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Abstract. The recent availability of low-cost RGB-D sensors and the
maturity of machine vision algorithms makes shape-based parametric
modeling of 3D objects in natural environments more practical than ever
before. In this paper, we investigate the use of RGB-D based modeling
of natural objects using RGB-D sensors and a combination of volumetric
3D reconstruction and parametric shape modeling. We apply the general
method to the specific case of detecting and modeling quadric objects,
with the ellipsoid shape of a pineapple as a special case, in cluttered agri-
cultural environments, towards applications in fruit health monitoring
and crop yield prediction. Our method estimates the camera trajectory
then performs volumetric reconstruction of the scene. Next, we detect
fruit and segment out point clouds that belong to fruit regions. We use
two novel methods for robust estimation of a parametric shape model
from the dense point cloud: (i) MSAC-based robust fitting of an ellip-
soid to the 3D-point cloud, and (ii) nonlinear least squares minimization
of dense SIFT (scale invariant feature transform) descriptor distances
between fruit pixels in corresponding frames. We compare our shape
modeling methods with a baseline direct ellipsoid estimation method.
We find that model-based point clouds show a clear advantage in para-
metric shape modeling and that our parametric shape modeling methods
are more robust and better able to estimate the size, shape, and volume
of pineapple fruit than is the baseline direct method.

Keywords: Volumetric reconstruction - Parametric shape modeling -
Fruit health monitoring - RGB-D sensors

1 Introduction

Vision-based simultaneous localization and mapping (SLAM) has come to the
point of maturity in coping with large-scale environments, gradually imposing
fewer assumptions on sensors. The PTAM algorithm [9] performs motion esti-
mation and mapping in parallel based on efficient bundle adjustment (BA) of
sparse point features. Along the same lines, SVO-SLAM [6] applies sparse point-
based direct alignment [5,8] to localize micro aerial vehicles (MAVs) flying in
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outdoor environments. In contemporary work, LSD-SLAM [4] applies semi-dense
direct alignment to monocular camera sequences and has been successfully used
to map large-scale outdoor environments containing challenging scale changes.
While the work mentioned above builds accurate maps represented as sparse 3D
point clouds, for near-range scene mapping, we can obtain more dense repre-
sentations of the environment using modern portable and inexpensive RGB-D
sensors such as the Microsoft Kinect. The seminal KinectFusion algorithm [12]
demonstrated real-time dense mapping of indoor scenes with weighted signed
distance functions assigned to fixed voxel grids. However, its critical reliance
on GPU hardware and heavy memory demands due to a non-adaptive voxel
grid representation pushed the development of more optimized solutions. The
TUM Computer Vision Group released a series of RGB-D methods that cover
direct motion estimation [7,8], benchmarking [18], and large-scale surface recon-
struction using a memory-efficient octree data structure [16]. More recently, an
even more carefully optimized version of the octree-based surface reconstruction
algorithm was introduced as FastFusion, which requires only a single CPU [17].

The availability of low-cost RGB-D sensors and the maturity of machine
vision algorithms for motion estimation and large-scale surface reconstruction
have provided opportunities to automate monitoring and inspection tasks in
applications as diverse as surveillance, medical diagnostics, remote sensing,
industrial quality control, and precision agriculture. Automation in agricultural
monitoring and inspection can help farmers to increase their efficiency and pro-
ductivity as well as optimize crop yield. Crops bearing fruit, such as pineapples,
mangoes, apples, oranges, and guavas have attracted researchers’ attention due
to the high demand for and value of the crops. Fruit crops require monitoring at
regular intervals across different stages of growth to acquire information regard-
ing pest infestation, fruit health, and predicted yield. One aspect of fruit health
monitoring for such crops is to estimate the size and volume of individual fruits
in the pre-harvest stage.

An autonomous fruit crop inspection system incorporating one or more
mobile camera sensors and a host processor able to analyze the video sequences
in detail could help farmers to monitor fruit health and growth trajectories over
time and predict crop yield. The first step is to retrieve images containing fruits
through an RGB-D sensor. Then we must segment the fruit regions from the
background and track the fruit regions over time. The segmented fruit regions
can then be used to generate volumetric 3D models to estimate the size and
volume of the fruit.

