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Abstract. Breast density measuring the volumetric portion of fibrog-
landular tissue is considered as an important factor in evaluating breast
cancer risk of women. Categorizing breast density into different lev-
els by human observers is time-consuming and subjective, which may
result in large inter-reader variability. In this work, we propose a fully
automated fibroglandular tissue segmentation technique aiming to assist
automatic breast density measurement in magnetic resonance imaging
(MRI). Firstly, a bias field correction algorithm is applied. Secondly, the
breast mask is segmented to exclude air background and thoracic tissues,
such as liver, heart and lung. Thirdly, the segmentation is further refined
by removing the skin-folds that are normally included in the breast mask
and mimic the fibroglandular tissue, leading to incorrect density estima-
tion. Finally, we apply a fuzzy c-means approach to extract the fibrog-
landular tissue within the breast mask. To quantitatively evaluate the
proposed method, a total of 50 MR scans were collected. By comparing
the volume overlap between manually annotated fibroglandular tissue
with the results of our method, we achieved an average Dice Similarity
Coefficient (DSC) of 0.84.
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1 Introduction

Breast density is classified into four groups in the standardized report of Breast
Imaging-Reporting and Data System (BI-RADS) proposed by American Col-
lege of Radiologists (ACR) [5]. Dense breasts classified into groups 3 and 4
have more fibrous and glandular tissue that may obscure small masses and thus
lower the sensitivity of mammography (MG). Women with dense breasts have
been shown to have a four to six-fold increased risk of developing breast cancer
[6]. However, the classification of an individual breast depends on the opinion
of radiologists, which leads to higher inter-reader variability. Automated den-
sity quantification based on breast MG and magnetic resonance imaging (MRI)
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allows for fast and reproducible assessment and thus decreases variability. As a
better imaging modality to measure breast density, breast MRI scans the entire
breast volumes in 3D without any tissue overlapping or projection. Therefore,
density measurement in MRI tends to be more accurate than MG [4].

Several works were published aiming to segment fibroglandular tissue in
breast MRI. Most algorithms used intensity-based approaches, such as fuzzy
c-means (FCM) or Gaussian mixture (GM) models. Gubern-Mérida et al. devel-
oped a fibroglandular tissue segmentation using a GM model based on an
atlas-based approach [2] . The overall average Dice Similarity Coefficient (DSC)
reported was 0.80. Nie et al. proposed a FCM based method which was applied
on a semi-automatically segmented breast mask, which requires users interac-
tions to identify important landmarks [8]. Wu et al. adopted an atlas-aided FCM
approach to segment fibroglandular tissue, which requires again large training
set for atlas construction and might encounter difficulties to cope with new
testing images acquired from other sites with different imaging protocols [13].
Moreover, the best average DSC achieved from their experiments was 0.69. Most
recent work published by Ivanovska et al. used level-set based gradual method
which simultaneously corrects bias field and segments fibroglandular tissue [3].
The method processed input images in 2D slice-by-slice and achieved DSC of
0.83 on average.

In this work, we propose a fully automated fibroglandular tissue segmenta-
tion framework based on robust breast segmentation and a skin-folds removal
procedure. The entire work flow consists of four major steps which are illustrated
in Fig. 1. First, a bias field correction algorithm is applied to alleviate intensity
inhomogeneity of each tissue type. Second, breast region is extracted to exclude
air background and irrelevant thoracic tissue, such as lung, liver and heart.
Third, the breast segmentation is further refined by removing skin-folds which
are typical false positive structures mimicking fibroglandular. Finally, we adopt
a FCM algorithm to classify breast volume into fatty and fibroglandular classes.
The performance of the proposed method is tested on 50 MR scans acquired
from 50 different subjects. The volumetric overlap between manual annotations
and segmented results is measured.

2 Material and Method

2.1 Material

For this study, we used a set of 50 coronal T1-weighted MR breast volumes from
50 different patients collected within the years 2003 and 2009 from Radboud
University Medical Center. Patients were scanned in prone position. The age of
screened women ranged from 23 to 76 years (45.84 ± 11.97 on average). The
breast MRI examinations were performed on either a 1.5 or 3 Tesla Siemens
scanner (Magnetom Vision, Magnetom Avanto and Magnetom Trio), with a
dedicated breast coil (CP Breast Array, Siemens, Erlangen). The clinical imaging
parameters varied; matrix size: 256 × 128 or 256 × 96; slice thickness: 1.3 mm;
slice spacing: 0.625 - 1.25 mm; flip angle: 8, 20 or 25 degrees; repetition time: 7.5
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Fig. 1. General overview of the process for fibroglandular tissue segmentation in breast
MRI.

