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Abstract. In this paper, we consider the situation where a database
may contain suspect values, i.e. precise values whose validity is not cer-
tain. We propose a database model based on the notion of possibilistic
certainty to deal with such values. The operators of relational algebra
are extended in this framework. A very interesting aspect is that queries
have the same data complexity as in a classical database context.

1 Introduction

In many application contexts, databases appear to involve suspect values (i.e.,
values whose validity is dubious), for various reasons: i) some attribute values
may have been produced by means of a prediction process, for instance using a
technique aimed to estimate null values (in the sense of unknown but applicable),
see e.g. [3,4], or ii) the database may result from the integration of multiple
(more or less reliable, potentially conflicting) data sources [5], or iii) the database
may have gone through an automated cleaning process [11] aimed to remove
inconsistencies (and in general there are several ways of restoring consistency,
even in simple cases, which is a source of potential errors).

It is of course important to deal with such suspect values with the required
cautiousness, in particular when answering queries. A variety of uncertain
database models have been proposed to represent and handle uncertain val-
ues. In these models, an ill-known attribute value is generally represented by a
probability distribution (see, e.g. [7,12]) or a possibility distribution [1], i.e. a
set of weighted candidate values. However, in many situations, it may be very
problematic to quantify the level of uncertainty attached to the different candi-
date values. One may not even know the set of (probable/possible) alternative
candidates. Then, using a probabilistic model in a rigorous manner appears quite
difficult, not to say impossible. In this work, we assume that all one knows is
that a given precise value is suspect, i.e. not totally certain, and we show that
a database model based on the notion of possibilistic certainty is a suitable
tool for representing and handling suspect data. The remainder of the paper
is structured as follows. Section 2 briefly presents the three-valued fragment of
possibility theory that will be used in our model. Section 3 presents the uncer-
tain database model that we advocate for representing tuples that may involve
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suspect attribute values. Section 4 gives the definitions of the algebraic opera-
tors in this framework. In Section 5, we discuss a way to make selection queries
more flexible, which makes it possible to discriminate the uncertain answers to a
query. Finally, Section 6 recalls the main contributions and outlines perspectives
for future work.

2 A Fragment of Possibility Theory with Three Certainty
Levels

In possibility theory [6,13], each event E — defined as a subset of a universe
Ω — is associated with two measures, its possibility Π(E) and its necessity
N(E). Π and N are two dual measures, in the sense that N(E) = 1 − Π(E)
(where the overbar denotes complementation). This clearly departs from the
probabilistic situation where Prob(E) = 1−Prob(E). So in the probabilistic case,
as soon as you are not certain about E (Prob(E) is small), you become rather
certain about E (Prob(E) is large). This is not at all the situation in possibility
theory, where complete ignorance about E (E �= ∅, E �= Ω) is allowed: This is
represented by Π(E) = Π(E) = 1, and thus N(E) = N(E) = 0. In possibility
theory, being somewhat certain about E (N(E) has a high value) forces you to
have E rather impossible (1 − Π is impossibility), but it is allowed to have no
certainty neither about E nor about E. Generally speaking, possibility theory
is oriented towards the representation of epistemic states of information, while
probabilities are deeply linked to the ideas of randomness, and of betting in
case of subjective probability, which both lead to an additive model such that
Prob(E) = 1 − Prob(E).

In the following, we assume that the certainty degree associated with the
uncertain events considered (that concern the actual value of an attribute in a
tuple, for instance) is unknown. Thus, we use a fragment of possibility theory
where three values only are used to represent certainty : 1 (completely certain),
α (somewhat certain but not totally), 0 (not at all certain). The fact that one
uses α for every somewhat certain event does not imply that the certainty degree
associated with these events is the same; α is just a conventional symbol that
means “a certainty degree in the open interval (0, 1)”. Notice that this corre-
sponds to using three symbols for representing possibility degrees as well: 0, β
(= 1 − α), and 1 (but we are not interested in qualifying possibility).

