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Abstract. Subspace clustering techniques were proposed to discover
hidden clusters that only exist in certain subsets of the full feature spaces.
However, the time complexity of such algorithms is at most exponential
with respect to the dimensionality of the dataset. In addition, datasets
are generally too large to fit in a single machine under the current big
data scenarios. The extremely high computational complexity, which
results in poor scalability with respect to both size and dimensional-
ity of these datasets, give us strong motivations to propose a parallelized
subspace clustering algorithm able to handle large high dimensional data.
To the best of our knowledge, there are no other parallel subspace clus-
tering algorithms that run on top of new generation big data distributed
platforms such as MapReduce and Spark. In this paper we introduce
CLUS: a novel parallel solution of subspace clustering based on SUB-
CLU algorithm. CLUS uses a new dynamic data partitioning method
specifically designed to continuously optimize the varying size and con-
tent of required data for each iteration in order to fully take advantage
of Spark’s in-memory primitives. This method minimizes communication
cost between nodes, maximizes their CPU usage, and balances the load
among them. Consequently the execution time is significantly reduced.
Finally, we conduct several experiments with a series of real and syn-
thetic datasets to demonstrate the scalability, accuracy and the nearly
linear speedup with respect to number of nodes of the implementation.
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1 Introduction

Clustering is one of the main techniques for unsupervised knowledge discovering
out of unlabeled datasets. This technique uses the notion of similarity to group
data points in entities known as clusters. Traditional clustering algorithms such
as partitioning based approaches (e.g. K-Means[1]), density based approaches
(e.g. DBSCAN[2]) and hierarchical approaches (e.g. DIANA[3]), take the full
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feature space into consideration. However, as current datasets become larger and
higher-dimensional, these algorithms fail to uncover meaningful clusters due to
the existence of irrelevant features and the curse of dimensionality[4].

In many application domains, such as sensor networks, bioinformatics, and
network traffic, objects are normally described by hundreds of features. Since
data collection and storage become cheaper and more convenient, bigger datasets
are generated without an analysis of relevance. Consequently, a number of
techniques were intensively studied to address the clustering task for high
dimensional datasets. Dimensionality reduction techniques like Principle Com-
ponent Analysis[5] and feature selection techniques like mRMR feature selection
algorithm[6], generate an optimal subset of features containing the most relevant
information. Given the fact that clusters can be found in different subsets of fea-
tures, such techniques fail to detect locally relevant features for each cluster[4].

A special family of algorithms, which derived from the frequent pattern min-
ing field[7], rapidly constituted a novel field named subspace clustering. These
algorithms aimed to find clusters hidden in subsets of the original feature space
and therefore avoid the curse of dimensionality. Nevertheless, up to our knowl-
edge none of these techniques scales well with respect to the size of datasets.
They are generally under the assumption that the whole dataset can fit in a sin-
gle machine. SUBCLU[8], an Apriori based subspaces clustering algorithm uses
a traditional DBSCAN implementation to cluster the data in each subspace
resulting in an inefficient and non-scalable solution. In this context, paralleliza-
tion comes out as a natural solution to improve the efficiency and scalability of
existing subspace clustering algorithms. However, during our research we have
detected a lack of scalable and parallel subspace clustering approaches for high
dimensional data on top of current Big Data distributed platforms. Recently,
MapReduce[9] paradigm jointly with the Hadoop framework[10] have become
the most popular Big Data distributed framework. Nevertheless, the limitations
of MapReduce and its lack of suitability for iterative Machine Learning algo-
rithms have motivated researchers to propose different alternatives, being Spark
[11] one of the most representative. Therefore, designing scalable subspace clus-
tering algorithms on top of Spark is an interesting challenge.

Contributions. In this paper, we present CLUS, a novel parallel algorithm on
top of Spark based on SUBCLU that overcomes the latter’s limitations using
a dynamic data partitioning method. CLUS reduces the dimensionality and
time complexity of SUBCLU by parallelizing the clustering tasks across dif-
ferent nodes. CLUS also eliminates the dataset size limitation of the centralized
algorithm to the available RAM in one machine by distributing it across nodes
and spilling it to disk when needed.

