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Abstract. The skeleton of an object is defined as the set of quench points 
formed during Blum’s grassfire transformation. Due to high sensitivity of 
quench points with small changes in the object boundary and the membership 
function (for fuzzy objects), often, a large number of redundant quench points is 
formed. Many of these quench points are caused by peripheral protrusions and 
dents and do not associate themselves with core shape features of the object. 
Here, we present a significance measure of quench points using the collision 
impact of fire-fronts and explore its role in filtering noisy quench points. The 
performance of the method is examined on three-dimensional shapes at differ-
ent levels of noise and fuzziness, and compared with previous methods. The re-
sults have demonstrated that collision impact together with appropriate filtering 
kernels eliminate most of the noisy quench voxels while preserving those asso-
ciated with core shape features of the object. 

1 Introduction 

Skeletonization provides a compact yet effective representation of an object while pre-
serving its important topological and geometrical features; see [1,2] for through surveys. 
Most of the popular skeletonization algorithms [2,3] are based on simulation of Blum’s 
grassfire propagation [4], where quench points are formed when two or more fire fronts 
collide and the skeleton is constructed from the set of these quench points.  

A well-known challenge with skeletonization is that small protrusions and dents on 
an object boundary create noisy quench points leading to noisy skeletal branches. This 
challenge is further intensified for fuzzy objects, because local maxima as well as 
ridges on the membership function create additional noisy quench points. Thus, the 
skeleton formed by the initial set of quench points consists of a large amount of re-
dundant structures most of which carry little information related to core shape fea-
tures of the object. Therefore, it is imperative to filter and remove less significant or 
noisy quench points to produce meaningful skeletons. This paper presents a new fil-
tering algorithm to remove noisy quench points using the collision impact of Blum’s 
grassfire-fronts. 

Quench points have been defined and popularly used in skeletonization in the form 
of centers of maximal balls (CMB) [5]. CMB can be effectively identified in digital 
objects as the singularity points [5-7] in the distance transform (DT) map [8,9]. Arcel-
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li and Sanniti di Baja [5] introduced a criterion to detect the centers of maximal balls 
(CMBs) from a 3 ൈ 3  neighborhood in integer-weighted distance transform, and 
Borgefors [7] extended it to 5 ൈ 5 ൈ 5 neighborhood. Saha and Wehrli [10] genera-
lized the CMB for fuzzy objects, which was further studied by Svensson [11] where 
the fuzzy distance transform (FDT) [12] is used instead of DT to locate CMBs. Al-
though, a few works [13-16] have been reported in literature to detect noisy or less 
significant quench points, a comprehensive theoretical formulation for characteriza-
tion of significance of quench points is yet to emerge. Saha et al. [13] characterized 
surface- and curve-like shape points and recommended different support kernels to 
distinguish between noisy and significant quench points.  Borgefors and Nyström 
[14] proposed a CMB reduction algorithm, where a CMB is marked as redundant if 
the maximal ball centered at it is covered by the union of some other maximal balls. 
Németh et al. [15] used an iterative boundary smoothing approach to reduce the set of 
quench points. Recently, Arcelli et al. [16] suggested to a feature-based approach to 
locate core, relevant and locally convex CMBs as significant ones in skeletonization.  

The quench points, i.e., the locations of colliding fire-fronts, have been well-
explored in the context of skeletonization in the form of CMBs. However, the meas-
ure of collision impact of meeting fire-fronts at quench points has been surprisingly 
overlooked in both continuous and digital approaches of skeletonization. In this paper, 
we formulate a new theoretical framework to characterize the significance of a 
quench point using the collision impact of fire-fronts and explore its role in filtering 
noisy quench points. The proposed algorithm is uniformly applicable to both binary 
and fuzzy objects. It uses local characterization of surface and curve quench points to 
determine the appropriate support kernels and to compute the average collision impact 
over the support kernel determining the significance of quench points. The new filter-
ing algorithm has been applied to three-dimensional (3-D) binary and fuzzy objects 
and its performance under different levels of noise and fuzziness is examined. Also, 
the performance of this is compared with other DT-based methods of distinguishing 
between noisy and significant quench points [17-20]. 

2 Theory and Algorithms 

In this section, we define the collision impact and describe the intuitive idea behind its 
relation with skeletal features of an object in the continuous space. A simple expres-
sion of collision impact is presented for digital objects. Finally, a filtering algorithm is 
described using the measure of collision impact to eliminate noisy quench points 
while preserving those associated with core shape features of the object.  

