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Abstract. The skeleton of an object is defined as the set of quench points
formed during Blum’s grassfire transformation. Due to high sensitivity of
quench points with small changes in the object boundary and the membership
function (for fuzzy objects), often, a large number of redundant quench points is
formed. Many of these quench points are caused by peripheral protrusions and
dents and do not associate themselves with core shape features of the object.
Here, we present a significance measure of quench points using the collision
impact of fire-fronts and explore its role in filtering noisy quench points. The
performance of the method is examined on three-dimensional shapes at differ-
ent levels of noise and fuzziness, and compared with previous methods. The re-
sults have demonstrated that collision impact together with appropriate filtering
kernels eliminate most of the noisy quench voxels while preserving those asso-
ciated with core shape features of the object.

1 Introduction

Skeletonization provides a compact yet effective representation of an object while pre-
serving its important topological and geometrical features; see [1,2] for through surveys.
Most of the popular skeletonization algorithms [2,3] are based on simulation of Blum’s
grassfire propagation [4], where quench points are formed when two or more fire fronts
collide and the skeleton is constructed from the set of these quench points.

A well-known challenge with skeletonization is that small protrusions and dents on
an object boundary create noisy quench points leading to noisy skeletal branches. This
challenge is further intensified for fuzzy objects, because local maxima as well as
ridges on the membership function create additional noisy quench points. Thus, the
skeleton formed by the initial set of quench points consists of a large amount of re-
dundant structures most of which carry little information related to core shape fea-
tures of the object. Therefore, it is imperative to filter and remove less significant or
noisy quench points to produce meaningful skeletons. This paper presents a new fil-
tering algorithm to remove noisy quench points using the collision impact of Blum’s
grassfire-fronts.

Quench points have been defined and popularly used in skeletonization in the form
of centers of maximal balls (CMB) [5]. CMB can be effectively identified in digital
objects as the singularity points [5-7] in the distance transform (DT) map [8,9]. Arcel-
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li and Sanniti di Baja [5] introduced a criterion to detect the centers of maximal balls
(CMBs) from a 3 X 3 neighborhood in integer-weighted distance transform, and
Borgefors [7] extended it to 5 X 5 X 5 neighborhood. Saha and Wehrli [10] genera-
lized the CMB for fuzzy objects, which was further studied by Svensson [11] where
the fuzzy distance transform (FDT) [12] is used instead of DT to locate CMBs. Al-
though, a few works [13-16] have been reported in literature to detect noisy or less
significant quench points, a comprehensive theoretical formulation for characteriza-
tion of significance of quench points is yet to emerge. Saha et al. [13] characterized
surface- and curve-like shape points and recommended different support kernels to
distinguish between noisy and significant quench points. Borgefors and Nystrom
[14] proposed a CMB reduction algorithm, where a CMB is marked as redundant if
the maximal ball centered at it is covered by the union of some other maximal balls.
Németh et al. [15] used an iterative boundary smoothing approach to reduce the set of
quench points. Recently, Arcelli et al. [16] suggested to a feature-based approach to
locate core, relevant and locally convex CMBs as significant ones in skeletonization.

The quench points, i.e., the locations of colliding fire-fronts, have been well-
explored in the context of skeletonization in the form of CMBs. However, the meas-
ure of collision impact of meeting fire-fronts at quench points has been surprisingly
overlooked in both continuous and digital approaches of skeletonization. In this paper,
we formulate a new theoretical framework to characterize the significance of a
quench point using the collision impact of fire-fronts and explore its role in filtering
noisy quench points. The proposed algorithm is uniformly applicable to both binary
and fuzzy objects. It uses local characterization of surface and curve quench points to
determine the appropriate support kernels and to compute the average collision impact
over the support kernel determining the significance of quench points. The new filter-
ing algorithm has been applied to three-dimensional (3-D) binary and fuzzy objects
and its performance under different levels of noise and fuzziness is examined. Also,
the performance of this is compared with other DT-based methods of distinguishing
between noisy and significant quench points [17-20].