To develop CLUS, specific Spark primitives were used as they have the poten-
tial to provide higher performance if employed in an appropriate manner. Unlike
MapReduce, Spark gives more flexibility allowing users to manage memory, disk
and network usage in order to obtain more efficient algorithms. Moreover, instead
of writing intermediate results to disk like MapReduce, Spark intends to main-
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tain them in memory. Due to this in-memory computing Spark outperforms by
an order of magnitude other Big Data platforms [24].

In summary, the main contributions of CLUS algorithm are:

1. A dynamic data partitioning method is carefully designed using Spark’s
specific operations in order to induce data locality. This optimization step
reduces the cost of communications by avoiding unnecessary slow data shuf-
fling, which is common in most MapReduce and Spark applications.

2. CLUS avoids replications of the whole dataset in each node in order to
process it in parallel. Based on Spark’s specific operations, CLUS can be
deployed on a cluster of commodity machines and efficiently process huge
datasets.

3. I/O cost is minimized by using indexing so as to access and move to specific
nodes only the necessary data in each iteration. This results in faster and
more efficient data management and better use of available RAM.

4. We report experimental results on real and synthetic datasets to show the
scalability and accuracy of our algorithm. The results show a dramatic
decrease in CLUS execution time w.r.t. centralized SUBCLU.

The reminder of this paper is organized as follows: Section 2 presents an overview
of the related work. Section 3 gives a brief introduction to SUBCLU algorithm
and presents the implementation of CLUS. In Section 4 we show experimental
results on various datasets. Finally, Section 5 outlines our conclusions and future
work.

2 Related Work

2.1 Subspace Clustering

Many research works have tried to address the subspace clustering task in the
last two decades. There are some excellent surveys[4,12,13] that conducted
either theoretical or experimental comparisons among different subspace clus-
tering algorithms. These approaches were categorized into several classes con-
sidering different algorithmic aspects. In [12] a number of classical algorithms
were divided into bottom-up and top-down groups based on the applied search
method.

The bottom-up group first generates 1-D histogram information for each
dimension, and then tries to perform a bottom-up traversal on the subspace
lattice. Since the time complexity of naive traversal on the lattice is exponential
w.r.t. the dimensionality of the dataset, most of these approaches conduct a
pruning step for selecting candidates. This filtering procedure is based on the
anti-monotonicity property.

Anti-Monotonicity Property: if no cluster exists in subspace Sk, then there
is no cluster in any higher dimensional subspaces Sk+1 either. i.e.

∃Sk, CSk
= ∅ ⇒ ∀Sk+1 ⊃ Sk, CSk+1 = ∅.
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By starting from one dimension and adding another dimension each time,
bottom-up approaches tend to work efficiently in relatively small subspaces.
Consequently, they generally show better scalability when uncovering hidden
subspace clusters in lower dimensions. However, the performance decreases dra-
matically with the size of candidate subspaces containing clusters[12]. Examples
of bottom-up approaches are CLIQUE [14], ENCLUS[15] etc.

In contrast with bottom-up approaches, top-down methods start from the
equally-weighted full feature space and generate an approximation of the set of
clusters. After the initialization, updates of the weight for each dimension in
each cluster and the regeneration of clusters are iteratively conducted. Finally,
a refinement of the clustering result is carried out to achieve a better qual-
ity of clusters. Since multiple iterations of clustering process are conducted in
the full feature space, sampling techniques are generally used to increase effi-
ciency by reducing the accuracy of the results. Clusters generated by this kind of
approaches are non-overlapping and of similar dimensionality due to the manda-
tory input parameters. Algorithms such as PROCLUS[16] and ORCLUS[17] are
typical examples of top-down approaches.

