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Abstract. In this paper, a quantitative evaluation of the graph-based segmentation
method presented in a previous work is performed. The algorithm, starting from a
single source element belonging to a region of interest, aims at finding the optimal
path minimizing a new cost function for all elements of a digital volume. The me-
thod is an adaptive, unsupervised, and semi-automatic approach.

For the assessment, a training phase and a testing phase are considered. The
system is able to learn and adapt to the ground truth. The performance of the
method is estimated by computing classical indices from the confusion matrix,
similarity measures, and distance measures.

Our work is based on the segmentation and 3D reconstructions of carpal
bones derived from Magnetic Resonance Imaging (MRI) volumetric data of
patients affected by rheumatic diseases.
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1 Introduction

Rheumatic musculoskeletal diseases are among the most common chronic conditions
affecting the European population. Some of these diseases, such as osteoarthritis, are
the result of wear and tear; others, such as Rheumatoid Arthritis (RA), are autoim-
mune diseases. In some cases, chronic inflammation leads to the destruction of
cartilage, bone, and ligaments, causing deformity of the joints.

Recent research works have proven that through the analysis of Magnetic Reso-
nance Imaging (MRI) erosive change due to rheumatoid arthritis can be detected with
greater sensitivity than by using conventional radiography, particularly in the early
stages of the disease [2]. In addition, MRI allows the visualization of the three main
signs of RA: synovitis, bone oedema and bone erosion [3].

For these reasons, it is important to perform a quantitative or semi-quantitative
analysis, and novel scoring systems have recently been proposed such as the
OMERACT rheumatoid arthritis scoring system (RAMRIS), which is based on MRI
acquisitions [4].

In this context, volume segmentation plays an important role because it makes it
possible to extract every single bone and analyze it to evaluate the disease progression.
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The aim of this work is to optimize and evaluate the graph-based segmentation
method presented in [1] against the available ground truth, which is representative of
the user needs and requirements. A training phase is executed to allow the method to
learn and adapt itself to the given data set characteristics and to the user desiderata.
Due to the noise, extremely low contrast, and bone conformation, the preliminary
segmentation results achieved with no a priori knowledge show some differences
from the proposed training results. For instance, in the ground-truth volumes, internal
holes are often considered as belonging to the bone tissue.

The training phase evaluates some simple post-processing steps that allow improv-
ing the segmented volumes and achieving the best result. To this end, a few Mathe-
matical Morphology (MM) operators are proposed to regularize the shape, fill holes,
and make the result more robust to noise. In this step, the Receiving Operating Char-
acteristic curve (ROC) and some similarity measures are taken into account.

In a subsequent phase, the testing data set is processed, and all of the obtained re-
sults are tested by applying similarity measures and distance metrics between the real
and achieved volume surfaces.

The paper is organized as follows. In Section 2, the proposed segmentation approach
is briefly introduced, together with a brief description of the database and its use in the
training and testing phases. In Section 3, the parameters used for quantitative evaluation
are described and discussed. The application of the method to MRI volumes of the hand
district and the performance evaluation are presented in Section 4.

2 Proposed Method

This work focuses on applying the segmentation approach presented in [1] to MRI
wrist volumes, a training phase for its optimization, and a subsequent quantitative
evaluation. The employed database consists of hand and wrist district MRI volumes
whose ground truth is based on a segmentation process accomplished by expert phy-
sicians in this medical field.

After giving the main idea of the method and after introducing the reference data-
base (DB), the two phases of training and testing are described.

Despite the very low contrast of the wrist bones with respect to the surrounding tis-
sues, the presence of noise, and the lack of shape and smoothness information in the
proposed segmentation method, the extracted Region of Interest (ROI) volumes are
quite accurate and well separated from nearby similar structures.

The segmentation method is very sensitive to inhomogeneities, so that fine details
and internal holes are tracked even when they are of no interest to the medical expert.

By comparing the results obtained by the proposed segmentation approach with the
ground truth, one can appreciate how the detected volumes and surfaces can signifi-
cantly benefit from simple post-processing steps. Simple mathematical morphology
operators greatly improve the result accuracy.

2.1  Segmentation

The proposed method is a 3D seed-based algorithm that applies a graph-based seg-
mentation driven by research into the minimum cost paths for the analysis of digital
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volumes. Starting from a single seed point belonging to the ROI chosen by the user,
an optimal aggregation algorithm selects the best paths and finds a spanning tree that
is minimum with respect to the following cost function [1]:

fwS (v) = minn(s,vi) [maXxEn(s,vi) wg (x)] (D

where w is the weight associated with the graph vertices, and m(s,v;) is the path
from the seed s to a generic vertex v;.

The proposed cost criterion is comparable to the single-source shortest path prob-
lem for a graph with non-negative vertex weights, producing a Minimum Path Span-
ning Tree (MPST) in routing problems [1].

