
Machine Learning of Bayesian Networks
Using Constraint Programming

Peter van Beek(B) and Hella-Franziska Hoffmann

Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

vanbeek@cs.uwaterloo.ca

Abstract. Bayesian networks are a widely used graphical model with
diverse applications in knowledge discovery, classification, prediction,
and control. Learning a Bayesian network from discrete data can be
cast as a combinatorial optimization problem and there has been much
previous work on applying optimization techniques including proposals
based on ILP, A* search, depth-first branch-and-bound (BnB) search,
and breadth-first BnB search. In this paper, we present a constraint-based
depth-first BnB approach for solving the Bayesian network learning prob-
lem. We propose an improved constraint model that includes powerful
dominance constraints, symmetry-breaking constraints, cost-based prun-
ing rules, and an acyclicity constraint for effectively pruning the search
for a minimum cost solution to the model. We experimentally evaluated
our approach on a representative suite of benchmark data. Our empir-
ical results compare favorably to the best previous approaches, both in
terms of number of instances solved within specified resource bounds and
in terms of solution time.

1 Introduction

Bayesian networks are a popular probabilistic graphical model with diverse appli-
cations including knowledge discovery, classification, prediction, and control (see,
e.g., [1]). A Bayesian network (BN) can either be constructed by a domain expert
or learned automatically from data. Our interest here is in the learning of a BN
from discrete data, a major challenge in machine learning. Learning a BN from
discrete data can be cast as a combinatorial optimization problem—the well-
known score-and-search approach—where a scoring function is used to evaluate
the quality of a proposed BN and the space of feasible solutions is systemati-
cally searched for a best-scoring BN. Unfortunately, learning a BN from data is
NP-hard, even if the number of parents per vertex in the DAG is limited to two
[2]. As well, the problem is unlikely to be efficiently approximatable with a good
quality guarantee, thus motivating the use of global (exact) search algorithms
over local (heuristic) search algorithms [3].

Global search algorithms for learning a BN from data have been studied
extensively over the past several decades and there have been proposals based on
dynamic programming [4–6], integer linear programming (ILP) [7,8], A* search
c© Springer International Publishing Switzerland 2015
G. Pesant (Ed.): CP 2015, LNCS 9255, pp. 429–445, 2015.
DOI: 10.1007/978-3-319-23219-5 31

430 P. van Beek and H.-F. Hoffmann

[9–11], depth-first branch-and-bound (BnB) search [12,13], and breadth-first
BnB search [10,11,14,15]. In this paper, we present a constraint-based depth-first
BnB approach for solving the Bayesian network learning problem. We propose
an improved constraint model that includes powerful dominance constraints,
symmetry-breaking constraints, cost-based pruning rules, and an acyclicity con-
straint for effectively pruning the search for a minimum cost solution to the
model. We experimentally evaluated our approach on a representative suite of
benchmark data. Our empirical results compare favorably to the best previous
approaches, both in terms of number of instances solved within specified resource
bounds and in terms of solution time.

2 Background

In this section, we briefly review the necessary background in Bayesian networks
before defining the Bayesian network structure learning problem (for more back-
ground on these topics see, for example, [16,17]).

A Bayesian network (BN) is a probabilistic graphical model that consists of a
labeled directed acyclic graph (DAG) in which the vertices V = {v1, . . . , vn} cor-
respond to random variables, the edges represent direct influence of one random
variable on another, and each vertex vi is labeled with a conditional probability
distribution P (vi | parents(vi)) that specifies the dependence of the variable vi

on its set of parents parents(vi) in the DAG. A BN can alternatively be viewed as
a factorized representation of the joint probability distribution over the random
variables and as an encoding of conditional independence assumptions.

The predominant method for BN structure learning from data is the score-
and-search method1. Let G be a DAG over random variables V , and let I =
{I1, . . . , IN} be a set of multivariate discrete data, where each instance Ii is
an n-tuple that is a complete instantiation of the variables in V . A scoring
function σ(G | I) assigns a real value measuring the quality of G given the data
I. Without loss of generality, we assume that a lower score represents a better
quality network structure.

Definition 1. Given a discrete data set I = {I1, . . . , IN} over random variables
V and a scoring function σ, the Bayesian network structure learning problem
is to find a directed acyclic graph G over V that minimizes the score σ(G | I).

Scoring functions commonly balance goodness of fit to the data with a
penalty term for model complexity to avoid overfitting. Common scoring func-
tions include BIC/MDL [18,19] and BDeu [20,21]. An important property of
these (and all commonly used) scoring functions is decomposability, where the

1 An alternative method, called constraint-based structure learning in the literature, is
based on statistical hypothesis tests for conditional independence. We do not discuss
it further here except to note that the method is known to scale to large instances
but to have the drawback that it is sensitive to a single failure in a hypothesis test
(see [17, p. 785]).

Machine Learning of Bayesian Networks Using Constraint Programming 431

A : {D}, 9.6 {C}, 9.9 {E}, 10.0 {}, 15.4

B : {C,D}, 12.1 {C}, 12.2 {E}, 12.3 {}, 14.1

C : {E}, 3.6 {D}, 5.2 {A,B}, 10.9 {A}, 11.4 {}, 17.0

D : {E}, 3.6 {C}, 5.2 {A,B}, 10.9 {A}, 11.4 {}, 17.0

E : {D}, 3.7 {A}, 4.2 {A,B}, 11.2 {C}, 11.6 {}, 17.0

A

E

C D

B

(a) (b)

Fig. 1. (a) Random variables and possible parent sets for Example 1; (b) minimum
cost DAG structure with cost 38.9.

score of the entire network σ(G | I) can be rewritten as the sum of local scores∑n
i=1 σ(vi, parents(vi) | I) that only depend on vi and the parent set of vi in

G . Henceforth, we assume that the scoring function is decomposable and that,
following previous work, the local score σ(vi, p | I) for each possible parent set
p ⊆ 2V−{vi} and each random variable vi has been computed in a preprocessing
step prior to the search for the best network structure. Pruning techniques can
be used to reduce the number of possible parent sets that need to be considered,
but in the worst-case the number of possible parent sets for each variable vi is
2n−1, where n is the number of vertices in the DAG.

