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Abstract. Camera model identification is of interest for many applica-
tions. In-camera processes, specific of each model, leave traces that can
be captured by features designed ad hoc, and used for reliable classifi-
cation. In this work we investigate on the use of blind features based
on the analysis of image residuals. In particular, features are extracted
locally based on co-occurrence matrices of selected neighbors and then
used to train an SVM classifier. Experiments on the well-known Dresden
database show this approach to provide state-of-the-art performances.
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1 Introduction

Identifying which camera took a given photo can be of great interest in many
instances [1]. Law enforcement agencies may be interested to trace back the
origin of some unlawful or dangerous images. Likewise, linking a photo to a
given camera may represent evidence before a court of law. On the other hand,
someone may be interested in proving that a photo was taken by his/her camera
to claim intellectual property. The growing interest towards this task is a direct
consequence of the huge growth in the acquisition and diffusion of digital images,
therefore it is bound to increase further.

On the technical side, a great impulse to research in this field came with the
pioneering work of Lukas et al. [2] proposing a simple and effective tool for source
identification. The photo-response non uniformity (PRNU) pattern, also known
as sensor pattern noise, is a distinctive pattern, unique for each camera and stable
in time, originated by the unavoidable imperfections occurring during the sensor
manufacturing process. Each photo taken by a given camera contains traces of
the PRNU, which represents, therefore, sort of a camera fingerprint, which can be
used for reliable identification. However, even these very promising methods have
their drawbacks, which limit their field of application. In particular, to extract a
camera’s PRNU pattern, a large number of images taken by that camera are nec-
essary. This is often not possible without the collaboration of the camera owner
and, in any case, is extremely time-consuming. A more viable intermediate step is
the identification of the camera model. Finding the model may significantly nar-
row the search, which can be completed also by more conventional methods.

© Springer International Publishing Switzerland 2015
V. Murino et al. (Eds.): ICTAP 2015 Workshops, LNCS 9281, pp. 11-18, 2015.
DOI: 10.1007/978-3-319-23222-5_2



12 F. Marra et al.

Camera model identification is made possible by the distinctive traces left in
images as a result of the unique combination of in-camera processing steps. In
fact, in modern digital cameras, the final image is produced through a number of
algorithms, each characterized by several free parameters. Popular examples are
demosaicing, based often on complex adaptive nonlinear interpolation, and JPEG
compression, where the quantization matrix can be defined by the user. It is highly
unlikely that different camera models use the very same set of algorithms and
parameters and, therefore, very likely that their traces allow reliable identification.

Indeed, in the very same literature on PRNU-based identification, the appear-
ance of model-based artifacts in the estimated PRNU pattern was observed [3],
and used to identify the camera model. However, this path was followed before
by other researchers. In [4], inspired by the work of Popescu and Farid for image
forgery detection [5], traces of different interpolation algorithms where sought and
used as distinctive model features. In fact, each pixel is strongly correlated with
its neighbors (both spatial and across color channels). The weights of the inter-
polation kernel are estimated and used as features for camera identification com-
bined with frequency domain features, that take into account the periodic artifacts
caused by the CFA pattern. The strong dependencies among pixels has been also
explored in [6] [7]. In [6], in particular, and also in [8], weight estimation is con-
ducted locally on each color band, and a different procedure is used based on the
content of the region. This reflects the fact that often adaptive demosaicing tech-
niques are used to reduce blurring artifacts. In [7], instead, partial second-order
derivative correlation models are proposed to detect both the intrachannel and the
cross-channel dependence due to demosaicing. Other methods seek to characterize
JPEG compression artifacts [9], DCT coefficients statistics [10], or lens distortion
artifacts like chromatic aberration [11]. A different approach is proposed in [12]
where the heteroscedastic noise model valid for raw images and characterized by
two parameters is used to identify camera models.

The majority of the methods look for artifacts related to some specific in-
camera processing step, trying to estimate its unknown parameters. A “blind”
approach is also possible, however, where no hypotheses is made on the origin of
camera-specific marks, and the identification task is regarded simply as a texture
classification problem. With this approach, the focus shifts on the definition of
the most discriminative features, irrespective of their meaning. Both global and
local features can be considered, drawing often from the vast literature of closely
related fields, such as material classification or steganalysis. The aim of this paper
is to evaluate a class of such features, based on co-occurrences of image residuals,
and show their potential for the camera model identification task.

In the next Section we review “blind” feature-based methods, then the
residual-based local features are described in Section 3, and evaluated exper-
imentally in Section 4.

2 Related Work

The use of generic features was first considered in the work of Kharrazi et al.
[13]. The Authors propose to use various global statistics, extracted from each
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individual color band, based on the correlation of couples of color bands, and also
extracted from some wavelet subbands. In addition, some Image Quality Metrics
(IQM), used in [14] for steganalysis, are evaluated on all the color bands, both in
the spatial and transform domain. It is worth noting that these last features are
computed on residual images (high-pass filtered versions of the original data).