It is a non-iterative mechanism adaptive to the image content that takes into ac-
count the contextual information. The main advantages are that the segmentation can
be obtained in one shot. As opposed to other graph-based methods, this algorithm
considers only a single seed point (usually in the literature, two seeds are given: one
for the foreground and one for the background), and its growth mechanism produces
results that are also optimal from the computational point of view.

To obtain a binary volume from the MPST, it is necessary to apply a graph cut.
Because the present paper is devoted to the study of the efficiency of the method in
separating single wrist bone tissues, the threshold is chosen in a semi-interactive way
corresponding to the maximum graph-cut that does not generate leakage problems. As
a consequence, one can prove that the optimal result is encompassed in the MPST,
from where it can be extracted.

The elapsed processing time is approximately 30 seconds for each bone when run-
ning on an Intel Core 17-4700MQ (2.4 GHz, 6 MB cache, 4 core).

2.2  Database: Training and Testing Phases

The database (DB) used is described in paper [7] and is made of 100 MRI Tl1-
weighted volumes acquired by the 0.2 Tesla ARTOSCAN (Esaote Spa, Genova, It-
aly). Each volume is made of approximately 120 images of size 256x256 pixels.
A sample coronal slice is shown in Fig. 1.

Fig. 1. Coronal MRI slice of the wrist.
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A wrist is a complex joint between the distal forearm and the hand, composed of
15 bones: the distal parts of the radius and ulna, eight carpal bones, and the proximal
parts of five metacarpal bones.

The bone volumes have been segmented by medical experts with RheumaSCORE
Software, implemented by Softeco Sismat srl (Genova, Italy) [8]. The segmentation
method takes into account bone and erosion; areas of oedema are considered to be-
long to the bone tissue.

After the preliminary segmentation step applied without any a priori or model infor-
mation, the training phase is started where the binary segmented volumes are compared
with the ground truth. In this phase, the training of the proposed method is executed to
decide which type of post-processing gives the best results. As said before, the approach
is an adaptive system that learns from the volumes present in the database.

For all of the binary volumes of the analyzed patients, we considered the following
operations of mathematical morphology: a 3D dilation applied one time and two times
(with a circular structural element) and a 3D dilation with hole filling. After the appli-
cation of these processing steps, the results are evaluated by means of the classical
parameters (sensitivity and precision) and similarity measure (Dice coefficient). This
analysis provides the best post-processing segmentation result, which drives the sub-
sequent testing phase. During the testing phase, all of the test cases are evaluated by
the above mentioned measures.

Various measures exist to evaluate the quality of a segmentation; the most common
are metrics based on volumetric overlap and surface distance. Depending on the ap-
plication, one parameter may be favoured over another. In this work, various metrics
are employed to allow a global quality evaluation.

3 Quantitative Evaluation

In this section, the already mentioned metrics used for the performance evaluation are
described in detail, starting from the similarity measure and followed by distance
measures.

The basic indices Precision (PR), Sensitivity (SENS) and DICE are given by these
formulae:

TP TP

PR=—L_ SENS= )
TP+FP TP+FN
2TP
DICE = (TP+FP)+(TP+FN) S

where TP are the True Positives, FP are the False Positives, and FN are the False
Negatives. Precision (or positive predictive value) is the proportion of the predicted
positive cases that are correct; Sensitivity tells how many voxels are correctly classi-
fied positive of the total positive observations. The values of 1-precision (on the x
axis) and sensitivity (on the y axis) are usually plotted in a ROC graph.

The Dice coefficient is similarity index that measures the overlap between two
sets; a value of 0 indicates no overlap and a value of 1 indicates perfect agreement.
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Higher numbers note better agreement between the sets, so when we apply these indi-
ces to evaluate the agreement between the segmentation results, the goal is to get as
close to 1 as possible.

After some simple operations, the Dice coefficient can be reformulated by these
expressions:

DICE = 2 = zerr (4)

-1 -1 err
PR™+SENS 2+Tp

where err is the overall segmentation error.

Formula (4) shows the relationship between the Dice coefficient and precision and
sensitivity, particularly with the inverse of these two parameters. It may be noted that
the Dice coefficient have nonlinear correspondences with the error [5].

The evaluation metrics based on distances [6] perform a comparison of the surface
voxels of two segmentations A and B. For each surface voxel of A, the Euclidean
distance to the closest surface voxel of B is measured.

Let S(A) be the set of surface voxels of A. The shortest distance of an arbitrary
voxel v to S(A) is defined as d(v,S(A)) = ming,cgea)llv — sall, where ||-]| de-
notes the Euclidean distance.

