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Abstract. Though a great deal of research work has been devoted to
the development of dimensionality reduction algorithms, the problem is
still open. The most recent and effective techniques, assuming datasets
drawn from an underlying low dimensional manifold embedded into an
high dimensional space, look for “small enough” neighborhoods which
should represent the underlying manifold portion. Unfortunately, neigh-
borhood selection is an open problem, for the presence of noise, outliers,
points not uniformly distributed, and to unexpected high manifold cur-
vatures, causing the inclusion of geodesically distant points in the same
neighborhood. In this paper we describe our neighborhood selection algo-
rithm, called ONeS; it exploits both distance and angular information to
form neighborhoods containing nearby points that share a common local
structure in terms of curvature. The reported experimental results show
the enhanced quality of the neighborhoods computed by ONeS w.r.t. the
commonly used k-neighborhoods solely employing the euclidean distance.

Keywords: Dimensionality reduction · Manifold learning · Neighbor-
hood selection

1 Introduction

When developing automatic solutions to problems in the pattern recognition field,
most researchers are confronted with intrinsically low dimensional data lying in a
very high dimensional space.This requires dimensionality reduction (dr) as the
first and fundamental processing step, to reduce the data dimensionality without
losing important information.

To this aim, several dr techniques have been proposed in the past, such
as Multidimensional Scaling (MDS) algorithms [14], [9], [15], the mostly used
Principal Component Analysis (PCA [8]), Curvilinear Component Analysis
(CCA) [3], ISOMAP [16], Local Linear Embedding (LLE [12]), Local Tangent Space
Alignment (LTSA [23]) and its variants [17], [21], [20], [18], [22], and the CycleCut
algoritm [5].

Among them, the most recent and effective methods assume that the input
points are uniformly drawn from an underlying locally smooth manifold M ⊆ �d
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embedded into an higher D-dimensional space M ⊆ �d ⊂ �D(d ≤ D), where d
is the intrinsic dimension (id) of M. This leads to the consideration that,
though the manifold local smoothness guarantees that “small enough” mani-
fold neighborhoods can be well approximated by their local tangent spaces, the
embedding map might produce unexpected folds in M, that should be properly
accounted for when trying to discover the underlying manifold geometry.

Practically, most dr algorithms pursue the following steps:

1) Id estimation: the id of the embedded manifold M is a fundamental informa-
tion, usually unknown. However, reliable estimates of its value can be computed
by one of the id estimators recently proposed [10], [2], [6], [11], [13] , [1]

2) Neighborhoods selection: it is based on the fact that “small enough”
neighborhoods may reliably approximate the underlying manifold’s neighbor-
hoods. Two strategies are commonly applied to select the neighborhoods of each
point x: one takes the k nearest neighbors of x, the other selects the points in
the D-dimensional ball centered in x and having radius ε (both k and ε are
parameters to be set).

3) Dimensionality reduction: a reduction function is found, that preserves
neighborhoods relations.

Among the dr techniques applying these steps, we consider LTSA and its vari-
ants. Assuming that point neighborhoods (approximating the underlying mani-
fold’s portions) are “smooth enough” to be well approximated by a linear tangent
space, LTSA firstly applies local SVD to estimate the local tangent spaces approxi-
mating them; secondly, it computes the global mapping by finding the point coor-
dinates that produce the best alignment among all the local tangent spaces. It must
be noted that an accurate global mapping is obtained only if the point neighbor-
hoods are “large enough” to guarantee a good overlap among nearby neighbor-
hoods; unfortunately, the required overlap causes too large neighborhoods, that
often include noise, outliers, points not uniformly distributed, or points belonging
to geodesically distant regions, due to unexpected folds generated by high manifold
curvatures. In this cases the assumptions of LTSA are violated since the approxima-
tion of the neighborhoods via local tangent spaces is not accurate. For this reason,
different variants of LTSAhave beenproposed [17], [21], [20], [18], [22], whichmainly
modify the neighborhood selection and the local tangent space construction.

Though these variants are theoretically sound and the reported experiments
seem promising, it is quite difficult to objectively compare them since none of them
has been tested on standard databases; besides, they are mostly tested on classical
manifolds, such as the Swiss Roll, and results are only visually presented. Though
other dr works [19], [7], [4] are also focusing on the “bottleneck” of neighborhoods
selection, the problem is still crucial and open.

For this reason in this paper we present our proposal, called Optimal
Neighborhood Selection (ONeS). Based on the reliable results obtained by the
id estimator employing both distance and angular information [1], ONeS builds



Neighborhood Selection for Dimensionality Reduction 185

the point neighborhoods by analyzing not only pairwise distances but also angu-
lar informations.

This paper is organized as follows: in Sect. 2 we outline ONeS; in Sect. 3 we
describe the obtained results and report future works.

2 Algorithm

In this section we describe ONeS, which exploits the local angular distribution to
improve the construction of the local point neighborhoods, each describing the
local structure of the underlying manifold portion.

