Global and Local Gaussian Process
for Multioutput and Treed Data

Jhouben J. Cuesta®), Mauricio A. Alvarez, and Alvaro A. Orozco

Faculty of Engineering, Universidad Tecnolégica de Pereira, Pereira, Colombia
{jycuesta,malvarez,aaog}@utp.edu.co

Abstract. We propose a novel Multi-Level Multiple Output Gaussian
Process framework for dealing with multivariate and treed data.We
define a two-layer hierarchical tree with parent nodes on the upper layer
and children nodes on the lower layer in order to represent the interac-
tion between the multiple outputs.Then we compute the Multiple Output
Gaussian Process (MGP) covariance matrix as a linear combination of
a global multiple output covariance matrix (using the total number of
outputs) and a set of local matrices (only using the outputs belonging to
each parent node). With this construction of the covariance matrix and
the tree we are capable to do interpolation using the MGP framework. To
improve the results, we also test different ways of computing the Intrinsic
Model of Coregionalization covariance matrix that uses the input space.
Results over synthetic data, Motion Capture data and Wireless data
shows that the proposed methodology makes a better representation of
treed multiple output data.

1 Introduction

Gaussian Processes (GP) [7] are widely used for Bayesian regression and clas-
sification. Recently, they have been used more often in different disciplines due
to its powerful prediction abilities, and the availability of GP implementations
in different programming languages. GP provides a framework for non-linear
interpolation and uncertainty quantification for single output problems (e.g.,
modeling the stock exchange), and multiple output problems (e.g, modeling a
temperature map over a complete area) [4]. In the latter case, the GP are usually
known as multiple output Gaussian processes (MGP). A MGP makes possible to
include the correlation of the outputs, improving predictions while maintaining
a positive definite covariance matrix.

In this paper, we are interested in modeling multiple-output data with a hier-
archical relationship between the outputs (e.g.,the relationship between femur,
tibia and the foot in the skeleton) in order to keep improve the predictions by
exploiting the hierarchical correlation of the outputs. There are some method-
ologies that have made predictions for one output treed data, either by dividing
the input space and computing classification and regression Trees [9]; making
partitions over the input data and defining independent GP for each partition
[8], [14]; or putting a prior over the inputs [11].
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To the best of our knowledge, the papers [5] [10] are the only two dealing
with a multiple output treed data configuration. [10] proposes a Multivariate
Bayesian treed Gaussian process to model the cross-covariance function and the
nonstationarity of a set of multivariate outputs defining partitions over the input
space. In [5] is proposed a multiple output framework for uncertainty quantifica-
tion based on a construction of a correlation tree using a multi-element method,
but assuming a constant relationship between outputs for a fast computing. In
this paper, we propose a MGP modification (GLMGP) that includes Global and
Local relationship between multiple output data and stores it into a covariance
matrix. Despite of needing a prior knowledge of the hierarchy of the data, the
proposed model improves the prediction performance and conserves the classical
tractability of the GP framework. We made predictions over real hierarchical
multiple output data applications: motion capture data-set', where the angular
position and the hierarchical structure of the bones and a wireless spatial net-
work configuration with sectors located within cells. Furthermore we improve
even more the predictions by changing the way of computing the covariance
matrix given the application.

This paper is organized as follows: in Section 2 we explain the way to go
from a GP passing through a MGP in order to define the proposed GLMGP in
Section 2.3. Later in Section 3 we made a comparison of the results of the MGP
and the proposed methodology; we first explain the validation measures used to
compare the models (Section 3.1), then we compare and analyze the results over
simulated and real data. Finally on Section 4 conclusions are made.

2 Materials and Methods

In this section, we remark the basics of a GP regression. Later, we explain
the multiple output framework with the two common approaches for covariance
matrix computation: the linear model of coregionalization and the process con-
volution. Finally in Section 2.3 we introduce the proposed methodology and the
proposed modification to the multiple output approach.

2.1 Gaussian Process

A Gaussian Process (GP) is a possible infinite collection of scalar random
variables indexed by an input space such that for any finite set of inputs
X = {x1,X3, -+ ,X,}, the random variables f £ [f(x1), f(x2),--- , f(x,)] are
distributed according to a multivariate Gaussian distribution. A GP is com-
pletely specified by a mean function m(x) = E[f(x)] and a covariance function
kr(x,x') = E[(f(x) — m(x))(f(x") — m(x’))T] [12]. This formulation takes the
form

f(x) ~ GP (m(x), k(x,x)).