The Average Symmetric Surface Distance (ASD) is given by

1

ASD(A,B) = oo

s pesa) A(5aS(B)) + Xspes d(s5S(A)))  (5)

The Root Mean Square Symmetric Surface Distance (RMSD) is

1
RMSD(4,B) = \/|S(A)|+|S(B>| '

(ZSAES(A) daz (s4,5(B)) + nges(B) daz (sgS(4))) (6
These two distances are strongly correlated, with RMSD giving a large penalty for
large deviations from the true contour.
The Maximum Symmetric Surface Distance (Hausdorff distance) is defined as

MSD(A,B) = maX{maXsAES(A) d(s4S(B)), maXg,es(B) d(spS(A))} @)

This last metric is sensitive to outliers and returns the true maximum error. By the
definition of the formulae, the distance is O for a perfect segmentation, and greater the
value of the distance, the worse the segmentation is.

4 Results and Discussion

For the experiments, 43 patients are analyzed and evaluated; 10 of these cases are
non-pathological. In particular, in the training phase, 20 pathological and 4 non-
pathological cases are studied. In the testing phase, 13 pathological and 6 non- patho-
logical cases are considered. For the present application, the carpal bones are taken
into account: the scaphoid, lunate, triquetrum, pisiform, trapezium, trapezoid, capitate
and hamate.
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Training Phase. After the segmentation, a binary volume is obtained for each bone.
To regularize the results and improve the accuracy with respect to the ground truth,
some mathematical morphology steps can be applied to each bone volume. This phase
allows the determination of the best MM operator to apply and the corresponding
structural element. The considered expansions are 3D dilation, 3D dilation applied
twice and 3D dilation with filling holes.

In Fig. 2, it is possible to observe, for the triquetrum bone, the trend of the Dice
coefficient in the different patients analyzed for all three dilations. In almost all cases,
the best result is the 3D dilation with hole filling.

TRIQUETRUM
0,95

0,85
0,8
0,75
0,7

DICE COEFFICIENT

1 2 53 4 5 6 7 B 9 10 11 12 15 14 15 16 17 1B 19 20 21 22 23 24
PATIENTS

g 30 dilation g 30 dilation with filling holes g 30 dilation applied twice

Fig. 2. Trend of DICE coefficient in different patients for all three dilations.

Fig. 3 shows the 3D visualization of all bones obtained using the 3D dilation with
hole filling (on the left) and the ground truth (on the right).

W

Fig. 3. 3D visualization of results retrieved by our method (on the left) and by the database (on
the right)

Testing Phase. Once the 3D dilation with hole filling is defined as the best procedure,
19 patients are evaluated. A first analysis is performed using the Dice coefficient. As
shown in Tab.1 (Testing phase), the mean, minimum and maximum values are com-
puted for each bone. The value 1 corresponds to the two coincident volumes. In our
cases, the Dice coefficient takes values of approximately 0.91, so the results obtained
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are good. By analysing the minimum and maximum values, one can note that they are
distributed within a limited range.

By comparing the training and testing phases, it results that the mean values are
similar. This underlines the validity of the testing phase.

Table 1. Dice coefficients in the Training and Testing phases for each carpal bone.

TRANING PHASE TESTING PHASE
DICE COEFFICIENT DICE COEFFICIENT
Mean |Minimum|Maximum Mean Minimum [ Maximum

CAPITATE 0.9323 | 0.8128 0.9626 | |CAPITATE 0.9189 0.8430 0.9620
TRIQUETRUM| 0.8967 [ 0.7573 0.9435 | |TRIQUETRUM| 0.8921 0.6818 0.9411

PISIFORM 0.9142 | 0.8298 0.9515 | |PISIFORM 0.9214 0.8494 0.9463
SCAPHOID 0.9346 | 0.8324 0.9603 | |SCAPHOID 0.9308 0.8571 0.9603
LUNATE 0.8994 | 0.7098 0.9539 ||LUNATE 0.8893 0.6203 0.9464

TRAPEZIUM | 0.9016 | 0.7858 | 0.9456 ||TRAPEZIUM | 0.9036 0.7817 0.9477
TRAPEZOID | 0.9165 | 0.8116 0.9463 ||TRAPEZOID 0.9002 0.7241 0.9509
HAMATE 0.8938 | 0.6484 | 0.9569 |HAMATE 0.9014 0.7622 0.9448
MEAN 0.9111 | 0.7735 | 0.9526 ||MEAN 0.9072 0.7650 0.9499

A second analysis applied to the volumes is based on the distances ASD, RMSD,
and MSD. The results obtained for each bone and the mean values are shown in Tab.2
(Testing phase). The results are also good for these parameters. In fact, for ASD and
RMSD, the obtained values are on an average under unity. The values of MSD are
larger than the previous ones because they are not normalized over the total surface
and they take into account the worst case. However, on an average, the results are
close to 4 voxels. Also in this case the mean values in the two phases are similar.

