
Encoding Linear Constraints with Implication
Chains to CNF

Ignasi Ab́ıo1(B), Valentin Mayer-Eichberger1,2, and Peter J. Stuckey1,3

1 NICTA, Canberra, Australia
{ignasi.abio,valentin.mayer-eichberger,peterj.stuckey}@nicta.com.au

2 University of New South Wales, Sydney, Australia
3 University of Melbourne, Melbourne, Australia

Abstract. Linear constraints are the most common constraints occur-
ring in combinatorial problems. For some problems which combine lin-
ear constraints with highly combinatorial constraints, the best solving
method is translation to SAT. Translation of a single linear constraint to
SAT is a well studied problem, particularly for cardinality and pseudo-
Boolean constraints. In this paper we describe how we can improve
encodings of linear constraints by taking into account implication chains
in the problem. The resulting encodings are smaller and can propagate
more strongly than separate encodings. We illustrate benchmarks where
the encoding improves performance.

1 Introduction

In this paper we study linear integer constraints (LI constraints), that is, con-
straints of the form a1x1+ · · ·+anxn # a0, where the ai are integer given values,
the xi are finite-domain integer variables, and the relation operator # belongs
to {<,>,≤,≥,=, �=}. We will assume w.l.o.g that # is ≤, the ai are positive and
all the domains of the variables are {0, 1..di}, since other cases can be reduced to
this one.1 Special case of linear constraints are: pseudo-Boolean (PB) constraints
where the domain of each variable is {0..1}, cardinality (CARD) constraints
where additionally ai = 1, 1 ≤ i ≤ n, and at-most-one (AMO) constraints where
additionally a0 = 1.

Linear integer constraints appear in many combinatorial problems such as
scheduling, planning or software verification, and, therefore, many different SMT
solvers [9,14] and encodings [4,6,11] have been suggested for handling them.
There are two main approaches to encoding linear constraints: cardinality con-
straints are encoded as some variation of a sorting network [3]; multi-decision
diagrams (MDDs) are used to encode more general linear constraints [5], which
in the special case of pseudo-Boolean constraints collapse to binary decision
diagrams (BDDs).

1 See [5] for details. Note that propagation is severely hampered by replacing equalities
by a pair of inequalities.

c© Springer International Publishing Switzerland 2015
G. Pesant (Ed.): CP 2015, LNCS 9255, pp. 3–11, 2015.
DOI: 10.1007/978-3-319-23219-5 1



4 I. Ab́ıo et al.

Any form of encoding linear constraints to SAT introduces many intermediate
Boolean variables, and breaks the constraint up into many parts. This gives us
the opportunity to improve the encoding if we can recognize other constraints in
the problem that help tighten the encoding of some part of the linear constraint.

Example 1. Consider a pseudo-Boolean constraint x1 + 2x2 + 2x3 + 4x4 + 5x5 +
6x6 + 8x7 ≤ 14 where we also have that x2 + x3 + x5 ≤ 1 we can rewrite the
constraints as x1+2x235+4x4+3x5+6x6+8x7 ≤ 14 and x235 ≡ (x2+x3+x5 = 1),
where x235 is a new Boolean variable. Notice, that x235 can be used to encode
the at-most-one constraint. �

Example 2. Consider a pseudo-Boolean constraint 4x1 + 2x2 + 5x3 + 4x4 ≤ 9
and the implications x1 ← x2 (i.e. x1 ∨ ¬x2) and x2 ← x3. Separately they do
not propagate, but considered together we can immediately propagate ¬x3. �

In this paper we show how to encode pseudo-Boolean constraints taking into
account implication chains, as seen in Example 2. The resulting encodings are
no larger than the separate encoding, but result in strictly stronger propagation.
The approach also allows us to encode general linear integer constraints, and
is a strict generalization of the MDD encoding of linear integer constraints [5].
We show how these new combined encodings are effective in practice on a set of
hard real-life sports scheduling examples, and that the combination of pseudo-
Booleans with implication chains arises in a wide variety of models.

2 Preliminaries

2.1 SAT Solving

Let X = {x1, x2, . . .} be a fixed set of propositional variables. If x ∈ X then x
and ¬x are positive and negative literals, respectively. The negation of a literal
l, written ¬l, denotes ¬x if l is x, and x if l is ¬x. A clause is a disjunction of
literals l1 ∨ · · · ∨ ln. An implication x1 → x2 is notation for the clause ¬x1 ∨ x2,
similarly x1 ← x2 denotes x1 ∨ ¬x2. A CNF formula is a conjunction of clauses.