More formally, given a D-dimensional dataset Xn = {xi, · · · ,xn} ⊂ �D

composed by points sampled from a locally smooth d-dimensional manifold M ⊂
�d (with d ≤ D), we define the distance based k-neighborhoods of a point,
xi ∈ Xn, as the set containing the k nearest points in terms of euclidean distance,
and we indicate it as Ndist(xi, k).

This k-neighborhood is commonly used by most of the manifold learning
and dr techniques; we also exploit this structure to discover the local angular
distribution describing the curvature of the manifold portion underlying each
neighborhood. Precisely, for each sample xi ∈ Xn, Ndist(xi, k) is firstly centered
in xi; we then measure the angle between each point xj ∈ Ndist(xi, k) and each
of the D axis of the canonical base of �D, ed with d ∈ {1, · · · ,D} (ed ∈ �D

is a vector composed by zeros, except for the value 1 in the position d). In
this way, given the k neighbors xj ∈ Ndist(xi, k) of xi, we obtain for each
ed (d = 1, · · · ,D), the k angles:

αj = acos

(
< xj , ed >

‖xj‖
)

(1)

where acos is the inverse of the cosine function. Afterwards, for each axis ed we
take the computed k angles αj and we build an histogram of their distribution.
More precisely, we split the interval [0, π] in a fixed number of equal bins (which
we experimentally set to 8), and we count the numbers of angles that fall inside
each of them. As a result, we obtain D histograms, {h1(xi), · · · , hD(xi)} for
the point xi, one for each axis; their concatenation produces a single histogram
h(xi) = [h1(xi), · · · , hD(xi)].

Having computed the histograms h(xi) for all the dataset points xi ∈ Xn,
we assign to each point xi the average of the k histograms h(xj) computed for
its k neighbors:

h(xi) =
h(xi) +

∑k
j=1 h(xj)

k + 1
where xj ∈ Ndist(xi, k) (2)

This reduces the variability between histograms of nearby points, which could
be influenced by the presence of outliers, noise and variation in the density of
the points sampled from the underlying manifold.

Finally, we are ready to build neighborhoods based on the similarity between
the average local angular distribution of each point. In particular, we use the χ2

distance for measuring the similarity between histograms. It is defined as:
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a) b)

c) d)

Fig. 1. Reported figures depict the distances from a given point, circled in red, mea-
sured by means of the euclidean distance and the χ2 histogram distance of angular
distribution (blue points are the closest ones, whilst the red points are the farthest):
a) Swiss Roll with Euclidean distance b) Swiss Roll with histogram distance c) Helix
with Euclidean distance d) Helix with histogram distance

χ2(h1, h2) =
bins∑
n=1

(h1(n) − h2(n))2

h1(n)
(3)

Taking for each xi ∈ Xn the k closest points in terms of the χ2 histogram
distance, we get the angular based neighborhood Nang(xi, k). By doing so, for
each point we build two different neighborhoods which embody two different
informations: the distance based neighborhood Ndist(xi, k), which is based on
the proximity between points on the underlying manifold, and the Nang(xi, k)
neighborhood, which is based on local angular distribution and allows to select
as neighbors those points that share a common local structure in terms of cur-
vature (see Figure 1). A joint use of these two structures allows to obtain local
neighborhoods that not only have small radius, but are also less affected by the
curvature due to the manifold embedding.
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Algorithm 1. ONeS

Require: Dataset Xn, k, k̂
return Neighborhood set Nfinal(xi, k) for each xi ∈ Xn

for i = 1, · · · , n do
Ndist(xi, k) = Find nn euclid(Xn,xi, k)
[The function Find nn euclid(Xn,xi, k) finds the k neighbors of the point xi in Xn

using Euclidean distance.]

Ñdist(xi, k) = Ndist(xi, k) − xi

for d = 1, · · · ,D do
for xj ∈ Ñdist(xi, k) do

αj = ∠xj , ed

end for
hd(xi) = Histogram({αj})

end for
h(xi) = [h1(xi), · · · , hD(xi)]

end for
for i = 1, · · · , n do
h(xi) = (1/(k + 1))h(xi) +

∑k
j=1 h(xj) where xj ∈ Ndist(xi, k)

end for
for i = 1, · · · , n do

Nang(xi, k̂) = Find nn χ2(Hn,h(xi), k̂)
[Hn is the collection of the mean histogram for each point of the dataset Xn. The

function Find nn χ2 is the analogue of Find nn euclid using χ2 histogram distance

instead of the Euclidean distance.]

Ndist(xi, k̂) = Find nn euclid(Xn,xi, k̂)
Nfinal(xi, k) = Borda count(Ndist(xi, k̂),Nang(xi, k̂), k)
[The Borda count function is the method Borda Count as described in this section].

end for

Table 1. Brief description of the synthetic datasets employed in our experiments,
where d is the intrinsic dimension and D is the embedding space dimension.

Name d D Description

M2 3 5 Affine space.

M3 4 6 Concentrated figure, confusable with a 3d one.

M4 4 8 Nonlinear manifold.

M6 6 36 Nonlinear manifold.

M7 2 3 Swiss-Roll.

M8 12 72 Nonlinear manifold.

M9 20 20 Affine space.

M11 1 3 Möebius band 10-times twisted.

