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Abstract. We propose a method for extracting fiducial points from
human faces that uses 3D information only and is based on two key
steps: multi-scale curvature analysis, and the reliable tracking of features
in a scale-space based on curvature. Our scale-space analysis, coupled to
careful use of prior information based on variability boundaries of anthro-
pometric facial proportions, does not require a training step, because it
makes direct use of morphological characteristics of the analyzed surface.
The proposed method precisely identifies important fiducial points and
is able to extract new fiducial points that were previously unrecognized,
thus paving the way to more effective recognition algorithms.
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1 Introduction

Face recognition has been widely studied and addressed in the literature, mainly
in the image processing field. It can be described as the task of extracting descrip-
tors, from images depicting human faces, which can be used to discriminate if
two such images are obtained from the same face.

Many works have been presented dealing with color and gray-scale images,
among which the most famous are PCA [9], LDA [7] and EBGM [22]. Recog-
nition from 2D images, though, suffers from several known problems, such as a
strong dependency on consistent illumination and pose. Moreover, it is straight-
forward to see that images cannot carry all the original information about a face’s
structure. Despite these shortcomings, work on 3D face recognition has been less
investigated in the past, because complex and exotic hardware were needed for
the extraction of 3D data and because of the consequent lack of publicly avail-
able datasets with good enough resolution. In the last few years, the hardware
landscape improved and the growth in available computational power not only
unlocked usage of more complex software techniques during processing steps,
such as surface reconstruction and meshing, cleaning and smoothing, but also
enabled novel extraction techniques of 3D raw data, such as photogrammetry.

Existent methods that extract fiducial points from 3D data can be roughly
subdivided into appearance based and feature based ; the first class is made of
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Fig. 1. On the left: names and positions of fiducial points; on the right: the same points,
as extracted from a range image with our scale-space method.

methods that are typically modified versions of 2D algorithms extended to work
with range images. The second class contains methods that work by extracting
local relevant features. The method we propose falls into the latter category,
of which we are going to give a brief overview. Lu and Jain [11] proposed a
method that combines 2D and 3D techniques to extract a small set of facial
features: they use a priori knowledge to detect the tip of the nose, and then
detect the mouth and eye corners using the shape index from the range image.
Colbry et al. [12] use shape index to detect a similar set of features. Gupta et al.
[8] developed a method which detects a set of 10 points combining curvature
information, a priori information and 2D techniques. Perakis et al. [18] developed
a method which aims at detection of facials landmarks in presence of large yaw
and expression variations using shape index and spin images. Conde et al. [5]
developed a 3D method based on spin images which obtains a high accuracy but
gets only three points on the faces. Segundo et al. [16] use curvature information
combined with depth values from range images to detect a small set of points
(nose tip, nose and eye inner corners). Shin and Sohn [20] use ten facial landmarks
for face recognition, but they do not give details about how these points are
extracted. Sukno et al. [21] detect a set of fiducial landmarks using spin images
as described in [10] but then use statistical models to filter out outliers and infer
missing features. Bockeler and Zhou [3] detect a set of ten points with strong
2D information and antrophometric constraints. A work by Berretti et al. [1]
computes DoG of a mean curvature scalar field and extracts a variable number
of keypoints that are not necessarily located in meaningful parts of the face.
Some works by Novatnack et al. [14], [13] [15] use mesh parameterization with a
distortion-adapted Gaussian scale-space to extract features using image analysis
techniques (edge and corner detection) on the 2D plane.

Our method extends the family of techniques based on curvature and on
prior knowledge of anthropometric features’ locations. However, it makes use
of the 3D surface only, without need for color or light intensity information,



Scale-Space Techniques for Fiducial Points Extraction from 3D Faces 423

and it does not need any kind of learning or training phases. The input of the
extraction algorithm is a range image; the core ingredient employed is a sequence
of curvature fields, computed at different scales, which sets up a scale-space of
differential properties of the original surface. We select fiducial points among
curvature’s critical points, using information computed from the scale-space as
a guide. The 13 fiducial points we identify (shown in figure 1) are a subset of
the 25 points presented in [6], and more precisely the 10 points that are found
by the method developed in [8], plus the points named sn, ls and li.