A (partial) assignment A is a set of literals such that {x,¬x} �⊆ A for any
x ∈ X , i.e., no contradictory literals appear. A literal l is true (�) in A if l ∈ A, is
false (⊥) in A if ¬l ∈ A, and is undefined in A otherwise. A clause C is true in A
if at least one of its literals is true in A. A formula F is true in A if all its clauses
are true in A. In that case, A is a model of F . Systems that decide whether a
formula F has any model are called SAT-solvers, and the main inference rule
they implement is unit propagation: given a CNF F and an assignment A, find
a clause in F such that all its literals are false in A except one, say l, which
is undefined, add l to A and repeat the process until reaching a fix-point. A
detailed explanation can be found in [7].

Let [l..u] where l and u are integers represent the set {l, . . . , u}. Let y be
an integer variable with domain [0..d]. The order encoding introduces Boolean
variables yi for 1 ≤ i ≤ d. A variable yi is true iff y < i. The encoding also
introduces the clauses yi → yi+1 for 1 ≤ i < d.



Encoding Linear Constraints with Implication Chains to CNF 5

2.2 Multi Decision Diagrams

A directed acyclic graph is called an ordered Multi Decision Diagram (MDD) if
it satisfies the following properties:

– It has two terminal nodes, namely T (true) and F (false).
– Each non-terminal node is labeled by an array of Booleans [xi1, . . . , xidi

]
representing the order encoding of integer variable yi where yi ranges from
[0..di]. The variable yi is called the selector variable.

– Every node labeled by yi has di + 1 outgoing edges, labelled xi1,¬xi1, . . . ,
¬xidi

.
– Each edge goes from a node with selector yi to a node with selector variable

yj has i < j.

The MDD is quasi-reduced if no isomorphic subgraphs exist. It is reduced if,
moreover, no nodes with only one child exist. A long edge is an edge connecting
two nodes with selector variables yi and yj such that j > i + 1. In the following
we only consider quasi-reduced ordered MDDs without long edges, and we just
refer to them as MDDs for simplicity. A Binary Decision Diagram (BDD) is an
MDD where ∀i, di = 1.

An MDD represents a function f : {0, 1, . . . , d1} × {0, 1, . . . , d2} × · · · ×
{0, 1, . . . , dn} → {⊥,�} in the obvious way. Moreover, given a fixed variable
ordering, there is only one MDD representing that function. We refer to [17] for
further details about MDDs.

A function f is anti-monotonic in argument yi if vi ≥ v′
i implies that

f(v1, . . . , vi−1, vi, vi+1, . . . , vn) = � ⇒ f(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn) = � for

all values v1, . . . , vn, v′
i. An MDD is anti-monotonic if it encodes a function f

that is anti-monotonic in all arguments. We shall only consider anti-monotonic
MDDs in this paper.

Given an anti-monotonic MDD M, we can encode it into CNF by intro-
ducing a new Boolean variable bo to represent each node o in the MDD M;
unary clauses {bT ,¬bF , br} where r is the root node of the MDD; and clauses
{¬bo ∨ bo0} ∪ {¬bo ∨ xij ∨ boj | j ∈ [1..di]} for each node o of the form
mdd([xi1, . . . , xidi

], [o0, o1, . . . , odi
]). See [5] for more details.

We can encode arbitrary MDDs to SAT using Tseitin transformation but the
encoding is substantially more complicated.

3 Pseudo Boolean Constraints and Chains

A chain x1 ⇐ x2 ⇐ · · · ⇐ xn is a constraint requiring x1 ← x2, x2 ← x3, . . . ,
xn−1 ← xn. A unary chain x1 is the trivial case that imposes no constraint. A
chain is compatible with an ordered list of Boolean variables x1, . . . , xn if the
chain is of the form xl ⇐ xl+1 ⇐ · · · ⇐ xk, l ≤ k. Given an ordered list L
of Boolean variables x1, . . . , xn a chain coverage S is a set of variable-disjoint
compatible chains such that each variable appears in exactly one chain. We
will sometimes treat a chain coverage S as a Boolean formula equivalent to the



6 I. Ab́ıo et al.

constraints of the chains appearing in S. Given a variable ordering and a set of
disjoint compatible chains we can always construct a chain coverage by adding
in unary chains.