2 Theory and Algorithms

In this section, we define the collision impact and describe the intuitive idea behind its
relation with skeletal features of an object in the continuous space. A simple expres-
sion of collision impact is presented for digital objects. Finally, a filtering algorithm is
described using the measure of collision impact to eliminate noisy quench points
while preserving those associated with core shape features of the object.

2.1  Collision Impact and Its Relations with Skeletal Features

Distance transform (DT) [8,9,12] defines the time when a fire-front reaches at a
given point during Blum’s grassfire propagation, and a level set of DT gives a snap-
shot of the entire fire-front at one time instance. Note that the DT function is not
differentiable everywhere (e.g., it is not differentiable at ridge points), but it is
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semi-differentiable. Thus, we can compute one-sided directional derivative of DT
as follows:

DT(p+ A-v) — DT(p)
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Fig. 1. Collision-impacts at different skeletal points during grassfire propagation on binary shapes.
(a) The fire-fronts make head-on collision at the point a with the maximum collision-impact of
‘1’. At the point b, the fire-fronts collide obliquely generating a weaker collision-impact. (b) The
collision impact along a skeletal branch, originated from a polygonal vertex with a small interior
angle, e.g., Osman, is higher than that along a skeletal branch generated from a vertex with a large
interior angle, e.g., Ojarge- (¢) The collision-impact along the skeletal branch-segment AB con-
necting a small protruding structure to the central skeleton, shown by the dotted line, is low.

where v € R® is a direction vector. The uniform speed assumption of Blum’s grass-
fire propagation leads to the following equality for the speed function T at a point p
through which a fire-front passes:

7(p) = maxd,DT(p) = 1. (2)

The above equality is violated only at singular or quench points where multiple fire-
fronts collide forming skeletal structures. Although, colliding fire-fronts stop at
quench points, their collision strength or impact may vary depending upon the angle
between them. The collision impact & of colliding fire-fronts at a point p in a binary
object is defined as follows:

§p) =1-£,(z(®) = 1- £, (maxa,DT()), (3)

where the function f, (x) returns the value of x if x > 0 and ‘0’ otherwise.

The intuitive idea behind the formulation of collision impact is explained in Fig. 1 in
two-dimension (2-D). Consider the octagonal shape of Fig. 1 (a) and the head-on colli-
sion of fire-fronts at the point a. At the vicinity of a, since, there is no point with its DT
value greater than that of a, the maximum value of d,DT(a) is zero. Thus, the collision
impact £(a) takes the highest-possible value of ‘1°. Now, let us consider the situation at
the point b where the fire-fronts collide obliquely. Although, the colliding fire-fronts are
stopped at b, there are increasing DT values at its vicinity. It can be shown that the max-
imum value of d,DT (b) is achieved along the direction u, lying on the tangent space
of the skeleton at point b. Since, d,DT(b) along u, has a finite positive value, the
collision impact ¢(b) < 1. As shown in Fig. 1 (b), for a polygonal shape, the collision
impact along a skeletal branch originated from a vertex with a small interior angle G¢,.11
is large as compared to the collision impact along a skeletal branch originated from a
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vertex with a large interior angle 6),r4¢. Another important observation on collision-
impact is illustrated in Fig. 1 (c). The collision-impact along the skeletal branch-segment
AB on the skeletal branch connecting a small protrusion to the central skeletal branch is
low. Thus, collision impact assigns a significance measure to individual skeletal or
quench points, and an effective algorithms for filtering noisy quench points using colli-
sion impact is presented in Section 2.3.

(a) (b) (c)

Fig. 2. (a,b) Illustration of surface- (a) and curve-like (b) quench points. (c) Two example
support kernels to filter a surface quench voxel. Voxels colored in green are used for average
collision impact computation. Four geometrically similar support kernels are constructed from
each of these two examples.