Table 2. Distance measure in the Training and Testing phases for each carpal bone.

TRAINING PHASE TESTING PHASE

ASD |RMSD| MSD ASD [RMSD| MSD
CAPITATE 0.6038 | 0.9283 | 4.9703 ||CAPITATE 0.6468 | 0.9566 | 4.8575
TRIQUETRUM| 0.6810 | 1.0198 | 4.6848 ||TRIQUETRUM| 0.8259 [ 1.2548 | 5.1991
PISIFORM 0.5321 | 0.7981 [ 3.2313 ||PISIFORM 0.5325 | 0.8062 | 3.1545
SCAPHOID 0.4920 | 0.7677 | 3.5450 ||SCAPHOID 0.5471 | 0.8289 | 3.4033
LUNATE 0.6645 | 0.9913 [ 4.2234 ||[LUNATE 0.6945 | 1.0275 | 4.3575
TRAPEZIUM 0.6699 | 0.9854 | 4.1040 ||TRAPEZIUM | 0.7062 | 1.0335 | 4.1369
TRAPEZOID 0.5288 | 0.7994 | 3.3465 ||TRAPEZOID | 0.6020 | 0.9163 | 3.7777
HAMATE 0.7309 | 1.0788 | 4.9428 ||HAMATE 0.6665 | 0.9798 | 4.7162
MEAN 0,6129 | 0,9211 | 4.1310 [|MEAN 0.6527 | 0.9754 | 4.2003

5 Conclusions

In this work, a quantitative evaluation of the graph-based segmentation method has
been performed. The proposed approach essentially consists of three steps: the seg-
mentation, the training phase, and the testing phase. The segmentation, starting from a
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single seed and using graph theory, allows the extraction of each bone separately. The
training phase has been crucial to defining the best result of our system with respect to
the ground truth by computing some common parameters (sensitivity and precision)
and similarity measure (Dice coefficient). The testing phase proves the robustness of
our method by computing similarity and distance measures (Average Symmetric Sur-
face Distance, Root Mean Square Symmetric Surface Distance, Hausdorff Distance).

The application consists of the extraction of carpal bones from real MRI volumes.
It is possible to apply this method to different anatomical districts and different pa-
thologies using appropriate qualitative validation.

The results show the good accuracy and precision of the method with respect to the
ground truth. As future work, we intend to automate the optimization process and
validate all the data sets.
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References

1. Gemme, L., Dellepiane, S.: A new graph-based method for automatic segmentation.
In: 18th International Conference on Image Analysis and Processing, ICIAP, Genova
(in press, 2015)

2. Wtodarczyk, J., Czaplicka, K., Tabor, Z., Wojciechowski, W., Urbanik, A.: Segmentation
of bones in magnetic resonance images of the wrist. International Journal of Computer
Assisted Radiology and Surgery, 1-13 (2014)

3. Cimmino, M.A., Innocenti, S., Livrone, F., Magnaguagno, F., Silvestri, E., Garlaschi, G.:
Dynamic gadolinium-enhanced magnetic resonance imaging of the wrist in patients with
rheumatoid arthritis can discriminate active from inactive disease. Arthritis & Rheumatism
48(5), 1207-1213 (2003)

4. Boesen, M., @stergaard, M., Cimmino, M.A., Kubassova, O., Jensen, K.E., Bliddal, H.:
MRI quantification of rheumatoid arthritis: current knowledge and future perspectives.
European Journal of Radiology 71(2), 189-196 (2009)

5. Chang, H.H., Zhuang, A.H., Valentino, D.J., Chu, W.C.: Performance measure characteriza-
tion for evaluating neuroimage segmentation algorithms. Neuroimage 47(1), 122-135
(2009)

6. Heimann, T., Van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V., Bauer, C., Wolf,
I.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE
Transactions on Medical Imaging 28(8), 1251-1265 (2009)

7. Tomatis, V., et al.: A database of segmented MRI images of the wrist and the hand in pa-
tients with rheumatic diseases. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone,
C. (eds.) ICIAP 2015 Workshops. LNCS, vol. 9281, pp. 143-150. Springer, Heidelberg
(2015)

8. Parascandolo, P., Cesario, L., Vosilla, L., Viano, G.: Computer aided diagnosis: state-of-
the-art and application to musculoskeletal diseases. In: 3D Multiscale Physiological
Human, pp. 277-296. Springer, London (2014)



	Optimizing and Evaluating a Graph-Based Segmentation of MRI Wrist Bones
	1 Introduction
	2 Proposed Method
	2.1 Segmentation
	2.2 Database: Training and Testing Phases

	3 Quantitative Evaluation
	4 Results and Discussion
	Training Phase.
	Testing Phase.

	5 Conclusions
	References