Indeed, computing features on image residuals is common to the majority
of methods proposed in the literature. This way, results become independent of
the image content, and artifacts are more easily detected. In [15] IQM features
are extracted from high-pass residuals of each color band. These features are
then combined with BSM (Binary Similarity Measures), i.e., LBP (Local Binary
Pattern) extracted from the least-significant bit planes, and with an enlarged set
of features computed in the wavelet domain. Besides the features used in [13],
other first-order statistics are computed, as well as some inter-band correlation
indexes, inspired by [16]. Instead in [17] Gloe proposes to add some color features
to the ones used in [13]. Experiments on the Dresden Image Database [18] prove
this combination to guarantee a performance gain w.r.t. both [13] and [15].

The majority of the features recalled thus far are evaluated globally on the
whole image (both original and high-pass filtered) or a decimated version of it,
if wavelet subbands are considered. However, in order to capture subtle image
patterns which may correspond to discriminative features, it is important to
consider local features, extracted from a small neighborhood of each pixel of the
image, as it happens for LBP. This is the main focus of the work of Xu et al.
[19], where LBP features are evaluated both on the original image and on some
residuals. Note that LBP is computed on two-pixel supports, and hence encodes
only first-order spatial variations. However, combining it with a preliminary
high-pass filter amounts to considering a larger support, and evaluating higher-
order statistics [20]. We mention briefly other approaches [21] which look at the
statistical differences in the DCT domain by computing Markovian transition
probabilities. Also in this case, similar features had been already considered in
steganalysis [22].

3 Residual-Based Local Features

The analysis of the state of the art shows that local descriptors can provide
precious clues for camera model identification. Moreover, since such clues, related
to the camera processing chain, are contained in the image micro-patterns and
not in the scene content, it makes sense to remove the latter and work on image
residuals. Even in this framework, however, two main open issues remain about
i) how to extract informative image residuals and %) how to process them in
order to obtain an expressive camera-related feature. Given the complexity and
variety of the in-camera processes involved, no conclusive answer can be hoped
for. However, we will show that co-occurrence based local features, computed on
image residuals and proposed originally in [23] for steganalysis, may represent a
valuable tool for this task. A similar path was used successfully in digital image
forensics [24] [25].
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The feature vector associated with the image under test is extracted through
the following steps:

— computation of residuals through high-pass filtering;
— quantization and truncation of the residuals;
— computation of the histogram of co-occurrences.

In [23] a number of linear and non-linear high-pass filters have been used for
the computation of residuals, combining all resulting feature vectors by means of
an ensemble classifier. In [25], instead, a few filters have been selected based on
a preliminary performance analysis on the training set. In particular, the third
order linear filter defined as

Tij = Tij—1 = 3Tij +3Tijp1 = Tijto (1)

with z and r indicating original and residual images, and (4, j) the spatial coor-
dinates, has been found to provide good and stable results. When filters are not
row-column symmetric, they are applied also on the image transpose to augment
data.

A further alternative, that will be explored in this paper is the use of an image
denoising algorithm to compute residuals. In fact, if the aim of this process
is to remove the scene content from the image, keeping all the noise, this is
best achieved by resorting to specialized filters that abound in the literature.
In particular we will consider the nonlocal BM3D filter, among the best and
well-known denoiser, already used for residual computation [26] in PRNU-based
image forensics. The residual image will be therefore obtained as the difference
between the original image x and its denoised version T = f(z), with f(-) the
denoising filter.

Co-occurrences are then evaluated on these residuals, which provide infor-
mation on higher-order phenomena and involve a relatively large number of
image pixels. In order to obtain a manageable co-occurrence matrix, residuals
are quantized/truncated to a small number of values as:

7i,; = truncy (round(r; ;/q)) (2)

with ¢ the quantization step and T the truncation value. To limit the matrix
size we consider only T'=1 or T' = 2, leading to uniform mid-thread quantizers
with 3 and 5 bins, respectively. At this point co-occurrences on four pixels along
the filter direction (say, rows) are computed, that is

Ci1(ko, k1, k2, k3) =
ZI(?@J’ = ko,Tij11 = k1,Tijy2 = ko, Ti j13 = k3) (3)
4,7

where I(A) is the indicator function of event A, equal to 1 if A holds and 0
otherwise, and all k indexes take values in {—T,...,+7T}. Another co-occurrence
matrix is then computed working across the filter direction (say, columns)
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Table 1. Performance comparison for various spam descriptors (512 x 512 cropping).

deriv. accuracy
filter name order | T'=1 length 50 | T'=2 length 338
spaml_14hv 1 95.14 96.66
spam?2_12hv 2 97.08 97.31
spam3_14hv 3 96.83 98.99
spaml11(3x3) 2 95.80 98.23
spaml1(5x5) 4 96.07 96.71

Cy(ko, k1, ko, ks) =
ZI(E,J‘ = ko, Tig1,j = k1, Tig2j = ko, Tiys; = k3) 4)

.9

Invoking left-right and positive-negative symmetries, the original (27 + 1)* fea-
tures can be reduced through pooling to just 338 and 50 for 7' =2 and T = 1,
respectively. The extracted features are eventually used to train an SVM classifier.