Example 1. Let A, B, C, D, and E be random variables with the possible parent
sets and associated scores shown in Figure 1(a). For example, if the parent set
{C,D} for random variable B is chosen there would be a directed edge from C
to B and a directed edge from D to B and those would be the only incoming
edges to B. The local score for this parent set is 12.1. If the parent set {} for
random variable A is chosen, there would be no incoming edges to A; i.e., A
would be a source vertex. Figure 1(b) shows the minimum cost DAG with cost
15.4 + 4.2 + 3.6 + 3.6 + 12.1 = 38.9.

3 Constraint Programming Approach

In this section, we present a constraint model and a depth-first branch-and-
bound solver for the Bayesian network structure learning problem. Table 1 sum-
marizes the notation.

Our constraint model consists of vertex variables, ordering variables, depth
variables, and constraints over those variables. The ordering and depth variables,
although redundant, improve the search for a solution.

Vertex (possible parent set) variables. There is a vertex variable vi, i ∈ V ,
for each random variable in V and the domain of vi, dom(vi), consists of the
possible parent sets for vi. The assignment vi = p denotes that vertex vi has
parents p in the DAG; i.e., the vertex variables represent the DAG over the set
of random variables V . Associated with each domain value is a cost and the goal

432 P. van Beek and H.-F. Hoffmann

Table 1. Notation for specifying constraint model.

V set of random variables
n number of random variables in the data set
cost(v) cost (score) of variable v
dom(v) domain of v
parents(v) set of parents of v in the DAG
min(dom(v)) the minimum value in the domain of v
v1, . . . , vn vertex (possible parent set) variables
o1, . . . , on ordering (permutation) variables
d1, . . . , dn depth variables
depth(p | o1, . . . , oi−1) depth of p ∈ dom(vj), where vj occurs at position i in the ordering

is to minimize the total cost, cost(v1) + · · · + cost(vn), subject to the constraint
that the graph is acyclic. A global constraint is introduced to enforce that the
vertex variables form a DAG,

acyclic(v1, . . . , vn), (1)

where the constraint is satisfied if and only if the graph designated by the parent
sets is acyclic. The DAG is not necessarily connected. A satisfiability checker for
the acyclic constraint is given in Section 3.7, which in turn can be used to
propagate the constraint.

Ordering (permutation) variables. There is an ordering variable oi for each
random variable and dom(oi) = V , the set of random variables. The assignment
oi = j denotes that vertex vj is in position i in the total ordering of the variables.
The ordering variables represent a permutation of the random variables. A global
constraint is introduced to enforce that the order variables form a permutation
of the vertex variables,

alldifferent(o1, . . . , on). (2)

The alldifferent constraint is propagated by, whenever a variable becomes instan-
tiated, simply removing that value from the domains of the other variables.

Depth variables. There is a depth variable di for each random variable and
dom(di) = {0, ..., n − 1}. The depth variables and the ordering variables are in
one-to-one correspondence. The assignment di = k denotes that the depth of the
vertex variable vj that occurs at position i in the ordering is k, where the depth
is the length of the longest path from a source vertex to vertex vj in the DAG.

Example 2. A constraint model for Example 1 would have variables vA, . . ., vE ,
o1, . . ., o5, and d1, . . ., d5, with domains dom(vA) = {{C}, {D}, {E}, {}}, . . .,
dom(vE) = {{D}, {A}, {A,B}, {C}, {}}, dom(oi) = {A, . . . , E}, and dom(di) =
{0, . . . , 4}.

To more formally state additional constraints, we introduce the following
notation for the depth of a domain value p for a vertex variable vj .

Machine Learning of Bayesian Networks Using Constraint Programming 433

Definition 2. The depth of a domain value p for a vertex variable vj that
occurs at position i in the ordering, denoted depth(p | o1, . . . , oi−1), is defined
as: 0 if p = {}; one plus the maximum depth of the elements of p if each element
of p occurs in a parent set of a vertex variable earlier in the ordering; and ∞
otherwise.

Example 3. In Example 2, suppose that o1 = A, vA = {}, d1 = 0, o2 = E,
vE = {A}, and d2 = 1. The value of depth(p | o1, o2) for variable C is 0 if p = {},
1 if p = {A}, 2 if p = {E}, and ∞ if p = {D} or p = {A,B}.

Constraints 3 & 4 establish the correspondence between the three types of
variables,

∀j • ∀p • vj = p ⇐⇒ ∃!i • oi = j ∧ di = depth(p | o1, . . . , oi−1), (3)
∀i • ∀j • oi = j ⇐⇒ ∃!p • vj = p ∧ di = depth(p | o1, . . . , oi−1), (4)

where the indices i and j range over 1 ≤ i, j ≤ n and the value p ranges over
dom(vj). The constraints are propagated as follows. A value p ∈ dom(vj) can
be pruned iff ∀i • j ∈ dom(oi) ⇒ depth(p | o1, . . . , oi−1) �∈ dom(di). A value
j ∈ dom(oi) can be pruned iff ∀p ∈ dom(vj) • depth(p | o1, . . . , oi−1) �∈ dom(di).
Only bounds are maintained on the depth variables. Hence, the notation
depth(p | o1, . . . , oi−1) �∈ dom(di) is to be interpreted as depth(p | o1, . . . , oi−1) <
min(dom(di)) ∨ depth(p | o1, . . . , oi−1) > max(dom(di)). When propagating
Constraints 3 & 4, we must determine depth(p | o1, . . . , oi−1). In general, this
is a difficult problem. We restrict ourselves to two easy special cases: (i) all of
o1, . . . , oi−1 have been instantiated, or (ii) some of o1, . . . , oi−1 have been instan-
tiated and all of the p ∈ dom(vj) are subsets of these ordering variables. We leave
to future work further ways of safely approximating the depth to allow further
propagation.