In this paper, we perform a case study on the application of 3D dense vol-
umetric reconstruction and shape modeling to pineapple fruit. Pineapple is a
high-value crop that is grown by many farmers and on a large scale in Thailand.
Chaivivatrakul and colleagues [1,11] describe a method for 3D reconstruction
of pineapple fruits based on sparse keypoint classification, fruit region tracking,
and structure from motion techniques. The method finds sparse Harris keypoints,
calculates SURF descriptors for the keypoints, and uses a SVM classifier trained
offline on hand-labeled data to classify the local descriptors. Morphological clos-
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ing is used to segment the fruit using the classified features. Fruit regions are
tracked from frame to frame. Frame-to-frame keypoint matches within putative
fruit regions are filtered using the nearest neighbor ratio, symmetry test, and
epipolar geometry constraints, then the surviving matches are used to obtain
a 3D point cloud for the fruit region. An ellipsoid model is fitted to the point
cloud to estimate the size and orientation of each fruit. The main limitation of
the method is the use of sparse features with SURF descriptors to segment fruit
regions. Filling in the gaps between sparse features using morphological opera-
tions is efficient but leads to imprecise delineation of the fruit region boundaries.
To some extent, robust 3D reconstruction methods can clean up these impre-
cise boundaries, but the entire processing stream would be better served by an
efficient but accurate classification of every pizel in the image, and then a dense
3D reconstruction using the classified fruit pixels. Qureshi et al. [13] present a
texture-based dense fruit segmentation method for pineapples that uses super-
pixel over-segmentation, dense SIFT (scale invariant feature transform) descrip-
tors that characterize the local gradient field of an image around a keypoint, and
a bag-of-visual-word histogram classifier within each super-pixel. This enables
classification of every pixel in the image as a member of a fruit or non-fruit
region.

In this study, we present a new method for volumetric reconstruction and
shape modeling of quadric objects, with the ellipsoidal shape of a pineapple as
a special case in cluttered outdoor environments typical of agricultural fields
using an RGB-D sensor. We first estimate the camera trajectory, then we per-
form volumetric reconstruction of the scene. We segment out the point cloud
that belongs to the fruit regions. We then use two novel methods to estimate a
parametric shape model for the dense point cloud. We compare our shape mod-
eling methods with direct fitting of an ellipsoid to the segmented point cloud.
We find that our methods are better able to estimate the size, shape, and volume
of pineapple fruit than is the baseline direct method.

2 Methodology

In order to obtain volumetric 3D models of objects in a scene captured by an
RGB-D camera, we execute four consecutive processes: (i) camera motion esti-
mation, (ii) 3D reconstruction given the estimated motion sequence, (iii) 2D
segmentation of the objects of interest, and (iv) parametric shape modeling. We
use the DVO-SLAM algorithm [7] for motion estimation and the FastFusion algo-
rithm [17] for volumetric model reconstruction. With DVO-SLAM, we obtain an
estimated camera trajectory based on a sequence of RGB-D image data. We then
apply FastFusion with the DVO-SLAM trajectory as input. FastFusion fuses the
observed color and geometry data to acquire a volumetric model from which
a high-quality mesh can be generated. Although the general approach to para-
metric shape modeling is applicable to any kind of object whose shape can be
expressed parametrically, in the case study developed in this paper, we focus
on modeling pineapple fruit as ellipsoidal volumes. For dense segmentation of
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pineapple fruit from RGB-D point clouds, we use pixel classification based on
super-pixel over-segmentation, clustering of dense SIFT (Scale Invariant Fea-
ture Transform) features into visual words, and bag-of-visual-word super-pixel
classification using SVMs (Support Vector Machines). The implementations of
the DVO-SLAM and FastFusion algorithms are open source and freely available
[20,21].

2.1 Motion Estimation

Camera tracking is the task of estimating, at any point in a sequence of images,
a frame-to-frame transformation

i = 1] )

consisting of a rotation matrix R € SO(3) and a translation vector ¢ € R3. Since
G expresses an element of the group SF(3), G can be parameterized by a 6-vector
€ = [wl, ;,v] )T € RS, which is an element of the Lie algebra se(3), where w
and v are the angular and linear displacements. We write G(&) to indicate the
transformation matrix corresponding to €. Using the exponential map exp(-)
from se(3) to SE(3), we can calculate G(€) as

«© = ([57]): @

where @ is the skew-symmetric matrix form of w.

