
© Springer International Publishing Switzerland 2015 
V. Murino et al. (Eds.): ICIAP 2015 Workshops, LNCS 9281, pp. 458–465, 2015. 
DOI: 10.1007/978-3-319-23222-5_56 

Food Recognition for Dietary Assessment  
Using Deep Convolutional Neural Networks 

Stergios Christodoulidis1,2(), Marios Anthimopoulos1,3,  
and Stavroula Mougiakakou1,4 

1 ARTORG Center for Biomedical Engineering Research,  
University of Bern, Bern, Switzerland 

{stergios.christodoulidis,marios.anthimopoulos, 
stavroula.mougiakakou}@artorg.unibe.ch 
2 Graduate School of Cellular and Biomedical Sciences,  

University of Bern, Bern, Switzerland 
3 Department of Emergency Medicine, Bern University Hospital, Bern, Switzerland 

4 Department of Endocrinology, Diabetes and Clinical Nutrition,  
Bern University Hospital, Bern, Switzerland 

Abstract. Diet management is a key factor for the prevention and treatment of 
diet-related chronic diseases. Computer vision systems aim to provide auto-
mated food intake assessment using meal images. We propose a method for the 
recognition of already segmented food items in meal images. The method uses 
a 6-layer deep convolutional neural network to classify food image patches. For 
each food item, overlapping patches are extracted and classified and the class 
with the majority of votes is assigned to it. Experiments on a manually anno-
tated dataset with 573 food items justified the choice of the involved compo-
nents and proved the effectiveness of the proposed system yielding an overall 
accuracy of 84.9%. 
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1 Introduction 

Diet-related chronic diseases like obesity and diabetes have become a major health 
concern over the last decades. Diet management is a key factor for the prevention and 
treatment of such diseases, however traditional methods often fail due to the inability 
of patients to assess accurately their food intake. This situation raises an urgent need 
for novel tools that will provide automatic, personalized and accurate diet assessment. 
Recently, the widespread use of smartphones with enhanced capabilities together with 
the advances in computer vision, enabled the development of novel systems for dietary 
management on mobile phones. Such a system takes as input one or more images of a 
meal and either classifies them as a whole or segments the food items and recognizes 
them separately. Portion estimation is also provided by some systems based on the  
3D reconstruction of food. Finally, the meal’s nutritional content is estimated using 
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nutritional databases and returned to the user. Here, we focus on food recognition 
which constitutes the common denominator in this new generation of systems. To this 
end, various approaches have been proposed derived from the particularly active fields 
of image classification and object recognition. The problem is usually divided into two 
tasks: description and classification. 

Some systems employed handcrafted global descriptors, capturing mainly color 
and texture information: quantized color histograms [1, 2], first-order color statistics 
[3, 4, 5], Gabor filtering [6], [7] and local binary patterns (LBP) [2] have been used 
among others. In order to achieve a description adapted to the problem, visual code-
books have been utilized, created by clustering local descriptors. The most popular 
choices for local descriptors are: the classic SIFT [1] and its color variants [9], [10] as 
well as the histogram of oriented gradients (HoG) [11, 12, 13]. Other kinds of local 
descriptors include filter banks like the maximum response filters [8], [14] or even 
raw values of neighboring pixels [15]. Visual codebooks  are often created within 
bag of features (BoF) approaches where image patches are described and assigned to 
the closest visual word from the codebook, while the resulting histogram constitutes 
the global descriptor [1], [9], [10], [16]. When filter banks are used for the local de-
scription the term texton analysis is used instead [8], [14], [15]. Other approaches 
attempted to reduce the quantization error introduced by the hard assignment of each 
patch to a single visual word. Sparse coding was used in [6] which represents patches 
as sparse linear combinations of visual words. On the other hand, the locality-
constrained linear coding (LLC) used in [3], [12] enforces locality instead of sparsity 
producing smaller coefficients for distant visual words. Finally, the Fisher vector (FV) 
approach used in [11], [13], [17] fits a Gaussian mixture model (GMM) to the local 
feature space instead of clustering, and then characterize a patch by its deviation from 
the GMM distribution. For the classification, the support vector machines (SVM) 
have been the most popular choice. Gaussian kernels were used in many systems [2], 
[5] whereas for histogram based features the chi-squared kernel is reported to be the 
best choice [8], [15]. For highly dimensional features spaces even linear kernels often 
perform satisfactorily [13]. Finally, multiple kernel learning has also been used for the 
fusion of different types of features [7], [10]. 