1 CMU Graphics Lab Motion Capture Database, available on: http://mocap.cs.cmu.
edu/


http://mocap.cs.cmu.edu/
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Without loss of generality, the mean function is assumed to be equal to
zero. A covariance function is a positive semi-definite function that measures
the similarity between pairs of points over the input space 9. Such functions
are used to compute the so-called Gram matrix o kernel matrix. Examples of
covariance functions are the Squared Exponential (RBF kernel) expressed as

F(x,x') = exp (_”X;;‘”) , (1)

where ¢ corresponds to the length-scale; and the Matern Class given by:

21—v 2ur : 2ur
k(r)zr(y)< 7 )K( 7 ) (2)

where r = ||x —X||, v and £ are positive parameters and K, is a modified Bessel
function as in [7]. Common cases of v are %,2,2 In the case of a v = 1/2 and
D =1 this kernel function is called Ornstein Uhlenbeck kernel (OU-kernel).

Using A (0,K) as GP prior over the functions f(x) and a likelihood distri-
bution given by y(x) = f(x) +e€ (where € ~ AL (0,02)) and using Bayes theorem,
it is possible to obtain a predictive distribution for a set of new inputs X,

£ X, y, X ~ N (£, cov(f,)), (3)

where f, 2 E[f,|X,y, X.] = K(X,,X)[K(X,X) + 02I]~! and the covariance
cov(f,) = K(X,, X,) - K(X,,X)[K(X,X) + 021 ' K(X, X,), here K(X, X) is
the covariance function evaluated on the training set X, K(X., X) is the covari-
ance of the training and test sets, K(X.,, X,) is the covariance of the new inputs
and the parameter o2 represents the variance of the noise.

The estimation of the covariance function parameters is performed by maxi-
mizing the log marginal likelihood by a gradient-descent algorithm [6] [13]. The
log marginal likelihood is given as in [7]

1

log p(y|X, ¢) = 5

1 N
y' 27y — 5 log|¥| - 5 Dlog(2m), (4)
where D is the dimension of x, N is the number of training inputs, y is the vector
of outputs corresponding to the total of inputs X, ¢ represents the parameters,
and ¥ = K(X,X) + 021

2.2 Multiple Output Gaussian Process

The Multiple Output Gaussian Process (MGP) framework starts by defining a
set of latent Gaussian processes which are then linearly combined to represent
the different outputs, and thus modeling correlations between them. The key
point in such framework is the definition of a suitable covariance function, in a
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mathematical sense, i.e., the covariance function for multiple outputs has to be
positive semi-definite. See [3] for a review of different kernel functions for vector-
valued data. Once the covariance funcion is defined, the predictive distribution
follow a similar form to Equation (3). The parameters of the covariance funtion
can be estimated by maximizing a marginal log-likelihood similar to (4).

In what follows, we briefly review the linear model of corregionalization, which
is a common choice to build valid covariance functions for multiple outputs [2],
and that we use for building the multi-level multi-output covariance function.

Linear Model of Coregionalization: In the linear model of coregionaliza-
tion (LMC) the covariance function is formed by a sum of separable kernels.
Under this LMC assumption, the outputs are expressed as linear combinations
of independent random functions, ensuring a valid positive semi-definite covari-
ance matrix [3]. Over a set of outputs {f4(x)}1_, with x € RP, each component

fa is expressed as
Q Rq

Jalx) = 32 al yu (),

q=1i=1

where (Q represents the groups of latent functions ufl (x) and R, are represents
the number of functions in a group that share the same covariance; and the
functions ufl(x), with ¢ = 1,...,Q and ¢ = 1,..., R, have mean equal to zero
and covariance Cov[ué(x),uf]/, (x")] = ky(x,x’) if ¢ = ¢’ and ¢ = ¢’. The cross-
covariance between any two functions fy(x) and fj;(x’) is given in terms of the

covariance functions for uf(x)

Q Q Rq Rq

cov[fa(x), far (x)] =D NN "a jak covlul (x), ul (x)].

g=1q¢’'=1i=1i'=1

Due to independence of the latent functions, the kernel matrix can now be

expressed as
Q

K(x,x') = Zqu‘I(X’ x'), (5)

q=1

where @) represents the number of latent functions, each B, € RP*P is known
as a coregionalization matriz and the rank R, of each matrix B, is determined
by the number of latent functions that share the same covariance function.

When @ = 1 in Eq. (5), the LMC approach is known as the Intrinsic Core-
gionalization Model (ICM). The kernel matrix for multiple outputs becomes
K(x,x') = k(x,x")B [1], and for an entire data set X takes the form

K(X,X)=B® kX, X), (6)
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Fig. 1. Representation of a Global-Local or Parent-Child treed structure. V represents
the variable of interest. The red nodes represent the C parents and the lower D nodes
represent the total number of children (equal to the total number of outputs of a single
MGP approach).

where the operator ® represents the Kronecker product. There are different ways
in which B can be parameterized. One of them is using a Cholesky decomposi-
tion, B = LLT, or using a kernel matrix computed from a valid kernel function,
like the ones in Egs. (1) and (2).