Let T and T/ be the 4 x 4 transformation matrices relating points in the world
coordinate system to camera frames F' and F’. We define the camera projection
m of a point p = [p1, P2, 3, 1]T in the camera frame as

7T(p) = |:fupl fup2 - Cv:| ' )

3)
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b3 b3
where f,, and f, are the focal lengths and [c,, ¢,]T is the principal point of the
camera. Using m, the projected image points « = n(Tp,,) and &’ = n(T'p,,) of
a world point p,,, along with the relationship T' = GT, we can obtain a warping
function 7 explicitly written as a function of &:

T(z, &) =o'
m(T'py)

(G(&)Tp,,)

(&) (z, Z(x))). (4)
The inverse of 7 is calculated from a pixel @ = [u,v]T and Z(x) (the observed
depth of x) as
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We use DVO-SLAM to find the frame-to-frame transformations G(£) that
optimally align the observed intensity and depth images. More specifically, DVO-
SLAM attempts to minimize the combined error r = [r;, 7|7 consisting of the
photometric residue r; and the depth residue rz, which are defined as

1 =1'(r(z,€)) - I(z), (6)
z=2(7(x,8)) - Z(), (7)

where I, I’, Z, and Z' are the intensity images and depth images captured from
camera frames F' and F’, respectively. To obtain an optimal robust estimate
of G(&), we seek the motion vector € that minimizes the sum of the weighted
squares of 7 over all valid pixel indices 7 in I:

€ = anguin Y w5, ®
%

where w; = (v +1)/(v + r;TX1r;) is a pixel-wise weight and X, is a scale
matrix. DVO-SLAM assumes that the bivariate random variable 7 follows a t-
distribution p;(g,., X', ) with mean p,, = 0 and v = 5 degrees of freedom.
Nonlinear least squares estimation of £ is performed iteratively using the Gauss-
Newton algorithm with the following linearized normal equations:

ZwiJiTE;lJiAé = —ZwiJ}E;lm, (9)

where A€ is an unknown increment vector and J; = 9r;/0€ is the 2 x 6 Jacobian
matrix of the residual vector r; evaluated at & = 0. On each Gauss-Newton iter-
ation, w; and X, are re-estimated using an expectation-maximization algorithm.

To reduce the accumulated drift across the estimated frame-to-frame trans-
formations, DVO-SLAM uses a key-frame based pose SLAM method. A new
key-frame is selected as the uncertainty of motion estimation relative to the last
key-frame grows. To obtain an optimized camera trajectory, we construct and
optimize a pose graph of the key-frames where the edges between adjacent key-
frames are weighted by the uncertainty of the corresponding motion estimation.
For further details, we refer the reader to [7].

2.2 Model Reconstruction

As previously mentioned, we use the FastFusion algorithm for volumetric 3D
reconstruction. FastFusion is based on three main concepts: implicit surface rep-
resentation, an efficient octree data structure, and mesh generation.

Surface Representation via Signed Distance Function. After motion esti-
mation, we have the estimated trajectory of the camera Ty, - T;. In FastFusion
[17], following Curless and Levoy [2], a 3D surface is implicitly expressed as
a collection of signed distances assigned to the centers of voxels in the space.
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Let p be the center of a voxel in the world coordinate frame. For a given camera
frame with estimated world-to-camera transformation T; at time ¢, the center
point p, in the camera coordinate frame is

On the other hand, using the image projection function w(p.) and the depth
map Z;, an observed point p,,, along the ray from the camera center through
p. can be calculated as

Povs = ﬂ—il(ﬂ_(pc)vzt(ﬂ(pc)))' (11)

Zy(m(p,.)) can be interpolated from neighboring pixel depth measurements. The
signed distance function d; is defined as

di(Pe, Zt) = max(min(|p, — Py, |, ), —=P), (12)

where | - | is the Euclidean norm with a sign indicating which side of the surface
containing p,,, the voxel center p, lies, and ¢(> 0) is a cut-off threshold set to
twice the voxel scale. Along with d;, FastFusion also defines a weight function

1 if dy <6
wy =14 2= ifs<d < (13)
0 if dy > &,

where § is set to one tenth of the voxel resolution. This weight gives linearly
decreasing confidence when the voxel center is behind the surface (the sign of
[P. = Pops| is positive).

When a new observation for a previously observed voxel is obtained at time
t, again following Curless and Levoy, the previously assigned weight W;_; and
signed distance D;_; are updated according to the following rules:

Wt = ws + Wt—17 (14)
Dy _1Wi_1 + dywy
D; = . 15
! wy + Wi_1 (15)
Similarly, the pre-

viously stored RGB color vector C;_1 = [Cr,t—1,Cq,t—1,CB,+—1]T is updated
as
_ Ci Wi 1+ Itc(ﬂ(pc))wt

C :
¢ wy + Wiy

(16)

where ItC = [Irt;Ict, Is,]7 is the observed RGB pixel at time ¢.

Multi-resolution Octree Representation of Surfaces. To store observed
surfaces in a memory efficient manner, FastFusion uses a novel octree-based
surface representation with the previously explained signed distance function.
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Associated with every branch and leaf in the octree is a set of 8 x 8 x 8 voxels
that equally partition its volume. Each tree level represents a 3D model at a
particular resolution, and we only allocate voxels within the vicinity of observed
3D points, making the data structure sparse and memory efficient.