In some recent summary research works[4,13] subspace clustering algo-
rithms are classified into three paradigms with regards to the underlying clus-
ter definition and parametrization. Grid-based approaches, e.g. SCHISM[18],
MaxnCluster[19], try to find sets of grid bins which contain more data than
a density threshold for different subspaces. Density-based approaches, e.g.
SUBCLU[8], INSCY[20], search for dense regions separated by sparse regions by
calculating the distance of relevant dimensions. Clustering-oriented approaches,
e.g. STATPC[21], Gamer[22], assume global properties of the whole cluster set
similar to those of top-down approaches[12]. As Emmanuel Müller summarized
in [4], “Depending on the underlying clustering model, algorithms always have to
tackle the trade-off between quality and runtime. Typically, high quality results
have to be paid with high runtime.” Our effort in this paper is to increase
efficiency by means of parallelization while maintaining high quality clustering
results.

2.2 Parallel Subspace Clustering

During a thorough survey of the state-of-the-art, we detected a lack of parallel
subspace clustering algorithms despite of the potential performance improve-
ments that could be obtained from parallelization. Up to our knowledge, only
two parallel implementations have been proposed by now. They used specific
architectures like Message Passing Interface (MPI) and Parallel Random Access
Machine (PRAM). Compared with the novel Spark framework, these models suf-
fer from a non-negligibly high communication cost and a complex failure recovery
mechanism. Furthermore, they neither scale as well as Spark nor provide as much
flexibility to programmers.

In [23] the grid based parallel MAFIA algorithm was proposed as an extension
of CLIQUE. MAFIA partitions each dimension into several discrete adaptive
bins with distinct densities. In order to run the algorithm in parallel, the original



CLUS: Parallel Subspace Clustering Algorithm on Spark 179

dataset was randomly partitioned into several parts and read into different nodes.
Data parallelization based on a shared-nothing architecture, which assembles a
naive version of MapReduce, can bring a significant reduction in execution times.
However, the generated partitions can be highly skewed and greatly affect the
quality of the clustering results.

The other parallel algorithm was based on the Locally Adaptive Cluster-
ing (LAC) algorithm. LAC was proposed in [25] as a top-down approach by
assigning values to a weight vector based on the relevance of dimensions within
the corresponding subspace cluster. Parallel LAC proposed in [26], transforms
subspace clustering task to the problem of finding K centroids of clusters in
an N-dimensional space. Given K x N processors that share a global memory,
PLAC managed to distribute the whole dataset into a grid of K centroids and N
nodes for each centroid. In the experiments, they used one machine as the global
shared memory, assuming that the whole dataset could fit in a single node. This
architectural design severely limited the scalability of PLAC, as the maximum
size of the dataset shown in [26] was no larger than 10,000 points.

3 CLUS: Parallel Subspace Clustering Algorithm
on Spark

3.1 SUBCLU Algorithm

SUBCLU follows a bottom-up, greedy strategy intending to detect all density-
based clusters in all subspaces by using DBSCAN algorithm. First, a clustering
process is performed over each dimension to generate the set of 1-Dim subspaces
containing clusters. Then, SUBCLU recursively generates the set of candidates
for the (K+1)-Dim by combining pairs of K-Dim candidates with clusters shar-
ing K-1 dimensions. The Anti Monotonicity property is used to prune irrelevant
candidates. To increase the efficiency of the subsequent clustering process, the
K-Dim subspace with minimum amount of clustered data is chosen as the “best
subspace” for running DBSCAN. The recurrence terminates when no more clus-
ters are detected. The algorithm takes the same two parameters: epsilon and
minpts as DBSCAN. A more detailed description of SUBCLU, the process of
generating candidates as well as experimental results can be found in [8].