Example 4. In Example 2, suppose that o1 = A, vA = {}, d1 = 0, o2 = E,
vE = {A}, d2 = 1, and that, as a result of some propagation, min(di) = 1,
i = 3, 4, 5. The value {} can be pruned from each of the domains of vB , vC , and
vD.

One can see that the vertex variables together with the acyclic constraint
are sufficient alone to model the Bayesian network structure learning problem.
Such a search space over DAGs forms the basis of Barlett and Cussens’ integer
programming approach [8]. One can also see that the ordering (permutation)
variables together with the alldifferent constraint are sufficient alone, as the min-
imum cost DAG for a given ordering is easily determinable. Larranaga et al. [22]
were the first to propose the search space of all permutations and Teyssier and
Koller [23] successfully applied it within a local search algorithm. The permu-
tation search space also forms the basis of the approaches based on dynamic
programming [4–6] and on the approaches based on searching for the shortest
path in an ordering graph using A* search [9–11], depth-first branch-and-bound
DFBnB search [13], and BFBnB search [10,11,15].

434 P. van Beek and H.-F. Hoffmann

The unique aspects of our model lie in combining the DAG and permutation
search spaces and introducing the depth variables. As is shown in the next sec-
tions, the combination of variables allows us to identify and post many additional
constraints that lead to a considerable reduction in the search space.

3.1 Symmetry-Breaking Constraints (I)

Many permutations and prefixes of permutations, as represented by the ordering
variables, are symmetric in that they lead to the same minimum cost DAG,
or are dominated in that they lead to a DAG of equal or higher cost. The
intent behind introducing the auxiliary depth variables is to rule out all but the
lexicographically least of these permutations. A lexicographic ordering is defined
over the depth variables—and over the ordering variables, in the case of a tie
on the values of the depth variables. The following constraints are introduced to
enforce the lexicographic order.

d1 = 0 (5)
di = k ⇐⇒ (di+1 = k ∨ di+1 = k + 1), i = 1, . . . , n − 1 (6)
di = di+1 =⇒ oi < oi+1, i = 1, . . . , n − 1 (7)

The constraints are readily propagated. Constraint 6 is a dominance con-
straint.

Example 5. In Example 2, consider the ordering prefix (o1, . . . , o4) =
(E,C,A,D) with associated vertex variables (vE , vC , vA, vD) = ({}, {E}, {C},
{E}) and depths (d1, . . . , d4) = (0, 1, 2, 1). The cost of this ordering prefix is
33.8. The ordering prefix violates Constraint 6. However, the ordering prefix
(o1, . . . , o4) = (E,C,D,A) with depths (d1, . . . , d4) = (0, 1, 1, 2) and vertex vari-
ables (vE , . . . , vD) = ({}, {E}, {E}, {D}) satisfies the constraint and has a lower
cost of 33.5.

Constraint 7 is a symmetry-breaking constraint.

Example 6. In Example 2, consider the ordering (o1, . . . , o5) = (A,E,D,C,B)
with (d1, . . . , d5) = (0, 1, 2, 2, 3) and (vA, . . . , vB) = ({}, . . . , {C,D}). The order-
ing violates Constraint 7. However, the symmetric ordering (o1, . . . , o5) =
(A,E,C,D,B), which represents the same DAG, satisfies the constraint and
has equal cost.

Theorem 1. Any ordering prefix o1, . . . , oi can be safely pruned if the associated
depth variables d1, . . . , di do not satisfy Constraints 5–7.

3.2 Symmetry-Breaking Constraints (II)

In the previous section, we identified symmetries and dominance among the
ordering variables. In this section, we identify symmetries among the vertex

Machine Learning of Bayesian Networks Using Constraint Programming 435

variables. Let [x/y]dom(v) be the domain that results from replacing all occur-
rences of y in the parent sets by x. Two vertex variables v1 and v2 are symmetric
if [v1/v2]dom(v1) = dom(v2); i.e., the domains are equal once the given substi-
tution is applied. The symmetry is broken by enforcing that v1 must precede v2
in the ordering,

∀i • ∀j • oi = 1 ∧ oj = 2 =⇒ i < j. (8)

Example 7. In Example 2, consider vertex variables vC and vD. The variables
are symmetric as, [vC/vD]dom(vC) = {{E}, {C}, {A,B}, {A}, {}} = dom(vD).

3.3 Symmetry-Breaking Constraints (III)

A BN can be viewed as an encoding of conditional independence assumptions.
Two BN structures (DAGS) are said to be I-equivalent if they encode the same
set of conditional independence assumptions (see, e.g., [16,17]). The efficiency
of the search for a minimal cost BN can be greatly improved by recognizing
I-equivalent partial (non-)solutions. Chickering [24,25] provides a local transfor-
mational characterization of equivalent BN structures based on covered edges
that forms the theoretical basis of these symmetry-breaking constraints.

Definition 3 (Chickering [24]). An edge x → y in a Bayesian network is a
covered edge if parents(y) = parents(x) ∪ {x}.
Theorem 2 (Chickering [24]). Let G be any DAG containing the edge x → y,
and let G ′ be the directed graph identical to G except that the edge between x
and y in G ′ is oriented as y → x. Then G ′ is a DAG that is equivalent to G if
and only if x → y is a covered edge in G.