When a new observation is obtained, we first determine the resolution of
the observed surface points based on their depth values, then we conduct a
depth-first-search to find a bounding volume in the level corresponding to that
resolution. Finally, we allocate a new set of voxels if the corresponding volume
is empty, or otherwise, update the signed distances and color information based
on Equations 14, 15, and 16.

Mesh Generation with Marching Cubes. Now, given the signed distance
associated with each voxel in the the multi-resolution grid, we apply the well-
known marching cubes algorithm to extract an explicit surface representation
from the grid. Since voxels near to and in front of an observed surface will have
negative signed distances, and voxels near to and behind an observed surface
will have positive signed distances, an excellent estimate of the surface would be
a 3D triangle mesh corresponding to the 0 level set of the grid. The well-known
marching cubes algorithm is ideal for obtaining such a mesh.

The mesh extraction is thus straightforward when the voxels being considered
are all at the same level of resolution in the octree. With multi-resolution voxels,
however, we have to solve for border cases where voxels at a higher and lower
resolution are adjacent to each other. FastFusion proposes a recursive algorithm
capable of solving this problem as follows.

Suppose a branch B® at scale s is divided into eight subbranches B} tlie
{1,---,8} at scale s+ 1. We can categorize voxels Vif;rl,j €{1,---,8} belong-
ing to each of the eight subbranches into four types: interior, face, edge, and
corner. An interior voxel is a voxel, when considered as the origin of a group
of eight neighboring voxels considered for mesh generation, whose seven higher
voxels are all within the same subbranch. A face voxel is a voxel having neigh-
bor voxels belonging to one other subbranch. An edge voxel is a voxel having
neighbors belonging to three other subbranches. Finally, a corner voxel is a voxel
having neighbors belonging to seven other subbranches. If any of the subbranches
affecting meshing of Vf;‘ ! are subdivided into a higher scale s+ 2, the voxels in
the higher resolution neighboring subbranches could themselves be either inte-
rior, face, edge, or corner voxels depending on the situation. Therefore, we can
construct a recursive algorithm to perform meshing of the entire tree. When a
marching cube contains voxels with lower resolution than other voxels, we per-
form interpolation to break the lower resolution voxels into corresponding higher
resolution voxels.

2.3 Fruit Segmentation

For dense segmentation of fruit regions in images, we need to classify each pixel
into fruit and non-fruit regions. Color-based dense classification fails when the
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objects of interest have coloration similar to that of the background, such as
pineapple fruits in the field. Chaivivatrakul et al. [1] note the limitations of color
and shape cues for recognition of green fruit on trees and plants and propose
texture-based classification instead. Qureshi et al. [13] describe a texture-based
classification method that selects fruit regions using a dense pixel segmenta-
tion method. The method performs over-segmentation into super-pixels, extracts
Dense-SIFT descriptors for the pixels in a super-pixel, maps SIFT descriptors to
clusters, constructs a bag-of-visual-words histogram for the clusters appearing in
the super-pixel, and then classifies the histogram for a super-pixel as fruit or non-
fruit using a support vector machine (SVM). Dense-SIFT is a type of gradient
orientation histogram descriptor that captures the distribution of local gradients
in a pixel’s neighborhood. Clustering local gradient descriptor improves sensitiv-
ity to noise, then the bag-of-visual-words histogram characterizes the differing
distribution of gradient descriptors within a superpixel. Finally, since local his-
tograms based on a small number of pixels in a region with uniform coloration
can be quite sparse, augmenting each histogram by including the histograms
of neighboring super-pixels. Put together, these techniques enable us to create
a unique signature of a region for classification. The classifier requires off-line
training prior to runtime utilization of the classifier model. Training requires
a set of training images along with ground truth data. Ground truth labeling
(assigning a label of “fruit” or “non-fruit” to each pixel) is performed manually.

To segment an input point cloud into fruit and non-fruit regions, we first
obtain a 2D image mask indicating likely fruit regions, then we segment the
point cloud by filtering out 3D points in correspondence with non-fruit regions
in the 2D mask. To obtain the 2D mask, we use the method described by Qureshi
et al. [13].

For the experiments reported upon in this paper, we used the same parame-
ters (quick-shift variables, dense-SIFT bin size, size of the dictionary for the k-
means clustering of SIFT descriptors, scale at which to compute SIFT features,
number of neighbors used to construct super-pixel histograms, and conditional
random field (CRF) post-processing) as reported by Qureshi et al. [13].

