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3 Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Genova, Italy

4 Dipartimento di Fisica, Università Degli Studi di Siena, Siena, Italy

Abstract. This study presents a fully automated algorithm for the
segmentation of the hippocampus in structural Magnetic Resonance
Imaging (MRI) and its deployment as a service on an open cloud infras-
tructure. Optimal atlases strategies for multi-atlas learning are com-
bined with a voxel-wise classification approach. The method efficiency
is optimized as training atlases are previously registered to a data driven
template, accordingly for each test MRI scan only a registration is
needed. The selected optimal atlases are used to train dedicated ran-
dom forest classifiers whose labels are fused by majority voting. The
method performances were tested on a set of 100 MRI scans provided
by the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Leave-one-
out results (Dice = 0.910 ± 0.004) show the presented method compares
well with other state-of-the-art techniques and a benchmark segmenta-
tion tool as FreeSurfer. The proposed strategy significantly improves a
standard multi-atlas approach (p < .001).
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1 Introduction

The “Smart cities and communities and social innovations” national operative
programs have outlined the need for an efficient reorganization of health-care
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both to ensure higher standards in terms of quality of life for patients and to
rationalize the economic resources to be allocated. Accordingly, the connected
health and the e-health technologies can be considered pillars of an innovative
smart thinking of cities and communities. Hippocampal atrophy is an established
bio-marker for several neurodegenerative diseases, such as the Alzheimer’s dis-
ease [7], a disease characterized by an impressive social and economic impact.
However, no segmentation tool is currently employed in clinical practice, espe-
cially because computational requirements of best performing algorithms such
as [10,11] are difficult to fulfill.

With this aim, in this paper we present a novel machine learning tool for hip-
pocampal segmentation which has been proven to yield consistent improvements
with respect of recent studies [12]. In particular, the proposed segmentation
workflow for the human hippocampus and its deployment as a Service, on the
PRISMA cloud1 which exploits the Bari ReCaS 2 computer center, are described.
Both PRISMA and ReCaS are national operative programs, the first in particular
is a smart city program dealing with the development of Open Source platforms
for computing solutions dedicated to e-Health or e-Government, just to mention
a few.

The proposed approach efficiently exploits the cloud computational resources
requiring only a linear registration followed by a warp to segment a test image.
After registration optimal atlases are adaptively selected. First, a shape analysis
algorithm is used to detect peri-hippocampal volumes of interest (VOIs). Then,
the optimal atlases are selected by measuring the pairwise Pearson’s correlation
and they are used to train supervised classifiers. The leave-one-out performances
of the methodology are compared with the publicly available segmentation tool
FreeSurfer [8] and a basic multi-atlas pipeline, i. e. consisting of registration and
label fusion, showing a significant improvement.

2 Materials and Methods

A data set of 100 T1 MRI scans from the ADNI database, including 29 normal
controls (NC), 34 mild cognitive impairment (MCI) and 37 Alzheimer’s disease
(AD) subjects, has been used in preparation of this article. The set is composed
by male and female subjects aged between 60 and 90 years old. The relative
hippocampal labelings were provided by the EADC-ADNI harmonized segmen-
tation protocol3 [4,5]. The ADNI set consists of MPRAGE MRI brain scans with
a resolution of 1×1×1 mm3. According to this, in the following, voxels or mm3

will be interchangeably used without further specifications.

2.1 Increasing Inter-subject Similarity

Registration processes are sensitive to initial conditions, accordingly the intensi-
ties of MRI scans are normalized and the bias field removed with the improved
1 http://www.ponsmartcities-prisma.it
2 http://www.pon-recas.it
3 www.hippocampal-protocol.net
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N3 MRI bias field correction algorithm [14]. The MRI scans are co-registered
with the MNI152 template with the FSL libraries [9] and the warp fields Fi are
stored for later use. The goal of this processing is to maximize inter-subject sim-
ilarity in order to help the classifiers to learn the disease patterns. The proposed
algorithm is schematically represented in Fig. 1.