2 Extraction of Morphological Features

Our goal is to extract all interesting morphological features from a 3D surface
representing a human face. It seems intuitive that those features should occur
where the surface varies the most, thus making the computation of curvature
a very useful tool in this endeavor. Most methods for fiducial point extraction
that use curvature compute it using discrete methods, which tend to highlight
features at the finest scales and to be prone to noise. Moreover, it is accepted
knowledge in the geometry processing field that these disadvantages tend to be
exacerbated, instead of being reduced, as the resolution and size of datasets
grow. We rather adopt a multi-scale curvature analysis method based on surface
fitting [17]. The scale parameter is the size of the local surface around a vertex
that contributes to the computation of curvature at the vertex itself, with the
size measured as the radius of a sphere.

For the purposes of our scale-space analysis we use the Gaussian curvature,
a scalar field which provides a good characterization of surface features. Our
claim is that fiducial points occur at “important” maxima and minima of Gaus-
sian curvature. Therefore, reliable criteria are needed, which can discriminate
critical points of Gaussian curvature worth keeping from others caused by noise
or depicting irrelevant features.

In order to measure the importance of critical points, we employ a scale-space
based approach. Since their introduction, scale-space methods have been widely
used in computer vision and image processing; the general idea is to build a one
parameter family of images from an input signal. This is usually done by applying
a filter repeatedly, thus building a discrete sequence. The main goal of scale-space
methods is to highlight features at different levels of detail and importance. One
of the classic approaches to this end is the computation of the deep structure, i.e.,
the tracking of critical points of the signal as they change across the scale-space.
Classic approaches to deep structure computation are prone to noise and tracking
errors; we adopt a virtually continuous scale-space technique, introduced in [19],
which solves many of those problems. This method, which is filter agnostic and
relies on piece-wise linear interpolation across scales, provides a fine-grained
and reliable tracking of critical points of two dimensional signals. After this
last preprocessing step, the main identification phase starts: fiducial points are
chosen among critical points using the importance criteria computed during the
scale-space analysis and prior knowledge based on anthropometric constraints.
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Fig. 2. The diagonal scale-space is composed by a sequence of curvature fields, obtained
by computing curvature at increasing scales on increasingly smoothed surfaces.

2.1 Precomputation Phase

The main preprocessing steps consist in the computation of a scale-space which
effectively encodes curvature information, and in the computation of the impor-
tance measures of critical points.

Diagonal Scale-Space. Computation of differential properties is severely
affected by the presence of noise. This makes the most straightforward com-
bination of the concepts outlined in Section 2 – a scale-space of curvature where
the discrete levels were computed with radii of increasing size – a inadequate
solution, because the number of critical points does not decrease fast enough as
the curvature method’s scale parameter increases, and, as a consequence, track-
ing them does not provide meaningful information. We thus propose a new type
of scale-space that combines multi-scale curvature with a Gaussian scale-space,
called diagonal scale-space.

The diagonal scale-space is made up by scalar fields representing Gaussian
curvature at increasing scales, but it is generated by employing both a smoothing
filter on the original 3D surface and by varying at the same time the parame-
ter of the multi-scale curvature computation method. We initially compute a
linear scale-space of the original surface, with consecutive samples generated by
repeated smoothing with variances of increasing size. We then compute curvature
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Fig. 3. Maxima (red) and minima (blue) of Gaussian curvature scaled by life (on the
left) and strength (on the right).

on each level, with a correspondingly larger radius. A graphical account of this
arrangement is depicted in Figure 2.

In this work, we process range images through a Gaussian smoothing filter,
but the general idea of increasing two different scale parameters together, one
for the amount of surface smoothing and the other for curvature computation,
should be equally effective when processing full 3D data in the form of triangle
meshes through a Laplacian smoothing filter. The end result is that noise is
discarded in a more effective way, and the number of features decreases faster
through scale. We are therefore able to achieve a meaningful tracking of the
critical points of the Gaussian curvature through the scales.

Importance Measures: Life and Strength. After generation of the diagonal
scale-space, we extract all the critical points in the original signal (which, in our
case, is the curvature at the smallest radius computed on the original surface)
and we track them through scales, using the virtually continuous scale-space
method described in [19]. The output of the tracking algorithm is a data structure
which encodes every critical point present in the scale-space, along with detailed
information about their changes as scale grows. In particular, the data structure
memorizes the moment each critical point disappears, because the feature it
describes has been smoothed out and does not exist anymore. This death event
marks the lifetime of a critical point in the scale-space, and we use this life value
as our main importance measure. The life value of a critical point effectively
measures the frequency of the signal that point corresponds to; critical points
associated to information at higher frequencies will disappear faster than others.