At runtime, segmenting a new image using the trained model requires super-
pixel over-segmentation, dense SIFT descriptor computation, visual word his-
togram calculation, SVM classification, and CRF post-processing. The classifier
outputs a confidence for each super-pixel; a super-pixel is classified as a fruit
region if the confidence is higher than a threshold. The threshold, determined
by the SVM training algorithm, is that which best separates the fruit super-pixels
from the non-fruit super-pixels in its training set.

As already mentioned, once a 2D mask for likely fruit regions is obtained,
we use the mask to filter the 3D point cloud (raw or generated through vol-
umetric reconstruction) according to the label assigned to each 3D point’s 2D
correspondence.
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2.4 Parametric Fruit Modeling

A pineapple fruit shape can be best described by an ellipsoid [1]. An ellipsoid is
a special case of the general quadric, which is the set of homogeneous 3D points
p such that

with Q a 4 x 4 symmetric homogeneous matrix.

When the quadric is a centered, axis-aligned ellipsoid, the diagonal terms
of Q must have the same sign to be characterized as ellipsoids. Enforcing this
constraint constrains the parameters of the general quadric, reducing sensitivity
to errors. One method to estimate an ellipsoid from a 3D point cloud is Li and
Griffiths’ [10] direct least squares method. However, when we use an RGB-D
sensor in the field, it is not in general possible to move slowly around every
fruit, so we typically obtain only a partial view. Also, the raw or FastFusion-
based point clouds we obtain as previously described contain noise from the
RGB-D sensor as well as small non-fruit regions arising due to false positives
in the 2D image segmentation method. We find that the direct least squares
method for estimating ellipsoids from sparse point clouds does not work well
for dense point clouds containing false fruit regions and other noise. Therefore,
robust estimation of an ellipsoid requires eliminating outliers (false positive fruit
points) that would otherwise affect the ellipsoid model estimate. Moonrinta et
al. [11] present a robust ellipsoid estimator using RANSAC and the direct least
squares method with sparse samples of 3D points from the fruit surface. Here, we
present an extension of their parametric shape modeling method to dense point
clouds that is more robust to noise and false fruit regions. Then we present a new
nonlinear optimization method for finding the parameters of an ellipsoid that
minimizes the dense SIFT descriptor distance between pixels in correspondence
according to the hypothesized ellipsoid.

Robust Parametric Shape Fitting. Prior to shape fitting, to eliminate noisy
and non-fruit points far from the target point cloud, we perform clustering of
the points in the 3D point cloud using k-means. In the experiments reported
upon in this paper, we manually set k£ to be one more than the number of actual
fruits observed in the point cloud. In future work, we plan to automate the
selection of k (using, for example, the Bayesian Information Criterion (BIC)).
After performing k-means, we remove the points belonging to the smallest cluster
on the assumption that it contains only noise.

After k-means and noise removal, we perform robust estimation of the ellip-
soid model with Li and Griffiths’ direct least squares method as the basic esti-
mator. Following the general approach of random sample consensus (RANSAC),
we alternate between estimation of a model from a randomly selected minimum
sample from the data set and checking the size of the “consensus” or inlier set
for the estimated model. The sample-and-test process is terminated after a fixed
number of iterations.
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When testing an estimated model in this procedure, we use Torr et al.’s [19]
ranking of the consensus set. The original RANSAC method simply maximizes
the count of the number of points in the consensus set C'S:

r(CS)=>"|Cs|. (18)

K2

Following Torr et al., this can also be written as minimization of a cost function

r(€8) = 3 pled), (19)

where €? is the orthogonal distance between point i and the estimated model,
and
0 e2<T

. (20)
1 otherwise,

PRANSAC(@§> = {
where T in our case is a threshold on the allowable distance of each 3D point to
the ellipsoid model’s surface.

Torr et al. propose, rather than a hard threshold and inlier count, an alter-
native cost function inspired by M-estimation:

2 2
5 e; e;<T
pusac(e;) {T otherwise. 2

In MSAC, outliers are given a fixed penalty as in RANSAC, but inliers are graded
by how fit they are for the model. This sample ranking method results in better
estimates than the original RANSAC ranking criterion. We use Zuliani’s imple-
mentation of MSAC [24]. The complete estimation procedure can be summarized
as follows:

Randomly select 10 points from the point cloud.

Estimate the ellipsoid Q best fitting the selected points [10].

Translate and rotate the 3D point set into the ellipsoid’s coordinate system.

Find the orthogonal distance of each point to the surface of the ellipsoid [3].

Find the inlier consensus set, i.e., the set of points lying within the distance

threshold from the ellipsoid surface.

6. Find the MSAC cost of the sample [19]. If it is the lowest-cost sample seen
so far, save the model.

7. Repeat from step 1 until a maximum number of iterations is reached.

A .