2.2 Collision Impact for Digital Objects

In this section, we present a generalized formulation quench points that is applicable
to both fuzzy and binary digital objects. Here, a 3-D cubic grid, denoted as Z3, where
Z is the set of integers, is used as the image space. Each grid element p =
Px Dy, ;) €EZ 3 is referred to as a voxel. Traditional definitions of o-adjacent or a-
neighborhood [1] between two voxels p,q € Z3, where a € {6,18,26}, are followed
in this paper. N,¢(p) is used to denote the set of 26-neighbors of a voxel p including
p itself while N(p) is used for the set of all voxels of N,4(p) excluding the cen-
tral voxel p. Moreover, the traditional definitions of a-path, a-connectedness, and o-
components [1] are followed in this paper.

A fuzzy digital object O = (0, fy), is a fuzzy set of Z3, where fy:Z3 — [0,1] is
the membership function and O = {p € Z3|f,(p) > 0} is its support. Here, 26-
adjacency is used for object voxels in O, while 6-adjacency is used for background
voxels, i.e., voxels in O = Z3 — 0. A binary object B is defined similarly except that
the membership function fz:Z3 — {0,1} takes the value of ‘1’ for object voxels and
‘0’ for background voxels. A voxel p is a CMB in a fuzzy object O, if the following
inequality holds for every q € N;(p) [10],

1
FDT(q) =~ FDT() <5 (fo®) +f,@) Ip ~ql. )

Following the formulation of the collision impact in the continuous space in Eq. 3, the col-
lision impact at any voxel p in fuzzy object O, denoted by &, (p), is defined as follows:

f.(FDT(q) — FDT(p))

D =1- 1 .
& () aNeo) o) + fo@)lp — dl

)
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2.3  The Filtering Algorithm for Noisy Quench Voxels

The new algorithm for filtering noisy quench points works in the following steps — (1)
detect surface- and curve-type quench voxels, (2) determine support kernels for each
quench voxel depending on its type, and (3) analyze the collision impact over the
support kernels and determine the significance of the quench voxel, and (4) remove
quench voxels with their significance measure falling below a predefined threshold.
These steps are described in the following.

Both surface- and curve-quench points may form in 3-D (Fig. 2). A surface quench
point is formed when two opposite fire fronts meet, while a curve quench point is formed
when co-planar fire fronts meet from all directions. In the digital space, a surface-quench
voxel is formed by opposite fire fronts along x-, y- or z-direction and a curve-quench
voxel is formed by fire fronts meeting from all eight directions on Xxy-, yz-, or zx-planes.
See [13,21] for formal definitions of surface and curve quench voxels.

Fig. 3. Results of the collision impact and filtering method on 3-D objects. The top row shows
the original binary objects, while the second and third rows show the initial and filtered quench
voxels with color-coded collision impacts. The fourth and fifth rows present the initial and
filtered quench voxels in fuzzy objects generated by down-sampling.
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Fig. 3. (Continued)

To determine the significance of a surface-type quench voxel, a support kernel on a
3 x 3 digital surface orthogonal to the surface-normal direction is constructed and the
significance is determined as the average collision impact over the support kernel
(Fig. 2 (c)). For a curve-type quench voxel with the horizontal cutting plane, its signi-
ficance is defined as the maximum collision impact over the support kernels of 3 X 3
digital surfaces on either side of the cutting plane. These processes are defined in the
following. Let p = (px, Dy, pz) be an x-surface quench voxel. To compute the sup-
port for p, first, a projection of three voxels {ql-+_j = (px -Lp, +ip, +j), qij =

(Pxpy + i1, +J).ai; = (px + Loy +i,p, + )}, for some i,j € {=1,0,1}, is com-
puted to generate a 3 X 3 field of significance map My(i,j) as follows:

My, j) = max{®p (ai;), (i), 8o (ai;)}

The average significance value m} over each of eight different support
nelsD; |i =1,---,8 (see Fig. 2 (c¢)) is computed. An x-surface-quench voxel p is
referred to as x-significant surface-quench voxel, if any of the average values
my|i=1,--,8 is greater than a preset threshold. A voxel p is referred to as a sig-
nificant surface-quench voxel if it is an x-, y-, or z-significant surface-quench voxel.
An xy-curve-quench voxel p = (px,py,pz) is an xy-significant curve-quench voxel
if the largest collision impact value in either of the two 3 X 3 planar cliques C; =