4 Experimental Results

To assess the performance of the features under analysis we carried out experi-
ments on the Dresden database [18]. This is one of the most widespread databases
in this field, used in many recent papers. In the Dresden database, 26 different
camera models are available, each with several individual devices and hundreds
or thousands photos. However, to speed up the experimental phase, we used a
smaller version of this database, as done in [17], comprising only 10 models. We
trained an SVM with linear kernel using all the images coming from one single
device for each camera model. We run 20 times this procedure, each time ran-
domly choosing the devices used for training, and averaged results. Notice that
the images are not cropped, therefore they keep the original camera resolution,
going from about 5 to about 15 Mpixels.

For comparison we implemented the features proposed in Celiktutan-2008
[15], Gloe-2012 [17] and Xu-2012 [19]. As for the features based on co-
occurrences, some preliminary experiments are carried out to select the best
configuration. In Table 1 we report results obtained on the selected database
using linear high-pass filters computing derivatives of first to fourth order, called
of type spam [23]. The residual are then quantized to 3 or 5 levels, changing
the quantization step ¢ accordingly. Since these features are relatively short,
50 or 338 components, they can be estimated reliably also on a portion of the
image, so we worked on a 512 x 512 section to expedite the process. Results
show that it is worth using longer features, associated with 5-level quantization,
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Table 2. Performance of various descriptors on the 10-model Dresden subset. Note
that the wavelet-based features used in Celiktutan-2008 cannot be extracted from very
small images, like 64 x 64.

accuracy
Feature length | whole image || 512 x 512 [ 128 x 128 | 64 x 64
Celiktutan-2008 592 96.89 91.29 73.16 -
Gloe-2012 82 97.60 82.32 64.25 55.60
Xu-2012 354 98.87 97.96 89.82 74.82
co-occurrences (BM3D) 338 99.06 97.03 84.03 68.12
co-occurrences (best spam) 338 99.44 98.99 94.82 85.07

while indication on the filter are more controversial. In any case, we used the
best performing filter, spam3_14hv, in the rest of the experiments.

Table 2 shows results for the 10-model identification experiment. The co-
occurrence based local feature with the best spam filter provides a 99.44%
accuracy, better than both Gloe-2012 and than Xu-2012. When residuals are
computed through denoising, the performance is slightly worse. Table 3 provides
detailed model-by-model results for the co-occurrence based feature. The latter
provides perfect on near-perfect accuracy in all cases, except for the Nikon D200
images, associated sometimes with the Kodak M1063 camera. It is worth point-
ing out that also in other investigations, including [17], this particular camera
model has been found hard to identify, which raises interest on the in-camera
processes it adopts.

In Table 2 we show also results obtained after cropping images to much
smaller sizes. As expected, a 512 x 512 section allows one to obtain almost the
same results as on the full image. With much smaller sections, even 64 x 64

Table 3. Mis-Classification matrix for the best co-occurrence feature.

identified as
device 170 72150 M10 S710 D200 u DCZ 7325 L74 NV
170 100 - - - - - - - - -
7150 0.6 98.6 - - - 0.8 - - - -
M10 - - 99.7 - - - 0.1 0.1 - 0.1
S710 - - - 100 - - - - - -
D200 - - 4.1 - 95.1 - 0.4 0.2 - 0.2
m - - - - - 100 - - - -
DCZ - 0.4 - - - - 99.6 - - -
7325 - - - - - - - 100 - -
L74 - - - - - - - - 100 -
NV - - 0.4 0.4 - - - - - 99.2
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pixels, only the co-occurrence features based on the best spam filter keep being
reliable. If confirmed in other experiments, this might be a valuable property,
not only for reducing analysis time when computational power is limited, but
also for dealing with situations in which only a fragment is available, for example
in image forgery localization.

5 Conclusions

Our analyses confirm for camera model identification the excellent performance
exhibited in other domains by co-occurrence based features. Improved features
can be certainly designed, for example by taking into account individually the
three color bands. In any case, this is only a preliminary exploration, and much
work remains to be done. Among the most important issues: more comprehen-
sive experiments are necessary, with the full Dresden database, as well as other
datasets; robustness to various forms of post-processing should be studied; the
open set scenario should be also considered, dealing with unknown models.
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