Nonlinear Optimization. Here we present a new iterative nonlinear optimiza-
tion method for estimating an ellipsoid parametric shape model from RGB-D
point cloud data. We aim to find the parameters of the ellipsoid that minimizes
the dense SIFT descriptor distance between pixels in correspondence according
to the hypothesized ellipsoid. We use two key-frames to find the optimized ellip-
soid. We first eliminate noisy and non-fruit 3D points far from the target point
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cloud by k-means as explained in Section 2.4. We use the Levenberg-Marquardt
(LM) algorithm to find the best Q. We initialize LM with the ellipsoid estimated
from the 3D point cloud using Li and Griffiths’ [10] direct least squares method.
Mathematically we can state the problem as follows:

Given a set of 2D points x; € P? in image I with s € 1---n and n > 10
and a second image I’, find a 4 X 4 symmetric homogeneous matrix Q
that minimizes the cost function

n

X = Zd(Dmivaé)Q’ (22)

i=1

subject to
p{Qp; = 0.

In the equation, d(-) is Euclidean distance, Dy, and Dy are SIFT
descriptors of x; and @/ in image I and I’, respectively, p; is the back
projection of x; onto Q, and x} is the reprojection of p; into image I'.

For lack of space, we omit the derivation of how to find ' from p and Q.

To compute SIFT descriptors for the reprojected 2D points ' with sub-
pixel accuracy, we first compute a dense SIF'T descriptor for each pixel in image
I’, then we use spline interpolation to interpolate the SIF'T descriptors of the
reprojected 2D points.

Whenever the ray back-projected from point «; in image I does not intersect
with the hypothesized quadric, there is no corresponding 3D point p;, in which
case we assign a cost ¢ in place of d(Dy,, Dg) in Equation 22.

Pineapple fruit can be modeled by ellipsoids (nearly spheroids) that have a
major-axis to minor-axis ratio in the range of 1.0 to 2.0. To encourage LM to
traverse only the family of ellipsoids that have a major-axis to minor-axis ratio
of r such that 1 < r < 2, we add another penalty o in the cost function given in
Equation 22 penalizing extreme ratios. As a final modification, since the point
cloud from the RGB-D sensor is dense, and since the depths of the points in
the point cloud give reasonable estimates of the location of the ellipsoid in the
z-direction, we further constrain LM by adding a penalty ¢ discouraging changes
in the average depth of the hypothesized quadric by more than +1.0%.

The new cost function, after adding penalties g, o, and ¢, becomes

X = Z d(Dwi’Dmfi)2+ Z o+o+¢. (23)

1€1---n|xexists 1€1---n|x; ~exists
A summary of the steps of the LM optimization of Q is as follows:

Find the 3D points lying on Q back-projected from the fruit points in image I.
Find the re-projections of the back-projected 3D points into image I’.
Compute SIFT descriptors of fruit pixels in image I and I’.

Compute SIFT descriptors of re-projected pixels in I’ using spline interpo-
lation.

Ll
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5. Compute the L2 distances between SIFT descriptors of corresponding fruit
pixels in image I and I’.

6. For each back-projected 2D point that does not intersect Q, add a penalty o
instead of the SIFT descriptor distance.

7. Find the ratio of major-axis to minor axis of the hypothesized ellipsoid.

If the ratio r is in the range 1 < r < 2, then o = 0, else o = 5.

9. If the mean depth of the back-projected 2D points is within 1% of the point
cloud’s average depth, then then ¢ = 0 else { = 5.

®

3 Experimental Evaluation

We performed a real-world experiment involving a case study on 3D reconstruc-
tion of pineapple fruits as an empirical evaluation of the feasibility of our app-
roach. We captured video data from an outdoor scene containing two fruits then
applied the modeling method to the resulting RGB-D image sequence. In this
section we detail the experimental design then present the experiment’s results.