3 The Database Model

In the database model introduced in [2] and detailed in [10], a certainty level
is attached to each ill-known attribute value (by default, an attribute value has
certainty 1). For instance, the tuple 〈037, John, (40, 0.7), (Engineer, 0.6)〉 denotes
the existence of a person named John for sure, whose age is 40 with certainty 0.7
(which means that the possibility that his age differs from 40 is upper bounded
by 1−0.7 = 0.3 without further information on the respective possibility degrees
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of other possible values), and whose job is Engineer with certainty 0.6. In the
database model we introduce hereafter, the basic idea is also to represent the
fact that an attribute value may not be totally certain, but we do not assume
available any knowledge about the certainty level attached to a suspect value.

Let us consider a database containing suspect values. In the following, a
suspect value will be denoted using a star, as in 17*. A value a∗ means that it
is somewhat certain (thus completely possible) that a is the actual value of the
considered attribute for the considered tuple, but not totally certain (otherwise
we would use the notation a instead of a∗).

In the model we propose, we restrict ourselves to the computation of the
somewhat certain answers, since dealing with the answers that are only some-
what possible raises important difficulties.

The database model we propose relies on the fragment of possibility theory
introduced in Section 2, where three values only are used to quantify certainty: 1
(completely certain), α (somewhat certain but not totally), 0 (not at all certain).
The tuples or values that are not at all certain are discarded and do not appear
in the database.

Uncertain tuples are denoted by α/t where α has the same meaning as above.
α/t means that the existence of the tuple in the considered relation is only
somewhat certain (thus, it is also possible to some extent that it does not exist).
It is mandatory to have a way to represent such uncertain tuples since some
operations of relational algebra (selection, in particular) may generate them.
The tuples whose existence is completely certain are denoted by 1/t. A relation
of the model will thus involve an extra column denoted by N , representing the
certainty attached to the tuples.

4 Algebraic Operators

In this section, we give the definition of the three main operators (projection,
selection, join) of relational algebra in the certainty-based model defined above.
We leave the set-oriented operators aside due to space limitation.

4.1 Selection

In the following, we denote by c(t.A) the certainty degree associated with the
value of attribute A in tuple t: c(t.A) equals 1 if t.A is a nonsuspect value, and
it takes the (conventional) value α otherwise (with the convention α < 1). It is
the same thing for the certainty degree N associated with a tuple (the notation
is then N/t).

Case of a condition of the form Aθ q where A is an attribute, θ is a comparison
operator, and q is a constant:

σA θ q(r) = {N ′/t | N/t ∈ r and t.A θ q and N ′ = min(N, c(t.A))} (1)
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Table 1. Relation Emp (left), result of the selection query (right)

#id name city job N

37 John Newton* Engineer* 1
53 Mary Quincy* Clerk* 1
71 Bill Boston Engineer 1

#id name city job N

37 John Newton* Engineer* α
71 Bill Boston Engineer 1

Example 1. Let us consider the relation Emp represented in Table 1 (left) and
the selection query σjob=‘Engineer’ (Emp). Its result is represented in Table 1
(right). �
Case of a condition of the form A1 θ A2 where A1 and A2 are two attributes
and θ is a comparison operator:

σA1 θ A2(r) = {N ′/t | N/t ∈ r and t.A1 θ t.A2 and
N ′ = min(N, c(t.A1), c(t.A2))}.

(2)

Case of a conjunctive condition ψ = ψ1 ∧ . . . ∧ ψm:

σψ1 ∧...∧ ψm
(r) = {N ′/t | N/t ∈ r and ψ1(t.A1) and . . . and ψm(t.Am)

and N ′ = min(N, c(t.Ai), . . . , c(t.Am))}.
(3)

Case of a disjunctive condition ψ = ψ1 ∨ . . . ∨ ψm:

σψ1 ∨...∨ ψm
(r) = {N ′/t | N/t ∈ r and (ψ1(t.A1) or . . . or ψm(t.Am))

and N ′ = min(N, max
i such that ψi(t.Ai)

(c(t.Ai)))}. (4)

4.2 Projection

Let r be a relation of schema (X,Y ). The projection operation is straightfor-
wardly defined as follows:

πX(r) = {N/t.X | N/t ∈ r and
� ∃N ′/t′ ∈ r such that sbs(N ′/t′.X, N/t.X)}.

