A Review of Scalable Approaches for Frequent
Itemset Mining

Daniele Apiletti, Paolo Garza, and Fabio Pulvirenti®*

Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italy
{daniele.apiletti,paolo.garza,fabio.pulvirenti}@polito.it

Abstract. Frequent Itemset Mining is a popular data mining task with
the aim of discovering frequently co-occurring items and, hence, correla-
tions, hidden in data. Many attempts to apply this family of techniques
to Big Data have been presented. Unfortunately, few implementations
proved to efficiently scale to huge collections of information. This review
presents a comparison of a carefully selected subset of the most efficient
and scalable approaches. Focusing on Hadoop and Spark platforms, we
consider not only the analysis dimensions typical of the data mining
domain, but also criteria to be valued in the Big Data environment.

Keywords: Frequent Itemset Mining - MapReduce - Spark
Data mining

1 Introduction

The increasing capabilities of recent applications to produce huge amounts of
information has drastically changed the importance of Data Mining. In both
academic and industrial domains, the interest towards data mining techniques,
which focus on extracting effective and usable knowledge from large collections
of data, has risen. In this paper we focus on Frequent Itemset Mining, which is
a data mining technique that discovers frequently co-occurring items. Existing
itemset mining algorithms revealed to be very efficient on medium-scale datasets
but very resource intensive in Big Data contexts. In general, applying data min-
ing techniques to Big Data has often entailed to cope with computational costs
that are likely to become bottlenecks when memory-based algorithms are used.
For this reason, parallel and distributed approaches based on the MapReduce
paradigm [1] have been proposed. Designed to cope with Big Data, the main idea
of the MapReduce paradigm consists in splitting the processing of the data into
independent tasks, each one working on a chunk of data. Hadoop is the most scal-
able open-source MapReduce platform. However, in recent years Apache Spark
has grown to become a valid alternative platform, that can run on top of Yarn,
the Hadoop resource manager. In this survey, we compare a carefully selected
subset of Frequent Itemset Mining algorithms that exploit Hadoop and Spark
platforms. The paper presents an overview of the challenges and the algorithms,
then compares advantages and drawbacks of each approach.

© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds): ADBIS 2015, CCIS 539, pp. 243-247, 2015.
DOI: 10.1007/978-3-319-23201-0_27

244 D. Apiletti et al.

2 Frequent Itemset Mining

The Frequent Itemset Mining [2] process extracts patterns of items from a trans-
actional dataset D, where items correspond to boolean attributes. The support
of an itemset I in D is defined as the ratio between the number of transactions
in D that contains I and the total number of transactions in D. An itemset [is
considered frequent if its support is greater than a minimum support threshold.

3 Hadoop and Spark

This survey compares the most scalable itemset mining algorithms exploiting
the Hadoop [3] and Spark [4] platforms. Both stems from a distributed pro-
gramming model introduced by Google, the MapReduce paradigm [1]. MapRe-
duce applications are divided into two major phases that are known as Map and
Reduce, divided by a shuffle phase in which data are sorted and aggregated. The
Spark framework, with its cached Resilient Distributed Datasets (RDD), usu-
ally outperforms Hadoop MapReduce, in particular when iterative processing
is required, as in Frequent Itemset Mining. Furthermore, both platforms offer
algorithm libraries such as Mahout [5] for Hadoop and MLLib [6] for Spark.

4 Algorithms

This paper compares five selected Hadoop and Spark implementations based on
the most scalable Frequent Itemset Mining algorithms.

[7] is a MapReduce implementations of FP-Growth [8] and it has represented
for years the only concrete and effective distributed FIM algorithm based on
Hadoop. FP-Growth is based on an FP-tree transposition of the transaction
dataset and a recursive divide-and-conquer approach. The parallel version ini-
tially builds a set of independent FP-trees that are distributed to the cluster
nodes. Then, by applying one instance of the (traditional) FP-growth algorithm
on each FP-tree, the complete set of frequent itemsets is generated. Since the
generated FP-trees are independent, the mining phase can be performed in par-
allel, i.e., one independent task for each FP-tree is executed to mine a part of
the frequent itemsets.