3.1 Experimental Methods

To simulate conditions in a pineapple field, we placed two pineapple fruits (Fruit
A and Fruit B) on top of other plants with long leaves that resemble real pineap-
ple leaves. The horizontal distance between the two pineapples was approxi-
mately 2m. The entire volume needed for this small-scale mock pineapple field
was approximately 4m x 2m x 0.5m. To record an RGB-D sequence of the mock
field, we used the Apple Primesense Carmine 1.09 short-range sensor, which has
an operational range of 0.35m—1.4m. Since this device requires only a standard
USB connection to operate, we can use it with a laptop computer in both indoor
and outdoor environments. In the case of an outdoor environment, however, the
scene illumination should not substantially exceed typical indoor illumination,
or the depth sensor fails. Therefore, in this experiment, we enforced this weak
lighting constraint by recording in the late afternoon. We recorded an RGB-D
sequence of 400 frames while manually moving the sensor over the pineapples
with the camera facing toward the fruits. The frame rate for both RGB and
depth image acquisition was set to 30 fps. After acquiring the RGB-D sequence,
we applied DVO-SLAM to obtain an estimated trajectory for the sequence of
camera frames. With the trajectory and RGB-D data as input, we then applied
FastFusion to incrementally build a volumetric model of the scene. After com-
pleting the fusion of all 400 RGB-D frames, we exported a textured triangle
mesh of the final model into our OpenGL-based custom software. Fig. 1 shows
the entire view of the final model along with the estimated camera trajectory.
Based on the FastFusion mesh, we used OpenGL to render a new sequence
of 100 RGB and 100 depth images corresponding to every four camera frames
in the original trajectory. At this point, we had 100 synthetic RGB and depth
images rendered in OpenGL relative to a sequence of estimated camera frames.
Fig. 2 shows a pair of synthetic RGB and depth images of Fruit A. For each
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Fig. 1. Reconstruction of a mock pineapple field with the estimated camera trajectory.

resulting synthetic RGB image, we applied the 2D fruit region mask obtained
from dense segmentation of the corresponding original image. Finally, we gener-
ated a 3D point cloud from the masked synthetic RGB-D image. For purposes of
experimental comparison, in addition to these 100 synthetic point clouds, we also
generated 100 corresponding 3D point clouds based on the raw RGB-D sensor
data using the same fruit mask.

Fig. 2. Sample data for Fruit A. (a) Original RGB image. (b) Synthetic RGB image
rendered from volumetric model at the same camera position as (a). (¢) Depth buffer
corresponding to (b).

For parametric shape modeling, we compare three methods of estimating an
ellipsoid from the segmented 3D-point cloud data, where the point cloud is either
the raw RGB-D sensor based point cloud or the point cloud synthesized from
the volumetric model. The first estimation method is direct least squares [10],
the second is MSAC, and the third is SIFT differences, which were discussed in
section 2.4. For the direct estimation we perform k-mean clustering to remove
potential false fruit regions similar to the steps. For method two and three we
follow the steps mentioned in and respectively.

We tuned the penalty parameters experimentally. For each of the two fruits
in the experimental sequence, we extracted point clouds based on two manually
selected key-frames. Fig. 3 shows the dense segmentation of the four key-frames
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(d)

Fig. 3. Segmented Fruit A and Fruit B. (a) Segmented Fruit A in frame 1. (b) Seg-
mented Fruit A in frame 2. (c) Segmented Fruit B in frame 3. (d) Segmented Fruit B
in frame 4.

used to segment the point clouds for fruits A and B. The segmentations of the
fruit A images contain several non-fruit false positive regions connected to the
true positive region, while the segmentation of fruit B is more accurate, with
one false positive region not connected to the true positive region in Fig. 3(d).

3.2 Results

Results for the application of three parametric shape modeling methods (Direct,
MSAC, and SIFT differences) to two types of point clouds (raw and synthetic
model-based) are given in Table 1. We obtained ground truth geometries of
Fruit A and Fruit B by manual measurements. Parametric shape modeling was
performed on segmented point clouds corresponding to synthetic models and raw
sensor observations, respectively. Fig. 4 shows shape models of fruit B projected
onto an original RGB image.

Fig. 4. Shape models of fruit B. (a) Original RGB image. (b) Direct method (failure).
(¢) MSAC method. (d) SIFT differences method.

There is a clear advantage to model-based point clouds. Except for the diver-
gence of the direct method applied to model-based point clouds of fruit B, the
error rates for all shape modeling methods are smaller due to the higher accuracy
of model-based point clouds than raw point clouds from the sensor.

The baseline direct method shows instability when it is applied to model
Fruit B due to false fruit regions. We used non-connected fruit region for direct
method, MSAC and LM. The k-mean was not able to remove the non connected
path. We assume the same steps for each. Parametric shape modeling using other
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two methods however successfully converged to the approximate shape and size
of the fruits.

The performance comparison between MSAC and SIFT differences is less
clear. Although SIFT differences uses the richer information contained in the
SIFT descriptors as constraints, it does not show any clear performance gain
over the MSAC method.

Table 1. Point cloud types vs. shape modeling methods.