Recently, an approach based on deep convolutional neural networks (CNN) [18] 
gained attention by winning the ImageNet Large-Scale Visual Recognition Challenge 
and outperforming by far the competition. The eight-layer network of [18] was used 
in [11] for the classification of Japanese food images in 100 classes. However, due to 
the huge size of the network and the limited amount of images (14,461), the results 
were not adequate so a FV representation on HoG and RGB values was also em-
ployed to provide complementary description. In [20], a four-layer CNN was used for 
food recognition. A dataset with 170,000 images belonging to 10 classes was created 
and images were downscaled to 80×80 and then randomly cropped to 64×64 before 
fed to the CNN. 
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Fig. 1. Typical architecture of a convolutional neural network 

In this study, we propose a system for the recognition of already segmented food 
items in meal images using a deep CNN, trained on fixed-size local patches. Our ap-
proach exploits the outstanding descriptive ability of a CNN, while the patch-wise 
model allows the generation of sufficient training samples, provides additional spatial 
flexibility for the recognition and ignores background pixels. 

2 Methods 

Before describing the architecture and the different components of the proposed 
system, we provide a brief introduction to the deep CNNs. 

2.1 Convolutional Neural Networks 

CNNs are multi-layered artificial neural networks which incorporate both unsupervised 
feature extraction and classification. A CNN consists of a series of convolutional and 
pooling layers that perform feature extraction followed by one or more fully connected 
layers for the classification. Convolutional layers are characterized by sparse 
connectivity and weight sharing. The inputs of a unit in a convolutional layer come 
from just a small rectangular subset of units of the previous layer. In addition, the 
nodes of a convolutional layer are grouped in feature maps sharing the same weights. 
The inputs of each feature map are tiled in such a way that correspond to overlapping 
regions of the previous layer making the aforementioned procedure equivalent to 
convolution while the shared weights within each map correspond to the kernels . The 
output of convolution passes through an activation function that produces 
nonlinearities in an element-wise fashion. A pooling layer follows which subsamples 
the previous layer by aggregating small rectangular subsets of values. Max or mean 
pooling is applied replacing the input values with the maximum or the mean value, 
respectively. A number of fully connected layers follow with the last one having a 
number of units equal to the number of classes. This part of the network performs the 
supervised classification and takes as input the values of the last pooling layer which 
constitute the feature set. For training the CNN a gradient descent method is applied 
using back propagation. A schematic representation of a CNN with two pairs of 
convolutional-pooling layers and two fully connected layers is depicted in Fig. 1. 
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2.2 System Description 

The proposed system recognizes already segmented food items using an ensemble 
learning model. For the classification of a food item, a set of overlapping square 
patches is extracted from the corresponding area on the image and each of them is 
classified by a CNN into one of the considered food classes. The class with the 
majority of votes coming from the local classifications is finally assigned to the food 
item. Our approach is comprised by three main stages: preprocessing, network training 
and food recognition. An overview of the system is depicted in Fig. 2. 

Preprocessing. This stage aims at preparing the data for the CNN training procedure.  
First, non-overlapping patches of size 32×32 are extracted from the inside of each food 
item in the dataset. In order to increase the amount of training data and prevent over-
fitting we artificially augment the training patch dataset by using label-preserving 
transformations such as flip and rotation as well as the combinations of the two. In 
total, 16 transformations are used. Then, we calculate the mean over the training image 
patches and subtract it from all the patches of the dataset so the CNN takes as input 
mean centered RGB pixel values. 

Network Training. Using the created patch dataset we train a deep CNN with a six 
layer architecture. The network has four convolutional layers with 5×5 kernels; the first 
three layers have 32 kernels while the last has 64, producing equal number of feature 
maps. All the activation functions are set to the rectified linear unit (ReLU) since it has 
been reported to minimize the classification error of the network faster than other 
activation functions such as tanh [18]. Each convolutional layer is followed by a  
 

    
Fig. 2. The proposed system overview. 
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pooling layer with 3×3 pooling regions and stride equal to two; the first one outputs the 
maximum value out of each pooling region while the following three use the average. 
The last two layers of the network are fully connected with 128 and 7 units, 
respectively. On these layers, random dropout of units was used to prevent overfitting 
[21]. The output of each hidden neuron was set to zero with a probability p forcing the 
network to learn more robust features for the description of the input regardless of the 
inactive neurons. Here, the dropout probability p is set to 0.5. The softmax function is 
used so as to normalize the outputs of the last layer so each output is between zero and 
one and they all sum up to one. This way, the output values represent a categorical 
probability distribution so a cross-entropy loss function is used to calculate the error 
used by gradient descent training. Finally, as far as the weight learning is concerned, a 
schema with a decay of the learning rate along with a momentum coefficient was used. 
The base learning rate is set to 0.001 with an exponential decay policy and the 
momentum is set to 0.9. 

Food Recognition. For the recognition of the food items a voting scheme is used. For 
each food item to be classified, images patches are extracted preprocessed and fed to 
the CNN. The most frequent class occurring from the classification of the patches is 
then assigned to the food item. 