(e +ipy +)p, + 1) 11 € {=1,0,13} and C; ={(px+ipy +)p,— 1) |1.j €
{—1,0,1}} is greater than a preset threshold. An xy-, yz-, or zx-significant curve-

quench voxel is referred to as a significant curve-quench voxel. A significant surface-
or curve-quench voxel is referred to as a significant quench voxel. In this paper, a
constant threshold of 0.5 and 0.75 are used for the significance of surface- and curve-
quench voxels, respectively.
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3 Experiments and Results

Results of the filtering algorithm on a 3-D shape of dinosaur are presented in Fig. 4.
Online shapes were constructed at 512x512x512 arrays, which were down-sampled by a
window of 4x4x4 voxels to generate test phantoms. The binary objects (top row) were
generated by thresholding test phantoms at 0.5, while the test phantoms were directly
used as fuzzy objects (not shown in the figure). The initial set of quench voxels for binary
objects with color-coded collision impact values (blue = 0.0, cyan = 0.25, green = 0.5,
yellow = 0.75, and red = 1.0) are illustrated on the second row of the figure, while the
filtered quench voxels are shown on the third row. It is observed that that the filtering
algorithm has removed visually evident noisy quench voxels while preserving the ones
capturing the core skeletal shapes of individual objects. Initial quench voxels and the
filtered ones for fuzzy objects are presented on the last two rows. It is observed that the
initial sets of quench voxels for fuzzy objects are larger than that of binary objects. De-
spite the additional initial quench voxels for fuzzy objects, the filtering algorithm pro-
duced satisfactory results. The visual agreement among the filtered significant quench
voxels for binary and fuzzy objects is highly encouraging that suggests that the algorithm
is robust in the presence of partial voluming in fuzzy objects.

(d) &%

Fig. 4. An example of the collision impact and the filtering results on a 3-D shape. (a) The original
binary object; (b) initial quench voxels with color-coded collision impact; (c,d) quench voxels after
thresholding at the collision impact using of 0.6 (c) and 0.7 (d); (e) significant quench voxels after
filtering; (f) final skeleton.

Results of the filtering algorithm on a 3-D shape of dinosaur are presented in Fig. 3
and its performance is compared with simple thresholding on collision impact.
Although, a thresholding on collision impact partially works in the sense that most
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Fig. 5. Results of the collision impact and the filtering algorithm on dinosaur shape at two
down-samplings of 3x3x3 and 5x5x5 voxels. (a, ¢) 2-D slice showing the distribution of
quench voxels along with their collision impacts values. (b, d) 3-D results of the filtered quench
voxels using the proposed method.

Fig. 6. Results of the collision impact and filtering algorithm on dinosaur shape under two
levels of membership noises, at SNR24 (top row) and SNR6 (bottom row), respectively. Left
column shows a 2-D slices from noisy object. Middle column shows the distribution of quench
voxels along with their collision impact values. Right column displays the result of the filtered
quench voxels by the proposed method in 3-D.

peripheral and noisy quench voxels are removed and most of the core quench voxels
are preserved, the performance is still suboptimal. At the threshold of 0.6, several
isolated noisy quench voxels have survived, while an over-deletion of quench voxels
has occurred at the threshold of 0.7. On the other hand, the filtering algorithm has
removed all visually evident noisy quench voxels while avoiding over-deletion. Final-
ly, note that the quench voxels get connected in the final skeleton due to the topology
preservation criterion [22,23] during a thinning process. The performance of the filter-
ing algorithm under different levels of fuzziness and membership noise are presented
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in Fig. 5 and Fig. 6. Initial quench voxels on an image slice for two fuzzy objects at
3x3x3 and 5x5x5 down-sampling are presented in Fig. 5a and c. The filtered quench
voxels for the two fuzzy objects are shown in Fig. 5b and d. No visually apparent
difference in the initial sets of quench voxels is observed. The filtered set of quench
voxels at two different levels of fuzziness is visually satisfactory. To study the beha-
vior of the quench voxel generation and the filtering algorithm under membership
noise, two fuzzy objects were generated at 3x3x3 down-sampling and then adding
white Gaussian noise at signal to noise ratio (SNR) of 24 and 6 (top and bottom rows
of Fig. 6, respectively). Visual difference in initial sets of quench voxels are observed
at two different levels of noise. Despite the presence of high membership noise, the
filtering method successfully eliminated noisy quench voxels while preserving the
significant ones.