Example 8. In Figure 1(b) the edge A → E is a covered edge and the Bayesian
network with the edge reversed to be E → A is an I-equivalent Bayesian network.

In what follows, we identify three cases that consist of sequences of one or
more covered edge reversals and break symmetries by identifying a lexicographic
ordering. Experimental evidence suggests that these three cases capture much of
the symmetry due to I-equivalence. Symmetries are only broken if the costs of the
two I-equivalent DAGs would be equal; otherwise there is a negative interaction
with pruning based on the cost function (discussed in Section 3.8).

Case 1. Consider vertex variables vi and vj . If there exists domain values
p ∈ dom(vi) and p ∪{vi} ∈ dom(vj), this pair of assignments includes a covered
edge vi → vj ; i.e., vi and vj would have identical parents except that vi would
also be a parent of vj . Thus, there exists an I-equivalent DAG with the edge
reversed. We keep only the lexicographically least: the pair of assignments would
be permitted iff i < j.

Case 2. Consider vertex variables vi, vj , and vk. If there exists domain values
p ∈ dom(vi), p ∪ {vi} ∈ dom(vj), p ∪ {vj} ∈ dom(vk), where i < j and k < j,
there is a covered edge vi → vj and, if this covered edge is reversed, the covered
edge vj → vk is introduced, which in turn can be reversed. Thus, there exists an

436 P. van Beek and H.-F. Hoffmann

I-equivalent DAG with the edges {vi → vj , vj → vk} and an I-equivalent DAG
with the edges {vk → vj , vj → vi}. We keep only the lexicographically least: the
triple of assignments would be permitted iff i < k.

Case 3. Consider vertex variables vi, vj , vk, and vl. If there exists domain
values p ∈ dom(vi), p ∪ {vi} ∈ dom(vj), p ∪ {vi, vj} ∈ dom(vk), p ∪ {vj , vk} ∈
dom(vl), where i < j, l < j, j < k, there exists an I-equivalent DAG with the
edges {vi → vj , vi → vk, vj → vk, vj → vl, vk → vl} and an I-equivalent DAG
with the edges {vl → vj , vl → vk, vj → vk, vj → vi, vk → vi}. We keep only the
lexicographically least: the triple of assignments would be permitted iff i < l.

In our empirical evaluation, these symmetry-breaking rules were used only as
a satisfiability check at each node in the search tree, as we found that propagating
the I-equivalence symmetry-breaking rules did not further improve the runtime.

3.4 Dominance Constraints (I)

Given an ordering prefix o1, . . . , oi−1, a domain value p for a vertex variable vj

is consistent with the ordering if each element of p occurs in a parent set of a
vertex variable in the ordering. The domain value p assigned to vertex variable
vj that occurs at position i in an ordering should be the lowest cost p consistent
with the ordering; assigning a domain value with a higher cost can be seen to be
dominated as the values can be substituted with no effect on the other variables.

Theorem 3. Given an ordering prefix o1, . . . , oi−1, a vertex variable vj, and
domain elements p, p′ ∈ dom(vj), p �= p′, if p is consistent with the ordering and
cost(p) ≤ cost(p′), p′ can be safely pruned from the domain of vj.

Example 9. In Example 2, consider the prefix ordering (o1, o2) = (C,D). The
values {C}, {E}, and {} can be pruned from each of the domains of vA and vB ,
and the values {A}, {A,B}, {C}, and {} can be pruned from the domain of vE .

3.5 Dominance Constraints (II)

Teyssier and Koller [23] present a pruning rule that is now routinely used in
score-and-search approaches as a preprocessing step before search begins.

Theorem 4 (Teyssier and Koller [23]). Given a vertex variable vj, and
domain elements p, p′ ∈ dom(vj), if p ⊂ p′ and cost(p) ≤ cost(p′), p′ can be
safely pruned from the domain of vj.

Example 10. In Example 2, the value {A,B} can be pruned from the domain of
vE .

We generalize the pruning rule so that it is now applicable during the search.
Suppose that some of the vertex variables have been assigned values. These
assignments induce ordering constraints on the variables.

Example 11. In Example 2, suppose vA = {D} and vC = {A,B}. These assign-
ments induce the ordering constraints D < A, A < C, and B < C.

Machine Learning of Bayesian Networks Using Constraint Programming 437

Definition 4. Given a set of ordering constraints induced by assignments to
the vertex variables, let ip(p) denote the induced parent set where p has been
augmented with any and all variables that come before in the ordering; i.e., if
y ∈ p and x < y then x is added to p.

The generalized pruning rule is as follows.

Theorem 5. Given a vertex variable vj, and domain elements p, p′ ∈
dom(vj), p �= p′, if p ⊆ ip(p′) and cost(p) ≤ cost(p′), p′ can be safely pruned
from the domain of vj.

Example 12. Continuing with Example 11, consider vE with p = {D} and p′ =
{A}. The induced parent set ip(p′) is given by {A,D} and cost(p) ≤ cost(p′).
Thus, p′ can be pruned. Similarly, p′ = {C} can be pruned.

3.6 Dominance Constraints (III)

Consider an ordering prefix o1, . . . , oi with associated vertex and depth variables
and let π be a permutation over {1, . . . , i}. The cost of completing the partial
solutions represented by the prefix ordering o1, . . . , oi and the permuted prefix
ordering oπ(1), . . . , oπ(i) are identical. This insight is used by Silander and Myl-
lymäki [5] in their dynamic programming approach and by Fan et al. [9–11] in
their best-first approaches based on searching for the shortest path in the order-
ing graph. However, all of these approaches are extremely memory intensive.
Here, we use this insight to prune the search space.