To perform a proper mixture of distance and angular neighborhoods we fix
k̂ > k, build two new sets Ndist(xi, k̂) and Nang(xi, k̂), as described above, and
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use the simple and well known Borda count method to select the k points that
are the closest to xi with respect to both the euclidean and the angular distance.
More precisely, given two sets of size k̂, sorted in ascending order, the Borda count
method selects the points sharing the top positions between the two indexed sets;
to this aim, it assigns the score k̂ to the first element of each set, the score k̂ − 1
to the second element, and so on, till the value 1 is assigned to the last element
of the sets. The algorithm then sums the scores obtained by each element in the
two sets (if an element is not present in a set its score is zero), orders the elements
according to the resulting scores, and takes the first k elements. In this way the
neighborhood set Nfinal(xi, k) obtained for each point xi is a combination of the
two sets Ndist(xi, k̂) and Nang(xi, k̂).

In the next section, experiments on synthetic and real datasets show that the
algorithm ONeS builds local neighborhoods preserving the proximity relations
between points and being less affected by the manifold curvature.

3 Experimental Results and Future Works

In order to assess the quality of ONeS, we compare the neighborhood sets it
computes with the commonly used k-neighborhoods, obtained by employing the
euclidean distance.

The comparison employs a measure, which we call residual, that indicates
how much the point neighborhoods are affected by the manifold’s folds gen-
erated by the embedding. Under the assumption that the manifold has id d,
once a neighborhood is computed, its residual is obtained by building its local
d-dimensional tangent space and calculating the mean distance between each
neighborhood point and its projection on the tangent space, normalized by the
neighborhood radius (i.e. the distance of the farthest point from the center). The
residual for a given dataset is the average residual over all the neighborhoods.

Table 2. Percentage values of the relative improvement using ONeS. Since manifold
M9 has an id of 20, we need to fix k = 22, k̂ = 33 and k = 22, k̂ = 44, in order to
estimate a d-dimensional tangent space having k > d points.

Name k = 12, k̂ = 18 k = 12, k̂ = 24

M2 62% 57%

M3 69% 67%

M4 29% 23%

M6 19% 13%

M7 48% 32%

M8 9% 6%

M∗
9 32%∗ 24%∗

M11 47% 42%

Name k = 12, k̂ = 18 k = 12, k̂ = 24

MNIST0 5% 9%

MNIST1 5% 7%

MNIST2 3% 5%

MNIST3 5% 8%

MNIST4 3% 6%

MNIST5 2% 5%

MNIST6 7% 13%

MNIST7 2% 5%

MNIST8 3% 6%

MNIST9 4% 8%
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a) b)

c) d)

Fig. 2. a) Two dimensional dataset composed by 1000 points b) Non linear embedding
in three dimensions c) Reduced dataset obtained by LTSA using Euclidean distance
based neighborhood sets (k = 12) d) Reduced dataset obtained by LTSA using neigh-
borhood sets calculated by ONeS (k = 12, k̂ = 60)

In order to perform experiments on datasets composed by points sampled
from manifolds of both low and high id, linearly and nonlinearly embedded in an
higher dimensional space (see Table 1), we use the datasets generator proposed
in [6]. Besides, we test ONeS on the digit test set contained in the standard MNIST
database, which contains 784-dimensional points, and has an estimated i.d. in
the range [8, · · · , 11] [6]. In Table 2 we report the results obtained by fixing
k = 12, a commonly used value in the literature, and k̂ = 1.5 ∗ k, k̂ = 2 ∗ k. The
results are expressed as percentage values, which show the relative improvement
in the reduction of the residual. Precisely, being R the residual estimated using
the k-neighborhoods, and R̃ the residual estimated using ONeS, the percentage
is obtained as 100 − R̃

R ∗ 100.
The reported results show the enhanced quality of the neighborhood set com-

puted by OnES both on the synthetic and on the real datasets, the latter being
noisy and sparse. It is notable to observe that neighborhoods built on noisy and
sparse dataset may benefit by using higher values of k̂, that is by considering
more candidate neighbors. s a further visual experiment and example, we gen-
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erate a two dimensional dataset (Figure 2.a) embedded in a three dimensional
space (Figure 2.b), and having folds characterized by different curvatures. On
this dataset we test LTSA using two different neighborhood sets, the set built by
the k-neighborhoods employing the euclidean distances, and the sets built by
ONeS. The neighborhood sets obtained by ONeS allow LTSA to obtain a better
preservation of the original data structure.

Future works will be aimed at the experimental analysis of the relation
between the parameters k, k̂, the dimensionality of the given dataset, its cardi-
nality, and the id of the manifold from which the dataset points are sampled.
Besides, we are currently searching for an evaluation measure that could be
more general than the residual, and different techniques to select the final neigh-
borhood set since we are aware that the Borda count method is based on an
independency assumption which is not guaranteed to be true. Further efforts
will be devoted to the development of a dr technique using the neighborhood
sets calculated by ONeS, and its comparison with state-of-the-art dr techniques,
which use an adaptive neighborhood selection. Particularly, we will focus on the
improvement of both the dr accuracy and its computational efficiency.
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