber 2-3 pixels. Although the supervised
segmentation approach by Soares et al. [2] performs slightly better on vessel cal-
ibers with 8-10 pixels, our method gives a large increase in performance on small
calibers with 2-5 pixels.

Fig. 5. Comparisons of the average true positive ratio (TPR) with respect to vessel
calibers on the whole STARE database. The three figures show the comparison between
our proposed method with (a) Frangi-vesselness filter [17], (b) B-COSFIRE filter [11],
and (c) supervised segmentation by Soares et al. [2]. The bottom region with red color
represents the true positive ratio differences.

3.4 Comparison with the State-of-the-Art

We validate our method on the public DRIVE and STARE data sets according
to the aforementioned parameter settings from Section 3.1. In order to compare
our method with other vessel segmentation algorithms, we use the performance
measures: Sensitivity (Sen), Specificity (Spc) and Accuracy (Acc) to evaluate the
classified pixels within the field of view (FOV). Table 1 shows the experimen-
tal results of different algorithms evaluated on the DRIVE and STARE data
sets. The performance measures of the methods we compare come from their
respective references.

We can see that our method leads to very good and competitive results in
comparison to other supervised and unsupervised methods from the literature.
Particularly, our method achieves a higher sensitivity level compared to other
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algorithms. For the sake of equal comparison on sensitivity, we move along the
ROC curves in order to validate the performance of our approach with respect to
the best results achieved by other algorithms. As can be seen from Table 1, the
two highest sensitivities on the DRIVE database are reported by B-COSFIRE
filter [11] (Sen = 0.7655 and Spc = 0.9704) and Krause et al. [9] (Sen = 0.7517
and Spc = 0.9741). Our method can achieve a better sensitivity of 0.7761 and
0.7587 for the same specificity of the two methods respectively. Similarly, we can
see from Table 1 that the two highest sensitivities for the STARE database are
obtained by B-COSFIRE filter [11] (Sen = 0.7716 and Spc = 0.9701) and Frangi
vesselness [17] (Sen = 0.7540 and Spc = 0.9744). Here based on our method we
can reach to a significantly better result with sensitivities 0.7980 and 0.7743 for
the same specificity of the two algorithms respectively.

Table 1. Segmentation results on the DRIVE and STARE data sets.

DRIVE STARE

Method Sen Spc Acc Sen Spc Acc

Our Method 0.7744 0.9708 0.9446 0.7940 0.9707 0.9511
2nd human observer 0.7761 0.9725 0.9473 0.8949 0.9390 0.9354
Matched filter [12] (1989) 0.6168 0.9741 0.9284 0.6134 0.9755 0.9384
Frangi [17] (1998) 0.7460 0.9719 0.9418 0.7540 0.9744 0.9503
Mendonca [13] (2006) 0.7344 0.9764 0.9452 0.6996 0.9730 0.9440
Soares [2] (2006) 0.7332 0.9782 0.9466 0.7207 0.9747 0.9480
MF-FDOG [10] (2010) 0.7120 0.9724 0.9382 0.7177 0.9753 0.9484
Marin [3] (2011) 0.7067 0.9801 0.9452 0.6944 0.9819 0.9526
MPMF [7] (2012) 0.7154 0.9716 0.9343 0.7191 0.9687 0.9407
Krause[9] (2013) 0.7517 0.9741 0.9468 - - -
B-COSFIRE [11] (2015) 0.7655 0.9704 0.9442 0.7716 0.9701 0.9497

Table 2. Comparative analysis of running time for processing a DRIVE/STARE image.

Method Running time

Our Method (Sequential Mode) 15 s
Mendonca [13] (2006) 2.5 min
Soares [2] (2006) 3 min
Marin [3] (2011) 1.5 min
B-COSFIRE [11] (2015) 10 s

3.5 Speed Comparison

The proposed orientation score based multi-scale matched filters have the advan-
tage of time-efficiency for real applications. The Mathematica implementation we
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used for experiments takes less than 15s for segmenting an entire image from the
DRIVE (565×584 pixels) and STARE data sets (700×605 pixels), on a personal
computer with a 2 GHz processor. However, the computational speed can still
be improved if we use a parallel mode to process multiple scales simultaneously.
Comparative analysis of running time can be seen in Table 2.

4 Conclusion

In this paper, we have proposed a robust and efficient multi-scale and multi-
orientation matched filter approach for retinal vessel segmentation. The filter is
constructed by the left-invariant second-order Gaussian derivatives in the orien-
tation score domain, where the vessel-like structures are disentangled into differ-
ent orientations accordingly. With proper scale selection and simple parameter
settings, the newly proposed method can match the vessel profile and maximize
the filter response on multiple vessel calibers. After that, a global threshold value
is defined to segment the filtered retinal image according to the general percent-
age of vessel pixels. The validation results show that the proposed matched filter
not only gives improvement on global performance compared to most of the
state-of-the-art segmentation schemes, but is also capable of dealing with gen-
erally difficult vessel structures. Last but not the least, the high computational
efficiency of our method gives the potential of applying vessel segmentation on
large data sets.
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