Life is not the only importance measure that the proposed method employs;
there is also a strength value that is used as a secondary criterion. Its aim is to
assess the relative strength of the scalar field’s maxima and minima, compared to
the local trend on the surrounding surface. For each maximum, we compute the
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average of the curvature field at the pixels that are below its value in a growing
area around it, and return the highest difference between its value and that
average; the same algorithm is applied to minima by taking into account only
the surface values above the minimum. The radius of the local area is capped
at a value related to the scale of its life in the scale-space. The resulting value
corresponds to a sort of variable-scale Laplacian of the surface at a given point.
Critical points scaled according to their life and strength values for one of the
faces in our test bed are shown in Figure 3.

2.2 Identification of Fiducial Points

Fiducial points are selected among maxima and minima of the Gaussian cur-
vature scalar field. Our strategy, which relies only on prior knowledge and on
the life and strength measures, is based on a hierarchical search. We start by
identifying the most prominent features and then seek out other features in nar-
rowed down areas, found by displacements relative to previously found ones. In
particular, we identify fiducial points that characterize the nose and compute a
symmetry axis that separates the left and right parts of the face. We then pro-
ceed to identification of the eyes’ corners and of peculiar points on the mouth.

The Nose. Five fiducial points characterize this area (see Figure 4a):

– The nose tip, prn. This is a very prominent feature which is characterized
by a high Gaussian curvature, a long life in the scale-space and by having
the highest vertical value. The best strategy is simple: search is restricted
to a wide rectangular area around the center of the range image, and the
maximum of Gaussian curvature with the highest vertical value is selected.

– The sides of the nose, all and alr. Those two points are saddles on the
surface, which means they are minima of Gaussian curvature. To detect
them the areas to the left and to the right of the nose tip, are considered,
and the minima (one on the left and one on the right) with the highest life
value in those areas are selected.

– The upper nose saddle, m. This is one of the most prominent saddles on a
face’s surface. In order to locate a rectangle located high above the nose tip
is scanned, and the minimum which survives the longest is selected.

– The lower limit of the nose, sn. This point, located on the saddle where the
nose ends, is a minimum of Gaussian curvature. We have discovered that
this point is more reliably characterized by strength; in order to find it the
search is narrowed down to an area located below the tip of the nose, and
the point with the highest strength is selected.

Symmetry Axis and the Eyes. After points around the nose are identified,
we use them to compute a vertical symmetry axis. The goal is to take advantage
the intrinsic symmetry of the human face during the next phases. The axis is
computed as the average of the line that fits the points m, prn, sn and the
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line orthogonal to the one connecting the two points identified as al. Most of
the other fiducial points that still need to be detected are symmetric pairs with
respect to this axis. From now on, when we seek a pair of left and right points,
their fitness is evaluated together by requiring them to be almost symmetric,
within a given tolerance, on top of any other criteria that may be necessary in
order to identify them. Moreover, the line connecting all and alr is considered
as the dividing line between the upper half and the lower half of the face. An
example is shown in Figure 4b.

(a) (b) (c)

Fig. 4. (a): The first five points and the bounding boxes used to find them. (b): The
horizontal line across all and alr divides the face in an upper half and a lower half; the
vertical line represents the symmetry axis computed on the given face. (c): Remain-
ing points located through symmetric search, connected by a yellow dashed line, plus
bounding boxes for points ls and li.

We employ the aforementioned strategy in order to find the pairs of fiducial
points that characterize the eyes, as shown in the upper half of Figure 4c: the
external corners, exl and exr, and the internal corners, enl and enr. These points
are in pit regions, which means they have high Gaussian curvature. We wish to
extract the two symmetric pairs in the upper half of the image that have the
highest strength value. We perform this by selecting all possible symmetric pairs
of maxima (a, b), with strength values (sa, sb); the two pairs that have the highest
sa · sb value are selected.