BigFIM and Dist-Eclat [9], instead, are based on the Apriori and Eclat algo-
rithms, respectively. Both of them consists of two phases. The first has the
target to find the k-sized prefixes on which, in the second phase, the algorithms
build independent subtrees. While the second phase is the same for both the
algorithms, in the first phase they extracts the prefixes exploiting two different
strategies. BigFIM exploits the Apriori algorithm [10], which uses a bottom up
approach: itemsets are extended one item at a time and their frequency is tested
against the dataset. Dist-Eclat, instead, uses an Eclat approach to generate the
first phase prefixes: Eclat algorithm [11] is based on equivalence classes (groups
of itemsets sharing a common prefix), which are smartly merged to obtain all

A Review of Scalable Approaches for Frequent Itemset Mining 245

the candidates. In the second phase, both the algorithms proceed with an Eclat-
like independent subtree mining. Dist-Eclat is very fast but, with some prefixes
configuration, it assumes that the whole initial dataset (transposed in vertical
format) can be stored in nodes main memory. BigFIM proved to be slower than
Dist-Eclat but able to process larger datasets, even when Dist-Eclat runs out of
memory.

YAFIM in [12] represents, instead, an Apriori distributed implementation
developed in Apache Spark. The framework solves the challenges related to the
iterative nature of the Apriori algorithm, exploiting Spark RDDs to speed up
counting operations.

Finally, Spark PFP [6] represents a pure transposition of FP-Growth to
Apache Spark; it is included in MLLib, the Spark Machine Learning library.
The algorithm implementation in Spark is very close to the Hadoop sibling, i.e,
it first builds independent FP-trees and then invokes the mining step on each
tree (one independent task for each FP-tree).

Table 1. Algorithm analysis

Name |Framework|Underlying Data Search Communication Load
algorithm |distribution Strategy cost handling balance
handling
PFP Hadoop FP-Growth dense Depth First Yes No
Spark PFP Spark FP-Growth dense Depth First Yes No
Dist-Eclat Hadoop Eclat dense Depth First |Yes (best effort with Yes

load balancing)
BigFIM Hadoop Apriori and | dense and Breadth First |Yes (best effort with Yes
Hadoop Eclat sparse and Depth First load balancing)
YAFIM Spark Apriori sparse Breadth First Yes No

5 Analysis Criteria

In this section we introduce the criteria adopted to evaluate the algorithms.
The first set of features are related to the algorithm implementation (e.g., the
adopted framework and the underlying algorithm). While Hadoop is an estab-
lished platform, Spark popularity is growing fast. Hence, Spark implementations
are considered more promising and future proof.

Secondly, we consider communication costs and load balancing features.
These are two of the most important features in distributed processing but they
are often undervalued. Communication cost is a crucial part of the behavior of
a parallelized algorithm. It does often overwhelm computation costs and it can
become a bottleneck for the overall performance. Load balancing, as well, influ-
ences performance and limits the parallelization. Developing an algorithm with
a heavy-tailed main reducer that keeps working for a long after all the other
nodes have stopped their computation is a common issue.

Finally, we have evaluated the datasets used in the experimental sections of
the surveyed papers. Table 1 reports the classification of the five algorithms,
based on the criteria described in this section.

246 D. Apiletti et al.

6 Frequent Itemset Mining Algorithms Evaluation

From an analytical point of view, BigFIM and Dist-Eclat are the algorithms
devoting the most attention to communication costs and load balancing (the
other algorithms do not address load balancing at all). For instance, the moti-
vations behind the choice of the length of the prefixes generated during the first
step of both algorithms are very interesting. In fact, that choice significantly
affects both communication cost and load balancing. The former would benefit
of shorter prefixes while the latter would improve with a deeper level of the min-
ing phase before the redistribution of the seeds. Hence, depending on the data
distribution and the characteristics of the Hadoop cluster, BigFIM and Dist-
Eclat can be tuned to optimize communication cost or load balancing, obviously
impacting on the overall execution time.