- 9.8 ms; echo time: 1.7 - 4.76 ms. Each MRI exam in the test set was manually
segmented into 7 tissue classes by an experienced expert which are used as the
reference image to compare the quality of segmentation. A detailed description
of the annotation is given in [2].

2.2 Method

Bias field Correction. Intensity inhomogeneity in MRI can attribute to the
imperfection in radio-frequency coils or to the problems associated with acqui-
sition protocols. It results in a slowly varying intensity change over the image
that can produce errors with conventional intensity-based methods to distin-
guish different tissue types. The N4 bias field correction algorithm which is used
in this work is a variant of the popular non-parametric nonuniform intensity
normalization (N3) algorithm introduced by Sled et al. [9]. By assuming that
the corruption of low frequency bias field can be modeled as a convolution over
the intensity histogram by a Gaussian kernel, the algorithm iterates the follow-
ing steps: de-convolving the intensity histogram by a Gaussian; re-mapping the
intensities; spatially smoothing the result by a B-spline model[10]. By removing
such artifacts, segmenting different tissue types in MR images can be done more
accurately (see Fig. 2).

Breast Segmentation. Breast mask extraction separates the breast area from
the other body parts such as lung, heart, pectoral muscle as well as air back-
ground presented in MRI scans. We previously implemented a fully automatic
segmentation method specially designed for processing non-fat suppressed breast



Towards Accurate Segmentation of Fibroglandular Tissue in Breast MRI 531

Fig. 2. (Left) The original breast MR image with the bias field artifacts from magnetic
coil. (Right) The bias field corrected MR image using N4 algorithm.

MRI [12]. The key observation of this method is that the pectoral muscle and the
breast-air boundaries exhibit as smooth sheet-like surfaces in 3D, which can be
simultaneously enhanced by a Hessian-based sheetness filter [11]. The method
consists of four major steps: enhancing sheet-like structures, segmenting the
pectoral muscle boundary which defines the lower border of breast region, seg-
menting the breast-air boundary which delimits the upper border of the breast
region, and extracting the region between the upper and lower borders that
finally captures the area of breast tissue.

Skin-folds Removal. Skin-folds artifact could appear due to either large
breasts do not entirely fit in the coils [2] or MRI technician’s fault as breasts
are not pulled perfectly into the coils while taking images [7]. Since the voxels of
skin-folds have similar intensity levels with the fibroglandular tissue, normally
they are included in the breast mask obtained in segmentation step (see Fig. 3),
which will be erroneously recognized as the fibroglandular tissue in subsequent
steps. Therefore, skin-folds need to be removed from the breast mask.

Fig. 3. On the left, the skin-folds artifact in 3D view. On the right, skin-folds which
are usually included in the breast segmentation mask (red overlay area).

Based on the fact that skin-folds have lower intensity level compared to fatty
tissue, we applied a first stage of FCM on entire MR volume to classify all the
voxels into two classes i.e. dark and bright structures, which yields a binary
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image. As shown in Fig. 4(c) skin-folds, air background, fibroglandular tissue
and other thoracic tissues are classified into one class. Considering the 3D spa-
tial connectivity of the skin-folds and the background, we then carry out a 3D
region growing procedure on the binary images starting from the seeds in the
background and propagating to the skin-folds. Although in 2D transversal view,
the skin-folds might be partially surrounded by fatty tissue and not corrected to
the background in several slices, the 3D region growing process guarantees these
parts will be reached. For the cases where the fibroglandular tissue connects to
the background near the nipples, region growing might leak into the fibroglan-
dular tissue. To prevent the leakage near the nipple, we cut a small patch on
the top of the segmented breast mask (see Fig. 4(b)) and paste it to the corre-
sponding location in the binary images resulted from the first stage of FCM (see
Fig. 4(c)). More specifically, the patch is obtained by cutting the breast mask
through a cutting-line placed in the middle distance of the peak point (i.e., the
closest point of the breast mask to the top border of image in transversal view)
and concavity point (i.e., the first intersection of the breast mask with the center
line) automatically detected on the breast mask (see Fig. 4(b)). After blocking
the leakage, the region growing procedure results in a union of connected dark
structures, such as background, skin-folds, lungs etc, but except fibroglandu-
lar tissue (see Fig. 4(d)). Hence, a subtraction between the breast mask and the
region growing results will produce a refined breast mask excluding the skin-folds
(see Fig. 4(e)).

Fibroglandular Tissue Segmentation. In the previous pre-processing steps,
intensity inhomogeneity is corrected, and a breast mask excluding air background
and skin-folds artifact is obtained. Within the breast mask, a second stage of
FCM is carried out. The class number is set to three, to capture the fatty tis-
sue, the fibroglandular tissue and any transition structures resulting from either
partial volume effect or imperfect inhomogeneity correction. The class with the
lowest mean intensity level is recognized as the fibroglandular tissue.