The Mouth. This area contains four fiducial points (see lower half of Figure 4c):
the pair that represents the corner of the mouth, and the two points representing
the tip of the higher lip and the tip of the lower lip. The corners of the mouth,
chl and chr, are identified with the same strategy employed for the eyes’ corners,
applied to the lower half of the face. The upper lip, ls, and the lower lip, li, are
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identified as the two maxima of Gaussian curvature with the highest life in the
area below sn delimited by chl and chr.

3 Experiments and Results

Experiments were run on Face Warehouse dataset [4], using meshes represent-
ing faces with neutral expressions, frontally projected in order to extract range
images, for a total of 111 different faces. The dataset does not provide a ground
truth for fiducial points, so we created one by manually selecting on every face
the 13 points shown in Figure 1.

The method’s results are evaluated by measuring the distance in millime-
ters between each fiducial point we extract and the corresponding ground
truth, for every mesh in the test set. Plots in figure 5 shows the percentage of
meshes (Y axis) on which the distance is less than the given millimeters (X axis),
for each fiducial point.

– Figure 5a shows results for fiducial points depicting features on the nose. The
localization accuracy in this area is high: when the distance from the ground
truth for fiducial point reach 4mm, prn is localized on 99% of the dataset,
and sn is localized on 94% of the dataset. As far as we know, this work is
the first to achieve 3D detection of this particular fiducial point. At 7mm,
al and ar reach a detection rate of 90%. The point with worst performance
in this area is m, the nose saddle, which achieves 90% at 11mm. It should
be considered that this point is difficult to manually place, because the nose
saddle is wide.

– Figure 5b shows results for the eyes’ corners. Our method performs with good
accuracy for these fiducial points. All four point already attain a detection
rate above 90% within a 3mm distance.

– Figure 5c shows results for fiducial points located around the mouth. Fea-
tures depicted by these points are subtle, and extraction is easily affected by
noise. In fact, only a few works have tried to detect the mouth corner, chl

and chr ([8], [3], [2], [18] and [21]) and they always use also 2D information.
In our case, extraction suffers because a lot of points along the mouth tend
to have similar curvature values. 90% accuracy is reached at 14mm. To the
best of our knowledge, this work is the first one that performs 3D detection
of fiducial points on the upper and lower lip, ls and li. Detection of this
points achieves a 90% rate at 8mm.

Our prototype software was designed as a proof-of-concept to test the app-
roach, by patching together previously existing packages that compute curvature
and the scale-space. The resulting software is currently slow, especially in the pre-
processing phase, because such packages were not optimized and also because
they compute much more information than needed by our method. For a single
face, building the diagonal scale-space and performing tracking on a commodity
PC takes on average 50 seconds; while identifying the 13 fiducial points takes 3.75
seconds. We believe that an optimized implementation, also exploiting parallel
computing, can easily achieve a speedup of two orders of magnitude.
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Fig. 5. Localization accuracy for fiducial points: (a) points in the nose area; (b) the
corners of the eyes; (c) points around the mouth.

4 Conclusions

We presented a novel technique for extraction of fiducial points on human faces
which makes use of 3D data only. Since the proposed method relies on the sur-
face’s morphological information only, no training is needed. Fiducial points that
were already extracted using 2D+3D techniques in previous works are detected
with a performance that is at least as good, and identification of three new,
previously undetected, fiducial points is achieved. Results are promising and we
plan to extend the method and test it on a wider range of datasets. In par-
ticular, we are currently working on a version that uses triangle meshes and a
Laplacian filter. We plan to experiment with meshes with different facial expres-
sions, and with range images taken from a lateral point of view (or 3D meshes
with occlusions and missing pieces), in order to test for robustness in unstaged
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settings, where non-neutral expressions and large variations in roll and yaw in the
range data could occur. In order to overcome the problems posed by non-frontal
images, we plan to use critical points of the Gaussian curvature (a property
not affected by the image’s point of view) as input to an iterative refining pro-
cess to detect the plane of symmetry of the face, followed by an appropriate
transformation to have the mesh in the canonical view. We also plan to optimize
execution times. The largest time is spent in computing curvature data; this task
is suitable for parallelization and is a good candidate for GPGPU computation,
because curvature on each vertex can be computed independently from other
vertices. Moreover, additional research work could open the way to a curvature
scale-space directly built from raw 3D data (e.g., point clouds) instead of meshes
or range images, which would have even more dramatic advantages.
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