Parallel FP-Growth (PFP) is based on the generation of independent FP-
trees that allow achieving work independence among the nodes. However, the
independent FP-trees can have different characteristics (e.g., some are more
dense than others) and this factor impacts significantly on the execution time
of the mining tasks that are executed independently on each FP-tree. When
the FP-trees are significantly different, the tasks are unbalanced, and hence the
whole mining process is unbalanced. This problem could be potentially solved
by splitting complex trees in sub-trees: however, defining a metric to split a tree
is not easy.

YAFIM exploits the Spark architecture and APIs to handle communication
costs. Its assumption that all transactions must fit into the RDD may limit its
potential. The Spark PFP implementation is integrated in the MLLib collection.
It is characterized by dynamic and smooth handling of the different stages of
the algorithm, without a strict division in phases. Its main advantage over the
Hadoop sibling is the low I/O cost, potentially leading to a single read of the
dataset, by loading the transactions in an RDD and processing the data in main
memory, whereas the Hadoop-based implementation of PFP performs much more
I/0O operations.

All surveyed papers show interesting results on very large datasets. Only
YAFIM presents results on relatively small datasets, and focuses mainly on the
comparison against the Hadoop Apriori implementation. Finally, the number of
input parameters, that is another important characteristics of data mining algo-
rithms, is limited for almost all the considered implementations. BigFIM and
Dist-Eclat, with their customizable length of first-phase prefixes, could require
some experiments to find the proper set of parameters (depending on the dataset
distribution and the cluster configuration). However, this parameter allows Big-
FIM and Dist-Eclat to handle both communication costs and load balancing.
Among Hadoop algorithms, relying on experimental evaluations presented in
the papers, BigFIM can be considered as the current baseline in this survey. For
future perspective and developments, we consider Spark implementations more
promising than Hadoop ones, even if the formers currently appear less mature.
Spark algorithms have just started to appear in literature and we expect to find
more complete implementations very soon.

7

A Review of Scalable Approaches for Frequent Itemset Mining 247

Conclusions

We presented a critical review of scalable Frequent Itemset Mining implementa-
tions based on Hadoop and Spark platforms, extending the analysis to critical
dimensions such as load balancing and communication costs. Our future plan is
to enrich this analysis with real benchmarking to understand the real scalability
of each approach.

Acknowledgments. The research leading to these results has received funding from
the European Union under the FP7 Grant Agreement n. 619633 (Integrated Project
ONTIC).

References

10.

11.

12.

Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI 2004, p. 10 (2004)

Pang-Ning, T., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-
Wesley (2006)

Borthakur, D.: The hadoop distributed file system: Architecture and design.
Hadoop Project 11, 21 (2007)

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: NSDI 2012, p. 2 (2012)

The Apache Mahout machine learning library (2013). http://mahout.apache.org/
The Apache Spark scalable machine learning library (2013). https://spark.apache.
org/mllib/

Li, H., Wang, Y., Zhang, D., Zhang, M., Chang, E.Y.: PFP: parallel fp-growth for
query recommendation. In: RecSys 2008, pp. 107-114 (2008)

Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: SIGMOD 2000, pp. 1-12 (2000)

Moens, S., Aksehirli, E., Goethals, B.: Frequent itemset mining for big data. In:
SML: BigData 2013 Workshop on Scalable Machine Learning. IEEE (2013)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB 1994, pp. 487-499 (1994)

Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast
discovery of association rules. In: KDD 1997, pp. 283-286. AAAI Press (1997)
Qiu, H., Gu, R., Yuan, C., Huang, Y.: YAFIM: a parallel frequent itemset mining
algorithm with spark. In: IPDPSW 2014, pp. 1664-1671, May 2014

http://mahout.apache.org/
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/

	A Review of Scalable Approaches for Frequent Itemset Mining
	1 Introduction
	2 Frequent Itemset Mining
	3 Hadoop and Spark
	4 Algorithms
	5 Analysis Criteria
	6 Frequent Itemset Mining Algorithms Evaluation
	7 Conclusions
	References