The performance of the algorithm under different levels of boundary noise is pre-
sented in Fig. 7. Three images were generated by randomly adding noisy balls of
radius one, two, and three voxels. The sets of quench voxels after thresholding at
collision impact values of 0.6 and 0.7 are shown on the second and the third rows,
respectively. The sets of filtered quench voxels are presented on the last row. Due to
boundary noise, several noisy quench voxels survived even after thresholding at a
high value of 0.7 for collision impact. In contrast, the filtering algorithm has success-
fully removed noisy quench voxels, while preserving the core ones. Finally, as ob-
served from Fig. 5 to Fig. 7, the filtered set of quench is visually similar and stable at
wide ranges of boundary noise, down-sampling as well as membership noise. It fur-
ther enforces the validity of the principle of our noisy quench voxel filtering algo-
rithm.

The performance of the method at different boundary noise levels is compared with
the performance of three existing DT-based methods [17-20] on distinguishing be-
tween noisy and significant quench voxels. Gagvani and Silver [17] used the differ-
ence of the DT value of a quench voxel from the average DT value of its neighbors as
its significance. Siddiqi et al.[20] computed the average outward flux of the DT gra-
dient field as a measure of significance of a quench voxel. Shah [18,19] used the larg-
est angle between incoming fire-fronts as the significance of quench voxels. Results
of applications of the three methods are presented in Fig. 8. Gagvani and Silver’s
method failed to remove several visually noisy quench voxels while discontinuities on
meaningful skeletal segments become apparent. Shah’s method fail to locate quench
voxels in the neck, tail, or the legs of the dinosaur. The performance of Siddiqi et al.
is more comparable to ours at low noise. However, the performance deteriorated at
higher levels of noise where it failed to clean a significant number of noisy voxels.
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e

Fig. 7. Results of the collision impact and the filtering algorithm on a binary dinosaur shape
under three levels of boundary noises. The top row shows the 3-D volume of binary objects.
The second and third row show the quench voxels thresholded at collision impact values of 0.6
and 0.7, respectively. The bottom row displays the filtered quench voxels by the proposed
method.
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Fig. 8. Results of applications of the DT-based noisy quench voxel filtering methods by Gag-
vani and Silver [17] (top row), Siddiqi et al. [20] (middle row), and Shah [18,19] (bottom row)
on the binary dinosaur shape under three different levels of boundary noise used in Fig. 7.

4 Conclusions

This paper has presented a new theoretical framework to characterize the significance
of a quench point using the collision impact of Blum’s grassfire-fronts. Its role in
filtering noisy quench points, prevalent in the skeletonization of real objects, has been
explored. Experimental results have demonstrated the effectiveness of method in re-
moving noisy quench voxels while preserving the significant ones capturing core
shape features in both binary and fuzzy objects. Initial results has suggested that the
method is stable over wide ranges of boundary noise, down-sampling, and member-
ship noise and generates visually satisfactory results despite significant image arti-
facts. Our method offers a unified solution for both binary and fuzzy objects, while
existing methods are applicable to binary objects, only. Also, the initial results sug-
gests that the current method may perform better as compared to existing ones, espe-
cially, at higher levels of noise. Currently, we are conducting quantitative analysis of
its performance and exploring its role in improving the results of skeletonization.
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