2.3 Global and Local Multi Output Treed GP

In this paper, we propose the Global and Local Treed Multiple Output Gaussian
Process (GLMGP) as a multiple output GP that computes the correlations of
multiple-output data with a parent-child- type of configuration.

We first define the tree T as a vector of parent indexes for every child output.
With this information we compute a global covariance matrix K, defined as a
Multi GP covariance for all the outputs (using, for example, the LMC) and later
we compute the contribution of the children as a block-diagonal matrix formed
by a set of C' local matrices K (where C is equal to the number of parents of
the global layer and ¢ = 1,...,C). Each local matrix K} is computed again as
a multiple output covariance matrix, but in this computation the outputs are
equivalent to the group of children associated to the ith parent (again this covari-
ance is computed using, for example, LMC). The resulting covariance matrix K
takes the form

K = K, + blockdiag({K}}¢ ),

where C' is the number of parents, and each matrix K, and K, is computed as
in Equations 5 or 6.

The Figure 1 shows a general treed structure with a two layer (parent-child)
representation. A real-life example of a tree structured data is Mocap data. Here
we have measures of the spatial position of different body parts while a subject
is performing a motion. Here, the tree is represented by the body that has a
hierarchical inner structure i.e the femur, tibia and the foot of the left leg. We
can exploit a parent-children relation where the femur is the parent and the
tibia and the foot that will include information of the skeletal structure. Now,
the position data of the leg can be interpreted as multiple output because of the
influence of the femur, tibia and foot on the motion of a subject.
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Fig. 2. MultiGP Covariance Matrix Block Structure for a set of 6 outputs f

Figures 2 and 3 show both a MGP and GLMGP covariance matrices for
a configuration of six outputs and the same six outputs plus a tree structure
conformed by three parents for the GLMGP (these two configuration will be
explained in detail on Section 3.2). We see that our proposed covariance rep-
resents the children contribution as a non uniform increment of the values of
the diagonal block. The increment value depends on the contribution that the
children do to each parent. The proposed modification of the covariance matrix
is flexible in the way that we can define different covariance functions, number
of latent functions or rank for the coregionalization matrices for each part of
the tree, this means we can define a different configuration per each Multi-GP
covariance matrix to be computed. Asides this modification does not represent
any change on the marginal likelihood expressed before in Equation 4.

In the proposed methodology, we compute the covariance matrices using the
ICM. The ICM matrix was computed using two approaches: using a Cholesky
decomposition (called ICM-L) and a covariance function (called ICM-K). The
use of ICM-L or ICM-K depends on the context and will be explained further
in the results on Sec. 3.
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Fig. 3. GMLGP Covariance Matrix Block Structure for a set of 6 outputs f

3 Results

In this section we compare the results obtained after comparing the MGP LMC
methods against the GLMGP ICM-L and ICM-K over synthetic and real data.
First in Section 3.1 we describe the Validation and Error Measures. Later we
report the results over synthetic and real data in Sections 3.2 and 3.3 respec-
tively. All the algorithms were trained using 70% of the data and validated with
remaining 30%. We used the the kernels OU, Squared Exponential and Matern
3/2 covariance functions as expressed on Equations 1 and 2 on section 2.2. We
repeated the experiment 10 times in order to report a standard deviation of the
€rror measures.

3.1 Validation and Error Measures

The proposed GLMGP methodology and the MGP LMC were compared using
the Standardized Mean Square Error (SMSE) and the Mean Standardized Log
Loss (MSLL) measures [7] via hold-out validation (see [6]) and computed as in [2].
It is important to remark that a lower SMSE error implies a better interpolator
and a lower negative MSLL implies that the model is more adequate to the data.
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3.2 Results over Simulated Data

We generate a first synthetic data-set (Syl) from a Multiple Output Configu-
ration using a MGP model (composed by a one-dimensional input, 6 outputs,
30 points per output, a matern 3/2 kernel, @ = 1 latent functions and a rank
of coregionalization matrix of R, = 1). We generate a second synthetic data-set
(Sy2) from a Global Local Treed Configuration model with the same 6 outputs,
a hierarchical tree T' = [1,1,1,2,2,3] (this tree means that there are 3 nodes in
the Global layer and the first node have 3 outputs associated, the second node
have 2 and the third node just 1 output), a @ = 1 a matern 3/2 kernel for the
Global layer and [OU,0U,matern32] respectively to each group of outputs on the
Local layer. The results over Syl and Sy2 are summarized in tables 1 and 2. The
first table shows that on the MGP data the GLMGP is as better interpolator
and model than MGP, but in the second table we see that the proposed GLMGP
performs and model better the tree structured data. It is important to remark
that both methods were trained using just a matern32 kernel and using Q = 1
and Ry, = 1.