2.1 Collision Impact and Its Relations with Skeletal Features 

Distance transform (DT) [8,9,12] defines the time when a fire-front reaches at a  
given point during Blum’s grassfire propagation, and a level set of DT gives a snap-
shot of the entire fire-front at one time instance. Note that the DT function is not  
differentiable everywhere (e.g., it is not differentiable at ridge points), but it is  
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semi-differentiable. Thus, 
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2.3 The Filtering Algor

The new algorithm for filter
detect surface- and curve-ty
quench voxel depending o
support kernels and determ
quench voxels with their s
These steps are described in

Both surface- and curve-
point is formed when two op
when co-planar fire fronts m
voxel is formed by opposite
voxel is formed by fire front
See [13,21] for formal defini
 
 

Fig. 3. Results of the collision
the original binary objects, wh
voxels with color-coded colli
filtered quench voxels in fuzzy

rithm for Noisy Quench Voxels 

ring noisy quench points works in the following steps –
ype quench voxels, (2) determine support kernels for e

on its type, and (3) analyze the collision impact over 
mine the significance of the quench voxel, and (4) rem

ignificance measure falling below a predefined thresho
n the following.  
-quench points may form in 3-D (Fig. 2). A surface que
pposite fire fronts meet, while a curve quench point is form

meet from all directions. In the digital space, a surface-que
e fire fronts along x-, y- or z-direction and a curve-que
ts meeting from all eight directions on  xy-, yz-, or zx-plan
itions of surface and curve quench voxels. 

n impact and filtering method on 3-D objects. The top row sh
hile the second and third rows show the initial and filtered que
ision impacts. The fourth and fifth rows present the initial 
y objects generated by down-sampling. 

– (1) 
each 

the 
move 

old. 

ench 
med 
ench 
ench 
anes. 

 

hows 
ench 
and 



Filtering Non-Significant Quen

To determine the signific3 ൈ 3 digital surface orthog
significance is determined 
(Fig. 2 (c)). For a curve-typ
ficance is defined as the ma
digital surfaces on either si
following. Let ݌ ൌ ൫݌௫, ௬݌
port for ݌, first, a projecti൫݌௫, ௬݌ ൅ ݅, ௭݌ ൅ ݆൯, ௜,௝ିݍ ൌ ൫
puted to generate a 3 ൈ 3 fܯ௣୶ሺ݅, ݆
The average significance
nelsܦ௜ | ݅ ൌ 1, ڮ , 8 (see F
referred to as x-significan݉௜୶ | ݅ ൌ 1, ڮ , 8 is greater 
nificant surface-quench vox
An xy-curve-quench voxel
if the largest collision impቄ൫݌௫ ൅ ݅, ௬݌ ൅ ݆, ௭݌ ൅ 1൯ | ݅ሼെ1,0,1ሽቅ is greater than 

quench voxel is referred to 
or curve-quench voxel is r
constant threshold of 0.5 an
quench voxels, respectively

nch Points Using Collision Impact in Grassfire Propagation 

Fig. 3. (Continued) 

cance of a surface-type quench voxel, a support kernel o
gonal to the surface-normal direction is constructed and 

as the average collision impact over the support ker
pe quench voxel with the horizontal cutting plane, its sig
aximum collision impact over the support kernels of 3
ide of the cutting plane. These processes are defined in , ௭൯ be an x-surface quench voxel. To compute the s݌
ion of three voxels ൛ݍ௜,௝ା  ൌ ൫݌௫ െ 1, ௬݌ ൅ ݅, ௭݌ ൅ ݆൯, ௫݌௜,൫ݍ ൅ 1, ௬݌ ൅ ݅, ௭݌ ൅ ݆൯ൟ, for some ݅, ݆ א ሼെ1,0,1ሽ, is co
field of significance map ܯ௣୶ሺ݅, ݆ሻ as follows: ݆ሻ ൌ max൛ξ஽൫ݍ௜,௝ା ൯, ξ஽൫ݍ௜,௝൯, ξ஽൫ݍ௜,௝ି൯ൟ. 
e value ݉௜୶  over each of eight different supp

Fig. 2 (c)) is computed. An x-surface-quench voxel ݌
nt surface-quench voxel, if any of the average val
than a preset threshold. A voxel ݌ is referred to as a s
xel if it is an x-, y-, or z-significant surface-quench vo
l ݌ ൌ ൫݌௫, ,௬݌ ௭൯ is an xy-significant curve-quench vo݌
pact value in either of the two 3 ൈ 3 planar cliques ܥ୸ା, ݆ א ሼെ1,0,1ሽቅ  and ܥ୸ି ൌ ቄ൫݌௫ ൅ ݅, ௬݌ ൅ ݆, ௭݌ െ 1൯ | ݅,

a preset threshold. An xy-, yz-, or zx-significant cur

as a significant curve-quench voxel. A significant surfa
referred to as a significant quench voxel. In this pape
nd 0.75 are used for the significance of surface- and cur
y. 

