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Abstract. In the battle against Obesity as well as Eating Disor-
ders, non-intrusive dietary monitoring has been investigated by many
researchers. For this purpose, one of the most promising modalities is the
acoustic signal captured by a common microphone placed inside the outer
ear canal. Various chewing detection algorithms for this type of signals
exist in the literature. In this work, we perform a systematic analysis of
the fractal nature of chewing sounds, and find that the Fractal Dimension
is substantially different between chewing and talking. This holds even
for severely down-sampled versions of the recordings. We derive chewing
detectors based on the the fractal dimension of the recorded signals that
can clearly discriminate chewing from non-chewing sounds. We exper-
imentally evaluate snacking detection based on the proposed chewing
detector, and we compare our approach against well known counterparts.
Experimental results on a large dataset of 10 subjects and total record-
ings duration of more than 8 hours demonstrate the high effectiveness
of our method. Furthermore, there exists indication that discrimination
between different properties (such as crispness) is possible.

1 Introduction

Monitoring and managing dietary behaviour has received extensive focus during
the last few years, since both Obesity (OB) and Eating Disorders (ED), such
as Anorexia Nervosa (AN) and Bulimia Nervosa (BN), currently affect a very
large portion of the population12. Recent advancements in the field of mobile
computing have enabled the use of wearable sensors for monitoring the human
behaviour in various aspects of everyday life. Vast development and enhance-
ment of the capabilities of mobile phones, as well as networking, combined with
various wearable sensors (e.g. smart watches) have practically transformed them
into personal monitoring devices, that can be used to exploit data otherwise

1 www.who.int/gho/ncd/risk factors/overweight/en/
2 www.anad.org/get-information/about-eating-disorders/eating-disorders-statistics/
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unavailable even to clinician experts. This data can be used to detect risks (for
example for the development of OB or ED, such as the case of the SPLENDID
project3) and even help reduce those risks.

Regarding the monitoring of dietary activities and behaviour, one of the
most commonly proposed sensors in bibliography is the microphone, either open-
air or bone conduction. The microphone is usually placed in an unobtrusive
location, such as housed in a set of ear phones, and continuously records audio
throughout the day, or during long periods of a day. The streamed audio is
analysed, usually in real-time, and chewing activity is detected. Most proposed
algorithms for the processing of such signals employ well known methods from
the field of digital signal processing, such as computation of various statistical
features of buffered audio segments, and usually combine them with statistical
machine learning methods. Other approaches try to model the distinct structure
of chewing sounds, employing heuristically defined rules.

O. Amft was one of the first to systematically analyse chewing sounds, and
develop an off-line algorithm to detect chews on continuous streaming audio
data. In [2], various positions of a condenser microphone recording at 44.1 kHz
are studied, to determine the optimal for automatic chewing detection. Placing
the microphone at the inner ear, directed towards the ear drum was found to
yield the best results, as in this position chewing sounds are recorded louder than
speech sounds. Thus, recognition of chewing sounds is based on the amplitude of
the recorded signal. The useful frequency content is determined from 0 to 10 kHz
(requiring 20 kHz sampling rate). Furthermore, a speech recognition system is
used to reject talking and further increase the precision of chewing detection. In a
later work, a complex pipeline is proposed in [1] that (a) estimates various multi-
resolution statistical features of audio segments, (b) performs feature selection,
and (c) uses a feature similarity measure to detect chews. The detection system
is able to discriminate between three food types of distinct texture qualities
(crispiness and wetness). However, the computational burden is significantly
high, increasing the required resources for a real-time implementation.

In [8], seven chewing detection algorithms are evaluated on a common
dataset. The dataset includes recordings of 51 subjects, consuming 6 different
food types, using a microphone recording at 11, 025 Hz. One algorithm requires
the use of a second microphone, placed behind the ear, and uses the difference of
the signals’ power between the two microphones to detect chews. Another algo-
rithm associates chewing sounds with a particular shape of the signal energy (a
local maximum followed by an interval of lower energy). Another one is based on
the principle that the power spectrum of chewing sounds is centred around spe-
cific frequencies, and thus can be used to distinguish chewing from other sounds.
Other algorithms detect chewing regions by identifying the dominant frequency
at which chews occur, which is commonly around 1 and 3 Hz. Authors report
accuracy from 50% to 60% and precision from 75% to 91% on average. How-
ever, it is important to note that the recording of the dataset was performed in

3 splendid-program.eu/

splendid-program.eu/
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laboratory conditions and the participants were instructed not to talk or make
any other disturbing sound, which makes the recognition task significantly easier.

