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Abstract. We propose GRUNTS, a feature independent method for
temporal segmentation via unsupervised learning. GRUNTS employs
graphs, through skeletonization and polygonal approximation, to repre-
sent objects in each frame, and graph matching to efficiently compute a
Frame Kernel Matrix able to encode the similarities between frames. We
report the results of temporal segmentation in the case of human action
recognition, obtained by adopting the Aligned Cluster Analysis (ACA), as
unsupervised learning strategy. GRUNTS has been tested on three chal-
lenging datasets: the Weizmann dataset, the KTH dataset and the MSR
Action3D dataset. Experimental results on these datasets demonstrate
the effectiveness of GRUNTS for segmenting actions, mainly compared
with supervised learning, typically more computationally expensive and
not prone to be real time.

1 Introduction

The aim of temporal segmentation is to cut an input sequence into segments
with different semantic meanings; in particular in human action recognition,
some methods focus on simple primitive actions such as walking, running and
jumping, without taking into account the fact that normal activity involves com-
plex temporal patterns. In this work the problem of temporal segmentation of
human behavior is formulated as a temporal clustering problem.

We propose GRUNTS, a novel graph representation that combines the result
of a skeletonization algorithm with a polygonal approximation technique to
obtain a structure that schematically represents the silhouette of the object of
interest for each frame. The name GRUNTS (unskilled workers) describes and
highlights the simple representation that the method uses for each frame. This
method, taking an input sequence, allows to obtain for each frame, the graph
which approximates at best the skeleton of the relative silhouette. After building
all graphs, a graph matching is adopted to estimate the similarities between the
graphs in order to achieve the Frame Kernel Matrix (FKM). Finally, we adopt
the Aligned Cluster Analysis (ACA)[1] on the FKM to segment the sequence.
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The method possesses some advantages: (i) it captures structure information
of each action by a graph representation of the silhouette; (ii) it finds an hidden
structure in unlabeled data; (iii) it efficiently works on different types of datasets
(2D-dataset, 3D-dataset and RGB-D dataset). GRUNTS has been tested in the
framework of human action recognition on three challenging datasets: the Weiz-
mann dataset [2], the KTH dataset [3] and the MSR Action3D dataset [4], and
the obtained results prove the effectiveness of GRUNTS for segmenting actions.

Sections 2 and 3 discuss how the graph is constructed for each silhouette at
each frame, while Section 4 reports the building of the Frame Kernel Matrix by
graph matching and in the Section 5 how ACA works on FKM to segment a
sequence is shown. Finally, in the Section 6 we report the results of GRUNTS
on the three different datasets.

2 Graph Representation

The representation of the meaningful features captured at each frame has an
important role in our approach. Once the skeleton of the silhouette is available,
polygonal approximation is performed to identify the graph approximating the
skeleton branches.

2.1 Skeleton

The skeletonization method adopted by GRUNTS [5] does not require the iter-
ated application of topology preserving removal operations, and does not need
checking a condition specifically tailored to end point detection. In fact, skele-
tonization is accomplished on the distance transform DT of the object, computed
according to the (3,4) distance [6]. Thus, end points are automatically identified
when the so called centers of maximal discs are found in DT. The skeletal pixels
are all found in one raster scan inspection of DT. The set of the skeletal pixels
detected in DT has all the properties expected to characterize the skeleton of the
object except for unit thickness. Indeed, the set of the skeletal pixels is 2-pixel
thick in correspondence of regions of the object with thickness given by an even
number of pixels. Thus, a reduction to unit width is obtained by using tem-
plates able to erase the marker from suitable skeletal pixels. Finally, a pruning
step is also taken into account to simplify the structure of the resulting skele-
ton by removing some peripheral branches corresponding to scarcely elongated
regions. The elongatedness of each object region can be measured by analyzing
the skeleton branch mapped into it and a threshold on elongatedness can be set
depending on the specific application.

2.2 Polygonal Approximation

Several approaches exist in the literature to compute the polygonal approxima-
tion of a digital curve. We use a split type approach [7] because it is convenient
when working with open curves, like the individual skeleton branches. This type
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of algorithm can be described as follows. The two extremes of the input open
curve are taken by all means as vertices of the polygonal approximation. The
Euclidean distance of all points of the curve from the straight line joining the
two vertices is computed. In particular, each point of the skeleton at position
(x, y) and with distance value k can be interpreted as a point in the 3D space
with coordinates (x, y, k). Then, the Euclidean distance d of a point C in the 3D
space from the straight line joining two points A and B, is calculated by using
the following expression:

d2 = ‖AC‖2 − PABC ∗ PABC

‖AB‖2 (1)

where ‖AC‖ is the norm of the vector AC, and PABC is the scalar product
between vectors AB and AC.