Table 1. Results Over Syl Data. Methods with a * used both the same training points

Model SMSE MSLL
MGP LMC 0.2185 £0.0813 -1.0499 £0.0839
GLMGP ICM-L 0.2192 £0.0878 -1.0335 £0.1132
MGP LMC* 0.1208 £0.0176 -1.1398 £0.1046

GLMGP IMC-L* 0.1173+0.0183 -1.1406+0.1310

Table 2. Results Over Sy2 treed Data. Methods with a * used both the same training
points

Model SMSE MSLL
MGP LMC 0.2156 +0.0357 -1.3623 £0.1061
GLMGP ICM-L 0.1245 +0.0302 -1.4918 £0.0916
MGP LMC* 0.1480 +0.0419 -1.4175 £0.0948

GLMGP ICM-L* 0.0881+0.0143 -1.6910+0.0718

3.3 Results over Real Data

In this section we show examples of interpolation for real data. Firstly we use
Mocap data-set (Online Available http://mocap.cs.cmu.edu/) as a time series
regression example. Later a Colombian Network Wireless data is used for a
spatio-temporal interpolation (this database is not available due to copyright).
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Mocap Dataset. For Mocap data we worked with the Subject eight - trial two
of a walk motion. We selected the bone structures of the right leg and left leg as
Global layer parents; and the femur, tibia, foot and toes as the children for each
parent (with reference to Figure 1). The time interval ¢ of the motion was taken
as the input X while the angles 0,,0,,0, were taken as the outputs. There was
a total of 8 outputs because we remove 4 angles that had no significant variation
(le—7) and a tree T' = [1,1,1,1,2,2,2,2]. With this data we did interpolation
using the MGP LMC and the GLMGP. Table 3 shows the results of the MGP
against the two proposed methodologies. We see that GLMGP ICM is slightly
better than MGP on SMSE, but has a better interpretation for Mocap treed data.
In this one dimensional case we used the Cholesky decomposition for computing
the coregionalization matrix (ICM-L) instead of a covariance function (ICM-K).
This is done because because of using ICM-K was not ensuring a positive definite
covariance matrix.

Table 3. Results over Mocap Data

Model SMSE MSLL

MGP ICM 0.2880 £0.0186 -0.8839 £0.0551
GLMGP ICM-L 0.2533+0.0166 -1.2894+0.0780

Wireless Treed Data. The Wireless data used in this paper is conformed by 30
daily measurements of a Traffic Key Performance Indicator (KPI) of a network
of 32 sectors placed in 11 different spatially located cells. Using the information
of the cell-sector relationship we treated the cells as a parent and the sectors
as the children and defined the tree as T = [1,1,2,2,2,3,3,3,---,11,11,11].
We take the spatial coordinates [z, ,x,,] and the day ¢; as the inputs, and the
KPI value as the output y. We tested different configurations of MGP LMC and
GLMGP and reported the best results on Table 4. The best LMC model was a
configuration of a matern32 kernel with ¢ = 2 and R, = 1; the best ICM-L was
a configuration of matern32 for Global layer and OU for local layer with R, =1
for all the MGP covariances computed. The best ICM-K model had the same
kernel configuration of ICM-L. Despite of this we see on the results table that
ICM-K improves the results considerably, even for the SMSE.

Table 4. Results over Wireless Treed (Cell-Sector) Data.

Model SMSE MSLL

MGP LMC 0.2885 +0.0390 -0.9147 £0.0789
GLMGP ICM-L  0.4744 £0.2720 -0.6850 £0.4064
GLMGP ICM-K 0.1602+0.0149 -1.1726+0.3011
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4 Conclusions

We have presented GLMGP as a model that takes into account a parent-child
relationship between data outputs and represents it in a covariance matrix.
Instead of modifying the prior, we defined a tree with global indexes over the
inputs that remains unchanged the tractability of the model. This model proved
to be better than the MGP in capturing the information and interpretation of
the structured data . Despite of the fact that the model can not learn or define
a proper tree by its own, it is very useful in applications when we know the
interaction of the output variables previously like the cell-sector relationship,
skeletal structures of the body, etc.

We also tested two ways of computing the coregionalization matrix in order make
a more flexible model the ICM-L and the ICM-K. In the case of the ICM-L it had
a good performance for synthetic and mocap data and the ICM-K performed
better on the wireless data-set. In the future, we expect to improve this model
in order to include more than a Global and Local layers and also a modification
that can estimate a tree structure that improves the interpolation results. In
addition, for the one-dimensional case, we expect to find a parametrization of
the outputs under the ICM-K framework to ensure a positive definite covariance
matrix.
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