3 Evaluation

To evaluate our approach, automatic segmentation of 50 MRI scans were com-
pared to the reference masks created manually. The agreement between the
reference annotations and the segmented results was measured by calculating
Dice Similarity Coefficient (DSC) and Jaccard Coefficient (JC) and Absolute
Volume Error (AVE), which measure the volumetric overlap between segmented
and reference volumes. The definitions of the volumetric metrics are given in the
following equations:

DSC(VRef , VSeg) =
2 × |VRef

⋂
VSeg|

|VRef | + |VSeg| (1)

JC(VRef , VSeg) =
|VRef

⋂
VSeg|

|VRef

⋃
VSeg| (2)
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Fig. 4. Skin-folds removal and leakage prevention procedures applied on two repre-
sentative slices (left: the skin-folds are present; right: the fibroglandular tissue near
the nipples are connecting to the background). (a) results of bias field correction; (b)
the segmented breast masks and the obtained patches (red overlay) by identifying the
cutting-lines between the peak and concavity points. (c) the binary masks achieved
from the first stage FCM with overlay of the patches that block the leakage near the
nipples (see right figure). (d) the results of region growing. (e) the refined breast masks
without the skin-folds (labeled as background) by subtracting (b) and (d).

AV E(VRef , VSeg) = |VSeg/VRef − 1| ∗ 100 (3)

where VSeg and VRef represent the segmentation and reference volumes.
Additionally, average symmetric Root Mean Square Distance (asRMSD) between
the boundary surfaces of the two volumes is computed [1]. First, the boundary
voxels of segmentation and reference are determined. For each voxel in one set,
the closest voxel in the other set is determined (using RMSD). All these dis-
tances are stored for boundary voxels from both reference and segmentation.
The average of all these distances gives the averages symmetric distance.

The evaluation results are summarized in Table 1, which shows how the
skin-folds removal and the N4 bias field correction influence the accuracy of
the results. As seen in the first row, the best results were achieved by using
a combination of both steps, since typical false positive segmentation in terms
of skin-folds and inhomogeneous fatty tissue are removed. By combining both,
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an average DSC of 0.84 with a standard deviation of 0.08 was achieved, which
resulted in the best volumetric overlap and lowest boundary surface distance.
Although taking advantage of each steps adds up more time to the whole seg-
mentation process, we finally managed to optimize the computing process and
ended up with an average computation time of 39.78 seconds per case.

In Fig. 5, a comparison is made between the references and the automated
segmentation among the cases with the highest and lowest DSC values. By
observing the results, it turns out that the best outcomes are mostly among
the cases with dense breasts and the worst are among the ones with major
fatty tissues. The remaining errors in the results are either due to inaccurate
segmented breast masks, or due to incomplete manual annotations in reference
images.

Table 1. The statistical results (mean ± standard deviation) of the metrics and time
comparison using the skin-folds removal (SFR) and N4 bias field correction methods
and without using them.

Method DSC asRMSD JC AVE Time/Case

with N4, with SFR 0.84±0.08 4.22±2.82 0.73±0.12 18.61±14.48 39.78 s
with N4, no SFR 0.72±0.18 8.44±3.26 0.60±0.20 18.83±16.43 28.38 s
no N4, with SFR 0.61±0.25 7.04±2.54 0.48±0.25 44.84±23.66 24.58 s
no N4, no SFR 0.57±0.24 8.38±2.12 0.44±0.23 50.09±26.83 13.78 s

Fig. 5. Comparison of reference and automated segmentation of one axial slice from
the worst case (top) with DSC of 0.4 and best case (bottom) with DSC of 0.95.

4 Conclusion and Future Works

The presented framework for automatic fibroglandular tissue segmentation shows
high quality results in most of the testing cases. By incorporating skin-folds
removal and bias filed correction steps, the method is more robust against inten-
sity inhomogeneity and skin-folds artifacts. The experiments proved the impor-
tance of these pre-processing steps. Compared to previous works, we achieved
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slightly higher overall average DSC (0.84) than the work reported by Gubern-
Mérida et al. [2] (0.80) by using the same datasets. In addition, our results
showed higher accuracy than the work by Wu et al. [13] with DSC of 0.69. Our
method is comparable to the work reported by Ivanovska et al. [3], who achieved
an average DSC of 0.83 using different datasets comprising 37 MRI scans. Never-
theless, we find that FCM is quite sensitive to the remained inhomogeneity that
is not fully recovered by the bias field correction. Therefore, an advanced multi-
dimensional FCM, which classifies the voxels not only based on their intensity
similarities but also spatial connectivity, will be considered to further improve
the segmentation quality in the future works.
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