The point with the largest distance is taken as a new vertex, provided that
such a distance overcomes an a priori fixed threshold θ(for this work, θ = 1.5, as
we aim at a faithful approximation [8]). If a new vertex is detected, such a vertex
divides the curve into two sub-curves, to each of which the above split type algo-
rithm is applied. The splitting process is repeated as far as points are detected
having distance larger than θ from the straight lines joining the extremes of the
sub-curves to which the points belong. When the recursion is completed the points
that have been detected as vertexes represent the nodes while the segments that
approximate the curve represent the edges of the graph that best approximates the
skeleton (see Fig. 1). Note that Fig. 1b has been cropped to the smallest area safely
including the foreground once the binarized version of Fig. 1a has been obtained,
so as to reduce the amount of data to process.

(a) (b) (c)

Fig. 1. A frame of the sequence (a); binary image where the foreground is the silhouette
(b); the graph obtained by skeletonization and polygonal approximation (c).

2.3 Building the Graph

A graph with n vertexes and m undirected edges is represented as a 4-tuple
Gr = {P,Q,G,H}, where P∈ R

3×n represent the set of vertexes that have
been detected by polygonal approximation. Each vertex has three coordinates,
(x, y,DT(3,4)(x, y)), where x and y are the spatial coordinates of the vertex while
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DT(3,4)(x, y) is the value of DT in position (x, y). The third coordinate is impor-
tant because it describes the thickness of the object region in correspondence
to the skeleton point; in fact, graphs with similar structure may correspond to
objects with different shapes. An example is shown in Fig. 2.

Q∈ R
2×m is the set of edges represented as 2-D vector encoding the Euclidean

distance between vertexes and the orientation of the cth edge. The topology of the
graph is represented by two binary matrices Gn×m,Hn×m, where gic = hjc = 1
if the cth edge starts from the ith node and ends at the jth node.

Fig. 2. Objects with different thickness and skeletons with the same geometrical
structure.

3 The Frame Kernel Matrix

A Frame Kernel Matrix, K∈ R
nf×nf , where nf is the number of frames of

the input sequence, is constructed over the affinity between consecutive frames,
measured as graph matching between consecutive graphs. Specifically, we adopt
the algorithm of graph matching reported in [9]. A measure of similarity between
graphs is achieved through the combination of the distance measures between
vertexes and edges, encoded in the pairwise affinity matrix A. Formally, given a
pair of graphs Gr1 = {P1, Q1, G1,H1} and Gr2 = {P2, Q2, G2,H2}, two matrices
are computed:

– matrix Kp ∈ R
n1×n2 , representing the similarity between the n1 vertexes of

Gr1 and the n2 vertices of Gr2. The value of kp
i,j is calculated as Euclidean

distance between the ith vertex of Gr1 and the jth vertex of Gr2.
– matrix Kq ∈ R

m1×m2 , representing the similarity between the m1 edges
of Gr1 and the m2 edges of Gr2. Kq is calculated as an average between
the matrix Aw (affinity of the weights) and the matrix Aθ (affinity of the
orientations): Aw

ij = |w1
i − w2

j |, where w1
i is the weight of the ith edge of

Gr1 and w2
j is the weight of the jth edge of Gr2, and Aθ

ij = |θ1i − θ2j |, where
θ1i is orientation of the ith edge of Gr1 with respect to the z-axis and θ2j is
orientation of the jth edge of Gr2 with respect to the z-axis.

Vertex and edge affinities are encoded in a symmetrical matrix A ∈
R

(n1·n2)×(n1·n2), whose elements are computed as follows:

Ai1,i2,j1,j2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

kp
i1,i2, if i1 = j1and i2 = j2;

kq
c1,c2 , if i1 �= j1 and i2 �= j2 and

g1i1c1
h1

j1c1
g2i2c2

h2
j2c2

= 1;
0, otherwise

(2)
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where the diagonal and off-diagonal elements encode the similarity between
nodes and edges respectively. To construct the Frame Kernel Matrix, K∈
R

nf×nf , we need a single value of affinity for each graph matching, encoded
in the matrix A. This affinity is calculated as the mean of the maximum ele-
ments in each of nb = nmin · nmin sub-blocks Bnmax×nmax contained in the A
matrix (where nmin = min(n1, n2), and nmax = max(n1, n2)). Each entry, kij ,
defines the similarity between two frames, xi and xj .