3.2 CLUS Algorithm

CLUS is a parallel algorithm on top of the Spark that overcomes the severe
limitations of SUBCLU. While SUBCLU sequentially runs DBSCAN clustering
for each subspace and has to wait for the termination of all the instances before
generating the candidate set for next dimensionality, CLUS is able to execute
multiple DBSCANs in parallel. The candidate generation and pruning steps are
also performed in a distributed manner without iterating over the dataset. CLUS
takes advantage of specific Spark primitives such as ReduceByKey, Aggregate-
ByKey etc. to induce data locality and improve the overall performance.
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It should be noted that Spark is able to autonomously place the data in the
nodes that require it by means of shuffle and repartition operations. However,
these primitives imply data movements resulting in slow disk and RAM I/O
operations and even slower network I/O operations. Moreover, Spark’s attempts
to assure data locality using the previously mentioned autonomous mechanisms
might result in inefficiencies as they could further trigger other unnecessary shuf-
fles. These dispensable time consuming operations are a very common problem
in most MapReduce based platforms and should be avoided as much as possible.
The data management strategy to achieve this has to be carefully considered
in order to provide the precise partitions at any moment that will achieve load
balance in each node and boost the performance.

The main challenges of CLUS are to assure that: 1) each node has the data
required to run subspace clustering; 2) partial data replication might be nec-
essary to assure simultaneous subspace clustering; 3) the minimum number of
shuffles and repartitions are performed; 4) nodes are well balanced and only spe-
cific data is moved across them; 5) there are no idle nodes; 4) the information is
always stored and accessed using efficient (key,value) structures.

Fig. 1. Pseudocode of CLUS algorithm

CLUS pseudocode is shown in Figure 1. The algorithm follows a similar con-
cept to SUBCLU, but designed to reduce data reallocation and improve the
efficiency of parallel density-based clustering tasks. CLUS manages the input
information by columns/features so that different columns are stored in dif-
ferent machines as (key,value) pairs. The algorithm starts by running parallel
DBSCANs on each of these features. The set of dimensions with clustered points
are further used to generate (K+1)-Dim candidates. These candidates are gener-
ated by adding to each K-Dim subspace a disjoint dimension containing at least
one cluster. The resulting (K+1)-Dim subspaces might require the same column
to be present in different machines (e.g. to compute the subspaces f1-f2 and f1-f3
at the same time), so an efficient flatMap-leftOuterJoin-reduceByKey schema is
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used for data replication. This mechanism allows CLUS to simultaneously exe-
cute independent DBSCANs on each subspace. The density based clustering is
performed again on each of these higher dimensional subspaces, but using only
the points that were not marked as noise in lower subspaces. A pruning step is
conducted over the resulting set of (K+1)-Dim subspaces in order to remove the
overlapping candidates (e.g. subspace f1-f2 plus subspace f3 generates the same
candidate as f2-f3 plus f1). In addition, based on the Anti-Monotonicity property
all the (K+1)-Dim subspaces containing a K-Dim subspace without any cluster
are also removed. To this end, the subspaces eliminated because of their lack
of clusters are used to generate (K+1)-Dim subspaces. These subspaces to be
removed are substracted from the pool of valid (K+1)-Dim subspaces of the next
iteration. CLUS ends when no higher subspace can be generated.

Fig. 2. Workflow of CLUS

The data workflow of CLUS is illustrated in Figure 2. For the sake of clar-
ity some operations have been omitted, thus showing only the most important
steps. The top part of the figure shows how clustering is performed on each
dimension and how the work is distributed across Spark nodes. As mentioned,
data is obtained form a text file stored in the HDFS and reorganized by columns
and rows using a (key,value) associative data structure. Each real value has a
column and row index and they constitute an RDD named CRV. This CRV
RDD is stored across nodes so that each of them has one column. DBSCAN is
performed in a distributed fashion and a new RDD with the indexes of the clus-
tered points is obtained. This RDD is further used to generate the (K+1)-Dim
candidates. The bottom part of Figure 2 shows the process of generating the
set of candidates from prior K-Dim subspaces. By managing only the indexes of
clustered points memory and network usage are optimized. The real data values
are only accessed when DBSCAN needs to be performed trough a join operation
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with the CRV RDD. The special structures of CRV and the index RDDs allows
each node to access the precise information it requires for each subspace analysis
and assures concurrent access to these data. The keys of the index RDD consti-
tute the set of subspaces with clusters and therefore are used to generate new
candidates. For each subspaces dimensionality a single data shuffle and reparti-
tion is strictly required. The results generated in each iteration of the algorithm
are stored in a specific RDD through a union operation and wrote to HDFS at
the and of the execution. This provides a clear and easy way to manage outputs.