Theorem 6. Let cost(o1, . . . , oi) be the cost of a partial solution represented by
the given ordering prefix. Any ordering prefix o1, . . . , oi can be safely pruned if
there exists a permutation π such that cost(oπ(1), . . . , oπ(i)) < cost(o1, . . . , oi).

Example 13. In Example 2, consider the ordering prefix O = (o1, o2) = (E,A)
with associated vertex variables (vE , vA) = ({}, {E}) and cost of 27.0. The order-
ing prefix O can be safely pruned as there exists a permutation (oπ(1), oπ(2)) =
(A,E) with associated vertex variables (vA, vE) = ({}, {A}) that has a lower
cost of 19.6.

Clearly, in its full generality, the condition of Theorem 6 is too expensive to
determine exactly as it amounts to solving the original problem. However, we
identify three strategies that are easy to determine and collectively were found
to be very effective at pruning in our experiments while maintaining optimality.

Strategy 1. We consider permutations that differ from the original permu-
tation only in the last l or fewer places (l = 4 in our experiments).

Strategy 2. We consider permutations that differ from the original permu-
tation only in the swapping of the last variable oi with a variable earlier in the
ordering.

Strategy 3. We consider whether a permutation oπ(1), . . . , oπ(i) of lower cost
was explored earlier in the search. To be able to efficiently determine this, we

438 P. van Beek and H.-F. Hoffmann

use memoization for ordering prefixes and only continue with a prefix if it has a
better cost than one already explored (see, e.g., [26,27]). Our implementation of
memoization uses hashing with quadratic probing and the replacement policy is
to keep the most recent if the table becomes too full. It is well known that there
is a strong relationship between backtracking search with memoization/caching
and dynamic programming using a bottom-up approach, but memoization allows
trading space for time and top-down backtracking search allows pruning the
search space.

3.7 Acyclic Constraint

In this section we describe a propagator for the acyclicity constraint that achieves
generalized arc consistency in polynomial time. We first present and analyze an
algorithm that checks satisfiability for given possible parent sets. We then explain
how this algorithm can be used to achieve generalized arc consistency.

Algorithm 1 can check whether a collection of possible parent sets allows a
feasible parent set assignment, i.e. an assignment that represents a DAG. Its
correctness is based on the following well-known property of directed acyclic
graphs that is also used in the ILP approaches [7,8].

Theorem 7. Let G be a directed graph over vertices V and let parents(v) be the
parents of vertex v in the graph. G is acyclic if and only if for every non-empty
subset S ⊂ V there is at least one vertex v ∈ S with parents(v) ∩ S = {}.

The algorithm works as follows. First, it searches possible sources for the
DAG, i.e. vertices for which {} is a possible parent set. These vertices are stored
in W 0. Note that if a directed graph does not have a source, it must contain a
cycle by Theorem 7. Thus, if W 0 remains empty, there is no parent set assignment
satisfying the acyclicity constraint. In the next iteration, the algorithm searches
for vertices that have a possible parent set consisting of possible sources only.
These vertices form set W 1. Again, if there are no such vertices, then no vertex
in V \ W 0 has a possible parent set completely outside V \ W 0, which violates
the acyclicity characterization of Theorem 7. Thus, there is no consistent parent
set assignment. We continue this process until all vertices are included in one of
the W k sets or until we find a contradicting set V \ (

⋃k
i=0 W i) for some k.

Theorem 8. We can test satisfiability of the acyclic constraint in time O(n2d),
where n is the number of vertices and d is an upper bound on the number of
possible parent sets per vertex.

Example 14. Let vA, vB, vC , and vD be vertex variables with the possible parent
sets,

dom(vA) = {{B}, {D}}, dom(vC) = {{B}, {D}},
dom(vB) = {{A}, {C}}, dom(vD) = {{A}, {C}}.

Algorithm 1 returns false as W 0 is found to be empty.

Machine Learning of Bayesian Networks Using Constraint Programming 439

Algorithm 1. Checking satisfiability of acyclic constraint
Input: V = {v1, . . . , vn}, set dom(vi) of possible parent sets for each vertex vi

in V .
Output: True if there is a feasible parent set assignment and false otherwise.

Additionally, the variables Si represent a feasible assignment if one
exists.

k ← 0;
Si ← nil for all vi ∈ V ;

while
⋃k−1

j=0 W j �= V do

W k ← {};

for all vertices vi not in
⋃k−1

j=0 W j do

if vi has a possible parent set p ∈ dom(vi) with p ⊆ ⋃k−1
j=0 W j then

Si ← p;

W k ← W k ∪ {vi};

end if

end

if W k = {} then return false;
;
k ← k + 1;

end while
return true;

The algorithm for checking satisfiability can be used to achieve general-
ized arc consistency by iteratively testing, for each vertex vi, whether each
p ∈ dom(vi) has a support. We simply substitute the set of possible parent
sets dom(vi) for vi by the set {p}. A satisfiability check on the resulting instance
successfully tests whether there is a consistent parent set assignment containing
vi = p. If we find a parent set p that cannot appear in any feasible solution, we
remove p from the corresponding domain. Note that we only prune a value p
from a domain dom(vi) if vi = p cannot be part of any feasible solution. This
means that vi = p can also not be part of the support of any other variable value
q ∈ dom(vj). Therefore, the removal of p cannot cause another supported value
to become unsupported. Hence, we do not have to rerun any of the tests; we can
simply run the test once for every value in every domain. These considerations
show that we can enforce arc consistency for the acyclicity constraint in O(n3d2)
steps.