Example 3. Given list L of variables x1, . . . , x9 and chains x1 ⇐ x2 ⇐ x3, x5 ⇐
x6, x7 ⇐ x8, then a chain coverage S of L is {x1 ⇐ x2 ⇐ x3, x4, x5 ⇐ x6, x7 ⇐
x8, x9}. S represents the constraint x1 ← x2 ∧ x2 ← x3 ∧ x5 ← x6 ∧ x7 ← x8. �

Given a Boolean variable ordering L, a PB constraint C and chain coverage
S of L we will demonstrate how to build an MDD to encode the constraint C
taking into account the chain constraints in S. First lets examine how chains
arise in models.

At-most-one constraints. Given PB C ≡ a1x1 + . . . + anxn ≤ a0 and AMO
A ≡ x1 + x2 + . . . + xk ≤ 1. We can reformulate A using new variables x′

j

where x1 + . . . + xk = x′
1 + . . . + x′

k using the ladder encoding [12] which gives
xi → x′

i for i = 1 . . . k, xi → ¬x′
i+1 and x′

i+1 → x′
i for i = 1 . . . k − 1. If

[a′
1, . . . , a

′
k] is the sorted array of coefficients [a1, . . . , ak] then C can be written

as a′
1x

′
1 + (a′

2 − a′
1)x

′
2 + · · · + (a′

k − a′
k−1)x

′
k + ak+1xk+1 + · · · anxn ≤ a0. The

chain comes from the auxiliary variables: x′
1 ⇐ x′

2 ⇐ · · · ⇐ x′
k.

General linear integer constraints. A general LI C ≡ a1y1 + · · · amym ≤ a0 can
be expressed as a PB with chains. We encode each integer yi with domain [0..di]
by the order encoding [xi1, . . . , xidi

] and then C can be rewritten as a1(¬x11) +
· · · + a1(¬x1d1) + · · · + am(¬xm1) + · · · + am(¬xmdm

) ≤ a0 with chains ¬xi1 ⇐
¬xi2 ⇐ · · · ⇐ ¬xidi

.

Shared coefficients. Frequently, PB constraints contain a large number of coeffi-
cients that are the same. This structure can be exploited. A similar technique of
grouping shared coefficients is described in [5] which in our context is restated
using chains. Given a PB C ≡ ax1 + · · · + axk + ak+1xk+1 + · · · + anxn ≤ a0

where the first k variables share the same coefficient. We introduce new vari-
ables x′

1, . . . , x
′
k to encode the sum x1 + · · · + xk so x1 + . . . + xk = x′

1 + . . . + x′
k

and encode this constraint (usually using some form of sorting network [3]).
This ensures that x′

1 ⇐ x′
2 ⇐ · · · ⇐ x′

k. Then C can be rewritten as
ax′

1 + · · · + ax′
k + ak+1xk+1 + · · · + anxn ≤ a0. There are several advantages

with this rewritten version. The sorting network can be represented more com-
pactly than the same logic in an MDD (O(k · log2 k) vs O(k2)). Secondly, the
introduced variables x′

j are meaningful for the constraint and are likely to be
useful for branching and in conflict clause learning during the search. Moreover,
the sorted variables may be reusable for rewriting other constraints.

Binary implicants. Finally, a more general method is to automatically extract
chains from the global problem description. There are a number of methods
to detect binary implicants of CNF encodings [10,13]. Given a set of binary
implicants B and a PB constraint C we can search for a chain coverage S implied



Encoding Linear Constraints with Implication Chains to CNF 7

by B, and an ordering L of the variables in C with which S is compatible, and
then encode the reordered constraint C making use of the chain coverage S.

In the experimental section of this paper we have only considered the first
three types of chains.

4 Translating Through MDDs with Chains

The main algorithm in this section generalizes the construction of an MDD in
[5]. We first restate definitions of the original algorithm and then show how
to take advantage of chains in the new construction. The CNF decomposition
has desirable properties, i.e. we show that the encoding is more compact and
propagates stronger.

4.1 Preliminaries for the Construction

Let M be the MDD of pseudo-Boolean C and let ν be a node of M with selector
variable xi. We define the interval of ν as the set of values α such that the MDD
rooted at ν represents the pseudo-Boolean constraint aixi + · · ·+anxn ≤ α. It is
easy to see that this definition corresponds in fact to an interval. The key point
in constructing the MDD is to label each node of the MDD with its interval
[β, γ].