3 Experimental Setup and Results 

3.1 Experimental Setup 

For training and testing the proposed system we used a dataset of 246 images of 
different meals served in the restaurants of Bern University hospital, "Inselspital". The 
images contain in total 573 food items, belonging to seven broad food classes, namely 
pasta, potatoes, meat, breaded food, rice, green salad and carrots. For each image an 
annotation map has been manually created containing the area and the class label of the 
existing food items. The evaluation procedure for the classification of both patches and 
food items is based on a 5-fold cross-validation scheme which is applied on a food item 
level in order to avoid biased results. For each fold, we used the ground truth maps to 
extract a number of 32×32 patches leading to a set of nearly 160,000 training patches 
per fold which proved to be sufficient for training the CNN. The performance in the 
experiments is assessed in terms of average F-score over the different classes in a patch 
(pFavgሻ or food item level (Favgሻ. The total accuracy of the food item classification is 
also considered. The experiments were conducted in the deep learning framework Caffe 
[22] using a single GPU (GeForce GTX 760, 2GB Memory, 1152 Cores). 

3.2 Results 

The configuration of the CNN was initially based on the cifar-10 solution1. However, 
in order to find the most suitable configuration for the proposed system, a number of 

                                                           
1 https://code.google.com/p/cuda-convnet/wiki/Methodology 
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experiments were conducted on the involved components and their parameters. Table 
1 presents the results for the different configurations that were tested. The optimal 
number of convolutional-pooling layers was four. The use of the dropout technique 
for the penultimate layer further improved the results. However, the use of a local 
response normalization (LRN) after the activation functions did not present a clear 
improvement. 

Table 1. Results for the different architectures that were investigated. For all the convolutional 
layers 5x5 kernels was used and for all the pooling layers 3x3 pooling regions. Notation: cp – 
convolutional-pooling layers, fc – fully connected layers, pFavg- the f-score on a patch level. 

CNN architecture pFavg(%) 

32cp – 32cp – 128fc – 7fc 66.5 

32cp – 32cp – 64cp – 128fc – 7fc 68.7 

32cp – 32cp – 32cp – 64cp – 128fc – 7fc 69.5 

32cp – 32cp – 32cp – 64cp – 64cp – 128fc – 7fc 67.1 

32cp – 32cp – 32cp – 64cp – 128fc – 7fc + LRN 70.4 

32cp – 32cp – 32cp – 64cp – 128fc – 7fc + Dropout  71.79 

32cp – 32cp – 32cp – 64cp – 128fc – 7fc +  LRN  + Dropout  71.28 

Table 2. Results of the proposed method for different voting schemes and variants compared to 
a method from the literature 

Classification Method  Accuracy Favg Time (sec/item) 

Patch-wise CNN + Weighted voting + step=16  84.6 82.8 0.28 

Patch-wise CNN + Max voting + step=32  83.5 81.4 0.11 

Patch-wise CNN + Max voting + step=16  84.9 82.7 0.28 

Patch-wise CNN + Max voting + step=8  84.7 82.5 0.92 

Learned histogram + Multi-scale LBP + SVM  82.2 79.7 0.1 

 
Fig. 3 presents the 32 convolutional kernels from the first layer of the proposed 

network. It can be observed that the kernels capture mainly color information which is 
the primal feature for the discrimination among foods. After configuring the CNN 
architecture for the classification of patches, we conducted an investigation regarding 
the best use of this fixed-scale classifier for the recognition of food items. Two are the 
main involved elements; the voting scheme and the density of the classification. For 
the voting, we tested two techniques: (i) voting only for the best candidate class (Max  
 

 

Fig. 3. The kernels from the first layer of the proposed CNN 
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voting) and (ii) voting for all the classes using the CNN output, after the softmax 
normalization, as weights (weighted voting). For the density of the classified patches 
on each food item we used several step values resulting in different overlaps. Table 2 
shows the corresponding results. As it can be seen, the max voting scheme presented 
slightly better performance while a maximum overlap of 50% (step = 16) among the 
extracted patches was proved to be optimal. Table 2 also provides a comparison with 
a method from the state of the art in the same dataset. The method is based on [2] and 
uses adapted color histograms and multi-scale LBP features fed to an SVM with a 
Gaussian kernel. The proposed recognition system scored nearly 3% more in both 
metrics showing the potential of CNN in the food recognition problem. The average 
processing time per image for the selected configuration was 0.28 seconds which is 
more than most conventional methods but still acceptable  

4 Conclusions 

We proposed a method for the recognition of already segmented food items using a 
CNN. The classification is applied in a patch-wise manner and a voting technique was 
used to determine the class of each food item. The patch-wise model together with the 
data augmentation trick allowed us to extract a sufficient amount of samples to train a 
6-layer CNN. The experimental results proved the effectiveness of the system that 
achieved an overall accuracy of 84.9%. The presented results are preliminary; future 
work should include a more thorough investigation on the optimal architecture as well 
as the training parameters of the network. Moreover, the use of alternative classifiers 
combined with the CNN features could further enhance the performance. 
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