Fig. 1. A schematic overview of the proposed method: 1) non-linear registration, 2)
Atlas selection and 3) classification with the latter two phases encompassed in a unique
active learning framework.

After registration a gross peri-hippocampal region ω(V OI)i is extracted with
FAPoD [1], a fully automated hippocamapal shape analysis algorithm, from each
scan. The ω(V OI)i extracted by FAPoD contains a probable hippocampal region
of about 17000 voxels distributed in a rectangular volume of interest of dimen-
sions 50 × 70 × 70 voxels. ω(V OI)i are used for the atlas selection.

At this point, the data set is divided into a training subset Dt and a validation
MRI scan av to perform a leave-one-out analysis. We use the Pearson’s corre-
lation to directly measure the similarity between the peri-hippocampal regions
ω(V OI)i of Dt and the ω(V OI)v of the validation scan av. Pearson’s correlation
is then used as a ranking score to detect the first k optimal atlases. Machine
learning approaches usually use training examples to build a shared base of
knowledge and then learn a generalized model, on the contrary we adopt a
substantial change of perspective. We try to learn different patterns from each
ω(V OI)i, then, through image processing, we make the validation scan as similar
as possible to training examples. Finally, we actively select the k most represen-
tative examples and use them for prediction, thus requiring the validation sample
to reproduce these training patterns.

2.2 Classification and Segmentation

Each hippocampal ω(V OI)i undergoes a voxel-wise feature extraction process
which assigns to each voxel a set of 315 features [13]. Each voxel is represented
as a vector whose elements represent information about position, intensity and
texture. Texture information (contrast, uniformity, rugosity, regularity, etc.) is
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expressed using Haar-like and some Haralick features. With this set of features,
we train N random forest classifiers C{1,...,N}, the labels for each training scan
being the manual tracings of expert neuroradiologists.

For each validation scan we perform atlas selection as previously described
in 2.1, then we pick the k models Ci of the optimal atlases and perform a voxel-
wise prediction. For each voxel of the ω(V OI)v the relative label is calculated
as a weighted average of the k predicted vk labels, the weight being the pairwise
distance between the selected atlases and the target image. Finally, the inverse
warps F−1

v is applied and a 0.5 threshold is adopted to obtain a binary segmen-
tation. The classification performances are measured in terms of Dice similarity
index D and standard error ε defined as:

D =
2 |A ∩ B|
|A| + |B| (1)

ε =
σ

N
(2)

where A and B represent the regions being compared, cardinalities |A|, |B|
are intended as the measured volumes, σ being the standard deviation of the
Dice distribution and N = 100 is the sample size.

2.3 Cloud Deployment as a Service

The field of medical imaging has seen in recent years an enormous development.
Image databases, made of thousands of medical images, are currently avail-
able to supply clinical diagnosis, this is particularly true for brain diseases [2].
Medical image processing applications would greatly take advantage from open
clouds deployment: run-time reduction, sharing of data collections and platform-
hardware independent configurations are just a few examples.

The proposed algorithm requires an overall CPU time of 40±10 minutes per
scan. When dealing with large data sets this can represent a too much expensive
computational cost to afford. Accordingly, cloud technology can tackle these
computational issues by providing a user dedicated computing environment.
Besides, offering the segmentation tool as a service (submitting images to be
segmented to the related web portal4) can help its clinical adoption as no tech-
nical background is required to use it.

With this purpose the segmentation pipeline presented in this work has been
encased within a virtualized wrapping framework, to fully automate not only
the job submission and monitoring, but also the resource exploitation. In this
way the segmentation pipeline can be accessed as a pure Software as a Service.

Once the end user proceeds to upload a brain scan to be segmented, a job
management tool JST (Job Submission Tool) manages the submission and mon-
itoring of the application. JST monitors the submission of all of jobs required by
a given application thus hiding to the end user the complexity of operating in
a heterogeneous and distributed computational environment. Moreover, JST is
4 https://recasgateway.ba.infn.it

https://recasgateway.ba.infn.it
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portable on different infrastructures like the EGI grid infrastructure, dedicated
servers, local batch farms, IaaS/SaaS based cloud resources and as a consequence
it allows to efficiently exploits the computational resources needed by the appli-
cation.