Observations

Point Cloud|Parameters Ground Truth ‘ Direct | MSAC |SIFT differences
Fruit A|Fruit B|Fruit A| Fruit B|Fruit Fruit B|Fruit A| Fruit B

Major 8.9 7.8 10.5 30.7 9.2 7.7 9.2 7.9

Minor 1 5.1 5.2 4.8 24.8 5.9 5.2 5.9 5.3

Model Minor 2 5.1 5.2 5.1 20.9 5.6 5.8 5.6 5.9
Volume 969.2| 883.0| 1079.0| 66431.7| 1257.7| 974.9| 1268.8| 1047.6
Major/Minor 1.75 1.50 2.12 1.35 1.61 1.41 1.61 1.41

Major error - —| 18.0%| 294.0%| 38.3%| -0.7%| 3.6% 1.7%

Minor 1 error — —| -5.5%| 376.3%| 14.8%| 0.83%| 15.2% 2.8%

Minor 2 error — - -0.2%| 301.0% 9.4%| 10.9% 9.7%| 13.5%

Volume error - —| 11.83%(7423.3%| 29.8%| 10.4%| 30.9%| 18.6%
Major/Minor error 21.5%| -10.2%| -7.8%| -6.0%| -7.9%| -5.9%

Major 8.9 7.8 11.1 23.1 9.8 8.5 9.8 8.5

Minor 1 5.1 5.2 6.6 14.9 6.1 5.6 6.1 5.6

Raw Minor 2 5.1 5.2 7.2 13.6 7.3 4.8 7.3 4.9
Volume 969.2| 883.0| 2183.1| 19510.5| 1815.4| 965.8| 1814.1 971.3
Major/Minor 1.75 1.50 1.61 1.62 1.47 1.62 1.47 1.62

Major error = —]24.6%| 195.6%| 10.1%| 8.7%] 10.1% 8.9%

Minor 1 error — —| 28.8%| 186.3%| 19.83%| 8.0%| 19.3% 8.2%

Minor 2 error - —| 40.4%| 161.1%| 42.6%| -6.8%| 42.5%| -6.6%

Volume error - —1125.3%(2109.5%| 87.3%| 9.4%| 87.2%| 10.0%
Major/Minor error -7.5%| 8.0%]| -16.0%| 8.1%| -15.9% 8.1%

4 Conclusion

In this paper, we have presented a new method for volumetric reconstruction and
shape modeling of quadric objects using an RGB-D sensor. We first estimate the
camera’s trajectory, then we perform volumetric reconstruction of the scene. We
segment out point clouds belonging to object regions. We then use two novel
methods for robust estimation of a parametric shape model for the extracted
dense point cloud. We compare our shape modeling methods with direct fitting
of an ellipsoid to the segmented point cloud.

The main limitations of the experimental setup are (i) the small scale of the
mock pineapple field (4 m x 2 m x 0.5 m, with only two fruit), (ii) the limited
operational range of the sensor (0.35 m—1.4 m), (iii) the limited resolution of the
RGBD camera (640 x 480), (iv) the requirement for diffuse lighting, and (v)
the requirement for sufficient fruit surface visibility given the camera angles. In
future work, we will attempt to mitigate these limitations.

We find that model-based point clouds show a clear advantage over raw
depth sensor point clouds for parametric shape modeling. Also, our methods
are more robust and better able to estimate the size, shape, and volume of
pineapple fruit than is the baseline direct method. Although we hypothesized
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that LM optimization of dense SIFT descriptor distances would perform better
than MSAC, we did not observe a clear difference in the performance of the two
algorithms. One reason for this may be the noise due to false positive fruit pixels
around the segmented fruit boundaries (see Fig. 3).

In the future, we plan to investigate possible improvements, for example con-
straining the parametric model to spheroids rather than general ellipsoids. We
also plan to improve the SIFT difference method’s sensitivity at object bound-
aries. We also plan to investigate the possibility of obtaining similarly high accu-
racy without the RGB-D sensor and volumetric modeling, instead estimating the
camera trajectory using structure from motion (SfM) based techniques similar
to those of Wu et al. [23]. After obtaining monocular camera positions, we can
perform SIFT difference optimization to estimate the parametric shape model
by initializing it with a quadric estimated from the sparse set of 3D points esti-
mated through SfM. We also plan to test our methods on a large scale real
fruit crop in Thailand. Efficient fitting of quadric shapes to unstructured point
clouds or triangle meshes is an important component of many reverse engineer-
ing systems [15,22]. Up till now, the use of ellipsoid shapes has been limited, but
ellipsoids have proven useful for body-part modeling in the past [14]. Our meth-
ods (MSAC and SIFT differences) could both be used in a general framework
for quadric surface modeling to point-cloud data. Although most objects are not
purely quadratic, an extension to piecewise-quadratic surface estimation would
enable efficient and accurate modeling of a large class of real-world objects more
compactly than the current polygon mesh based approaches.
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