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Abstract. The quest for the “best” background subtraction technique
is ongoing. Despite that a considerable effort has been undertaken to
develop flexible and efficient methods, some elementary questions are still
unanswered. One of them is the existence of an intrinsic upper bound to
the performance. In fact, data are affected by noise, and therefore it is
illusory to believe that it is possible to achieve a perfect segmentation.
This paper aims at exploring some intrinsic limitations of the principle
of background subtraction. The purpose consists in studying the impact
of several limiting factors separately. One of our conclusions is that even
if an algorithm would be able to calculate a perfect background image,
it is not sufficient to achieve a perfect segmentation with background
subtraction, due to other intrinsic limitations.

1 Introduction

The background subtraction (BGS) is a well studied problem [2,10] for which,
despite the impressive amount of methods proposed in the literature so far,
no satisfactory technique has been found yet (for all cases) [6,7]. This paper
discusses the limits of pixel-based BGS methods. They aim at classifying, for each
frame of a video sequence, pixels in the foreground (FG) or background (BG)
classes by performing a motion analysis. It is an online unsupervised one-class
classification problem, as the goal is to learn the distribution of the background
colors on-the-fly, in an unsupervised way (no sample with known label FG/BG
being provided a priori), and to classify new colors based on the representation
(named the model) of this sole BG class. Note that even if other types of features
are sometimes considered (e.g. local binary patterns in [9], local binary similarity
patterns in [13], or gradients [8]), we limit the scope of this paper to colors.
Each classification problem has an intrinsic performance limit; this holds also
for background subtraction. Indeed, a perfect classifier can only be theoretically
obtained when the distributions of the samples (the colors in the case studied
in this paper) of the two classes have disjoint supports. For all other cases, the
class overlapping introduces an upper limit to the performance. In the context
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of BGS, a class overlapping originates from similar colors in the foreground and
background. This can result, for example, from the noise in the images (this noise
coming from the sensor or from the compression of the video stream), varying
lighting conditions, shadows, or camouflage. We are interested in working out
whether, aside from the theoretical limit, there is some room left for improving
the performance of BGS techniques, or if the limit has already been reached. In
the case of BGS, the performance limit also originates from the way the decisions
are taken (the per-pixel decisions have to be fast in order to work in real time,
and memory constraints prevent from storing a lot of information per pixel).
This should also be considered when we discuss the performance limit.

The outline of this paper is as follows. Section 2 presents how the decisions
are traditionally taken in BGS algorithms. Dividing the processing pipeline into
the initialization and updating parts on the one hand, and the segmentation part
on the other hand, allows us to present results independent of any choice for a
particular BGS algorithm. As the initialization and updating parts essentially
aim at estimating the background image (more information about this topic
can be found in the SBMI workshop [11]), we derive a performance bound that
depends on the amount of noise affecting this image (that is the model). Our
approach to compute this bound is presented in Section 3. Bounds computed
for a few common decision rules (the segmentation processes) are presented and
discussed in Section 4. In addition, we show how these bounds vary with respect
to the main characteristics of the video sequences (amount of noise, quantity
and magnitude of shadows, proportion of foreground). Finally, the conclusion is
given in Section 5. Our results establish that being able to compute a perfect
background image does not really help to raise the performance limit, due to
the other intrinsic bottlenecks of the BGS problem (even if this is important for
other applications such as video inpainting or computational photography).

2 The Traditional Processing Pipeline of BGS Algorithms

The Segmentation Process. Even if online learning, unsupervised learning, and
one-class classification are studied by the machine learning community, most of
the BGS algorithms do not leverage machine learning techniques. The trend is
to directly threshold the distances between colors stored in the model, as in a
nearest neighbors analysis, or to test if the observed color follows the distribution
encoded in the model. The difference originates from the constraints of the BGS:
the per-pixel classifiers have to run in real time with low memory, and to adapt
themselves with only a few observed samples of the (supposed) BG class.

The Variety of Models. In the simple case of the frame difference algorithm,
the model is the color observed at the same location in the previous frame.
To the contrary, conservative approaches try to build a model describing only
the background. Strictly speaking, the model encodes the distribution of colors
predicted as being in the background, instead of encoding the distribution of
colors being in the background. This nuance should not be overlooked as it is
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intrinsic to any unsupervised one-class classification approach. A large family
of BGS methods use probabilistic models of the background, often parametric
ones. For example Wren et al. [15] supposed a Gaussian distribution, and adapt
only the mean and variance of this distribution on a pixel basis. Other well-
known methods of this family include the mixture of a fixed amount of Gaussians
proposed by Stauffer and Grimson [14], and the mixture of Gaussians with an
adaptive amount of components introduced by Zivkovic [16]. As an alternative
to these probabilistic models, sample-based ones have been developed. They
represent the background distribution with a set of samples drawn from this
distribution. This is the case for the KDE [4] and ViBe [1] algorithms. In this
study, we assume that the model is an estimated background image (this is the
topic of the SBMI workshop [11]).