In the following, for every i ∈ {1, 2, . . . , n + 1}, we use a set Li consisting of
pairs ([β, γ],M), where M is the MDD of the constraint aixi + · · · + anxn ≤ a′

0

for every a′
0 ∈ [β, γ] (i.e., [β, γ] is the interval of M). All these sets are kept in

a tuple L = (L1, L2, . . . , Ln+1).
Note that by definition of the MDD’s intervals, if both ([β1, γ1],M1) and

([β2, γ2],M2) belong to Li then either [β1, γ1] = [β2, γ2] or [β1, γ1]∩ [β2, γ2] = ∅.
Moreover, the first case holds if and only if M1 = M2. Therefore, Li can be
represented with a binary search tree-like data structure, where insertions and
searches can be done in logarithmic time. The function search(K,Li) searches
whether there exists a pair ([β, γ],M) ∈ Li with K ∈ [β, γ]. Such a tuple is
returned if it exists, otherwise an empty interval is returned in the first com-
ponent of the pair. Similarly, we also use function insert(([β, γ],M), Li) for
insertions.

4.2 Algorithm and Properties of the Construction

In this section we show how to translate a PB C ≡ a1x1 + . . . anxn ≤ a0

and a chain coverage S for variable order x1, . . . , xn. Algorithm 1 describes
the construction of the MDD. The initial call is MDDChain(1, C, S). The call
MDDChain(i, C ′, S) recursively builds an MDD for C ′ ∧ S by building the ith

level. If the chain including xi is xi ⇐ · · · ⇐ xk it builds an MDD node that
has child nodes with selector xk+1. If the chain for xi is unary this is the usual
MDD (BDD) construction.



8 I. Ab́ıo et al.

Algorithm 1. Procedure MDDChain
Require: i ∈ {1, 2, . . . , n+1} and pseudo-Boolean constraint C′ : aixi + . . .+anxn ≤

a′
0 and chain coverage S on [x1, . . . , xn]

Ensure: returns [β, γ] interval of C′ and M its MDD
1: ([β, γ], M) ← search(a′

0, Li).
2: if [β, γ] �= ∅ then
3: return ([β, γ], M).
4: else
5: δ0 ← 0
6: let {xi ⇐ xi+1 ⇐ · · · ⇐ xk} ∈ S % including unary chain xi

7: u ← k − i + 1
8: for all j such that 0 ≤ j ≤ u do
9: ([βj , γj ], Mj) ← MDDChain(k + 1, ak+1xk+1 + · · · + anxn ≤ a′

0 − δj , S).
10: δj+1 ← δj + ai+j

11: end for
12: M ← mdd([xi, . . . , xk], M0, . . . , Mu)
13: [β, γ] ← [β0, γ0] ∩ [β1 + δ1, γ1 + δ1] ∩ · · · ∩ [βu + δu, γu + δu].
14: insert(([β, γ], M), Li).
15: return ([β, γ], M).
16: end if

Example 4. The MDDs that result from MDDChain(1, C, S) where C ≡
4x1 + 2x2 + 5x3 + 4x4 ≤ 9 of Example 2 encoded with chain coverage (a)
S = {x1, x2, x3, x4} (no chains) and (b) S = {x1 ⇐ x2 ⇐ x3, x4} are shown
in Figure 1. The diagrams show [β, γ] for each node with the remainder of the
constraint at the left. Unit propagation of the CNF of (b) sets x3 = ⊥ immedi-
ately since 4x4 ≤ −1 is ⊥.

We can prove that the algorithm returns a correct MDD, that is no larger
than the MDD (BDD) encoding of C, and that the resulting CNF encoding is
domain consistent on the original variables x1, . . . , xn. Proofs are available at [1].

Theorem 1. Given a pseudo-Boolean constraint C ≡ a1x1+· · ·+anxn ≤ a0 and
chain coverage S on [x1, . . . , xn] then MDDChain(1, C, S) returns an MDD M
representing function f such that constraint C ∧S |= f . The running time of the
algorithm is O(n · a0 · log a0). �

Theorem 2. Given a pseudo-Boolean constraint C ≡ a1x1 + · · · + anxn ≤ a0

and chain coverage S on [x1, . . . , xn] then the MDD MDDChain(1, C, S) has
no more nodes than MDDChain(1, C, {x1, . . . , xn}), the BDD for C. �

Theorem 3. Given a pseudo-Boolean constraint C ≡ a1x1 + · · · + anxn ≤ a0

and chain coverage S on [x1, . . . , xn] then unit propagation on the CNF encoding
of MDDChain(1, C, S) ∧ S enforces domain consistency of C ∧ S on variables
x1, . . . , xn. �



Encoding Linear Constraints with Implication Chains to CNF 9

4x1 + 2x2 + 5x3 + 4x4 ≤ [9, 9]
x1

�����
��� ¬x1

���
��

��
[9, 9]

x3

����
��
��
��
��
��
��
��
�

x2

��

x1,¬x1

���
��
��
��
��
��
��
��
�

2x2 + 5x3 + 4x4 ≤ [5, 5]

x2 ��
¬x2

����
���

�
[9, 9]

x2

����
��
� ¬x2��

5x3 + 4x4 ≤ [0, 3]

x3 ��
¬x3

����
���

�
[5, 8]

x3 ��
¬x3

���
��

��
[9, 9]

¬x3,x3��
4x4 ≤ [−∞, −1]

¬x4,x4 ��

[0, 3]
x4

�����
���

� ¬x4

			
		

		
[4, 9]

¬x4,x4��

[−∞, −1]

¬x4,x4 ��

[0, 3]
x4

�����
���

� ¬x4

			
		

		
[4, 9]

¬x4,x4��
F T F T

(a) (b)

Fig. 1. The MDDs that result from 4x1 + 2x2 + 5x3 + 4x4 ≤ 9 encoded (a) without
and (b) with the chain x1 ⇐ x2 ⇐ x3.

5 Experiments

To illustrate the advantage of combined compilation we consider a challenging
combinatorial optimization problem where both AMO and shared coefficients
chains arise.

Sports league scheduling is a challenging combinatorial optimization problem.
We consider scheduling a double round-robin sports league of N teams. All teams
meet each other once in the first N − 1 weeks and again in the second N − 1
weeks, with exactly one match per team each week. A given pair of teams must
play at the home of one team in one half, and at the home of the other in the
other half, and such matches must be spaced at least a certain minimal number
of weeks apart. Additional constraints include, e.g., that no team ever plays at
home (or away) three times in a row, other (public order, sportive, TV revenues)
constraints, blocking given matches on given days, etc.

Additionally, the different teams can propose a set of constraints with some
importance (low, medium or high). We aim not only to maximize the number of
these constraints satisfied, but also to assure that at least some of the constraints
of every team are satisfied. More information can be found in [2].

Low-importance constraints are given a weight of 1; medium-importance,
5, and high-importance, 10. For every constraint proposed by a team i, a new
Boolean variable xi,j is created. This variable is set to true if the constraint
is violated. For every team, a pseudo-Boolean constraint

∑
j wi,jxi,j ≤ Ki is

imposed. The objective function to minimize is
∑

i

∑
j wi,jxi,j . The data is based

on real-life instances.
Desired constraints typically refer to critical weeks in the schedule, e.g.

around Christmas, or other key dates, and preferences of different teams almost
always clash. Double round-robin tournaments contain a lot of AMO and EO
constraints (for instance, each week each team meets exactly one team). These
AMO constraints can be used to simplify the desired constraints.



10 I. Ab́ıo et al.

Table 1. Results for sports league scheduling, showing the number of runs that find a
solution of different quality after different time limits (seconds).

Quality Some solution cost ≤ 30 + best cost ≤ 20 + best cost ≤ 10 + best

Timelimit 300 900 3600 300 900 3600 300 900 3600 300 900 3600

MDD1 148 190 199 21 55 107 17 35 74 6 25 51
MDD2 151 194 199 27 59 115 19 38 81 12 25 43
MDD3 160 191 200 56 107 162 45 72 121 41 52 87
LCG 69 123 172 21 29 51 18 21 35 14 20 27
Gurobi 0 0 0 0 0 0 0 0 0 0 0 0

The benchmark consists of 10 instances and each method is run 20 times
with different seeds, for 200 total runs. Compared methods are: MDD1, the usual
MDD (in fact, BDD) method to encode PBs [4]; MDD2, the method of [5] using
sorting networks for the identical coefficients and then using an MDD; MDD3,
the method defined herein; LCG, using lazy clause generation [15]; and Gurobi,
using the MIP solver Gurobi. Barcelogic [8] SAT Solver was used in methods
MDD1, MDD2, MDD3 and LCG.

The results can be shown at Table 1. The number of times a solution has
been found within the time limit can be found at columns 2-4. Columns 5-7
present the number of times (within the timelimit) a method finds a solution
of cost at most best + 30, where best is the cost of the best solution found by
any method. Similarly, columns 8-10 and 11-13 contain the number of times a
solution of cost at most best + 20 and best + 10 has been found.