3 Results

Active learning performances are stable, in fact they are not affected by the
number of chosen atlases (no significant p > .05 difference can be found using
10 ∼ 15 atlases or more) as shown in Fig. 2. Statistical significance is assessed
by means of non parametric Kruskal-Wallis test.

Fig. 2. The figure shows the Dice distribution obtained by averaging the corresponding
left and right hippocampal performances and varying the number of selected atlases.
Performances reach a plateau beyond 10 ∼ 15 atlases.

An analogous result shows that even basic multi-atlas performances reach
a plateau when using ∼ 10 atlases and beyond. Accordingly, to assess whether
active learning can improve basic multi-atlas performance, with a fair compari-
son, we use 15 atlases for both cases. The proposed method improves the overall
performances obtained by basic multi-atlas and FreeSurfer (see Fig. 3).

In fact, for left hippocampi median Dice index with the relative standard
error is 0.908 ± 0.004, for right hippocampi 0.912 ± 0.003. Basic multi-atlas and
FreeSurfer respectively achieve 0.845±0.005 and 0.728±0.005 for left hippocampi
and 0.851± 0.004 and 0.733± 0.004 for right hippocampi. A Kruskal-Wallis test
demonstrates the three Dice distributions are significantly different (p < .001).

Dice metric has an important drawback, in fact, it does not distinguish
between false positive and false negative errors. As a consequence, two distinct
segmentations can obtain the same Dice index performance, even if reproducing
the manual tracing in one case with an excess of false positives, in the other
with false negatives. This is why it is also important to perform an “agreement”
measure, for example with a Bland-Altman analysis [3].

For the present work, we perform a Bland Altman analysis of the standard-
ized manual and segmentation volumes, for both left and right hippocampi. The
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Fig. 3. The figure shows the Dice index performances varying with the different seg-
mentation methods for both left and right hippocampi. Active learning performances
(red) are significantly higher than those obtained through basic multi-atlas (green) or
FreeSurfer segmentations (blue).

analysis confirms that less than 5% of standardized differences between seg-
mented and manual volumes exceed the 95% confidence bounds, so that they
can be considered statistical significant Fig. 4.

The correlation between segmented and manual volumes is 0.80 and 0.84 for
respectively left and right hippocampal volumes. Therefore, active learning seems
also to improve the agreement between manual and automated segmentations.

Fig. 4. The figure shows the Bland Altman analysis (measure agreement and correla-
tion) for standardized volumes. Results for both left (a,c) and right (b,d) hippocampi
are separately shown.
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4 Conclusion and Future Work

In this study we present a novel segmentation algorithm based on a combined
multi-atlas and machine learning strategy. A key role on the method is played
by atlas selection. We select optimal atlases according to Pearson’s correlation
measurements between VOIs automatically detected to specifically contain the
hippocampus. The performances obtained respectively for left and right hip-
pocampi are 0.908 ± 0.004 and 0.912 ± 0.003.

This work demonstrates how active learning strategies, such as those pre-
sented, can bring substantial performance improvements. Nevertheless, which
similarity metric to use should be further investigated. In fact, other similarity
measurements, especially non linear techniques, such as Locally Linear embed-
ding and Laplacian Eigenmaps, could be adopted for atlas selection. Besides,
recent works suggest the use of warping fields for similarity measurements,
accordingly a fair comparison should be performed.

It is worth noting that the method is computationally efficient, requiring a
processing time of about 10 minutes per test scan. Moreover, the exploitation
of cloud infrastructures potentially suggest it could be adopted for large clinical
trials. With this regard, a limitation of the study is due to the absence of a
clinical evaluation, even if the goal of this work lies far from this aspect. Future
work will investigate how structural hippocampal properties obtained with this
method can improve Alzheimer’s disease diagnosis [6].
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