Motivation for Discussing the Limits of Pixel-based BGS Methods. Aside from
the particular technical details of BGS algorithms, three elements of background
subtraction should be considered:

1. [Initialization] The initialization aims at learning a good model from as
few frames as possible from the video. Typically, when foreground objects
are present in the first frames, the model needs time to erase the foreground
objects, leading the appearance of so-called ghosts.

2. [Updating] The model has to be maintained to deal with temporal changes
in the scene. Note that periodic or quasi-periodic modifications with high
frequency are often considered as giving rise to a distribution of background
colors that is a mixture, instead of a varying distribution.

3. [Segmentation| The result of the classification process is a segmentation
map, with identified foreground or background pixels. Spatial coherence can
be enhanced by post-processing the segmentation masks, or by propagating
the neighboring distributions into the pixel’s model as done by ViBe. Both
techniques can also be combined. Note that post-processing techniques are
known to always increase the performance [3,12]. In this paper, we study
the performance of the BGS without any post-processing.

While authors propose sophisticated methods to increase the performance, it
is interesting to understand if there are limitations, and where they originate
from. To our knowledge, this question has not been explicitly studied in the
literature. In order to discuss this theoretical question, we focus on the sim-
ple, but often encountered case, of a fixed background. It follows that the ini-
tialization and updating problems then become the problem of estimating the
background image, which is the main focus of the SBMI workshop [11]. In this
paper, we assume that the background image can be estimated, and we discuss
the existence of theoretical upper bounds on the performance for pixel-based
BGS algorithms.

3 Methodology

For some video sequences, foreground and background colors are so different
that obtaining a perfect segmentation is trivial once the background is perfectly
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known. Considering such a video leads to a highly optimistic upper bound on the
performance. To the contrary, in case of the camouflage effect, the foreground
and background colors are so close that is impossible to distinguish between the
two classes and that the BGS algorithms have a performance limited to that
of a random classifier. Such a video leads to a very pessimistic upper bound.
The upper bound of the performance is therefore video specific. The difficult
question consists to determine the expected upper bound for a video sequence
with unknown characteristics.

It is hard to determine the upper bound directly from state-of-the-art
datasets for evaluating BGS algorithms, such as changedetection.net [6,7]. The
reason is that they contain only a few dozens of video sequences. Due to the
large variations in the characteristics of the video sequences, the small size
of these datasets prevents from estimating a statistically significant averaged
upper bound by averaging the performances measured experimentally on each
sequence. Moreover, considering the pixels contained in a few video sequences as
the test set is suboptimal as there is a natural spatial and temporal coherence
in videos, leading to poor diversity and most probably to a biased estimation of
the upper bound.

For studying the performance of BGS techniques taking their decisions on the
pixel values, it is not necessary to have a video sequence. The reason is twofold.

1. In the absence of post-processing, the pixel-based nature ensures that the
neighboring pixels do not have to be considered in order to study the behavior
of the BGS for a pixel. Moreover, because we assume the background image
can be computed, there is no need to consider the past of the video to study
the behavior of the BGS: the model does not change over time as it represents
the real background, regardless of the current frame.

2. The evaluation of the segmentation map occurs on a pixel base in most
benchmarks such as changedetection.net [2,10], which indicates that the
spatial coherence is not the primary concern. In fact, none of the 7 met-
rics computed on that website depends on the temporal or spatial order of
pixels.

We argue that, in consequence, the expected upper bound can be obtained by
choosing the test samples randomly in the space of pixels (which is of low dimen-
sion) instead of selecting them in the space of video sequences (which has an
intractable dimension). Accordingly, we decide to simulate synthetic distribu-
tions at the pixel level, and to measure the upper bound experimentally. Note
that our methodology could also be used to calculate upper bounds for region-
based BGS methods, but in that case a statistical model of the spatial coherence
would be necessary. In the absence of any prior information about the observed
colors, we assume an uniform distribution of colors in the RGB space, both for
the foreground and the background. All colors components are assumed to be
real numbers between 0 and 1, but final RGB values are quantized over 8 bits
in the input images as well as for the background image stored in the model.
The noise statistic is supposed to be Gaussian, as assumed in several BGS tech-
niques [14-16]. More precisely, we draw noise values randomly, independently for
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(a) original image (b) noise with ¢ = 0.06  (c) value decreased by 0.3

Fig. 1. Illustration of the magnitude of simulated imperfections.