In our empirical evaluation, we found that achieving generalized arc consis-
tency did not pay off in terms of reduced runtime. Hence, in the current set of
experiments Algorithm 1 was used only as a satisfiability check at each node
in the search tree. Instead, a limited form of constraint propagation was per-
formed based on necessary edges between vertex variables. An edge vi → vj

is necessary if vi occurs in every currently valid parent set for variable vj ; i.e.,
∀p ∈ dom(vj) • vi ∈ p. If a directed edge vi → vj is a necessary edge, the
directed edge vj → vi cannot be an edge in a valid DAG, as a cycle would

440 P. van Beek and H.-F. Hoffmann

be introduced. Thus, any parent set that contains vj can be removed from the
domain of vi. Removing domain elements may introduce additional necessary
edges and pruning can be based on chaining necessary edges.

Example 15. Let vA, vB, vC , and vD be vertex variables with the possible parent
sets,

dom(vA) = {{}, {B}, {C}} dom(vC) = {{B}}
dom(vB) = {{A}, {A,C}} dom(vD) = {{A}, {A,C}}

Since the edge B → C is necessary, the value {A,C} can be pruned from the
domain of vB. This causes the edge A → B to become necessary, and the values
{B} and {C} can be pruned from the domain of vA.

We conclude with the following observation. Let iv be the index of the set W i

in which we include vertex v in the satisfiability algorithm. Then, iv is a lower
bound on the number that vertex v can have in any topological numbering. This
lower bound can be used in propagating Constraint 4.

3.8 Solving the Constraint Model

A constraint-based depth-first branch-and-bound search is used to solve the con-
straint model; i.e., the nodes in the search tree are expanded in a depth-first
manner and a node is expanded only if the propagation of the constraints suc-
ceeds and a lower bound estimate on completing the partial solution does not
exceed the current upper bound.

The branching is over the ordering (permutation) variables and uses the
static order o1, . . . , on. Once an ordering variable is instantiated as oi = j, the
associated vertex variable vj and depth variable di are also instantiated.

The lower bound is based on the lower bound proposed by Fan and Yuan
[11]. In brief, prior to search, the strongly connected components (SCCs) of the
graph based on the top few lowest cost elements in the domains of the vertex
variables are found and pattern databases are constructed based on the SCCs.
The pattern databases allow a fast and often accurate lower bound estimate
during the search (see [11] for details).

The initial upper bound, found before search begins, is based on the local
search algorithm proposed by Teyssier and Koller [23]. The algorithm uses
restarts and first-improvement moves, the search space consists of all permu-
tations, and the neighborhood function consists of swapping the order of two
variables. Of course, as better solutions are found during the search the upper
bound is updated.

As a final detail, additional pruning on the vertex variables can be performed
based on the (well-known) approximation of bounds consistency on a cost func-
tion that is a knapsack constraint: z = cost(v1) + · · · + cost(vn). Let the bounds
on cost(vi) be [li, ui], and let lb and ub be the current lower bound and upper
bound on the cost, respectively. At any point in the search we have the constraint
lb ≤ z < ub and a value p ∈ dom(vi) can be pruned if cost(p) +

∑
j �=i uj < lb

Machine Learning of Bayesian Networks Using Constraint Programming 441

or if cost(p) +
∑

j �=i lj ≥ ub. Note that the expression cost(p) +
∑

j �=i lj can
be replaced with any lower bound on the cost of a solution that includes p and
respects the current domains and instantiations, as long as the lower bound never
over estimates. Fortunately, we have a fast and effective method of querying such
lower bounds and we use it when performing this pruning.

4 Experimental Evaluation

In this section, we compare a bespoke C++ implementation of our constraint-
based approach, called CPBayes 2, to the current state-of-the-art on benchmark
instances and show that our approach compares favorably both in terms of num-
ber of instances solved within specified resource bounds and in terms of solution
time.

The set of benchmark instances are derived from data sets obtained from the
UCI Machine Learning Repository 3 and data generated from networks obtained
from the Bayesian Network Repository 4. Following previous work, the local
score for each possible parent set and each random variable was computed in a
preprocessing step (either by us or by others) prior to the search for the best
network structure and we do not report the preprocessing time. Note that the
computations of the possible parent sets for each variable are independent and
can be determined in parallel. The BIC/MDL [18,19] and BDeu [20,21] scoring
methods were used.

Table 2 shows the results of comparing CPBayes (v1.0) against Barlett and
Cussens’ [8] GOBNILP system (v1.4.1) based on integer linear programming, and
Fan, Malone, and Yuan’s [10,11,15] system (v2015) based on A* search. These
two systems represent the current state-of-the-art for global (exact) approaches.
Breadth-first BnB search [10,11,15] is also competitive but its effectiveness is
known to be very similar to that of A*. Although for space reasons we do not
report detailed results, we note that on these benchmarks CPBayes far outpaces
the previous best depth-first branch-and-bound search approach [13]. GOBNILP
(v1.4.1) 5 and A* (v2015) 6 are both primarily written in C/C++. A* (v2015)
is the code developed by Fan et al. [10,15], but in the experiments we included
our implementation of the improved lower bounds recently proposed by Fan and
Yuan [11]. Thus, both CPBayes (v1.0) and A* (v2015) use exactly the same
lower bounding technique (see Section 3.8). The experiments were performed on
a cluster, where each node of the cluster is equipped with four AMD Opteron
CPUs at 2.4 GHz and 32.0 GB memory. Resource limits of 24 hours of CPU time
and 16 GB of memory were imposed both for the preprocessing step common
to all methods of obtaining the local scores and again to determine the minimal
cost BN using a method. The systems were run with their default values.