4 Preliminary Experiments

In order to evaluate the performance and accuracy of CLUS a series of experi-
ments have been conducted. To this end, both synthetic and real datasets have
been considered. The synthetic datasets used, containing 5 and 10 relevant fea-
tures and which were originally presented in a previous research work [27], were
obtained from the webpage of the Ludwig Maximilian University of Munich. The
real dataset tested contained aggregated network traffic flows obtained from the
core network of an ISP at the ONTIC project. The experiments reported here
were executed on a single Core(TM) i-7 and 16GB of RAM machine and a com-
modity cluster of 10 nodes. The cluster consists of Core(TM) 2 Quad CPUs with
4GB of RAM. Spark was configured to use one executor per core (8 in the single
machine and 40 in the cluster) with 1GB of memory each. The machines were
running CentOS operating system, Spark version 1.2.2 and Hadoop 2.0.

Fig. 3. SUBCLU and CLUS execution
time w.r.t. number of nodes

Fig. 4. Execution time with one node
per dimension

4.1 Scalability

First we have evaluated the scalability of the algorithm comparing it to a central-
ized version of SUBCLU available in the OpenSubspace v3.31 project [4]. Open-
Subspace extends with subspace clustering algorithms the well known Weka ML
library. Figure 3 shows the execution times of SUBCLU and CLUS on a single
machine and the cluster for different dataset sizes.



CLUS: Parallel Subspace Clustering Algorithm on Spark 183

During the initial tests, Weka, without any additional requirement for cluster
evaluation or visualization ran out of memory with 1GB of Java heap. CLUS
running on a single node and with the same dataset used less than 3,5 MB. The
total amount of heap for Weka was further increased to 8GB in order to be able
to run all the experiments.

Additional experiments show, as expected, that CLUS’s execution time grows
with a quadratic factor w.r.t. dataset size and number of features on a constant
number of cluster nodes (Figure 5 and Figure 6). However, as the number of
machines in the cluster increases, CLUS achieves a nearly linear speedup by
taking full advantage of the data partitioning strategy and simultaneous clus-
tering executions. With a number of machines equal to the dimensions of the
dataset a nearly linear speedup is achieved, as shown in Figure 4.

We have also tested CLUS with real network traffic data of up to 10000 flows
and 10 features obtaining interesting insights. The algorithm discovered clusters
in up to 8 dimensions and others in lower ones aggregating flows of the same
type. The results were consistent in time and dimensionality with the ones using
synthetic data.

Fig. 5. Execution time w.r.t. dataset size. Fig. 6. Execution timew.r.t. dimensionality

4.2 Accuracy

In order to evaluate the accuracy of CLUS the algorithm was compared to the
Weka implementation of SUBCLU providing the same clusters. Nevertheless,
Weka implementation misclassified some points, so a Java version of the algo-
rithm was implemented from the original paper [8]. Results showed a perfect
match between this version of SUBCLU and CLUS on different datasets.

5 Conclusions and Future Work

In this paper we present CLUS: a novel scalable and parallel subspace clustering
algorithm on top of Spark. CLUS is highly inspired by the well-known SUB-
CLU algorithm. Relying on specific Spark primitives, CLUS is able to execute
multiple DBSCAN tasks in parallel achieving a significant speedup. In addition,
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unnecessary data shuffle is avoided by using a carefully designed data parti-
tioning strategy to induce data locality. We carried out some preliminary tests
on a modest cluster showing promising results with respect to scalability. The
obtained results show that CLUS efficiently finds correct subspace clusters. In
the future, we plan to extend our experiments with respect to scalability both
on the number of dimensions and the size of datasets.
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