In this work, we explore the Fractal Dimension (FD) of chewing sounds, as
recorded by such an open air microphone placed inside the outer ear canal, in
comparison to the FD of other sounds recorded by this sensor, such as talking,
coughing, ambient noise and silence. Section 2 presents the analysis and the
method for computing the FD, whereas in Section 3 further analysis is performed
to design a detection algorithm. In Section 4 various experiments are presented,
including the application of the detection algorithm on a large dataset for the
purpose of detecting snacking events. Results are compared to other state-of-
the-art algorithms. Finally, Section 5 concludes this work.

2 Fractal Dimension of Chewing Sounds

Mandelbrot [4] defines the FD of a graph of a real valued function as its Hausdorff
Dimension (HD). In the work of Maragos et al. [6], an algorithm for estimating
the FD of such real valued functions is presented, based on a morphological
covering of the function using the erosion and dilation operators [3].

Given a real valued function x(t), 0 ≤ t ≤ T , its graph can be defined formally
as F =

{
(t, x(t)) ∈ R2 : t ∈ [0, T ]

}
. The FD can then be defined as follows. Given

a morphological element B and a scaling factor ε, the FD is estimated as

D = 2 − lim
ε→0

log (AB(ε))
log (ε)

(1)

where AB(ε) is the area resulting from dilating the graph by εB. In the case where
B is a compact, single-connected, symmetric planar set, the two-dimensional
processing of the signal can be avoided [5,7]. If we define the structuring function
Gε(t) = sup {y ∈ R : (t, y) ∈ εB}, then the area AB(ε) can be approximated by

AB(ε) ≈
∫ T

0

([x ⊕ Gε] (t) − [x � Gε] (t)) dt (2)

where [x ⊕ Gε] (t) and [x � Gε] (t) are the dilation and erosion of x(t) by Gε(t).
In the case of discrete signals, and for discrete structure elements, we can

approximate AB(ε) as

AB(ε) ≈
N−1∑

n=0

[
xd

k(n) − xe
k(n)

]
, ε = ε0k, k = 0, 1, 2, . . . ,M (3)

where the discrete version of dilation xd
k(n) and erosion xe

k(n) at level k are
computed recursively as

xd
0(n) = x(n) (4)

xe
0(n) = x(n) (5)

xd
k(n) = [xd

k−1 ⊕ v](n) (6)
xe

k(n) = [xe
k−1 � v](n) (7)



404 V. Papapanagiotou et al.

In practice, we choose a flat structure element v of length L = �fsT � where
T = 3 msec, and thus

xd
k(n) = max{xd

k−1(n + i) : i = −	L

2

, . . . , 0, . . . , �L

2
� − 1} (8)

For the erosion, the max operator is replaced with min.
According to [5], the FD D can be estimated by linear fitting on log (AB(ε)) =

(2−D) log(ε), for discrete scales of ε = kε0, k = 1, 2, . . . ,M . Instead, we estimate
D as the mean of local gradients

D =
1
M

M∑

ε=1

log (AB ((k + 1) ε0)) − log (AB (kε0))
log(k + 1) − log(k)

(9)

In order to examine the fractal properties of chewing sounds, in particular
compared to other sounds commonly recorded by such a microphone as the
one used in this work (e.g. talking, coughing, etc), we extract recordings of
individual chews of six food types of various properties (such as crispness), as
well as segments of approximately same duration of coughing, talking, and silence
(and some ambient noise). The number of audio segments for each category are
presented in Table 1. The recordings that contain these segments belong to
a much larger dataset which is presented in Section 4, and used in the final
experiment of snacking detection.

Table 1. The extracted audio seg-
ments of chewing and non-chewing
segments.

Food Type No. Type No.

Apple 156 Cough 15
Banana 63 Pause 1032
Bread 84 Talking 147
Candy bar 96
Chewing gum 126
Potato chips 149

Total 674 Total 1194

Fig. 1 shows the data points for 20 chews
of “apple” and audio segments of “talking”,
for k = 1, 2, . . . , 40. We use both the audio
segments, and their time-derivatives. The
fact that these curves are approximately
linear is a strong indication that these chew
segments are highly fractal in nature. Note
that for some audio segments, the curves’
gradients tend to decrease for larger val-
ues of k. This is not accurate however, but
rather a computational artifact, since for
such values of k the length of the equiva-
lent structuring element is comparable to
the length of the audio segment, causing
this inaccurate result.