4 Aligned Cluster Analysis (ACA)

GRUNTS uses an extension of kernel k-means, ACA [1], for the temporal seg-
mentation of human action. In contrast to k-means, dynamic time alignment
kernel (DTAK) is adopted as measure of distance to establish which action is
represented into a segment, defined as a set of consecutive frames. Furthermore,
given a sequence X= [x1, ...,xn] ∈ R

d×n composed by n frames, ACA partitions
X into m disjointed segments, each one related to a different class representing a
particular action. The ith segment, Yi

.= X[si,si+1) = [xsi
, ...,xsi+1 − 1] ∈ R

d×n,
is composed by frames from position si to si+1 − 1. The length of the segment
is constrained to be ni = si+1 − si ≤ nmax, where nmax is the maximum length
of the segment and controls the temporal granularity of the factorization.

A matrix G ∈ {0, 1}k×m includes information about the assignment of each
segment to a class: gci = 1 if Yi belongs to class c, else gci = 0. ACA extends
previous work [10] by minimizing:

Jaca(G, s) =
k∑

c=1

m∑

i=1

gci‖ψ(X[si,si+1)) − zc‖2 (3)

where k is the number of classes (which is dependent on the dataset), zc ∈ R
d

is the geometric centroid of the data points for the class c and the distance is
computed as follows:

‖ψ(X[si,si+1)) − zc‖2 = τii − 2
mc

m∑

j=1

gcj1τij +
1

m2
c

m∑

j1,j2=1

gcj1gcj2τj1j2 , (4)

where mc =
∑m

j=1 gcj is the number of segments that belong to class c. The
dynamic kernel function τ is defined as τij = ψ(Yi)T ψ(Yj) based on [11] and
ψ(·) denotes a mapping of the sequence into a feature space. Zhou et al. in
[12] presented the hierarchical version of ACA (termed HACA) that reduces the
computational complexity of ACA and provides a hierarchical decomposition at
different temporal scales. HACA replaces the kernel DTAK with the GDTAK
(generalized DTAK) to propagate the solution at different levels, even if it does
not substantially change the main idea.
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5 The GRUNTS Algorithm

The main advantage of our technique surely consists in its feature independence
on the input datasets. This is stressed in the detailed description of Algorithm 1
(see below). Given an input sequence, GRUNTS is performed as shown, and after
the Frame Kernel Matrix is built, the aligned cluster analysis ACA is executed
to obtain the temporal segmentation.

Algorithm 1 GRUNTS
1: Take a sequence in input
2: for all frames do
3: if frame is not a skeleton of the RGB −D dataset then
4: Read each frame of a sequence;
5: if frame is in the 2D − space then
6: if frame is not binary then
7: Background Subtraction by SOBS [13]
8: end if
9: Calculate (3 − 4)DT

10: Skeletonization
11: end if
12: if frame is in the 3D − space then
13: Skeletonization
14: end if
15: Polygonal Approximation
16: end if
17: end for
18: Calculate FKM
19: Execute ACA

6 Experiments

GRUNTS has been evaluated on three different types of datasets: Weizmann
Dataset, KTH Dataset and MSR Action3D Dataset. We set the pruning
threshold to dist2 = 20 and the threshold for polygonal approximation to
θ = 1.5. The Frame Kernel Matrix is calculated by the Gaussian kernel,
kij = exp(−dist(xi,xj)

2

2σ2 ), where dist(xi,xj) is obtained by Graph Matching as
following:

dist(xi,xj) = 1 − (similarityGM (Gri, Grj)), (5)

where Gri and Grj are the graphs respectively related to the frames xi and xj .
To execute ACA on a sequence, we need to set the parameters nmin and

nmax that represent the minimal ad the maximal length of a segment and are
adopted to control the granularity of the factorization. To evaluate the clustering
accuracy, we compute the confusion matrix C and its accuracy as in [12].
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6.1 Weizmann Dataset

The Weizmann dataset [2] contains 90 videos of 10 individuals performing nine
different actions. In this Section we compare GRUNTS with ACA that calculates
the frame kernel matrix as described in [9]. The goal of these tests is to verify
that GRUNTS is characterized by the following two features: i) independence
from actors and action direction, and ii) independence from length and number
of actions:

Independence from Actors and Action Direction. GRUNTS, unlike ACA,
is not sensitive to sequences containing the same actions performed by different
actors, and especially the changes of direction in different actions do not lead to
a decrease in performance. In our experiments, GRUNTS and ACA are executed
on fifty sequences, of seven actions, containing some equal actions executed by
different actors. We show a sample sequence to prove this:

Daria run, Eli walk, Denis walk, Daria skip, Denis jump, Daria jump, Eli run.