each channel, from a centered normal distribution truncated in such a way that
the noisy color is still in the range of possible colors (i.e. all components between
0 and 1). Noise can affect the observed images as well as the background image
(that is the model). A standard deviation of 0.06 is considered as realistic (see
Figure 1). The noise level in the model can be lower than the one in the input
images if the BGS method uses internally a temporal noise filtering technique.
We also simulate the shadows affecting the background part of the input images
due to the foreground elements in the scene. In our experiments, the shadows
are not present in the model, but only in the observed image. Shadows decrease
the value channel; we consider a decrease of 0.3 as being typical (see Figure 1).
We wrote a software for computing ROC curves [5] with a Monte-Carlo app-
roach, given (1) the amount of noise corrupting the input image, (2) the quality
of the background image estimation that is stored in the model (that is the
quantity of noise affecting it), (3) the average proportion of shadowed pixels,
and (4) the corresponding decrease of value. We also compare four segmentation
rules, that correspond to different ways to build the value to be thresholded:

V1] |Cinput — Cinodet| with C € {R, G, B} for grayscale images;
p

- [V2] ZCG{R,G,B} |Cinput - Cmodel|7

- [V3] maXce{R,q,B} |Oinput - Omodel|7

[V4] and ) (R.G,B} (Cinput — Cmodel)2 for color images.

These ROC curves are our upper bounds on the performance limit of BGS algo-
rithms performing per-pixel segmentation based only on the color information.

4 Results and Discussion

The simulated ROC curves of a few upper bounds are given in Figure 2. The first
observation is that ROC curves for V2, V3, and V4 are always very close, and
always improve with respect to the segmentation rule V1 (based on grayscale
values only). Working with one channel images is therefore suboptimal, and the
performance does not depend much on the decision rule itself. The second obser-
vation, by comparing the ROC plots of the first and second rows, is that the per-
formance is not very different when the model contains the perfect background
image or a noisy version of it. Being able to estimate a very precise background
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Fig. 2. Some upper bounds obtained for the performance of BGS methods, in the ROC
space. In the left column, the input images have a low noise level (o = 0.04) and no
shadows. In the middle column, they have a high noise level (o = 0.08), and no shadows.
In the right column, they have a mid noise level (o = 0.06) and 5% of their pixels in
shadowed areas (decrease of value: 0.3). The model comprises a perfect background
image in the upper row, and a noisy estimate of it in the lower row (the same amount
of noise is added to the model and to the input images). The segmentation rules are:
H V], B V2, B V3 V4.

image does not help much for the BGS, due to other intrinsic limitations of the
BGS problem (at least under the working assumptions of this paper).

In order to show how the performance evolves with the amount of noise
affecting the estimate of the background image, we need to express the perfor-
mance with a numerical value instead of a curve. Once the decision threshold
is set, the performance is given by a single point in the ROC space. We argue
that a good way of choosing the decision threshold is to force the classifier to be
unbiased. In that case, the BGS method predicts the right proportion of fore-
ground. Unbiased classifiers are, in the ROC space, on the line passing through
the points (TNR, TPR) = (1,1) and (1 — p*,p™), where TNR denotes the true
negative rate, TPR the true positive rate, and pT the prior of the positive class.
The average p* is 4.56 % in the dataset of [6]. The performance resulting from
the threshold selection is the intersection between the ROC curve and this line.
Many metrics could be used to measure it. We report the balanced accuracy
w. As there is a mapping between this value and the other metrics
(see Figure 3), reporting how the balanced accuracy of the unbiased classifier
varies with the amount of noise affecting the estimated background image suf-
fices. Figure 4 shows that a very large standard deviation of noise (~ 0.1) should
be reached before observing a significant decrease of performance.



Upper Bound for the Performance of Background Subtraction 533

1
0.8
1]
L 06—
@ accuracy =
E 04 Jaccard’s coefficient ——— —
5} geometric mean of TPR and TNR
% 02 - average conditional probability -
F1 score
0 Matthews’s correlation coefficient, Youden’s index, Cohen’s Kappa = —
| | | | Yule’s coex‘flment —_—

-0.2
0.5 0.6 0.7 0.8 0.9 1

balanced accuracy

Fig. 3. Relationships between various metrics and the balanced accuracy that exist in
the case of unbiased classifiers and p™ = 4.56 %.
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Fig. 4. The balanced accuracy of unbiased BGS methods, with respect to the amount
of noise affecting the estimated background image. These results correspond to video
sequences such that the noise has a standard deviation of o = 0.06, and 5% of pixels
are in shadowed areas with a value decreased by 0.3.

5 Conclusion

The SBMI workshop [11] focuses on the estimation of a background image given
a video sequence taken from a static viewpoint; the background is assumed to be
unimodal. In this context, we have proposed an original methodology to simulate
the expected upper bound on the performance of pixel-based BGS algorithms,
when their model reduces to the estimated background image. In our simula-
tions, the provided bounds depend on the amount of noise corrupting the video
sequence, the quality of the background image estimation, and the proportion
of shadowed pixels. One important conclusion is that the quality of the estimate
of the background image helps for the BGS, but only marginally, because of
other intrinsic limitations. This questions the need for a perfect estimation of
the background in general. Note that the presented methodology could also be
tuned to derive bounds for a given video sequence, or a family of them (e.g. BGS
for video surveillance of roads), by adapting the distribution of colors.
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