As we can see the new encoding substantially improves on previous encodings
of the problem. For these sports leagues scheduling problems it is well known
that other solving approaches do not compete with SAT encoding [2].

6 Conclusion and Future Work

We demonstrate a new method for encoding pseudo-Boolean constraints taking
into account implications chains. The improved encoding is beneficial on hard
benchmark problems. The approach is an extension on earlier work on encoding
linear constraints to SAT [5]. The approach is related to the propagator for
the increasing sum constraint y = a1y1 + · · · + anyn ∧ y1 ≤ y2 ≤ · · · ≤ yn
described in [16], which combines a linear constraint with a “chain” of integer
inequalities. Interestingly, increasing sum is not directly encodable as an MDD
using the method herein, but it does suggest that the methods can be extended
to arbitrary sets of chains all compatible with a global variable order. Another
interesting direction for future work is to consider combining chains with the
sorting networks encodings of linear constraints (e.g. [11]).

Acknowledgments. NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.



Encoding Linear Constraints with Implication Chains to CNF 11

References

1. Abio, I., Mayer-Eichberge, V., Stuckey, P.: Encoding linear constraints with impli-
cation chains to CNF. Tech. rep., University of Melbourne (2015). http://www.
people.eng.unimelb.edu.au/pstuckey/papers/cp2015a.pdf

2. Ab́ıo, I.: Solving hard industrial combinatorial problems with SAT. Ph.D. thesis,
Technical University of Catalonia (UPC) (2013)

3. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: A parametric
approach for smaller and better encodings of cardinality constraints. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 80–96. Springer, Heidelberg (2013)

4. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Mayer-
Eichberger, V.: A New Look at BDDs for Pseudo-Boolean Constraints. J. Artif.
Intell. Res. (JAIR) 45, 443–480 (2012)

5. Ab́ıo, I., Stuckey, P.J.: Encoding linear constraints into SAT. In: O’Sullivan, B.
(ed.) CP 2014. LNCS, vol. 8656, pp. 75–91. Springer, Heidelberg (2014)

6. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-boolean con-
straints into CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194.
Springer, Heidelberg (2009)

7. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

8. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: The
barcelogic SMT solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 294–298. Springer, Heidelberg (2008)

9. Dutertre, B., de Moura, L.: The YICES SMT Solver. Tech. rep., Computer Science
Laboratory, SRI International (2006). http://yices.csl.sri.com

10. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elim-
ination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75.
Springer, Heidelberg (2005)

11. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2(1–4), 1–26 (2006)

12. Gent, I.P., Prosser, P., Smith, B.M.: A 0/1 encoding of the GACLex constraint for
pairs of vectors. In: ECAI 2002 workshop W9: Modelling and Solving Problems
with Constraints. University of Glasgow (2002)

13. Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on
binary implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS,
vol. 6695, pp. 201–215. Springer, Heidelberg (2011)

14. de Moura, L., Bjorner, N.: Z3: An Efficient SMT Solver. Tech. rep., Microsoft
Research, Redmond (2007). http://research.microsoft.com/projects/z3

15. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

16. Petit, T., Régin, J.-C., Beldiceanu, N.: A Θ(n) bound-consistency algorithm for
the increasing sum constraint. In: Lee, Jimmy (ed.) CP 2011. LNCS, vol. 6876, pp.
721–728. Springer, Heidelberg (2011)

17. Srinivasan, A., Ham, T., Malik, S., Brayton, R.: Algorithms for discrete function
manipulation. In: 1990 IEEE International Conference on Computer-Aided Design,
ICCAD 1990, pp. 92–95. Digest of Technical Papers (1990)

http://www.people.eng.unimelb.edu.au/pstuckey/papers/cp2015a.pdf
http://www.people.eng.unimelb.edu.au/pstuckey/papers/cp2015a.pdf
http://yices.csl.sri.com
http://research.microsoft.com/projects/z3

	Encoding Linear Constraints with Implication Chains to CNF
	1 Introduction
	2 Preliminaries
	2.1 SAT Solving
	2.2 Multi Decision Diagrams

	3 Pseudo Boolean Constraints and Chains
	4 Translating Through MDDs with Chains
	4.1 Preliminaries for the Construction
	4.2 Algorithm and Properties of the Construction

	5 Experiments
	6 Conclusion and Future Work
	References