The accuracy for this sequence was 0.90 for GRUNTS, and 0.81 for ACA. From
the Frame Kernel Matrix and the segmentation of the sequence shown in Fig. 3,
it is evident that ACA suffers particularly the presence of actions (especially
walk, run, skip and jump) equally performed by different actors and especially
with opposite directions (the gray arrow in the ground truth of the sequences
shows the direction of action). Indeed, the construction of the FKM (matrix on
the left) in the original ACA does not allow to identify the similarity between the
two subsequences “Eli walk” and “Denis walk” in the example (note the differ-
ences between the FKM obtained with ACA and GRUNTS and highlighted with
a blue square), which is more clear in the FKM obtained by GRUNTS (matrix
on the right). This also justifies the great improvement in accuracy achieved by
the proposed technique. Refer to http:// cvprlab.uniparthenope.it/GRUNTS.pdf
to compare the results obtained by GRUNTS and ACA on the fifty sequences.
For both techniques the best parameters have been found for each sequence.
The average accuracy achieved by GRUNTS and ACA is respectively 0.88 and
0.83, showing that GRUNTS has better performance. It is also interesting to
highlight the accuracy achieved by GRUNTS on the sequences: 1, 12, 18, 29, 37,
40 and 49, shown at http:// cvprlab.uniparthenope.it/GRUNTS.pdf , since these
sequences contain actions that are performed by different actors and in different
directions.

Independence from Length and Number of Actions. The performance
of GRUNTS is not related to the length of the input sequences and even to the
number of actions. Fig. 4 shows the graphs obtained by the experiments executed
to confirm the thesis on the independence of the segmentation from the number
of classes (Fig. 4a) and the length of the sequence (Fig. 4b). Looking at the first
graph, it is evident that the results obtained by our method are less related to

http://cvprlab.uniparthenope.it/GRUNTS.pdf
http://cvprlab.uniparthenope.it/GRUNTS.pdf
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(a)

(b)

Fig. 3. (a) Frame Kernel Matrices for ACA and GRUNTS on the sample sequence;
(b) Ground Truth (first row) and Temporal Segmentation by GRUNTS (second row)
and ACA (third row) on the sample sequence.

the number of distinct classes, because the range of GRUNTS is smaller than
that obtained by ACA. The graph on the number of frames, and therefore the
length of the sequence, shows that GRUNTS obtained results always close to
the average value (around 76%), while the results achieved by ACA generally
differ from the average value more than those obtained by GRUNTS.

6.2 KTH Dataset

The KTH dataset [3] contains six types of human actions performed by 25 sub-
jects in different scenarios. For this dataset, as claimed by the authors, ACA
computes the FKM with a technique based on optical flow [9]. We generated 10
random testing videos for the KTH dataset and each of the videos contains 10-
20 clips of different actions. The average accuracies have been: GRUNTS 0.86,
ACA 0.80, HACA 0.83,Spectral Clustering (SC) [10] 0.72, setting nmin = 7 and
nmax = 29 for all experiments of GRUNTS on KTH.

6.3 MSR Action3D Dataset

This dataset [4] contains twenty actions and each action was performed three
times by ten subjects. GRUNTS is executed without skeletonization and polyg-
onal approximation, since the dataset includes a skeleton already computed for
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(a) (b)

Fig. 4. Graphs of average accuracy calculated on 25 tests of 10 actions and on 25 tests
containing 20 actions: (a) Graph of the average accuracy calculated on the number of
classes; (b) Graph of the average accuracy on the length of the sequence.

each frame. Wang et al. [14] divide the dataset into three subsets, on which
we perform GRUNTS. The results on this subsets and the average accuracy are
shown in Table 1. GRUNTS does not outperform in this case, even if its accuracy
is comparable with that of the two techniques with the highest accuracy values,
but it is important to highlight that GRUNTS is an unsupervised method, while
all other techniques are supervised.

Table 1. Performance on MSR Action3D dataset: (a) Accuracy of GRUNTS on three
subsets; (b) average accuracy of GRUNTS and other approaches.

(a)

SubSet GRUNTS

AS1 83.4

AS2 83.7

AS3 88.9

Average 85.3

(b)

Method Accuracy

HON4D + Ddisc [15] 88.9

Jiang et al [14] 88.2

Dollar + BOW [16] 72.4

Vieira [17] 78.2

Klaser [18] 81.4

GRUNTS 85.3

7 Conclusions

The new graph representation for unsupervised temporal segmentation of human
actions reported in this paper gets surely advantage of the adopted structured
representation to deal with feature independence on different datasets. It can
work on different types of datasets and the achieved results are comparable with
the state-of-the-art algorithms of temporal segmentation - with the specificity to
be unsupervised. Indeed, we tested GRUNTS on three different datasets (Weiz-
mann, KTH and MSR Action3D Dataset) and as clustering we have chosen the
ACA clustering for its ability to be robust to noise and invariant to temporal
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scaling factor. We also experimented the hierarchical clustering version (HACA),
but we did not report the results since: the results of the non-hierarchical tech-
niques are comparable to those of hierarchical techniques; the average execution
time of a given sequence of seven actions is 1.90 seconds for non-hierarchical
techniques and about 60 seconds for the hierarchical ones.
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