2 CPBayes code available at: cs.uwaterloo.ca/∼vanbeek/research
3 archive.ics.uci.edu/ml/
4 www.bnlearn.com/bnrepository/
5 www.cs.york.ac.uk/aig/sw/gobnilp/
6 bitbucket.org/bmmalone/

cs.uwaterloo.ca/~vanbeek/research
archive.ics.uci.edu/ml/
www.bnlearn.com/bnrepository/
www.cs.york.ac.uk/aig/sw/gobnilp/
bitbucket.org/bmmalone/

442 P. van Beek and H.-F. Hoffmann

Table 2. For each benchmark, time (seconds) to determine minimal cost BN using
various systems (see text), where n is the number of random variables in the data set,
N is the number of instances in the data set, and d is the total number of possible
parents sets for the random variables. Resource limits of 24 hours of CPU time and 16
GB of memory were imposed: OM = out of memory; OT = out of time. A blank entry
indicates that the preprocessing step of obtaining the local scores for each random
variable could not be completed within the resource limits.

BDeu BIC
GOBN. A* CPBayes GOBN. A* CPBayes

Benchmark n N d v1.4.1 v2015 v1.0 d v1.4.1 v2015 v1.0

shuttle 10 58,000 812 58.5 0.0 0.0 264 2.8 0.1 0.0
adult 15 32,561 768 1.4 0.1 0.0 547 0.7 0.1 0.0
letter 17 20,000 18,841 5,060.8 1.3 1.4 4,443 72.5 0.6 0.2
voting 17 435 1,940 16.8 0.3 0.1 1,848 11.6 0.4 0.1
zoo 17 101 2,855 177.7 0.5 0.2 554 0.9 0.4 0.1

tumour 18 339 274 1.5 0.9 0.2 219 0.4 0.9 0.2
lympho 19 148 345 1.7 2.1 0.5 143 0.5 1.0 0.2
vehicle 19 846 3,121 90.4 2.4 0.7 763 4.4 2.1 0.5
hepatitis 20 155 501 2.1 4.9 1.1 266 1.7 4.8 1.0
segment 20 2,310 6,491 2,486.5 3.3 1.3 1,053 13.2 2.4 0.5
mushroom 23 8,124 438,185 OT 255.5 561.8 13,025 82,736.2 34.4 7.7
autos 26 159 25,238 OT 918.3 464.2 2,391 108.0 316.3 50.8
insurance 27 1,000 792 2.8 583.9 107.0 506 2.1 824.3 103.7
horse colic 28 300 490 2.7 15.0 3.4 490 3.2 6.8 1.2
steel 28 1,941 113,118 OT 902.9 21,547.0 93,026 OT 550.8 4,447.6

flag 29 194 1,324 28.0 49.4 39.9 741 7.7 12.1 2.6
wdbc 31 569 13,473 2,055.6 OM 11,031.6 14,613 1,773.7 1,330.8 1,460.5
water 32 1,000 159 0.3 1.6 0.6
mildew 35 1,000 166 0.3 7.6 1.5 126 0.2 3.6 0.6
soybean 36 266 5,926 789.5 1,114.1 147.8

alarm 37 1,000 672 1.8 43.2 8.4
bands 39 277 892 15.2 4.5 2.0
spectf 45 267 610 8.4 401.7 11.2
sponge 45 76 618 4.1 793.5 13.2
barley 48 1,000 244 0.4 1.5 3.4

hailfinder 56 100 167 0.1 9.9 1.5
hailfinder 56 500 418 0.5 OM 9.3
lung cancer 57 32 292 2.0 OM 10.5
carpo 60 100 423 1.6 OM 253.6
carpo 60 500 847 6.9 OM OT

5 Discussion and Future Work

The Bayesian Network Repository classifies networks as small (< 20 random
variables), medium (20–60 random variables), large (60–100 random variables),
very large (100–1000 random variables), and massive (> 1000 random variables).
The benchmarks shown in Table 2 fall into the small and medium classes. We
are not aware of any reports of results for exact solvers for instances beyond the
medium class (Barlett and Cussens [8] report results for GOBNILP for n > 60,

Machine Learning of Bayesian Networks Using Constraint Programming 443

but they are solving a different problem, severely restricting the cardinality of
the parent sets to ≤ 2).

Benchmarks from the small class are easy for the CPBayes and A* methods,
but can be somewhat challenging for GOBNILP depending on the value of the
parameter d, the total number of parent sets for the random variables. Along
with the integer linear programming (ILP) solver GOBNILP, CPBayes scales
fairly robustly to medium instances using a reasonable restriction on memory
usage (both use only a few GB of memory, far under the 16 GB limit used
in the experiments; in fairness, the scalability of the A* approach on a very
large memory machine is still somewhat of an open question). CPBayes also has
several other advantages, which it shares with the ILP approach, over A*, DP,
and BFBnB approaches. Firstly, the constraint model is a purely declarative
representation and the same model can be given to an exact solver or a solver
based on local search, such as large neighborhood search. Secondly, the constraint
model can be augmented with side structural constraints that can be important
in real-world modeling (see [28]). Finally, the solver is an anytime algorithm
since, as time progresses, the solver progressively finds better solutions.

Let us now turn to a comparison between GOBNILP and CPBayes. CPBayes
scales better than GOBNILP along the dimension d which measures the size of
the possible parent sets. A partial reason is that GOBNILP uses a constraint
model that includes a (0,1)-variable for each possible parent set. GOBNILP
scales better than CPBayes along the dimension n which measures the number
of random variables. CPBayes has difficulty at the topmost range of n proving
optimality. There is some evidence that n = 60 is near the top of the range for
GOBNILP as well. Results reported by Barlett and Cussens [8] for the carpo
benchmark using larger values of N and the BDeu scoring method—the scoring
method which usually leads to harder optimization instances than BIC/MDL—
showed that instances could only be solved by severely restricting the cardinality
of the parent sets. A clear difficulty in scaling up all of these score-and-search
methods is in obtaining the local scores within reasonable resource limits.