The only difference w.r.t. the definition of the projection in a classical database
context concerns duplicate elimination, which is here based on the concept of
“possibilistic subsumption”. Let X = {A1, . . . , An}. The predicate sbs, which
expresses subsumption, is defined as follows:

sbs((N ′/t′.X, N/t.X) ≡
∀i ∈ {1, . . . , n}, t.Ai = t′.Ai and
c(t.Ai) ≤ c(t′.Ai) and N ≤ N ′and
((∃i ∈ {1, . . . , n}, c(t.Ai) < c(t′.Ai)) or N < N ′).

(5)

Example 2. Let us consider relation Emp represented in Table 2 (left) and the
projection query π{city, job} (Emp). Its result is represented in Table 2 (right). �



48 O. Pivert and H. Prade

Table 2. Relation Emp (left), result of the projection query (right)

#id name city job N

35 Phil Newton Engineer* 1
52 Lisa Quincy* Clerk* α
71 Bill Newton Engineer α
73 Bob Newton* Engineer* α
84 Jack Quincy* Clerk α

city job N

Newton Engineer* 1
Newton Engineer α
Quincy* Clerk α

4.3 Join

The definition of the join in the context of the model considered is:

r1 
�A=B r2 = { min(N1, N2, c(t1.A), c(t2.B))/t1 ⊕ t2 |
∃N1/t1 ∈ r1, ∃N2/t2 ∈ r2 such that t1.A = t2.B

(6)

where ⊕ denotes concatenation.

Example 3. Consider the relations from Table 3 (top) and the query:

PersLab = Person 
�Pcity=Lcity Lab

which looks for the pairs (p, l) such that p (somewhat certainly) lives in a city
where a research center l is located. Its result appears in Table 3 (bottom). �

Table 3. Relations Person (left), Lab (right), result of the join query (bottom)

#Pid Pname Pcity N

11 John Boston* 1
12 Mary Boston α
17 Phil Weston* α
19 Jane Weston 1

#Lid Lname Lcity N

21 BERC Boston* α
22 IFR Weston 1
23 AZ Boston 1

#Pid Pname Pcity #Lid Lname Lcity N

11 John Boston* 21 BERC Boston* α
11 John Boston* 23 AZ Boston α
12 Mary Boston 21 BERC Boston* α
12 Mary Boston 23 AZ Boston α
17 Phil Weston* 22 IFR Weston α
19 Jane Weston 22 IFR Weston 1

In the case of a natural join (i.e., an equijoin on all of the attributes common
to the two relations), one keeps only one copy of each join attribute in the
resulting table. Here, this “merging” keeps the most uncertain value for each
join attribute. This behavior is illustrated in Table 4.
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Table 4. Result of the natural join query (assuming a common attribute City)

#Pid Pname City #Lid Lname N

11 John Boston* 21 BERC α
11 John Boston* 23 AZ α
12 Mary Boston* 21 BERC α
12 Mary Boston 23 AZ α
17 Phil Weston* 22 IFR α
19 Jane Weston 22 IFR 1

A crucial point is that the join operation does not induce intertuple depen-
dencies in the result, due to the semantics of certainty. This is not the case
when a probabilistic or a full possibilistic [1] model is used, and one then has
to use a variant of c-tables [8] to handle these dependencies, which implies a
non-polynomial complexity. On the other hand, since none of the operators of
relational algebra induces intertuple dependencies in our model, the queries have
the same data complexity as in a classical database context; see [10] for a more
complete discussion.

5 Making Selection Queries More Flexible

If one assumes that the relation concerned by a selection is a base relation (i.e.,
where all the tuples have a degree N = 1), a tuple in the result is uncertain iff it
involves at least one suspect value concerned by the selection condition. If such a
tuple involves several such suspect values, it will be no more uncertain (N = α)
than if it involves only one. However, one may find it desirable to distinguish
between these situations. For instance, considering the query

σjob=‘Engineer′ and city=‘Boston′ and age=30(Emp)

the tuple 〈John, Engineer*, Boston, 30〉 could be considered more satisfactory
(less risky) than, e.g., 〈Bill, Engineer*, Boston*, 30〉, itself more satisfactory
than 〈Paul, Engineer*, Boston*, 30*〉.