437 

 

on a 
the 

rnel 
gni-ൈ 3 
the 

sup-,௝ ൌ
om-

port ݌ is 
lues 
sig-
xel. 

oxel ୸ା ൌ݆ א
rve-

ace- 
er, a 
rve-



438 D. Jin et al. 
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in Fig. 5 and Fig. 6. Initial quench voxels on an image slice for two fuzzy objects at 
3×3×3 and 5×5×5 down-sampling are presented in Fig. 5a and c. The filtered quench 
voxels for the two fuzzy objects are shown in Fig. 5b and d. No visually apparent 
difference in the initial sets of quench voxels is observed. The filtered set of quench 
voxels at two different levels of fuzziness is visually satisfactory. To study the beha-
vior of the quench voxel generation and the filtering algorithm under membership 
noise, two fuzzy objects were generated at 3×3×3 down-sampling and then adding 
white Gaussian noise at signal to noise ratio (SNR) of 24 and 6 (top and bottom rows 
of Fig. 6, respectively). Visual difference in initial sets of quench voxels are observed 
at two different levels of noise. Despite the presence of high membership noise, the 
filtering method successfully eliminated noisy quench voxels while preserving the 
significant ones.  

The performance of the algorithm under different levels of boundary noise is pre-
sented in Fig. 7. Three images were generated by randomly adding noisy balls of 
radius one, two, and three voxels. The sets of quench voxels after thresholding at 
collision impact values of 0.6 and 0.7 are shown on the second and the third rows, 
respectively. The sets of filtered quench voxels are presented on the last row. Due to 
boundary noise, several noisy quench voxels survived even after thresholding at a 
high value of 0.7 for collision impact. In contrast, the filtering algorithm has success-
fully removed noisy quench voxels, while preserving the core ones. Finally, as ob-
served from Fig. 5 to Fig. 7, the filtered set of quench is visually similar and stable at 
wide ranges of boundary noise, down-sampling as well as membership noise. It fur-
ther enforces the validity of the principle of our noisy quench voxel filtering algo-
rithm. 

The performance of the method at different boundary noise levels is compared with 
the performance of three existing DT-based methods [17-20] on distinguishing be-
tween noisy and significant quench voxels. Gagvani and Silver [17] used the differ-
ence of the DT value of a quench voxel from the average DT value of its neighbors as 
its significance. Siddiqi et al.[20] computed the average outward flux of the DT gra-
dient field as a measure of significance of a quench voxel. Shah [18,19] used the larg-
est angle between incoming fire-fronts as the significance of quench voxels. Results 
of applications of the three methods are presented in Fig. 8. Gagvani and Silver’s 
method failed to remove several visually noisy quench voxels while discontinuities on 
meaningful skeletal segments become apparent. Shah’s method fail to locate quench 
voxels in the neck, tail, or the legs of the dinosaur. The performance of Siddiqi et al. 
is more comparable to ours at low noise. However, the performance deteriorated at 
higher levels of noise where it failed to clean a significant number of noisy voxels.  
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Fig. 8. Results of applications of the DT-based noisy quench voxel filtering methods by Gag-
vani and Silver [17] (top row), Siddiqi et al. [20] (middle row), and Shah [18,19] (bottom row) 
on the binary dinosaur shape under three different levels of boundary noise used in Fig. 7.  

4 Conclusions 

This paper has presented a new theoretical framework to characterize the significance 
of a quench point using the collision impact of Blum’s grassfire-fronts. Its role in 
filtering noisy quench points, prevalent in the skeletonization of real objects, has been 
explored. Experimental results have demonstrated the effectiveness of method in re-
moving noisy quench voxels while preserving the significant ones capturing core 
shape features in both binary and fuzzy objects. Initial results has suggested that the 
method is stable over wide ranges of boundary noise, down-sampling, and member-
ship noise and generates visually satisfactory results despite significant image arti-
facts. Our method offers a unified solution for both binary and fuzzy objects, while 
existing methods are applicable to binary objects, only. Also, the initial results sug-
gests that the current method may perform better as compared to existing ones, espe-
cially, at higher levels of noise. Currently, we are conducting quantitative analysis of 
its performance and exploring its role in improving the results of skeletonization. 
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