In future work on Bayesian network structure learning, we intend to focus on
improving the robustness and scalability of our CPBayes approach. A direction
that appears especially promising is to improve the branch-and-bound search by
exploiting decomposition and lower bound caching during the search [29,30]. As
well, our approach, as with all current exact approaches, assumes complete data.
An important next step is to extend our approach to handle missing values and
latent variables (cf. [31]).

Acknowledgments. This research was partially funded through an NSERC Discov-
ery Grant. We thank Claude-Guy Quimper, Alejandro López-Ortiz, Mats Carlsson,
and Christian Schulte for helpful discussions, and Brandon Malone and James Cussens
for providing test instances and their code.

444 P. van Beek and H.-F. Hoffmann

References

1. Witten, I.H., Frank, E., Hall, M.A.: Data Mining, 3rd edn. Morgan Kaufmann
(2011)

2. Chickering, D., Meek, C., Heckerman, D.: Large-sample learning of Bayesian net-
works is NP-hard. In: Proc. of UAI, pp. 124–133 (2003)

3. Koivisto, M.: Parent assignment is hard for the MDL, AIC, and NML costs. In:
Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 289–303.
Springer, Heidelberg (2006)

4. Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks.
J. Mach. Learn. Res. 5, 549–573 (2004)

5. Silander, T., Myllymäki, P.: A simple approach for finding the globally optimal
Bayesian network structure. In: Proc. of UAI, pp. 445–452 (2006)

6. Malone, B., Yuan, C., Hansen, E.A.: Memory-efficient dynamic programming for
learning optimal Bayesian networks. In: Proc. of AAAI, pp. 1057–1062 (2011)

7. Jaakkola, T., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian network
structure using LP relaxations. In: Proc. of AISTATS, pp. 358–365 (2010)

8. Barlett, M., Cussens, J.: Advances in Bayesian network learning using integer pro-
gramming. In: Proc. of UAI, pp. 182–191 (2013)

9. Yuan, C., Malone, B.: Learning optimal Bayesian networks: A shortest path per-
spective. J. of Artificial Intelligence Research 48, 23–65 (2013)

10. Fan, X., Malone, B., Yuan, C.: Finding optimal Bayesian network structures with
constraints learned from data. In: Proc. of UAI, pp. 200–209 (2014)

11. Fan, X., Yuan, C.: An improved lower bound for Bayesian network structure learn-
ing. In: Proc. of AAAI (2015)

12. Tian, J.: A branch-and-bound algorithm for MDL learning Bayesian networks. In:
Proc. of UAI, pp. 580–588 (2000)

13. Malone, B., Yuan, C.: A depth-first branch and bound algorithm for learning opti-
mal bayesian networks. In: Croitoru, M., Rudolph, S., Woltran, S., Gonzales, C.
(eds.) GKR 2013. LNCS, vol. 8323, pp. 111–122. Springer, Heidelberg (2014)

14. de Campos, C.P., Ji, Q.: Efficient structure learning of Bayesian networks using
constraints. Journal of Machine Learning Research 12, 663–689 (2011)

15. Fan, X., Yuan, C., Malone, B.: Tightening bounds for Bayesian network structure
learning. In: Proc. of AAAI, pp. 2439–2445 (2014)

16. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press (2009)

17. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. The MIT Press (2009)

18. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)
19. Lam, W., Bacchus, F.: Using new data to refine a Bayesian network. In: Proc. of

UAI, pp. 383–390 (1994)
20. Buntine, W.L.: Theory refinement of Bayesian networks. In: Proc. of UAI,

pp. 52–60 (1991)
21. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The

combination of knowledge and statistical data. Machine Learning 20, 197–243
(1995)

22. Larranaga, P., Kuijpers, C., Murga, R., Yurramendi, Y.: Learning Bayesian net-
work structures by searching for the best ordering with genetic algorithms. IEEE
Trans. Syst., Man, Cybern. 26, 487–493 (1996)

Machine Learning of Bayesian Networks Using Constraint Programming 445

23. Teyssier, M., Koller, D.: Ordering-based search: a simple and effective algorithm
for learning Bayesian networks. In: Proc. of UAI, pp. 548–549 (2005)

24. Chickering, D.M.: A transformational characterization of equivalent Bayesian net-
work structures. In: Proc. of UAI, pp. 87–98 (1995)

25. Chickering, D.M.: Learning equivalence classes of Bayesian network structures.
Journal of Machine Learning Research 2, 445–498 (2002)

26. Michie, D.: “memo” functions and machine learning. Nature 218, 19–22 (1968)
27. Smith, B.M.: Caching search states in permutation problems. In: van Beek, P. (ed.)

CP 2005. LNCS, vol. 3709, pp. 637–651. Springer, Heidelberg (2005)
28. Cussens, J.: Integer programming for Bayesian network structure learning. Quality

Technology & Quantitative Management 1, 99–110 (2014)
29. Kitching, M., Bacchus, F.: Symmetric component caching. In: Proc. of IJCAI,

pp. 118–124 (2007)
30. Kitching, M., Bacchus, F.: Exploiting decomposition in constraint optimization

problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 478–492. Springer,
Heidelberg (2008)

31. Friedman, N.: Learning belief networks in the presence of missing values and hidden
variables. In: Proc. of ICML, pp. 125–133 (1997)

	Machine Learning of Bayesian Networks Using Constraint Programming
	1 Introduction
	2 Background
	3 Constraint Programming Approach
	3.1 Symmetry-Breaking Constraints (I)
	3.2 Symmetry-Breaking Constraints (II)
	3.3 Symmetry-Breaking Constraints (III)
	3.4 Dominance Constraints (I)
	3.5 Dominance Constraints (II)
	3.6 Dominance Constraints (III)
	3.7 Acyclic Constraint
	3.8 Solving the Constraint Model

	4 Experimental Evaluation
	5 Discussion and Future Work
	References