For a selection condition ψ = ψ1 ∧ . . . ψm and a tuple t, this amounts to
saying that “every attribute value (certain and suspect) of t must satisfy the
condition ψi that concerns it, and the less there are suspect values concerned by
a ψi in t, the more t is preferred”. In other words, the condition becomes:

ψ1 ∧ . . . ∧ ψm and as many (t.A1, . . . , t.Am) as possible are totally certain.

In a user-oriented language based on the algebra described above, one may then
introduce an operator is certain (meaning “is totally certain”), in the same
way as there exists an operator is null in SQL.

The fuzzy quantifier [14] as many as possible (amap for short) corresponds
to a function from [0, 1] to [0, 1]. Its membership function μamap is such that:
i) μamap(0) = 0, ii) μamap(1) = 1, iii) ∀x, y, x > y ⇒ μamap(x) > μamap(y).
Typically, we shall take μamap(x) = x.
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The selection condition as expressed above is made of two parts: a “value-
based one” — that may generate uncertain answers —, and a “representation-
based” one that generates gradual answers. A tuple of the result is assigned a
satisfaction degree μ (seen as the complement to 1 of a suspicion degree), on top
of its certainty degree N . For a conjunctive query made of m atomic conjuncts
ψi, the degree μ associated with a tuple t is computed as follows:

μ(t) = μamap

(∑m
i=1 certain(t, i)

m

)
(7)

where

certain(t, i) =

⎧
⎪⎨
⎪⎩

1 if ψi if of the form A θ q and c(t.A) = 1,
1 if ψi if of the form A1 θ A2 and min(c(t.A1), c(t.A2)) = 1,
0 otherwise.

In order to display the result of the query, one rank-orders the answers on N
first, then on μ (in an increasing way in both cases).

Example 4. Let us consider the relation represented in Table 1 (top) and the
selection query σψ(Emp) where ψ is the condition

job = ‘Engineer’ and city = ‘Boston’ and age > 30 and
amap (job is certain, city is certain, age is certain)

Let us assume that the membership function associated with the fuzzy quantifier
amap is μamap(x) = x. The result of the query appears in Table 5 (bottom). �

Table 5. Relation Emp (top), result of the selection query (bottom)

#id name city job age N

38 John Boston* Engineer* 32 1
54 Mary Quincy* Engineer* 35 1
72 Bill Boston Engineer 40 1
81 Paul Boston* Engineer* 31* 1
93 Phil Boston Engineer 52* 1

#id name city job age N μ

72 Bill Boston Engineer 40 1 1
93 Phil Boston Engineer 52* α 0.67
38 John Boston* Engineer* 32 α 0.33
81 Paul Boston* Engineer* 31* α 0

This extended framework, where two degrees (N and μ) are associated with each
tuple in the relations, can be easily made compositional. One just has to manage
the degrees μ, in the definition of the algebraic operators, as in a gradual (fuzzy)
relation context, see [9]. In base relations, it is assumed that μ(t) = 1 ∀t.
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6 Conclusion

In this paper, we have proposed a database model and defined associated alge-
braic operators for dealing with the situation where some attribute values in a
dataset are suspect, i.e., have an uncertain validity, in the absence of further
information about the precise levels of uncertainty attached to such suspect val-
ues. The framework used is that of possibility theory restricted to a certainty
scale made of three levels. It is likely that the idea of putting some kind of tags
on suspect values/tuples/answers is as old as information systems. However, the
benefit of handling such a symbolic tag in the framework of possibility theory is
to provide a rigorous setting for this processing.

A very important point is that the data complexity of all of the algebraic
operations is the same as in the classical database case, which makes the app-
roach perfectly tractable. Moreover, the definitions of both the model and the
operators are quite simple and do not raise any serious implementation issues.
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