Furthermore, only a few data points are required to estimate the FD. In
the following, we have selected M = 6. Selecting such a low value for M , com-
bined with the computationally lighter method for computing the dilation and
erosion banks (by iterative application of the same structuring element), allows
the implementation of a fast and computationally inexpensive detection algo-
rithm. Finally, it also avoids the problem of the computational artifacts caused
by excessively large structuring elements, as noted above.
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Fig. 1. Local gradient for log(AB(ε)) versus k = 1, 2, . . . , 40 (in log-scale), for 20 chew
segments (blue) and their derivatives (red) of “apple” (left), and 15 segments of “cough-
ing” (right).

3 Designing a Detection Algorithm

In order to examine the fractal nature of the chewing sounds, we compute the FD
of the extracted audio segments and their derivatives, at various sampling rates,
lower than the original. This is achieved by resampling the original recordings.
Fig. 2 (left) shows the results for “apple” and “talking”. The mean (± standard
deviation) curves of the FD of the signals are presented, sampling at frequencies
0.5, 1, 2, 4, 8, 16 and 32 kHz, as well as for the original frequency of 44.1 kHz, in
a log-scale plot. The statistics are not affected by the down-sampling, even for
as low as 2 kHz, which corresponds to a narrow frequency content of only 1 kHz.
Very similar results are obtained for all six food types. This observation reduces
the detector requirements for the sampling frequency at just 2 kHz, significantly
reducing the computational effort required to process the audio signals.

Using the down-sampled (at 2 kHz) segments, a three-dimension feature vec-
tor is computed for each, using the FD of the segment Dx, the FD of the deriva-
tive of the segment Ds, and the segment energy E. The features for all the
extracted segments are shown in Fig. 2 (right). The six food types have been
grouped into two clusters for visual clarity, whereas the non-chewing categories
are presented separately. As it can be seen, the union of the two chewing clusters
is almost linearly separable from “silence”, based solely on the energy feature,
which is expected. Furthermore, it as also separable (again almost linearly) from
“talking” and “coughing”.

These results are particularly encouraging. First, the fact that these five
classes form separable clusters is strong evidence of the fractal nature of chew-
ing sounds, and enables the detection of chewing sounds based on their fractal
dimension. At second, they are also promising in discriminating between differ-
ent food type properties. For example, the first cluster (as presented in Fig. 2
(right)) includes chews of “banana” and “potato chips”. “Banana” is not crispy,
which results in a relatively lower FD. “Potato chips” are crispy at first, but
quickly transform into a wet bolus after the very few first chews. On the other
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Fig. 2. Left: Mean (± standard deviation) of FD of apple chews, and talking segments,
across various sampling frequencies (log-scale), showing (a) the linear separability of
the two classes, and (b) that down-sampling up to 2 kHz does not significantly alter
the actual value of FD. Right: Feature vectors for the entire dataset, at 2 kHz. Chews
cluster 1 includes “banana” and “potato chips”, cluster 2 the remaining 4 food types.

hand, the food types of the second cluster are consistently crispy throughout an
entire bite (e.g. “chewing gum”).

Finally, in order to enable processing of streamed audio data, we experiment
with various lengths of sliding windows along each audio segment, in order to
determine the minimum length that captures its fractal properties. We have
found that a window length of 300 msec is sufficient to detect parts of chews,
and thus enable robust chewing detection.

4 Experiments

A dataset was recorded at the Wageningen University, Netherlands, in the frame-
work of EU funded program SPLENDID. It contains recordings of 10 individuals
wearing a prototype sensor consisting of an FG-23329 microphone housed in an
ear bud, and connected using audio cable to recording apparatus. Various activi-
ties were performed by each subject in randomised sequences, and include pauses,
talking, listening to another person speaking, coughing, and consuming a variety
of different foods and liquids, such as apples, lettuce, potato chips, toffee, water,
milk, etc. The recording for each subject lasted approximately 30 minutes. It is
important to notice that during the recordings there was no request for absolute
silence. In contrast, some chewing activities were performed under non-silent
conditions. For example, the subject was asked to consume a specific type of
food while listening to the supervisor talking. The extracted chews of Table 1
belong to the recordings of two subjects of the dataset.

In order to validate our findings, we perform a classification experiment.
We form a classification problem with three classes: “chew”, “talk/cough” and
“silence”. The classification method is a two step process. First, the energy of
the segment is compared to a threshold; this essentially removes all segments of
“silence”. Second, an optimal straight line on the Dx × Ds plane discriminates
between “chew” and non-chew. Table 2 presents the results, however we show
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each food type and non-chewing activity separately, to gain a better understand-
ing of the misclassification cases. Out of the 6 different food types, only 7 potato
chip chews have been misclassified as talking or coughing, which indicates a
clear discrimination between chewing and talking/coughing. On the other hand,
only 9 chews have been misclassified as silence; most probably due to the lower
energy of those segments. Classification accuracy in the 3-class problem is 95.4%,
whereas for the binary “chew” vs. non-chew problem is 96.5% (using all of the
extracted segments).

Table 2. Confusion matrix for
the classification experiment
with linear kernel and three
classes: “chew”, “talk/cough”
and “silence”. Energy threshold
is 0.0202, and the separating
line in the Dx × Ds plane is
y = −2.62x + 8.73.

Class Chew T/C Sil.

Apple 156 0 0
Banana 62 0 3
Bread 83 0 1
Candy bar 95 0 1
Chewing gum 120 0 6
Cough 2 13 0
Pause 27 0 1005
Potato chips 142 7 0
Talking 21 106 20

In order to examine the efficiency of the
proposed algorithm in real time conditions, we
apply our algorithm on the large dataset pre-
sented in this Section, so as to detect individ-
ual chews. This is achieved by thresholding the
energy against an adaptively computed mean
energy, and using the optimal separating line
from the previous experiment on the Dx × Ds

feature space. A median filter is then applied as
a post processing step. Finally, chews are cre-
ated from subsequent windows that are classi-
fied as chewing. We then apply an aggregation
method to obtain chewing bouts (each chew-
ing bout contains multiple chews) and evalu-
ate this result, as a binary classification prob-
lem, based on duration of predicted intervals.
To compare our algorithm with other known
algorithms of the literature, we also apply some
algorithms of [8] so as to detect individual
chews, and use the same aggregation method to
obtain the corresponding chewing regions. The

aggregation algorithm assigns chews to the same bout if they are no more than
5 seconds apart. This relatively relaxed condition allows the chewing detection
to “miss” a chew (or two) without fragmenting the bout. This yields consecutive
intervals of chewing and non-chewing activity. We present the prediction preci-
sion and recall of each algorithm in Table 3. The proposed algorithm maintains
a balance between high precision and recall, compared to other algorithms such
as Ch. Band Power, that achieves higher precision (by 1%) at the cost of much
lower recall.

Furthermore, we subsequently aggregate chewing bouts to snacks, by assign-
ing to the same snack all bouts that are no more than 45 seconds apart. This
interval seems realistic in real time application. However, in the dataset, subjects
performed activities based on a schedule, and recordings of different snacking
events are sometimes recorded much closer than 45 seconds. In these cases, we
explicitely split the chewing bouts properly into different snacks. We then use a
one-to-one method to assign predicted snacks to ground truth snacks. Table 3
presents the precision and accuracy at the snack classification level.
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5 Conclusions

Table 3. Precision and recall for chew bouts
and s1nacks

Chew bout Snack
Algorithm Prec Rec Prec Rec

Max. Sound En. 0.85 0.75 0.77 0.90
Max. Spec. B. En. 0.89 0.76 0.81 0.89
L. P. Filtering 0.86 0.78 0.79 0.94
Ch. Band Power 0.92 0.61 0.92 0.87
Fractal Dim. 0.91 0.87 0.86 0.98

In this work, we explored the FD of
chewing sounds, as a means to auto-
matic monitoring of dietary activ-
ity, using a wearable microphone sen-
sor. We have performed a system-
atic analysis of the fractal nature of
chewing sounds, which indicates that
chewing sounds are highly fractal.
Thus, the FD can be used to dis-
criminate chewing from non-chewing
sounds, such as talking, coughing, or
silence. This property persists even

after significant down-sampling of the audio into very narrow spectral band-
width. Furthermore, promising evidence was found that FD can be used to dis-
criminate between different food properties, such as crispness. Based on these
findings, we then proposed a chewing detection algorithm, and tested it on a
large, realistic dataset. Results show an improvement in both precision and recall
compared to other literature algorithms.
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